xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssanames.c (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* Generic routines for manipulating SSA_NAME expressions
2    Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "tree-pass.h"
27 #include "ssa.h"
28 #include "gimple-iterator.h"
29 #include "stor-layout.h"
30 #include "tree-into-ssa.h"
31 #include "tree-ssa.h"
32 #include "cfgloop.h"
33 #include "tree-scalar-evolution.h"
34 
35 /* Rewriting a function into SSA form can create a huge number of SSA_NAMEs,
36    many of which may be thrown away shortly after their creation if jumps
37    were threaded through PHI nodes.
38 
39    While our garbage collection mechanisms will handle this situation, it
40    is extremely wasteful to create nodes and throw them away, especially
41    when the nodes can be reused.
42 
43    For PR 8361, we can significantly reduce the number of nodes allocated
44    and thus the total amount of memory allocated by managing SSA_NAMEs a
45    little.  This additionally helps reduce the amount of work done by the
46    garbage collector.  Similar results have been seen on a wider variety
47    of tests (such as the compiler itself).
48 
49    Right now we maintain our free list on a per-function basis.  It may
50    or may not make sense to maintain the free list for the duration of
51    a compilation unit.
52 
53    External code should rely solely upon HIGHEST_SSA_VERSION and the
54    externally defined functions.  External code should not know about
55    the details of the free list management.
56 
57    External code should also not assume the version number on nodes is
58    monotonically increasing.  We reuse the version number when we
59    reuse an SSA_NAME expression.  This helps keep arrays and bitmaps
60    more compact.  */
61 
62 
63 /* Version numbers with special meanings.  We start allocating new version
64    numbers after the special ones.  */
65 #define UNUSED_NAME_VERSION 0
66 
67 unsigned int ssa_name_nodes_reused;
68 unsigned int ssa_name_nodes_created;
69 
70 #define FREE_SSANAMES(fun) (fun)->gimple_df->free_ssanames
71 #define FREE_SSANAMES_QUEUE(fun) (fun)->gimple_df->free_ssanames_queue
72 
73 
74 /* Initialize management of SSA_NAMEs to default SIZE.  If SIZE is
75    zero use default.  */
76 
77 void
init_ssanames(struct function * fn,int size)78 init_ssanames (struct function *fn, int size)
79 {
80   if (size < 50)
81     size = 50;
82 
83   vec_alloc (SSANAMES (fn), size);
84 
85   /* Version 0 is special, so reserve the first slot in the table.  Though
86      currently unused, we may use version 0 in alias analysis as part of
87      the heuristics used to group aliases when the alias sets are too
88      large.
89 
90      We use vec::quick_push here because we know that SSA_NAMES has at
91      least 50 elements reserved in it.  */
92   SSANAMES (fn)->quick_push (NULL_TREE);
93   FREE_SSANAMES (fn) = NULL;
94   FREE_SSANAMES_QUEUE (fn) = NULL;
95 
96   fn->gimple_df->ssa_renaming_needed = 0;
97   fn->gimple_df->rename_vops = 0;
98 }
99 
100 /* Finalize management of SSA_NAMEs.  */
101 
102 void
fini_ssanames(struct function * fn)103 fini_ssanames (struct function *fn)
104 {
105   vec_free (SSANAMES (fn));
106   vec_free (FREE_SSANAMES (fn));
107   vec_free (FREE_SSANAMES_QUEUE (fn));
108 }
109 
110 /* Dump some simple statistics regarding the re-use of SSA_NAME nodes.  */
111 
112 void
ssanames_print_statistics(void)113 ssanames_print_statistics (void)
114 {
115   fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes allocated:",
116 	   SIZE_AMOUNT (ssa_name_nodes_created));
117   fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes reused:",
118 	   SIZE_AMOUNT (ssa_name_nodes_reused));
119 }
120 
121 /* Verify the state of the SSA_NAME lists.
122 
123    There must be no duplicates on the free list.
124    Every name on the free list must be marked as on the free list.
125    Any name on the free list must not appear in the IL.
126    No names can be leaked.  */
127 
128 DEBUG_FUNCTION void
verify_ssaname_freelists(struct function * fun)129 verify_ssaname_freelists (struct function *fun)
130 {
131   if (!gimple_in_ssa_p (fun))
132     return;
133 
134   auto_bitmap names_in_il;
135 
136   /* Walk the entire IL noting every SSA_NAME we see.  */
137   basic_block bb;
138   FOR_EACH_BB_FN (bb, fun)
139     {
140       tree t;
141       /* First note the result and arguments of PHI nodes.  */
142       for (gphi_iterator gsi = gsi_start_phis (bb);
143 	   !gsi_end_p (gsi);
144 	   gsi_next (&gsi))
145 	{
146 	  gphi *phi = gsi.phi ();
147 	  t = gimple_phi_result (phi);
148 	  bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
149 
150 	  for (unsigned int i = 0; i < gimple_phi_num_args (phi); i++)
151 	    {
152 	      t = gimple_phi_arg_def (phi, i);
153 	      if (TREE_CODE (t) == SSA_NAME)
154 		bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
155 	    }
156 	}
157 
158       /* Then note the operands of each statement.  */
159       for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
160 	   !gsi_end_p (gsi);
161 	   gsi_next (&gsi))
162 	{
163 	  ssa_op_iter iter;
164 	  gimple *stmt = gsi_stmt (gsi);
165 	  FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, SSA_OP_ALL_OPERANDS)
166 	    bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
167 	}
168     }
169 
170   /* Now walk the free list noting what we find there and verifying
171      there are no duplicates.  */
172   auto_bitmap names_in_freelists;
173   if (FREE_SSANAMES (fun))
174     {
175       for (unsigned int i = 0; i < FREE_SSANAMES (fun)->length (); i++)
176 	{
177 	  tree t = (*FREE_SSANAMES (fun))[i];
178 
179 	  /* Verify that the name is marked as being in the free list.  */
180 	  gcc_assert (SSA_NAME_IN_FREE_LIST (t));
181 
182 	  /* Verify the name has not already appeared in the free list and
183 	     note it in the list of names found in the free list.  */
184 	  gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t)));
185 	  bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t));
186 	}
187     }
188 
189   /* Similarly for the names in the pending free list.  */
190   if (FREE_SSANAMES_QUEUE (fun))
191     {
192       for (unsigned int i = 0; i < FREE_SSANAMES_QUEUE (fun)->length (); i++)
193 	{
194 	  tree t = (*FREE_SSANAMES_QUEUE (fun))[i];
195 
196 	  /* Verify that the name is marked as being in the free list.  */
197 	  gcc_assert (SSA_NAME_IN_FREE_LIST (t));
198 
199 	  /* Verify the name has not already appeared in the free list and
200 	     note it in the list of names found in the free list.  */
201 	  gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t)));
202 	  bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t));
203 	}
204     }
205 
206   /* If any name appears in both the IL and the freelists, then
207      something horrible has happened.  */
208   bool intersect_p = bitmap_intersect_p (names_in_il, names_in_freelists);
209   gcc_assert (!intersect_p);
210 
211   /* Names can be queued up for release if there is an ssa update
212      pending.  Pretend we saw them in the IL.  */
213   if (names_to_release)
214     bitmap_ior_into (names_in_il, names_to_release);
215 
216   /* Function splitting can "lose" SSA_NAMEs in an effort to ensure that
217      debug/non-debug compilations have the same SSA_NAMEs.  So for each
218      lost SSA_NAME, see if it's likely one from that wart.  These will always
219      be marked as default definitions.  So we loosely assume that anything
220      marked as a default definition isn't leaked by pretending they are
221      in the IL.  */
222   for (unsigned int i = UNUSED_NAME_VERSION + 1; i < num_ssa_names; i++)
223     if (ssa_name (i) && SSA_NAME_IS_DEFAULT_DEF (ssa_name (i)))
224       bitmap_set_bit (names_in_il, i);
225 
226   unsigned int i;
227   bitmap_iterator bi;
228   auto_bitmap all_names;
229   bitmap_set_range (all_names, UNUSED_NAME_VERSION + 1, num_ssa_names - 1);
230   bitmap_ior_into (names_in_il, names_in_freelists);
231 
232   /* Any name not mentioned in the IL and not in the feelists
233      has been leaked.  */
234   EXECUTE_IF_AND_COMPL_IN_BITMAP(all_names, names_in_il,
235 				 UNUSED_NAME_VERSION + 1, i, bi)
236     gcc_assert (!ssa_name (i));
237 }
238 
239 /* Move all SSA_NAMEs from FREE_SSA_NAMES_QUEUE to FREE_SSA_NAMES.
240 
241    We do not, but should have a mode to verify the state of the SSA_NAMEs
242    lists.  In particular at this point every name must be in the IL,
243    on the free list or in the queue.  Anything else is an error.  */
244 
245 void
flush_ssaname_freelist(void)246 flush_ssaname_freelist (void)
247 {
248   /* If there were any SSA names released reset the SCEV cache.  */
249   if (! vec_safe_is_empty (FREE_SSANAMES_QUEUE (cfun)))
250     scev_reset_htab ();
251   vec_safe_splice (FREE_SSANAMES (cfun), FREE_SSANAMES_QUEUE (cfun));
252   vec_safe_truncate (FREE_SSANAMES_QUEUE (cfun), 0);
253 }
254 
255 /* Initialize SSA_NAME_IMM_USE_NODE of a SSA NAME.  */
256 
257 void
init_ssa_name_imm_use(tree name)258 init_ssa_name_imm_use (tree name)
259 {
260   use_operand_p imm;
261   imm = &(SSA_NAME_IMM_USE_NODE (name));
262   imm->use = NULL;
263   imm->prev = imm;
264   imm->next = imm;
265   imm->loc.ssa_name = name;
266 }
267 
268 /* Return an SSA_NAME node for variable VAR defined in statement STMT
269    in function FN.  STMT may be an empty statement for artificial
270    references (e.g., default definitions created when a variable is
271    used without a preceding definition).  If VERISON is not zero then
272    allocate the SSA name with that version.  */
273 
274 tree
make_ssa_name_fn(struct function * fn,tree var,gimple * stmt,unsigned int version)275 make_ssa_name_fn (struct function *fn, tree var, gimple *stmt,
276 		  unsigned int version)
277 {
278   tree t;
279   gcc_assert (VAR_P (var)
280 	      || TREE_CODE (var) == PARM_DECL
281 	      || TREE_CODE (var) == RESULT_DECL
282 	      || (TYPE_P (var) && is_gimple_reg_type (var)));
283 
284   /* Get the specified SSA name version.  */
285   if (version != 0)
286     {
287       t = make_node (SSA_NAME);
288       SSA_NAME_VERSION (t) = version;
289       if (version >= SSANAMES (fn)->length ())
290 	vec_safe_grow_cleared (SSANAMES (fn), version + 1);
291       gcc_assert ((*SSANAMES (fn))[version] == NULL);
292       (*SSANAMES (fn))[version] = t;
293       ssa_name_nodes_created++;
294     }
295   /* If our free list has an element, then use it.  */
296   else if (!vec_safe_is_empty (FREE_SSANAMES (fn)))
297     {
298       t = FREE_SSANAMES (fn)->pop ();
299       ssa_name_nodes_reused++;
300 
301       /* The node was cleared out when we put it on the free list, so
302 	 there is no need to do so again here.  */
303       gcc_assert ((*SSANAMES (fn))[SSA_NAME_VERSION (t)] == NULL);
304       (*SSANAMES (fn))[SSA_NAME_VERSION (t)] = t;
305     }
306   else
307     {
308       t = make_node (SSA_NAME);
309       SSA_NAME_VERSION (t) = SSANAMES (fn)->length ();
310       vec_safe_push (SSANAMES (fn), t);
311       ssa_name_nodes_created++;
312     }
313 
314   if (TYPE_P (var))
315     {
316       TREE_TYPE (t) = TYPE_MAIN_VARIANT (var);
317       SET_SSA_NAME_VAR_OR_IDENTIFIER (t, NULL_TREE);
318     }
319   else
320     {
321       TREE_TYPE (t) = TREE_TYPE (var);
322       SET_SSA_NAME_VAR_OR_IDENTIFIER (t, var);
323     }
324   SSA_NAME_DEF_STMT (t) = stmt;
325   if (POINTER_TYPE_P (TREE_TYPE (t)))
326     SSA_NAME_PTR_INFO (t) = NULL;
327   else
328     SSA_NAME_RANGE_INFO (t) = NULL;
329 
330   SSA_NAME_IN_FREE_LIST (t) = 0;
331   SSA_NAME_IS_DEFAULT_DEF (t) = 0;
332   init_ssa_name_imm_use (t);
333 
334   return t;
335 }
336 
337 /* Helper function for set_range_info.
338 
339    Store range information RANGE_TYPE, MIN, and MAX to tree ssa_name
340    NAME.  */
341 
342 void
set_range_info_raw(tree name,enum value_range_kind range_type,const wide_int_ref & min,const wide_int_ref & max)343 set_range_info_raw (tree name, enum value_range_kind range_type,
344 		    const wide_int_ref &min, const wide_int_ref &max)
345 {
346   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
347   gcc_assert (range_type == VR_RANGE || range_type == VR_ANTI_RANGE);
348   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
349   unsigned int precision = TYPE_PRECISION (TREE_TYPE (name));
350 
351   /* Allocate if not available.  */
352   if (ri == NULL)
353     {
354       size_t size = (sizeof (range_info_def)
355 		     + trailing_wide_ints <3>::extra_size (precision));
356       ri = static_cast<range_info_def *> (ggc_internal_alloc (size));
357       ri->ints.set_precision (precision);
358       SSA_NAME_RANGE_INFO (name) = ri;
359       ri->set_nonzero_bits (wi::shwi (-1, precision));
360     }
361 
362   /* Record the range type.  */
363   if (SSA_NAME_RANGE_TYPE (name) != range_type)
364     SSA_NAME_ANTI_RANGE_P (name) = (range_type == VR_ANTI_RANGE);
365 
366   /* Set the values.  */
367   ri->set_min (min);
368   ri->set_max (max);
369 
370   /* If it is a range, try to improve nonzero_bits from the min/max.  */
371   if (range_type == VR_RANGE)
372     {
373       wide_int xorv = ri->get_min () ^ ri->get_max ();
374       if (xorv != 0)
375 	xorv = wi::mask (precision - wi::clz (xorv), false, precision);
376       ri->set_nonzero_bits (ri->get_nonzero_bits () & (ri->get_min () | xorv));
377     }
378 }
379 
380 /* Store range information RANGE_TYPE, MIN, and MAX to tree ssa_name
381    NAME while making sure we don't store useless range info.  */
382 
383 void
set_range_info(tree name,enum value_range_kind range_type,const wide_int_ref & min,const wide_int_ref & max)384 set_range_info (tree name, enum value_range_kind range_type,
385 		const wide_int_ref &min, const wide_int_ref &max)
386 {
387   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
388 
389   /* A range of the entire domain is really no range at all.  */
390   tree type = TREE_TYPE (name);
391   if (min == wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type))
392       && max == wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
393     {
394       range_info_def *ri = SSA_NAME_RANGE_INFO (name);
395       if (ri == NULL)
396 	return;
397       if (ri->get_nonzero_bits () == -1)
398 	{
399 	  ggc_free (ri);
400 	  SSA_NAME_RANGE_INFO (name) = NULL;
401 	  return;
402 	}
403     }
404 
405   set_range_info_raw (name, range_type, min, max);
406 }
407 
408 /* Store range information for NAME from a value_range.  */
409 
410 void
set_range_info(tree name,const value_range & vr)411 set_range_info (tree name, const value_range &vr)
412 {
413   wide_int min = wi::to_wide (vr.min ());
414   wide_int max = wi::to_wide (vr.max ());
415   set_range_info (name, vr.kind (), min, max);
416 }
417 
418 /* Gets range information MIN, MAX and returns enum value_range_kind
419    corresponding to tree ssa_name NAME.  enum value_range_kind returned
420    is used to determine if MIN and MAX are valid values.  */
421 
422 enum value_range_kind
get_range_info(const_tree name,wide_int * min,wide_int * max)423 get_range_info (const_tree name, wide_int *min, wide_int *max)
424 {
425   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
426   gcc_assert (min && max);
427   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
428 
429   /* Return VR_VARYING for SSA_NAMEs with NULL RANGE_INFO or SSA_NAMEs
430      with integral types width > 2 * HOST_BITS_PER_WIDE_INT precision.  */
431   if (!ri || (GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (name)))
432 	      > 2 * HOST_BITS_PER_WIDE_INT))
433     return VR_VARYING;
434 
435   *min = ri->get_min ();
436   *max = ri->get_max ();
437   return SSA_NAME_RANGE_TYPE (name);
438 }
439 
440 /* Gets range information corresponding to ssa_name NAME and stores it
441    in a value_range VR.  Returns the value_range_kind.  */
442 
443 enum value_range_kind
get_range_info(const_tree name,value_range & vr)444 get_range_info (const_tree name, value_range &vr)
445 {
446   tree min, max;
447   wide_int wmin, wmax;
448   enum value_range_kind kind = get_range_info (name, &wmin, &wmax);
449 
450   if (kind == VR_VARYING)
451     vr.set_varying (TREE_TYPE (name));
452   else if (kind == VR_UNDEFINED)
453     vr.set_undefined ();
454   else
455     {
456       min = wide_int_to_tree (TREE_TYPE (name), wmin);
457       max = wide_int_to_tree (TREE_TYPE (name), wmax);
458       vr.set (min, max, kind);
459     }
460   return kind;
461 }
462 
463 /* Set nonnull attribute to pointer NAME.  */
464 
465 void
set_ptr_nonnull(tree name)466 set_ptr_nonnull (tree name)
467 {
468   gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
469   struct ptr_info_def *pi = get_ptr_info (name);
470   pi->pt.null = 0;
471 }
472 
473 /* Return nonnull attribute of pointer NAME.  */
474 bool
get_ptr_nonnull(const_tree name)475 get_ptr_nonnull (const_tree name)
476 {
477   gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
478   struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
479   if (pi == NULL)
480     return false;
481   /* TODO Now pt->null is conservatively set to true in PTA
482      analysis. vrp is the only pass (including ipa-vrp)
483      that clears pt.null via set_ptr_nonull when it knows
484      for sure. PTA will preserves the pt.null value set by VRP.
485 
486      When PTA analysis is improved, pt.anything, pt.nonlocal
487      and pt.escaped may also has to be considered before
488      deciding that pointer cannot point to NULL.  */
489   return !pi->pt.null;
490 }
491 
492 /* Change non-zero bits bitmask of NAME.  */
493 
494 void
set_nonzero_bits(tree name,const wide_int_ref & mask)495 set_nonzero_bits (tree name, const wide_int_ref &mask)
496 {
497   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
498   if (SSA_NAME_RANGE_INFO (name) == NULL)
499     {
500       if (mask == -1)
501 	return;
502       set_range_info_raw (name, VR_RANGE,
503 			  wi::to_wide (TYPE_MIN_VALUE (TREE_TYPE (name))),
504 			  wi::to_wide (TYPE_MAX_VALUE (TREE_TYPE (name))));
505     }
506   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
507   ri->set_nonzero_bits (mask);
508 }
509 
510 /* Return a widest_int with potentially non-zero bits in SSA_NAME
511    NAME, the constant for INTEGER_CST, or -1 if unknown.  */
512 
513 wide_int
get_nonzero_bits(const_tree name)514 get_nonzero_bits (const_tree name)
515 {
516   if (TREE_CODE (name) == INTEGER_CST)
517     return wi::to_wide (name);
518 
519   /* Use element_precision instead of TYPE_PRECISION so complex and
520      vector types get a non-zero precision.  */
521   unsigned int precision = element_precision (TREE_TYPE (name));
522   if (POINTER_TYPE_P (TREE_TYPE (name)))
523     {
524       struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
525       if (pi && pi->align)
526 	return wi::shwi (-(HOST_WIDE_INT) pi->align
527 			 | (HOST_WIDE_INT) pi->misalign, precision);
528       return wi::shwi (-1, precision);
529     }
530 
531   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
532   if (!ri)
533     return wi::shwi (-1, precision);
534 
535   return ri->get_nonzero_bits ();
536 }
537 
538 /* Return TRUE is OP, an SSA_NAME has a range of values [0..1], false
539    otherwise.
540 
541    This can be because it is a boolean type, any unsigned integral
542    type with a single bit of precision, or has known range of [0..1]
543    via VRP analysis.  */
544 
545 bool
ssa_name_has_boolean_range(tree op)546 ssa_name_has_boolean_range (tree op)
547 {
548   gcc_assert (TREE_CODE (op) == SSA_NAME);
549 
550   /* Boolean types always have a range [0..1].  */
551   if (TREE_CODE (TREE_TYPE (op)) == BOOLEAN_TYPE)
552     return true;
553 
554   /* An integral type with a single bit of precision.  */
555   if (INTEGRAL_TYPE_P (TREE_TYPE (op))
556       && TYPE_UNSIGNED (TREE_TYPE (op))
557       && TYPE_PRECISION (TREE_TYPE (op)) == 1)
558     return true;
559 
560   /* An integral type with more precision, but the object
561      only takes on values [0..1] as determined by VRP
562      analysis.  */
563   if (INTEGRAL_TYPE_P (TREE_TYPE (op))
564       && (TYPE_PRECISION (TREE_TYPE (op)) > 1)
565       && wi::eq_p (get_nonzero_bits (op), 1))
566     return true;
567 
568   return false;
569 }
570 
571 /* We no longer need the SSA_NAME expression VAR, release it so that
572    it may be reused.
573 
574    Note it is assumed that no calls to make_ssa_name will be made
575    until all uses of the ssa name are released and that the only
576    use of the SSA_NAME expression is to check its SSA_NAME_VAR.  All
577    other fields must be assumed clobbered.  */
578 
579 void
release_ssa_name_fn(struct function * fn,tree var)580 release_ssa_name_fn (struct function *fn, tree var)
581 {
582   if (!var)
583     return;
584 
585   /* Never release the default definition for a symbol.  It's a
586      special SSA name that should always exist once it's created.  */
587   if (SSA_NAME_IS_DEFAULT_DEF (var))
588     return;
589 
590   /* If VAR has been registered for SSA updating, don't remove it.
591      After update_ssa has run, the name will be released.  */
592   if (name_registered_for_update_p (var))
593     {
594       release_ssa_name_after_update_ssa (var);
595       return;
596     }
597 
598   /* release_ssa_name can be called multiple times on a single SSA_NAME.
599      However, it should only end up on our free list one time.   We
600      keep a status bit in the SSA_NAME node itself to indicate it has
601      been put on the free list.
602 
603      Note that once on the freelist you cannot reference the SSA_NAME's
604      defining statement.  */
605   if (! SSA_NAME_IN_FREE_LIST (var))
606     {
607       int saved_ssa_name_version = SSA_NAME_VERSION (var);
608       use_operand_p imm = &(SSA_NAME_IMM_USE_NODE (var));
609 
610       if (MAY_HAVE_DEBUG_BIND_STMTS)
611 	insert_debug_temp_for_var_def (NULL, var);
612 
613       if (flag_checking)
614 	verify_imm_links (stderr, var);
615       while (imm->next != imm)
616 	delink_imm_use (imm->next);
617 
618       (*SSANAMES (fn))[SSA_NAME_VERSION (var)] = NULL_TREE;
619       memset (var, 0, tree_size (var));
620 
621       imm->prev = imm;
622       imm->next = imm;
623       imm->loc.ssa_name = var;
624 
625       /* First put back the right tree node so that the tree checking
626 	 macros do not complain.  */
627       TREE_SET_CODE (var, SSA_NAME);
628 
629       /* Restore the version number.  */
630       SSA_NAME_VERSION (var) = saved_ssa_name_version;
631 
632       /* Note this SSA_NAME is now in the first list.  */
633       SSA_NAME_IN_FREE_LIST (var) = 1;
634 
635       /* Put in a non-NULL TREE_TYPE so dumping code will not ICE
636          if it happens to come along a released SSA name and tries
637 	 to inspect its type.  */
638       TREE_TYPE (var) = error_mark_node;
639 
640       /* And finally queue it so that it will be put on the free list.  */
641       vec_safe_push (FREE_SSANAMES_QUEUE (fn), var);
642     }
643 }
644 
645 /* If the alignment of the pointer described by PI is known, return true and
646    store the alignment and the deviation from it into *ALIGNP and *MISALIGNP
647    respectively.  Otherwise return false.  */
648 
649 bool
get_ptr_info_alignment(struct ptr_info_def * pi,unsigned int * alignp,unsigned int * misalignp)650 get_ptr_info_alignment (struct ptr_info_def *pi, unsigned int *alignp,
651 			unsigned int *misalignp)
652 {
653   if (pi->align)
654     {
655       *alignp = pi->align;
656       *misalignp = pi->misalign;
657       return true;
658     }
659   else
660     return false;
661 }
662 
663 /* State that the pointer described by PI has unknown alignment.  */
664 
665 void
mark_ptr_info_alignment_unknown(struct ptr_info_def * pi)666 mark_ptr_info_alignment_unknown (struct ptr_info_def *pi)
667 {
668   pi->align = 0;
669   pi->misalign = 0;
670 }
671 
672 /* Store the power-of-two byte alignment and the deviation from that
673    alignment of pointer described by PI to ALIOGN and MISALIGN
674    respectively.  */
675 
676 void
set_ptr_info_alignment(struct ptr_info_def * pi,unsigned int align,unsigned int misalign)677 set_ptr_info_alignment (struct ptr_info_def *pi, unsigned int align,
678 			    unsigned int misalign)
679 {
680   gcc_checking_assert (align != 0);
681   gcc_assert ((align & (align - 1)) == 0);
682   gcc_assert ((misalign & ~(align - 1)) == 0);
683 
684   pi->align = align;
685   pi->misalign = misalign;
686 }
687 
688 /* If pointer described by PI has known alignment, increase its known
689    misalignment by INCREMENT modulo its current alignment.  */
690 
691 void
adjust_ptr_info_misalignment(struct ptr_info_def * pi,poly_uint64 increment)692 adjust_ptr_info_misalignment (struct ptr_info_def *pi, poly_uint64 increment)
693 {
694   if (pi->align != 0)
695     {
696       increment += pi->misalign;
697       if (!known_misalignment (increment, pi->align, &pi->misalign))
698 	{
699 	  pi->align = known_alignment (increment);
700 	  pi->misalign = 0;
701 	}
702     }
703 }
704 
705 /* Return the alias information associated with pointer T.  It creates a
706    new instance if none existed.  */
707 
708 struct ptr_info_def *
get_ptr_info(tree t)709 get_ptr_info (tree t)
710 {
711   struct ptr_info_def *pi;
712 
713   gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));
714 
715   pi = SSA_NAME_PTR_INFO (t);
716   if (pi == NULL)
717     {
718       pi = ggc_cleared_alloc<ptr_info_def> ();
719       pt_solution_reset (&pi->pt);
720       mark_ptr_info_alignment_unknown (pi);
721       SSA_NAME_PTR_INFO (t) = pi;
722     }
723 
724   return pi;
725 }
726 
727 
728 /* Creates a new SSA name using the template NAME tobe defined by
729    statement STMT in function FN.  */
730 
731 tree
copy_ssa_name_fn(struct function * fn,tree name,gimple * stmt)732 copy_ssa_name_fn (struct function *fn, tree name, gimple *stmt)
733 {
734   tree new_name;
735 
736   if (SSA_NAME_VAR (name))
737     new_name = make_ssa_name_fn (fn, SSA_NAME_VAR (name), stmt);
738   else
739     {
740       new_name = make_ssa_name_fn (fn, TREE_TYPE (name), stmt);
741       SET_SSA_NAME_VAR_OR_IDENTIFIER (new_name, SSA_NAME_IDENTIFIER (name));
742     }
743 
744   return new_name;
745 }
746 
747 
748 /* Creates a duplicate of the ptr_info_def at PTR_INFO for use by
749    the SSA name NAME.  */
750 
751 void
duplicate_ssa_name_ptr_info(tree name,struct ptr_info_def * ptr_info)752 duplicate_ssa_name_ptr_info (tree name, struct ptr_info_def *ptr_info)
753 {
754   struct ptr_info_def *new_ptr_info;
755 
756   gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
757   gcc_assert (!SSA_NAME_PTR_INFO (name));
758 
759   if (!ptr_info)
760     return;
761 
762   new_ptr_info = ggc_alloc<ptr_info_def> ();
763   *new_ptr_info = *ptr_info;
764 
765   SSA_NAME_PTR_INFO (name) = new_ptr_info;
766 }
767 
768 /* Creates a duplicate of the range_info_def at RANGE_INFO of type
769    RANGE_TYPE for use by the SSA name NAME.  */
770 void
duplicate_ssa_name_range_info(tree name,enum value_range_kind range_type,struct range_info_def * range_info)771 duplicate_ssa_name_range_info (tree name, enum value_range_kind range_type,
772 			       struct range_info_def *range_info)
773 {
774   struct range_info_def *new_range_info;
775 
776   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
777   gcc_assert (!SSA_NAME_RANGE_INFO (name));
778 
779   if (!range_info)
780     return;
781 
782   unsigned int precision = TYPE_PRECISION (TREE_TYPE (name));
783   size_t size = (sizeof (range_info_def)
784 		 + trailing_wide_ints <3>::extra_size (precision));
785   new_range_info = static_cast<range_info_def *> (ggc_internal_alloc (size));
786   memcpy (new_range_info, range_info, size);
787 
788   gcc_assert (range_type == VR_RANGE || range_type == VR_ANTI_RANGE);
789   SSA_NAME_ANTI_RANGE_P (name) = (range_type == VR_ANTI_RANGE);
790   SSA_NAME_RANGE_INFO (name) = new_range_info;
791 }
792 
793 
794 
795 /* Creates a duplicate of a ssa name NAME tobe defined by statement STMT
796    in function FN.  */
797 
798 tree
duplicate_ssa_name_fn(struct function * fn,tree name,gimple * stmt)799 duplicate_ssa_name_fn (struct function *fn, tree name, gimple *stmt)
800 {
801   tree new_name = copy_ssa_name_fn (fn, name, stmt);
802   if (POINTER_TYPE_P (TREE_TYPE (name)))
803     {
804       struct ptr_info_def *old_ptr_info = SSA_NAME_PTR_INFO (name);
805 
806       if (old_ptr_info)
807 	duplicate_ssa_name_ptr_info (new_name, old_ptr_info);
808     }
809   else
810     {
811       struct range_info_def *old_range_info = SSA_NAME_RANGE_INFO (name);
812 
813       if (old_range_info)
814 	duplicate_ssa_name_range_info (new_name, SSA_NAME_RANGE_TYPE (name),
815 				       old_range_info);
816     }
817 
818   return new_name;
819 }
820 
821 
822 /* Reset all flow sensitive data on NAME such as range-info, nonzero
823    bits and alignment.  */
824 
825 void
reset_flow_sensitive_info(tree name)826 reset_flow_sensitive_info (tree name)
827 {
828   if (POINTER_TYPE_P (TREE_TYPE (name)))
829     {
830       /* points-to info is not flow-sensitive.  */
831       if (SSA_NAME_PTR_INFO (name))
832 	{
833 	  /* [E]VRP can derive context sensitive alignment info and
834 	     non-nullness properties.  We must reset both.  */
835 	  mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
836 	  SSA_NAME_PTR_INFO (name)->pt.null = 1;
837 	}
838     }
839   else
840     SSA_NAME_RANGE_INFO (name) = NULL;
841 }
842 
843 /* Clear all flow sensitive data from all statements and PHI definitions
844    in BB.  */
845 
846 void
reset_flow_sensitive_info_in_bb(basic_block bb)847 reset_flow_sensitive_info_in_bb (basic_block bb)
848 {
849   for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
850        gsi_next (&gsi))
851     {
852       gimple *stmt = gsi_stmt (gsi);
853       ssa_op_iter i;
854       tree op;
855       FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
856 	reset_flow_sensitive_info (op);
857     }
858 
859   for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
860        gsi_next (&gsi))
861     {
862       tree phi_def = gimple_phi_result (gsi.phi ());
863       reset_flow_sensitive_info (phi_def);
864     }
865 }
866 
867 /* Release all the SSA_NAMEs created by STMT.  */
868 
869 void
release_defs(gimple * stmt)870 release_defs (gimple *stmt)
871 {
872   tree def;
873   ssa_op_iter iter;
874 
875   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
876     if (TREE_CODE (def) == SSA_NAME)
877       release_ssa_name (def);
878 }
879 
880 
881 /* Replace the symbol associated with SSA_NAME with SYM.  */
882 
883 void
replace_ssa_name_symbol(tree ssa_name,tree sym)884 replace_ssa_name_symbol (tree ssa_name, tree sym)
885 {
886   SET_SSA_NAME_VAR_OR_IDENTIFIER (ssa_name, sym);
887   TREE_TYPE (ssa_name) = TREE_TYPE (sym);
888 }
889 
890 /* Release the vector of free SSA_NAMEs and compact the vector of SSA_NAMEs
891    that are live.  */
892 
893 static void
release_free_names_and_compact_live_names(function * fun)894 release_free_names_and_compact_live_names (function *fun)
895 {
896   unsigned i, j;
897   int n = vec_safe_length (FREE_SSANAMES (fun));
898 
899   /* Now release the freelist.  */
900   vec_free (FREE_SSANAMES (fun));
901 
902   /* And compact the SSA number space.  We make sure to not change the
903      relative order of SSA versions.  */
904   for (i = 1, j = 1; i < fun->gimple_df->ssa_names->length (); ++i)
905     {
906       tree name = ssa_name (i);
907       if (name)
908 	{
909 	  if (i != j)
910 	    {
911 	      SSA_NAME_VERSION (name) = j;
912 	      (*fun->gimple_df->ssa_names)[j] = name;
913 	    }
914 	  j++;
915 	}
916     }
917   fun->gimple_df->ssa_names->truncate (j);
918 
919   statistics_counter_event (fun, "SSA names released", n);
920   statistics_counter_event (fun, "SSA name holes removed", i - j);
921   if (dump_file)
922     fprintf (dump_file, "Released %i names, %.2f%%, removed %i holes\n",
923 	     n, n * 100.0 / num_ssa_names, i - j);
924 }
925 
926 /* Return SSA names that are unused to GGC memory and compact the SSA
927    version namespace.  This is used to keep footprint of compiler during
928    interprocedural optimization.  */
929 
930 namespace {
931 
932 const pass_data pass_data_release_ssa_names =
933 {
934   GIMPLE_PASS, /* type */
935   "release_ssa", /* name */
936   OPTGROUP_NONE, /* optinfo_flags */
937   TV_TREE_SSA_OTHER, /* tv_id */
938   PROP_ssa, /* properties_required */
939   0, /* properties_provided */
940   0, /* properties_destroyed */
941   TODO_remove_unused_locals, /* todo_flags_start */
942   0, /* todo_flags_finish */
943 };
944 
945 class pass_release_ssa_names : public gimple_opt_pass
946 {
947 public:
pass_release_ssa_names(gcc::context * ctxt)948   pass_release_ssa_names (gcc::context *ctxt)
949     : gimple_opt_pass (pass_data_release_ssa_names, ctxt)
950   {}
951 
952   /* opt_pass methods: */
953   virtual unsigned int execute (function *);
954 
955 }; // class pass_release_ssa_names
956 
957 unsigned int
execute(function * fun)958 pass_release_ssa_names::execute (function *fun)
959 {
960   release_free_names_and_compact_live_names (fun);
961   return 0;
962 }
963 
964 } // anon namespace
965 
966 gimple_opt_pass *
make_pass_release_ssa_names(gcc::context * ctxt)967 make_pass_release_ssa_names (gcc::context *ctxt)
968 {
969   return new pass_release_ssa_names (ctxt);
970 }
971