xref: /netbsd-src/external/apache2/llvm/dist/clang/lib/CodeGen/CGOpenMPRuntime.cpp (revision e038c9c4676b0f19b1b7dd08a940c6ed64a6d5ae)
1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for OpenMP runtime code generation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/APValue.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/OpenMPClause.h"
22 #include "clang/AST/StmtOpenMP.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/BitmaskEnum.h"
25 #include "clang/Basic/FileManager.h"
26 #include "clang/Basic/OpenMPKinds.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/CodeGen/ConstantInitBuilder.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Bitcode/BitcodeReader.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Format.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <numeric>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 using namespace llvm::omp;
46 
47 namespace {
48 /// Base class for handling code generation inside OpenMP regions.
49 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
50 public:
51   /// Kinds of OpenMP regions used in codegen.
52   enum CGOpenMPRegionKind {
53     /// Region with outlined function for standalone 'parallel'
54     /// directive.
55     ParallelOutlinedRegion,
56     /// Region with outlined function for standalone 'task' directive.
57     TaskOutlinedRegion,
58     /// Region for constructs that do not require function outlining,
59     /// like 'for', 'sections', 'atomic' etc. directives.
60     InlinedRegion,
61     /// Region with outlined function for standalone 'target' directive.
62     TargetRegion,
63   };
64 
CGOpenMPRegionInfo(const CapturedStmt & CS,const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)65   CGOpenMPRegionInfo(const CapturedStmt &CS,
66                      const CGOpenMPRegionKind RegionKind,
67                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
68                      bool HasCancel)
69       : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
70         CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
71 
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)72   CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
73                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
74                      bool HasCancel)
75       : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
76         Kind(Kind), HasCancel(HasCancel) {}
77 
78   /// Get a variable or parameter for storing global thread id
79   /// inside OpenMP construct.
80   virtual const VarDecl *getThreadIDVariable() const = 0;
81 
82   /// Emit the captured statement body.
83   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
84 
85   /// Get an LValue for the current ThreadID variable.
86   /// \return LValue for thread id variable. This LValue always has type int32*.
87   virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
88 
emitUntiedSwitch(CodeGenFunction &)89   virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
90 
getRegionKind() const91   CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
92 
getDirectiveKind() const93   OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
94 
hasCancel() const95   bool hasCancel() const { return HasCancel; }
96 
classof(const CGCapturedStmtInfo * Info)97   static bool classof(const CGCapturedStmtInfo *Info) {
98     return Info->getKind() == CR_OpenMP;
99   }
100 
101   ~CGOpenMPRegionInfo() override = default;
102 
103 protected:
104   CGOpenMPRegionKind RegionKind;
105   RegionCodeGenTy CodeGen;
106   OpenMPDirectiveKind Kind;
107   bool HasCancel;
108 };
109 
110 /// API for captured statement code generation in OpenMP constructs.
111 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
112 public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,StringRef HelperName)113   CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
114                              const RegionCodeGenTy &CodeGen,
115                              OpenMPDirectiveKind Kind, bool HasCancel,
116                              StringRef HelperName)
117       : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
118                            HasCancel),
119         ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
120     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
121   }
122 
123   /// Get a variable or parameter for storing global thread id
124   /// inside OpenMP construct.
getThreadIDVariable() const125   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
126 
127   /// Get the name of the capture helper.
getHelperName() const128   StringRef getHelperName() const override { return HelperName; }
129 
classof(const CGCapturedStmtInfo * Info)130   static bool classof(const CGCapturedStmtInfo *Info) {
131     return CGOpenMPRegionInfo::classof(Info) &&
132            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
133                ParallelOutlinedRegion;
134   }
135 
136 private:
137   /// A variable or parameter storing global thread id for OpenMP
138   /// constructs.
139   const VarDecl *ThreadIDVar;
140   StringRef HelperName;
141 };
142 
143 /// API for captured statement code generation in OpenMP constructs.
144 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
145 public:
146   class UntiedTaskActionTy final : public PrePostActionTy {
147     bool Untied;
148     const VarDecl *PartIDVar;
149     const RegionCodeGenTy UntiedCodeGen;
150     llvm::SwitchInst *UntiedSwitch = nullptr;
151 
152   public:
UntiedTaskActionTy(bool Tied,const VarDecl * PartIDVar,const RegionCodeGenTy & UntiedCodeGen)153     UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
154                        const RegionCodeGenTy &UntiedCodeGen)
155         : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
Enter(CodeGenFunction & CGF)156     void Enter(CodeGenFunction &CGF) override {
157       if (Untied) {
158         // Emit task switching point.
159         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
160             CGF.GetAddrOfLocalVar(PartIDVar),
161             PartIDVar->getType()->castAs<PointerType>());
162         llvm::Value *Res =
163             CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
164         llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
165         UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
166         CGF.EmitBlock(DoneBB);
167         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
168         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
169         UntiedSwitch->addCase(CGF.Builder.getInt32(0),
170                               CGF.Builder.GetInsertBlock());
171         emitUntiedSwitch(CGF);
172       }
173     }
emitUntiedSwitch(CodeGenFunction & CGF) const174     void emitUntiedSwitch(CodeGenFunction &CGF) const {
175       if (Untied) {
176         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
177             CGF.GetAddrOfLocalVar(PartIDVar),
178             PartIDVar->getType()->castAs<PointerType>());
179         CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
180                               PartIdLVal);
181         UntiedCodeGen(CGF);
182         CodeGenFunction::JumpDest CurPoint =
183             CGF.getJumpDestInCurrentScope(".untied.next.");
184         CGF.EmitBranch(CGF.ReturnBlock.getBlock());
185         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
186         UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
187                               CGF.Builder.GetInsertBlock());
188         CGF.EmitBranchThroughCleanup(CurPoint);
189         CGF.EmitBlock(CurPoint.getBlock());
190       }
191     }
getNumberOfParts() const192     unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
193   };
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,const UntiedTaskActionTy & Action)194   CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
195                                  const VarDecl *ThreadIDVar,
196                                  const RegionCodeGenTy &CodeGen,
197                                  OpenMPDirectiveKind Kind, bool HasCancel,
198                                  const UntiedTaskActionTy &Action)
199       : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
200         ThreadIDVar(ThreadIDVar), Action(Action) {
201     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
202   }
203 
204   /// Get a variable or parameter for storing global thread id
205   /// inside OpenMP construct.
getThreadIDVariable() const206   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
207 
208   /// Get an LValue for the current ThreadID variable.
209   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
210 
211   /// Get the name of the capture helper.
getHelperName() const212   StringRef getHelperName() const override { return ".omp_outlined."; }
213 
emitUntiedSwitch(CodeGenFunction & CGF)214   void emitUntiedSwitch(CodeGenFunction &CGF) override {
215     Action.emitUntiedSwitch(CGF);
216   }
217 
classof(const CGCapturedStmtInfo * Info)218   static bool classof(const CGCapturedStmtInfo *Info) {
219     return CGOpenMPRegionInfo::classof(Info) &&
220            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
221                TaskOutlinedRegion;
222   }
223 
224 private:
225   /// A variable or parameter storing global thread id for OpenMP
226   /// constructs.
227   const VarDecl *ThreadIDVar;
228   /// Action for emitting code for untied tasks.
229   const UntiedTaskActionTy &Action;
230 };
231 
232 /// API for inlined captured statement code generation in OpenMP
233 /// constructs.
234 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
235 public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo * OldCSI,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)236   CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
237                             const RegionCodeGenTy &CodeGen,
238                             OpenMPDirectiveKind Kind, bool HasCancel)
239       : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
240         OldCSI(OldCSI),
241         OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
242 
243   // Retrieve the value of the context parameter.
getContextValue() const244   llvm::Value *getContextValue() const override {
245     if (OuterRegionInfo)
246       return OuterRegionInfo->getContextValue();
247     llvm_unreachable("No context value for inlined OpenMP region");
248   }
249 
setContextValue(llvm::Value * V)250   void setContextValue(llvm::Value *V) override {
251     if (OuterRegionInfo) {
252       OuterRegionInfo->setContextValue(V);
253       return;
254     }
255     llvm_unreachable("No context value for inlined OpenMP region");
256   }
257 
258   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const259   const FieldDecl *lookup(const VarDecl *VD) const override {
260     if (OuterRegionInfo)
261       return OuterRegionInfo->lookup(VD);
262     // If there is no outer outlined region,no need to lookup in a list of
263     // captured variables, we can use the original one.
264     return nullptr;
265   }
266 
getThisFieldDecl() const267   FieldDecl *getThisFieldDecl() const override {
268     if (OuterRegionInfo)
269       return OuterRegionInfo->getThisFieldDecl();
270     return nullptr;
271   }
272 
273   /// Get a variable or parameter for storing global thread id
274   /// inside OpenMP construct.
getThreadIDVariable() const275   const VarDecl *getThreadIDVariable() const override {
276     if (OuterRegionInfo)
277       return OuterRegionInfo->getThreadIDVariable();
278     return nullptr;
279   }
280 
281   /// Get an LValue for the current ThreadID variable.
getThreadIDVariableLValue(CodeGenFunction & CGF)282   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
283     if (OuterRegionInfo)
284       return OuterRegionInfo->getThreadIDVariableLValue(CGF);
285     llvm_unreachable("No LValue for inlined OpenMP construct");
286   }
287 
288   /// Get the name of the capture helper.
getHelperName() const289   StringRef getHelperName() const override {
290     if (auto *OuterRegionInfo = getOldCSI())
291       return OuterRegionInfo->getHelperName();
292     llvm_unreachable("No helper name for inlined OpenMP construct");
293   }
294 
emitUntiedSwitch(CodeGenFunction & CGF)295   void emitUntiedSwitch(CodeGenFunction &CGF) override {
296     if (OuterRegionInfo)
297       OuterRegionInfo->emitUntiedSwitch(CGF);
298   }
299 
getOldCSI() const300   CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
301 
classof(const CGCapturedStmtInfo * Info)302   static bool classof(const CGCapturedStmtInfo *Info) {
303     return CGOpenMPRegionInfo::classof(Info) &&
304            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
305   }
306 
307   ~CGOpenMPInlinedRegionInfo() override = default;
308 
309 private:
310   /// CodeGen info about outer OpenMP region.
311   CodeGenFunction::CGCapturedStmtInfo *OldCSI;
312   CGOpenMPRegionInfo *OuterRegionInfo;
313 };
314 
315 /// API for captured statement code generation in OpenMP target
316 /// constructs. For this captures, implicit parameters are used instead of the
317 /// captured fields. The name of the target region has to be unique in a given
318 /// application so it is provided by the client, because only the client has
319 /// the information to generate that.
320 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
321 public:
CGOpenMPTargetRegionInfo(const CapturedStmt & CS,const RegionCodeGenTy & CodeGen,StringRef HelperName)322   CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
323                            const RegionCodeGenTy &CodeGen, StringRef HelperName)
324       : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
325                            /*HasCancel=*/false),
326         HelperName(HelperName) {}
327 
328   /// This is unused for target regions because each starts executing
329   /// with a single thread.
getThreadIDVariable() const330   const VarDecl *getThreadIDVariable() const override { return nullptr; }
331 
332   /// Get the name of the capture helper.
getHelperName() const333   StringRef getHelperName() const override { return HelperName; }
334 
classof(const CGCapturedStmtInfo * Info)335   static bool classof(const CGCapturedStmtInfo *Info) {
336     return CGOpenMPRegionInfo::classof(Info) &&
337            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
338   }
339 
340 private:
341   StringRef HelperName;
342 };
343 
EmptyCodeGen(CodeGenFunction &,PrePostActionTy &)344 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
345   llvm_unreachable("No codegen for expressions");
346 }
347 /// API for generation of expressions captured in a innermost OpenMP
348 /// region.
349 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
350 public:
CGOpenMPInnerExprInfo(CodeGenFunction & CGF,const CapturedStmt & CS)351   CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
352       : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
353                                   OMPD_unknown,
354                                   /*HasCancel=*/false),
355         PrivScope(CGF) {
356     // Make sure the globals captured in the provided statement are local by
357     // using the privatization logic. We assume the same variable is not
358     // captured more than once.
359     for (const auto &C : CS.captures()) {
360       if (!C.capturesVariable() && !C.capturesVariableByCopy())
361         continue;
362 
363       const VarDecl *VD = C.getCapturedVar();
364       if (VD->isLocalVarDeclOrParm())
365         continue;
366 
367       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
368                       /*RefersToEnclosingVariableOrCapture=*/false,
369                       VD->getType().getNonReferenceType(), VK_LValue,
370                       C.getLocation());
371       PrivScope.addPrivate(
372           VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(CGF); });
373     }
374     (void)PrivScope.Privatize();
375   }
376 
377   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const378   const FieldDecl *lookup(const VarDecl *VD) const override {
379     if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
380       return FD;
381     return nullptr;
382   }
383 
384   /// Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,const Stmt * S)385   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
386     llvm_unreachable("No body for expressions");
387   }
388 
389   /// Get a variable or parameter for storing global thread id
390   /// inside OpenMP construct.
getThreadIDVariable() const391   const VarDecl *getThreadIDVariable() const override {
392     llvm_unreachable("No thread id for expressions");
393   }
394 
395   /// Get the name of the capture helper.
getHelperName() const396   StringRef getHelperName() const override {
397     llvm_unreachable("No helper name for expressions");
398   }
399 
classof(const CGCapturedStmtInfo * Info)400   static bool classof(const CGCapturedStmtInfo *Info) { return false; }
401 
402 private:
403   /// Private scope to capture global variables.
404   CodeGenFunction::OMPPrivateScope PrivScope;
405 };
406 
407 /// RAII for emitting code of OpenMP constructs.
408 class InlinedOpenMPRegionRAII {
409   CodeGenFunction &CGF;
410   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
411   FieldDecl *LambdaThisCaptureField = nullptr;
412   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
413   bool NoInheritance = false;
414 
415 public:
416   /// Constructs region for combined constructs.
417   /// \param CodeGen Code generation sequence for combined directives. Includes
418   /// a list of functions used for code generation of implicitly inlined
419   /// regions.
InlinedOpenMPRegionRAII(CodeGenFunction & CGF,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,bool NoInheritance=true)420   InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
421                           OpenMPDirectiveKind Kind, bool HasCancel,
422                           bool NoInheritance = true)
423       : CGF(CGF), NoInheritance(NoInheritance) {
424     // Start emission for the construct.
425     CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
426         CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
427     if (NoInheritance) {
428       std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
429       LambdaThisCaptureField = CGF.LambdaThisCaptureField;
430       CGF.LambdaThisCaptureField = nullptr;
431       BlockInfo = CGF.BlockInfo;
432       CGF.BlockInfo = nullptr;
433     }
434   }
435 
~InlinedOpenMPRegionRAII()436   ~InlinedOpenMPRegionRAII() {
437     // Restore original CapturedStmtInfo only if we're done with code emission.
438     auto *OldCSI =
439         cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
440     delete CGF.CapturedStmtInfo;
441     CGF.CapturedStmtInfo = OldCSI;
442     if (NoInheritance) {
443       std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
444       CGF.LambdaThisCaptureField = LambdaThisCaptureField;
445       CGF.BlockInfo = BlockInfo;
446     }
447   }
448 };
449 
450 /// Values for bit flags used in the ident_t to describe the fields.
451 /// All enumeric elements are named and described in accordance with the code
452 /// from https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h
453 enum OpenMPLocationFlags : unsigned {
454   /// Use trampoline for internal microtask.
455   OMP_IDENT_IMD = 0x01,
456   /// Use c-style ident structure.
457   OMP_IDENT_KMPC = 0x02,
458   /// Atomic reduction option for kmpc_reduce.
459   OMP_ATOMIC_REDUCE = 0x10,
460   /// Explicit 'barrier' directive.
461   OMP_IDENT_BARRIER_EXPL = 0x20,
462   /// Implicit barrier in code.
463   OMP_IDENT_BARRIER_IMPL = 0x40,
464   /// Implicit barrier in 'for' directive.
465   OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
466   /// Implicit barrier in 'sections' directive.
467   OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
468   /// Implicit barrier in 'single' directive.
469   OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
470   /// Call of __kmp_for_static_init for static loop.
471   OMP_IDENT_WORK_LOOP = 0x200,
472   /// Call of __kmp_for_static_init for sections.
473   OMP_IDENT_WORK_SECTIONS = 0x400,
474   /// Call of __kmp_for_static_init for distribute.
475   OMP_IDENT_WORK_DISTRIBUTE = 0x800,
476   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
477 };
478 
479 namespace {
480 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
481 /// Values for bit flags for marking which requires clauses have been used.
482 enum OpenMPOffloadingRequiresDirFlags : int64_t {
483   /// flag undefined.
484   OMP_REQ_UNDEFINED               = 0x000,
485   /// no requires clause present.
486   OMP_REQ_NONE                    = 0x001,
487   /// reverse_offload clause.
488   OMP_REQ_REVERSE_OFFLOAD         = 0x002,
489   /// unified_address clause.
490   OMP_REQ_UNIFIED_ADDRESS         = 0x004,
491   /// unified_shared_memory clause.
492   OMP_REQ_UNIFIED_SHARED_MEMORY   = 0x008,
493   /// dynamic_allocators clause.
494   OMP_REQ_DYNAMIC_ALLOCATORS      = 0x010,
495   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
496 };
497 
498 enum OpenMPOffloadingReservedDeviceIDs {
499   /// Device ID if the device was not defined, runtime should get it
500   /// from environment variables in the spec.
501   OMP_DEVICEID_UNDEF = -1,
502 };
503 } // anonymous namespace
504 
505 /// Describes ident structure that describes a source location.
506 /// All descriptions are taken from
507 /// https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h
508 /// Original structure:
509 /// typedef struct ident {
510 ///    kmp_int32 reserved_1;   /**<  might be used in Fortran;
511 ///                                  see above  */
512 ///    kmp_int32 flags;        /**<  also f.flags; KMP_IDENT_xxx flags;
513 ///                                  KMP_IDENT_KMPC identifies this union
514 ///                                  member  */
515 ///    kmp_int32 reserved_2;   /**<  not really used in Fortran any more;
516 ///                                  see above */
517 ///#if USE_ITT_BUILD
518 ///                            /*  but currently used for storing
519 ///                                region-specific ITT */
520 ///                            /*  contextual information. */
521 ///#endif /* USE_ITT_BUILD */
522 ///    kmp_int32 reserved_3;   /**< source[4] in Fortran, do not use for
523 ///                                 C++  */
524 ///    char const *psource;    /**< String describing the source location.
525 ///                            The string is composed of semi-colon separated
526 //                             fields which describe the source file,
527 ///                            the function and a pair of line numbers that
528 ///                            delimit the construct.
529 ///                             */
530 /// } ident_t;
531 enum IdentFieldIndex {
532   /// might be used in Fortran
533   IdentField_Reserved_1,
534   /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
535   IdentField_Flags,
536   /// Not really used in Fortran any more
537   IdentField_Reserved_2,
538   /// Source[4] in Fortran, do not use for C++
539   IdentField_Reserved_3,
540   /// String describing the source location. The string is composed of
541   /// semi-colon separated fields which describe the source file, the function
542   /// and a pair of line numbers that delimit the construct.
543   IdentField_PSource
544 };
545 
546 /// Schedule types for 'omp for' loops (these enumerators are taken from
547 /// the enum sched_type in kmp.h).
548 enum OpenMPSchedType {
549   /// Lower bound for default (unordered) versions.
550   OMP_sch_lower = 32,
551   OMP_sch_static_chunked = 33,
552   OMP_sch_static = 34,
553   OMP_sch_dynamic_chunked = 35,
554   OMP_sch_guided_chunked = 36,
555   OMP_sch_runtime = 37,
556   OMP_sch_auto = 38,
557   /// static with chunk adjustment (e.g., simd)
558   OMP_sch_static_balanced_chunked = 45,
559   /// Lower bound for 'ordered' versions.
560   OMP_ord_lower = 64,
561   OMP_ord_static_chunked = 65,
562   OMP_ord_static = 66,
563   OMP_ord_dynamic_chunked = 67,
564   OMP_ord_guided_chunked = 68,
565   OMP_ord_runtime = 69,
566   OMP_ord_auto = 70,
567   OMP_sch_default = OMP_sch_static,
568   /// dist_schedule types
569   OMP_dist_sch_static_chunked = 91,
570   OMP_dist_sch_static = 92,
571   /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
572   /// Set if the monotonic schedule modifier was present.
573   OMP_sch_modifier_monotonic = (1 << 29),
574   /// Set if the nonmonotonic schedule modifier was present.
575   OMP_sch_modifier_nonmonotonic = (1 << 30),
576 };
577 
578 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
579 /// region.
580 class CleanupTy final : public EHScopeStack::Cleanup {
581   PrePostActionTy *Action;
582 
583 public:
CleanupTy(PrePostActionTy * Action)584   explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
Emit(CodeGenFunction & CGF,Flags)585   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
586     if (!CGF.HaveInsertPoint())
587       return;
588     Action->Exit(CGF);
589   }
590 };
591 
592 } // anonymous namespace
593 
operator ()(CodeGenFunction & CGF) const594 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
595   CodeGenFunction::RunCleanupsScope Scope(CGF);
596   if (PrePostAction) {
597     CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
598     Callback(CodeGen, CGF, *PrePostAction);
599   } else {
600     PrePostActionTy Action;
601     Callback(CodeGen, CGF, Action);
602   }
603 }
604 
605 /// Check if the combiner is a call to UDR combiner and if it is so return the
606 /// UDR decl used for reduction.
607 static const OMPDeclareReductionDecl *
getReductionInit(const Expr * ReductionOp)608 getReductionInit(const Expr *ReductionOp) {
609   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
610     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
611       if (const auto *DRE =
612               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
613         if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
614           return DRD;
615   return nullptr;
616 }
617 
emitInitWithReductionInitializer(CodeGenFunction & CGF,const OMPDeclareReductionDecl * DRD,const Expr * InitOp,Address Private,Address Original,QualType Ty)618 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
619                                              const OMPDeclareReductionDecl *DRD,
620                                              const Expr *InitOp,
621                                              Address Private, Address Original,
622                                              QualType Ty) {
623   if (DRD->getInitializer()) {
624     std::pair<llvm::Function *, llvm::Function *> Reduction =
625         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
626     const auto *CE = cast<CallExpr>(InitOp);
627     const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
628     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
629     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
630     const auto *LHSDRE =
631         cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
632     const auto *RHSDRE =
633         cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
634     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
635     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
636                             [=]() { return Private; });
637     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
638                             [=]() { return Original; });
639     (void)PrivateScope.Privatize();
640     RValue Func = RValue::get(Reduction.second);
641     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
642     CGF.EmitIgnoredExpr(InitOp);
643   } else {
644     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
645     std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
646     auto *GV = new llvm::GlobalVariable(
647         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
648         llvm::GlobalValue::PrivateLinkage, Init, Name);
649     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
650     RValue InitRVal;
651     switch (CGF.getEvaluationKind(Ty)) {
652     case TEK_Scalar:
653       InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
654       break;
655     case TEK_Complex:
656       InitRVal =
657           RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
658       break;
659     case TEK_Aggregate: {
660       OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_LValue);
661       CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, LV);
662       CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
663                            /*IsInitializer=*/false);
664       return;
665     }
666     }
667     OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
668     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
669     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
670                          /*IsInitializer=*/false);
671   }
672 }
673 
674 /// Emit initialization of arrays of complex types.
675 /// \param DestAddr Address of the array.
676 /// \param Type Type of array.
677 /// \param Init Initial expression of array.
678 /// \param SrcAddr Address of the original array.
EmitOMPAggregateInit(CodeGenFunction & CGF,Address DestAddr,QualType Type,bool EmitDeclareReductionInit,const Expr * Init,const OMPDeclareReductionDecl * DRD,Address SrcAddr=Address::invalid ())679 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
680                                  QualType Type, bool EmitDeclareReductionInit,
681                                  const Expr *Init,
682                                  const OMPDeclareReductionDecl *DRD,
683                                  Address SrcAddr = Address::invalid()) {
684   // Perform element-by-element initialization.
685   QualType ElementTy;
686 
687   // Drill down to the base element type on both arrays.
688   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
689   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
690   DestAddr =
691       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
692   if (DRD)
693     SrcAddr =
694         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
695 
696   llvm::Value *SrcBegin = nullptr;
697   if (DRD)
698     SrcBegin = SrcAddr.getPointer();
699   llvm::Value *DestBegin = DestAddr.getPointer();
700   // Cast from pointer to array type to pointer to single element.
701   llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
702   // The basic structure here is a while-do loop.
703   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
704   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
705   llvm::Value *IsEmpty =
706       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
707   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
708 
709   // Enter the loop body, making that address the current address.
710   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
711   CGF.EmitBlock(BodyBB);
712 
713   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
714 
715   llvm::PHINode *SrcElementPHI = nullptr;
716   Address SrcElementCurrent = Address::invalid();
717   if (DRD) {
718     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
719                                           "omp.arraycpy.srcElementPast");
720     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
721     SrcElementCurrent =
722         Address(SrcElementPHI,
723                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
724   }
725   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
726       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
727   DestElementPHI->addIncoming(DestBegin, EntryBB);
728   Address DestElementCurrent =
729       Address(DestElementPHI,
730               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
731 
732   // Emit copy.
733   {
734     CodeGenFunction::RunCleanupsScope InitScope(CGF);
735     if (EmitDeclareReductionInit) {
736       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
737                                        SrcElementCurrent, ElementTy);
738     } else
739       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
740                            /*IsInitializer=*/false);
741   }
742 
743   if (DRD) {
744     // Shift the address forward by one element.
745     llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
746         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
747     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
748   }
749 
750   // Shift the address forward by one element.
751   llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
752       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
753   // Check whether we've reached the end.
754   llvm::Value *Done =
755       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
756   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
757   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
758 
759   // Done.
760   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
761 }
762 
emitSharedLValue(CodeGenFunction & CGF,const Expr * E)763 LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
764   return CGF.EmitOMPSharedLValue(E);
765 }
766 
emitSharedLValueUB(CodeGenFunction & CGF,const Expr * E)767 LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
768                                             const Expr *E) {
769   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
770     return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
771   return LValue();
772 }
773 
emitAggregateInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,const OMPDeclareReductionDecl * DRD)774 void ReductionCodeGen::emitAggregateInitialization(
775     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
776     const OMPDeclareReductionDecl *DRD) {
777   // Emit VarDecl with copy init for arrays.
778   // Get the address of the original variable captured in current
779   // captured region.
780   const auto *PrivateVD =
781       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
782   bool EmitDeclareReductionInit =
783       DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
784   EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
785                        EmitDeclareReductionInit,
786                        EmitDeclareReductionInit ? ClausesData[N].ReductionOp
787                                                 : PrivateVD->getInit(),
788                        DRD, SharedLVal.getAddress(CGF));
789 }
790 
ReductionCodeGen(ArrayRef<const Expr * > Shareds,ArrayRef<const Expr * > Origs,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > ReductionOps)791 ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
792                                    ArrayRef<const Expr *> Origs,
793                                    ArrayRef<const Expr *> Privates,
794                                    ArrayRef<const Expr *> ReductionOps) {
795   ClausesData.reserve(Shareds.size());
796   SharedAddresses.reserve(Shareds.size());
797   Sizes.reserve(Shareds.size());
798   BaseDecls.reserve(Shareds.size());
799   const auto *IOrig = Origs.begin();
800   const auto *IPriv = Privates.begin();
801   const auto *IRed = ReductionOps.begin();
802   for (const Expr *Ref : Shareds) {
803     ClausesData.emplace_back(Ref, *IOrig, *IPriv, *IRed);
804     std::advance(IOrig, 1);
805     std::advance(IPriv, 1);
806     std::advance(IRed, 1);
807   }
808 }
809 
emitSharedOrigLValue(CodeGenFunction & CGF,unsigned N)810 void ReductionCodeGen::emitSharedOrigLValue(CodeGenFunction &CGF, unsigned N) {
811   assert(SharedAddresses.size() == N && OrigAddresses.size() == N &&
812          "Number of generated lvalues must be exactly N.");
813   LValue First = emitSharedLValue(CGF, ClausesData[N].Shared);
814   LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Shared);
815   SharedAddresses.emplace_back(First, Second);
816   if (ClausesData[N].Shared == ClausesData[N].Ref) {
817     OrigAddresses.emplace_back(First, Second);
818   } else {
819     LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
820     LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
821     OrigAddresses.emplace_back(First, Second);
822   }
823 }
824 
emitAggregateType(CodeGenFunction & CGF,unsigned N)825 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
826   const auto *PrivateVD =
827       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
828   QualType PrivateType = PrivateVD->getType();
829   bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
830   if (!PrivateType->isVariablyModifiedType()) {
831     Sizes.emplace_back(
832         CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()),
833         nullptr);
834     return;
835   }
836   llvm::Value *Size;
837   llvm::Value *SizeInChars;
838   auto *ElemType =
839       cast<llvm::PointerType>(OrigAddresses[N].first.getPointer(CGF)->getType())
840           ->getElementType();
841   auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
842   if (AsArraySection) {
843     Size = CGF.Builder.CreatePtrDiff(OrigAddresses[N].second.getPointer(CGF),
844                                      OrigAddresses[N].first.getPointer(CGF));
845     Size = CGF.Builder.CreateNUWAdd(
846         Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
847     SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
848   } else {
849     SizeInChars =
850         CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType());
851     Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
852   }
853   Sizes.emplace_back(SizeInChars, Size);
854   CodeGenFunction::OpaqueValueMapping OpaqueMap(
855       CGF,
856       cast<OpaqueValueExpr>(
857           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
858       RValue::get(Size));
859   CGF.EmitVariablyModifiedType(PrivateType);
860 }
861 
emitAggregateType(CodeGenFunction & CGF,unsigned N,llvm::Value * Size)862 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
863                                          llvm::Value *Size) {
864   const auto *PrivateVD =
865       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
866   QualType PrivateType = PrivateVD->getType();
867   if (!PrivateType->isVariablyModifiedType()) {
868     assert(!Size && !Sizes[N].second &&
869            "Size should be nullptr for non-variably modified reduction "
870            "items.");
871     return;
872   }
873   CodeGenFunction::OpaqueValueMapping OpaqueMap(
874       CGF,
875       cast<OpaqueValueExpr>(
876           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
877       RValue::get(Size));
878   CGF.EmitVariablyModifiedType(PrivateType);
879 }
880 
emitInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,llvm::function_ref<bool (CodeGenFunction &)> DefaultInit)881 void ReductionCodeGen::emitInitialization(
882     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
883     llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
884   assert(SharedAddresses.size() > N && "No variable was generated");
885   const auto *PrivateVD =
886       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
887   const OMPDeclareReductionDecl *DRD =
888       getReductionInit(ClausesData[N].ReductionOp);
889   QualType PrivateType = PrivateVD->getType();
890   PrivateAddr = CGF.Builder.CreateElementBitCast(
891       PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
892   QualType SharedType = SharedAddresses[N].first.getType();
893   SharedLVal = CGF.MakeAddrLValue(
894       CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(CGF),
895                                        CGF.ConvertTypeForMem(SharedType)),
896       SharedType, SharedAddresses[N].first.getBaseInfo(),
897       CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
898   if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
899     if (DRD && DRD->getInitializer())
900       (void)DefaultInit(CGF);
901     emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
902   } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
903     (void)DefaultInit(CGF);
904     emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
905                                      PrivateAddr, SharedLVal.getAddress(CGF),
906                                      SharedLVal.getType());
907   } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
908              !CGF.isTrivialInitializer(PrivateVD->getInit())) {
909     CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
910                          PrivateVD->getType().getQualifiers(),
911                          /*IsInitializer=*/false);
912   }
913 }
914 
needCleanups(unsigned N)915 bool ReductionCodeGen::needCleanups(unsigned N) {
916   const auto *PrivateVD =
917       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
918   QualType PrivateType = PrivateVD->getType();
919   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
920   return DTorKind != QualType::DK_none;
921 }
922 
emitCleanups(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)923 void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
924                                     Address PrivateAddr) {
925   const auto *PrivateVD =
926       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
927   QualType PrivateType = PrivateVD->getType();
928   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
929   if (needCleanups(N)) {
930     PrivateAddr = CGF.Builder.CreateElementBitCast(
931         PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
932     CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
933   }
934 }
935 
loadToBegin(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,LValue BaseLV)936 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
937                           LValue BaseLV) {
938   BaseTy = BaseTy.getNonReferenceType();
939   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
940          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
941     if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
942       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy);
943     } else {
944       LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy);
945       BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
946     }
947     BaseTy = BaseTy->getPointeeType();
948   }
949   return CGF.MakeAddrLValue(
950       CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF),
951                                        CGF.ConvertTypeForMem(ElTy)),
952       BaseLV.getType(), BaseLV.getBaseInfo(),
953       CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
954 }
955 
castToBase(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,llvm::Type * BaseLVType,CharUnits BaseLVAlignment,llvm::Value * Addr)956 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
957                           llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
958                           llvm::Value *Addr) {
959   Address Tmp = Address::invalid();
960   Address TopTmp = Address::invalid();
961   Address MostTopTmp = Address::invalid();
962   BaseTy = BaseTy.getNonReferenceType();
963   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
964          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
965     Tmp = CGF.CreateMemTemp(BaseTy);
966     if (TopTmp.isValid())
967       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
968     else
969       MostTopTmp = Tmp;
970     TopTmp = Tmp;
971     BaseTy = BaseTy->getPointeeType();
972   }
973   llvm::Type *Ty = BaseLVType;
974   if (Tmp.isValid())
975     Ty = Tmp.getElementType();
976   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
977   if (Tmp.isValid()) {
978     CGF.Builder.CreateStore(Addr, Tmp);
979     return MostTopTmp;
980   }
981   return Address(Addr, BaseLVAlignment);
982 }
983 
getBaseDecl(const Expr * Ref,const DeclRefExpr * & DE)984 static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
985   const VarDecl *OrigVD = nullptr;
986   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
987     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
988     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
989       Base = TempOASE->getBase()->IgnoreParenImpCasts();
990     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
991       Base = TempASE->getBase()->IgnoreParenImpCasts();
992     DE = cast<DeclRefExpr>(Base);
993     OrigVD = cast<VarDecl>(DE->getDecl());
994   } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
995     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
996     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
997       Base = TempASE->getBase()->IgnoreParenImpCasts();
998     DE = cast<DeclRefExpr>(Base);
999     OrigVD = cast<VarDecl>(DE->getDecl());
1000   }
1001   return OrigVD;
1002 }
1003 
adjustPrivateAddress(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)1004 Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
1005                                                Address PrivateAddr) {
1006   const DeclRefExpr *DE;
1007   if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
1008     BaseDecls.emplace_back(OrigVD);
1009     LValue OriginalBaseLValue = CGF.EmitLValue(DE);
1010     LValue BaseLValue =
1011         loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
1012                     OriginalBaseLValue);
1013     llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
1014         BaseLValue.getPointer(CGF), SharedAddresses[N].first.getPointer(CGF));
1015     llvm::Value *PrivatePointer =
1016         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1017             PrivateAddr.getPointer(),
1018             SharedAddresses[N].first.getAddress(CGF).getType());
1019     llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
1020     return castToBase(CGF, OrigVD->getType(),
1021                       SharedAddresses[N].first.getType(),
1022                       OriginalBaseLValue.getAddress(CGF).getType(),
1023                       OriginalBaseLValue.getAlignment(), Ptr);
1024   }
1025   BaseDecls.emplace_back(
1026       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
1027   return PrivateAddr;
1028 }
1029 
usesReductionInitializer(unsigned N) const1030 bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
1031   const OMPDeclareReductionDecl *DRD =
1032       getReductionInit(ClausesData[N].ReductionOp);
1033   return DRD && DRD->getInitializer();
1034 }
1035 
getThreadIDVariableLValue(CodeGenFunction & CGF)1036 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
1037   return CGF.EmitLoadOfPointerLValue(
1038       CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1039       getThreadIDVariable()->getType()->castAs<PointerType>());
1040 }
1041 
EmitBody(CodeGenFunction & CGF,const Stmt * S)1042 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt *S) {
1043   if (!CGF.HaveInsertPoint())
1044     return;
1045   // 1.2.2 OpenMP Language Terminology
1046   // Structured block - An executable statement with a single entry at the
1047   // top and a single exit at the bottom.
1048   // The point of exit cannot be a branch out of the structured block.
1049   // longjmp() and throw() must not violate the entry/exit criteria.
1050   CGF.EHStack.pushTerminate();
1051   if (S)
1052     CGF.incrementProfileCounter(S);
1053   CodeGen(CGF);
1054   CGF.EHStack.popTerminate();
1055 }
1056 
getThreadIDVariableLValue(CodeGenFunction & CGF)1057 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
1058     CodeGenFunction &CGF) {
1059   return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1060                             getThreadIDVariable()->getType(),
1061                             AlignmentSource::Decl);
1062 }
1063 
addFieldToRecordDecl(ASTContext & C,DeclContext * DC,QualType FieldTy)1064 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
1065                                        QualType FieldTy) {
1066   auto *Field = FieldDecl::Create(
1067       C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
1068       C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
1069       /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
1070   Field->setAccess(AS_public);
1071   DC->addDecl(Field);
1072   return Field;
1073 }
1074 
CGOpenMPRuntime(CodeGenModule & CGM,StringRef FirstSeparator,StringRef Separator)1075 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
1076                                  StringRef Separator)
1077     : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
1078       OMPBuilder(CGM.getModule()), OffloadEntriesInfoManager(CGM) {
1079   KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
1080 
1081   // Initialize Types used in OpenMPIRBuilder from OMPKinds.def
1082   OMPBuilder.initialize();
1083   loadOffloadInfoMetadata();
1084 }
1085 
clear()1086 void CGOpenMPRuntime::clear() {
1087   InternalVars.clear();
1088   // Clean non-target variable declarations possibly used only in debug info.
1089   for (const auto &Data : EmittedNonTargetVariables) {
1090     if (!Data.getValue().pointsToAliveValue())
1091       continue;
1092     auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
1093     if (!GV)
1094       continue;
1095     if (!GV->isDeclaration() || GV->getNumUses() > 0)
1096       continue;
1097     GV->eraseFromParent();
1098   }
1099 }
1100 
getName(ArrayRef<StringRef> Parts) const1101 std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
1102   SmallString<128> Buffer;
1103   llvm::raw_svector_ostream OS(Buffer);
1104   StringRef Sep = FirstSeparator;
1105   for (StringRef Part : Parts) {
1106     OS << Sep << Part;
1107     Sep = Separator;
1108   }
1109   return std::string(OS.str());
1110 }
1111 
1112 static llvm::Function *
emitCombinerOrInitializer(CodeGenModule & CGM,QualType Ty,const Expr * CombinerInitializer,const VarDecl * In,const VarDecl * Out,bool IsCombiner)1113 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
1114                           const Expr *CombinerInitializer, const VarDecl *In,
1115                           const VarDecl *Out, bool IsCombiner) {
1116   // void .omp_combiner.(Ty *in, Ty *out);
1117   ASTContext &C = CGM.getContext();
1118   QualType PtrTy = C.getPointerType(Ty).withRestrict();
1119   FunctionArgList Args;
1120   ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
1121                                /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1122   ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
1123                               /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1124   Args.push_back(&OmpOutParm);
1125   Args.push_back(&OmpInParm);
1126   const CGFunctionInfo &FnInfo =
1127       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1128   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
1129   std::string Name = CGM.getOpenMPRuntime().getName(
1130       {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
1131   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
1132                                     Name, &CGM.getModule());
1133   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
1134   if (CGM.getLangOpts().Optimize) {
1135     Fn->removeFnAttr(llvm::Attribute::NoInline);
1136     Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
1137     Fn->addFnAttr(llvm::Attribute::AlwaysInline);
1138   }
1139   CodeGenFunction CGF(CGM);
1140   // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
1141   // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
1142   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
1143                     Out->getLocation());
1144   CodeGenFunction::OMPPrivateScope Scope(CGF);
1145   Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
1146   Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
1147     return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
1148         .getAddress(CGF);
1149   });
1150   Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
1151   Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
1152     return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
1153         .getAddress(CGF);
1154   });
1155   (void)Scope.Privatize();
1156   if (!IsCombiner && Out->hasInit() &&
1157       !CGF.isTrivialInitializer(Out->getInit())) {
1158     CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
1159                          Out->getType().getQualifiers(),
1160                          /*IsInitializer=*/true);
1161   }
1162   if (CombinerInitializer)
1163     CGF.EmitIgnoredExpr(CombinerInitializer);
1164   Scope.ForceCleanup();
1165   CGF.FinishFunction();
1166   return Fn;
1167 }
1168 
emitUserDefinedReduction(CodeGenFunction * CGF,const OMPDeclareReductionDecl * D)1169 void CGOpenMPRuntime::emitUserDefinedReduction(
1170     CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
1171   if (UDRMap.count(D) > 0)
1172     return;
1173   llvm::Function *Combiner = emitCombinerOrInitializer(
1174       CGM, D->getType(), D->getCombiner(),
1175       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
1176       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
1177       /*IsCombiner=*/true);
1178   llvm::Function *Initializer = nullptr;
1179   if (const Expr *Init = D->getInitializer()) {
1180     Initializer = emitCombinerOrInitializer(
1181         CGM, D->getType(),
1182         D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
1183                                                                      : nullptr,
1184         cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
1185         cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
1186         /*IsCombiner=*/false);
1187   }
1188   UDRMap.try_emplace(D, Combiner, Initializer);
1189   if (CGF) {
1190     auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
1191     Decls.second.push_back(D);
1192   }
1193 }
1194 
1195 std::pair<llvm::Function *, llvm::Function *>
getUserDefinedReduction(const OMPDeclareReductionDecl * D)1196 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
1197   auto I = UDRMap.find(D);
1198   if (I != UDRMap.end())
1199     return I->second;
1200   emitUserDefinedReduction(/*CGF=*/nullptr, D);
1201   return UDRMap.lookup(D);
1202 }
1203 
1204 namespace {
1205 // Temporary RAII solution to perform a push/pop stack event on the OpenMP IR
1206 // Builder if one is present.
1207 struct PushAndPopStackRAII {
PushAndPopStackRAII__anonad2d34460811::PushAndPopStackRAII1208   PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF,
1209                       bool HasCancel, llvm::omp::Directive Kind)
1210       : OMPBuilder(OMPBuilder) {
1211     if (!OMPBuilder)
1212       return;
1213 
1214     // The following callback is the crucial part of clangs cleanup process.
1215     //
1216     // NOTE:
1217     // Once the OpenMPIRBuilder is used to create parallel regions (and
1218     // similar), the cancellation destination (Dest below) is determined via
1219     // IP. That means if we have variables to finalize we split the block at IP,
1220     // use the new block (=BB) as destination to build a JumpDest (via
1221     // getJumpDestInCurrentScope(BB)) which then is fed to
1222     // EmitBranchThroughCleanup. Furthermore, there will not be the need
1223     // to push & pop an FinalizationInfo object.
1224     // The FiniCB will still be needed but at the point where the
1225     // OpenMPIRBuilder is asked to construct a parallel (or similar) construct.
1226     auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) {
1227       assert(IP.getBlock()->end() == IP.getPoint() &&
1228              "Clang CG should cause non-terminated block!");
1229       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1230       CGF.Builder.restoreIP(IP);
1231       CodeGenFunction::JumpDest Dest =
1232           CGF.getOMPCancelDestination(OMPD_parallel);
1233       CGF.EmitBranchThroughCleanup(Dest);
1234     };
1235 
1236     // TODO: Remove this once we emit parallel regions through the
1237     //       OpenMPIRBuilder as it can do this setup internally.
1238     llvm::OpenMPIRBuilder::FinalizationInfo FI({FiniCB, Kind, HasCancel});
1239     OMPBuilder->pushFinalizationCB(std::move(FI));
1240   }
~PushAndPopStackRAII__anonad2d34460811::PushAndPopStackRAII1241   ~PushAndPopStackRAII() {
1242     if (OMPBuilder)
1243       OMPBuilder->popFinalizationCB();
1244   }
1245   llvm::OpenMPIRBuilder *OMPBuilder;
1246 };
1247 } // namespace
1248 
emitParallelOrTeamsOutlinedFunction(CodeGenModule & CGM,const OMPExecutableDirective & D,const CapturedStmt * CS,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const StringRef OutlinedHelperName,const RegionCodeGenTy & CodeGen)1249 static llvm::Function *emitParallelOrTeamsOutlinedFunction(
1250     CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
1251     const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1252     const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
1253   assert(ThreadIDVar->getType()->isPointerType() &&
1254          "thread id variable must be of type kmp_int32 *");
1255   CodeGenFunction CGF(CGM, true);
1256   bool HasCancel = false;
1257   if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
1258     HasCancel = OPD->hasCancel();
1259   else if (const auto *OPD = dyn_cast<OMPTargetParallelDirective>(&D))
1260     HasCancel = OPD->hasCancel();
1261   else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
1262     HasCancel = OPSD->hasCancel();
1263   else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
1264     HasCancel = OPFD->hasCancel();
1265   else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
1266     HasCancel = OPFD->hasCancel();
1267   else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
1268     HasCancel = OPFD->hasCancel();
1269   else if (const auto *OPFD =
1270                dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
1271     HasCancel = OPFD->hasCancel();
1272   else if (const auto *OPFD =
1273                dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
1274     HasCancel = OPFD->hasCancel();
1275 
1276   // TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new
1277   //       parallel region to make cancellation barriers work properly.
1278   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1279   PushAndPopStackRAII PSR(&OMPBuilder, CGF, HasCancel, InnermostKind);
1280   CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
1281                                     HasCancel, OutlinedHelperName);
1282   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1283   return CGF.GenerateOpenMPCapturedStmtFunction(*CS, D.getBeginLoc());
1284 }
1285 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1286 llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
1287     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1288     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1289   const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
1290   return emitParallelOrTeamsOutlinedFunction(
1291       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1292 }
1293 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1294 llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
1295     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1296     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1297   const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
1298   return emitParallelOrTeamsOutlinedFunction(
1299       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1300 }
1301 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)1302 llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
1303     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1304     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
1305     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1306     bool Tied, unsigned &NumberOfParts) {
1307   auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
1308                                               PrePostActionTy &) {
1309     llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
1310     llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
1311     llvm::Value *TaskArgs[] = {
1312         UpLoc, ThreadID,
1313         CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
1314                                     TaskTVar->getType()->castAs<PointerType>())
1315             .getPointer(CGF)};
1316     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1317                             CGM.getModule(), OMPRTL___kmpc_omp_task),
1318                         TaskArgs);
1319   };
1320   CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
1321                                                             UntiedCodeGen);
1322   CodeGen.setAction(Action);
1323   assert(!ThreadIDVar->getType()->isPointerType() &&
1324          "thread id variable must be of type kmp_int32 for tasks");
1325   const OpenMPDirectiveKind Region =
1326       isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
1327                                                       : OMPD_task;
1328   const CapturedStmt *CS = D.getCapturedStmt(Region);
1329   bool HasCancel = false;
1330   if (const auto *TD = dyn_cast<OMPTaskDirective>(&D))
1331     HasCancel = TD->hasCancel();
1332   else if (const auto *TD = dyn_cast<OMPTaskLoopDirective>(&D))
1333     HasCancel = TD->hasCancel();
1334   else if (const auto *TD = dyn_cast<OMPMasterTaskLoopDirective>(&D))
1335     HasCancel = TD->hasCancel();
1336   else if (const auto *TD = dyn_cast<OMPParallelMasterTaskLoopDirective>(&D))
1337     HasCancel = TD->hasCancel();
1338 
1339   CodeGenFunction CGF(CGM, true);
1340   CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
1341                                         InnermostKind, HasCancel, Action);
1342   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1343   llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
1344   if (!Tied)
1345     NumberOfParts = Action.getNumberOfParts();
1346   return Res;
1347 }
1348 
buildStructValue(ConstantStructBuilder & Fields,CodeGenModule & CGM,const RecordDecl * RD,const CGRecordLayout & RL,ArrayRef<llvm::Constant * > Data)1349 static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
1350                              const RecordDecl *RD, const CGRecordLayout &RL,
1351                              ArrayRef<llvm::Constant *> Data) {
1352   llvm::StructType *StructTy = RL.getLLVMType();
1353   unsigned PrevIdx = 0;
1354   ConstantInitBuilder CIBuilder(CGM);
1355   auto DI = Data.begin();
1356   for (const FieldDecl *FD : RD->fields()) {
1357     unsigned Idx = RL.getLLVMFieldNo(FD);
1358     // Fill the alignment.
1359     for (unsigned I = PrevIdx; I < Idx; ++I)
1360       Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
1361     PrevIdx = Idx + 1;
1362     Fields.add(*DI);
1363     ++DI;
1364   }
1365 }
1366 
1367 template <class... As>
1368 static llvm::GlobalVariable *
createGlobalStruct(CodeGenModule & CGM,QualType Ty,bool IsConstant,ArrayRef<llvm::Constant * > Data,const Twine & Name,As &&...Args)1369 createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
1370                    ArrayRef<llvm::Constant *> Data, const Twine &Name,
1371                    As &&... Args) {
1372   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1373   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1374   ConstantInitBuilder CIBuilder(CGM);
1375   ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
1376   buildStructValue(Fields, CGM, RD, RL, Data);
1377   return Fields.finishAndCreateGlobal(
1378       Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
1379       std::forward<As>(Args)...);
1380 }
1381 
1382 template <typename T>
1383 static void
createConstantGlobalStructAndAddToParent(CodeGenModule & CGM,QualType Ty,ArrayRef<llvm::Constant * > Data,T & Parent)1384 createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
1385                                          ArrayRef<llvm::Constant *> Data,
1386                                          T &Parent) {
1387   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1388   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1389   ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
1390   buildStructValue(Fields, CGM, RD, RL, Data);
1391   Fields.finishAndAddTo(Parent);
1392 }
1393 
setLocThreadIdInsertPt(CodeGenFunction & CGF,bool AtCurrentPoint)1394 void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
1395                                              bool AtCurrentPoint) {
1396   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1397   assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
1398 
1399   llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
1400   if (AtCurrentPoint) {
1401     Elem.second.ServiceInsertPt = new llvm::BitCastInst(
1402         Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
1403   } else {
1404     Elem.second.ServiceInsertPt =
1405         new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
1406     Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
1407   }
1408 }
1409 
clearLocThreadIdInsertPt(CodeGenFunction & CGF)1410 void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
1411   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1412   if (Elem.second.ServiceInsertPt) {
1413     llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
1414     Elem.second.ServiceInsertPt = nullptr;
1415     Ptr->eraseFromParent();
1416   }
1417 }
1418 
getIdentStringFromSourceLocation(CodeGenFunction & CGF,SourceLocation Loc,SmallString<128> & Buffer)1419 static StringRef getIdentStringFromSourceLocation(CodeGenFunction &CGF,
1420                                                   SourceLocation Loc,
1421                                                   SmallString<128> &Buffer) {
1422   llvm::raw_svector_ostream OS(Buffer);
1423   // Build debug location
1424   PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1425   OS << ";" << PLoc.getFilename() << ";";
1426   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1427     OS << FD->getQualifiedNameAsString();
1428   OS << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
1429   return OS.str();
1430 }
1431 
emitUpdateLocation(CodeGenFunction & CGF,SourceLocation Loc,unsigned Flags)1432 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
1433                                                  SourceLocation Loc,
1434                                                  unsigned Flags) {
1435   llvm::Constant *SrcLocStr;
1436   if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
1437       Loc.isInvalid()) {
1438     SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr();
1439   } else {
1440     std::string FunctionName = "";
1441     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1442       FunctionName = FD->getQualifiedNameAsString();
1443     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1444     const char *FileName = PLoc.getFilename();
1445     unsigned Line = PLoc.getLine();
1446     unsigned Column = PLoc.getColumn();
1447     SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FunctionName.c_str(), FileName,
1448                                                 Line, Column);
1449   }
1450   unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
1451   return OMPBuilder.getOrCreateIdent(SrcLocStr, llvm::omp::IdentFlag(Flags),
1452                                      Reserved2Flags);
1453 }
1454 
getThreadID(CodeGenFunction & CGF,SourceLocation Loc)1455 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
1456                                           SourceLocation Loc) {
1457   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1458   // If the OpenMPIRBuilder is used we need to use it for all thread id calls as
1459   // the clang invariants used below might be broken.
1460   if (CGM.getLangOpts().OpenMPIRBuilder) {
1461     SmallString<128> Buffer;
1462     OMPBuilder.updateToLocation(CGF.Builder.saveIP());
1463     auto *SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(
1464         getIdentStringFromSourceLocation(CGF, Loc, Buffer));
1465     return OMPBuilder.getOrCreateThreadID(
1466         OMPBuilder.getOrCreateIdent(SrcLocStr));
1467   }
1468 
1469   llvm::Value *ThreadID = nullptr;
1470   // Check whether we've already cached a load of the thread id in this
1471   // function.
1472   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1473   if (I != OpenMPLocThreadIDMap.end()) {
1474     ThreadID = I->second.ThreadID;
1475     if (ThreadID != nullptr)
1476       return ThreadID;
1477   }
1478   // If exceptions are enabled, do not use parameter to avoid possible crash.
1479   if (auto *OMPRegionInfo =
1480           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
1481     if (OMPRegionInfo->getThreadIDVariable()) {
1482       // Check if this an outlined function with thread id passed as argument.
1483       LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1484       llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent();
1485       if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
1486           !CGF.getLangOpts().CXXExceptions ||
1487           CGF.Builder.GetInsertBlock() == TopBlock ||
1488           !isa<llvm::Instruction>(LVal.getPointer(CGF)) ||
1489           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1490               TopBlock ||
1491           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1492               CGF.Builder.GetInsertBlock()) {
1493         ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
1494         // If value loaded in entry block, cache it and use it everywhere in
1495         // function.
1496         if (CGF.Builder.GetInsertBlock() == TopBlock) {
1497           auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1498           Elem.second.ThreadID = ThreadID;
1499         }
1500         return ThreadID;
1501       }
1502     }
1503   }
1504 
1505   // This is not an outlined function region - need to call __kmpc_int32
1506   // kmpc_global_thread_num(ident_t *loc).
1507   // Generate thread id value and cache this value for use across the
1508   // function.
1509   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1510   if (!Elem.second.ServiceInsertPt)
1511     setLocThreadIdInsertPt(CGF);
1512   CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1513   CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1514   llvm::CallInst *Call = CGF.Builder.CreateCall(
1515       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
1516                                             OMPRTL___kmpc_global_thread_num),
1517       emitUpdateLocation(CGF, Loc));
1518   Call->setCallingConv(CGF.getRuntimeCC());
1519   Elem.second.ThreadID = Call;
1520   return Call;
1521 }
1522 
functionFinished(CodeGenFunction & CGF)1523 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1524   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1525   if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
1526     clearLocThreadIdInsertPt(CGF);
1527     OpenMPLocThreadIDMap.erase(CGF.CurFn);
1528   }
1529   if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1530     for(const auto *D : FunctionUDRMap[CGF.CurFn])
1531       UDRMap.erase(D);
1532     FunctionUDRMap.erase(CGF.CurFn);
1533   }
1534   auto I = FunctionUDMMap.find(CGF.CurFn);
1535   if (I != FunctionUDMMap.end()) {
1536     for(const auto *D : I->second)
1537       UDMMap.erase(D);
1538     FunctionUDMMap.erase(I);
1539   }
1540   LastprivateConditionalToTypes.erase(CGF.CurFn);
1541   FunctionToUntiedTaskStackMap.erase(CGF.CurFn);
1542 }
1543 
getIdentTyPointerTy()1544 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1545   return OMPBuilder.IdentPtr;
1546 }
1547 
getKmpc_MicroPointerTy()1548 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1549   if (!Kmpc_MicroTy) {
1550     // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1551     llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1552                                  llvm::PointerType::getUnqual(CGM.Int32Ty)};
1553     Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1554   }
1555   return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1556 }
1557 
1558 llvm::FunctionCallee
createForStaticInitFunction(unsigned IVSize,bool IVSigned)1559 CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
1560   assert((IVSize == 32 || IVSize == 64) &&
1561          "IV size is not compatible with the omp runtime");
1562   StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
1563                                             : "__kmpc_for_static_init_4u")
1564                                 : (IVSigned ? "__kmpc_for_static_init_8"
1565                                             : "__kmpc_for_static_init_8u");
1566   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1567   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1568   llvm::Type *TypeParams[] = {
1569     getIdentTyPointerTy(),                     // loc
1570     CGM.Int32Ty,                               // tid
1571     CGM.Int32Ty,                               // schedtype
1572     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1573     PtrTy,                                     // p_lower
1574     PtrTy,                                     // p_upper
1575     PtrTy,                                     // p_stride
1576     ITy,                                       // incr
1577     ITy                                        // chunk
1578   };
1579   auto *FnTy =
1580       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1581   return CGM.CreateRuntimeFunction(FnTy, Name);
1582 }
1583 
1584 llvm::FunctionCallee
createDispatchInitFunction(unsigned IVSize,bool IVSigned)1585 CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
1586   assert((IVSize == 32 || IVSize == 64) &&
1587          "IV size is not compatible with the omp runtime");
1588   StringRef Name =
1589       IVSize == 32
1590           ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
1591           : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
1592   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1593   llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
1594                                CGM.Int32Ty,           // tid
1595                                CGM.Int32Ty,           // schedtype
1596                                ITy,                   // lower
1597                                ITy,                   // upper
1598                                ITy,                   // stride
1599                                ITy                    // chunk
1600   };
1601   auto *FnTy =
1602       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1603   return CGM.CreateRuntimeFunction(FnTy, Name);
1604 }
1605 
1606 llvm::FunctionCallee
createDispatchFiniFunction(unsigned IVSize,bool IVSigned)1607 CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
1608   assert((IVSize == 32 || IVSize == 64) &&
1609          "IV size is not compatible with the omp runtime");
1610   StringRef Name =
1611       IVSize == 32
1612           ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
1613           : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
1614   llvm::Type *TypeParams[] = {
1615       getIdentTyPointerTy(), // loc
1616       CGM.Int32Ty,           // tid
1617   };
1618   auto *FnTy =
1619       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1620   return CGM.CreateRuntimeFunction(FnTy, Name);
1621 }
1622 
1623 llvm::FunctionCallee
createDispatchNextFunction(unsigned IVSize,bool IVSigned)1624 CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
1625   assert((IVSize == 32 || IVSize == 64) &&
1626          "IV size is not compatible with the omp runtime");
1627   StringRef Name =
1628       IVSize == 32
1629           ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
1630           : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
1631   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1632   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1633   llvm::Type *TypeParams[] = {
1634     getIdentTyPointerTy(),                     // loc
1635     CGM.Int32Ty,                               // tid
1636     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1637     PtrTy,                                     // p_lower
1638     PtrTy,                                     // p_upper
1639     PtrTy                                      // p_stride
1640   };
1641   auto *FnTy =
1642       llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1643   return CGM.CreateRuntimeFunction(FnTy, Name);
1644 }
1645 
1646 /// Obtain information that uniquely identifies a target entry. This
1647 /// consists of the file and device IDs as well as line number associated with
1648 /// the relevant entry source location.
getTargetEntryUniqueInfo(ASTContext & C,SourceLocation Loc,unsigned & DeviceID,unsigned & FileID,unsigned & LineNum)1649 static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
1650                                      unsigned &DeviceID, unsigned &FileID,
1651                                      unsigned &LineNum) {
1652   SourceManager &SM = C.getSourceManager();
1653 
1654   // The loc should be always valid and have a file ID (the user cannot use
1655   // #pragma directives in macros)
1656 
1657   assert(Loc.isValid() && "Source location is expected to be always valid.");
1658 
1659   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1660   assert(PLoc.isValid() && "Source location is expected to be always valid.");
1661 
1662   llvm::sys::fs::UniqueID ID;
1663   if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
1664     PLoc = SM.getPresumedLoc(Loc, /*UseLineDirectives=*/false);
1665     assert(PLoc.isValid() && "Source location is expected to be always valid.");
1666     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
1667       SM.getDiagnostics().Report(diag::err_cannot_open_file)
1668           << PLoc.getFilename() << EC.message();
1669   }
1670 
1671   DeviceID = ID.getDevice();
1672   FileID = ID.getFile();
1673   LineNum = PLoc.getLine();
1674 }
1675 
getAddrOfDeclareTargetVar(const VarDecl * VD)1676 Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
1677   if (CGM.getLangOpts().OpenMPSimd)
1678     return Address::invalid();
1679   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1680       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1681   if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
1682               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
1683                HasRequiresUnifiedSharedMemory))) {
1684     SmallString<64> PtrName;
1685     {
1686       llvm::raw_svector_ostream OS(PtrName);
1687       OS << CGM.getMangledName(GlobalDecl(VD));
1688       if (!VD->isExternallyVisible()) {
1689         unsigned DeviceID, FileID, Line;
1690         getTargetEntryUniqueInfo(CGM.getContext(),
1691                                  VD->getCanonicalDecl()->getBeginLoc(),
1692                                  DeviceID, FileID, Line);
1693         OS << llvm::format("_%x", FileID);
1694       }
1695       OS << "_decl_tgt_ref_ptr";
1696     }
1697     llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
1698     if (!Ptr) {
1699       QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
1700       Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
1701                                         PtrName);
1702 
1703       auto *GV = cast<llvm::GlobalVariable>(Ptr);
1704       GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
1705 
1706       if (!CGM.getLangOpts().OpenMPIsDevice)
1707         GV->setInitializer(CGM.GetAddrOfGlobal(VD));
1708       registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
1709     }
1710     return Address(Ptr, CGM.getContext().getDeclAlign(VD));
1711   }
1712   return Address::invalid();
1713 }
1714 
1715 llvm::Constant *
getOrCreateThreadPrivateCache(const VarDecl * VD)1716 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
1717   assert(!CGM.getLangOpts().OpenMPUseTLS ||
1718          !CGM.getContext().getTargetInfo().isTLSSupported());
1719   // Lookup the entry, lazily creating it if necessary.
1720   std::string Suffix = getName({"cache", ""});
1721   return getOrCreateInternalVariable(
1722       CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
1723 }
1724 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)1725 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
1726                                                 const VarDecl *VD,
1727                                                 Address VDAddr,
1728                                                 SourceLocation Loc) {
1729   if (CGM.getLangOpts().OpenMPUseTLS &&
1730       CGM.getContext().getTargetInfo().isTLSSupported())
1731     return VDAddr;
1732 
1733   llvm::Type *VarTy = VDAddr.getElementType();
1734   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
1735                          CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
1736                                                        CGM.Int8PtrTy),
1737                          CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
1738                          getOrCreateThreadPrivateCache(VD)};
1739   return Address(CGF.EmitRuntimeCall(
1740                      OMPBuilder.getOrCreateRuntimeFunction(
1741                          CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
1742                      Args),
1743                  VDAddr.getAlignment());
1744 }
1745 
emitThreadPrivateVarInit(CodeGenFunction & CGF,Address VDAddr,llvm::Value * Ctor,llvm::Value * CopyCtor,llvm::Value * Dtor,SourceLocation Loc)1746 void CGOpenMPRuntime::emitThreadPrivateVarInit(
1747     CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
1748     llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
1749   // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
1750   // library.
1751   llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
1752   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1753                           CGM.getModule(), OMPRTL___kmpc_global_thread_num),
1754                       OMPLoc);
1755   // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
1756   // to register constructor/destructor for variable.
1757   llvm::Value *Args[] = {
1758       OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
1759       Ctor, CopyCtor, Dtor};
1760   CGF.EmitRuntimeCall(
1761       OMPBuilder.getOrCreateRuntimeFunction(
1762           CGM.getModule(), OMPRTL___kmpc_threadprivate_register),
1763       Args);
1764 }
1765 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)1766 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
1767     const VarDecl *VD, Address VDAddr, SourceLocation Loc,
1768     bool PerformInit, CodeGenFunction *CGF) {
1769   if (CGM.getLangOpts().OpenMPUseTLS &&
1770       CGM.getContext().getTargetInfo().isTLSSupported())
1771     return nullptr;
1772 
1773   VD = VD->getDefinition(CGM.getContext());
1774   if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
1775     QualType ASTTy = VD->getType();
1776 
1777     llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
1778     const Expr *Init = VD->getAnyInitializer();
1779     if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1780       // Generate function that re-emits the declaration's initializer into the
1781       // threadprivate copy of the variable VD
1782       CodeGenFunction CtorCGF(CGM);
1783       FunctionArgList Args;
1784       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1785                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1786                             ImplicitParamDecl::Other);
1787       Args.push_back(&Dst);
1788 
1789       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1790           CGM.getContext().VoidPtrTy, Args);
1791       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1792       std::string Name = getName({"__kmpc_global_ctor_", ""});
1793       llvm::Function *Fn =
1794           CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1795       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
1796                             Args, Loc, Loc);
1797       llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
1798           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1799           CGM.getContext().VoidPtrTy, Dst.getLocation());
1800       Address Arg = Address(ArgVal, VDAddr.getAlignment());
1801       Arg = CtorCGF.Builder.CreateElementBitCast(
1802           Arg, CtorCGF.ConvertTypeForMem(ASTTy));
1803       CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
1804                                /*IsInitializer=*/true);
1805       ArgVal = CtorCGF.EmitLoadOfScalar(
1806           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1807           CGM.getContext().VoidPtrTy, Dst.getLocation());
1808       CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
1809       CtorCGF.FinishFunction();
1810       Ctor = Fn;
1811     }
1812     if (VD->getType().isDestructedType() != QualType::DK_none) {
1813       // Generate function that emits destructor call for the threadprivate copy
1814       // of the variable VD
1815       CodeGenFunction DtorCGF(CGM);
1816       FunctionArgList Args;
1817       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1818                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1819                             ImplicitParamDecl::Other);
1820       Args.push_back(&Dst);
1821 
1822       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1823           CGM.getContext().VoidTy, Args);
1824       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1825       std::string Name = getName({"__kmpc_global_dtor_", ""});
1826       llvm::Function *Fn =
1827           CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1828       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1829       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
1830                             Loc, Loc);
1831       // Create a scope with an artificial location for the body of this function.
1832       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1833       llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
1834           DtorCGF.GetAddrOfLocalVar(&Dst),
1835           /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
1836       DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
1837                           DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1838                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1839       DtorCGF.FinishFunction();
1840       Dtor = Fn;
1841     }
1842     // Do not emit init function if it is not required.
1843     if (!Ctor && !Dtor)
1844       return nullptr;
1845 
1846     llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1847     auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
1848                                                /*isVarArg=*/false)
1849                            ->getPointerTo();
1850     // Copying constructor for the threadprivate variable.
1851     // Must be NULL - reserved by runtime, but currently it requires that this
1852     // parameter is always NULL. Otherwise it fires assertion.
1853     CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
1854     if (Ctor == nullptr) {
1855       auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1856                                              /*isVarArg=*/false)
1857                          ->getPointerTo();
1858       Ctor = llvm::Constant::getNullValue(CtorTy);
1859     }
1860     if (Dtor == nullptr) {
1861       auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
1862                                              /*isVarArg=*/false)
1863                          ->getPointerTo();
1864       Dtor = llvm::Constant::getNullValue(DtorTy);
1865     }
1866     if (!CGF) {
1867       auto *InitFunctionTy =
1868           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
1869       std::string Name = getName({"__omp_threadprivate_init_", ""});
1870       llvm::Function *InitFunction = CGM.CreateGlobalInitOrCleanUpFunction(
1871           InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
1872       CodeGenFunction InitCGF(CGM);
1873       FunctionArgList ArgList;
1874       InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
1875                             CGM.getTypes().arrangeNullaryFunction(), ArgList,
1876                             Loc, Loc);
1877       emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1878       InitCGF.FinishFunction();
1879       return InitFunction;
1880     }
1881     emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1882   }
1883   return nullptr;
1884 }
1885 
emitDeclareTargetVarDefinition(const VarDecl * VD,llvm::GlobalVariable * Addr,bool PerformInit)1886 bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
1887                                                      llvm::GlobalVariable *Addr,
1888                                                      bool PerformInit) {
1889   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
1890       !CGM.getLangOpts().OpenMPIsDevice)
1891     return false;
1892   Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1893       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1894   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
1895       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
1896        HasRequiresUnifiedSharedMemory))
1897     return CGM.getLangOpts().OpenMPIsDevice;
1898   VD = VD->getDefinition(CGM.getContext());
1899   assert(VD && "Unknown VarDecl");
1900 
1901   if (!DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
1902     return CGM.getLangOpts().OpenMPIsDevice;
1903 
1904   QualType ASTTy = VD->getType();
1905   SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
1906 
1907   // Produce the unique prefix to identify the new target regions. We use
1908   // the source location of the variable declaration which we know to not
1909   // conflict with any target region.
1910   unsigned DeviceID;
1911   unsigned FileID;
1912   unsigned Line;
1913   getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
1914   SmallString<128> Buffer, Out;
1915   {
1916     llvm::raw_svector_ostream OS(Buffer);
1917     OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
1918        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
1919   }
1920 
1921   const Expr *Init = VD->getAnyInitializer();
1922   if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1923     llvm::Constant *Ctor;
1924     llvm::Constant *ID;
1925     if (CGM.getLangOpts().OpenMPIsDevice) {
1926       // Generate function that re-emits the declaration's initializer into
1927       // the threadprivate copy of the variable VD
1928       CodeGenFunction CtorCGF(CGM);
1929 
1930       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1931       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1932       llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1933           FTy, Twine(Buffer, "_ctor"), FI, Loc);
1934       auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
1935       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1936                             FunctionArgList(), Loc, Loc);
1937       auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
1938       CtorCGF.EmitAnyExprToMem(Init,
1939                                Address(Addr, CGM.getContext().getDeclAlign(VD)),
1940                                Init->getType().getQualifiers(),
1941                                /*IsInitializer=*/true);
1942       CtorCGF.FinishFunction();
1943       Ctor = Fn;
1944       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1945       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
1946     } else {
1947       Ctor = new llvm::GlobalVariable(
1948           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1949           llvm::GlobalValue::PrivateLinkage,
1950           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
1951       ID = Ctor;
1952     }
1953 
1954     // Register the information for the entry associated with the constructor.
1955     Out.clear();
1956     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1957         DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
1958         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
1959   }
1960   if (VD->getType().isDestructedType() != QualType::DK_none) {
1961     llvm::Constant *Dtor;
1962     llvm::Constant *ID;
1963     if (CGM.getLangOpts().OpenMPIsDevice) {
1964       // Generate function that emits destructor call for the threadprivate
1965       // copy of the variable VD
1966       CodeGenFunction DtorCGF(CGM);
1967 
1968       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1969       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1970       llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1971           FTy, Twine(Buffer, "_dtor"), FI, Loc);
1972       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1973       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1974                             FunctionArgList(), Loc, Loc);
1975       // Create a scope with an artificial location for the body of this
1976       // function.
1977       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1978       DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
1979                           ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1980                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1981       DtorCGF.FinishFunction();
1982       Dtor = Fn;
1983       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1984       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
1985     } else {
1986       Dtor = new llvm::GlobalVariable(
1987           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1988           llvm::GlobalValue::PrivateLinkage,
1989           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
1990       ID = Dtor;
1991     }
1992     // Register the information for the entry associated with the destructor.
1993     Out.clear();
1994     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1995         DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
1996         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
1997   }
1998   return CGM.getLangOpts().OpenMPIsDevice;
1999 }
2000 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)2001 Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
2002                                                           QualType VarType,
2003                                                           StringRef Name) {
2004   std::string Suffix = getName({"artificial", ""});
2005   llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
2006   llvm::Value *GAddr =
2007       getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
2008   if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS &&
2009       CGM.getTarget().isTLSSupported()) {
2010     cast<llvm::GlobalVariable>(GAddr)->setThreadLocal(/*Val=*/true);
2011     return Address(GAddr, CGM.getContext().getTypeAlignInChars(VarType));
2012   }
2013   std::string CacheSuffix = getName({"cache", ""});
2014   llvm::Value *Args[] = {
2015       emitUpdateLocation(CGF, SourceLocation()),
2016       getThreadID(CGF, SourceLocation()),
2017       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
2018       CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
2019                                 /*isSigned=*/false),
2020       getOrCreateInternalVariable(
2021           CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
2022   return Address(
2023       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2024           CGF.EmitRuntimeCall(
2025               OMPBuilder.getOrCreateRuntimeFunction(
2026                   CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
2027               Args),
2028           VarLVType->getPointerTo(/*AddrSpace=*/0)),
2029       CGM.getContext().getTypeAlignInChars(VarType));
2030 }
2031 
emitIfClause(CodeGenFunction & CGF,const Expr * Cond,const RegionCodeGenTy & ThenGen,const RegionCodeGenTy & ElseGen)2032 void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond,
2033                                    const RegionCodeGenTy &ThenGen,
2034                                    const RegionCodeGenTy &ElseGen) {
2035   CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
2036 
2037   // If the condition constant folds and can be elided, try to avoid emitting
2038   // the condition and the dead arm of the if/else.
2039   bool CondConstant;
2040   if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
2041     if (CondConstant)
2042       ThenGen(CGF);
2043     else
2044       ElseGen(CGF);
2045     return;
2046   }
2047 
2048   // Otherwise, the condition did not fold, or we couldn't elide it.  Just
2049   // emit the conditional branch.
2050   llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
2051   llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
2052   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
2053   CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
2054 
2055   // Emit the 'then' code.
2056   CGF.EmitBlock(ThenBlock);
2057   ThenGen(CGF);
2058   CGF.EmitBranch(ContBlock);
2059   // Emit the 'else' code if present.
2060   // There is no need to emit line number for unconditional branch.
2061   (void)ApplyDebugLocation::CreateEmpty(CGF);
2062   CGF.EmitBlock(ElseBlock);
2063   ElseGen(CGF);
2064   // There is no need to emit line number for unconditional branch.
2065   (void)ApplyDebugLocation::CreateEmpty(CGF);
2066   CGF.EmitBranch(ContBlock);
2067   // Emit the continuation block for code after the if.
2068   CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
2069 }
2070 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)2071 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
2072                                        llvm::Function *OutlinedFn,
2073                                        ArrayRef<llvm::Value *> CapturedVars,
2074                                        const Expr *IfCond) {
2075   if (!CGF.HaveInsertPoint())
2076     return;
2077   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2078   auto &M = CGM.getModule();
2079   auto &&ThenGen = [&M, OutlinedFn, CapturedVars, RTLoc,
2080                     this](CodeGenFunction &CGF, PrePostActionTy &) {
2081     // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
2082     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2083     llvm::Value *Args[] = {
2084         RTLoc,
2085         CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
2086         CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
2087     llvm::SmallVector<llvm::Value *, 16> RealArgs;
2088     RealArgs.append(std::begin(Args), std::end(Args));
2089     RealArgs.append(CapturedVars.begin(), CapturedVars.end());
2090 
2091     llvm::FunctionCallee RTLFn =
2092         OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_fork_call);
2093     CGF.EmitRuntimeCall(RTLFn, RealArgs);
2094   };
2095   auto &&ElseGen = [&M, OutlinedFn, CapturedVars, RTLoc, Loc,
2096                     this](CodeGenFunction &CGF, PrePostActionTy &) {
2097     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2098     llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
2099     // Build calls:
2100     // __kmpc_serialized_parallel(&Loc, GTid);
2101     llvm::Value *Args[] = {RTLoc, ThreadID};
2102     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2103                             M, OMPRTL___kmpc_serialized_parallel),
2104                         Args);
2105 
2106     // OutlinedFn(&GTid, &zero_bound, CapturedStruct);
2107     Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
2108     Address ZeroAddrBound =
2109         CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2110                                          /*Name=*/".bound.zero.addr");
2111     CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0));
2112     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2113     // ThreadId for serialized parallels is 0.
2114     OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
2115     OutlinedFnArgs.push_back(ZeroAddrBound.getPointer());
2116     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2117 
2118     // Ensure we do not inline the function. This is trivially true for the ones
2119     // passed to __kmpc_fork_call but the ones calles in serialized regions
2120     // could be inlined. This is not a perfect but it is closer to the invariant
2121     // we want, namely, every data environment starts with a new function.
2122     // TODO: We should pass the if condition to the runtime function and do the
2123     //       handling there. Much cleaner code.
2124     OutlinedFn->addFnAttr(llvm::Attribute::NoInline);
2125     RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2126 
2127     // __kmpc_end_serialized_parallel(&Loc, GTid);
2128     llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
2129     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2130                             M, OMPRTL___kmpc_end_serialized_parallel),
2131                         EndArgs);
2132   };
2133   if (IfCond) {
2134     emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2135   } else {
2136     RegionCodeGenTy ThenRCG(ThenGen);
2137     ThenRCG(CGF);
2138   }
2139 }
2140 
2141 // If we're inside an (outlined) parallel region, use the region info's
2142 // thread-ID variable (it is passed in a first argument of the outlined function
2143 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
2144 // regular serial code region, get thread ID by calling kmp_int32
2145 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
2146 // return the address of that temp.
emitThreadIDAddress(CodeGenFunction & CGF,SourceLocation Loc)2147 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
2148                                              SourceLocation Loc) {
2149   if (auto *OMPRegionInfo =
2150           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2151     if (OMPRegionInfo->getThreadIDVariable())
2152       return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF);
2153 
2154   llvm::Value *ThreadID = getThreadID(CGF, Loc);
2155   QualType Int32Ty =
2156       CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
2157   Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
2158   CGF.EmitStoreOfScalar(ThreadID,
2159                         CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
2160 
2161   return ThreadIDTemp;
2162 }
2163 
getOrCreateInternalVariable(llvm::Type * Ty,const llvm::Twine & Name,unsigned AddressSpace)2164 llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
2165     llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
2166   SmallString<256> Buffer;
2167   llvm::raw_svector_ostream Out(Buffer);
2168   Out << Name;
2169   StringRef RuntimeName = Out.str();
2170   auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
2171   if (Elem.second) {
2172     assert(Elem.second->getType()->getPointerElementType() == Ty &&
2173            "OMP internal variable has different type than requested");
2174     return &*Elem.second;
2175   }
2176 
2177   return Elem.second = new llvm::GlobalVariable(
2178              CGM.getModule(), Ty, /*IsConstant*/ false,
2179              llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
2180              Elem.first(), /*InsertBefore=*/nullptr,
2181              llvm::GlobalValue::NotThreadLocal, AddressSpace);
2182 }
2183 
getCriticalRegionLock(StringRef CriticalName)2184 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
2185   std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
2186   std::string Name = getName({Prefix, "var"});
2187   return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
2188 }
2189 
2190 namespace {
2191 /// Common pre(post)-action for different OpenMP constructs.
2192 class CommonActionTy final : public PrePostActionTy {
2193   llvm::FunctionCallee EnterCallee;
2194   ArrayRef<llvm::Value *> EnterArgs;
2195   llvm::FunctionCallee ExitCallee;
2196   ArrayRef<llvm::Value *> ExitArgs;
2197   bool Conditional;
2198   llvm::BasicBlock *ContBlock = nullptr;
2199 
2200 public:
CommonActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)2201   CommonActionTy(llvm::FunctionCallee EnterCallee,
2202                  ArrayRef<llvm::Value *> EnterArgs,
2203                  llvm::FunctionCallee ExitCallee,
2204                  ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
2205       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
2206         ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)2207   void Enter(CodeGenFunction &CGF) override {
2208     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
2209     if (Conditional) {
2210       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
2211       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
2212       ContBlock = CGF.createBasicBlock("omp_if.end");
2213       // Generate the branch (If-stmt)
2214       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
2215       CGF.EmitBlock(ThenBlock);
2216     }
2217   }
Done(CodeGenFunction & CGF)2218   void Done(CodeGenFunction &CGF) {
2219     // Emit the rest of blocks/branches
2220     CGF.EmitBranch(ContBlock);
2221     CGF.EmitBlock(ContBlock, true);
2222   }
Exit(CodeGenFunction & CGF)2223   void Exit(CodeGenFunction &CGF) override {
2224     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
2225   }
2226 };
2227 } // anonymous namespace
2228 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)2229 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
2230                                          StringRef CriticalName,
2231                                          const RegionCodeGenTy &CriticalOpGen,
2232                                          SourceLocation Loc, const Expr *Hint) {
2233   // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
2234   // CriticalOpGen();
2235   // __kmpc_end_critical(ident_t *, gtid, Lock);
2236   // Prepare arguments and build a call to __kmpc_critical
2237   if (!CGF.HaveInsertPoint())
2238     return;
2239   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2240                          getCriticalRegionLock(CriticalName)};
2241   llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
2242                                                 std::end(Args));
2243   if (Hint) {
2244     EnterArgs.push_back(CGF.Builder.CreateIntCast(
2245         CGF.EmitScalarExpr(Hint), CGM.Int32Ty, /*isSigned=*/false));
2246   }
2247   CommonActionTy Action(
2248       OMPBuilder.getOrCreateRuntimeFunction(
2249           CGM.getModule(),
2250           Hint ? OMPRTL___kmpc_critical_with_hint : OMPRTL___kmpc_critical),
2251       EnterArgs,
2252       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2253                                             OMPRTL___kmpc_end_critical),
2254       Args);
2255   CriticalOpGen.setAction(Action);
2256   emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
2257 }
2258 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)2259 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
2260                                        const RegionCodeGenTy &MasterOpGen,
2261                                        SourceLocation Loc) {
2262   if (!CGF.HaveInsertPoint())
2263     return;
2264   // if(__kmpc_master(ident_t *, gtid)) {
2265   //   MasterOpGen();
2266   //   __kmpc_end_master(ident_t *, gtid);
2267   // }
2268   // Prepare arguments and build a call to __kmpc_master
2269   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2270   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2271                             CGM.getModule(), OMPRTL___kmpc_master),
2272                         Args,
2273                         OMPBuilder.getOrCreateRuntimeFunction(
2274                             CGM.getModule(), OMPRTL___kmpc_end_master),
2275                         Args,
2276                         /*Conditional=*/true);
2277   MasterOpGen.setAction(Action);
2278   emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
2279   Action.Done(CGF);
2280 }
2281 
emitMaskedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MaskedOpGen,SourceLocation Loc,const Expr * Filter)2282 void CGOpenMPRuntime::emitMaskedRegion(CodeGenFunction &CGF,
2283                                        const RegionCodeGenTy &MaskedOpGen,
2284                                        SourceLocation Loc, const Expr *Filter) {
2285   if (!CGF.HaveInsertPoint())
2286     return;
2287   // if(__kmpc_masked(ident_t *, gtid, filter)) {
2288   //   MaskedOpGen();
2289   //   __kmpc_end_masked(iden_t *, gtid);
2290   // }
2291   // Prepare arguments and build a call to __kmpc_masked
2292   llvm::Value *FilterVal = Filter
2293                                ? CGF.EmitScalarExpr(Filter, CGF.Int32Ty)
2294                                : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0);
2295   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2296                          FilterVal};
2297   llvm::Value *ArgsEnd[] = {emitUpdateLocation(CGF, Loc),
2298                             getThreadID(CGF, Loc)};
2299   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2300                             CGM.getModule(), OMPRTL___kmpc_masked),
2301                         Args,
2302                         OMPBuilder.getOrCreateRuntimeFunction(
2303                             CGM.getModule(), OMPRTL___kmpc_end_masked),
2304                         ArgsEnd,
2305                         /*Conditional=*/true);
2306   MaskedOpGen.setAction(Action);
2307   emitInlinedDirective(CGF, OMPD_masked, MaskedOpGen);
2308   Action.Done(CGF);
2309 }
2310 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)2311 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
2312                                         SourceLocation Loc) {
2313   if (!CGF.HaveInsertPoint())
2314     return;
2315   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2316     OMPBuilder.createTaskyield(CGF.Builder);
2317   } else {
2318     // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
2319     llvm::Value *Args[] = {
2320         emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2321         llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
2322     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2323                             CGM.getModule(), OMPRTL___kmpc_omp_taskyield),
2324                         Args);
2325   }
2326 
2327   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2328     Region->emitUntiedSwitch(CGF);
2329 }
2330 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)2331 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
2332                                           const RegionCodeGenTy &TaskgroupOpGen,
2333                                           SourceLocation Loc) {
2334   if (!CGF.HaveInsertPoint())
2335     return;
2336   // __kmpc_taskgroup(ident_t *, gtid);
2337   // TaskgroupOpGen();
2338   // __kmpc_end_taskgroup(ident_t *, gtid);
2339   // Prepare arguments and build a call to __kmpc_taskgroup
2340   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2341   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2342                             CGM.getModule(), OMPRTL___kmpc_taskgroup),
2343                         Args,
2344                         OMPBuilder.getOrCreateRuntimeFunction(
2345                             CGM.getModule(), OMPRTL___kmpc_end_taskgroup),
2346                         Args);
2347   TaskgroupOpGen.setAction(Action);
2348   emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
2349 }
2350 
2351 /// Given an array of pointers to variables, project the address of a
2352 /// given variable.
emitAddrOfVarFromArray(CodeGenFunction & CGF,Address Array,unsigned Index,const VarDecl * Var)2353 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
2354                                       unsigned Index, const VarDecl *Var) {
2355   // Pull out the pointer to the variable.
2356   Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
2357   llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
2358 
2359   Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
2360   Addr = CGF.Builder.CreateElementBitCast(
2361       Addr, CGF.ConvertTypeForMem(Var->getType()));
2362   return Addr;
2363 }
2364 
emitCopyprivateCopyFunction(CodeGenModule & CGM,llvm::Type * ArgsType,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps,SourceLocation Loc)2365 static llvm::Value *emitCopyprivateCopyFunction(
2366     CodeGenModule &CGM, llvm::Type *ArgsType,
2367     ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
2368     ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
2369     SourceLocation Loc) {
2370   ASTContext &C = CGM.getContext();
2371   // void copy_func(void *LHSArg, void *RHSArg);
2372   FunctionArgList Args;
2373   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2374                            ImplicitParamDecl::Other);
2375   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2376                            ImplicitParamDecl::Other);
2377   Args.push_back(&LHSArg);
2378   Args.push_back(&RHSArg);
2379   const auto &CGFI =
2380       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2381   std::string Name =
2382       CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
2383   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2384                                     llvm::GlobalValue::InternalLinkage, Name,
2385                                     &CGM.getModule());
2386   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2387   Fn->setDoesNotRecurse();
2388   CodeGenFunction CGF(CGM);
2389   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2390   // Dest = (void*[n])(LHSArg);
2391   // Src = (void*[n])(RHSArg);
2392   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2393       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
2394       ArgsType), CGF.getPointerAlign());
2395   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2396       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
2397       ArgsType), CGF.getPointerAlign());
2398   // *(Type0*)Dst[0] = *(Type0*)Src[0];
2399   // *(Type1*)Dst[1] = *(Type1*)Src[1];
2400   // ...
2401   // *(Typen*)Dst[n] = *(Typen*)Src[n];
2402   for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
2403     const auto *DestVar =
2404         cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
2405     Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
2406 
2407     const auto *SrcVar =
2408         cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
2409     Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
2410 
2411     const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
2412     QualType Type = VD->getType();
2413     CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
2414   }
2415   CGF.FinishFunction();
2416   return Fn;
2417 }
2418 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > DstExprs,ArrayRef<const Expr * > AssignmentOps)2419 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
2420                                        const RegionCodeGenTy &SingleOpGen,
2421                                        SourceLocation Loc,
2422                                        ArrayRef<const Expr *> CopyprivateVars,
2423                                        ArrayRef<const Expr *> SrcExprs,
2424                                        ArrayRef<const Expr *> DstExprs,
2425                                        ArrayRef<const Expr *> AssignmentOps) {
2426   if (!CGF.HaveInsertPoint())
2427     return;
2428   assert(CopyprivateVars.size() == SrcExprs.size() &&
2429          CopyprivateVars.size() == DstExprs.size() &&
2430          CopyprivateVars.size() == AssignmentOps.size());
2431   ASTContext &C = CGM.getContext();
2432   // int32 did_it = 0;
2433   // if(__kmpc_single(ident_t *, gtid)) {
2434   //   SingleOpGen();
2435   //   __kmpc_end_single(ident_t *, gtid);
2436   //   did_it = 1;
2437   // }
2438   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2439   // <copy_func>, did_it);
2440 
2441   Address DidIt = Address::invalid();
2442   if (!CopyprivateVars.empty()) {
2443     // int32 did_it = 0;
2444     QualType KmpInt32Ty =
2445         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2446     DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
2447     CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
2448   }
2449   // Prepare arguments and build a call to __kmpc_single
2450   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2451   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2452                             CGM.getModule(), OMPRTL___kmpc_single),
2453                         Args,
2454                         OMPBuilder.getOrCreateRuntimeFunction(
2455                             CGM.getModule(), OMPRTL___kmpc_end_single),
2456                         Args,
2457                         /*Conditional=*/true);
2458   SingleOpGen.setAction(Action);
2459   emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
2460   if (DidIt.isValid()) {
2461     // did_it = 1;
2462     CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
2463   }
2464   Action.Done(CGF);
2465   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2466   // <copy_func>, did_it);
2467   if (DidIt.isValid()) {
2468     llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
2469     QualType CopyprivateArrayTy = C.getConstantArrayType(
2470         C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
2471         /*IndexTypeQuals=*/0);
2472     // Create a list of all private variables for copyprivate.
2473     Address CopyprivateList =
2474         CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
2475     for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
2476       Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
2477       CGF.Builder.CreateStore(
2478           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2479               CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF),
2480               CGF.VoidPtrTy),
2481           Elem);
2482     }
2483     // Build function that copies private values from single region to all other
2484     // threads in the corresponding parallel region.
2485     llvm::Value *CpyFn = emitCopyprivateCopyFunction(
2486         CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
2487         CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
2488     llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
2489     Address CL =
2490       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
2491                                                       CGF.VoidPtrTy);
2492     llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
2493     llvm::Value *Args[] = {
2494         emitUpdateLocation(CGF, Loc), // ident_t *<loc>
2495         getThreadID(CGF, Loc),        // i32 <gtid>
2496         BufSize,                      // size_t <buf_size>
2497         CL.getPointer(),              // void *<copyprivate list>
2498         CpyFn,                        // void (*) (void *, void *) <copy_func>
2499         DidItVal                      // i32 did_it
2500     };
2501     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2502                             CGM.getModule(), OMPRTL___kmpc_copyprivate),
2503                         Args);
2504   }
2505 }
2506 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)2507 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
2508                                         const RegionCodeGenTy &OrderedOpGen,
2509                                         SourceLocation Loc, bool IsThreads) {
2510   if (!CGF.HaveInsertPoint())
2511     return;
2512   // __kmpc_ordered(ident_t *, gtid);
2513   // OrderedOpGen();
2514   // __kmpc_end_ordered(ident_t *, gtid);
2515   // Prepare arguments and build a call to __kmpc_ordered
2516   if (IsThreads) {
2517     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2518     CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2519                               CGM.getModule(), OMPRTL___kmpc_ordered),
2520                           Args,
2521                           OMPBuilder.getOrCreateRuntimeFunction(
2522                               CGM.getModule(), OMPRTL___kmpc_end_ordered),
2523                           Args);
2524     OrderedOpGen.setAction(Action);
2525     emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2526     return;
2527   }
2528   emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2529 }
2530 
getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind)2531 unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
2532   unsigned Flags;
2533   if (Kind == OMPD_for)
2534     Flags = OMP_IDENT_BARRIER_IMPL_FOR;
2535   else if (Kind == OMPD_sections)
2536     Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
2537   else if (Kind == OMPD_single)
2538     Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
2539   else if (Kind == OMPD_barrier)
2540     Flags = OMP_IDENT_BARRIER_EXPL;
2541   else
2542     Flags = OMP_IDENT_BARRIER_IMPL;
2543   return Flags;
2544 }
2545 
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const2546 void CGOpenMPRuntime::getDefaultScheduleAndChunk(
2547     CodeGenFunction &CGF, const OMPLoopDirective &S,
2548     OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
2549   // Check if the loop directive is actually a doacross loop directive. In this
2550   // case choose static, 1 schedule.
2551   if (llvm::any_of(
2552           S.getClausesOfKind<OMPOrderedClause>(),
2553           [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
2554     ScheduleKind = OMPC_SCHEDULE_static;
2555     // Chunk size is 1 in this case.
2556     llvm::APInt ChunkSize(32, 1);
2557     ChunkExpr = IntegerLiteral::Create(
2558         CGF.getContext(), ChunkSize,
2559         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
2560         SourceLocation());
2561   }
2562 }
2563 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)2564 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
2565                                       OpenMPDirectiveKind Kind, bool EmitChecks,
2566                                       bool ForceSimpleCall) {
2567   // Check if we should use the OMPBuilder
2568   auto *OMPRegionInfo =
2569       dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo);
2570   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2571     CGF.Builder.restoreIP(OMPBuilder.createBarrier(
2572         CGF.Builder, Kind, ForceSimpleCall, EmitChecks));
2573     return;
2574   }
2575 
2576   if (!CGF.HaveInsertPoint())
2577     return;
2578   // Build call __kmpc_cancel_barrier(loc, thread_id);
2579   // Build call __kmpc_barrier(loc, thread_id);
2580   unsigned Flags = getDefaultFlagsForBarriers(Kind);
2581   // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
2582   // thread_id);
2583   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
2584                          getThreadID(CGF, Loc)};
2585   if (OMPRegionInfo) {
2586     if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
2587       llvm::Value *Result = CGF.EmitRuntimeCall(
2588           OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2589                                                 OMPRTL___kmpc_cancel_barrier),
2590           Args);
2591       if (EmitChecks) {
2592         // if (__kmpc_cancel_barrier()) {
2593         //   exit from construct;
2594         // }
2595         llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
2596         llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
2597         llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
2598         CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
2599         CGF.EmitBlock(ExitBB);
2600         //   exit from construct;
2601         CodeGenFunction::JumpDest CancelDestination =
2602             CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
2603         CGF.EmitBranchThroughCleanup(CancelDestination);
2604         CGF.EmitBlock(ContBB, /*IsFinished=*/true);
2605       }
2606       return;
2607     }
2608   }
2609   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2610                           CGM.getModule(), OMPRTL___kmpc_barrier),
2611                       Args);
2612 }
2613 
2614 /// Map the OpenMP loop schedule to the runtime enumeration.
getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,bool Chunked,bool Ordered)2615 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
2616                                           bool Chunked, bool Ordered) {
2617   switch (ScheduleKind) {
2618   case OMPC_SCHEDULE_static:
2619     return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
2620                    : (Ordered ? OMP_ord_static : OMP_sch_static);
2621   case OMPC_SCHEDULE_dynamic:
2622     return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
2623   case OMPC_SCHEDULE_guided:
2624     return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
2625   case OMPC_SCHEDULE_runtime:
2626     return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
2627   case OMPC_SCHEDULE_auto:
2628     return Ordered ? OMP_ord_auto : OMP_sch_auto;
2629   case OMPC_SCHEDULE_unknown:
2630     assert(!Chunked && "chunk was specified but schedule kind not known");
2631     return Ordered ? OMP_ord_static : OMP_sch_static;
2632   }
2633   llvm_unreachable("Unexpected runtime schedule");
2634 }
2635 
2636 /// Map the OpenMP distribute schedule to the runtime enumeration.
2637 static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked)2638 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
2639   // only static is allowed for dist_schedule
2640   return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
2641 }
2642 
isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2643 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
2644                                          bool Chunked) const {
2645   OpenMPSchedType Schedule =
2646       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2647   return Schedule == OMP_sch_static;
2648 }
2649 
isStaticNonchunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2650 bool CGOpenMPRuntime::isStaticNonchunked(
2651     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2652   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2653   return Schedule == OMP_dist_sch_static;
2654 }
2655 
isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2656 bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
2657                                       bool Chunked) const {
2658   OpenMPSchedType Schedule =
2659       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2660   return Schedule == OMP_sch_static_chunked;
2661 }
2662 
isStaticChunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2663 bool CGOpenMPRuntime::isStaticChunked(
2664     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2665   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2666   return Schedule == OMP_dist_sch_static_chunked;
2667 }
2668 
isDynamic(OpenMPScheduleClauseKind ScheduleKind) const2669 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
2670   OpenMPSchedType Schedule =
2671       getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
2672   assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
2673   return Schedule != OMP_sch_static;
2674 }
2675 
addMonoNonMonoModifier(CodeGenModule & CGM,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2)2676 static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule,
2677                                   OpenMPScheduleClauseModifier M1,
2678                                   OpenMPScheduleClauseModifier M2) {
2679   int Modifier = 0;
2680   switch (M1) {
2681   case OMPC_SCHEDULE_MODIFIER_monotonic:
2682     Modifier = OMP_sch_modifier_monotonic;
2683     break;
2684   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2685     Modifier = OMP_sch_modifier_nonmonotonic;
2686     break;
2687   case OMPC_SCHEDULE_MODIFIER_simd:
2688     if (Schedule == OMP_sch_static_chunked)
2689       Schedule = OMP_sch_static_balanced_chunked;
2690     break;
2691   case OMPC_SCHEDULE_MODIFIER_last:
2692   case OMPC_SCHEDULE_MODIFIER_unknown:
2693     break;
2694   }
2695   switch (M2) {
2696   case OMPC_SCHEDULE_MODIFIER_monotonic:
2697     Modifier = OMP_sch_modifier_monotonic;
2698     break;
2699   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2700     Modifier = OMP_sch_modifier_nonmonotonic;
2701     break;
2702   case OMPC_SCHEDULE_MODIFIER_simd:
2703     if (Schedule == OMP_sch_static_chunked)
2704       Schedule = OMP_sch_static_balanced_chunked;
2705     break;
2706   case OMPC_SCHEDULE_MODIFIER_last:
2707   case OMPC_SCHEDULE_MODIFIER_unknown:
2708     break;
2709   }
2710   // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription.
2711   // If the static schedule kind is specified or if the ordered clause is
2712   // specified, and if the nonmonotonic modifier is not specified, the effect is
2713   // as if the monotonic modifier is specified. Otherwise, unless the monotonic
2714   // modifier is specified, the effect is as if the nonmonotonic modifier is
2715   // specified.
2716   if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) {
2717     if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static ||
2718           Schedule == OMP_sch_static_balanced_chunked ||
2719           Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static ||
2720           Schedule == OMP_dist_sch_static_chunked ||
2721           Schedule == OMP_dist_sch_static))
2722       Modifier = OMP_sch_modifier_nonmonotonic;
2723   }
2724   return Schedule | Modifier;
2725 }
2726 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)2727 void CGOpenMPRuntime::emitForDispatchInit(
2728     CodeGenFunction &CGF, SourceLocation Loc,
2729     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
2730     bool Ordered, const DispatchRTInput &DispatchValues) {
2731   if (!CGF.HaveInsertPoint())
2732     return;
2733   OpenMPSchedType Schedule = getRuntimeSchedule(
2734       ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
2735   assert(Ordered ||
2736          (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
2737           Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
2738           Schedule != OMP_sch_static_balanced_chunked));
2739   // Call __kmpc_dispatch_init(
2740   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
2741   //          kmp_int[32|64] lower, kmp_int[32|64] upper,
2742   //          kmp_int[32|64] stride, kmp_int[32|64] chunk);
2743 
2744   // If the Chunk was not specified in the clause - use default value 1.
2745   llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
2746                                             : CGF.Builder.getIntN(IVSize, 1);
2747   llvm::Value *Args[] = {
2748       emitUpdateLocation(CGF, Loc),
2749       getThreadID(CGF, Loc),
2750       CGF.Builder.getInt32(addMonoNonMonoModifier(
2751           CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
2752       DispatchValues.LB,                                     // Lower
2753       DispatchValues.UB,                                     // Upper
2754       CGF.Builder.getIntN(IVSize, 1),                        // Stride
2755       Chunk                                                  // Chunk
2756   };
2757   CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
2758 }
2759 
emitForStaticInitCall(CodeGenFunction & CGF,llvm::Value * UpdateLocation,llvm::Value * ThreadId,llvm::FunctionCallee ForStaticInitFunction,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,const CGOpenMPRuntime::StaticRTInput & Values)2760 static void emitForStaticInitCall(
2761     CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
2762     llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
2763     OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
2764     const CGOpenMPRuntime::StaticRTInput &Values) {
2765   if (!CGF.HaveInsertPoint())
2766     return;
2767 
2768   assert(!Values.Ordered);
2769   assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
2770          Schedule == OMP_sch_static_balanced_chunked ||
2771          Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
2772          Schedule == OMP_dist_sch_static ||
2773          Schedule == OMP_dist_sch_static_chunked);
2774 
2775   // Call __kmpc_for_static_init(
2776   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
2777   //          kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
2778   //          kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
2779   //          kmp_int[32|64] incr, kmp_int[32|64] chunk);
2780   llvm::Value *Chunk = Values.Chunk;
2781   if (Chunk == nullptr) {
2782     assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
2783             Schedule == OMP_dist_sch_static) &&
2784            "expected static non-chunked schedule");
2785     // If the Chunk was not specified in the clause - use default value 1.
2786     Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
2787   } else {
2788     assert((Schedule == OMP_sch_static_chunked ||
2789             Schedule == OMP_sch_static_balanced_chunked ||
2790             Schedule == OMP_ord_static_chunked ||
2791             Schedule == OMP_dist_sch_static_chunked) &&
2792            "expected static chunked schedule");
2793   }
2794   llvm::Value *Args[] = {
2795       UpdateLocation,
2796       ThreadId,
2797       CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1,
2798                                                   M2)), // Schedule type
2799       Values.IL.getPointer(),                           // &isLastIter
2800       Values.LB.getPointer(),                           // &LB
2801       Values.UB.getPointer(),                           // &UB
2802       Values.ST.getPointer(),                           // &Stride
2803       CGF.Builder.getIntN(Values.IVSize, 1),            // Incr
2804       Chunk                                             // Chunk
2805   };
2806   CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
2807 }
2808 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)2809 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
2810                                         SourceLocation Loc,
2811                                         OpenMPDirectiveKind DKind,
2812                                         const OpenMPScheduleTy &ScheduleKind,
2813                                         const StaticRTInput &Values) {
2814   OpenMPSchedType ScheduleNum = getRuntimeSchedule(
2815       ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
2816   assert(isOpenMPWorksharingDirective(DKind) &&
2817          "Expected loop-based or sections-based directive.");
2818   llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
2819                                              isOpenMPLoopDirective(DKind)
2820                                                  ? OMP_IDENT_WORK_LOOP
2821                                                  : OMP_IDENT_WORK_SECTIONS);
2822   llvm::Value *ThreadId = getThreadID(CGF, Loc);
2823   llvm::FunctionCallee StaticInitFunction =
2824       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
2825   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2826   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2827                         ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
2828 }
2829 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const CGOpenMPRuntime::StaticRTInput & Values)2830 void CGOpenMPRuntime::emitDistributeStaticInit(
2831     CodeGenFunction &CGF, SourceLocation Loc,
2832     OpenMPDistScheduleClauseKind SchedKind,
2833     const CGOpenMPRuntime::StaticRTInput &Values) {
2834   OpenMPSchedType ScheduleNum =
2835       getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
2836   llvm::Value *UpdatedLocation =
2837       emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
2838   llvm::Value *ThreadId = getThreadID(CGF, Loc);
2839   llvm::FunctionCallee StaticInitFunction =
2840       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
2841   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2842                         ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
2843                         OMPC_SCHEDULE_MODIFIER_unknown, Values);
2844 }
2845 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)2846 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
2847                                           SourceLocation Loc,
2848                                           OpenMPDirectiveKind DKind) {
2849   if (!CGF.HaveInsertPoint())
2850     return;
2851   // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
2852   llvm::Value *Args[] = {
2853       emitUpdateLocation(CGF, Loc,
2854                          isOpenMPDistributeDirective(DKind)
2855                              ? OMP_IDENT_WORK_DISTRIBUTE
2856                              : isOpenMPLoopDirective(DKind)
2857                                    ? OMP_IDENT_WORK_LOOP
2858                                    : OMP_IDENT_WORK_SECTIONS),
2859       getThreadID(CGF, Loc)};
2860   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2861   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2862                           CGM.getModule(), OMPRTL___kmpc_for_static_fini),
2863                       Args);
2864 }
2865 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)2866 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
2867                                                  SourceLocation Loc,
2868                                                  unsigned IVSize,
2869                                                  bool IVSigned) {
2870   if (!CGF.HaveInsertPoint())
2871     return;
2872   // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
2873   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2874   CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
2875 }
2876 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)2877 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
2878                                           SourceLocation Loc, unsigned IVSize,
2879                                           bool IVSigned, Address IL,
2880                                           Address LB, Address UB,
2881                                           Address ST) {
2882   // Call __kmpc_dispatch_next(
2883   //          ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
2884   //          kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
2885   //          kmp_int[32|64] *p_stride);
2886   llvm::Value *Args[] = {
2887       emitUpdateLocation(CGF, Loc),
2888       getThreadID(CGF, Loc),
2889       IL.getPointer(), // &isLastIter
2890       LB.getPointer(), // &Lower
2891       UB.getPointer(), // &Upper
2892       ST.getPointer()  // &Stride
2893   };
2894   llvm::Value *Call =
2895       CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
2896   return CGF.EmitScalarConversion(
2897       Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
2898       CGF.getContext().BoolTy, Loc);
2899 }
2900 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)2901 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
2902                                            llvm::Value *NumThreads,
2903                                            SourceLocation Loc) {
2904   if (!CGF.HaveInsertPoint())
2905     return;
2906   // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
2907   llvm::Value *Args[] = {
2908       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2909       CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
2910   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2911                           CGM.getModule(), OMPRTL___kmpc_push_num_threads),
2912                       Args);
2913 }
2914 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)2915 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
2916                                          ProcBindKind ProcBind,
2917                                          SourceLocation Loc) {
2918   if (!CGF.HaveInsertPoint())
2919     return;
2920   assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value.");
2921   // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
2922   llvm::Value *Args[] = {
2923       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2924       llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)};
2925   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2926                           CGM.getModule(), OMPRTL___kmpc_push_proc_bind),
2927                       Args);
2928 }
2929 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * >,SourceLocation Loc,llvm::AtomicOrdering AO)2930 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
2931                                 SourceLocation Loc, llvm::AtomicOrdering AO) {
2932   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2933     OMPBuilder.createFlush(CGF.Builder);
2934   } else {
2935     if (!CGF.HaveInsertPoint())
2936       return;
2937     // Build call void __kmpc_flush(ident_t *loc)
2938     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2939                             CGM.getModule(), OMPRTL___kmpc_flush),
2940                         emitUpdateLocation(CGF, Loc));
2941   }
2942 }
2943 
2944 namespace {
2945 /// Indexes of fields for type kmp_task_t.
2946 enum KmpTaskTFields {
2947   /// List of shared variables.
2948   KmpTaskTShareds,
2949   /// Task routine.
2950   KmpTaskTRoutine,
2951   /// Partition id for the untied tasks.
2952   KmpTaskTPartId,
2953   /// Function with call of destructors for private variables.
2954   Data1,
2955   /// Task priority.
2956   Data2,
2957   /// (Taskloops only) Lower bound.
2958   KmpTaskTLowerBound,
2959   /// (Taskloops only) Upper bound.
2960   KmpTaskTUpperBound,
2961   /// (Taskloops only) Stride.
2962   KmpTaskTStride,
2963   /// (Taskloops only) Is last iteration flag.
2964   KmpTaskTLastIter,
2965   /// (Taskloops only) Reduction data.
2966   KmpTaskTReductions,
2967 };
2968 } // anonymous namespace
2969 
empty() const2970 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
2971   return OffloadEntriesTargetRegion.empty() &&
2972          OffloadEntriesDeviceGlobalVar.empty();
2973 }
2974 
2975 /// Initialize target region entry.
2976 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,unsigned Order)2977     initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2978                                     StringRef ParentName, unsigned LineNum,
2979                                     unsigned Order) {
2980   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
2981                                              "only required for the device "
2982                                              "code generation.");
2983   OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
2984       OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
2985                                    OMPTargetRegionEntryTargetRegion);
2986   ++OffloadingEntriesNum;
2987 }
2988 
2989 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,llvm::Constant * Addr,llvm::Constant * ID,OMPTargetRegionEntryKind Flags)2990     registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2991                                   StringRef ParentName, unsigned LineNum,
2992                                   llvm::Constant *Addr, llvm::Constant *ID,
2993                                   OMPTargetRegionEntryKind Flags) {
2994   // If we are emitting code for a target, the entry is already initialized,
2995   // only has to be registered.
2996   if (CGM.getLangOpts().OpenMPIsDevice) {
2997     // This could happen if the device compilation is invoked standalone.
2998     if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum))
2999       return;
3000     auto &Entry =
3001         OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
3002     Entry.setAddress(Addr);
3003     Entry.setID(ID);
3004     Entry.setFlags(Flags);
3005   } else {
3006     if (Flags ==
3007             OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion &&
3008         hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum,
3009                                  /*IgnoreAddressId*/ true))
3010       return;
3011     assert(!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) &&
3012            "Target region entry already registered!");
3013     OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
3014     OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
3015     ++OffloadingEntriesNum;
3016   }
3017 }
3018 
hasTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,bool IgnoreAddressId) const3019 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
3020     unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum,
3021     bool IgnoreAddressId) const {
3022   auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
3023   if (PerDevice == OffloadEntriesTargetRegion.end())
3024     return false;
3025   auto PerFile = PerDevice->second.find(FileID);
3026   if (PerFile == PerDevice->second.end())
3027     return false;
3028   auto PerParentName = PerFile->second.find(ParentName);
3029   if (PerParentName == PerFile->second.end())
3030     return false;
3031   auto PerLine = PerParentName->second.find(LineNum);
3032   if (PerLine == PerParentName->second.end())
3033     return false;
3034   // Fail if this entry is already registered.
3035   if (!IgnoreAddressId &&
3036       (PerLine->second.getAddress() || PerLine->second.getID()))
3037     return false;
3038   return true;
3039 }
3040 
actOnTargetRegionEntriesInfo(const OffloadTargetRegionEntryInfoActTy & Action)3041 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
3042     const OffloadTargetRegionEntryInfoActTy &Action) {
3043   // Scan all target region entries and perform the provided action.
3044   for (const auto &D : OffloadEntriesTargetRegion)
3045     for (const auto &F : D.second)
3046       for (const auto &P : F.second)
3047         for (const auto &L : P.second)
3048           Action(D.first, F.first, P.first(), L.first, L.second);
3049 }
3050 
3051 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeDeviceGlobalVarEntryInfo(StringRef Name,OMPTargetGlobalVarEntryKind Flags,unsigned Order)3052     initializeDeviceGlobalVarEntryInfo(StringRef Name,
3053                                        OMPTargetGlobalVarEntryKind Flags,
3054                                        unsigned Order) {
3055   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
3056                                              "only required for the device "
3057                                              "code generation.");
3058   OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
3059   ++OffloadingEntriesNum;
3060 }
3061 
3062 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerDeviceGlobalVarEntryInfo(StringRef VarName,llvm::Constant * Addr,CharUnits VarSize,OMPTargetGlobalVarEntryKind Flags,llvm::GlobalValue::LinkageTypes Linkage)3063     registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
3064                                      CharUnits VarSize,
3065                                      OMPTargetGlobalVarEntryKind Flags,
3066                                      llvm::GlobalValue::LinkageTypes Linkage) {
3067   if (CGM.getLangOpts().OpenMPIsDevice) {
3068     // This could happen if the device compilation is invoked standalone.
3069     if (!hasDeviceGlobalVarEntryInfo(VarName))
3070       return;
3071     auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3072     if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
3073       if (Entry.getVarSize().isZero()) {
3074         Entry.setVarSize(VarSize);
3075         Entry.setLinkage(Linkage);
3076       }
3077       return;
3078     }
3079     Entry.setVarSize(VarSize);
3080     Entry.setLinkage(Linkage);
3081     Entry.setAddress(Addr);
3082   } else {
3083     if (hasDeviceGlobalVarEntryInfo(VarName)) {
3084       auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3085       assert(Entry.isValid() && Entry.getFlags() == Flags &&
3086              "Entry not initialized!");
3087       if (Entry.getVarSize().isZero()) {
3088         Entry.setVarSize(VarSize);
3089         Entry.setLinkage(Linkage);
3090       }
3091       return;
3092     }
3093     OffloadEntriesDeviceGlobalVar.try_emplace(
3094         VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
3095     ++OffloadingEntriesNum;
3096   }
3097 }
3098 
3099 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
actOnDeviceGlobalVarEntriesInfo(const OffloadDeviceGlobalVarEntryInfoActTy & Action)3100     actOnDeviceGlobalVarEntriesInfo(
3101         const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
3102   // Scan all target region entries and perform the provided action.
3103   for (const auto &E : OffloadEntriesDeviceGlobalVar)
3104     Action(E.getKey(), E.getValue());
3105 }
3106 
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size,int32_t Flags,llvm::GlobalValue::LinkageTypes Linkage)3107 void CGOpenMPRuntime::createOffloadEntry(
3108     llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
3109     llvm::GlobalValue::LinkageTypes Linkage) {
3110   StringRef Name = Addr->getName();
3111   llvm::Module &M = CGM.getModule();
3112   llvm::LLVMContext &C = M.getContext();
3113 
3114   // Create constant string with the name.
3115   llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
3116 
3117   std::string StringName = getName({"omp_offloading", "entry_name"});
3118   auto *Str = new llvm::GlobalVariable(
3119       M, StrPtrInit->getType(), /*isConstant=*/true,
3120       llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
3121   Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3122 
3123   llvm::Constant *Data[] = {
3124       llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(ID, CGM.VoidPtrTy),
3125       llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(Str, CGM.Int8PtrTy),
3126       llvm::ConstantInt::get(CGM.SizeTy, Size),
3127       llvm::ConstantInt::get(CGM.Int32Ty, Flags),
3128       llvm::ConstantInt::get(CGM.Int32Ty, 0)};
3129   std::string EntryName = getName({"omp_offloading", "entry", ""});
3130   llvm::GlobalVariable *Entry = createGlobalStruct(
3131       CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
3132       Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
3133 
3134   // The entry has to be created in the section the linker expects it to be.
3135   Entry->setSection("omp_offloading_entries");
3136 }
3137 
createOffloadEntriesAndInfoMetadata()3138 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
3139   // Emit the offloading entries and metadata so that the device codegen side
3140   // can easily figure out what to emit. The produced metadata looks like
3141   // this:
3142   //
3143   // !omp_offload.info = !{!1, ...}
3144   //
3145   // Right now we only generate metadata for function that contain target
3146   // regions.
3147 
3148   // If we are in simd mode or there are no entries, we don't need to do
3149   // anything.
3150   if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty())
3151     return;
3152 
3153   llvm::Module &M = CGM.getModule();
3154   llvm::LLVMContext &C = M.getContext();
3155   SmallVector<std::tuple<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *,
3156                          SourceLocation, StringRef>,
3157               16>
3158       OrderedEntries(OffloadEntriesInfoManager.size());
3159   llvm::SmallVector<StringRef, 16> ParentFunctions(
3160       OffloadEntriesInfoManager.size());
3161 
3162   // Auxiliary methods to create metadata values and strings.
3163   auto &&GetMDInt = [this](unsigned V) {
3164     return llvm::ConstantAsMetadata::get(
3165         llvm::ConstantInt::get(CGM.Int32Ty, V));
3166   };
3167 
3168   auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
3169 
3170   // Create the offloading info metadata node.
3171   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
3172 
3173   // Create function that emits metadata for each target region entry;
3174   auto &&TargetRegionMetadataEmitter =
3175       [this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt,
3176        &GetMDString](
3177           unsigned DeviceID, unsigned FileID, StringRef ParentName,
3178           unsigned Line,
3179           const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
3180         // Generate metadata for target regions. Each entry of this metadata
3181         // contains:
3182         // - Entry 0 -> Kind of this type of metadata (0).
3183         // - Entry 1 -> Device ID of the file where the entry was identified.
3184         // - Entry 2 -> File ID of the file where the entry was identified.
3185         // - Entry 3 -> Mangled name of the function where the entry was
3186         // identified.
3187         // - Entry 4 -> Line in the file where the entry was identified.
3188         // - Entry 5 -> Order the entry was created.
3189         // The first element of the metadata node is the kind.
3190         llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
3191                                  GetMDInt(FileID),      GetMDString(ParentName),
3192                                  GetMDInt(Line),        GetMDInt(E.getOrder())};
3193 
3194         SourceLocation Loc;
3195         for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(),
3196                   E = CGM.getContext().getSourceManager().fileinfo_end();
3197              I != E; ++I) {
3198           if (I->getFirst()->getUniqueID().getDevice() == DeviceID &&
3199               I->getFirst()->getUniqueID().getFile() == FileID) {
3200             Loc = CGM.getContext().getSourceManager().translateFileLineCol(
3201                 I->getFirst(), Line, 1);
3202             break;
3203           }
3204         }
3205         // Save this entry in the right position of the ordered entries array.
3206         OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName);
3207         ParentFunctions[E.getOrder()] = ParentName;
3208 
3209         // Add metadata to the named metadata node.
3210         MD->addOperand(llvm::MDNode::get(C, Ops));
3211       };
3212 
3213   OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
3214       TargetRegionMetadataEmitter);
3215 
3216   // Create function that emits metadata for each device global variable entry;
3217   auto &&DeviceGlobalVarMetadataEmitter =
3218       [&C, &OrderedEntries, &GetMDInt, &GetMDString,
3219        MD](StringRef MangledName,
3220            const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
3221                &E) {
3222         // Generate metadata for global variables. Each entry of this metadata
3223         // contains:
3224         // - Entry 0 -> Kind of this type of metadata (1).
3225         // - Entry 1 -> Mangled name of the variable.
3226         // - Entry 2 -> Declare target kind.
3227         // - Entry 3 -> Order the entry was created.
3228         // The first element of the metadata node is the kind.
3229         llvm::Metadata *Ops[] = {
3230             GetMDInt(E.getKind()), GetMDString(MangledName),
3231             GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
3232 
3233         // Save this entry in the right position of the ordered entries array.
3234         OrderedEntries[E.getOrder()] =
3235             std::make_tuple(&E, SourceLocation(), MangledName);
3236 
3237         // Add metadata to the named metadata node.
3238         MD->addOperand(llvm::MDNode::get(C, Ops));
3239       };
3240 
3241   OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
3242       DeviceGlobalVarMetadataEmitter);
3243 
3244   for (const auto &E : OrderedEntries) {
3245     assert(std::get<0>(E) && "All ordered entries must exist!");
3246     if (const auto *CE =
3247             dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
3248                 std::get<0>(E))) {
3249       if (!CE->getID() || !CE->getAddress()) {
3250         // Do not blame the entry if the parent funtion is not emitted.
3251         StringRef FnName = ParentFunctions[CE->getOrder()];
3252         if (!CGM.GetGlobalValue(FnName))
3253           continue;
3254         unsigned DiagID = CGM.getDiags().getCustomDiagID(
3255             DiagnosticsEngine::Error,
3256             "Offloading entry for target region in %0 is incorrect: either the "
3257             "address or the ID is invalid.");
3258         CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName;
3259         continue;
3260       }
3261       createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
3262                          CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
3263     } else if (const auto *CE = dyn_cast<OffloadEntriesInfoManagerTy::
3264                                              OffloadEntryInfoDeviceGlobalVar>(
3265                    std::get<0>(E))) {
3266       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
3267           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
3268               CE->getFlags());
3269       switch (Flags) {
3270       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
3271         if (CGM.getLangOpts().OpenMPIsDevice &&
3272             CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
3273           continue;
3274         if (!CE->getAddress()) {
3275           unsigned DiagID = CGM.getDiags().getCustomDiagID(
3276               DiagnosticsEngine::Error, "Offloading entry for declare target "
3277                                         "variable %0 is incorrect: the "
3278                                         "address is invalid.");
3279           CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E);
3280           continue;
3281         }
3282         // The vaiable has no definition - no need to add the entry.
3283         if (CE->getVarSize().isZero())
3284           continue;
3285         break;
3286       }
3287       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
3288         assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
3289                 (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
3290                "Declaret target link address is set.");
3291         if (CGM.getLangOpts().OpenMPIsDevice)
3292           continue;
3293         if (!CE->getAddress()) {
3294           unsigned DiagID = CGM.getDiags().getCustomDiagID(
3295               DiagnosticsEngine::Error,
3296               "Offloading entry for declare target variable is incorrect: the "
3297               "address is invalid.");
3298           CGM.getDiags().Report(DiagID);
3299           continue;
3300         }
3301         break;
3302       }
3303       createOffloadEntry(CE->getAddress(), CE->getAddress(),
3304                          CE->getVarSize().getQuantity(), Flags,
3305                          CE->getLinkage());
3306     } else {
3307       llvm_unreachable("Unsupported entry kind.");
3308     }
3309   }
3310 }
3311 
3312 /// Loads all the offload entries information from the host IR
3313 /// metadata.
loadOffloadInfoMetadata()3314 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
3315   // If we are in target mode, load the metadata from the host IR. This code has
3316   // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
3317 
3318   if (!CGM.getLangOpts().OpenMPIsDevice)
3319     return;
3320 
3321   if (CGM.getLangOpts().OMPHostIRFile.empty())
3322     return;
3323 
3324   auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
3325   if (auto EC = Buf.getError()) {
3326     CGM.getDiags().Report(diag::err_cannot_open_file)
3327         << CGM.getLangOpts().OMPHostIRFile << EC.message();
3328     return;
3329   }
3330 
3331   llvm::LLVMContext C;
3332   auto ME = expectedToErrorOrAndEmitErrors(
3333       C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
3334 
3335   if (auto EC = ME.getError()) {
3336     unsigned DiagID = CGM.getDiags().getCustomDiagID(
3337         DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
3338     CGM.getDiags().Report(DiagID)
3339         << CGM.getLangOpts().OMPHostIRFile << EC.message();
3340     return;
3341   }
3342 
3343   llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
3344   if (!MD)
3345     return;
3346 
3347   for (llvm::MDNode *MN : MD->operands()) {
3348     auto &&GetMDInt = [MN](unsigned Idx) {
3349       auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
3350       return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
3351     };
3352 
3353     auto &&GetMDString = [MN](unsigned Idx) {
3354       auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
3355       return V->getString();
3356     };
3357 
3358     switch (GetMDInt(0)) {
3359     default:
3360       llvm_unreachable("Unexpected metadata!");
3361       break;
3362     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3363         OffloadingEntryInfoTargetRegion:
3364       OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
3365           /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
3366           /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
3367           /*Order=*/GetMDInt(5));
3368       break;
3369     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3370         OffloadingEntryInfoDeviceGlobalVar:
3371       OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
3372           /*MangledName=*/GetMDString(1),
3373           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
3374               /*Flags=*/GetMDInt(2)),
3375           /*Order=*/GetMDInt(3));
3376       break;
3377     }
3378   }
3379 }
3380 
emitKmpRoutineEntryT(QualType KmpInt32Ty)3381 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
3382   if (!KmpRoutineEntryPtrTy) {
3383     // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
3384     ASTContext &C = CGM.getContext();
3385     QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
3386     FunctionProtoType::ExtProtoInfo EPI;
3387     KmpRoutineEntryPtrQTy = C.getPointerType(
3388         C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
3389     KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
3390   }
3391 }
3392 
getTgtOffloadEntryQTy()3393 QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
3394   // Make sure the type of the entry is already created. This is the type we
3395   // have to create:
3396   // struct __tgt_offload_entry{
3397   //   void      *addr;       // Pointer to the offload entry info.
3398   //                          // (function or global)
3399   //   char      *name;       // Name of the function or global.
3400   //   size_t     size;       // Size of the entry info (0 if it a function).
3401   //   int32_t    flags;      // Flags associated with the entry, e.g. 'link'.
3402   //   int32_t    reserved;   // Reserved, to use by the runtime library.
3403   // };
3404   if (TgtOffloadEntryQTy.isNull()) {
3405     ASTContext &C = CGM.getContext();
3406     RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
3407     RD->startDefinition();
3408     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3409     addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
3410     addFieldToRecordDecl(C, RD, C.getSizeType());
3411     addFieldToRecordDecl(
3412         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3413     addFieldToRecordDecl(
3414         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3415     RD->completeDefinition();
3416     RD->addAttr(PackedAttr::CreateImplicit(C));
3417     TgtOffloadEntryQTy = C.getRecordType(RD);
3418   }
3419   return TgtOffloadEntryQTy;
3420 }
3421 
3422 namespace {
3423 struct PrivateHelpersTy {
PrivateHelpersTy__anonad2d34461611::PrivateHelpersTy3424   PrivateHelpersTy(const Expr *OriginalRef, const VarDecl *Original,
3425                    const VarDecl *PrivateCopy, const VarDecl *PrivateElemInit)
3426       : OriginalRef(OriginalRef), Original(Original), PrivateCopy(PrivateCopy),
3427         PrivateElemInit(PrivateElemInit) {}
PrivateHelpersTy__anonad2d34461611::PrivateHelpersTy3428   PrivateHelpersTy(const VarDecl *Original) : Original(Original) {}
3429   const Expr *OriginalRef = nullptr;
3430   const VarDecl *Original = nullptr;
3431   const VarDecl *PrivateCopy = nullptr;
3432   const VarDecl *PrivateElemInit = nullptr;
isLocalPrivate__anonad2d34461611::PrivateHelpersTy3433   bool isLocalPrivate() const {
3434     return !OriginalRef && !PrivateCopy && !PrivateElemInit;
3435   }
3436 };
3437 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
3438 } // anonymous namespace
3439 
isAllocatableDecl(const VarDecl * VD)3440 static bool isAllocatableDecl(const VarDecl *VD) {
3441   const VarDecl *CVD = VD->getCanonicalDecl();
3442   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
3443     return false;
3444   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
3445   // Use the default allocation.
3446   return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc ||
3447             AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) &&
3448            !AA->getAllocator());
3449 }
3450 
3451 static RecordDecl *
createPrivatesRecordDecl(CodeGenModule & CGM,ArrayRef<PrivateDataTy> Privates)3452 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
3453   if (!Privates.empty()) {
3454     ASTContext &C = CGM.getContext();
3455     // Build struct .kmp_privates_t. {
3456     //         /*  private vars  */
3457     //       };
3458     RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
3459     RD->startDefinition();
3460     for (const auto &Pair : Privates) {
3461       const VarDecl *VD = Pair.second.Original;
3462       QualType Type = VD->getType().getNonReferenceType();
3463       // If the private variable is a local variable with lvalue ref type,
3464       // allocate the pointer instead of the pointee type.
3465       if (Pair.second.isLocalPrivate()) {
3466         if (VD->getType()->isLValueReferenceType())
3467           Type = C.getPointerType(Type);
3468         if (isAllocatableDecl(VD))
3469           Type = C.getPointerType(Type);
3470       }
3471       FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
3472       if (VD->hasAttrs()) {
3473         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
3474              E(VD->getAttrs().end());
3475              I != E; ++I)
3476           FD->addAttr(*I);
3477       }
3478     }
3479     RD->completeDefinition();
3480     return RD;
3481   }
3482   return nullptr;
3483 }
3484 
3485 static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule & CGM,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpRoutineEntryPointerQTy)3486 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
3487                          QualType KmpInt32Ty,
3488                          QualType KmpRoutineEntryPointerQTy) {
3489   ASTContext &C = CGM.getContext();
3490   // Build struct kmp_task_t {
3491   //         void *              shareds;
3492   //         kmp_routine_entry_t routine;
3493   //         kmp_int32           part_id;
3494   //         kmp_cmplrdata_t data1;
3495   //         kmp_cmplrdata_t data2;
3496   // For taskloops additional fields:
3497   //         kmp_uint64          lb;
3498   //         kmp_uint64          ub;
3499   //         kmp_int64           st;
3500   //         kmp_int32           liter;
3501   //         void *              reductions;
3502   //       };
3503   RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
3504   UD->startDefinition();
3505   addFieldToRecordDecl(C, UD, KmpInt32Ty);
3506   addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
3507   UD->completeDefinition();
3508   QualType KmpCmplrdataTy = C.getRecordType(UD);
3509   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
3510   RD->startDefinition();
3511   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3512   addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
3513   addFieldToRecordDecl(C, RD, KmpInt32Ty);
3514   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3515   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3516   if (isOpenMPTaskLoopDirective(Kind)) {
3517     QualType KmpUInt64Ty =
3518         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
3519     QualType KmpInt64Ty =
3520         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
3521     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3522     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3523     addFieldToRecordDecl(C, RD, KmpInt64Ty);
3524     addFieldToRecordDecl(C, RD, KmpInt32Ty);
3525     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3526   }
3527   RD->completeDefinition();
3528   return RD;
3529 }
3530 
3531 static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule & CGM,QualType KmpTaskTQTy,ArrayRef<PrivateDataTy> Privates)3532 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
3533                                      ArrayRef<PrivateDataTy> Privates) {
3534   ASTContext &C = CGM.getContext();
3535   // Build struct kmp_task_t_with_privates {
3536   //         kmp_task_t task_data;
3537   //         .kmp_privates_t. privates;
3538   //       };
3539   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
3540   RD->startDefinition();
3541   addFieldToRecordDecl(C, RD, KmpTaskTQTy);
3542   if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
3543     addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
3544   RD->completeDefinition();
3545   return RD;
3546 }
3547 
3548 /// Emit a proxy function which accepts kmp_task_t as the second
3549 /// argument.
3550 /// \code
3551 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
3552 ///   TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
3553 ///   For taskloops:
3554 ///   tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3555 ///   tt->reductions, tt->shareds);
3556 ///   return 0;
3557 /// }
3558 /// \endcode
3559 static llvm::Function *
emitProxyTaskFunction(CodeGenModule & CGM,SourceLocation Loc,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy,QualType KmpTaskTQTy,QualType SharedsPtrTy,llvm::Function * TaskFunction,llvm::Value * TaskPrivatesMap)3560 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
3561                       OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
3562                       QualType KmpTaskTWithPrivatesPtrQTy,
3563                       QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
3564                       QualType SharedsPtrTy, llvm::Function *TaskFunction,
3565                       llvm::Value *TaskPrivatesMap) {
3566   ASTContext &C = CGM.getContext();
3567   FunctionArgList Args;
3568   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3569                             ImplicitParamDecl::Other);
3570   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3571                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3572                                 ImplicitParamDecl::Other);
3573   Args.push_back(&GtidArg);
3574   Args.push_back(&TaskTypeArg);
3575   const auto &TaskEntryFnInfo =
3576       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3577   llvm::FunctionType *TaskEntryTy =
3578       CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
3579   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
3580   auto *TaskEntry = llvm::Function::Create(
3581       TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3582   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
3583   TaskEntry->setDoesNotRecurse();
3584   CodeGenFunction CGF(CGM);
3585   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
3586                     Loc, Loc);
3587 
3588   // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
3589   // tt,
3590   // For taskloops:
3591   // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3592   // tt->task_data.shareds);
3593   llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
3594       CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
3595   LValue TDBase = CGF.EmitLoadOfPointerLValue(
3596       CGF.GetAddrOfLocalVar(&TaskTypeArg),
3597       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3598   const auto *KmpTaskTWithPrivatesQTyRD =
3599       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3600   LValue Base =
3601       CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3602   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
3603   auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
3604   LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
3605   llvm::Value *PartidParam = PartIdLVal.getPointer(CGF);
3606 
3607   auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
3608   LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
3609   llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3610       CGF.EmitLoadOfScalar(SharedsLVal, Loc),
3611       CGF.ConvertTypeForMem(SharedsPtrTy));
3612 
3613   auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
3614   llvm::Value *PrivatesParam;
3615   if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
3616     LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
3617     PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3618         PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy);
3619   } else {
3620     PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
3621   }
3622 
3623   llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
3624                                TaskPrivatesMap,
3625                                CGF.Builder
3626                                    .CreatePointerBitCastOrAddrSpaceCast(
3627                                        TDBase.getAddress(CGF), CGF.VoidPtrTy)
3628                                    .getPointer()};
3629   SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
3630                                           std::end(CommonArgs));
3631   if (isOpenMPTaskLoopDirective(Kind)) {
3632     auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
3633     LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
3634     llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
3635     auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
3636     LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
3637     llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
3638     auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
3639     LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
3640     llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
3641     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3642     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3643     llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
3644     auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
3645     LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
3646     llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
3647     CallArgs.push_back(LBParam);
3648     CallArgs.push_back(UBParam);
3649     CallArgs.push_back(StParam);
3650     CallArgs.push_back(LIParam);
3651     CallArgs.push_back(RParam);
3652   }
3653   CallArgs.push_back(SharedsParam);
3654 
3655   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
3656                                                   CallArgs);
3657   CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
3658                              CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
3659   CGF.FinishFunction();
3660   return TaskEntry;
3661 }
3662 
emitDestructorsFunction(CodeGenModule & CGM,SourceLocation Loc,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy)3663 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
3664                                             SourceLocation Loc,
3665                                             QualType KmpInt32Ty,
3666                                             QualType KmpTaskTWithPrivatesPtrQTy,
3667                                             QualType KmpTaskTWithPrivatesQTy) {
3668   ASTContext &C = CGM.getContext();
3669   FunctionArgList Args;
3670   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3671                             ImplicitParamDecl::Other);
3672   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3673                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3674                                 ImplicitParamDecl::Other);
3675   Args.push_back(&GtidArg);
3676   Args.push_back(&TaskTypeArg);
3677   const auto &DestructorFnInfo =
3678       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3679   llvm::FunctionType *DestructorFnTy =
3680       CGM.getTypes().GetFunctionType(DestructorFnInfo);
3681   std::string Name =
3682       CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
3683   auto *DestructorFn =
3684       llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
3685                              Name, &CGM.getModule());
3686   CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
3687                                     DestructorFnInfo);
3688   DestructorFn->setDoesNotRecurse();
3689   CodeGenFunction CGF(CGM);
3690   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
3691                     Args, Loc, Loc);
3692 
3693   LValue Base = CGF.EmitLoadOfPointerLValue(
3694       CGF.GetAddrOfLocalVar(&TaskTypeArg),
3695       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3696   const auto *KmpTaskTWithPrivatesQTyRD =
3697       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3698   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3699   Base = CGF.EmitLValueForField(Base, *FI);
3700   for (const auto *Field :
3701        cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
3702     if (QualType::DestructionKind DtorKind =
3703             Field->getType().isDestructedType()) {
3704       LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
3705       CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType());
3706     }
3707   }
3708   CGF.FinishFunction();
3709   return DestructorFn;
3710 }
3711 
3712 /// Emit a privates mapping function for correct handling of private and
3713 /// firstprivate variables.
3714 /// \code
3715 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
3716 /// **noalias priv1,...,  <tyn> **noalias privn) {
3717 ///   *priv1 = &.privates.priv1;
3718 ///   ...;
3719 ///   *privn = &.privates.privn;
3720 /// }
3721 /// \endcode
3722 static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPTaskDataTy & Data,QualType PrivatesQTy,ArrayRef<PrivateDataTy> Privates)3723 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
3724                                const OMPTaskDataTy &Data, QualType PrivatesQTy,
3725                                ArrayRef<PrivateDataTy> Privates) {
3726   ASTContext &C = CGM.getContext();
3727   FunctionArgList Args;
3728   ImplicitParamDecl TaskPrivatesArg(
3729       C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3730       C.getPointerType(PrivatesQTy).withConst().withRestrict(),
3731       ImplicitParamDecl::Other);
3732   Args.push_back(&TaskPrivatesArg);
3733   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, unsigned> PrivateVarsPos;
3734   unsigned Counter = 1;
3735   for (const Expr *E : Data.PrivateVars) {
3736     Args.push_back(ImplicitParamDecl::Create(
3737         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3738         C.getPointerType(C.getPointerType(E->getType()))
3739             .withConst()
3740             .withRestrict(),
3741         ImplicitParamDecl::Other));
3742     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3743     PrivateVarsPos[VD] = Counter;
3744     ++Counter;
3745   }
3746   for (const Expr *E : Data.FirstprivateVars) {
3747     Args.push_back(ImplicitParamDecl::Create(
3748         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3749         C.getPointerType(C.getPointerType(E->getType()))
3750             .withConst()
3751             .withRestrict(),
3752         ImplicitParamDecl::Other));
3753     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3754     PrivateVarsPos[VD] = Counter;
3755     ++Counter;
3756   }
3757   for (const Expr *E : Data.LastprivateVars) {
3758     Args.push_back(ImplicitParamDecl::Create(
3759         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3760         C.getPointerType(C.getPointerType(E->getType()))
3761             .withConst()
3762             .withRestrict(),
3763         ImplicitParamDecl::Other));
3764     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3765     PrivateVarsPos[VD] = Counter;
3766     ++Counter;
3767   }
3768   for (const VarDecl *VD : Data.PrivateLocals) {
3769     QualType Ty = VD->getType().getNonReferenceType();
3770     if (VD->getType()->isLValueReferenceType())
3771       Ty = C.getPointerType(Ty);
3772     if (isAllocatableDecl(VD))
3773       Ty = C.getPointerType(Ty);
3774     Args.push_back(ImplicitParamDecl::Create(
3775         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3776         C.getPointerType(C.getPointerType(Ty)).withConst().withRestrict(),
3777         ImplicitParamDecl::Other));
3778     PrivateVarsPos[VD] = Counter;
3779     ++Counter;
3780   }
3781   const auto &TaskPrivatesMapFnInfo =
3782       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3783   llvm::FunctionType *TaskPrivatesMapTy =
3784       CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
3785   std::string Name =
3786       CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
3787   auto *TaskPrivatesMap = llvm::Function::Create(
3788       TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
3789       &CGM.getModule());
3790   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
3791                                     TaskPrivatesMapFnInfo);
3792   if (CGM.getLangOpts().Optimize) {
3793     TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
3794     TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
3795     TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
3796   }
3797   CodeGenFunction CGF(CGM);
3798   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
3799                     TaskPrivatesMapFnInfo, Args, Loc, Loc);
3800 
3801   // *privi = &.privates.privi;
3802   LValue Base = CGF.EmitLoadOfPointerLValue(
3803       CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
3804       TaskPrivatesArg.getType()->castAs<PointerType>());
3805   const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
3806   Counter = 0;
3807   for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
3808     LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
3809     const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
3810     LValue RefLVal =
3811         CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
3812     LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
3813         RefLVal.getAddress(CGF), RefLVal.getType()->castAs<PointerType>());
3814     CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal);
3815     ++Counter;
3816   }
3817   CGF.FinishFunction();
3818   return TaskPrivatesMap;
3819 }
3820 
3821 /// Emit initialization for private variables in task-based directives.
emitPrivatesInit(CodeGenFunction & CGF,const OMPExecutableDirective & D,Address KmpTaskSharedsPtr,LValue TDBase,const RecordDecl * KmpTaskTWithPrivatesQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool ForDup)3822 static void emitPrivatesInit(CodeGenFunction &CGF,
3823                              const OMPExecutableDirective &D,
3824                              Address KmpTaskSharedsPtr, LValue TDBase,
3825                              const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3826                              QualType SharedsTy, QualType SharedsPtrTy,
3827                              const OMPTaskDataTy &Data,
3828                              ArrayRef<PrivateDataTy> Privates, bool ForDup) {
3829   ASTContext &C = CGF.getContext();
3830   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3831   LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
3832   OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
3833                                  ? OMPD_taskloop
3834                                  : OMPD_task;
3835   const CapturedStmt &CS = *D.getCapturedStmt(Kind);
3836   CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
3837   LValue SrcBase;
3838   bool IsTargetTask =
3839       isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
3840       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
3841   // For target-based directives skip 4 firstprivate arrays BasePointersArray,
3842   // PointersArray, SizesArray, and MappersArray. The original variables for
3843   // these arrays are not captured and we get their addresses explicitly.
3844   if ((!IsTargetTask && !Data.FirstprivateVars.empty() && ForDup) ||
3845       (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
3846     SrcBase = CGF.MakeAddrLValue(
3847         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3848             KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
3849         SharedsTy);
3850   }
3851   FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
3852   for (const PrivateDataTy &Pair : Privates) {
3853     // Do not initialize private locals.
3854     if (Pair.second.isLocalPrivate()) {
3855       ++FI;
3856       continue;
3857     }
3858     const VarDecl *VD = Pair.second.PrivateCopy;
3859     const Expr *Init = VD->getAnyInitializer();
3860     if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
3861                              !CGF.isTrivialInitializer(Init)))) {
3862       LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
3863       if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
3864         const VarDecl *OriginalVD = Pair.second.Original;
3865         // Check if the variable is the target-based BasePointersArray,
3866         // PointersArray, SizesArray, or MappersArray.
3867         LValue SharedRefLValue;
3868         QualType Type = PrivateLValue.getType();
3869         const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
3870         if (IsTargetTask && !SharedField) {
3871           assert(isa<ImplicitParamDecl>(OriginalVD) &&
3872                  isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
3873                  cast<CapturedDecl>(OriginalVD->getDeclContext())
3874                          ->getNumParams() == 0 &&
3875                  isa<TranslationUnitDecl>(
3876                      cast<CapturedDecl>(OriginalVD->getDeclContext())
3877                          ->getDeclContext()) &&
3878                  "Expected artificial target data variable.");
3879           SharedRefLValue =
3880               CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
3881         } else if (ForDup) {
3882           SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
3883           SharedRefLValue = CGF.MakeAddrLValue(
3884               Address(SharedRefLValue.getPointer(CGF),
3885                       C.getDeclAlign(OriginalVD)),
3886               SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
3887               SharedRefLValue.getTBAAInfo());
3888         } else if (CGF.LambdaCaptureFields.count(
3889                        Pair.second.Original->getCanonicalDecl()) > 0 ||
3890                    dyn_cast_or_null<BlockDecl>(CGF.CurCodeDecl)) {
3891           SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3892         } else {
3893           // Processing for implicitly captured variables.
3894           InlinedOpenMPRegionRAII Region(
3895               CGF, [](CodeGenFunction &, PrePostActionTy &) {}, OMPD_unknown,
3896               /*HasCancel=*/false, /*NoInheritance=*/true);
3897           SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3898         }
3899         if (Type->isArrayType()) {
3900           // Initialize firstprivate array.
3901           if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
3902             // Perform simple memcpy.
3903             CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
3904           } else {
3905             // Initialize firstprivate array using element-by-element
3906             // initialization.
3907             CGF.EmitOMPAggregateAssign(
3908                 PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF),
3909                 Type,
3910                 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
3911                                                   Address SrcElement) {
3912                   // Clean up any temporaries needed by the initialization.
3913                   CodeGenFunction::OMPPrivateScope InitScope(CGF);
3914                   InitScope.addPrivate(
3915                       Elem, [SrcElement]() -> Address { return SrcElement; });
3916                   (void)InitScope.Privatize();
3917                   // Emit initialization for single element.
3918                   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
3919                       CGF, &CapturesInfo);
3920                   CGF.EmitAnyExprToMem(Init, DestElement,
3921                                        Init->getType().getQualifiers(),
3922                                        /*IsInitializer=*/false);
3923                 });
3924           }
3925         } else {
3926           CodeGenFunction::OMPPrivateScope InitScope(CGF);
3927           InitScope.addPrivate(Elem, [SharedRefLValue, &CGF]() -> Address {
3928             return SharedRefLValue.getAddress(CGF);
3929           });
3930           (void)InitScope.Privatize();
3931           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
3932           CGF.EmitExprAsInit(Init, VD, PrivateLValue,
3933                              /*capturedByInit=*/false);
3934         }
3935       } else {
3936         CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
3937       }
3938     }
3939     ++FI;
3940   }
3941 }
3942 
3943 /// Check if duplication function is required for taskloops.
checkInitIsRequired(CodeGenFunction & CGF,ArrayRef<PrivateDataTy> Privates)3944 static bool checkInitIsRequired(CodeGenFunction &CGF,
3945                                 ArrayRef<PrivateDataTy> Privates) {
3946   bool InitRequired = false;
3947   for (const PrivateDataTy &Pair : Privates) {
3948     if (Pair.second.isLocalPrivate())
3949       continue;
3950     const VarDecl *VD = Pair.second.PrivateCopy;
3951     const Expr *Init = VD->getAnyInitializer();
3952     InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
3953                                     !CGF.isTrivialInitializer(Init));
3954     if (InitRequired)
3955       break;
3956   }
3957   return InitRequired;
3958 }
3959 
3960 
3961 /// Emit task_dup function (for initialization of
3962 /// private/firstprivate/lastprivate vars and last_iter flag)
3963 /// \code
3964 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
3965 /// lastpriv) {
3966 /// // setup lastprivate flag
3967 ///    task_dst->last = lastpriv;
3968 /// // could be constructor calls here...
3969 /// }
3970 /// \endcode
3971 static llvm::Value *
emitTaskDupFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPExecutableDirective & D,QualType KmpTaskTWithPrivatesPtrQTy,const RecordDecl * KmpTaskTWithPrivatesQTyRD,const RecordDecl * KmpTaskTQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool WithLastIter)3972 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
3973                     const OMPExecutableDirective &D,
3974                     QualType KmpTaskTWithPrivatesPtrQTy,
3975                     const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3976                     const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
3977                     QualType SharedsPtrTy, const OMPTaskDataTy &Data,
3978                     ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
3979   ASTContext &C = CGM.getContext();
3980   FunctionArgList Args;
3981   ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3982                            KmpTaskTWithPrivatesPtrQTy,
3983                            ImplicitParamDecl::Other);
3984   ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3985                            KmpTaskTWithPrivatesPtrQTy,
3986                            ImplicitParamDecl::Other);
3987   ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3988                                 ImplicitParamDecl::Other);
3989   Args.push_back(&DstArg);
3990   Args.push_back(&SrcArg);
3991   Args.push_back(&LastprivArg);
3992   const auto &TaskDupFnInfo =
3993       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3994   llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
3995   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
3996   auto *TaskDup = llvm::Function::Create(
3997       TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3998   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
3999   TaskDup->setDoesNotRecurse();
4000   CodeGenFunction CGF(CGM);
4001   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
4002                     Loc);
4003 
4004   LValue TDBase = CGF.EmitLoadOfPointerLValue(
4005       CGF.GetAddrOfLocalVar(&DstArg),
4006       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4007   // task_dst->liter = lastpriv;
4008   if (WithLastIter) {
4009     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
4010     LValue Base = CGF.EmitLValueForField(
4011         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4012     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
4013     llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
4014         CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
4015     CGF.EmitStoreOfScalar(Lastpriv, LILVal);
4016   }
4017 
4018   // Emit initial values for private copies (if any).
4019   assert(!Privates.empty());
4020   Address KmpTaskSharedsPtr = Address::invalid();
4021   if (!Data.FirstprivateVars.empty()) {
4022     LValue TDBase = CGF.EmitLoadOfPointerLValue(
4023         CGF.GetAddrOfLocalVar(&SrcArg),
4024         KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4025     LValue Base = CGF.EmitLValueForField(
4026         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4027     KmpTaskSharedsPtr = Address(
4028         CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
4029                                  Base, *std::next(KmpTaskTQTyRD->field_begin(),
4030                                                   KmpTaskTShareds)),
4031                              Loc),
4032         CGM.getNaturalTypeAlignment(SharedsTy));
4033   }
4034   emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
4035                    SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
4036   CGF.FinishFunction();
4037   return TaskDup;
4038 }
4039 
4040 /// Checks if destructor function is required to be generated.
4041 /// \return true if cleanups are required, false otherwise.
4042 static bool
checkDestructorsRequired(const RecordDecl * KmpTaskTWithPrivatesQTyRD,ArrayRef<PrivateDataTy> Privates)4043 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD,
4044                          ArrayRef<PrivateDataTy> Privates) {
4045   for (const PrivateDataTy &P : Privates) {
4046     if (P.second.isLocalPrivate())
4047       continue;
4048     QualType Ty = P.second.Original->getType().getNonReferenceType();
4049     if (Ty.isDestructedType())
4050       return true;
4051   }
4052   return false;
4053 }
4054 
4055 namespace {
4056 /// Loop generator for OpenMP iterator expression.
4057 class OMPIteratorGeneratorScope final
4058     : public CodeGenFunction::OMPPrivateScope {
4059   CodeGenFunction &CGF;
4060   const OMPIteratorExpr *E = nullptr;
4061   SmallVector<CodeGenFunction::JumpDest, 4> ContDests;
4062   SmallVector<CodeGenFunction::JumpDest, 4> ExitDests;
4063   OMPIteratorGeneratorScope() = delete;
4064   OMPIteratorGeneratorScope(OMPIteratorGeneratorScope &) = delete;
4065 
4066 public:
OMPIteratorGeneratorScope(CodeGenFunction & CGF,const OMPIteratorExpr * E)4067   OMPIteratorGeneratorScope(CodeGenFunction &CGF, const OMPIteratorExpr *E)
4068       : CodeGenFunction::OMPPrivateScope(CGF), CGF(CGF), E(E) {
4069     if (!E)
4070       return;
4071     SmallVector<llvm::Value *, 4> Uppers;
4072     for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
4073       Uppers.push_back(CGF.EmitScalarExpr(E->getHelper(I).Upper));
4074       const auto *VD = cast<VarDecl>(E->getIteratorDecl(I));
4075       addPrivate(VD, [&CGF, VD]() {
4076         return CGF.CreateMemTemp(VD->getType(), VD->getName());
4077       });
4078       const OMPIteratorHelperData &HelperData = E->getHelper(I);
4079       addPrivate(HelperData.CounterVD, [&CGF, &HelperData]() {
4080         return CGF.CreateMemTemp(HelperData.CounterVD->getType(),
4081                                  "counter.addr");
4082       });
4083     }
4084     Privatize();
4085 
4086     for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
4087       const OMPIteratorHelperData &HelperData = E->getHelper(I);
4088       LValue CLVal =
4089           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(HelperData.CounterVD),
4090                              HelperData.CounterVD->getType());
4091       // Counter = 0;
4092       CGF.EmitStoreOfScalar(
4093           llvm::ConstantInt::get(CLVal.getAddress(CGF).getElementType(), 0),
4094           CLVal);
4095       CodeGenFunction::JumpDest &ContDest =
4096           ContDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.cont"));
4097       CodeGenFunction::JumpDest &ExitDest =
4098           ExitDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.exit"));
4099       // N = <number-of_iterations>;
4100       llvm::Value *N = Uppers[I];
4101       // cont:
4102       // if (Counter < N) goto body; else goto exit;
4103       CGF.EmitBlock(ContDest.getBlock());
4104       auto *CVal =
4105           CGF.EmitLoadOfScalar(CLVal, HelperData.CounterVD->getLocation());
4106       llvm::Value *Cmp =
4107           HelperData.CounterVD->getType()->isSignedIntegerOrEnumerationType()
4108               ? CGF.Builder.CreateICmpSLT(CVal, N)
4109               : CGF.Builder.CreateICmpULT(CVal, N);
4110       llvm::BasicBlock *BodyBB = CGF.createBasicBlock("iter.body");
4111       CGF.Builder.CreateCondBr(Cmp, BodyBB, ExitDest.getBlock());
4112       // body:
4113       CGF.EmitBlock(BodyBB);
4114       // Iteri = Begini + Counter * Stepi;
4115       CGF.EmitIgnoredExpr(HelperData.Update);
4116     }
4117   }
~OMPIteratorGeneratorScope()4118   ~OMPIteratorGeneratorScope() {
4119     if (!E)
4120       return;
4121     for (unsigned I = E->numOfIterators(); I > 0; --I) {
4122       // Counter = Counter + 1;
4123       const OMPIteratorHelperData &HelperData = E->getHelper(I - 1);
4124       CGF.EmitIgnoredExpr(HelperData.CounterUpdate);
4125       // goto cont;
4126       CGF.EmitBranchThroughCleanup(ContDests[I - 1]);
4127       // exit:
4128       CGF.EmitBlock(ExitDests[I - 1].getBlock(), /*IsFinished=*/I == 1);
4129     }
4130   }
4131 };
4132 } // namespace
4133 
4134 static std::pair<llvm::Value *, llvm::Value *>
getPointerAndSize(CodeGenFunction & CGF,const Expr * E)4135 getPointerAndSize(CodeGenFunction &CGF, const Expr *E) {
4136   const auto *OASE = dyn_cast<OMPArrayShapingExpr>(E);
4137   llvm::Value *Addr;
4138   if (OASE) {
4139     const Expr *Base = OASE->getBase();
4140     Addr = CGF.EmitScalarExpr(Base);
4141   } else {
4142     Addr = CGF.EmitLValue(E).getPointer(CGF);
4143   }
4144   llvm::Value *SizeVal;
4145   QualType Ty = E->getType();
4146   if (OASE) {
4147     SizeVal = CGF.getTypeSize(OASE->getBase()->getType()->getPointeeType());
4148     for (const Expr *SE : OASE->getDimensions()) {
4149       llvm::Value *Sz = CGF.EmitScalarExpr(SE);
4150       Sz = CGF.EmitScalarConversion(
4151           Sz, SE->getType(), CGF.getContext().getSizeType(), SE->getExprLoc());
4152       SizeVal = CGF.Builder.CreateNUWMul(SizeVal, Sz);
4153     }
4154   } else if (const auto *ASE =
4155                  dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
4156     LValue UpAddrLVal =
4157         CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
4158     llvm::Value *UpAddr =
4159         CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(CGF), /*Idx0=*/1);
4160     llvm::Value *LowIntPtr = CGF.Builder.CreatePtrToInt(Addr, CGF.SizeTy);
4161     llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGF.SizeTy);
4162     SizeVal = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
4163   } else {
4164     SizeVal = CGF.getTypeSize(Ty);
4165   }
4166   return std::make_pair(Addr, SizeVal);
4167 }
4168 
4169 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getKmpAffinityType(ASTContext & C,QualType & KmpTaskAffinityInfoTy)4170 static void getKmpAffinityType(ASTContext &C, QualType &KmpTaskAffinityInfoTy) {
4171   QualType FlagsTy = C.getIntTypeForBitwidth(32, /*Signed=*/false);
4172   if (KmpTaskAffinityInfoTy.isNull()) {
4173     RecordDecl *KmpAffinityInfoRD =
4174         C.buildImplicitRecord("kmp_task_affinity_info_t");
4175     KmpAffinityInfoRD->startDefinition();
4176     addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getIntPtrType());
4177     addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getSizeType());
4178     addFieldToRecordDecl(C, KmpAffinityInfoRD, FlagsTy);
4179     KmpAffinityInfoRD->completeDefinition();
4180     KmpTaskAffinityInfoTy = C.getRecordType(KmpAffinityInfoRD);
4181   }
4182 }
4183 
4184 CGOpenMPRuntime::TaskResultTy
emitTaskInit(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const OMPTaskDataTy & Data)4185 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
4186                               const OMPExecutableDirective &D,
4187                               llvm::Function *TaskFunction, QualType SharedsTy,
4188                               Address Shareds, const OMPTaskDataTy &Data) {
4189   ASTContext &C = CGM.getContext();
4190   llvm::SmallVector<PrivateDataTy, 4> Privates;
4191   // Aggregate privates and sort them by the alignment.
4192   const auto *I = Data.PrivateCopies.begin();
4193   for (const Expr *E : Data.PrivateVars) {
4194     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4195     Privates.emplace_back(
4196         C.getDeclAlign(VD),
4197         PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4198                          /*PrivateElemInit=*/nullptr));
4199     ++I;
4200   }
4201   I = Data.FirstprivateCopies.begin();
4202   const auto *IElemInitRef = Data.FirstprivateInits.begin();
4203   for (const Expr *E : Data.FirstprivateVars) {
4204     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4205     Privates.emplace_back(
4206         C.getDeclAlign(VD),
4207         PrivateHelpersTy(
4208             E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4209             cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
4210     ++I;
4211     ++IElemInitRef;
4212   }
4213   I = Data.LastprivateCopies.begin();
4214   for (const Expr *E : Data.LastprivateVars) {
4215     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4216     Privates.emplace_back(
4217         C.getDeclAlign(VD),
4218         PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4219                          /*PrivateElemInit=*/nullptr));
4220     ++I;
4221   }
4222   for (const VarDecl *VD : Data.PrivateLocals) {
4223     if (isAllocatableDecl(VD))
4224       Privates.emplace_back(CGM.getPointerAlign(), PrivateHelpersTy(VD));
4225     else
4226       Privates.emplace_back(C.getDeclAlign(VD), PrivateHelpersTy(VD));
4227   }
4228   llvm::stable_sort(Privates,
4229                     [](const PrivateDataTy &L, const PrivateDataTy &R) {
4230                       return L.first > R.first;
4231                     });
4232   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
4233   // Build type kmp_routine_entry_t (if not built yet).
4234   emitKmpRoutineEntryT(KmpInt32Ty);
4235   // Build type kmp_task_t (if not built yet).
4236   if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
4237     if (SavedKmpTaskloopTQTy.isNull()) {
4238       SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4239           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4240     }
4241     KmpTaskTQTy = SavedKmpTaskloopTQTy;
4242   } else {
4243     assert((D.getDirectiveKind() == OMPD_task ||
4244             isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
4245             isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
4246            "Expected taskloop, task or target directive");
4247     if (SavedKmpTaskTQTy.isNull()) {
4248       SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4249           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4250     }
4251     KmpTaskTQTy = SavedKmpTaskTQTy;
4252   }
4253   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
4254   // Build particular struct kmp_task_t for the given task.
4255   const RecordDecl *KmpTaskTWithPrivatesQTyRD =
4256       createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
4257   QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
4258   QualType KmpTaskTWithPrivatesPtrQTy =
4259       C.getPointerType(KmpTaskTWithPrivatesQTy);
4260   llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
4261   llvm::Type *KmpTaskTWithPrivatesPtrTy =
4262       KmpTaskTWithPrivatesTy->getPointerTo();
4263   llvm::Value *KmpTaskTWithPrivatesTySize =
4264       CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
4265   QualType SharedsPtrTy = C.getPointerType(SharedsTy);
4266 
4267   // Emit initial values for private copies (if any).
4268   llvm::Value *TaskPrivatesMap = nullptr;
4269   llvm::Type *TaskPrivatesMapTy =
4270       std::next(TaskFunction->arg_begin(), 3)->getType();
4271   if (!Privates.empty()) {
4272     auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4273     TaskPrivatesMap =
4274         emitTaskPrivateMappingFunction(CGM, Loc, Data, FI->getType(), Privates);
4275     TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4276         TaskPrivatesMap, TaskPrivatesMapTy);
4277   } else {
4278     TaskPrivatesMap = llvm::ConstantPointerNull::get(
4279         cast<llvm::PointerType>(TaskPrivatesMapTy));
4280   }
4281   // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
4282   // kmp_task_t *tt);
4283   llvm::Function *TaskEntry = emitProxyTaskFunction(
4284       CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4285       KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
4286       TaskPrivatesMap);
4287 
4288   // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
4289   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
4290   // kmp_routine_entry_t *task_entry);
4291   // Task flags. Format is taken from
4292   // https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h,
4293   // description of kmp_tasking_flags struct.
4294   enum {
4295     TiedFlag = 0x1,
4296     FinalFlag = 0x2,
4297     DestructorsFlag = 0x8,
4298     PriorityFlag = 0x20,
4299     DetachableFlag = 0x40,
4300   };
4301   unsigned Flags = Data.Tied ? TiedFlag : 0;
4302   bool NeedsCleanup = false;
4303   if (!Privates.empty()) {
4304     NeedsCleanup =
4305         checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD, Privates);
4306     if (NeedsCleanup)
4307       Flags = Flags | DestructorsFlag;
4308   }
4309   if (Data.Priority.getInt())
4310     Flags = Flags | PriorityFlag;
4311   if (D.hasClausesOfKind<OMPDetachClause>())
4312     Flags = Flags | DetachableFlag;
4313   llvm::Value *TaskFlags =
4314       Data.Final.getPointer()
4315           ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
4316                                      CGF.Builder.getInt32(FinalFlag),
4317                                      CGF.Builder.getInt32(/*C=*/0))
4318           : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
4319   TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
4320   llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
4321   SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
4322       getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
4323       SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4324           TaskEntry, KmpRoutineEntryPtrTy)};
4325   llvm::Value *NewTask;
4326   if (D.hasClausesOfKind<OMPNowaitClause>()) {
4327     // Check if we have any device clause associated with the directive.
4328     const Expr *Device = nullptr;
4329     if (auto *C = D.getSingleClause<OMPDeviceClause>())
4330       Device = C->getDevice();
4331     // Emit device ID if any otherwise use default value.
4332     llvm::Value *DeviceID;
4333     if (Device)
4334       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
4335                                            CGF.Int64Ty, /*isSigned=*/true);
4336     else
4337       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
4338     AllocArgs.push_back(DeviceID);
4339     NewTask = CGF.EmitRuntimeCall(
4340         OMPBuilder.getOrCreateRuntimeFunction(
4341             CGM.getModule(), OMPRTL___kmpc_omp_target_task_alloc),
4342         AllocArgs);
4343   } else {
4344     NewTask =
4345         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4346                                 CGM.getModule(), OMPRTL___kmpc_omp_task_alloc),
4347                             AllocArgs);
4348   }
4349   // Emit detach clause initialization.
4350   // evt = (typeof(evt))__kmpc_task_allow_completion_event(loc, tid,
4351   // task_descriptor);
4352   if (const auto *DC = D.getSingleClause<OMPDetachClause>()) {
4353     const Expr *Evt = DC->getEventHandler()->IgnoreParenImpCasts();
4354     LValue EvtLVal = CGF.EmitLValue(Evt);
4355 
4356     // Build kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4357     // int gtid, kmp_task_t *task);
4358     llvm::Value *Loc = emitUpdateLocation(CGF, DC->getBeginLoc());
4359     llvm::Value *Tid = getThreadID(CGF, DC->getBeginLoc());
4360     Tid = CGF.Builder.CreateIntCast(Tid, CGF.IntTy, /*isSigned=*/false);
4361     llvm::Value *EvtVal = CGF.EmitRuntimeCall(
4362         OMPBuilder.getOrCreateRuntimeFunction(
4363             CGM.getModule(), OMPRTL___kmpc_task_allow_completion_event),
4364         {Loc, Tid, NewTask});
4365     EvtVal = CGF.EmitScalarConversion(EvtVal, C.VoidPtrTy, Evt->getType(),
4366                                       Evt->getExprLoc());
4367     CGF.EmitStoreOfScalar(EvtVal, EvtLVal);
4368   }
4369   // Process affinity clauses.
4370   if (D.hasClausesOfKind<OMPAffinityClause>()) {
4371     // Process list of affinity data.
4372     ASTContext &C = CGM.getContext();
4373     Address AffinitiesArray = Address::invalid();
4374     // Calculate number of elements to form the array of affinity data.
4375     llvm::Value *NumOfElements = nullptr;
4376     unsigned NumAffinities = 0;
4377     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4378       if (const Expr *Modifier = C->getModifier()) {
4379         const auto *IE = cast<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts());
4380         for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4381           llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4382           Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4383           NumOfElements =
4384               NumOfElements ? CGF.Builder.CreateNUWMul(NumOfElements, Sz) : Sz;
4385         }
4386       } else {
4387         NumAffinities += C->varlist_size();
4388       }
4389     }
4390     getKmpAffinityType(CGM.getContext(), KmpTaskAffinityInfoTy);
4391     // Fields ids in kmp_task_affinity_info record.
4392     enum RTLAffinityInfoFieldsTy { BaseAddr, Len, Flags };
4393 
4394     QualType KmpTaskAffinityInfoArrayTy;
4395     if (NumOfElements) {
4396       NumOfElements = CGF.Builder.CreateNUWAdd(
4397           llvm::ConstantInt::get(CGF.SizeTy, NumAffinities), NumOfElements);
4398       OpaqueValueExpr OVE(
4399           Loc,
4400           C.getIntTypeForBitwidth(C.getTypeSize(C.getSizeType()), /*Signed=*/0),
4401           VK_RValue);
4402       CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE,
4403                                                     RValue::get(NumOfElements));
4404       KmpTaskAffinityInfoArrayTy =
4405           C.getVariableArrayType(KmpTaskAffinityInfoTy, &OVE, ArrayType::Normal,
4406                                  /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4407       // Properly emit variable-sized array.
4408       auto *PD = ImplicitParamDecl::Create(C, KmpTaskAffinityInfoArrayTy,
4409                                            ImplicitParamDecl::Other);
4410       CGF.EmitVarDecl(*PD);
4411       AffinitiesArray = CGF.GetAddrOfLocalVar(PD);
4412       NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4413                                                 /*isSigned=*/false);
4414     } else {
4415       KmpTaskAffinityInfoArrayTy = C.getConstantArrayType(
4416           KmpTaskAffinityInfoTy,
4417           llvm::APInt(C.getTypeSize(C.getSizeType()), NumAffinities), nullptr,
4418           ArrayType::Normal, /*IndexTypeQuals=*/0);
4419       AffinitiesArray =
4420           CGF.CreateMemTemp(KmpTaskAffinityInfoArrayTy, ".affs.arr.addr");
4421       AffinitiesArray = CGF.Builder.CreateConstArrayGEP(AffinitiesArray, 0);
4422       NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumAffinities,
4423                                              /*isSigned=*/false);
4424     }
4425 
4426     const auto *KmpAffinityInfoRD = KmpTaskAffinityInfoTy->getAsRecordDecl();
4427     // Fill array by elements without iterators.
4428     unsigned Pos = 0;
4429     bool HasIterator = false;
4430     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4431       if (C->getModifier()) {
4432         HasIterator = true;
4433         continue;
4434       }
4435       for (const Expr *E : C->varlists()) {
4436         llvm::Value *Addr;
4437         llvm::Value *Size;
4438         std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4439         LValue Base =
4440             CGF.MakeAddrLValue(CGF.Builder.CreateConstGEP(AffinitiesArray, Pos),
4441                                KmpTaskAffinityInfoTy);
4442         // affs[i].base_addr = &<Affinities[i].second>;
4443         LValue BaseAddrLVal = CGF.EmitLValueForField(
4444             Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4445         CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4446                               BaseAddrLVal);
4447         // affs[i].len = sizeof(<Affinities[i].second>);
4448         LValue LenLVal = CGF.EmitLValueForField(
4449             Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4450         CGF.EmitStoreOfScalar(Size, LenLVal);
4451         ++Pos;
4452       }
4453     }
4454     LValue PosLVal;
4455     if (HasIterator) {
4456       PosLVal = CGF.MakeAddrLValue(
4457           CGF.CreateMemTemp(C.getSizeType(), "affs.counter.addr"),
4458           C.getSizeType());
4459       CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4460     }
4461     // Process elements with iterators.
4462     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4463       const Expr *Modifier = C->getModifier();
4464       if (!Modifier)
4465         continue;
4466       OMPIteratorGeneratorScope IteratorScope(
4467           CGF, cast_or_null<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts()));
4468       for (const Expr *E : C->varlists()) {
4469         llvm::Value *Addr;
4470         llvm::Value *Size;
4471         std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4472         llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4473         LValue Base = CGF.MakeAddrLValue(
4474             Address(CGF.Builder.CreateGEP(AffinitiesArray.getPointer(), Idx),
4475                     AffinitiesArray.getAlignment()),
4476             KmpTaskAffinityInfoTy);
4477         // affs[i].base_addr = &<Affinities[i].second>;
4478         LValue BaseAddrLVal = CGF.EmitLValueForField(
4479             Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4480         CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4481                               BaseAddrLVal);
4482         // affs[i].len = sizeof(<Affinities[i].second>);
4483         LValue LenLVal = CGF.EmitLValueForField(
4484             Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4485         CGF.EmitStoreOfScalar(Size, LenLVal);
4486         Idx = CGF.Builder.CreateNUWAdd(
4487             Idx, llvm::ConstantInt::get(Idx->getType(), 1));
4488         CGF.EmitStoreOfScalar(Idx, PosLVal);
4489       }
4490     }
4491     // Call to kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref,
4492     // kmp_int32 gtid, kmp_task_t *new_task, kmp_int32
4493     // naffins, kmp_task_affinity_info_t *affin_list);
4494     llvm::Value *LocRef = emitUpdateLocation(CGF, Loc);
4495     llvm::Value *GTid = getThreadID(CGF, Loc);
4496     llvm::Value *AffinListPtr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4497         AffinitiesArray.getPointer(), CGM.VoidPtrTy);
4498     // FIXME: Emit the function and ignore its result for now unless the
4499     // runtime function is properly implemented.
4500     (void)CGF.EmitRuntimeCall(
4501         OMPBuilder.getOrCreateRuntimeFunction(
4502             CGM.getModule(), OMPRTL___kmpc_omp_reg_task_with_affinity),
4503         {LocRef, GTid, NewTask, NumOfElements, AffinListPtr});
4504   }
4505   llvm::Value *NewTaskNewTaskTTy =
4506       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4507           NewTask, KmpTaskTWithPrivatesPtrTy);
4508   LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
4509                                                KmpTaskTWithPrivatesQTy);
4510   LValue TDBase =
4511       CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
4512   // Fill the data in the resulting kmp_task_t record.
4513   // Copy shareds if there are any.
4514   Address KmpTaskSharedsPtr = Address::invalid();
4515   if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
4516     KmpTaskSharedsPtr =
4517         Address(CGF.EmitLoadOfScalar(
4518                     CGF.EmitLValueForField(
4519                         TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
4520                                            KmpTaskTShareds)),
4521                     Loc),
4522                 CGM.getNaturalTypeAlignment(SharedsTy));
4523     LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
4524     LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
4525     CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
4526   }
4527   // Emit initial values for private copies (if any).
4528   TaskResultTy Result;
4529   if (!Privates.empty()) {
4530     emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
4531                      SharedsTy, SharedsPtrTy, Data, Privates,
4532                      /*ForDup=*/false);
4533     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
4534         (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
4535       Result.TaskDupFn = emitTaskDupFunction(
4536           CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
4537           KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
4538           /*WithLastIter=*/!Data.LastprivateVars.empty());
4539     }
4540   }
4541   // Fields of union "kmp_cmplrdata_t" for destructors and priority.
4542   enum { Priority = 0, Destructors = 1 };
4543   // Provide pointer to function with destructors for privates.
4544   auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
4545   const RecordDecl *KmpCmplrdataUD =
4546       (*FI)->getType()->getAsUnionType()->getDecl();
4547   if (NeedsCleanup) {
4548     llvm::Value *DestructorFn = emitDestructorsFunction(
4549         CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4550         KmpTaskTWithPrivatesQTy);
4551     LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
4552     LValue DestructorsLV = CGF.EmitLValueForField(
4553         Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
4554     CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4555                               DestructorFn, KmpRoutineEntryPtrTy),
4556                           DestructorsLV);
4557   }
4558   // Set priority.
4559   if (Data.Priority.getInt()) {
4560     LValue Data2LV = CGF.EmitLValueForField(
4561         TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
4562     LValue PriorityLV = CGF.EmitLValueForField(
4563         Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
4564     CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
4565   }
4566   Result.NewTask = NewTask;
4567   Result.TaskEntry = TaskEntry;
4568   Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
4569   Result.TDBase = TDBase;
4570   Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
4571   return Result;
4572 }
4573 
4574 namespace {
4575 /// Dependence kind for RTL.
4576 enum RTLDependenceKindTy {
4577   DepIn = 0x01,
4578   DepInOut = 0x3,
4579   DepMutexInOutSet = 0x4
4580 };
4581 /// Fields ids in kmp_depend_info record.
4582 enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
4583 } // namespace
4584 
4585 /// Translates internal dependency kind into the runtime kind.
translateDependencyKind(OpenMPDependClauseKind K)4586 static RTLDependenceKindTy translateDependencyKind(OpenMPDependClauseKind K) {
4587   RTLDependenceKindTy DepKind;
4588   switch (K) {
4589   case OMPC_DEPEND_in:
4590     DepKind = DepIn;
4591     break;
4592   // Out and InOut dependencies must use the same code.
4593   case OMPC_DEPEND_out:
4594   case OMPC_DEPEND_inout:
4595     DepKind = DepInOut;
4596     break;
4597   case OMPC_DEPEND_mutexinoutset:
4598     DepKind = DepMutexInOutSet;
4599     break;
4600   case OMPC_DEPEND_source:
4601   case OMPC_DEPEND_sink:
4602   case OMPC_DEPEND_depobj:
4603   case OMPC_DEPEND_unknown:
4604     llvm_unreachable("Unknown task dependence type");
4605   }
4606   return DepKind;
4607 }
4608 
4609 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getDependTypes(ASTContext & C,QualType & KmpDependInfoTy,QualType & FlagsTy)4610 static void getDependTypes(ASTContext &C, QualType &KmpDependInfoTy,
4611                            QualType &FlagsTy) {
4612   FlagsTy = C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
4613   if (KmpDependInfoTy.isNull()) {
4614     RecordDecl *KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
4615     KmpDependInfoRD->startDefinition();
4616     addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
4617     addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
4618     addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
4619     KmpDependInfoRD->completeDefinition();
4620     KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
4621   }
4622 }
4623 
4624 std::pair<llvm::Value *, LValue>
getDepobjElements(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4625 CGOpenMPRuntime::getDepobjElements(CodeGenFunction &CGF, LValue DepobjLVal,
4626                                    SourceLocation Loc) {
4627   ASTContext &C = CGM.getContext();
4628   QualType FlagsTy;
4629   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4630   RecordDecl *KmpDependInfoRD =
4631       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4632   LValue Base = CGF.EmitLoadOfPointerLValue(
4633       DepobjLVal.getAddress(CGF),
4634       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4635   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4636   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4637           Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy));
4638   Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4639                             Base.getTBAAInfo());
4640   llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4641       Addr.getPointer(),
4642       llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4643   LValue NumDepsBase = CGF.MakeAddrLValue(
4644       Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4645       Base.getBaseInfo(), Base.getTBAAInfo());
4646   // NumDeps = deps[i].base_addr;
4647   LValue BaseAddrLVal = CGF.EmitLValueForField(
4648       NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4649   llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, Loc);
4650   return std::make_pair(NumDeps, Base);
4651 }
4652 
emitDependData(CodeGenFunction & CGF,QualType & KmpDependInfoTy,llvm::PointerUnion<unsigned *,LValue * > Pos,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4653 static void emitDependData(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4654                            llvm::PointerUnion<unsigned *, LValue *> Pos,
4655                            const OMPTaskDataTy::DependData &Data,
4656                            Address DependenciesArray) {
4657   CodeGenModule &CGM = CGF.CGM;
4658   ASTContext &C = CGM.getContext();
4659   QualType FlagsTy;
4660   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4661   RecordDecl *KmpDependInfoRD =
4662       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4663   llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
4664 
4665   OMPIteratorGeneratorScope IteratorScope(
4666       CGF, cast_or_null<OMPIteratorExpr>(
4667                Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4668                                  : nullptr));
4669   for (const Expr *E : Data.DepExprs) {
4670     llvm::Value *Addr;
4671     llvm::Value *Size;
4672     std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4673     LValue Base;
4674     if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4675       Base = CGF.MakeAddrLValue(
4676           CGF.Builder.CreateConstGEP(DependenciesArray, *P), KmpDependInfoTy);
4677     } else {
4678       LValue &PosLVal = *Pos.get<LValue *>();
4679       llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4680       Base = CGF.MakeAddrLValue(
4681           Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Idx),
4682                   DependenciesArray.getAlignment()),
4683           KmpDependInfoTy);
4684     }
4685     // deps[i].base_addr = &<Dependencies[i].second>;
4686     LValue BaseAddrLVal = CGF.EmitLValueForField(
4687         Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4688     CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4689                           BaseAddrLVal);
4690     // deps[i].len = sizeof(<Dependencies[i].second>);
4691     LValue LenLVal = CGF.EmitLValueForField(
4692         Base, *std::next(KmpDependInfoRD->field_begin(), Len));
4693     CGF.EmitStoreOfScalar(Size, LenLVal);
4694     // deps[i].flags = <Dependencies[i].first>;
4695     RTLDependenceKindTy DepKind = translateDependencyKind(Data.DepKind);
4696     LValue FlagsLVal = CGF.EmitLValueForField(
4697         Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
4698     CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
4699                           FlagsLVal);
4700     if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4701       ++(*P);
4702     } else {
4703       LValue &PosLVal = *Pos.get<LValue *>();
4704       llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4705       Idx = CGF.Builder.CreateNUWAdd(Idx,
4706                                      llvm::ConstantInt::get(Idx->getType(), 1));
4707       CGF.EmitStoreOfScalar(Idx, PosLVal);
4708     }
4709   }
4710 }
4711 
4712 static SmallVector<llvm::Value *, 4>
emitDepobjElementsSizes(CodeGenFunction & CGF,QualType & KmpDependInfoTy,const OMPTaskDataTy::DependData & Data)4713 emitDepobjElementsSizes(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4714                         const OMPTaskDataTy::DependData &Data) {
4715   assert(Data.DepKind == OMPC_DEPEND_depobj &&
4716          "Expected depobj dependecy kind.");
4717   SmallVector<llvm::Value *, 4> Sizes;
4718   SmallVector<LValue, 4> SizeLVals;
4719   ASTContext &C = CGF.getContext();
4720   QualType FlagsTy;
4721   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4722   RecordDecl *KmpDependInfoRD =
4723       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4724   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4725   llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy);
4726   {
4727     OMPIteratorGeneratorScope IteratorScope(
4728         CGF, cast_or_null<OMPIteratorExpr>(
4729                  Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4730                                    : nullptr));
4731     for (const Expr *E : Data.DepExprs) {
4732       LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4733       LValue Base = CGF.EmitLoadOfPointerLValue(
4734           DepobjLVal.getAddress(CGF),
4735           C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4736       Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4737           Base.getAddress(CGF), KmpDependInfoPtrT);
4738       Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4739                                 Base.getTBAAInfo());
4740       llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4741           Addr.getPointer(),
4742           llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4743       LValue NumDepsBase = CGF.MakeAddrLValue(
4744           Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4745           Base.getBaseInfo(), Base.getTBAAInfo());
4746       // NumDeps = deps[i].base_addr;
4747       LValue BaseAddrLVal = CGF.EmitLValueForField(
4748           NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4749       llvm::Value *NumDeps =
4750           CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc());
4751       LValue NumLVal = CGF.MakeAddrLValue(
4752           CGF.CreateMemTemp(C.getUIntPtrType(), "depobj.size.addr"),
4753           C.getUIntPtrType());
4754       CGF.InitTempAlloca(NumLVal.getAddress(CGF),
4755                          llvm::ConstantInt::get(CGF.IntPtrTy, 0));
4756       llvm::Value *PrevVal = CGF.EmitLoadOfScalar(NumLVal, E->getExprLoc());
4757       llvm::Value *Add = CGF.Builder.CreateNUWAdd(PrevVal, NumDeps);
4758       CGF.EmitStoreOfScalar(Add, NumLVal);
4759       SizeLVals.push_back(NumLVal);
4760     }
4761   }
4762   for (unsigned I = 0, E = SizeLVals.size(); I < E; ++I) {
4763     llvm::Value *Size =
4764         CGF.EmitLoadOfScalar(SizeLVals[I], Data.DepExprs[I]->getExprLoc());
4765     Sizes.push_back(Size);
4766   }
4767   return Sizes;
4768 }
4769 
emitDepobjElements(CodeGenFunction & CGF,QualType & KmpDependInfoTy,LValue PosLVal,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4770 static void emitDepobjElements(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4771                                LValue PosLVal,
4772                                const OMPTaskDataTy::DependData &Data,
4773                                Address DependenciesArray) {
4774   assert(Data.DepKind == OMPC_DEPEND_depobj &&
4775          "Expected depobj dependecy kind.");
4776   ASTContext &C = CGF.getContext();
4777   QualType FlagsTy;
4778   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4779   RecordDecl *KmpDependInfoRD =
4780       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4781   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4782   llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy);
4783   llvm::Value *ElSize = CGF.getTypeSize(KmpDependInfoTy);
4784   {
4785     OMPIteratorGeneratorScope IteratorScope(
4786         CGF, cast_or_null<OMPIteratorExpr>(
4787                  Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4788                                    : nullptr));
4789     for (unsigned I = 0, End = Data.DepExprs.size(); I < End; ++I) {
4790       const Expr *E = Data.DepExprs[I];
4791       LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4792       LValue Base = CGF.EmitLoadOfPointerLValue(
4793           DepobjLVal.getAddress(CGF),
4794           C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4795       Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4796           Base.getAddress(CGF), KmpDependInfoPtrT);
4797       Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4798                                 Base.getTBAAInfo());
4799 
4800       // Get number of elements in a single depobj.
4801       llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4802           Addr.getPointer(),
4803           llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4804       LValue NumDepsBase = CGF.MakeAddrLValue(
4805           Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4806           Base.getBaseInfo(), Base.getTBAAInfo());
4807       // NumDeps = deps[i].base_addr;
4808       LValue BaseAddrLVal = CGF.EmitLValueForField(
4809           NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4810       llvm::Value *NumDeps =
4811           CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc());
4812 
4813       // memcopy dependency data.
4814       llvm::Value *Size = CGF.Builder.CreateNUWMul(
4815           ElSize,
4816           CGF.Builder.CreateIntCast(NumDeps, CGF.SizeTy, /*isSigned=*/false));
4817       llvm::Value *Pos = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4818       Address DepAddr =
4819           Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Pos),
4820                   DependenciesArray.getAlignment());
4821       CGF.Builder.CreateMemCpy(DepAddr, Base.getAddress(CGF), Size);
4822 
4823       // Increase pos.
4824       // pos += size;
4825       llvm::Value *Add = CGF.Builder.CreateNUWAdd(Pos, NumDeps);
4826       CGF.EmitStoreOfScalar(Add, PosLVal);
4827     }
4828   }
4829 }
4830 
emitDependClause(CodeGenFunction & CGF,ArrayRef<OMPTaskDataTy::DependData> Dependencies,SourceLocation Loc)4831 std::pair<llvm::Value *, Address> CGOpenMPRuntime::emitDependClause(
4832     CodeGenFunction &CGF, ArrayRef<OMPTaskDataTy::DependData> Dependencies,
4833     SourceLocation Loc) {
4834   if (llvm::all_of(Dependencies, [](const OMPTaskDataTy::DependData &D) {
4835         return D.DepExprs.empty();
4836       }))
4837     return std::make_pair(nullptr, Address::invalid());
4838   // Process list of dependencies.
4839   ASTContext &C = CGM.getContext();
4840   Address DependenciesArray = Address::invalid();
4841   llvm::Value *NumOfElements = nullptr;
4842   unsigned NumDependencies = std::accumulate(
4843       Dependencies.begin(), Dependencies.end(), 0,
4844       [](unsigned V, const OMPTaskDataTy::DependData &D) {
4845         return D.DepKind == OMPC_DEPEND_depobj
4846                    ? V
4847                    : (V + (D.IteratorExpr ? 0 : D.DepExprs.size()));
4848       });
4849   QualType FlagsTy;
4850   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4851   bool HasDepobjDeps = false;
4852   bool HasRegularWithIterators = false;
4853   llvm::Value *NumOfDepobjElements = llvm::ConstantInt::get(CGF.IntPtrTy, 0);
4854   llvm::Value *NumOfRegularWithIterators =
4855       llvm::ConstantInt::get(CGF.IntPtrTy, 1);
4856   // Calculate number of depobj dependecies and regular deps with the iterators.
4857   for (const OMPTaskDataTy::DependData &D : Dependencies) {
4858     if (D.DepKind == OMPC_DEPEND_depobj) {
4859       SmallVector<llvm::Value *, 4> Sizes =
4860           emitDepobjElementsSizes(CGF, KmpDependInfoTy, D);
4861       for (llvm::Value *Size : Sizes) {
4862         NumOfDepobjElements =
4863             CGF.Builder.CreateNUWAdd(NumOfDepobjElements, Size);
4864       }
4865       HasDepobjDeps = true;
4866       continue;
4867     }
4868     // Include number of iterations, if any.
4869     if (const auto *IE = cast_or_null<OMPIteratorExpr>(D.IteratorExpr)) {
4870       for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4871         llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4872         Sz = CGF.Builder.CreateIntCast(Sz, CGF.IntPtrTy, /*isSigned=*/false);
4873         NumOfRegularWithIterators =
4874             CGF.Builder.CreateNUWMul(NumOfRegularWithIterators, Sz);
4875       }
4876       HasRegularWithIterators = true;
4877       continue;
4878     }
4879   }
4880 
4881   QualType KmpDependInfoArrayTy;
4882   if (HasDepobjDeps || HasRegularWithIterators) {
4883     NumOfElements = llvm::ConstantInt::get(CGM.IntPtrTy, NumDependencies,
4884                                            /*isSigned=*/false);
4885     if (HasDepobjDeps) {
4886       NumOfElements =
4887           CGF.Builder.CreateNUWAdd(NumOfDepobjElements, NumOfElements);
4888     }
4889     if (HasRegularWithIterators) {
4890       NumOfElements =
4891           CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumOfElements);
4892     }
4893     OpaqueValueExpr OVE(Loc,
4894                         C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0),
4895                         VK_RValue);
4896     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE,
4897                                                   RValue::get(NumOfElements));
4898     KmpDependInfoArrayTy =
4899         C.getVariableArrayType(KmpDependInfoTy, &OVE, ArrayType::Normal,
4900                                /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4901     // CGF.EmitVariablyModifiedType(KmpDependInfoArrayTy);
4902     // Properly emit variable-sized array.
4903     auto *PD = ImplicitParamDecl::Create(C, KmpDependInfoArrayTy,
4904                                          ImplicitParamDecl::Other);
4905     CGF.EmitVarDecl(*PD);
4906     DependenciesArray = CGF.GetAddrOfLocalVar(PD);
4907     NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4908                                               /*isSigned=*/false);
4909   } else {
4910     KmpDependInfoArrayTy = C.getConstantArrayType(
4911         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), nullptr,
4912         ArrayType::Normal, /*IndexTypeQuals=*/0);
4913     DependenciesArray =
4914         CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
4915     DependenciesArray = CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0);
4916     NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumDependencies,
4917                                            /*isSigned=*/false);
4918   }
4919   unsigned Pos = 0;
4920   for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4921     if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4922         Dependencies[I].IteratorExpr)
4923       continue;
4924     emitDependData(CGF, KmpDependInfoTy, &Pos, Dependencies[I],
4925                    DependenciesArray);
4926   }
4927   // Copy regular dependecies with iterators.
4928   LValue PosLVal = CGF.MakeAddrLValue(
4929       CGF.CreateMemTemp(C.getSizeType(), "dep.counter.addr"), C.getSizeType());
4930   CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4931   for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4932     if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4933         !Dependencies[I].IteratorExpr)
4934       continue;
4935     emitDependData(CGF, KmpDependInfoTy, &PosLVal, Dependencies[I],
4936                    DependenciesArray);
4937   }
4938   // Copy final depobj arrays without iterators.
4939   if (HasDepobjDeps) {
4940     for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4941       if (Dependencies[I].DepKind != OMPC_DEPEND_depobj)
4942         continue;
4943       emitDepobjElements(CGF, KmpDependInfoTy, PosLVal, Dependencies[I],
4944                          DependenciesArray);
4945     }
4946   }
4947   DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4948       DependenciesArray, CGF.VoidPtrTy);
4949   return std::make_pair(NumOfElements, DependenciesArray);
4950 }
4951 
emitDepobjDependClause(CodeGenFunction & CGF,const OMPTaskDataTy::DependData & Dependencies,SourceLocation Loc)4952 Address CGOpenMPRuntime::emitDepobjDependClause(
4953     CodeGenFunction &CGF, const OMPTaskDataTy::DependData &Dependencies,
4954     SourceLocation Loc) {
4955   if (Dependencies.DepExprs.empty())
4956     return Address::invalid();
4957   // Process list of dependencies.
4958   ASTContext &C = CGM.getContext();
4959   Address DependenciesArray = Address::invalid();
4960   unsigned NumDependencies = Dependencies.DepExprs.size();
4961   QualType FlagsTy;
4962   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4963   RecordDecl *KmpDependInfoRD =
4964       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4965 
4966   llvm::Value *Size;
4967   // Define type kmp_depend_info[<Dependencies.size()>];
4968   // For depobj reserve one extra element to store the number of elements.
4969   // It is required to handle depobj(x) update(in) construct.
4970   // kmp_depend_info[<Dependencies.size()>] deps;
4971   llvm::Value *NumDepsVal;
4972   CharUnits Align = C.getTypeAlignInChars(KmpDependInfoTy);
4973   if (const auto *IE =
4974           cast_or_null<OMPIteratorExpr>(Dependencies.IteratorExpr)) {
4975     NumDepsVal = llvm::ConstantInt::get(CGF.SizeTy, 1);
4976     for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4977       llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4978       Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4979       NumDepsVal = CGF.Builder.CreateNUWMul(NumDepsVal, Sz);
4980     }
4981     Size = CGF.Builder.CreateNUWAdd(llvm::ConstantInt::get(CGF.SizeTy, 1),
4982                                     NumDepsVal);
4983     CharUnits SizeInBytes =
4984         C.getTypeSizeInChars(KmpDependInfoTy).alignTo(Align);
4985     llvm::Value *RecSize = CGM.getSize(SizeInBytes);
4986     Size = CGF.Builder.CreateNUWMul(Size, RecSize);
4987     NumDepsVal =
4988         CGF.Builder.CreateIntCast(NumDepsVal, CGF.IntPtrTy, /*isSigned=*/false);
4989   } else {
4990     QualType KmpDependInfoArrayTy = C.getConstantArrayType(
4991         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies + 1),
4992         nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
4993     CharUnits Sz = C.getTypeSizeInChars(KmpDependInfoArrayTy);
4994     Size = CGM.getSize(Sz.alignTo(Align));
4995     NumDepsVal = llvm::ConstantInt::get(CGF.IntPtrTy, NumDependencies);
4996   }
4997   // Need to allocate on the dynamic memory.
4998   llvm::Value *ThreadID = getThreadID(CGF, Loc);
4999   // Use default allocator.
5000   llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5001   llvm::Value *Args[] = {ThreadID, Size, Allocator};
5002 
5003   llvm::Value *Addr =
5004       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5005                               CGM.getModule(), OMPRTL___kmpc_alloc),
5006                           Args, ".dep.arr.addr");
5007   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5008       Addr, CGF.ConvertTypeForMem(KmpDependInfoTy)->getPointerTo());
5009   DependenciesArray = Address(Addr, Align);
5010   // Write number of elements in the first element of array for depobj.
5011   LValue Base = CGF.MakeAddrLValue(DependenciesArray, KmpDependInfoTy);
5012   // deps[i].base_addr = NumDependencies;
5013   LValue BaseAddrLVal = CGF.EmitLValueForField(
5014       Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
5015   CGF.EmitStoreOfScalar(NumDepsVal, BaseAddrLVal);
5016   llvm::PointerUnion<unsigned *, LValue *> Pos;
5017   unsigned Idx = 1;
5018   LValue PosLVal;
5019   if (Dependencies.IteratorExpr) {
5020     PosLVal = CGF.MakeAddrLValue(
5021         CGF.CreateMemTemp(C.getSizeType(), "iterator.counter.addr"),
5022         C.getSizeType());
5023     CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Idx), PosLVal,
5024                           /*IsInit=*/true);
5025     Pos = &PosLVal;
5026   } else {
5027     Pos = &Idx;
5028   }
5029   emitDependData(CGF, KmpDependInfoTy, Pos, Dependencies, DependenciesArray);
5030   DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5031       CGF.Builder.CreateConstGEP(DependenciesArray, 1), CGF.VoidPtrTy);
5032   return DependenciesArray;
5033 }
5034 
emitDestroyClause(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)5035 void CGOpenMPRuntime::emitDestroyClause(CodeGenFunction &CGF, LValue DepobjLVal,
5036                                         SourceLocation Loc) {
5037   ASTContext &C = CGM.getContext();
5038   QualType FlagsTy;
5039   getDependTypes(C, KmpDependInfoTy, FlagsTy);
5040   LValue Base = CGF.EmitLoadOfPointerLValue(
5041       DepobjLVal.getAddress(CGF),
5042       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5043   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
5044   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5045       Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy));
5046   llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
5047       Addr.getPointer(),
5048       llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
5049   DepObjAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(DepObjAddr,
5050                                                                CGF.VoidPtrTy);
5051   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5052   // Use default allocator.
5053   llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5054   llvm::Value *Args[] = {ThreadID, DepObjAddr, Allocator};
5055 
5056   // _kmpc_free(gtid, addr, nullptr);
5057   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5058                                 CGM.getModule(), OMPRTL___kmpc_free),
5059                             Args);
5060 }
5061 
emitUpdateClause(CodeGenFunction & CGF,LValue DepobjLVal,OpenMPDependClauseKind NewDepKind,SourceLocation Loc)5062 void CGOpenMPRuntime::emitUpdateClause(CodeGenFunction &CGF, LValue DepobjLVal,
5063                                        OpenMPDependClauseKind NewDepKind,
5064                                        SourceLocation Loc) {
5065   ASTContext &C = CGM.getContext();
5066   QualType FlagsTy;
5067   getDependTypes(C, KmpDependInfoTy, FlagsTy);
5068   RecordDecl *KmpDependInfoRD =
5069       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
5070   llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
5071   llvm::Value *NumDeps;
5072   LValue Base;
5073   std::tie(NumDeps, Base) = getDepobjElements(CGF, DepobjLVal, Loc);
5074 
5075   Address Begin = Base.getAddress(CGF);
5076   // Cast from pointer to array type to pointer to single element.
5077   llvm::Value *End = CGF.Builder.CreateGEP(Begin.getPointer(), NumDeps);
5078   // The basic structure here is a while-do loop.
5079   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.body");
5080   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.done");
5081   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5082   CGF.EmitBlock(BodyBB);
5083   llvm::PHINode *ElementPHI =
5084       CGF.Builder.CreatePHI(Begin.getType(), 2, "omp.elementPast");
5085   ElementPHI->addIncoming(Begin.getPointer(), EntryBB);
5086   Begin = Address(ElementPHI, Begin.getAlignment());
5087   Base = CGF.MakeAddrLValue(Begin, KmpDependInfoTy, Base.getBaseInfo(),
5088                             Base.getTBAAInfo());
5089   // deps[i].flags = NewDepKind;
5090   RTLDependenceKindTy DepKind = translateDependencyKind(NewDepKind);
5091   LValue FlagsLVal = CGF.EmitLValueForField(
5092       Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
5093   CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
5094                         FlagsLVal);
5095 
5096   // Shift the address forward by one element.
5097   Address ElementNext =
5098       CGF.Builder.CreateConstGEP(Begin, /*Index=*/1, "omp.elementNext");
5099   ElementPHI->addIncoming(ElementNext.getPointer(),
5100                           CGF.Builder.GetInsertBlock());
5101   llvm::Value *IsEmpty =
5102       CGF.Builder.CreateICmpEQ(ElementNext.getPointer(), End, "omp.isempty");
5103   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5104   // Done.
5105   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5106 }
5107 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5108 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
5109                                    const OMPExecutableDirective &D,
5110                                    llvm::Function *TaskFunction,
5111                                    QualType SharedsTy, Address Shareds,
5112                                    const Expr *IfCond,
5113                                    const OMPTaskDataTy &Data) {
5114   if (!CGF.HaveInsertPoint())
5115     return;
5116 
5117   TaskResultTy Result =
5118       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5119   llvm::Value *NewTask = Result.NewTask;
5120   llvm::Function *TaskEntry = Result.TaskEntry;
5121   llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
5122   LValue TDBase = Result.TDBase;
5123   const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
5124   // Process list of dependences.
5125   Address DependenciesArray = Address::invalid();
5126   llvm::Value *NumOfElements;
5127   std::tie(NumOfElements, DependenciesArray) =
5128       emitDependClause(CGF, Data.Dependences, Loc);
5129 
5130   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5131   // libcall.
5132   // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
5133   // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
5134   // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
5135   // list is not empty
5136   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5137   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5138   llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
5139   llvm::Value *DepTaskArgs[7];
5140   if (!Data.Dependences.empty()) {
5141     DepTaskArgs[0] = UpLoc;
5142     DepTaskArgs[1] = ThreadID;
5143     DepTaskArgs[2] = NewTask;
5144     DepTaskArgs[3] = NumOfElements;
5145     DepTaskArgs[4] = DependenciesArray.getPointer();
5146     DepTaskArgs[5] = CGF.Builder.getInt32(0);
5147     DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5148   }
5149   auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, &TaskArgs,
5150                         &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
5151     if (!Data.Tied) {
5152       auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
5153       LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
5154       CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
5155     }
5156     if (!Data.Dependences.empty()) {
5157       CGF.EmitRuntimeCall(
5158           OMPBuilder.getOrCreateRuntimeFunction(
5159               CGM.getModule(), OMPRTL___kmpc_omp_task_with_deps),
5160           DepTaskArgs);
5161     } else {
5162       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5163                               CGM.getModule(), OMPRTL___kmpc_omp_task),
5164                           TaskArgs);
5165     }
5166     // Check if parent region is untied and build return for untied task;
5167     if (auto *Region =
5168             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
5169       Region->emitUntiedSwitch(CGF);
5170   };
5171 
5172   llvm::Value *DepWaitTaskArgs[6];
5173   if (!Data.Dependences.empty()) {
5174     DepWaitTaskArgs[0] = UpLoc;
5175     DepWaitTaskArgs[1] = ThreadID;
5176     DepWaitTaskArgs[2] = NumOfElements;
5177     DepWaitTaskArgs[3] = DependenciesArray.getPointer();
5178     DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
5179     DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5180   }
5181   auto &M = CGM.getModule();
5182   auto &&ElseCodeGen = [this, &M, &TaskArgs, ThreadID, NewTaskNewTaskTTy,
5183                         TaskEntry, &Data, &DepWaitTaskArgs,
5184                         Loc](CodeGenFunction &CGF, PrePostActionTy &) {
5185     CodeGenFunction::RunCleanupsScope LocalScope(CGF);
5186     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
5187     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
5188     // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
5189     // is specified.
5190     if (!Data.Dependences.empty())
5191       CGF.EmitRuntimeCall(
5192           OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_omp_wait_deps),
5193           DepWaitTaskArgs);
5194     // Call proxy_task_entry(gtid, new_task);
5195     auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
5196                       Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
5197       Action.Enter(CGF);
5198       llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
5199       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
5200                                                           OutlinedFnArgs);
5201     };
5202 
5203     // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
5204     // kmp_task_t *new_task);
5205     // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
5206     // kmp_task_t *new_task);
5207     RegionCodeGenTy RCG(CodeGen);
5208     CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
5209                               M, OMPRTL___kmpc_omp_task_begin_if0),
5210                           TaskArgs,
5211                           OMPBuilder.getOrCreateRuntimeFunction(
5212                               M, OMPRTL___kmpc_omp_task_complete_if0),
5213                           TaskArgs);
5214     RCG.setAction(Action);
5215     RCG(CGF);
5216   };
5217 
5218   if (IfCond) {
5219     emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
5220   } else {
5221     RegionCodeGenTy ThenRCG(ThenCodeGen);
5222     ThenRCG(CGF);
5223   }
5224 }
5225 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5226 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
5227                                        const OMPLoopDirective &D,
5228                                        llvm::Function *TaskFunction,
5229                                        QualType SharedsTy, Address Shareds,
5230                                        const Expr *IfCond,
5231                                        const OMPTaskDataTy &Data) {
5232   if (!CGF.HaveInsertPoint())
5233     return;
5234   TaskResultTy Result =
5235       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5236   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5237   // libcall.
5238   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
5239   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
5240   // sched, kmp_uint64 grainsize, void *task_dup);
5241   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5242   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5243   llvm::Value *IfVal;
5244   if (IfCond) {
5245     IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
5246                                       /*isSigned=*/true);
5247   } else {
5248     IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
5249   }
5250 
5251   LValue LBLVal = CGF.EmitLValueForField(
5252       Result.TDBase,
5253       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
5254   const auto *LBVar =
5255       cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
5256   CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF),
5257                        LBLVal.getQuals(),
5258                        /*IsInitializer=*/true);
5259   LValue UBLVal = CGF.EmitLValueForField(
5260       Result.TDBase,
5261       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
5262   const auto *UBVar =
5263       cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
5264   CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF),
5265                        UBLVal.getQuals(),
5266                        /*IsInitializer=*/true);
5267   LValue StLVal = CGF.EmitLValueForField(
5268       Result.TDBase,
5269       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
5270   const auto *StVar =
5271       cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
5272   CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF),
5273                        StLVal.getQuals(),
5274                        /*IsInitializer=*/true);
5275   // Store reductions address.
5276   LValue RedLVal = CGF.EmitLValueForField(
5277       Result.TDBase,
5278       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
5279   if (Data.Reductions) {
5280     CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
5281   } else {
5282     CGF.EmitNullInitialization(RedLVal.getAddress(CGF),
5283                                CGF.getContext().VoidPtrTy);
5284   }
5285   enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
5286   llvm::Value *TaskArgs[] = {
5287       UpLoc,
5288       ThreadID,
5289       Result.NewTask,
5290       IfVal,
5291       LBLVal.getPointer(CGF),
5292       UBLVal.getPointer(CGF),
5293       CGF.EmitLoadOfScalar(StLVal, Loc),
5294       llvm::ConstantInt::getSigned(
5295           CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
5296       llvm::ConstantInt::getSigned(
5297           CGF.IntTy, Data.Schedule.getPointer()
5298                          ? Data.Schedule.getInt() ? NumTasks : Grainsize
5299                          : NoSchedule),
5300       Data.Schedule.getPointer()
5301           ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
5302                                       /*isSigned=*/false)
5303           : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
5304       Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5305                              Result.TaskDupFn, CGF.VoidPtrTy)
5306                        : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
5307   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5308                           CGM.getModule(), OMPRTL___kmpc_taskloop),
5309                       TaskArgs);
5310 }
5311 
5312 /// Emit reduction operation for each element of array (required for
5313 /// array sections) LHS op = RHS.
5314 /// \param Type Type of array.
5315 /// \param LHSVar Variable on the left side of the reduction operation
5316 /// (references element of array in original variable).
5317 /// \param RHSVar Variable on the right side of the reduction operation
5318 /// (references element of array in original variable).
5319 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
5320 /// RHSVar.
EmitOMPAggregateReduction(CodeGenFunction & CGF,QualType Type,const VarDecl * LHSVar,const VarDecl * RHSVar,const llvm::function_ref<void (CodeGenFunction & CGF,const Expr *,const Expr *,const Expr *)> & RedOpGen,const Expr * XExpr=nullptr,const Expr * EExpr=nullptr,const Expr * UpExpr=nullptr)5321 static void EmitOMPAggregateReduction(
5322     CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
5323     const VarDecl *RHSVar,
5324     const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
5325                                   const Expr *, const Expr *)> &RedOpGen,
5326     const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
5327     const Expr *UpExpr = nullptr) {
5328   // Perform element-by-element initialization.
5329   QualType ElementTy;
5330   Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
5331   Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
5332 
5333   // Drill down to the base element type on both arrays.
5334   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
5335   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
5336 
5337   llvm::Value *RHSBegin = RHSAddr.getPointer();
5338   llvm::Value *LHSBegin = LHSAddr.getPointer();
5339   // Cast from pointer to array type to pointer to single element.
5340   llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
5341   // The basic structure here is a while-do loop.
5342   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
5343   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
5344   llvm::Value *IsEmpty =
5345       CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
5346   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5347 
5348   // Enter the loop body, making that address the current address.
5349   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5350   CGF.EmitBlock(BodyBB);
5351 
5352   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
5353 
5354   llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
5355       RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
5356   RHSElementPHI->addIncoming(RHSBegin, EntryBB);
5357   Address RHSElementCurrent =
5358       Address(RHSElementPHI,
5359               RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5360 
5361   llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
5362       LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
5363   LHSElementPHI->addIncoming(LHSBegin, EntryBB);
5364   Address LHSElementCurrent =
5365       Address(LHSElementPHI,
5366               LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5367 
5368   // Emit copy.
5369   CodeGenFunction::OMPPrivateScope Scope(CGF);
5370   Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
5371   Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
5372   Scope.Privatize();
5373   RedOpGen(CGF, XExpr, EExpr, UpExpr);
5374   Scope.ForceCleanup();
5375 
5376   // Shift the address forward by one element.
5377   llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
5378       LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
5379   llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
5380       RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
5381   // Check whether we've reached the end.
5382   llvm::Value *Done =
5383       CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
5384   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
5385   LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
5386   RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
5387 
5388   // Done.
5389   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5390 }
5391 
5392 /// Emit reduction combiner. If the combiner is a simple expression emit it as
5393 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
5394 /// UDR combiner function.
emitReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp)5395 static void emitReductionCombiner(CodeGenFunction &CGF,
5396                                   const Expr *ReductionOp) {
5397   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
5398     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
5399       if (const auto *DRE =
5400               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
5401         if (const auto *DRD =
5402                 dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
5403           std::pair<llvm::Function *, llvm::Function *> Reduction =
5404               CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
5405           RValue Func = RValue::get(Reduction.first);
5406           CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
5407           CGF.EmitIgnoredExpr(ReductionOp);
5408           return;
5409         }
5410   CGF.EmitIgnoredExpr(ReductionOp);
5411 }
5412 
emitReductionFunction(SourceLocation Loc,llvm::Type * ArgsType,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps)5413 llvm::Function *CGOpenMPRuntime::emitReductionFunction(
5414     SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
5415     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
5416     ArrayRef<const Expr *> ReductionOps) {
5417   ASTContext &C = CGM.getContext();
5418 
5419   // void reduction_func(void *LHSArg, void *RHSArg);
5420   FunctionArgList Args;
5421   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5422                            ImplicitParamDecl::Other);
5423   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5424                            ImplicitParamDecl::Other);
5425   Args.push_back(&LHSArg);
5426   Args.push_back(&RHSArg);
5427   const auto &CGFI =
5428       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5429   std::string Name = getName({"omp", "reduction", "reduction_func"});
5430   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
5431                                     llvm::GlobalValue::InternalLinkage, Name,
5432                                     &CGM.getModule());
5433   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
5434   Fn->setDoesNotRecurse();
5435   CodeGenFunction CGF(CGM);
5436   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
5437 
5438   // Dst = (void*[n])(LHSArg);
5439   // Src = (void*[n])(RHSArg);
5440   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5441       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
5442       ArgsType), CGF.getPointerAlign());
5443   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5444       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
5445       ArgsType), CGF.getPointerAlign());
5446 
5447   //  ...
5448   //  *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
5449   //  ...
5450   CodeGenFunction::OMPPrivateScope Scope(CGF);
5451   auto IPriv = Privates.begin();
5452   unsigned Idx = 0;
5453   for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
5454     const auto *RHSVar =
5455         cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
5456     Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
5457       return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
5458     });
5459     const auto *LHSVar =
5460         cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
5461     Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
5462       return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
5463     });
5464     QualType PrivTy = (*IPriv)->getType();
5465     if (PrivTy->isVariablyModifiedType()) {
5466       // Get array size and emit VLA type.
5467       ++Idx;
5468       Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
5469       llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
5470       const VariableArrayType *VLA =
5471           CGF.getContext().getAsVariableArrayType(PrivTy);
5472       const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
5473       CodeGenFunction::OpaqueValueMapping OpaqueMap(
5474           CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
5475       CGF.EmitVariablyModifiedType(PrivTy);
5476     }
5477   }
5478   Scope.Privatize();
5479   IPriv = Privates.begin();
5480   auto ILHS = LHSExprs.begin();
5481   auto IRHS = RHSExprs.begin();
5482   for (const Expr *E : ReductionOps) {
5483     if ((*IPriv)->getType()->isArrayType()) {
5484       // Emit reduction for array section.
5485       const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5486       const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5487       EmitOMPAggregateReduction(
5488           CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5489           [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5490             emitReductionCombiner(CGF, E);
5491           });
5492     } else {
5493       // Emit reduction for array subscript or single variable.
5494       emitReductionCombiner(CGF, E);
5495     }
5496     ++IPriv;
5497     ++ILHS;
5498     ++IRHS;
5499   }
5500   Scope.ForceCleanup();
5501   CGF.FinishFunction();
5502   return Fn;
5503 }
5504 
emitSingleReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp,const Expr * PrivateRef,const DeclRefExpr * LHS,const DeclRefExpr * RHS)5505 void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
5506                                                   const Expr *ReductionOp,
5507                                                   const Expr *PrivateRef,
5508                                                   const DeclRefExpr *LHS,
5509                                                   const DeclRefExpr *RHS) {
5510   if (PrivateRef->getType()->isArrayType()) {
5511     // Emit reduction for array section.
5512     const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
5513     const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
5514     EmitOMPAggregateReduction(
5515         CGF, PrivateRef->getType(), LHSVar, RHSVar,
5516         [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5517           emitReductionCombiner(CGF, ReductionOp);
5518         });
5519   } else {
5520     // Emit reduction for array subscript or single variable.
5521     emitReductionCombiner(CGF, ReductionOp);
5522   }
5523 }
5524 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)5525 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
5526                                     ArrayRef<const Expr *> Privates,
5527                                     ArrayRef<const Expr *> LHSExprs,
5528                                     ArrayRef<const Expr *> RHSExprs,
5529                                     ArrayRef<const Expr *> ReductionOps,
5530                                     ReductionOptionsTy Options) {
5531   if (!CGF.HaveInsertPoint())
5532     return;
5533 
5534   bool WithNowait = Options.WithNowait;
5535   bool SimpleReduction = Options.SimpleReduction;
5536 
5537   // Next code should be emitted for reduction:
5538   //
5539   // static kmp_critical_name lock = { 0 };
5540   //
5541   // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
5542   //  *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
5543   //  ...
5544   //  *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
5545   //  *(Type<n>-1*)rhs[<n>-1]);
5546   // }
5547   //
5548   // ...
5549   // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
5550   // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5551   // RedList, reduce_func, &<lock>)) {
5552   // case 1:
5553   //  ...
5554   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5555   //  ...
5556   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5557   // break;
5558   // case 2:
5559   //  ...
5560   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5561   //  ...
5562   // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
5563   // break;
5564   // default:;
5565   // }
5566   //
5567   // if SimpleReduction is true, only the next code is generated:
5568   //  ...
5569   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5570   //  ...
5571 
5572   ASTContext &C = CGM.getContext();
5573 
5574   if (SimpleReduction) {
5575     CodeGenFunction::RunCleanupsScope Scope(CGF);
5576     auto IPriv = Privates.begin();
5577     auto ILHS = LHSExprs.begin();
5578     auto IRHS = RHSExprs.begin();
5579     for (const Expr *E : ReductionOps) {
5580       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5581                                   cast<DeclRefExpr>(*IRHS));
5582       ++IPriv;
5583       ++ILHS;
5584       ++IRHS;
5585     }
5586     return;
5587   }
5588 
5589   // 1. Build a list of reduction variables.
5590   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
5591   auto Size = RHSExprs.size();
5592   for (const Expr *E : Privates) {
5593     if (E->getType()->isVariablyModifiedType())
5594       // Reserve place for array size.
5595       ++Size;
5596   }
5597   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
5598   QualType ReductionArrayTy =
5599       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
5600                              /*IndexTypeQuals=*/0);
5601   Address ReductionList =
5602       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
5603   auto IPriv = Privates.begin();
5604   unsigned Idx = 0;
5605   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
5606     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5607     CGF.Builder.CreateStore(
5608         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5609             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
5610         Elem);
5611     if ((*IPriv)->getType()->isVariablyModifiedType()) {
5612       // Store array size.
5613       ++Idx;
5614       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5615       llvm::Value *Size = CGF.Builder.CreateIntCast(
5616           CGF.getVLASize(
5617                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
5618               .NumElts,
5619           CGF.SizeTy, /*isSigned=*/false);
5620       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
5621                               Elem);
5622     }
5623   }
5624 
5625   // 2. Emit reduce_func().
5626   llvm::Function *ReductionFn = emitReductionFunction(
5627       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
5628       LHSExprs, RHSExprs, ReductionOps);
5629 
5630   // 3. Create static kmp_critical_name lock = { 0 };
5631   std::string Name = getName({"reduction"});
5632   llvm::Value *Lock = getCriticalRegionLock(Name);
5633 
5634   // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5635   // RedList, reduce_func, &<lock>);
5636   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
5637   llvm::Value *ThreadId = getThreadID(CGF, Loc);
5638   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
5639   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5640       ReductionList.getPointer(), CGF.VoidPtrTy);
5641   llvm::Value *Args[] = {
5642       IdentTLoc,                             // ident_t *<loc>
5643       ThreadId,                              // i32 <gtid>
5644       CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
5645       ReductionArrayTySize,                  // size_type sizeof(RedList)
5646       RL,                                    // void *RedList
5647       ReductionFn, // void (*) (void *, void *) <reduce_func>
5648       Lock         // kmp_critical_name *&<lock>
5649   };
5650   llvm::Value *Res = CGF.EmitRuntimeCall(
5651       OMPBuilder.getOrCreateRuntimeFunction(
5652           CGM.getModule(),
5653           WithNowait ? OMPRTL___kmpc_reduce_nowait : OMPRTL___kmpc_reduce),
5654       Args);
5655 
5656   // 5. Build switch(res)
5657   llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
5658   llvm::SwitchInst *SwInst =
5659       CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
5660 
5661   // 6. Build case 1:
5662   //  ...
5663   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5664   //  ...
5665   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5666   // break;
5667   llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
5668   SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
5669   CGF.EmitBlock(Case1BB);
5670 
5671   // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5672   llvm::Value *EndArgs[] = {
5673       IdentTLoc, // ident_t *<loc>
5674       ThreadId,  // i32 <gtid>
5675       Lock       // kmp_critical_name *&<lock>
5676   };
5677   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
5678                        CodeGenFunction &CGF, PrePostActionTy &Action) {
5679     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5680     auto IPriv = Privates.begin();
5681     auto ILHS = LHSExprs.begin();
5682     auto IRHS = RHSExprs.begin();
5683     for (const Expr *E : ReductionOps) {
5684       RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5685                                      cast<DeclRefExpr>(*IRHS));
5686       ++IPriv;
5687       ++ILHS;
5688       ++IRHS;
5689     }
5690   };
5691   RegionCodeGenTy RCG(CodeGen);
5692   CommonActionTy Action(
5693       nullptr, llvm::None,
5694       OMPBuilder.getOrCreateRuntimeFunction(
5695           CGM.getModule(), WithNowait ? OMPRTL___kmpc_end_reduce_nowait
5696                                       : OMPRTL___kmpc_end_reduce),
5697       EndArgs);
5698   RCG.setAction(Action);
5699   RCG(CGF);
5700 
5701   CGF.EmitBranch(DefaultBB);
5702 
5703   // 7. Build case 2:
5704   //  ...
5705   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5706   //  ...
5707   // break;
5708   llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
5709   SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
5710   CGF.EmitBlock(Case2BB);
5711 
5712   auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
5713                              CodeGenFunction &CGF, PrePostActionTy &Action) {
5714     auto ILHS = LHSExprs.begin();
5715     auto IRHS = RHSExprs.begin();
5716     auto IPriv = Privates.begin();
5717     for (const Expr *E : ReductionOps) {
5718       const Expr *XExpr = nullptr;
5719       const Expr *EExpr = nullptr;
5720       const Expr *UpExpr = nullptr;
5721       BinaryOperatorKind BO = BO_Comma;
5722       if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
5723         if (BO->getOpcode() == BO_Assign) {
5724           XExpr = BO->getLHS();
5725           UpExpr = BO->getRHS();
5726         }
5727       }
5728       // Try to emit update expression as a simple atomic.
5729       const Expr *RHSExpr = UpExpr;
5730       if (RHSExpr) {
5731         // Analyze RHS part of the whole expression.
5732         if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
5733                 RHSExpr->IgnoreParenImpCasts())) {
5734           // If this is a conditional operator, analyze its condition for
5735           // min/max reduction operator.
5736           RHSExpr = ACO->getCond();
5737         }
5738         if (const auto *BORHS =
5739                 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
5740           EExpr = BORHS->getRHS();
5741           BO = BORHS->getOpcode();
5742         }
5743       }
5744       if (XExpr) {
5745         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5746         auto &&AtomicRedGen = [BO, VD,
5747                                Loc](CodeGenFunction &CGF, const Expr *XExpr,
5748                                     const Expr *EExpr, const Expr *UpExpr) {
5749           LValue X = CGF.EmitLValue(XExpr);
5750           RValue E;
5751           if (EExpr)
5752             E = CGF.EmitAnyExpr(EExpr);
5753           CGF.EmitOMPAtomicSimpleUpdateExpr(
5754               X, E, BO, /*IsXLHSInRHSPart=*/true,
5755               llvm::AtomicOrdering::Monotonic, Loc,
5756               [&CGF, UpExpr, VD, Loc](RValue XRValue) {
5757                 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5758                 PrivateScope.addPrivate(
5759                     VD, [&CGF, VD, XRValue, Loc]() {
5760                       Address LHSTemp = CGF.CreateMemTemp(VD->getType());
5761                       CGF.emitOMPSimpleStore(
5762                           CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
5763                           VD->getType().getNonReferenceType(), Loc);
5764                       return LHSTemp;
5765                     });
5766                 (void)PrivateScope.Privatize();
5767                 return CGF.EmitAnyExpr(UpExpr);
5768               });
5769         };
5770         if ((*IPriv)->getType()->isArrayType()) {
5771           // Emit atomic reduction for array section.
5772           const auto *RHSVar =
5773               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5774           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
5775                                     AtomicRedGen, XExpr, EExpr, UpExpr);
5776         } else {
5777           // Emit atomic reduction for array subscript or single variable.
5778           AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
5779         }
5780       } else {
5781         // Emit as a critical region.
5782         auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
5783                                            const Expr *, const Expr *) {
5784           CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5785           std::string Name = RT.getName({"atomic_reduction"});
5786           RT.emitCriticalRegion(
5787               CGF, Name,
5788               [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
5789                 Action.Enter(CGF);
5790                 emitReductionCombiner(CGF, E);
5791               },
5792               Loc);
5793         };
5794         if ((*IPriv)->getType()->isArrayType()) {
5795           const auto *LHSVar =
5796               cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5797           const auto *RHSVar =
5798               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5799           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5800                                     CritRedGen);
5801         } else {
5802           CritRedGen(CGF, nullptr, nullptr, nullptr);
5803         }
5804       }
5805       ++ILHS;
5806       ++IRHS;
5807       ++IPriv;
5808     }
5809   };
5810   RegionCodeGenTy AtomicRCG(AtomicCodeGen);
5811   if (!WithNowait) {
5812     // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
5813     llvm::Value *EndArgs[] = {
5814         IdentTLoc, // ident_t *<loc>
5815         ThreadId,  // i32 <gtid>
5816         Lock       // kmp_critical_name *&<lock>
5817     };
5818     CommonActionTy Action(nullptr, llvm::None,
5819                           OMPBuilder.getOrCreateRuntimeFunction(
5820                               CGM.getModule(), OMPRTL___kmpc_end_reduce),
5821                           EndArgs);
5822     AtomicRCG.setAction(Action);
5823     AtomicRCG(CGF);
5824   } else {
5825     AtomicRCG(CGF);
5826   }
5827 
5828   CGF.EmitBranch(DefaultBB);
5829   CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
5830 }
5831 
5832 /// Generates unique name for artificial threadprivate variables.
5833 /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
generateUniqueName(CodeGenModule & CGM,StringRef Prefix,const Expr * Ref)5834 static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
5835                                       const Expr *Ref) {
5836   SmallString<256> Buffer;
5837   llvm::raw_svector_ostream Out(Buffer);
5838   const clang::DeclRefExpr *DE;
5839   const VarDecl *D = ::getBaseDecl(Ref, DE);
5840   if (!D)
5841     D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
5842   D = D->getCanonicalDecl();
5843   std::string Name = CGM.getOpenMPRuntime().getName(
5844       {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
5845   Out << Prefix << Name << "_"
5846       << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
5847   return std::string(Out.str());
5848 }
5849 
5850 /// Emits reduction initializer function:
5851 /// \code
5852 /// void @.red_init(void* %arg, void* %orig) {
5853 /// %0 = bitcast void* %arg to <type>*
5854 /// store <type> <init>, <type>* %0
5855 /// ret void
5856 /// }
5857 /// \endcode
emitReduceInitFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5858 static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
5859                                            SourceLocation Loc,
5860                                            ReductionCodeGen &RCG, unsigned N) {
5861   ASTContext &C = CGM.getContext();
5862   QualType VoidPtrTy = C.VoidPtrTy;
5863   VoidPtrTy.addRestrict();
5864   FunctionArgList Args;
5865   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5866                           ImplicitParamDecl::Other);
5867   ImplicitParamDecl ParamOrig(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5868                               ImplicitParamDecl::Other);
5869   Args.emplace_back(&Param);
5870   Args.emplace_back(&ParamOrig);
5871   const auto &FnInfo =
5872       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5873   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5874   std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
5875   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5876                                     Name, &CGM.getModule());
5877   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5878   Fn->setDoesNotRecurse();
5879   CodeGenFunction CGF(CGM);
5880   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5881   Address PrivateAddr = CGF.EmitLoadOfPointer(
5882       CGF.GetAddrOfLocalVar(&Param),
5883       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5884   llvm::Value *Size = nullptr;
5885   // If the size of the reduction item is non-constant, load it from global
5886   // threadprivate variable.
5887   if (RCG.getSizes(N).second) {
5888     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5889         CGF, CGM.getContext().getSizeType(),
5890         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5891     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5892                                 CGM.getContext().getSizeType(), Loc);
5893   }
5894   RCG.emitAggregateType(CGF, N, Size);
5895   LValue OrigLVal;
5896   // If initializer uses initializer from declare reduction construct, emit a
5897   // pointer to the address of the original reduction item (reuired by reduction
5898   // initializer)
5899   if (RCG.usesReductionInitializer(N)) {
5900     Address SharedAddr = CGF.GetAddrOfLocalVar(&ParamOrig);
5901     SharedAddr = CGF.EmitLoadOfPointer(
5902         SharedAddr,
5903         CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
5904     OrigLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
5905   } else {
5906     OrigLVal = CGF.MakeNaturalAlignAddrLValue(
5907         llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
5908         CGM.getContext().VoidPtrTy);
5909   }
5910   // Emit the initializer:
5911   // %0 = bitcast void* %arg to <type>*
5912   // store <type> <init>, <type>* %0
5913   RCG.emitInitialization(CGF, N, PrivateAddr, OrigLVal,
5914                          [](CodeGenFunction &) { return false; });
5915   CGF.FinishFunction();
5916   return Fn;
5917 }
5918 
5919 /// Emits reduction combiner function:
5920 /// \code
5921 /// void @.red_comb(void* %arg0, void* %arg1) {
5922 /// %lhs = bitcast void* %arg0 to <type>*
5923 /// %rhs = bitcast void* %arg1 to <type>*
5924 /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
5925 /// store <type> %2, <type>* %lhs
5926 /// ret void
5927 /// }
5928 /// \endcode
emitReduceCombFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N,const Expr * ReductionOp,const Expr * LHS,const Expr * RHS,const Expr * PrivateRef)5929 static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
5930                                            SourceLocation Loc,
5931                                            ReductionCodeGen &RCG, unsigned N,
5932                                            const Expr *ReductionOp,
5933                                            const Expr *LHS, const Expr *RHS,
5934                                            const Expr *PrivateRef) {
5935   ASTContext &C = CGM.getContext();
5936   const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
5937   const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
5938   FunctionArgList Args;
5939   ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
5940                                C.VoidPtrTy, ImplicitParamDecl::Other);
5941   ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5942                             ImplicitParamDecl::Other);
5943   Args.emplace_back(&ParamInOut);
5944   Args.emplace_back(&ParamIn);
5945   const auto &FnInfo =
5946       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5947   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5948   std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
5949   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5950                                     Name, &CGM.getModule());
5951   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5952   Fn->setDoesNotRecurse();
5953   CodeGenFunction CGF(CGM);
5954   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5955   llvm::Value *Size = nullptr;
5956   // If the size of the reduction item is non-constant, load it from global
5957   // threadprivate variable.
5958   if (RCG.getSizes(N).second) {
5959     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5960         CGF, CGM.getContext().getSizeType(),
5961         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5962     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5963                                 CGM.getContext().getSizeType(), Loc);
5964   }
5965   RCG.emitAggregateType(CGF, N, Size);
5966   // Remap lhs and rhs variables to the addresses of the function arguments.
5967   // %lhs = bitcast void* %arg0 to <type>*
5968   // %rhs = bitcast void* %arg1 to <type>*
5969   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5970   PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
5971     // Pull out the pointer to the variable.
5972     Address PtrAddr = CGF.EmitLoadOfPointer(
5973         CGF.GetAddrOfLocalVar(&ParamInOut),
5974         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5975     return CGF.Builder.CreateElementBitCast(
5976         PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
5977   });
5978   PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
5979     // Pull out the pointer to the variable.
5980     Address PtrAddr = CGF.EmitLoadOfPointer(
5981         CGF.GetAddrOfLocalVar(&ParamIn),
5982         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5983     return CGF.Builder.CreateElementBitCast(
5984         PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
5985   });
5986   PrivateScope.Privatize();
5987   // Emit the combiner body:
5988   // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
5989   // store <type> %2, <type>* %lhs
5990   CGM.getOpenMPRuntime().emitSingleReductionCombiner(
5991       CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
5992       cast<DeclRefExpr>(RHS));
5993   CGF.FinishFunction();
5994   return Fn;
5995 }
5996 
5997 /// Emits reduction finalizer function:
5998 /// \code
5999 /// void @.red_fini(void* %arg) {
6000 /// %0 = bitcast void* %arg to <type>*
6001 /// <destroy>(<type>* %0)
6002 /// ret void
6003 /// }
6004 /// \endcode
emitReduceFiniFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6005 static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
6006                                            SourceLocation Loc,
6007                                            ReductionCodeGen &RCG, unsigned N) {
6008   if (!RCG.needCleanups(N))
6009     return nullptr;
6010   ASTContext &C = CGM.getContext();
6011   FunctionArgList Args;
6012   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
6013                           ImplicitParamDecl::Other);
6014   Args.emplace_back(&Param);
6015   const auto &FnInfo =
6016       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
6017   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
6018   std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
6019   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
6020                                     Name, &CGM.getModule());
6021   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
6022   Fn->setDoesNotRecurse();
6023   CodeGenFunction CGF(CGM);
6024   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
6025   Address PrivateAddr = CGF.EmitLoadOfPointer(
6026       CGF.GetAddrOfLocalVar(&Param),
6027       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6028   llvm::Value *Size = nullptr;
6029   // If the size of the reduction item is non-constant, load it from global
6030   // threadprivate variable.
6031   if (RCG.getSizes(N).second) {
6032     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6033         CGF, CGM.getContext().getSizeType(),
6034         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6035     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6036                                 CGM.getContext().getSizeType(), Loc);
6037   }
6038   RCG.emitAggregateType(CGF, N, Size);
6039   // Emit the finalizer body:
6040   // <destroy>(<type>* %0)
6041   RCG.emitCleanups(CGF, N, PrivateAddr);
6042   CGF.FinishFunction(Loc);
6043   return Fn;
6044 }
6045 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)6046 llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
6047     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
6048     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
6049   if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
6050     return nullptr;
6051 
6052   // Build typedef struct:
6053   // kmp_taskred_input {
6054   //   void *reduce_shar; // shared reduction item
6055   //   void *reduce_orig; // original reduction item used for initialization
6056   //   size_t reduce_size; // size of data item
6057   //   void *reduce_init; // data initialization routine
6058   //   void *reduce_fini; // data finalization routine
6059   //   void *reduce_comb; // data combiner routine
6060   //   kmp_task_red_flags_t flags; // flags for additional info from compiler
6061   // } kmp_taskred_input_t;
6062   ASTContext &C = CGM.getContext();
6063   RecordDecl *RD = C.buildImplicitRecord("kmp_taskred_input_t");
6064   RD->startDefinition();
6065   const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6066   const FieldDecl *OrigFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6067   const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
6068   const FieldDecl *InitFD  = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6069   const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6070   const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6071   const FieldDecl *FlagsFD = addFieldToRecordDecl(
6072       C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
6073   RD->completeDefinition();
6074   QualType RDType = C.getRecordType(RD);
6075   unsigned Size = Data.ReductionVars.size();
6076   llvm::APInt ArraySize(/*numBits=*/64, Size);
6077   QualType ArrayRDType = C.getConstantArrayType(
6078       RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
6079   // kmp_task_red_input_t .rd_input.[Size];
6080   Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
6081   ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionOrigs,
6082                        Data.ReductionCopies, Data.ReductionOps);
6083   for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
6084     // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
6085     llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
6086                            llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
6087     llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
6088         TaskRedInput.getPointer(), Idxs,
6089         /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
6090         ".rd_input.gep.");
6091     LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
6092     // ElemLVal.reduce_shar = &Shareds[Cnt];
6093     LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
6094     RCG.emitSharedOrigLValue(CGF, Cnt);
6095     llvm::Value *CastedShared =
6096         CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF));
6097     CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
6098     // ElemLVal.reduce_orig = &Origs[Cnt];
6099     LValue OrigLVal = CGF.EmitLValueForField(ElemLVal, OrigFD);
6100     llvm::Value *CastedOrig =
6101         CGF.EmitCastToVoidPtr(RCG.getOrigLValue(Cnt).getPointer(CGF));
6102     CGF.EmitStoreOfScalar(CastedOrig, OrigLVal);
6103     RCG.emitAggregateType(CGF, Cnt);
6104     llvm::Value *SizeValInChars;
6105     llvm::Value *SizeVal;
6106     std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
6107     // We use delayed creation/initialization for VLAs and array sections. It is
6108     // required because runtime does not provide the way to pass the sizes of
6109     // VLAs/array sections to initializer/combiner/finalizer functions. Instead
6110     // threadprivate global variables are used to store these values and use
6111     // them in the functions.
6112     bool DelayedCreation = !!SizeVal;
6113     SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
6114                                                /*isSigned=*/false);
6115     LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
6116     CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
6117     // ElemLVal.reduce_init = init;
6118     LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
6119     llvm::Value *InitAddr =
6120         CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
6121     CGF.EmitStoreOfScalar(InitAddr, InitLVal);
6122     // ElemLVal.reduce_fini = fini;
6123     LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
6124     llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
6125     llvm::Value *FiniAddr = Fini
6126                                 ? CGF.EmitCastToVoidPtr(Fini)
6127                                 : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
6128     CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
6129     // ElemLVal.reduce_comb = comb;
6130     LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
6131     llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
6132         CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
6133         RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
6134     CGF.EmitStoreOfScalar(CombAddr, CombLVal);
6135     // ElemLVal.flags = 0;
6136     LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
6137     if (DelayedCreation) {
6138       CGF.EmitStoreOfScalar(
6139           llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
6140           FlagsLVal);
6141     } else
6142       CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF),
6143                                  FlagsLVal.getType());
6144   }
6145   if (Data.IsReductionWithTaskMod) {
6146     // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
6147     // is_ws, int num, void *data);
6148     llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
6149     llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6150                                                   CGM.IntTy, /*isSigned=*/true);
6151     llvm::Value *Args[] = {
6152         IdentTLoc, GTid,
6153         llvm::ConstantInt::get(CGM.IntTy, Data.IsWorksharingReduction ? 1 : 0,
6154                                /*isSigned=*/true),
6155         llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6156         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6157             TaskRedInput.getPointer(), CGM.VoidPtrTy)};
6158     return CGF.EmitRuntimeCall(
6159         OMPBuilder.getOrCreateRuntimeFunction(
6160             CGM.getModule(), OMPRTL___kmpc_taskred_modifier_init),
6161         Args);
6162   }
6163   // Build call void *__kmpc_taskred_init(int gtid, int num_data, void *data);
6164   llvm::Value *Args[] = {
6165       CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6166                                 /*isSigned=*/true),
6167       llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6168       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
6169                                                       CGM.VoidPtrTy)};
6170   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6171                                  CGM.getModule(), OMPRTL___kmpc_taskred_init),
6172                              Args);
6173 }
6174 
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)6175 void CGOpenMPRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
6176                                             SourceLocation Loc,
6177                                             bool IsWorksharingReduction) {
6178   // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
6179   // is_ws, int num, void *data);
6180   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
6181   llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6182                                                 CGM.IntTy, /*isSigned=*/true);
6183   llvm::Value *Args[] = {IdentTLoc, GTid,
6184                          llvm::ConstantInt::get(CGM.IntTy,
6185                                                 IsWorksharingReduction ? 1 : 0,
6186                                                 /*isSigned=*/true)};
6187   (void)CGF.EmitRuntimeCall(
6188       OMPBuilder.getOrCreateRuntimeFunction(
6189           CGM.getModule(), OMPRTL___kmpc_task_reduction_modifier_fini),
6190       Args);
6191 }
6192 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6193 void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
6194                                               SourceLocation Loc,
6195                                               ReductionCodeGen &RCG,
6196                                               unsigned N) {
6197   auto Sizes = RCG.getSizes(N);
6198   // Emit threadprivate global variable if the type is non-constant
6199   // (Sizes.second = nullptr).
6200   if (Sizes.second) {
6201     llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
6202                                                      /*isSigned=*/false);
6203     Address SizeAddr = getAddrOfArtificialThreadPrivate(
6204         CGF, CGM.getContext().getSizeType(),
6205         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6206     CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
6207   }
6208 }
6209 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)6210 Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
6211                                               SourceLocation Loc,
6212                                               llvm::Value *ReductionsPtr,
6213                                               LValue SharedLVal) {
6214   // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
6215   // *d);
6216   llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6217                                                    CGM.IntTy,
6218                                                    /*isSigned=*/true),
6219                          ReductionsPtr,
6220                          CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6221                              SharedLVal.getPointer(CGF), CGM.VoidPtrTy)};
6222   return Address(
6223       CGF.EmitRuntimeCall(
6224           OMPBuilder.getOrCreateRuntimeFunction(
6225               CGM.getModule(), OMPRTL___kmpc_task_reduction_get_th_data),
6226           Args),
6227       SharedLVal.getAlignment());
6228 }
6229 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)6230 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
6231                                        SourceLocation Loc) {
6232   if (!CGF.HaveInsertPoint())
6233     return;
6234 
6235   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
6236     OMPBuilder.createTaskwait(CGF.Builder);
6237   } else {
6238     // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
6239     // global_tid);
6240     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
6241     // Ignore return result until untied tasks are supported.
6242     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6243                             CGM.getModule(), OMPRTL___kmpc_omp_taskwait),
6244                         Args);
6245   }
6246 
6247   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
6248     Region->emitUntiedSwitch(CGF);
6249 }
6250 
emitInlinedDirective(CodeGenFunction & CGF,OpenMPDirectiveKind InnerKind,const RegionCodeGenTy & CodeGen,bool HasCancel)6251 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
6252                                            OpenMPDirectiveKind InnerKind,
6253                                            const RegionCodeGenTy &CodeGen,
6254                                            bool HasCancel) {
6255   if (!CGF.HaveInsertPoint())
6256     return;
6257   InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel,
6258                                  InnerKind != OMPD_critical &&
6259                                      InnerKind != OMPD_master &&
6260                                      InnerKind != OMPD_masked);
6261   CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
6262 }
6263 
6264 namespace {
6265 enum RTCancelKind {
6266   CancelNoreq = 0,
6267   CancelParallel = 1,
6268   CancelLoop = 2,
6269   CancelSections = 3,
6270   CancelTaskgroup = 4
6271 };
6272 } // anonymous namespace
6273 
getCancellationKind(OpenMPDirectiveKind CancelRegion)6274 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
6275   RTCancelKind CancelKind = CancelNoreq;
6276   if (CancelRegion == OMPD_parallel)
6277     CancelKind = CancelParallel;
6278   else if (CancelRegion == OMPD_for)
6279     CancelKind = CancelLoop;
6280   else if (CancelRegion == OMPD_sections)
6281     CancelKind = CancelSections;
6282   else {
6283     assert(CancelRegion == OMPD_taskgroup);
6284     CancelKind = CancelTaskgroup;
6285   }
6286   return CancelKind;
6287 }
6288 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)6289 void CGOpenMPRuntime::emitCancellationPointCall(
6290     CodeGenFunction &CGF, SourceLocation Loc,
6291     OpenMPDirectiveKind CancelRegion) {
6292   if (!CGF.HaveInsertPoint())
6293     return;
6294   // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
6295   // global_tid, kmp_int32 cncl_kind);
6296   if (auto *OMPRegionInfo =
6297           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6298     // For 'cancellation point taskgroup', the task region info may not have a
6299     // cancel. This may instead happen in another adjacent task.
6300     if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
6301       llvm::Value *Args[] = {
6302           emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
6303           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6304       // Ignore return result until untied tasks are supported.
6305       llvm::Value *Result = CGF.EmitRuntimeCall(
6306           OMPBuilder.getOrCreateRuntimeFunction(
6307               CGM.getModule(), OMPRTL___kmpc_cancellationpoint),
6308           Args);
6309       // if (__kmpc_cancellationpoint()) {
6310       //   exit from construct;
6311       // }
6312       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6313       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6314       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6315       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6316       CGF.EmitBlock(ExitBB);
6317       // exit from construct;
6318       CodeGenFunction::JumpDest CancelDest =
6319           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6320       CGF.EmitBranchThroughCleanup(CancelDest);
6321       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6322     }
6323   }
6324 }
6325 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)6326 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
6327                                      const Expr *IfCond,
6328                                      OpenMPDirectiveKind CancelRegion) {
6329   if (!CGF.HaveInsertPoint())
6330     return;
6331   // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
6332   // kmp_int32 cncl_kind);
6333   auto &M = CGM.getModule();
6334   if (auto *OMPRegionInfo =
6335           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6336     auto &&ThenGen = [this, &M, Loc, CancelRegion,
6337                       OMPRegionInfo](CodeGenFunction &CGF, PrePostActionTy &) {
6338       CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
6339       llvm::Value *Args[] = {
6340           RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
6341           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6342       // Ignore return result until untied tasks are supported.
6343       llvm::Value *Result = CGF.EmitRuntimeCall(
6344           OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_cancel), Args);
6345       // if (__kmpc_cancel()) {
6346       //   exit from construct;
6347       // }
6348       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6349       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6350       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6351       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6352       CGF.EmitBlock(ExitBB);
6353       // exit from construct;
6354       CodeGenFunction::JumpDest CancelDest =
6355           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6356       CGF.EmitBranchThroughCleanup(CancelDest);
6357       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6358     };
6359     if (IfCond) {
6360       emitIfClause(CGF, IfCond, ThenGen,
6361                    [](CodeGenFunction &, PrePostActionTy &) {});
6362     } else {
6363       RegionCodeGenTy ThenRCG(ThenGen);
6364       ThenRCG(CGF);
6365     }
6366   }
6367 }
6368 
6369 namespace {
6370 /// Cleanup action for uses_allocators support.
6371 class OMPUsesAllocatorsActionTy final : public PrePostActionTy {
6372   ArrayRef<std::pair<const Expr *, const Expr *>> Allocators;
6373 
6374 public:
OMPUsesAllocatorsActionTy(ArrayRef<std::pair<const Expr *,const Expr * >> Allocators)6375   OMPUsesAllocatorsActionTy(
6376       ArrayRef<std::pair<const Expr *, const Expr *>> Allocators)
6377       : Allocators(Allocators) {}
Enter(CodeGenFunction & CGF)6378   void Enter(CodeGenFunction &CGF) override {
6379     if (!CGF.HaveInsertPoint())
6380       return;
6381     for (const auto &AllocatorData : Allocators) {
6382       CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsInit(
6383           CGF, AllocatorData.first, AllocatorData.second);
6384     }
6385   }
Exit(CodeGenFunction & CGF)6386   void Exit(CodeGenFunction &CGF) override {
6387     if (!CGF.HaveInsertPoint())
6388       return;
6389     for (const auto &AllocatorData : Allocators) {
6390       CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsFini(CGF,
6391                                                         AllocatorData.first);
6392     }
6393   }
6394 };
6395 } // namespace
6396 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6397 void CGOpenMPRuntime::emitTargetOutlinedFunction(
6398     const OMPExecutableDirective &D, StringRef ParentName,
6399     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6400     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6401   assert(!ParentName.empty() && "Invalid target region parent name!");
6402   HasEmittedTargetRegion = true;
6403   SmallVector<std::pair<const Expr *, const Expr *>, 4> Allocators;
6404   for (const auto *C : D.getClausesOfKind<OMPUsesAllocatorsClause>()) {
6405     for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
6406       const OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
6407       if (!D.AllocatorTraits)
6408         continue;
6409       Allocators.emplace_back(D.Allocator, D.AllocatorTraits);
6410     }
6411   }
6412   OMPUsesAllocatorsActionTy UsesAllocatorAction(Allocators);
6413   CodeGen.setAction(UsesAllocatorAction);
6414   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
6415                                    IsOffloadEntry, CodeGen);
6416 }
6417 
emitUsesAllocatorsInit(CodeGenFunction & CGF,const Expr * Allocator,const Expr * AllocatorTraits)6418 void CGOpenMPRuntime::emitUsesAllocatorsInit(CodeGenFunction &CGF,
6419                                              const Expr *Allocator,
6420                                              const Expr *AllocatorTraits) {
6421   llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6422   ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6423   // Use default memspace handle.
6424   llvm::Value *MemSpaceHandle = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
6425   llvm::Value *NumTraits = llvm::ConstantInt::get(
6426       CGF.IntTy, cast<ConstantArrayType>(
6427                      AllocatorTraits->getType()->getAsArrayTypeUnsafe())
6428                      ->getSize()
6429                      .getLimitedValue());
6430   LValue AllocatorTraitsLVal = CGF.EmitLValue(AllocatorTraits);
6431   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6432       AllocatorTraitsLVal.getAddress(CGF), CGF.VoidPtrPtrTy);
6433   AllocatorTraitsLVal = CGF.MakeAddrLValue(Addr, CGF.getContext().VoidPtrTy,
6434                                            AllocatorTraitsLVal.getBaseInfo(),
6435                                            AllocatorTraitsLVal.getTBAAInfo());
6436   llvm::Value *Traits =
6437       CGF.EmitLoadOfScalar(AllocatorTraitsLVal, AllocatorTraits->getExprLoc());
6438 
6439   llvm::Value *AllocatorVal =
6440       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6441                               CGM.getModule(), OMPRTL___kmpc_init_allocator),
6442                           {ThreadId, MemSpaceHandle, NumTraits, Traits});
6443   // Store to allocator.
6444   CGF.EmitVarDecl(*cast<VarDecl>(
6445       cast<DeclRefExpr>(Allocator->IgnoreParenImpCasts())->getDecl()));
6446   LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6447   AllocatorVal =
6448       CGF.EmitScalarConversion(AllocatorVal, CGF.getContext().VoidPtrTy,
6449                                Allocator->getType(), Allocator->getExprLoc());
6450   CGF.EmitStoreOfScalar(AllocatorVal, AllocatorLVal);
6451 }
6452 
emitUsesAllocatorsFini(CodeGenFunction & CGF,const Expr * Allocator)6453 void CGOpenMPRuntime::emitUsesAllocatorsFini(CodeGenFunction &CGF,
6454                                              const Expr *Allocator) {
6455   llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6456   ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6457   LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6458   llvm::Value *AllocatorVal =
6459       CGF.EmitLoadOfScalar(AllocatorLVal, Allocator->getExprLoc());
6460   AllocatorVal = CGF.EmitScalarConversion(AllocatorVal, Allocator->getType(),
6461                                           CGF.getContext().VoidPtrTy,
6462                                           Allocator->getExprLoc());
6463   (void)CGF.EmitRuntimeCall(
6464       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
6465                                             OMPRTL___kmpc_destroy_allocator),
6466       {ThreadId, AllocatorVal});
6467 }
6468 
emitTargetOutlinedFunctionHelper(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6469 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
6470     const OMPExecutableDirective &D, StringRef ParentName,
6471     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6472     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6473   // Create a unique name for the entry function using the source location
6474   // information of the current target region. The name will be something like:
6475   //
6476   // __omp_offloading_DD_FFFF_PP_lBB
6477   //
6478   // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
6479   // mangled name of the function that encloses the target region and BB is the
6480   // line number of the target region.
6481 
6482   unsigned DeviceID;
6483   unsigned FileID;
6484   unsigned Line;
6485   getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
6486                            Line);
6487   SmallString<64> EntryFnName;
6488   {
6489     llvm::raw_svector_ostream OS(EntryFnName);
6490     OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
6491        << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
6492   }
6493 
6494   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6495 
6496   CodeGenFunction CGF(CGM, true);
6497   CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
6498   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6499 
6500   OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS, D.getBeginLoc());
6501 
6502   // If this target outline function is not an offload entry, we don't need to
6503   // register it.
6504   if (!IsOffloadEntry)
6505     return;
6506 
6507   // The target region ID is used by the runtime library to identify the current
6508   // target region, so it only has to be unique and not necessarily point to
6509   // anything. It could be the pointer to the outlined function that implements
6510   // the target region, but we aren't using that so that the compiler doesn't
6511   // need to keep that, and could therefore inline the host function if proven
6512   // worthwhile during optimization. In the other hand, if emitting code for the
6513   // device, the ID has to be the function address so that it can retrieved from
6514   // the offloading entry and launched by the runtime library. We also mark the
6515   // outlined function to have external linkage in case we are emitting code for
6516   // the device, because these functions will be entry points to the device.
6517 
6518   if (CGM.getLangOpts().OpenMPIsDevice) {
6519     OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
6520     OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6521     OutlinedFn->setDSOLocal(false);
6522     if (CGM.getTriple().isAMDGCN())
6523       OutlinedFn->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL);
6524   } else {
6525     std::string Name = getName({EntryFnName, "region_id"});
6526     OutlinedFnID = new llvm::GlobalVariable(
6527         CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
6528         llvm::GlobalValue::WeakAnyLinkage,
6529         llvm::Constant::getNullValue(CGM.Int8Ty), Name);
6530   }
6531 
6532   // Register the information for the entry associated with this target region.
6533   OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
6534       DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
6535       OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
6536 }
6537 
6538 /// Checks if the expression is constant or does not have non-trivial function
6539 /// calls.
isTrivial(ASTContext & Ctx,const Expr * E)6540 static bool isTrivial(ASTContext &Ctx, const Expr * E) {
6541   // We can skip constant expressions.
6542   // We can skip expressions with trivial calls or simple expressions.
6543   return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
6544           !E->hasNonTrivialCall(Ctx)) &&
6545          !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
6546 }
6547 
getSingleCompoundChild(ASTContext & Ctx,const Stmt * Body)6548 const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
6549                                                     const Stmt *Body) {
6550   const Stmt *Child = Body->IgnoreContainers();
6551   while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
6552     Child = nullptr;
6553     for (const Stmt *S : C->body()) {
6554       if (const auto *E = dyn_cast<Expr>(S)) {
6555         if (isTrivial(Ctx, E))
6556           continue;
6557       }
6558       // Some of the statements can be ignored.
6559       if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
6560           isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
6561         continue;
6562       // Analyze declarations.
6563       if (const auto *DS = dyn_cast<DeclStmt>(S)) {
6564         if (llvm::all_of(DS->decls(), [](const Decl *D) {
6565               if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
6566                   isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
6567                   isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
6568                   isa<UsingDirectiveDecl>(D) ||
6569                   isa<OMPDeclareReductionDecl>(D) ||
6570                   isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
6571                 return true;
6572               const auto *VD = dyn_cast<VarDecl>(D);
6573               if (!VD)
6574                 return false;
6575               return VD->hasGlobalStorage() || !VD->isUsed();
6576             }))
6577           continue;
6578       }
6579       // Found multiple children - cannot get the one child only.
6580       if (Child)
6581         return nullptr;
6582       Child = S;
6583     }
6584     if (Child)
6585       Child = Child->IgnoreContainers();
6586   }
6587   return Child;
6588 }
6589 
6590 /// Emit the number of teams for a target directive.  Inspect the num_teams
6591 /// clause associated with a teams construct combined or closely nested
6592 /// with the target directive.
6593 ///
6594 /// Emit a team of size one for directives such as 'target parallel' that
6595 /// have no associated teams construct.
6596 ///
6597 /// Otherwise, return nullptr.
6598 static llvm::Value *
emitNumTeamsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6599 emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
6600                                const OMPExecutableDirective &D) {
6601   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6602          "Clauses associated with the teams directive expected to be emitted "
6603          "only for the host!");
6604   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6605   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6606          "Expected target-based executable directive.");
6607   CGBuilderTy &Bld = CGF.Builder;
6608   switch (DirectiveKind) {
6609   case OMPD_target: {
6610     const auto *CS = D.getInnermostCapturedStmt();
6611     const auto *Body =
6612         CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
6613     const Stmt *ChildStmt =
6614         CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
6615     if (const auto *NestedDir =
6616             dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
6617       if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
6618         if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
6619           CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6620           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6621           const Expr *NumTeams =
6622               NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6623           llvm::Value *NumTeamsVal =
6624               CGF.EmitScalarExpr(NumTeams,
6625                                  /*IgnoreResultAssign*/ true);
6626           return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6627                                    /*isSigned=*/true);
6628         }
6629         return Bld.getInt32(0);
6630       }
6631       if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
6632           isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
6633         return Bld.getInt32(1);
6634       return Bld.getInt32(0);
6635     }
6636     return nullptr;
6637   }
6638   case OMPD_target_teams:
6639   case OMPD_target_teams_distribute:
6640   case OMPD_target_teams_distribute_simd:
6641   case OMPD_target_teams_distribute_parallel_for:
6642   case OMPD_target_teams_distribute_parallel_for_simd: {
6643     if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
6644       CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
6645       const Expr *NumTeams =
6646           D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6647       llvm::Value *NumTeamsVal =
6648           CGF.EmitScalarExpr(NumTeams,
6649                              /*IgnoreResultAssign*/ true);
6650       return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6651                                /*isSigned=*/true);
6652     }
6653     return Bld.getInt32(0);
6654   }
6655   case OMPD_target_parallel:
6656   case OMPD_target_parallel_for:
6657   case OMPD_target_parallel_for_simd:
6658   case OMPD_target_simd:
6659     return Bld.getInt32(1);
6660   case OMPD_parallel:
6661   case OMPD_for:
6662   case OMPD_parallel_for:
6663   case OMPD_parallel_master:
6664   case OMPD_parallel_sections:
6665   case OMPD_for_simd:
6666   case OMPD_parallel_for_simd:
6667   case OMPD_cancel:
6668   case OMPD_cancellation_point:
6669   case OMPD_ordered:
6670   case OMPD_threadprivate:
6671   case OMPD_allocate:
6672   case OMPD_task:
6673   case OMPD_simd:
6674   case OMPD_tile:
6675   case OMPD_sections:
6676   case OMPD_section:
6677   case OMPD_single:
6678   case OMPD_master:
6679   case OMPD_critical:
6680   case OMPD_taskyield:
6681   case OMPD_barrier:
6682   case OMPD_taskwait:
6683   case OMPD_taskgroup:
6684   case OMPD_atomic:
6685   case OMPD_flush:
6686   case OMPD_depobj:
6687   case OMPD_scan:
6688   case OMPD_teams:
6689   case OMPD_target_data:
6690   case OMPD_target_exit_data:
6691   case OMPD_target_enter_data:
6692   case OMPD_distribute:
6693   case OMPD_distribute_simd:
6694   case OMPD_distribute_parallel_for:
6695   case OMPD_distribute_parallel_for_simd:
6696   case OMPD_teams_distribute:
6697   case OMPD_teams_distribute_simd:
6698   case OMPD_teams_distribute_parallel_for:
6699   case OMPD_teams_distribute_parallel_for_simd:
6700   case OMPD_target_update:
6701   case OMPD_declare_simd:
6702   case OMPD_declare_variant:
6703   case OMPD_begin_declare_variant:
6704   case OMPD_end_declare_variant:
6705   case OMPD_declare_target:
6706   case OMPD_end_declare_target:
6707   case OMPD_declare_reduction:
6708   case OMPD_declare_mapper:
6709   case OMPD_taskloop:
6710   case OMPD_taskloop_simd:
6711   case OMPD_master_taskloop:
6712   case OMPD_master_taskloop_simd:
6713   case OMPD_parallel_master_taskloop:
6714   case OMPD_parallel_master_taskloop_simd:
6715   case OMPD_requires:
6716   case OMPD_unknown:
6717     break;
6718   default:
6719     break;
6720   }
6721   llvm_unreachable("Unexpected directive kind.");
6722 }
6723 
getNumThreads(CodeGenFunction & CGF,const CapturedStmt * CS,llvm::Value * DefaultThreadLimitVal)6724 static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
6725                                   llvm::Value *DefaultThreadLimitVal) {
6726   const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6727       CGF.getContext(), CS->getCapturedStmt());
6728   if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6729     if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
6730       llvm::Value *NumThreads = nullptr;
6731       llvm::Value *CondVal = nullptr;
6732       // Handle if clause. If if clause present, the number of threads is
6733       // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6734       if (Dir->hasClausesOfKind<OMPIfClause>()) {
6735         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6736         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6737         const OMPIfClause *IfClause = nullptr;
6738         for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
6739           if (C->getNameModifier() == OMPD_unknown ||
6740               C->getNameModifier() == OMPD_parallel) {
6741             IfClause = C;
6742             break;
6743           }
6744         }
6745         if (IfClause) {
6746           const Expr *Cond = IfClause->getCondition();
6747           bool Result;
6748           if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6749             if (!Result)
6750               return CGF.Builder.getInt32(1);
6751           } else {
6752             CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
6753             if (const auto *PreInit =
6754                     cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
6755               for (const auto *I : PreInit->decls()) {
6756                 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6757                   CGF.EmitVarDecl(cast<VarDecl>(*I));
6758                 } else {
6759                   CodeGenFunction::AutoVarEmission Emission =
6760                       CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6761                   CGF.EmitAutoVarCleanups(Emission);
6762                 }
6763               }
6764             }
6765             CondVal = CGF.EvaluateExprAsBool(Cond);
6766           }
6767         }
6768       }
6769       // Check the value of num_threads clause iff if clause was not specified
6770       // or is not evaluated to false.
6771       if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
6772         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6773         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6774         const auto *NumThreadsClause =
6775             Dir->getSingleClause<OMPNumThreadsClause>();
6776         CodeGenFunction::LexicalScope Scope(
6777             CGF, NumThreadsClause->getNumThreads()->getSourceRange());
6778         if (const auto *PreInit =
6779                 cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
6780           for (const auto *I : PreInit->decls()) {
6781             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6782               CGF.EmitVarDecl(cast<VarDecl>(*I));
6783             } else {
6784               CodeGenFunction::AutoVarEmission Emission =
6785                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6786               CGF.EmitAutoVarCleanups(Emission);
6787             }
6788           }
6789         }
6790         NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
6791         NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
6792                                                /*isSigned=*/false);
6793         if (DefaultThreadLimitVal)
6794           NumThreads = CGF.Builder.CreateSelect(
6795               CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
6796               DefaultThreadLimitVal, NumThreads);
6797       } else {
6798         NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
6799                                            : CGF.Builder.getInt32(0);
6800       }
6801       // Process condition of the if clause.
6802       if (CondVal) {
6803         NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
6804                                               CGF.Builder.getInt32(1));
6805       }
6806       return NumThreads;
6807     }
6808     if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
6809       return CGF.Builder.getInt32(1);
6810     return DefaultThreadLimitVal;
6811   }
6812   return DefaultThreadLimitVal ? DefaultThreadLimitVal
6813                                : CGF.Builder.getInt32(0);
6814 }
6815 
6816 /// Emit the number of threads for a target directive.  Inspect the
6817 /// thread_limit clause associated with a teams construct combined or closely
6818 /// nested with the target directive.
6819 ///
6820 /// Emit the num_threads clause for directives such as 'target parallel' that
6821 /// have no associated teams construct.
6822 ///
6823 /// Otherwise, return nullptr.
6824 static llvm::Value *
emitNumThreadsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6825 emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
6826                                  const OMPExecutableDirective &D) {
6827   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6828          "Clauses associated with the teams directive expected to be emitted "
6829          "only for the host!");
6830   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6831   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6832          "Expected target-based executable directive.");
6833   CGBuilderTy &Bld = CGF.Builder;
6834   llvm::Value *ThreadLimitVal = nullptr;
6835   llvm::Value *NumThreadsVal = nullptr;
6836   switch (DirectiveKind) {
6837   case OMPD_target: {
6838     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6839     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6840       return NumThreads;
6841     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6842         CGF.getContext(), CS->getCapturedStmt());
6843     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6844       if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
6845         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6846         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6847         const auto *ThreadLimitClause =
6848             Dir->getSingleClause<OMPThreadLimitClause>();
6849         CodeGenFunction::LexicalScope Scope(
6850             CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
6851         if (const auto *PreInit =
6852                 cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
6853           for (const auto *I : PreInit->decls()) {
6854             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6855               CGF.EmitVarDecl(cast<VarDecl>(*I));
6856             } else {
6857               CodeGenFunction::AutoVarEmission Emission =
6858                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6859               CGF.EmitAutoVarCleanups(Emission);
6860             }
6861           }
6862         }
6863         llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6864             ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6865         ThreadLimitVal =
6866             Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6867       }
6868       if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
6869           !isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
6870         CS = Dir->getInnermostCapturedStmt();
6871         const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6872             CGF.getContext(), CS->getCapturedStmt());
6873         Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
6874       }
6875       if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
6876           !isOpenMPSimdDirective(Dir->getDirectiveKind())) {
6877         CS = Dir->getInnermostCapturedStmt();
6878         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6879           return NumThreads;
6880       }
6881       if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
6882         return Bld.getInt32(1);
6883     }
6884     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6885   }
6886   case OMPD_target_teams: {
6887     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6888       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6889       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6890       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6891           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6892       ThreadLimitVal =
6893           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6894     }
6895     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6896     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6897       return NumThreads;
6898     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6899         CGF.getContext(), CS->getCapturedStmt());
6900     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6901       if (Dir->getDirectiveKind() == OMPD_distribute) {
6902         CS = Dir->getInnermostCapturedStmt();
6903         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6904           return NumThreads;
6905       }
6906     }
6907     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6908   }
6909   case OMPD_target_teams_distribute:
6910     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6911       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6912       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6913       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6914           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6915       ThreadLimitVal =
6916           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6917     }
6918     return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
6919   case OMPD_target_parallel:
6920   case OMPD_target_parallel_for:
6921   case OMPD_target_parallel_for_simd:
6922   case OMPD_target_teams_distribute_parallel_for:
6923   case OMPD_target_teams_distribute_parallel_for_simd: {
6924     llvm::Value *CondVal = nullptr;
6925     // Handle if clause. If if clause present, the number of threads is
6926     // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6927     if (D.hasClausesOfKind<OMPIfClause>()) {
6928       const OMPIfClause *IfClause = nullptr;
6929       for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
6930         if (C->getNameModifier() == OMPD_unknown ||
6931             C->getNameModifier() == OMPD_parallel) {
6932           IfClause = C;
6933           break;
6934         }
6935       }
6936       if (IfClause) {
6937         const Expr *Cond = IfClause->getCondition();
6938         bool Result;
6939         if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6940           if (!Result)
6941             return Bld.getInt32(1);
6942         } else {
6943           CodeGenFunction::RunCleanupsScope Scope(CGF);
6944           CondVal = CGF.EvaluateExprAsBool(Cond);
6945         }
6946       }
6947     }
6948     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6949       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6950       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6951       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6952           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6953       ThreadLimitVal =
6954           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6955     }
6956     if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
6957       CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
6958       const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
6959       llvm::Value *NumThreads = CGF.EmitScalarExpr(
6960           NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
6961       NumThreadsVal =
6962           Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
6963       ThreadLimitVal = ThreadLimitVal
6964                            ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
6965                                                                 ThreadLimitVal),
6966                                               NumThreadsVal, ThreadLimitVal)
6967                            : NumThreadsVal;
6968     }
6969     if (!ThreadLimitVal)
6970       ThreadLimitVal = Bld.getInt32(0);
6971     if (CondVal)
6972       return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
6973     return ThreadLimitVal;
6974   }
6975   case OMPD_target_teams_distribute_simd:
6976   case OMPD_target_simd:
6977     return Bld.getInt32(1);
6978   case OMPD_parallel:
6979   case OMPD_for:
6980   case OMPD_parallel_for:
6981   case OMPD_parallel_master:
6982   case OMPD_parallel_sections:
6983   case OMPD_for_simd:
6984   case OMPD_parallel_for_simd:
6985   case OMPD_cancel:
6986   case OMPD_cancellation_point:
6987   case OMPD_ordered:
6988   case OMPD_threadprivate:
6989   case OMPD_allocate:
6990   case OMPD_task:
6991   case OMPD_simd:
6992   case OMPD_tile:
6993   case OMPD_sections:
6994   case OMPD_section:
6995   case OMPD_single:
6996   case OMPD_master:
6997   case OMPD_critical:
6998   case OMPD_taskyield:
6999   case OMPD_barrier:
7000   case OMPD_taskwait:
7001   case OMPD_taskgroup:
7002   case OMPD_atomic:
7003   case OMPD_flush:
7004   case OMPD_depobj:
7005   case OMPD_scan:
7006   case OMPD_teams:
7007   case OMPD_target_data:
7008   case OMPD_target_exit_data:
7009   case OMPD_target_enter_data:
7010   case OMPD_distribute:
7011   case OMPD_distribute_simd:
7012   case OMPD_distribute_parallel_for:
7013   case OMPD_distribute_parallel_for_simd:
7014   case OMPD_teams_distribute:
7015   case OMPD_teams_distribute_simd:
7016   case OMPD_teams_distribute_parallel_for:
7017   case OMPD_teams_distribute_parallel_for_simd:
7018   case OMPD_target_update:
7019   case OMPD_declare_simd:
7020   case OMPD_declare_variant:
7021   case OMPD_begin_declare_variant:
7022   case OMPD_end_declare_variant:
7023   case OMPD_declare_target:
7024   case OMPD_end_declare_target:
7025   case OMPD_declare_reduction:
7026   case OMPD_declare_mapper:
7027   case OMPD_taskloop:
7028   case OMPD_taskloop_simd:
7029   case OMPD_master_taskloop:
7030   case OMPD_master_taskloop_simd:
7031   case OMPD_parallel_master_taskloop:
7032   case OMPD_parallel_master_taskloop_simd:
7033   case OMPD_requires:
7034   case OMPD_unknown:
7035     break;
7036   default:
7037     break;
7038   }
7039   llvm_unreachable("Unsupported directive kind.");
7040 }
7041 
7042 namespace {
7043 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
7044 
7045 // Utility to handle information from clauses associated with a given
7046 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
7047 // It provides a convenient interface to obtain the information and generate
7048 // code for that information.
7049 class MappableExprsHandler {
7050 public:
7051   /// Values for bit flags used to specify the mapping type for
7052   /// offloading.
7053   enum OpenMPOffloadMappingFlags : uint64_t {
7054     /// No flags
7055     OMP_MAP_NONE = 0x0,
7056     /// Allocate memory on the device and move data from host to device.
7057     OMP_MAP_TO = 0x01,
7058     /// Allocate memory on the device and move data from device to host.
7059     OMP_MAP_FROM = 0x02,
7060     /// Always perform the requested mapping action on the element, even
7061     /// if it was already mapped before.
7062     OMP_MAP_ALWAYS = 0x04,
7063     /// Delete the element from the device environment, ignoring the
7064     /// current reference count associated with the element.
7065     OMP_MAP_DELETE = 0x08,
7066     /// The element being mapped is a pointer-pointee pair; both the
7067     /// pointer and the pointee should be mapped.
7068     OMP_MAP_PTR_AND_OBJ = 0x10,
7069     /// This flags signals that the base address of an entry should be
7070     /// passed to the target kernel as an argument.
7071     OMP_MAP_TARGET_PARAM = 0x20,
7072     /// Signal that the runtime library has to return the device pointer
7073     /// in the current position for the data being mapped. Used when we have the
7074     /// use_device_ptr or use_device_addr clause.
7075     OMP_MAP_RETURN_PARAM = 0x40,
7076     /// This flag signals that the reference being passed is a pointer to
7077     /// private data.
7078     OMP_MAP_PRIVATE = 0x80,
7079     /// Pass the element to the device by value.
7080     OMP_MAP_LITERAL = 0x100,
7081     /// Implicit map
7082     OMP_MAP_IMPLICIT = 0x200,
7083     /// Close is a hint to the runtime to allocate memory close to
7084     /// the target device.
7085     OMP_MAP_CLOSE = 0x400,
7086     /// 0x800 is reserved for compatibility with XLC.
7087     /// Produce a runtime error if the data is not already allocated.
7088     OMP_MAP_PRESENT = 0x1000,
7089     /// Signal that the runtime library should use args as an array of
7090     /// descriptor_dim pointers and use args_size as dims. Used when we have
7091     /// non-contiguous list items in target update directive
7092     OMP_MAP_NON_CONTIG = 0x100000000000,
7093     /// The 16 MSBs of the flags indicate whether the entry is member of some
7094     /// struct/class.
7095     OMP_MAP_MEMBER_OF = 0xffff000000000000,
7096     LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
7097   };
7098 
7099   /// Get the offset of the OMP_MAP_MEMBER_OF field.
getFlagMemberOffset()7100   static unsigned getFlagMemberOffset() {
7101     unsigned Offset = 0;
7102     for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1);
7103          Remain = Remain >> 1)
7104       Offset++;
7105     return Offset;
7106   }
7107 
7108   /// Class that holds debugging information for a data mapping to be passed to
7109   /// the runtime library.
7110   class MappingExprInfo {
7111     /// The variable declaration used for the data mapping.
7112     const ValueDecl *MapDecl = nullptr;
7113     /// The original expression used in the map clause, or null if there is
7114     /// none.
7115     const Expr *MapExpr = nullptr;
7116 
7117   public:
MappingExprInfo(const ValueDecl * MapDecl,const Expr * MapExpr=nullptr)7118     MappingExprInfo(const ValueDecl *MapDecl, const Expr *MapExpr = nullptr)
7119         : MapDecl(MapDecl), MapExpr(MapExpr) {}
7120 
getMapDecl() const7121     const ValueDecl *getMapDecl() const { return MapDecl; }
getMapExpr() const7122     const Expr *getMapExpr() const { return MapExpr; }
7123   };
7124 
7125   /// Class that associates information with a base pointer to be passed to the
7126   /// runtime library.
7127   class BasePointerInfo {
7128     /// The base pointer.
7129     llvm::Value *Ptr = nullptr;
7130     /// The base declaration that refers to this device pointer, or null if
7131     /// there is none.
7132     const ValueDecl *DevPtrDecl = nullptr;
7133 
7134   public:
BasePointerInfo(llvm::Value * Ptr,const ValueDecl * DevPtrDecl=nullptr)7135     BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
7136         : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
operator *() const7137     llvm::Value *operator*() const { return Ptr; }
getDevicePtrDecl() const7138     const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
setDevicePtrDecl(const ValueDecl * D)7139     void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
7140   };
7141 
7142   using MapExprsArrayTy = SmallVector<MappingExprInfo, 4>;
7143   using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
7144   using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
7145   using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
7146   using MapMappersArrayTy = SmallVector<const ValueDecl *, 4>;
7147   using MapDimArrayTy = SmallVector<uint64_t, 4>;
7148   using MapNonContiguousArrayTy = SmallVector<MapValuesArrayTy, 4>;
7149 
7150   /// This structure contains combined information generated for mappable
7151   /// clauses, including base pointers, pointers, sizes, map types, user-defined
7152   /// mappers, and non-contiguous information.
7153   struct MapCombinedInfoTy {
7154     struct StructNonContiguousInfo {
7155       bool IsNonContiguous = false;
7156       MapDimArrayTy Dims;
7157       MapNonContiguousArrayTy Offsets;
7158       MapNonContiguousArrayTy Counts;
7159       MapNonContiguousArrayTy Strides;
7160     };
7161     MapExprsArrayTy Exprs;
7162     MapBaseValuesArrayTy BasePointers;
7163     MapValuesArrayTy Pointers;
7164     MapValuesArrayTy Sizes;
7165     MapFlagsArrayTy Types;
7166     MapMappersArrayTy Mappers;
7167     StructNonContiguousInfo NonContigInfo;
7168 
7169     /// Append arrays in \a CurInfo.
append__anonad2d34463d11::MappableExprsHandler::MapCombinedInfoTy7170     void append(MapCombinedInfoTy &CurInfo) {
7171       Exprs.append(CurInfo.Exprs.begin(), CurInfo.Exprs.end());
7172       BasePointers.append(CurInfo.BasePointers.begin(),
7173                           CurInfo.BasePointers.end());
7174       Pointers.append(CurInfo.Pointers.begin(), CurInfo.Pointers.end());
7175       Sizes.append(CurInfo.Sizes.begin(), CurInfo.Sizes.end());
7176       Types.append(CurInfo.Types.begin(), CurInfo.Types.end());
7177       Mappers.append(CurInfo.Mappers.begin(), CurInfo.Mappers.end());
7178       NonContigInfo.Dims.append(CurInfo.NonContigInfo.Dims.begin(),
7179                                  CurInfo.NonContigInfo.Dims.end());
7180       NonContigInfo.Offsets.append(CurInfo.NonContigInfo.Offsets.begin(),
7181                                     CurInfo.NonContigInfo.Offsets.end());
7182       NonContigInfo.Counts.append(CurInfo.NonContigInfo.Counts.begin(),
7183                                    CurInfo.NonContigInfo.Counts.end());
7184       NonContigInfo.Strides.append(CurInfo.NonContigInfo.Strides.begin(),
7185                                     CurInfo.NonContigInfo.Strides.end());
7186     }
7187   };
7188 
7189   /// Map between a struct and the its lowest & highest elements which have been
7190   /// mapped.
7191   /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
7192   ///                    HE(FieldIndex, Pointer)}
7193   struct StructRangeInfoTy {
7194     MapCombinedInfoTy PreliminaryMapData;
7195     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
7196         0, Address::invalid()};
7197     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
7198         0, Address::invalid()};
7199     Address Base = Address::invalid();
7200     Address LB = Address::invalid();
7201     bool IsArraySection = false;
7202     bool HasCompleteRecord = false;
7203   };
7204 
7205 private:
7206   /// Kind that defines how a device pointer has to be returned.
7207   struct MapInfo {
7208     OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7209     OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
7210     ArrayRef<OpenMPMapModifierKind> MapModifiers;
7211     ArrayRef<OpenMPMotionModifierKind> MotionModifiers;
7212     bool ReturnDevicePointer = false;
7213     bool IsImplicit = false;
7214     const ValueDecl *Mapper = nullptr;
7215     const Expr *VarRef = nullptr;
7216     bool ForDeviceAddr = false;
7217 
7218     MapInfo() = default;
MapInfo__anonad2d34463d11::MappableExprsHandler::MapInfo7219     MapInfo(
7220         OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7221         OpenMPMapClauseKind MapType,
7222         ArrayRef<OpenMPMapModifierKind> MapModifiers,
7223         ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
7224         bool ReturnDevicePointer, bool IsImplicit,
7225         const ValueDecl *Mapper = nullptr, const Expr *VarRef = nullptr,
7226         bool ForDeviceAddr = false)
7227         : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
7228           MotionModifiers(MotionModifiers),
7229           ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit),
7230           Mapper(Mapper), VarRef(VarRef), ForDeviceAddr(ForDeviceAddr) {}
7231   };
7232 
7233   /// If use_device_ptr or use_device_addr is used on a decl which is a struct
7234   /// member and there is no map information about it, then emission of that
7235   /// entry is deferred until the whole struct has been processed.
7236   struct DeferredDevicePtrEntryTy {
7237     const Expr *IE = nullptr;
7238     const ValueDecl *VD = nullptr;
7239     bool ForDeviceAddr = false;
7240 
DeferredDevicePtrEntryTy__anonad2d34463d11::MappableExprsHandler::DeferredDevicePtrEntryTy7241     DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD,
7242                              bool ForDeviceAddr)
7243         : IE(IE), VD(VD), ForDeviceAddr(ForDeviceAddr) {}
7244   };
7245 
7246   /// The target directive from where the mappable clauses were extracted. It
7247   /// is either a executable directive or a user-defined mapper directive.
7248   llvm::PointerUnion<const OMPExecutableDirective *,
7249                      const OMPDeclareMapperDecl *>
7250       CurDir;
7251 
7252   /// Function the directive is being generated for.
7253   CodeGenFunction &CGF;
7254 
7255   /// Set of all first private variables in the current directive.
7256   /// bool data is set to true if the variable is implicitly marked as
7257   /// firstprivate, false otherwise.
7258   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
7259 
7260   /// Map between device pointer declarations and their expression components.
7261   /// The key value for declarations in 'this' is null.
7262   llvm::DenseMap<
7263       const ValueDecl *,
7264       SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
7265       DevPointersMap;
7266 
getExprTypeSize(const Expr * E) const7267   llvm::Value *getExprTypeSize(const Expr *E) const {
7268     QualType ExprTy = E->getType().getCanonicalType();
7269 
7270     // Calculate the size for array shaping expression.
7271     if (const auto *OAE = dyn_cast<OMPArrayShapingExpr>(E)) {
7272       llvm::Value *Size =
7273           CGF.getTypeSize(OAE->getBase()->getType()->getPointeeType());
7274       for (const Expr *SE : OAE->getDimensions()) {
7275         llvm::Value *Sz = CGF.EmitScalarExpr(SE);
7276         Sz = CGF.EmitScalarConversion(Sz, SE->getType(),
7277                                       CGF.getContext().getSizeType(),
7278                                       SE->getExprLoc());
7279         Size = CGF.Builder.CreateNUWMul(Size, Sz);
7280       }
7281       return Size;
7282     }
7283 
7284     // Reference types are ignored for mapping purposes.
7285     if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
7286       ExprTy = RefTy->getPointeeType().getCanonicalType();
7287 
7288     // Given that an array section is considered a built-in type, we need to
7289     // do the calculation based on the length of the section instead of relying
7290     // on CGF.getTypeSize(E->getType()).
7291     if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
7292       QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
7293                             OAE->getBase()->IgnoreParenImpCasts())
7294                             .getCanonicalType();
7295 
7296       // If there is no length associated with the expression and lower bound is
7297       // not specified too, that means we are using the whole length of the
7298       // base.
7299       if (!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7300           !OAE->getLowerBound())
7301         return CGF.getTypeSize(BaseTy);
7302 
7303       llvm::Value *ElemSize;
7304       if (const auto *PTy = BaseTy->getAs<PointerType>()) {
7305         ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
7306       } else {
7307         const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
7308         assert(ATy && "Expecting array type if not a pointer type.");
7309         ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
7310       }
7311 
7312       // If we don't have a length at this point, that is because we have an
7313       // array section with a single element.
7314       if (!OAE->getLength() && OAE->getColonLocFirst().isInvalid())
7315         return ElemSize;
7316 
7317       if (const Expr *LenExpr = OAE->getLength()) {
7318         llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr);
7319         LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(),
7320                                              CGF.getContext().getSizeType(),
7321                                              LenExpr->getExprLoc());
7322         return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
7323       }
7324       assert(!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7325              OAE->getLowerBound() && "expected array_section[lb:].");
7326       // Size = sizetype - lb * elemtype;
7327       llvm::Value *LengthVal = CGF.getTypeSize(BaseTy);
7328       llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound());
7329       LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(),
7330                                        CGF.getContext().getSizeType(),
7331                                        OAE->getLowerBound()->getExprLoc());
7332       LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize);
7333       llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal);
7334       llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal);
7335       LengthVal = CGF.Builder.CreateSelect(
7336           Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0));
7337       return LengthVal;
7338     }
7339     return CGF.getTypeSize(ExprTy);
7340   }
7341 
7342   /// Return the corresponding bits for a given map clause modifier. Add
7343   /// a flag marking the map as a pointer if requested. Add a flag marking the
7344   /// map as the first one of a series of maps that relate to the same map
7345   /// expression.
getMapTypeBits(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,ArrayRef<OpenMPMotionModifierKind> MotionModifiers,bool IsImplicit,bool AddPtrFlag,bool AddIsTargetParamFlag,bool IsNonContiguous) const7346   OpenMPOffloadMappingFlags getMapTypeBits(
7347       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7348       ArrayRef<OpenMPMotionModifierKind> MotionModifiers, bool IsImplicit,
7349       bool AddPtrFlag, bool AddIsTargetParamFlag, bool IsNonContiguous) const {
7350     OpenMPOffloadMappingFlags Bits =
7351         IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
7352     switch (MapType) {
7353     case OMPC_MAP_alloc:
7354     case OMPC_MAP_release:
7355       // alloc and release is the default behavior in the runtime library,  i.e.
7356       // if we don't pass any bits alloc/release that is what the runtime is
7357       // going to do. Therefore, we don't need to signal anything for these two
7358       // type modifiers.
7359       break;
7360     case OMPC_MAP_to:
7361       Bits |= OMP_MAP_TO;
7362       break;
7363     case OMPC_MAP_from:
7364       Bits |= OMP_MAP_FROM;
7365       break;
7366     case OMPC_MAP_tofrom:
7367       Bits |= OMP_MAP_TO | OMP_MAP_FROM;
7368       break;
7369     case OMPC_MAP_delete:
7370       Bits |= OMP_MAP_DELETE;
7371       break;
7372     case OMPC_MAP_unknown:
7373       llvm_unreachable("Unexpected map type!");
7374     }
7375     if (AddPtrFlag)
7376       Bits |= OMP_MAP_PTR_AND_OBJ;
7377     if (AddIsTargetParamFlag)
7378       Bits |= OMP_MAP_TARGET_PARAM;
7379     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
7380         != MapModifiers.end())
7381       Bits |= OMP_MAP_ALWAYS;
7382     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close)
7383         != MapModifiers.end())
7384       Bits |= OMP_MAP_CLOSE;
7385     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_present) !=
7386             MapModifiers.end() ||
7387         llvm::find(MotionModifiers, OMPC_MOTION_MODIFIER_present) !=
7388             MotionModifiers.end())
7389       Bits |= OMP_MAP_PRESENT;
7390     if (IsNonContiguous)
7391       Bits |= OMP_MAP_NON_CONTIG;
7392     return Bits;
7393   }
7394 
7395   /// Return true if the provided expression is a final array section. A
7396   /// final array section, is one whose length can't be proved to be one.
isFinalArraySectionExpression(const Expr * E) const7397   bool isFinalArraySectionExpression(const Expr *E) const {
7398     const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
7399 
7400     // It is not an array section and therefore not a unity-size one.
7401     if (!OASE)
7402       return false;
7403 
7404     // An array section with no colon always refer to a single element.
7405     if (OASE->getColonLocFirst().isInvalid())
7406       return false;
7407 
7408     const Expr *Length = OASE->getLength();
7409 
7410     // If we don't have a length we have to check if the array has size 1
7411     // for this dimension. Also, we should always expect a length if the
7412     // base type is pointer.
7413     if (!Length) {
7414       QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
7415                              OASE->getBase()->IgnoreParenImpCasts())
7416                              .getCanonicalType();
7417       if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
7418         return ATy->getSize().getSExtValue() != 1;
7419       // If we don't have a constant dimension length, we have to consider
7420       // the current section as having any size, so it is not necessarily
7421       // unitary. If it happen to be unity size, that's user fault.
7422       return true;
7423     }
7424 
7425     // Check if the length evaluates to 1.
7426     Expr::EvalResult Result;
7427     if (!Length->EvaluateAsInt(Result, CGF.getContext()))
7428       return true; // Can have more that size 1.
7429 
7430     llvm::APSInt ConstLength = Result.Val.getInt();
7431     return ConstLength.getSExtValue() != 1;
7432   }
7433 
7434   /// Generate the base pointers, section pointers, sizes, map type bits, and
7435   /// user-defined mappers (all included in \a CombinedInfo) for the provided
7436   /// map type, map or motion modifiers, and expression components.
7437   /// \a IsFirstComponent should be set to true if the provided set of
7438   /// components is the first associated with a capture.
generateInfoForComponentList(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,ArrayRef<OpenMPMotionModifierKind> MotionModifiers,OMPClauseMappableExprCommon::MappableExprComponentListRef Components,MapCombinedInfoTy & CombinedInfo,StructRangeInfoTy & PartialStruct,bool IsFirstComponentList,bool IsImplicit,const ValueDecl * Mapper=nullptr,bool ForDeviceAddr=false,const ValueDecl * BaseDecl=nullptr,const Expr * MapExpr=nullptr,ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> OverlappedElements=llvm::None) const7439   void generateInfoForComponentList(
7440       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7441       ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
7442       OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7443       MapCombinedInfoTy &CombinedInfo, StructRangeInfoTy &PartialStruct,
7444       bool IsFirstComponentList, bool IsImplicit,
7445       const ValueDecl *Mapper = nullptr, bool ForDeviceAddr = false,
7446       const ValueDecl *BaseDecl = nullptr, const Expr *MapExpr = nullptr,
7447       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
7448           OverlappedElements = llvm::None) const {
7449     // The following summarizes what has to be generated for each map and the
7450     // types below. The generated information is expressed in this order:
7451     // base pointer, section pointer, size, flags
7452     // (to add to the ones that come from the map type and modifier).
7453     //
7454     // double d;
7455     // int i[100];
7456     // float *p;
7457     //
7458     // struct S1 {
7459     //   int i;
7460     //   float f[50];
7461     // }
7462     // struct S2 {
7463     //   int i;
7464     //   float f[50];
7465     //   S1 s;
7466     //   double *p;
7467     //   struct S2 *ps;
7468     //   int &ref;
7469     // }
7470     // S2 s;
7471     // S2 *ps;
7472     //
7473     // map(d)
7474     // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
7475     //
7476     // map(i)
7477     // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
7478     //
7479     // map(i[1:23])
7480     // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
7481     //
7482     // map(p)
7483     // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
7484     //
7485     // map(p[1:24])
7486     // &p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM | PTR_AND_OBJ
7487     // in unified shared memory mode or for local pointers
7488     // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
7489     //
7490     // map(s)
7491     // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
7492     //
7493     // map(s.i)
7494     // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
7495     //
7496     // map(s.s.f)
7497     // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7498     //
7499     // map(s.p)
7500     // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
7501     //
7502     // map(to: s.p[:22])
7503     // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
7504     // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
7505     // &(s.p), &(s.p[0]), 22*sizeof(double),
7506     //   MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7507     // (*) alloc space for struct members, only this is a target parameter
7508     // (**) map the pointer (nothing to be mapped in this example) (the compiler
7509     //      optimizes this entry out, same in the examples below)
7510     // (***) map the pointee (map: to)
7511     //
7512     // map(to: s.ref)
7513     // &s, &(s.ref), sizeof(int*), TARGET_PARAM (*)
7514     // &s, &(s.ref), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7515     // (*) alloc space for struct members, only this is a target parameter
7516     // (**) map the pointer (nothing to be mapped in this example) (the compiler
7517     //      optimizes this entry out, same in the examples below)
7518     // (***) map the pointee (map: to)
7519     //
7520     // map(s.ps)
7521     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7522     //
7523     // map(from: s.ps->s.i)
7524     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7525     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7526     // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ  | FROM
7527     //
7528     // map(to: s.ps->ps)
7529     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7530     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7531     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ  | TO
7532     //
7533     // map(s.ps->ps->ps)
7534     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7535     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7536     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7537     // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7538     //
7539     // map(to: s.ps->ps->s.f[:22])
7540     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7541     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7542     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7543     // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7544     //
7545     // map(ps)
7546     // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
7547     //
7548     // map(ps->i)
7549     // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
7550     //
7551     // map(ps->s.f)
7552     // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7553     //
7554     // map(from: ps->p)
7555     // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
7556     //
7557     // map(to: ps->p[:22])
7558     // ps, &(ps->p), sizeof(double*), TARGET_PARAM
7559     // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
7560     // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
7561     //
7562     // map(ps->ps)
7563     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7564     //
7565     // map(from: ps->ps->s.i)
7566     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7567     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7568     // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7569     //
7570     // map(from: ps->ps->ps)
7571     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7572     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7573     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7574     //
7575     // map(ps->ps->ps->ps)
7576     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7577     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7578     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7579     // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7580     //
7581     // map(to: ps->ps->ps->s.f[:22])
7582     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7583     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7584     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7585     // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7586     //
7587     // map(to: s.f[:22]) map(from: s.p[:33])
7588     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
7589     //     sizeof(double*) (**), TARGET_PARAM
7590     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
7591     // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
7592     // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7593     // (*) allocate contiguous space needed to fit all mapped members even if
7594     //     we allocate space for members not mapped (in this example,
7595     //     s.f[22..49] and s.s are not mapped, yet we must allocate space for
7596     //     them as well because they fall between &s.f[0] and &s.p)
7597     //
7598     // map(from: s.f[:22]) map(to: ps->p[:33])
7599     // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
7600     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7601     // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
7602     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
7603     // (*) the struct this entry pertains to is the 2nd element in the list of
7604     //     arguments, hence MEMBER_OF(2)
7605     //
7606     // map(from: s.f[:22], s.s) map(to: ps->p[:33])
7607     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
7608     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
7609     // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
7610     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7611     // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
7612     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
7613     // (*) the struct this entry pertains to is the 4th element in the list
7614     //     of arguments, hence MEMBER_OF(4)
7615 
7616     // Track if the map information being generated is the first for a capture.
7617     bool IsCaptureFirstInfo = IsFirstComponentList;
7618     // When the variable is on a declare target link or in a to clause with
7619     // unified memory, a reference is needed to hold the host/device address
7620     // of the variable.
7621     bool RequiresReference = false;
7622 
7623     // Scan the components from the base to the complete expression.
7624     auto CI = Components.rbegin();
7625     auto CE = Components.rend();
7626     auto I = CI;
7627 
7628     // Track if the map information being generated is the first for a list of
7629     // components.
7630     bool IsExpressionFirstInfo = true;
7631     bool FirstPointerInComplexData = false;
7632     Address BP = Address::invalid();
7633     const Expr *AssocExpr = I->getAssociatedExpression();
7634     const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
7635     const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7636     const auto *OAShE = dyn_cast<OMPArrayShapingExpr>(AssocExpr);
7637 
7638     if (isa<MemberExpr>(AssocExpr)) {
7639       // The base is the 'this' pointer. The content of the pointer is going
7640       // to be the base of the field being mapped.
7641       BP = CGF.LoadCXXThisAddress();
7642     } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
7643                (OASE &&
7644                 isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
7645       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7646     } else if (OAShE &&
7647                isa<CXXThisExpr>(OAShE->getBase()->IgnoreParenCasts())) {
7648       BP = Address(
7649           CGF.EmitScalarExpr(OAShE->getBase()),
7650           CGF.getContext().getTypeAlignInChars(OAShE->getBase()->getType()));
7651     } else {
7652       // The base is the reference to the variable.
7653       // BP = &Var.
7654       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7655       if (const auto *VD =
7656               dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
7657         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7658                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
7659           if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
7660               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
7661                CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
7662             RequiresReference = true;
7663             BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
7664           }
7665         }
7666       }
7667 
7668       // If the variable is a pointer and is being dereferenced (i.e. is not
7669       // the last component), the base has to be the pointer itself, not its
7670       // reference. References are ignored for mapping purposes.
7671       QualType Ty =
7672           I->getAssociatedDeclaration()->getType().getNonReferenceType();
7673       if (Ty->isAnyPointerType() && std::next(I) != CE) {
7674         // No need to generate individual map information for the pointer, it
7675         // can be associated with the combined storage if shared memory mode is
7676         // active or the base declaration is not global variable.
7677         const auto *VD = dyn_cast<VarDecl>(I->getAssociatedDeclaration());
7678         if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
7679             !VD || VD->hasLocalStorage())
7680           BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7681         else
7682           FirstPointerInComplexData = true;
7683         ++I;
7684       }
7685     }
7686 
7687     // Track whether a component of the list should be marked as MEMBER_OF some
7688     // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
7689     // in a component list should be marked as MEMBER_OF, all subsequent entries
7690     // do not belong to the base struct. E.g.
7691     // struct S2 s;
7692     // s.ps->ps->ps->f[:]
7693     //   (1) (2) (3) (4)
7694     // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
7695     // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
7696     // is the pointee of ps(2) which is not member of struct s, so it should not
7697     // be marked as such (it is still PTR_AND_OBJ).
7698     // The variable is initialized to false so that PTR_AND_OBJ entries which
7699     // are not struct members are not considered (e.g. array of pointers to
7700     // data).
7701     bool ShouldBeMemberOf = false;
7702 
7703     // Variable keeping track of whether or not we have encountered a component
7704     // in the component list which is a member expression. Useful when we have a
7705     // pointer or a final array section, in which case it is the previous
7706     // component in the list which tells us whether we have a member expression.
7707     // E.g. X.f[:]
7708     // While processing the final array section "[:]" it is "f" which tells us
7709     // whether we are dealing with a member of a declared struct.
7710     const MemberExpr *EncounteredME = nullptr;
7711 
7712     // Track for the total number of dimension. Start from one for the dummy
7713     // dimension.
7714     uint64_t DimSize = 1;
7715 
7716     bool IsNonContiguous = CombinedInfo.NonContigInfo.IsNonContiguous;
7717     bool IsPrevMemberReference = false;
7718 
7719     for (; I != CE; ++I) {
7720       // If the current component is member of a struct (parent struct) mark it.
7721       if (!EncounteredME) {
7722         EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
7723         // If we encounter a PTR_AND_OBJ entry from now on it should be marked
7724         // as MEMBER_OF the parent struct.
7725         if (EncounteredME) {
7726           ShouldBeMemberOf = true;
7727           // Do not emit as complex pointer if this is actually not array-like
7728           // expression.
7729           if (FirstPointerInComplexData) {
7730             QualType Ty = std::prev(I)
7731                               ->getAssociatedDeclaration()
7732                               ->getType()
7733                               .getNonReferenceType();
7734             BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7735             FirstPointerInComplexData = false;
7736           }
7737         }
7738       }
7739 
7740       auto Next = std::next(I);
7741 
7742       // We need to generate the addresses and sizes if this is the last
7743       // component, if the component is a pointer or if it is an array section
7744       // whose length can't be proved to be one. If this is a pointer, it
7745       // becomes the base address for the following components.
7746 
7747       // A final array section, is one whose length can't be proved to be one.
7748       // If the map item is non-contiguous then we don't treat any array section
7749       // as final array section.
7750       bool IsFinalArraySection =
7751           !IsNonContiguous &&
7752           isFinalArraySectionExpression(I->getAssociatedExpression());
7753 
7754       // If we have a declaration for the mapping use that, otherwise use
7755       // the base declaration of the map clause.
7756       const ValueDecl *MapDecl = (I->getAssociatedDeclaration())
7757                                      ? I->getAssociatedDeclaration()
7758                                      : BaseDecl;
7759       MapExpr = (I->getAssociatedExpression()) ? I->getAssociatedExpression()
7760                                                : MapExpr;
7761 
7762       // Get information on whether the element is a pointer. Have to do a
7763       // special treatment for array sections given that they are built-in
7764       // types.
7765       const auto *OASE =
7766           dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
7767       const auto *OAShE =
7768           dyn_cast<OMPArrayShapingExpr>(I->getAssociatedExpression());
7769       const auto *UO = dyn_cast<UnaryOperator>(I->getAssociatedExpression());
7770       const auto *BO = dyn_cast<BinaryOperator>(I->getAssociatedExpression());
7771       bool IsPointer =
7772           OAShE ||
7773           (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
7774                        .getCanonicalType()
7775                        ->isAnyPointerType()) ||
7776           I->getAssociatedExpression()->getType()->isAnyPointerType();
7777       bool IsMemberReference = isa<MemberExpr>(I->getAssociatedExpression()) &&
7778                                MapDecl &&
7779                                MapDecl->getType()->isLValueReferenceType();
7780       bool IsNonDerefPointer = IsPointer && !UO && !BO && !IsNonContiguous;
7781 
7782       if (OASE)
7783         ++DimSize;
7784 
7785       if (Next == CE || IsMemberReference || IsNonDerefPointer ||
7786           IsFinalArraySection) {
7787         // If this is not the last component, we expect the pointer to be
7788         // associated with an array expression or member expression.
7789         assert((Next == CE ||
7790                 isa<MemberExpr>(Next->getAssociatedExpression()) ||
7791                 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
7792                 isa<OMPArraySectionExpr>(Next->getAssociatedExpression()) ||
7793                 isa<OMPArrayShapingExpr>(Next->getAssociatedExpression()) ||
7794                 isa<UnaryOperator>(Next->getAssociatedExpression()) ||
7795                 isa<BinaryOperator>(Next->getAssociatedExpression())) &&
7796                "Unexpected expression");
7797 
7798         Address LB = Address::invalid();
7799         Address LowestElem = Address::invalid();
7800         auto &&EmitMemberExprBase = [](CodeGenFunction &CGF,
7801                                        const MemberExpr *E) {
7802           const Expr *BaseExpr = E->getBase();
7803           // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a
7804           // scalar.
7805           LValue BaseLV;
7806           if (E->isArrow()) {
7807             LValueBaseInfo BaseInfo;
7808             TBAAAccessInfo TBAAInfo;
7809             Address Addr =
7810                 CGF.EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
7811             QualType PtrTy = BaseExpr->getType()->getPointeeType();
7812             BaseLV = CGF.MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
7813           } else {
7814             BaseLV = CGF.EmitOMPSharedLValue(BaseExpr);
7815           }
7816           return BaseLV;
7817         };
7818         if (OAShE) {
7819           LowestElem = LB = Address(CGF.EmitScalarExpr(OAShE->getBase()),
7820                                     CGF.getContext().getTypeAlignInChars(
7821                                         OAShE->getBase()->getType()));
7822         } else if (IsMemberReference) {
7823           const auto *ME = cast<MemberExpr>(I->getAssociatedExpression());
7824           LValue BaseLVal = EmitMemberExprBase(CGF, ME);
7825           LowestElem = CGF.EmitLValueForFieldInitialization(
7826                               BaseLVal, cast<FieldDecl>(MapDecl))
7827                            .getAddress(CGF);
7828           LB = CGF.EmitLoadOfReferenceLValue(LowestElem, MapDecl->getType())
7829                    .getAddress(CGF);
7830         } else {
7831           LowestElem = LB =
7832               CGF.EmitOMPSharedLValue(I->getAssociatedExpression())
7833                   .getAddress(CGF);
7834         }
7835 
7836         // If this component is a pointer inside the base struct then we don't
7837         // need to create any entry for it - it will be combined with the object
7838         // it is pointing to into a single PTR_AND_OBJ entry.
7839         bool IsMemberPointerOrAddr =
7840             EncounteredME &&
7841             (((IsPointer || ForDeviceAddr) &&
7842               I->getAssociatedExpression() == EncounteredME) ||
7843              (IsPrevMemberReference && !IsPointer) ||
7844              (IsMemberReference && Next != CE &&
7845               !Next->getAssociatedExpression()->getType()->isPointerType()));
7846         if (!OverlappedElements.empty() && Next == CE) {
7847           // Handle base element with the info for overlapped elements.
7848           assert(!PartialStruct.Base.isValid() && "The base element is set.");
7849           assert(!IsPointer &&
7850                  "Unexpected base element with the pointer type.");
7851           // Mark the whole struct as the struct that requires allocation on the
7852           // device.
7853           PartialStruct.LowestElem = {0, LowestElem};
7854           CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
7855               I->getAssociatedExpression()->getType());
7856           Address HB = CGF.Builder.CreateConstGEP(
7857               CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LowestElem,
7858                                                               CGF.VoidPtrTy),
7859               TypeSize.getQuantity() - 1);
7860           PartialStruct.HighestElem = {
7861               std::numeric_limits<decltype(
7862                   PartialStruct.HighestElem.first)>::max(),
7863               HB};
7864           PartialStruct.Base = BP;
7865           PartialStruct.LB = LB;
7866           assert(
7867               PartialStruct.PreliminaryMapData.BasePointers.empty() &&
7868               "Overlapped elements must be used only once for the variable.");
7869           std::swap(PartialStruct.PreliminaryMapData, CombinedInfo);
7870           // Emit data for non-overlapped data.
7871           OpenMPOffloadMappingFlags Flags =
7872               OMP_MAP_MEMBER_OF |
7873               getMapTypeBits(MapType, MapModifiers, MotionModifiers, IsImplicit,
7874                              /*AddPtrFlag=*/false,
7875                              /*AddIsTargetParamFlag=*/false, IsNonContiguous);
7876           llvm::Value *Size = nullptr;
7877           // Do bitcopy of all non-overlapped structure elements.
7878           for (OMPClauseMappableExprCommon::MappableExprComponentListRef
7879                    Component : OverlappedElements) {
7880             Address ComponentLB = Address::invalid();
7881             for (const OMPClauseMappableExprCommon::MappableComponent &MC :
7882                  Component) {
7883               if (const ValueDecl *VD = MC.getAssociatedDeclaration()) {
7884                 const auto *FD = dyn_cast<FieldDecl>(VD);
7885                 if (FD && FD->getType()->isLValueReferenceType()) {
7886                   const auto *ME =
7887                       cast<MemberExpr>(MC.getAssociatedExpression());
7888                   LValue BaseLVal = EmitMemberExprBase(CGF, ME);
7889                   ComponentLB =
7890                       CGF.EmitLValueForFieldInitialization(BaseLVal, FD)
7891                           .getAddress(CGF);
7892                 } else {
7893                   ComponentLB =
7894                       CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
7895                           .getAddress(CGF);
7896                 }
7897                 Size = CGF.Builder.CreatePtrDiff(
7898                     CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
7899                     CGF.EmitCastToVoidPtr(LB.getPointer()));
7900                 break;
7901               }
7902             }
7903             assert(Size && "Failed to determine structure size");
7904             CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7905             CombinedInfo.BasePointers.push_back(BP.getPointer());
7906             CombinedInfo.Pointers.push_back(LB.getPointer());
7907             CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
7908                 Size, CGF.Int64Ty, /*isSigned=*/true));
7909             CombinedInfo.Types.push_back(Flags);
7910             CombinedInfo.Mappers.push_back(nullptr);
7911             CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7912                                                                       : 1);
7913             LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
7914           }
7915           CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7916           CombinedInfo.BasePointers.push_back(BP.getPointer());
7917           CombinedInfo.Pointers.push_back(LB.getPointer());
7918           Size = CGF.Builder.CreatePtrDiff(
7919               CGF.Builder.CreateConstGEP(HB, 1).getPointer(),
7920               CGF.EmitCastToVoidPtr(LB.getPointer()));
7921           CombinedInfo.Sizes.push_back(
7922               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7923           CombinedInfo.Types.push_back(Flags);
7924           CombinedInfo.Mappers.push_back(nullptr);
7925           CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7926                                                                     : 1);
7927           break;
7928         }
7929         llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
7930         if (!IsMemberPointerOrAddr ||
7931             (Next == CE && MapType != OMPC_MAP_unknown)) {
7932           CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7933           CombinedInfo.BasePointers.push_back(BP.getPointer());
7934           CombinedInfo.Pointers.push_back(LB.getPointer());
7935           CombinedInfo.Sizes.push_back(
7936               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7937           CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7938                                                                     : 1);
7939 
7940           // If Mapper is valid, the last component inherits the mapper.
7941           bool HasMapper = Mapper && Next == CE;
7942           CombinedInfo.Mappers.push_back(HasMapper ? Mapper : nullptr);
7943 
7944           // We need to add a pointer flag for each map that comes from the
7945           // same expression except for the first one. We also need to signal
7946           // this map is the first one that relates with the current capture
7947           // (there is a set of entries for each capture).
7948           OpenMPOffloadMappingFlags Flags = getMapTypeBits(
7949               MapType, MapModifiers, MotionModifiers, IsImplicit,
7950               !IsExpressionFirstInfo || RequiresReference ||
7951                   FirstPointerInComplexData || IsMemberReference,
7952               IsCaptureFirstInfo && !RequiresReference, IsNonContiguous);
7953 
7954           if (!IsExpressionFirstInfo || IsMemberReference) {
7955             // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
7956             // then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags.
7957             if (IsPointer || (IsMemberReference && Next != CE))
7958               Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
7959                          OMP_MAP_DELETE | OMP_MAP_CLOSE);
7960 
7961             if (ShouldBeMemberOf) {
7962               // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
7963               // should be later updated with the correct value of MEMBER_OF.
7964               Flags |= OMP_MAP_MEMBER_OF;
7965               // From now on, all subsequent PTR_AND_OBJ entries should not be
7966               // marked as MEMBER_OF.
7967               ShouldBeMemberOf = false;
7968             }
7969           }
7970 
7971           CombinedInfo.Types.push_back(Flags);
7972         }
7973 
7974         // If we have encountered a member expression so far, keep track of the
7975         // mapped member. If the parent is "*this", then the value declaration
7976         // is nullptr.
7977         if (EncounteredME) {
7978           const auto *FD = cast<FieldDecl>(EncounteredME->getMemberDecl());
7979           unsigned FieldIndex = FD->getFieldIndex();
7980 
7981           // Update info about the lowest and highest elements for this struct
7982           if (!PartialStruct.Base.isValid()) {
7983             PartialStruct.LowestElem = {FieldIndex, LowestElem};
7984             if (IsFinalArraySection) {
7985               Address HB =
7986                   CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false)
7987                       .getAddress(CGF);
7988               PartialStruct.HighestElem = {FieldIndex, HB};
7989             } else {
7990               PartialStruct.HighestElem = {FieldIndex, LowestElem};
7991             }
7992             PartialStruct.Base = BP;
7993             PartialStruct.LB = BP;
7994           } else if (FieldIndex < PartialStruct.LowestElem.first) {
7995             PartialStruct.LowestElem = {FieldIndex, LowestElem};
7996           } else if (FieldIndex > PartialStruct.HighestElem.first) {
7997             PartialStruct.HighestElem = {FieldIndex, LowestElem};
7998           }
7999         }
8000 
8001         // Need to emit combined struct for array sections.
8002         if (IsFinalArraySection || IsNonContiguous)
8003           PartialStruct.IsArraySection = true;
8004 
8005         // If we have a final array section, we are done with this expression.
8006         if (IsFinalArraySection)
8007           break;
8008 
8009         // The pointer becomes the base for the next element.
8010         if (Next != CE)
8011           BP = IsMemberReference ? LowestElem : LB;
8012 
8013         IsExpressionFirstInfo = false;
8014         IsCaptureFirstInfo = false;
8015         FirstPointerInComplexData = false;
8016         IsPrevMemberReference = IsMemberReference;
8017       } else if (FirstPointerInComplexData) {
8018         QualType Ty = Components.rbegin()
8019                           ->getAssociatedDeclaration()
8020                           ->getType()
8021                           .getNonReferenceType();
8022         BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
8023         FirstPointerInComplexData = false;
8024       }
8025     }
8026     // If ran into the whole component - allocate the space for the whole
8027     // record.
8028     if (!EncounteredME)
8029       PartialStruct.HasCompleteRecord = true;
8030 
8031     if (!IsNonContiguous)
8032       return;
8033 
8034     const ASTContext &Context = CGF.getContext();
8035 
8036     // For supporting stride in array section, we need to initialize the first
8037     // dimension size as 1, first offset as 0, and first count as 1
8038     MapValuesArrayTy CurOffsets = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 0)};
8039     MapValuesArrayTy CurCounts = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
8040     MapValuesArrayTy CurStrides;
8041     MapValuesArrayTy DimSizes{llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
8042     uint64_t ElementTypeSize;
8043 
8044     // Collect Size information for each dimension and get the element size as
8045     // the first Stride. For example, for `int arr[10][10]`, the DimSizes
8046     // should be [10, 10] and the first stride is 4 btyes.
8047     for (const OMPClauseMappableExprCommon::MappableComponent &Component :
8048          Components) {
8049       const Expr *AssocExpr = Component.getAssociatedExpression();
8050       const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
8051 
8052       if (!OASE)
8053         continue;
8054 
8055       QualType Ty = OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
8056       auto *CAT = Context.getAsConstantArrayType(Ty);
8057       auto *VAT = Context.getAsVariableArrayType(Ty);
8058 
8059       // We need all the dimension size except for the last dimension.
8060       assert((VAT || CAT || &Component == &*Components.begin()) &&
8061              "Should be either ConstantArray or VariableArray if not the "
8062              "first Component");
8063 
8064       // Get element size if CurStrides is empty.
8065       if (CurStrides.empty()) {
8066         const Type *ElementType = nullptr;
8067         if (CAT)
8068           ElementType = CAT->getElementType().getTypePtr();
8069         else if (VAT)
8070           ElementType = VAT->getElementType().getTypePtr();
8071         else
8072           assert(&Component == &*Components.begin() &&
8073                  "Only expect pointer (non CAT or VAT) when this is the "
8074                  "first Component");
8075         // If ElementType is null, then it means the base is a pointer
8076         // (neither CAT nor VAT) and we'll attempt to get ElementType again
8077         // for next iteration.
8078         if (ElementType) {
8079           // For the case that having pointer as base, we need to remove one
8080           // level of indirection.
8081           if (&Component != &*Components.begin())
8082             ElementType = ElementType->getPointeeOrArrayElementType();
8083           ElementTypeSize =
8084               Context.getTypeSizeInChars(ElementType).getQuantity();
8085           CurStrides.push_back(
8086               llvm::ConstantInt::get(CGF.Int64Ty, ElementTypeSize));
8087         }
8088       }
8089       // Get dimension value except for the last dimension since we don't need
8090       // it.
8091       if (DimSizes.size() < Components.size() - 1) {
8092         if (CAT)
8093           DimSizes.push_back(llvm::ConstantInt::get(
8094               CGF.Int64Ty, CAT->getSize().getZExtValue()));
8095         else if (VAT)
8096           DimSizes.push_back(CGF.Builder.CreateIntCast(
8097               CGF.EmitScalarExpr(VAT->getSizeExpr()), CGF.Int64Ty,
8098               /*IsSigned=*/false));
8099       }
8100     }
8101 
8102     // Skip the dummy dimension since we have already have its information.
8103     auto DI = DimSizes.begin() + 1;
8104     // Product of dimension.
8105     llvm::Value *DimProd =
8106         llvm::ConstantInt::get(CGF.CGM.Int64Ty, ElementTypeSize);
8107 
8108     // Collect info for non-contiguous. Notice that offset, count, and stride
8109     // are only meaningful for array-section, so we insert a null for anything
8110     // other than array-section.
8111     // Also, the size of offset, count, and stride are not the same as
8112     // pointers, base_pointers, sizes, or dims. Instead, the size of offset,
8113     // count, and stride are the same as the number of non-contiguous
8114     // declaration in target update to/from clause.
8115     for (const OMPClauseMappableExprCommon::MappableComponent &Component :
8116          Components) {
8117       const Expr *AssocExpr = Component.getAssociatedExpression();
8118 
8119       if (const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr)) {
8120         llvm::Value *Offset = CGF.Builder.CreateIntCast(
8121             CGF.EmitScalarExpr(AE->getIdx()), CGF.Int64Ty,
8122             /*isSigned=*/false);
8123         CurOffsets.push_back(Offset);
8124         CurCounts.push_back(llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/1));
8125         CurStrides.push_back(CurStrides.back());
8126         continue;
8127       }
8128 
8129       const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
8130 
8131       if (!OASE)
8132         continue;
8133 
8134       // Offset
8135       const Expr *OffsetExpr = OASE->getLowerBound();
8136       llvm::Value *Offset = nullptr;
8137       if (!OffsetExpr) {
8138         // If offset is absent, then we just set it to zero.
8139         Offset = llvm::ConstantInt::get(CGF.Int64Ty, 0);
8140       } else {
8141         Offset = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(OffsetExpr),
8142                                            CGF.Int64Ty,
8143                                            /*isSigned=*/false);
8144       }
8145       CurOffsets.push_back(Offset);
8146 
8147       // Count
8148       const Expr *CountExpr = OASE->getLength();
8149       llvm::Value *Count = nullptr;
8150       if (!CountExpr) {
8151         // In Clang, once a high dimension is an array section, we construct all
8152         // the lower dimension as array section, however, for case like
8153         // arr[0:2][2], Clang construct the inner dimension as an array section
8154         // but it actually is not in an array section form according to spec.
8155         if (!OASE->getColonLocFirst().isValid() &&
8156             !OASE->getColonLocSecond().isValid()) {
8157           Count = llvm::ConstantInt::get(CGF.Int64Ty, 1);
8158         } else {
8159           // OpenMP 5.0, 2.1.5 Array Sections, Description.
8160           // When the length is absent it defaults to ⌈(size −
8161           // lower-bound)/stride⌉, where size is the size of the array
8162           // dimension.
8163           const Expr *StrideExpr = OASE->getStride();
8164           llvm::Value *Stride =
8165               StrideExpr
8166                   ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
8167                                               CGF.Int64Ty, /*isSigned=*/false)
8168                   : nullptr;
8169           if (Stride)
8170             Count = CGF.Builder.CreateUDiv(
8171                 CGF.Builder.CreateNUWSub(*DI, Offset), Stride);
8172           else
8173             Count = CGF.Builder.CreateNUWSub(*DI, Offset);
8174         }
8175       } else {
8176         Count = CGF.EmitScalarExpr(CountExpr);
8177       }
8178       Count = CGF.Builder.CreateIntCast(Count, CGF.Int64Ty, /*isSigned=*/false);
8179       CurCounts.push_back(Count);
8180 
8181       // Stride_n' = Stride_n * (D_0 * D_1 ... * D_n-1) * Unit size
8182       // Take `int arr[5][5][5]` and `arr[0:2:2][1:2:1][0:2:2]` as an example:
8183       //              Offset      Count     Stride
8184       //    D0          0           1         4    (int)    <- dummy dimension
8185       //    D1          0           2         8    (2 * (1) * 4)
8186       //    D2          1           2         20   (1 * (1 * 5) * 4)
8187       //    D3          0           2         200  (2 * (1 * 5 * 4) * 4)
8188       const Expr *StrideExpr = OASE->getStride();
8189       llvm::Value *Stride =
8190           StrideExpr
8191               ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
8192                                           CGF.Int64Ty, /*isSigned=*/false)
8193               : nullptr;
8194       DimProd = CGF.Builder.CreateNUWMul(DimProd, *(DI - 1));
8195       if (Stride)
8196         CurStrides.push_back(CGF.Builder.CreateNUWMul(DimProd, Stride));
8197       else
8198         CurStrides.push_back(DimProd);
8199       if (DI != DimSizes.end())
8200         ++DI;
8201     }
8202 
8203     CombinedInfo.NonContigInfo.Offsets.push_back(CurOffsets);
8204     CombinedInfo.NonContigInfo.Counts.push_back(CurCounts);
8205     CombinedInfo.NonContigInfo.Strides.push_back(CurStrides);
8206   }
8207 
8208   /// Return the adjusted map modifiers if the declaration a capture refers to
8209   /// appears in a first-private clause. This is expected to be used only with
8210   /// directives that start with 'target'.
8211   MappableExprsHandler::OpenMPOffloadMappingFlags
getMapModifiersForPrivateClauses(const CapturedStmt::Capture & Cap) const8212   getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
8213     assert(Cap.capturesVariable() && "Expected capture by reference only!");
8214 
8215     // A first private variable captured by reference will use only the
8216     // 'private ptr' and 'map to' flag. Return the right flags if the captured
8217     // declaration is known as first-private in this handler.
8218     if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
8219       if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
8220           Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
8221         return MappableExprsHandler::OMP_MAP_ALWAYS |
8222                MappableExprsHandler::OMP_MAP_TO;
8223       if (Cap.getCapturedVar()->getType()->isAnyPointerType())
8224         return MappableExprsHandler::OMP_MAP_TO |
8225                MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
8226       return MappableExprsHandler::OMP_MAP_PRIVATE |
8227              MappableExprsHandler::OMP_MAP_TO;
8228     }
8229     return MappableExprsHandler::OMP_MAP_TO |
8230            MappableExprsHandler::OMP_MAP_FROM;
8231   }
8232 
getMemberOfFlag(unsigned Position)8233   static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
8234     // Rotate by getFlagMemberOffset() bits.
8235     return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
8236                                                   << getFlagMemberOffset());
8237   }
8238 
setCorrectMemberOfFlag(OpenMPOffloadMappingFlags & Flags,OpenMPOffloadMappingFlags MemberOfFlag)8239   static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
8240                                      OpenMPOffloadMappingFlags MemberOfFlag) {
8241     // If the entry is PTR_AND_OBJ but has not been marked with the special
8242     // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
8243     // marked as MEMBER_OF.
8244     if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
8245         ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
8246       return;
8247 
8248     // Reset the placeholder value to prepare the flag for the assignment of the
8249     // proper MEMBER_OF value.
8250     Flags &= ~OMP_MAP_MEMBER_OF;
8251     Flags |= MemberOfFlag;
8252   }
8253 
getPlainLayout(const CXXRecordDecl * RD,llvm::SmallVectorImpl<const FieldDecl * > & Layout,bool AsBase) const8254   void getPlainLayout(const CXXRecordDecl *RD,
8255                       llvm::SmallVectorImpl<const FieldDecl *> &Layout,
8256                       bool AsBase) const {
8257     const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
8258 
8259     llvm::StructType *St =
8260         AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
8261 
8262     unsigned NumElements = St->getNumElements();
8263     llvm::SmallVector<
8264         llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
8265         RecordLayout(NumElements);
8266 
8267     // Fill bases.
8268     for (const auto &I : RD->bases()) {
8269       if (I.isVirtual())
8270         continue;
8271       const auto *Base = I.getType()->getAsCXXRecordDecl();
8272       // Ignore empty bases.
8273       if (Base->isEmpty() || CGF.getContext()
8274                                  .getASTRecordLayout(Base)
8275                                  .getNonVirtualSize()
8276                                  .isZero())
8277         continue;
8278 
8279       unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
8280       RecordLayout[FieldIndex] = Base;
8281     }
8282     // Fill in virtual bases.
8283     for (const auto &I : RD->vbases()) {
8284       const auto *Base = I.getType()->getAsCXXRecordDecl();
8285       // Ignore empty bases.
8286       if (Base->isEmpty())
8287         continue;
8288       unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
8289       if (RecordLayout[FieldIndex])
8290         continue;
8291       RecordLayout[FieldIndex] = Base;
8292     }
8293     // Fill in all the fields.
8294     assert(!RD->isUnion() && "Unexpected union.");
8295     for (const auto *Field : RD->fields()) {
8296       // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
8297       // will fill in later.)
8298       if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
8299         unsigned FieldIndex = RL.getLLVMFieldNo(Field);
8300         RecordLayout[FieldIndex] = Field;
8301       }
8302     }
8303     for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
8304              &Data : RecordLayout) {
8305       if (Data.isNull())
8306         continue;
8307       if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
8308         getPlainLayout(Base, Layout, /*AsBase=*/true);
8309       else
8310         Layout.push_back(Data.get<const FieldDecl *>());
8311     }
8312   }
8313 
8314   /// Generate all the base pointers, section pointers, sizes, map types, and
8315   /// mappers for the extracted mappable expressions (all included in \a
8316   /// CombinedInfo). Also, for each item that relates with a device pointer, a
8317   /// pair of the relevant declaration and index where it occurs is appended to
8318   /// the device pointers info array.
generateAllInfoForClauses(ArrayRef<const OMPClause * > Clauses,MapCombinedInfoTy & CombinedInfo,const llvm::DenseSet<CanonicalDeclPtr<const Decl>> & SkipVarSet=llvm::DenseSet<CanonicalDeclPtr<const Decl>> ()) const8319   void generateAllInfoForClauses(
8320       ArrayRef<const OMPClause *> Clauses, MapCombinedInfoTy &CombinedInfo,
8321       const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet =
8322           llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const {
8323     // We have to process the component lists that relate with the same
8324     // declaration in a single chunk so that we can generate the map flags
8325     // correctly. Therefore, we organize all lists in a map.
8326     enum MapKind { Present, Allocs, Other, Total };
8327     llvm::MapVector<CanonicalDeclPtr<const Decl>,
8328                     SmallVector<SmallVector<MapInfo, 8>, 4>>
8329         Info;
8330 
8331     // Helper function to fill the information map for the different supported
8332     // clauses.
8333     auto &&InfoGen =
8334         [&Info, &SkipVarSet](
8335             const ValueDecl *D, MapKind Kind,
8336             OMPClauseMappableExprCommon::MappableExprComponentListRef L,
8337             OpenMPMapClauseKind MapType,
8338             ArrayRef<OpenMPMapModifierKind> MapModifiers,
8339             ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
8340             bool ReturnDevicePointer, bool IsImplicit, const ValueDecl *Mapper,
8341             const Expr *VarRef = nullptr, bool ForDeviceAddr = false) {
8342           if (SkipVarSet.contains(D))
8343             return;
8344           auto It = Info.find(D);
8345           if (It == Info.end())
8346             It = Info
8347                      .insert(std::make_pair(
8348                          D, SmallVector<SmallVector<MapInfo, 8>, 4>(Total)))
8349                      .first;
8350           It->second[Kind].emplace_back(
8351               L, MapType, MapModifiers, MotionModifiers, ReturnDevicePointer,
8352               IsImplicit, Mapper, VarRef, ForDeviceAddr);
8353         };
8354 
8355     for (const auto *Cl : Clauses) {
8356       const auto *C = dyn_cast<OMPMapClause>(Cl);
8357       if (!C)
8358         continue;
8359       MapKind Kind = Other;
8360       if (!C->getMapTypeModifiers().empty() &&
8361           llvm::any_of(C->getMapTypeModifiers(), [](OpenMPMapModifierKind K) {
8362             return K == OMPC_MAP_MODIFIER_present;
8363           }))
8364         Kind = Present;
8365       else if (C->getMapType() == OMPC_MAP_alloc)
8366         Kind = Allocs;
8367       const auto *EI = C->getVarRefs().begin();
8368       for (const auto L : C->component_lists()) {
8369         const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr;
8370         InfoGen(std::get<0>(L), Kind, std::get<1>(L), C->getMapType(),
8371                 C->getMapTypeModifiers(), llvm::None,
8372                 /*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L),
8373                 E);
8374         ++EI;
8375       }
8376     }
8377     for (const auto *Cl : Clauses) {
8378       const auto *C = dyn_cast<OMPToClause>(Cl);
8379       if (!C)
8380         continue;
8381       MapKind Kind = Other;
8382       if (!C->getMotionModifiers().empty() &&
8383           llvm::any_of(C->getMotionModifiers(), [](OpenMPMotionModifierKind K) {
8384             return K == OMPC_MOTION_MODIFIER_present;
8385           }))
8386         Kind = Present;
8387       const auto *EI = C->getVarRefs().begin();
8388       for (const auto L : C->component_lists()) {
8389         InfoGen(std::get<0>(L), Kind, std::get<1>(L), OMPC_MAP_to, llvm::None,
8390                 C->getMotionModifiers(), /*ReturnDevicePointer=*/false,
8391                 C->isImplicit(), std::get<2>(L), *EI);
8392         ++EI;
8393       }
8394     }
8395     for (const auto *Cl : Clauses) {
8396       const auto *C = dyn_cast<OMPFromClause>(Cl);
8397       if (!C)
8398         continue;
8399       MapKind Kind = Other;
8400       if (!C->getMotionModifiers().empty() &&
8401           llvm::any_of(C->getMotionModifiers(), [](OpenMPMotionModifierKind K) {
8402             return K == OMPC_MOTION_MODIFIER_present;
8403           }))
8404         Kind = Present;
8405       const auto *EI = C->getVarRefs().begin();
8406       for (const auto L : C->component_lists()) {
8407         InfoGen(std::get<0>(L), Kind, std::get<1>(L), OMPC_MAP_from, llvm::None,
8408                 C->getMotionModifiers(), /*ReturnDevicePointer=*/false,
8409                 C->isImplicit(), std::get<2>(L), *EI);
8410         ++EI;
8411       }
8412     }
8413 
8414     // Look at the use_device_ptr clause information and mark the existing map
8415     // entries as such. If there is no map information for an entry in the
8416     // use_device_ptr list, we create one with map type 'alloc' and zero size
8417     // section. It is the user fault if that was not mapped before. If there is
8418     // no map information and the pointer is a struct member, then we defer the
8419     // emission of that entry until the whole struct has been processed.
8420     llvm::MapVector<CanonicalDeclPtr<const Decl>,
8421                     SmallVector<DeferredDevicePtrEntryTy, 4>>
8422         DeferredInfo;
8423     MapCombinedInfoTy UseDevicePtrCombinedInfo;
8424 
8425     for (const auto *Cl : Clauses) {
8426       const auto *C = dyn_cast<OMPUseDevicePtrClause>(Cl);
8427       if (!C)
8428         continue;
8429       for (const auto L : C->component_lists()) {
8430         OMPClauseMappableExprCommon::MappableExprComponentListRef Components =
8431             std::get<1>(L);
8432         assert(!Components.empty() &&
8433                "Not expecting empty list of components!");
8434         const ValueDecl *VD = Components.back().getAssociatedDeclaration();
8435         VD = cast<ValueDecl>(VD->getCanonicalDecl());
8436         const Expr *IE = Components.back().getAssociatedExpression();
8437         // If the first component is a member expression, we have to look into
8438         // 'this', which maps to null in the map of map information. Otherwise
8439         // look directly for the information.
8440         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
8441 
8442         // We potentially have map information for this declaration already.
8443         // Look for the first set of components that refer to it.
8444         if (It != Info.end()) {
8445           bool Found = false;
8446           for (auto &Data : It->second) {
8447             auto *CI = llvm::find_if(Data, [VD](const MapInfo &MI) {
8448               return MI.Components.back().getAssociatedDeclaration() == VD;
8449             });
8450             // If we found a map entry, signal that the pointer has to be
8451             // returned and move on to the next declaration. Exclude cases where
8452             // the base pointer is mapped as array subscript, array section or
8453             // array shaping. The base address is passed as a pointer to base in
8454             // this case and cannot be used as a base for use_device_ptr list
8455             // item.
8456             if (CI != Data.end()) {
8457               auto PrevCI = std::next(CI->Components.rbegin());
8458               const auto *VarD = dyn_cast<VarDecl>(VD);
8459               if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
8460                   isa<MemberExpr>(IE) ||
8461                   !VD->getType().getNonReferenceType()->isPointerType() ||
8462                   PrevCI == CI->Components.rend() ||
8463                   isa<MemberExpr>(PrevCI->getAssociatedExpression()) || !VarD ||
8464                   VarD->hasLocalStorage()) {
8465                 CI->ReturnDevicePointer = true;
8466                 Found = true;
8467                 break;
8468               }
8469             }
8470           }
8471           if (Found)
8472             continue;
8473         }
8474 
8475         // We didn't find any match in our map information - generate a zero
8476         // size array section - if the pointer is a struct member we defer this
8477         // action until the whole struct has been processed.
8478         if (isa<MemberExpr>(IE)) {
8479           // Insert the pointer into Info to be processed by
8480           // generateInfoForComponentList. Because it is a member pointer
8481           // without a pointee, no entry will be generated for it, therefore
8482           // we need to generate one after the whole struct has been processed.
8483           // Nonetheless, generateInfoForComponentList must be called to take
8484           // the pointer into account for the calculation of the range of the
8485           // partial struct.
8486           InfoGen(nullptr, Other, Components, OMPC_MAP_unknown, llvm::None,
8487                   llvm::None, /*ReturnDevicePointer=*/false, C->isImplicit(),
8488                   nullptr);
8489           DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/false);
8490         } else {
8491           llvm::Value *Ptr =
8492               CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc());
8493           UseDevicePtrCombinedInfo.Exprs.push_back(VD);
8494           UseDevicePtrCombinedInfo.BasePointers.emplace_back(Ptr, VD);
8495           UseDevicePtrCombinedInfo.Pointers.push_back(Ptr);
8496           UseDevicePtrCombinedInfo.Sizes.push_back(
8497               llvm::Constant::getNullValue(CGF.Int64Ty));
8498           UseDevicePtrCombinedInfo.Types.push_back(OMP_MAP_RETURN_PARAM);
8499           UseDevicePtrCombinedInfo.Mappers.push_back(nullptr);
8500         }
8501       }
8502     }
8503 
8504     // Look at the use_device_addr clause information and mark the existing map
8505     // entries as such. If there is no map information for an entry in the
8506     // use_device_addr list, we create one with map type 'alloc' and zero size
8507     // section. It is the user fault if that was not mapped before. If there is
8508     // no map information and the pointer is a struct member, then we defer the
8509     // emission of that entry until the whole struct has been processed.
8510     llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
8511     for (const auto *Cl : Clauses) {
8512       const auto *C = dyn_cast<OMPUseDeviceAddrClause>(Cl);
8513       if (!C)
8514         continue;
8515       for (const auto L : C->component_lists()) {
8516         assert(!std::get<1>(L).empty() &&
8517                "Not expecting empty list of components!");
8518         const ValueDecl *VD = std::get<1>(L).back().getAssociatedDeclaration();
8519         if (!Processed.insert(VD).second)
8520           continue;
8521         VD = cast<ValueDecl>(VD->getCanonicalDecl());
8522         const Expr *IE = std::get<1>(L).back().getAssociatedExpression();
8523         // If the first component is a member expression, we have to look into
8524         // 'this', which maps to null in the map of map information. Otherwise
8525         // look directly for the information.
8526         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
8527 
8528         // We potentially have map information for this declaration already.
8529         // Look for the first set of components that refer to it.
8530         if (It != Info.end()) {
8531           bool Found = false;
8532           for (auto &Data : It->second) {
8533             auto *CI = llvm::find_if(Data, [VD](const MapInfo &MI) {
8534               return MI.Components.back().getAssociatedDeclaration() == VD;
8535             });
8536             // If we found a map entry, signal that the pointer has to be
8537             // returned and move on to the next declaration.
8538             if (CI != Data.end()) {
8539               CI->ReturnDevicePointer = true;
8540               Found = true;
8541               break;
8542             }
8543           }
8544           if (Found)
8545             continue;
8546         }
8547 
8548         // We didn't find any match in our map information - generate a zero
8549         // size array section - if the pointer is a struct member we defer this
8550         // action until the whole struct has been processed.
8551         if (isa<MemberExpr>(IE)) {
8552           // Insert the pointer into Info to be processed by
8553           // generateInfoForComponentList. Because it is a member pointer
8554           // without a pointee, no entry will be generated for it, therefore
8555           // we need to generate one after the whole struct has been processed.
8556           // Nonetheless, generateInfoForComponentList must be called to take
8557           // the pointer into account for the calculation of the range of the
8558           // partial struct.
8559           InfoGen(nullptr, Other, std::get<1>(L), OMPC_MAP_unknown, llvm::None,
8560                   llvm::None, /*ReturnDevicePointer=*/false, C->isImplicit(),
8561                   nullptr, nullptr, /*ForDeviceAddr=*/true);
8562           DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/true);
8563         } else {
8564           llvm::Value *Ptr;
8565           if (IE->isGLValue())
8566             Ptr = CGF.EmitLValue(IE).getPointer(CGF);
8567           else
8568             Ptr = CGF.EmitScalarExpr(IE);
8569           CombinedInfo.Exprs.push_back(VD);
8570           CombinedInfo.BasePointers.emplace_back(Ptr, VD);
8571           CombinedInfo.Pointers.push_back(Ptr);
8572           CombinedInfo.Sizes.push_back(
8573               llvm::Constant::getNullValue(CGF.Int64Ty));
8574           CombinedInfo.Types.push_back(OMP_MAP_RETURN_PARAM);
8575           CombinedInfo.Mappers.push_back(nullptr);
8576         }
8577       }
8578     }
8579 
8580     for (const auto &Data : Info) {
8581       StructRangeInfoTy PartialStruct;
8582       // Temporary generated information.
8583       MapCombinedInfoTy CurInfo;
8584       const Decl *D = Data.first;
8585       const ValueDecl *VD = cast_or_null<ValueDecl>(D);
8586       for (const auto &M : Data.second) {
8587         for (const MapInfo &L : M) {
8588           assert(!L.Components.empty() &&
8589                  "Not expecting declaration with no component lists.");
8590 
8591           // Remember the current base pointer index.
8592           unsigned CurrentBasePointersIdx = CurInfo.BasePointers.size();
8593           CurInfo.NonContigInfo.IsNonContiguous =
8594               L.Components.back().isNonContiguous();
8595           generateInfoForComponentList(
8596               L.MapType, L.MapModifiers, L.MotionModifiers, L.Components,
8597               CurInfo, PartialStruct, /*IsFirstComponentList=*/false,
8598               L.IsImplicit, L.Mapper, L.ForDeviceAddr, VD, L.VarRef);
8599 
8600           // If this entry relates with a device pointer, set the relevant
8601           // declaration and add the 'return pointer' flag.
8602           if (L.ReturnDevicePointer) {
8603             assert(CurInfo.BasePointers.size() > CurrentBasePointersIdx &&
8604                    "Unexpected number of mapped base pointers.");
8605 
8606             const ValueDecl *RelevantVD =
8607                 L.Components.back().getAssociatedDeclaration();
8608             assert(RelevantVD &&
8609                    "No relevant declaration related with device pointer??");
8610 
8611             CurInfo.BasePointers[CurrentBasePointersIdx].setDevicePtrDecl(
8612                 RelevantVD);
8613             CurInfo.Types[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
8614           }
8615         }
8616       }
8617 
8618       // Append any pending zero-length pointers which are struct members and
8619       // used with use_device_ptr or use_device_addr.
8620       auto CI = DeferredInfo.find(Data.first);
8621       if (CI != DeferredInfo.end()) {
8622         for (const DeferredDevicePtrEntryTy &L : CI->second) {
8623           llvm::Value *BasePtr;
8624           llvm::Value *Ptr;
8625           if (L.ForDeviceAddr) {
8626             if (L.IE->isGLValue())
8627               Ptr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8628             else
8629               Ptr = this->CGF.EmitScalarExpr(L.IE);
8630             BasePtr = Ptr;
8631             // Entry is RETURN_PARAM. Also, set the placeholder value
8632             // MEMBER_OF=FFFF so that the entry is later updated with the
8633             // correct value of MEMBER_OF.
8634             CurInfo.Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_MEMBER_OF);
8635           } else {
8636             BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8637             Ptr = this->CGF.EmitLoadOfScalar(this->CGF.EmitLValue(L.IE),
8638                                              L.IE->getExprLoc());
8639             // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the
8640             // placeholder value MEMBER_OF=FFFF so that the entry is later
8641             // updated with the correct value of MEMBER_OF.
8642             CurInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
8643                                     OMP_MAP_MEMBER_OF);
8644           }
8645           CurInfo.Exprs.push_back(L.VD);
8646           CurInfo.BasePointers.emplace_back(BasePtr, L.VD);
8647           CurInfo.Pointers.push_back(Ptr);
8648           CurInfo.Sizes.push_back(
8649               llvm::Constant::getNullValue(this->CGF.Int64Ty));
8650           CurInfo.Mappers.push_back(nullptr);
8651         }
8652       }
8653       // If there is an entry in PartialStruct it means we have a struct with
8654       // individual members mapped. Emit an extra combined entry.
8655       if (PartialStruct.Base.isValid()) {
8656         CurInfo.NonContigInfo.Dims.push_back(0);
8657         emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct, VD);
8658       }
8659 
8660       // We need to append the results of this capture to what we already
8661       // have.
8662       CombinedInfo.append(CurInfo);
8663     }
8664     // Append data for use_device_ptr clauses.
8665     CombinedInfo.append(UseDevicePtrCombinedInfo);
8666   }
8667 
8668 public:
MappableExprsHandler(const OMPExecutableDirective & Dir,CodeGenFunction & CGF)8669   MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
8670       : CurDir(&Dir), CGF(CGF) {
8671     // Extract firstprivate clause information.
8672     for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
8673       for (const auto *D : C->varlists())
8674         FirstPrivateDecls.try_emplace(
8675             cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
8676     // Extract implicit firstprivates from uses_allocators clauses.
8677     for (const auto *C : Dir.getClausesOfKind<OMPUsesAllocatorsClause>()) {
8678       for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
8679         OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
8680         if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(D.AllocatorTraits))
8681           FirstPrivateDecls.try_emplace(cast<VarDecl>(DRE->getDecl()),
8682                                         /*Implicit=*/true);
8683         else if (const auto *VD = dyn_cast<VarDecl>(
8684                      cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts())
8685                          ->getDecl()))
8686           FirstPrivateDecls.try_emplace(VD, /*Implicit=*/true);
8687       }
8688     }
8689     // Extract device pointer clause information.
8690     for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
8691       for (auto L : C->component_lists())
8692         DevPointersMap[std::get<0>(L)].push_back(std::get<1>(L));
8693   }
8694 
8695   /// Constructor for the declare mapper directive.
MappableExprsHandler(const OMPDeclareMapperDecl & Dir,CodeGenFunction & CGF)8696   MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF)
8697       : CurDir(&Dir), CGF(CGF) {}
8698 
8699   /// Generate code for the combined entry if we have a partially mapped struct
8700   /// and take care of the mapping flags of the arguments corresponding to
8701   /// individual struct members.
emitCombinedEntry(MapCombinedInfoTy & CombinedInfo,MapFlagsArrayTy & CurTypes,const StructRangeInfoTy & PartialStruct,const ValueDecl * VD=nullptr,bool NotTargetParams=true) const8702   void emitCombinedEntry(MapCombinedInfoTy &CombinedInfo,
8703                          MapFlagsArrayTy &CurTypes,
8704                          const StructRangeInfoTy &PartialStruct,
8705                          const ValueDecl *VD = nullptr,
8706                          bool NotTargetParams = true) const {
8707     if (CurTypes.size() == 1 &&
8708         ((CurTypes.back() & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF) &&
8709         !PartialStruct.IsArraySection)
8710       return;
8711     Address LBAddr = PartialStruct.LowestElem.second;
8712     Address HBAddr = PartialStruct.HighestElem.second;
8713     if (PartialStruct.HasCompleteRecord) {
8714       LBAddr = PartialStruct.LB;
8715       HBAddr = PartialStruct.LB;
8716     }
8717     CombinedInfo.Exprs.push_back(VD);
8718     // Base is the base of the struct
8719     CombinedInfo.BasePointers.push_back(PartialStruct.Base.getPointer());
8720     // Pointer is the address of the lowest element
8721     llvm::Value *LB = LBAddr.getPointer();
8722     CombinedInfo.Pointers.push_back(LB);
8723     // There should not be a mapper for a combined entry.
8724     CombinedInfo.Mappers.push_back(nullptr);
8725     // Size is (addr of {highest+1} element) - (addr of lowest element)
8726     llvm::Value *HB = HBAddr.getPointer();
8727     llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
8728     llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
8729     llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
8730     llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
8731     llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
8732                                                   /*isSigned=*/false);
8733     CombinedInfo.Sizes.push_back(Size);
8734     // Map type is always TARGET_PARAM, if generate info for captures.
8735     CombinedInfo.Types.push_back(NotTargetParams ? OMP_MAP_NONE
8736                                                  : OMP_MAP_TARGET_PARAM);
8737     // If any element has the present modifier, then make sure the runtime
8738     // doesn't attempt to allocate the struct.
8739     if (CurTypes.end() !=
8740         llvm::find_if(CurTypes, [](OpenMPOffloadMappingFlags Type) {
8741           return Type & OMP_MAP_PRESENT;
8742         }))
8743       CombinedInfo.Types.back() |= OMP_MAP_PRESENT;
8744     // Remove TARGET_PARAM flag from the first element
8745     (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM;
8746 
8747     // All other current entries will be MEMBER_OF the combined entry
8748     // (except for PTR_AND_OBJ entries which do not have a placeholder value
8749     // 0xFFFF in the MEMBER_OF field).
8750     OpenMPOffloadMappingFlags MemberOfFlag =
8751         getMemberOfFlag(CombinedInfo.BasePointers.size() - 1);
8752     for (auto &M : CurTypes)
8753       setCorrectMemberOfFlag(M, MemberOfFlag);
8754   }
8755 
8756   /// Generate all the base pointers, section pointers, sizes, map types, and
8757   /// mappers for the extracted mappable expressions (all included in \a
8758   /// CombinedInfo). Also, for each item that relates with a device pointer, a
8759   /// pair of the relevant declaration and index where it occurs is appended to
8760   /// the device pointers info array.
generateAllInfo(MapCombinedInfoTy & CombinedInfo,const llvm::DenseSet<CanonicalDeclPtr<const Decl>> & SkipVarSet=llvm::DenseSet<CanonicalDeclPtr<const Decl>> ()) const8761   void generateAllInfo(
8762       MapCombinedInfoTy &CombinedInfo,
8763       const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet =
8764           llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const {
8765     assert(CurDir.is<const OMPExecutableDirective *>() &&
8766            "Expect a executable directive");
8767     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8768     generateAllInfoForClauses(CurExecDir->clauses(), CombinedInfo, SkipVarSet);
8769   }
8770 
8771   /// Generate all the base pointers, section pointers, sizes, map types, and
8772   /// mappers for the extracted map clauses of user-defined mapper (all included
8773   /// in \a CombinedInfo).
generateAllInfoForMapper(MapCombinedInfoTy & CombinedInfo) const8774   void generateAllInfoForMapper(MapCombinedInfoTy &CombinedInfo) const {
8775     assert(CurDir.is<const OMPDeclareMapperDecl *>() &&
8776            "Expect a declare mapper directive");
8777     const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>();
8778     generateAllInfoForClauses(CurMapperDir->clauses(), CombinedInfo);
8779   }
8780 
8781   /// Emit capture info for lambdas for variables captured by reference.
generateInfoForLambdaCaptures(const ValueDecl * VD,llvm::Value * Arg,MapCombinedInfoTy & CombinedInfo,llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers) const8782   void generateInfoForLambdaCaptures(
8783       const ValueDecl *VD, llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
8784       llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
8785     const auto *RD = VD->getType()
8786                          .getCanonicalType()
8787                          .getNonReferenceType()
8788                          ->getAsCXXRecordDecl();
8789     if (!RD || !RD->isLambda())
8790       return;
8791     Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
8792     LValue VDLVal = CGF.MakeAddrLValue(
8793         VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
8794     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
8795     FieldDecl *ThisCapture = nullptr;
8796     RD->getCaptureFields(Captures, ThisCapture);
8797     if (ThisCapture) {
8798       LValue ThisLVal =
8799           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
8800       LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
8801       LambdaPointers.try_emplace(ThisLVal.getPointer(CGF),
8802                                  VDLVal.getPointer(CGF));
8803       CombinedInfo.Exprs.push_back(VD);
8804       CombinedInfo.BasePointers.push_back(ThisLVal.getPointer(CGF));
8805       CombinedInfo.Pointers.push_back(ThisLValVal.getPointer(CGF));
8806       CombinedInfo.Sizes.push_back(
8807           CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8808                                     CGF.Int64Ty, /*isSigned=*/true));
8809       CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8810                                    OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8811       CombinedInfo.Mappers.push_back(nullptr);
8812     }
8813     for (const LambdaCapture &LC : RD->captures()) {
8814       if (!LC.capturesVariable())
8815         continue;
8816       const VarDecl *VD = LC.getCapturedVar();
8817       if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
8818         continue;
8819       auto It = Captures.find(VD);
8820       assert(It != Captures.end() && "Found lambda capture without field.");
8821       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
8822       if (LC.getCaptureKind() == LCK_ByRef) {
8823         LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
8824         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8825                                    VDLVal.getPointer(CGF));
8826         CombinedInfo.Exprs.push_back(VD);
8827         CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
8828         CombinedInfo.Pointers.push_back(VarLValVal.getPointer(CGF));
8829         CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8830             CGF.getTypeSize(
8831                 VD->getType().getCanonicalType().getNonReferenceType()),
8832             CGF.Int64Ty, /*isSigned=*/true));
8833       } else {
8834         RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
8835         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8836                                    VDLVal.getPointer(CGF));
8837         CombinedInfo.Exprs.push_back(VD);
8838         CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
8839         CombinedInfo.Pointers.push_back(VarRVal.getScalarVal());
8840         CombinedInfo.Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
8841       }
8842       CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8843                                    OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8844       CombinedInfo.Mappers.push_back(nullptr);
8845     }
8846   }
8847 
8848   /// Set correct indices for lambdas captures.
adjustMemberOfForLambdaCaptures(const llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapFlagsArrayTy & Types) const8849   void adjustMemberOfForLambdaCaptures(
8850       const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
8851       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
8852       MapFlagsArrayTy &Types) const {
8853     for (unsigned I = 0, E = Types.size(); I < E; ++I) {
8854       // Set correct member_of idx for all implicit lambda captures.
8855       if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8856                        OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
8857         continue;
8858       llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
8859       assert(BasePtr && "Unable to find base lambda address.");
8860       int TgtIdx = -1;
8861       for (unsigned J = I; J > 0; --J) {
8862         unsigned Idx = J - 1;
8863         if (Pointers[Idx] != BasePtr)
8864           continue;
8865         TgtIdx = Idx;
8866         break;
8867       }
8868       assert(TgtIdx != -1 && "Unable to find parent lambda.");
8869       // All other current entries will be MEMBER_OF the combined entry
8870       // (except for PTR_AND_OBJ entries which do not have a placeholder value
8871       // 0xFFFF in the MEMBER_OF field).
8872       OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
8873       setCorrectMemberOfFlag(Types[I], MemberOfFlag);
8874     }
8875   }
8876 
8877   /// Generate the base pointers, section pointers, sizes, map types, and
8878   /// mappers associated to a given capture (all included in \a CombinedInfo).
generateInfoForCapture(const CapturedStmt::Capture * Cap,llvm::Value * Arg,MapCombinedInfoTy & CombinedInfo,StructRangeInfoTy & PartialStruct) const8879   void generateInfoForCapture(const CapturedStmt::Capture *Cap,
8880                               llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
8881                               StructRangeInfoTy &PartialStruct) const {
8882     assert(!Cap->capturesVariableArrayType() &&
8883            "Not expecting to generate map info for a variable array type!");
8884 
8885     // We need to know when we generating information for the first component
8886     const ValueDecl *VD = Cap->capturesThis()
8887                               ? nullptr
8888                               : Cap->getCapturedVar()->getCanonicalDecl();
8889 
8890     // If this declaration appears in a is_device_ptr clause we just have to
8891     // pass the pointer by value. If it is a reference to a declaration, we just
8892     // pass its value.
8893     if (DevPointersMap.count(VD)) {
8894       CombinedInfo.Exprs.push_back(VD);
8895       CombinedInfo.BasePointers.emplace_back(Arg, VD);
8896       CombinedInfo.Pointers.push_back(Arg);
8897       CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8898           CGF.getTypeSize(CGF.getContext().VoidPtrTy), CGF.Int64Ty,
8899           /*isSigned=*/true));
8900       CombinedInfo.Types.push_back(
8901           (Cap->capturesVariable() ? OMP_MAP_TO : OMP_MAP_LITERAL) |
8902           OMP_MAP_TARGET_PARAM);
8903       CombinedInfo.Mappers.push_back(nullptr);
8904       return;
8905     }
8906 
8907     using MapData =
8908         std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
8909                    OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool,
8910                    const ValueDecl *, const Expr *>;
8911     SmallVector<MapData, 4> DeclComponentLists;
8912     assert(CurDir.is<const OMPExecutableDirective *>() &&
8913            "Expect a executable directive");
8914     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8915     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8916       const auto *EI = C->getVarRefs().begin();
8917       for (const auto L : C->decl_component_lists(VD)) {
8918         const ValueDecl *VDecl, *Mapper;
8919         // The Expression is not correct if the mapping is implicit
8920         const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr;
8921         OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8922         std::tie(VDecl, Components, Mapper) = L;
8923         assert(VDecl == VD && "We got information for the wrong declaration??");
8924         assert(!Components.empty() &&
8925                "Not expecting declaration with no component lists.");
8926         DeclComponentLists.emplace_back(Components, C->getMapType(),
8927                                         C->getMapTypeModifiers(),
8928                                         C->isImplicit(), Mapper, E);
8929         ++EI;
8930       }
8931     }
8932     llvm::stable_sort(DeclComponentLists, [](const MapData &LHS,
8933                                              const MapData &RHS) {
8934       ArrayRef<OpenMPMapModifierKind> MapModifiers = std::get<2>(LHS);
8935       OpenMPMapClauseKind MapType = std::get<1>(RHS);
8936       bool HasPresent = !MapModifiers.empty() &&
8937                         llvm::any_of(MapModifiers, [](OpenMPMapModifierKind K) {
8938                           return K == clang::OMPC_MAP_MODIFIER_present;
8939                         });
8940       bool HasAllocs = MapType == OMPC_MAP_alloc;
8941       MapModifiers = std::get<2>(RHS);
8942       MapType = std::get<1>(LHS);
8943       bool HasPresentR =
8944           !MapModifiers.empty() &&
8945           llvm::any_of(MapModifiers, [](OpenMPMapModifierKind K) {
8946             return K == clang::OMPC_MAP_MODIFIER_present;
8947           });
8948       bool HasAllocsR = MapType == OMPC_MAP_alloc;
8949       return (HasPresent && !HasPresentR) || (HasAllocs && !HasAllocsR);
8950     });
8951 
8952     // Find overlapping elements (including the offset from the base element).
8953     llvm::SmallDenseMap<
8954         const MapData *,
8955         llvm::SmallVector<
8956             OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
8957         4>
8958         OverlappedData;
8959     size_t Count = 0;
8960     for (const MapData &L : DeclComponentLists) {
8961       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8962       OpenMPMapClauseKind MapType;
8963       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8964       bool IsImplicit;
8965       const ValueDecl *Mapper;
8966       const Expr *VarRef;
8967       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
8968           L;
8969       ++Count;
8970       for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
8971         OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
8972         std::tie(Components1, MapType, MapModifiers, IsImplicit, Mapper,
8973                  VarRef) = L1;
8974         auto CI = Components.rbegin();
8975         auto CE = Components.rend();
8976         auto SI = Components1.rbegin();
8977         auto SE = Components1.rend();
8978         for (; CI != CE && SI != SE; ++CI, ++SI) {
8979           if (CI->getAssociatedExpression()->getStmtClass() !=
8980               SI->getAssociatedExpression()->getStmtClass())
8981             break;
8982           // Are we dealing with different variables/fields?
8983           if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
8984             break;
8985         }
8986         // Found overlapping if, at least for one component, reached the head
8987         // of the components list.
8988         if (CI == CE || SI == SE) {
8989           // Ignore it if it is the same component.
8990           if (CI == CE && SI == SE)
8991             continue;
8992           const auto It = (SI == SE) ? CI : SI;
8993           // If one component is a pointer and another one is a kind of
8994           // dereference of this pointer (array subscript, section, dereference,
8995           // etc.), it is not an overlapping.
8996           if (!isa<MemberExpr>(It->getAssociatedExpression()) ||
8997               std::prev(It)
8998                   ->getAssociatedExpression()
8999                   ->getType()
9000                   ->isPointerType())
9001             continue;
9002           const MapData &BaseData = CI == CE ? L : L1;
9003           OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
9004               SI == SE ? Components : Components1;
9005           auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
9006           OverlappedElements.getSecond().push_back(SubData);
9007         }
9008       }
9009     }
9010     // Sort the overlapped elements for each item.
9011     llvm::SmallVector<const FieldDecl *, 4> Layout;
9012     if (!OverlappedData.empty()) {
9013       const Type *BaseType = VD->getType().getCanonicalType().getTypePtr();
9014       const Type *OrigType = BaseType->getPointeeOrArrayElementType();
9015       while (BaseType != OrigType) {
9016         BaseType = OrigType->getCanonicalTypeInternal().getTypePtr();
9017         OrigType = BaseType->getPointeeOrArrayElementType();
9018       }
9019 
9020       if (const auto *CRD = BaseType->getAsCXXRecordDecl())
9021         getPlainLayout(CRD, Layout, /*AsBase=*/false);
9022       else {
9023         const auto *RD = BaseType->getAsRecordDecl();
9024         Layout.append(RD->field_begin(), RD->field_end());
9025       }
9026     }
9027     for (auto &Pair : OverlappedData) {
9028       llvm::stable_sort(
9029           Pair.getSecond(),
9030           [&Layout](
9031               OMPClauseMappableExprCommon::MappableExprComponentListRef First,
9032               OMPClauseMappableExprCommon::MappableExprComponentListRef
9033                   Second) {
9034             auto CI = First.rbegin();
9035             auto CE = First.rend();
9036             auto SI = Second.rbegin();
9037             auto SE = Second.rend();
9038             for (; CI != CE && SI != SE; ++CI, ++SI) {
9039               if (CI->getAssociatedExpression()->getStmtClass() !=
9040                   SI->getAssociatedExpression()->getStmtClass())
9041                 break;
9042               // Are we dealing with different variables/fields?
9043               if (CI->getAssociatedDeclaration() !=
9044                   SI->getAssociatedDeclaration())
9045                 break;
9046             }
9047 
9048             // Lists contain the same elements.
9049             if (CI == CE && SI == SE)
9050               return false;
9051 
9052             // List with less elements is less than list with more elements.
9053             if (CI == CE || SI == SE)
9054               return CI == CE;
9055 
9056             const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
9057             const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
9058             if (FD1->getParent() == FD2->getParent())
9059               return FD1->getFieldIndex() < FD2->getFieldIndex();
9060             const auto It =
9061                 llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
9062                   return FD == FD1 || FD == FD2;
9063                 });
9064             return *It == FD1;
9065           });
9066     }
9067 
9068     // Associated with a capture, because the mapping flags depend on it.
9069     // Go through all of the elements with the overlapped elements.
9070     bool IsFirstComponentList = true;
9071     for (const auto &Pair : OverlappedData) {
9072       const MapData &L = *Pair.getFirst();
9073       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
9074       OpenMPMapClauseKind MapType;
9075       ArrayRef<OpenMPMapModifierKind> MapModifiers;
9076       bool IsImplicit;
9077       const ValueDecl *Mapper;
9078       const Expr *VarRef;
9079       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
9080           L;
9081       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
9082           OverlappedComponents = Pair.getSecond();
9083       generateInfoForComponentList(
9084           MapType, MapModifiers, llvm::None, Components, CombinedInfo,
9085           PartialStruct, IsFirstComponentList, IsImplicit, Mapper,
9086           /*ForDeviceAddr=*/false, VD, VarRef, OverlappedComponents);
9087       IsFirstComponentList = false;
9088     }
9089     // Go through other elements without overlapped elements.
9090     for (const MapData &L : DeclComponentLists) {
9091       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
9092       OpenMPMapClauseKind MapType;
9093       ArrayRef<OpenMPMapModifierKind> MapModifiers;
9094       bool IsImplicit;
9095       const ValueDecl *Mapper;
9096       const Expr *VarRef;
9097       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
9098           L;
9099       auto It = OverlappedData.find(&L);
9100       if (It == OverlappedData.end())
9101         generateInfoForComponentList(MapType, MapModifiers, llvm::None,
9102                                      Components, CombinedInfo, PartialStruct,
9103                                      IsFirstComponentList, IsImplicit, Mapper,
9104                                      /*ForDeviceAddr=*/false, VD, VarRef);
9105       IsFirstComponentList = false;
9106     }
9107   }
9108 
9109   /// Generate the default map information for a given capture \a CI,
9110   /// record field declaration \a RI and captured value \a CV.
generateDefaultMapInfo(const CapturedStmt::Capture & CI,const FieldDecl & RI,llvm::Value * CV,MapCombinedInfoTy & CombinedInfo) const9111   void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
9112                               const FieldDecl &RI, llvm::Value *CV,
9113                               MapCombinedInfoTy &CombinedInfo) const {
9114     bool IsImplicit = true;
9115     // Do the default mapping.
9116     if (CI.capturesThis()) {
9117       CombinedInfo.Exprs.push_back(nullptr);
9118       CombinedInfo.BasePointers.push_back(CV);
9119       CombinedInfo.Pointers.push_back(CV);
9120       const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
9121       CombinedInfo.Sizes.push_back(
9122           CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
9123                                     CGF.Int64Ty, /*isSigned=*/true));
9124       // Default map type.
9125       CombinedInfo.Types.push_back(OMP_MAP_TO | OMP_MAP_FROM);
9126     } else if (CI.capturesVariableByCopy()) {
9127       const VarDecl *VD = CI.getCapturedVar();
9128       CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
9129       CombinedInfo.BasePointers.push_back(CV);
9130       CombinedInfo.Pointers.push_back(CV);
9131       if (!RI.getType()->isAnyPointerType()) {
9132         // We have to signal to the runtime captures passed by value that are
9133         // not pointers.
9134         CombinedInfo.Types.push_back(OMP_MAP_LITERAL);
9135         CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
9136             CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
9137       } else {
9138         // Pointers are implicitly mapped with a zero size and no flags
9139         // (other than first map that is added for all implicit maps).
9140         CombinedInfo.Types.push_back(OMP_MAP_NONE);
9141         CombinedInfo.Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
9142       }
9143       auto I = FirstPrivateDecls.find(VD);
9144       if (I != FirstPrivateDecls.end())
9145         IsImplicit = I->getSecond();
9146     } else {
9147       assert(CI.capturesVariable() && "Expected captured reference.");
9148       const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
9149       QualType ElementType = PtrTy->getPointeeType();
9150       CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
9151           CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
9152       // The default map type for a scalar/complex type is 'to' because by
9153       // default the value doesn't have to be retrieved. For an aggregate
9154       // type, the default is 'tofrom'.
9155       CombinedInfo.Types.push_back(getMapModifiersForPrivateClauses(CI));
9156       const VarDecl *VD = CI.getCapturedVar();
9157       auto I = FirstPrivateDecls.find(VD);
9158       if (I != FirstPrivateDecls.end() &&
9159           VD->getType().isConstant(CGF.getContext())) {
9160         llvm::Constant *Addr =
9161             CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
9162         // Copy the value of the original variable to the new global copy.
9163         CGF.Builder.CreateMemCpy(
9164             CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(CGF),
9165             Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
9166             CombinedInfo.Sizes.back(), /*IsVolatile=*/false);
9167         // Use new global variable as the base pointers.
9168         CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
9169         CombinedInfo.BasePointers.push_back(Addr);
9170         CombinedInfo.Pointers.push_back(Addr);
9171       } else {
9172         CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
9173         CombinedInfo.BasePointers.push_back(CV);
9174         if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
9175           Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
9176               CV, ElementType, CGF.getContext().getDeclAlign(VD),
9177               AlignmentSource::Decl));
9178           CombinedInfo.Pointers.push_back(PtrAddr.getPointer());
9179         } else {
9180           CombinedInfo.Pointers.push_back(CV);
9181         }
9182       }
9183       if (I != FirstPrivateDecls.end())
9184         IsImplicit = I->getSecond();
9185     }
9186     // Every default map produces a single argument which is a target parameter.
9187     CombinedInfo.Types.back() |= OMP_MAP_TARGET_PARAM;
9188 
9189     // Add flag stating this is an implicit map.
9190     if (IsImplicit)
9191       CombinedInfo.Types.back() |= OMP_MAP_IMPLICIT;
9192 
9193     // No user-defined mapper for default mapping.
9194     CombinedInfo.Mappers.push_back(nullptr);
9195   }
9196 };
9197 } // anonymous namespace
9198 
emitNonContiguousDescriptor(CodeGenFunction & CGF,MappableExprsHandler::MapCombinedInfoTy & CombinedInfo,CGOpenMPRuntime::TargetDataInfo & Info)9199 static void emitNonContiguousDescriptor(
9200     CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
9201     CGOpenMPRuntime::TargetDataInfo &Info) {
9202   CodeGenModule &CGM = CGF.CGM;
9203   MappableExprsHandler::MapCombinedInfoTy::StructNonContiguousInfo
9204       &NonContigInfo = CombinedInfo.NonContigInfo;
9205 
9206   // Build an array of struct descriptor_dim and then assign it to
9207   // offload_args.
9208   //
9209   // struct descriptor_dim {
9210   //  uint64_t offset;
9211   //  uint64_t count;
9212   //  uint64_t stride
9213   // };
9214   ASTContext &C = CGF.getContext();
9215   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
9216   RecordDecl *RD;
9217   RD = C.buildImplicitRecord("descriptor_dim");
9218   RD->startDefinition();
9219   addFieldToRecordDecl(C, RD, Int64Ty);
9220   addFieldToRecordDecl(C, RD, Int64Ty);
9221   addFieldToRecordDecl(C, RD, Int64Ty);
9222   RD->completeDefinition();
9223   QualType DimTy = C.getRecordType(RD);
9224 
9225   enum { OffsetFD = 0, CountFD, StrideFD };
9226   // We need two index variable here since the size of "Dims" is the same as the
9227   // size of Components, however, the size of offset, count, and stride is equal
9228   // to the size of base declaration that is non-contiguous.
9229   for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) {
9230     // Skip emitting ir if dimension size is 1 since it cannot be
9231     // non-contiguous.
9232     if (NonContigInfo.Dims[I] == 1)
9233       continue;
9234     llvm::APInt Size(/*numBits=*/32, NonContigInfo.Dims[I]);
9235     QualType ArrayTy =
9236         C.getConstantArrayType(DimTy, Size, nullptr, ArrayType::Normal, 0);
9237     Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
9238     for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) {
9239       unsigned RevIdx = EE - II - 1;
9240       LValue DimsLVal = CGF.MakeAddrLValue(
9241           CGF.Builder.CreateConstArrayGEP(DimsAddr, II), DimTy);
9242       // Offset
9243       LValue OffsetLVal = CGF.EmitLValueForField(
9244           DimsLVal, *std::next(RD->field_begin(), OffsetFD));
9245       CGF.EmitStoreOfScalar(NonContigInfo.Offsets[L][RevIdx], OffsetLVal);
9246       // Count
9247       LValue CountLVal = CGF.EmitLValueForField(
9248           DimsLVal, *std::next(RD->field_begin(), CountFD));
9249       CGF.EmitStoreOfScalar(NonContigInfo.Counts[L][RevIdx], CountLVal);
9250       // Stride
9251       LValue StrideLVal = CGF.EmitLValueForField(
9252           DimsLVal, *std::next(RD->field_begin(), StrideFD));
9253       CGF.EmitStoreOfScalar(NonContigInfo.Strides[L][RevIdx], StrideLVal);
9254     }
9255     // args[I] = &dims
9256     Address DAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9257         DimsAddr, CGM.Int8PtrTy);
9258     llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
9259         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9260         Info.PointersArray, 0, I);
9261     Address PAddr(P, CGF.getPointerAlign());
9262     CGF.Builder.CreateStore(DAddr.getPointer(), PAddr);
9263     ++L;
9264   }
9265 }
9266 
9267 /// Emit a string constant containing the names of the values mapped to the
9268 /// offloading runtime library.
9269 llvm::Constant *
emitMappingInformation(CodeGenFunction & CGF,llvm::OpenMPIRBuilder & OMPBuilder,MappableExprsHandler::MappingExprInfo & MapExprs)9270 emitMappingInformation(CodeGenFunction &CGF, llvm::OpenMPIRBuilder &OMPBuilder,
9271                        MappableExprsHandler::MappingExprInfo &MapExprs) {
9272   llvm::Constant *SrcLocStr;
9273   if (!MapExprs.getMapDecl()) {
9274     SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr();
9275   } else {
9276     std::string ExprName = "";
9277     if (MapExprs.getMapExpr()) {
9278       PrintingPolicy P(CGF.getContext().getLangOpts());
9279       llvm::raw_string_ostream OS(ExprName);
9280       MapExprs.getMapExpr()->printPretty(OS, nullptr, P);
9281       OS.flush();
9282     } else {
9283       ExprName = MapExprs.getMapDecl()->getNameAsString();
9284     }
9285 
9286     SourceLocation Loc = MapExprs.getMapDecl()->getLocation();
9287     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
9288     const char *FileName = PLoc.getFilename();
9289     unsigned Line = PLoc.getLine();
9290     unsigned Column = PLoc.getColumn();
9291     SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FileName, ExprName.c_str(),
9292                                                 Line, Column);
9293   }
9294   return SrcLocStr;
9295 }
9296 
9297 /// Emit the arrays used to pass the captures and map information to the
9298 /// offloading runtime library. If there is no map or capture information,
9299 /// return nullptr by reference.
emitOffloadingArrays(CodeGenFunction & CGF,MappableExprsHandler::MapCombinedInfoTy & CombinedInfo,CGOpenMPRuntime::TargetDataInfo & Info,llvm::OpenMPIRBuilder & OMPBuilder,bool IsNonContiguous=false)9300 static void emitOffloadingArrays(
9301     CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
9302     CGOpenMPRuntime::TargetDataInfo &Info, llvm::OpenMPIRBuilder &OMPBuilder,
9303     bool IsNonContiguous = false) {
9304   CodeGenModule &CGM = CGF.CGM;
9305   ASTContext &Ctx = CGF.getContext();
9306 
9307   // Reset the array information.
9308   Info.clearArrayInfo();
9309   Info.NumberOfPtrs = CombinedInfo.BasePointers.size();
9310 
9311   if (Info.NumberOfPtrs) {
9312     // Detect if we have any capture size requiring runtime evaluation of the
9313     // size so that a constant array could be eventually used.
9314     bool hasRuntimeEvaluationCaptureSize = false;
9315     for (llvm::Value *S : CombinedInfo.Sizes)
9316       if (!isa<llvm::Constant>(S)) {
9317         hasRuntimeEvaluationCaptureSize = true;
9318         break;
9319       }
9320 
9321     llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
9322     QualType PointerArrayType = Ctx.getConstantArrayType(
9323         Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal,
9324         /*IndexTypeQuals=*/0);
9325 
9326     Info.BasePointersArray =
9327         CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
9328     Info.PointersArray =
9329         CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
9330     Address MappersArray =
9331         CGF.CreateMemTemp(PointerArrayType, ".offload_mappers");
9332     Info.MappersArray = MappersArray.getPointer();
9333 
9334     // If we don't have any VLA types or other types that require runtime
9335     // evaluation, we can use a constant array for the map sizes, otherwise we
9336     // need to fill up the arrays as we do for the pointers.
9337     QualType Int64Ty =
9338         Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
9339     if (hasRuntimeEvaluationCaptureSize) {
9340       QualType SizeArrayType = Ctx.getConstantArrayType(
9341           Int64Ty, PointerNumAP, nullptr, ArrayType::Normal,
9342           /*IndexTypeQuals=*/0);
9343       Info.SizesArray =
9344           CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
9345     } else {
9346       // We expect all the sizes to be constant, so we collect them to create
9347       // a constant array.
9348       SmallVector<llvm::Constant *, 16> ConstSizes;
9349       for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) {
9350         if (IsNonContiguous &&
9351             (CombinedInfo.Types[I] & MappableExprsHandler::OMP_MAP_NON_CONTIG)) {
9352           ConstSizes.push_back(llvm::ConstantInt::get(
9353               CGF.Int64Ty, CombinedInfo.NonContigInfo.Dims[I]));
9354         } else {
9355           ConstSizes.push_back(cast<llvm::Constant>(CombinedInfo.Sizes[I]));
9356         }
9357       }
9358 
9359       auto *SizesArrayInit = llvm::ConstantArray::get(
9360           llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
9361       std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
9362       auto *SizesArrayGbl = new llvm::GlobalVariable(
9363           CGM.getModule(), SizesArrayInit->getType(),
9364           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9365           SizesArrayInit, Name);
9366       SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
9367       Info.SizesArray = SizesArrayGbl;
9368     }
9369 
9370     // The map types are always constant so we don't need to generate code to
9371     // fill arrays. Instead, we create an array constant.
9372     SmallVector<uint64_t, 4> Mapping(CombinedInfo.Types.size(), 0);
9373     llvm::copy(CombinedInfo.Types, Mapping.begin());
9374     std::string MaptypesName =
9375         CGM.getOpenMPRuntime().getName({"offload_maptypes"});
9376     auto *MapTypesArrayGbl =
9377         OMPBuilder.createOffloadMaptypes(Mapping, MaptypesName);
9378     Info.MapTypesArray = MapTypesArrayGbl;
9379 
9380     // The information types are only built if there is debug information
9381     // requested.
9382     if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) {
9383       Info.MapNamesArray = llvm::Constant::getNullValue(
9384           llvm::Type::getInt8Ty(CGF.Builder.getContext())->getPointerTo());
9385     } else {
9386       auto fillInfoMap = [&](MappableExprsHandler::MappingExprInfo &MapExpr) {
9387         return emitMappingInformation(CGF, OMPBuilder, MapExpr);
9388       };
9389       SmallVector<llvm::Constant *, 4> InfoMap(CombinedInfo.Exprs.size());
9390       llvm::transform(CombinedInfo.Exprs, InfoMap.begin(), fillInfoMap);
9391       std::string MapnamesName =
9392           CGM.getOpenMPRuntime().getName({"offload_mapnames"});
9393       auto *MapNamesArrayGbl =
9394           OMPBuilder.createOffloadMapnames(InfoMap, MapnamesName);
9395       Info.MapNamesArray = MapNamesArrayGbl;
9396     }
9397 
9398     // If there's a present map type modifier, it must not be applied to the end
9399     // of a region, so generate a separate map type array in that case.
9400     if (Info.separateBeginEndCalls()) {
9401       bool EndMapTypesDiffer = false;
9402       for (uint64_t &Type : Mapping) {
9403         if (Type & MappableExprsHandler::OMP_MAP_PRESENT) {
9404           Type &= ~MappableExprsHandler::OMP_MAP_PRESENT;
9405           EndMapTypesDiffer = true;
9406         }
9407       }
9408       if (EndMapTypesDiffer) {
9409         MapTypesArrayGbl =
9410             OMPBuilder.createOffloadMaptypes(Mapping, MaptypesName);
9411         Info.MapTypesArrayEnd = MapTypesArrayGbl;
9412       }
9413     }
9414 
9415     for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
9416       llvm::Value *BPVal = *CombinedInfo.BasePointers[I];
9417       llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
9418           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9419           Info.BasePointersArray, 0, I);
9420       BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9421           BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
9422       Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
9423       CGF.Builder.CreateStore(BPVal, BPAddr);
9424 
9425       if (Info.requiresDevicePointerInfo())
9426         if (const ValueDecl *DevVD =
9427                 CombinedInfo.BasePointers[I].getDevicePtrDecl())
9428           Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
9429 
9430       llvm::Value *PVal = CombinedInfo.Pointers[I];
9431       llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
9432           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9433           Info.PointersArray, 0, I);
9434       P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9435           P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
9436       Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
9437       CGF.Builder.CreateStore(PVal, PAddr);
9438 
9439       if (hasRuntimeEvaluationCaptureSize) {
9440         llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
9441             llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
9442             Info.SizesArray,
9443             /*Idx0=*/0,
9444             /*Idx1=*/I);
9445         Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
9446         CGF.Builder.CreateStore(CGF.Builder.CreateIntCast(CombinedInfo.Sizes[I],
9447                                                           CGM.Int64Ty,
9448                                                           /*isSigned=*/true),
9449                                 SAddr);
9450       }
9451 
9452       // Fill up the mapper array.
9453       llvm::Value *MFunc = llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
9454       if (CombinedInfo.Mappers[I]) {
9455         MFunc = CGM.getOpenMPRuntime().getOrCreateUserDefinedMapperFunc(
9456             cast<OMPDeclareMapperDecl>(CombinedInfo.Mappers[I]));
9457         MFunc = CGF.Builder.CreatePointerCast(MFunc, CGM.VoidPtrTy);
9458         Info.HasMapper = true;
9459       }
9460       Address MAddr = CGF.Builder.CreateConstArrayGEP(MappersArray, I);
9461       CGF.Builder.CreateStore(MFunc, MAddr);
9462     }
9463   }
9464 
9465   if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() ||
9466       Info.NumberOfPtrs == 0)
9467     return;
9468 
9469   emitNonContiguousDescriptor(CGF, CombinedInfo, Info);
9470 }
9471 
9472 namespace {
9473 /// Additional arguments for emitOffloadingArraysArgument function.
9474 struct ArgumentsOptions {
9475   bool ForEndCall = false;
9476   ArgumentsOptions() = default;
ArgumentsOptions__anonad2d34464d11::ArgumentsOptions9477   ArgumentsOptions(bool ForEndCall) : ForEndCall(ForEndCall) {}
9478 };
9479 } // namespace
9480 
9481 /// Emit the arguments to be passed to the runtime library based on the
9482 /// arrays of base pointers, pointers, sizes, map types, and mappers.  If
9483 /// ForEndCall, emit map types to be passed for the end of the region instead of
9484 /// the beginning.
emitOffloadingArraysArgument(CodeGenFunction & CGF,llvm::Value * & BasePointersArrayArg,llvm::Value * & PointersArrayArg,llvm::Value * & SizesArrayArg,llvm::Value * & MapTypesArrayArg,llvm::Value * & MapNamesArrayArg,llvm::Value * & MappersArrayArg,CGOpenMPRuntime::TargetDataInfo & Info,const ArgumentsOptions & Options=ArgumentsOptions ())9485 static void emitOffloadingArraysArgument(
9486     CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
9487     llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
9488     llvm::Value *&MapTypesArrayArg, llvm::Value *&MapNamesArrayArg,
9489     llvm::Value *&MappersArrayArg, CGOpenMPRuntime::TargetDataInfo &Info,
9490     const ArgumentsOptions &Options = ArgumentsOptions()) {
9491   assert((!Options.ForEndCall || Info.separateBeginEndCalls()) &&
9492          "expected region end call to runtime only when end call is separate");
9493   CodeGenModule &CGM = CGF.CGM;
9494   if (Info.NumberOfPtrs) {
9495     BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9496         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9497         Info.BasePointersArray,
9498         /*Idx0=*/0, /*Idx1=*/0);
9499     PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9500         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9501         Info.PointersArray,
9502         /*Idx0=*/0,
9503         /*Idx1=*/0);
9504     SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9505         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
9506         /*Idx0=*/0, /*Idx1=*/0);
9507     MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9508         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
9509         Options.ForEndCall && Info.MapTypesArrayEnd ? Info.MapTypesArrayEnd
9510                                                     : Info.MapTypesArray,
9511         /*Idx0=*/0,
9512         /*Idx1=*/0);
9513 
9514     // Only emit the mapper information arrays if debug information is
9515     // requested.
9516     if (CGF.CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo)
9517       MapNamesArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9518     else
9519       MapNamesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9520           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9521           Info.MapNamesArray,
9522           /*Idx0=*/0,
9523           /*Idx1=*/0);
9524     // If there is no user-defined mapper, set the mapper array to nullptr to
9525     // avoid an unnecessary data privatization
9526     if (!Info.HasMapper)
9527       MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9528     else
9529       MappersArrayArg =
9530           CGF.Builder.CreatePointerCast(Info.MappersArray, CGM.VoidPtrPtrTy);
9531   } else {
9532     BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9533     PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9534     SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
9535     MapTypesArrayArg =
9536         llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
9537     MapNamesArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9538     MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9539   }
9540 }
9541 
9542 /// Check for inner distribute directive.
9543 static const OMPExecutableDirective *
getNestedDistributeDirective(ASTContext & Ctx,const OMPExecutableDirective & D)9544 getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
9545   const auto *CS = D.getInnermostCapturedStmt();
9546   const auto *Body =
9547       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
9548   const Stmt *ChildStmt =
9549       CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
9550 
9551   if (const auto *NestedDir =
9552           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
9553     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
9554     switch (D.getDirectiveKind()) {
9555     case OMPD_target:
9556       if (isOpenMPDistributeDirective(DKind))
9557         return NestedDir;
9558       if (DKind == OMPD_teams) {
9559         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
9560             /*IgnoreCaptured=*/true);
9561         if (!Body)
9562           return nullptr;
9563         ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
9564         if (const auto *NND =
9565                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
9566           DKind = NND->getDirectiveKind();
9567           if (isOpenMPDistributeDirective(DKind))
9568             return NND;
9569         }
9570       }
9571       return nullptr;
9572     case OMPD_target_teams:
9573       if (isOpenMPDistributeDirective(DKind))
9574         return NestedDir;
9575       return nullptr;
9576     case OMPD_target_parallel:
9577     case OMPD_target_simd:
9578     case OMPD_target_parallel_for:
9579     case OMPD_target_parallel_for_simd:
9580       return nullptr;
9581     case OMPD_target_teams_distribute:
9582     case OMPD_target_teams_distribute_simd:
9583     case OMPD_target_teams_distribute_parallel_for:
9584     case OMPD_target_teams_distribute_parallel_for_simd:
9585     case OMPD_parallel:
9586     case OMPD_for:
9587     case OMPD_parallel_for:
9588     case OMPD_parallel_master:
9589     case OMPD_parallel_sections:
9590     case OMPD_for_simd:
9591     case OMPD_parallel_for_simd:
9592     case OMPD_cancel:
9593     case OMPD_cancellation_point:
9594     case OMPD_ordered:
9595     case OMPD_threadprivate:
9596     case OMPD_allocate:
9597     case OMPD_task:
9598     case OMPD_simd:
9599     case OMPD_tile:
9600     case OMPD_sections:
9601     case OMPD_section:
9602     case OMPD_single:
9603     case OMPD_master:
9604     case OMPD_critical:
9605     case OMPD_taskyield:
9606     case OMPD_barrier:
9607     case OMPD_taskwait:
9608     case OMPD_taskgroup:
9609     case OMPD_atomic:
9610     case OMPD_flush:
9611     case OMPD_depobj:
9612     case OMPD_scan:
9613     case OMPD_teams:
9614     case OMPD_target_data:
9615     case OMPD_target_exit_data:
9616     case OMPD_target_enter_data:
9617     case OMPD_distribute:
9618     case OMPD_distribute_simd:
9619     case OMPD_distribute_parallel_for:
9620     case OMPD_distribute_parallel_for_simd:
9621     case OMPD_teams_distribute:
9622     case OMPD_teams_distribute_simd:
9623     case OMPD_teams_distribute_parallel_for:
9624     case OMPD_teams_distribute_parallel_for_simd:
9625     case OMPD_target_update:
9626     case OMPD_declare_simd:
9627     case OMPD_declare_variant:
9628     case OMPD_begin_declare_variant:
9629     case OMPD_end_declare_variant:
9630     case OMPD_declare_target:
9631     case OMPD_end_declare_target:
9632     case OMPD_declare_reduction:
9633     case OMPD_declare_mapper:
9634     case OMPD_taskloop:
9635     case OMPD_taskloop_simd:
9636     case OMPD_master_taskloop:
9637     case OMPD_master_taskloop_simd:
9638     case OMPD_parallel_master_taskloop:
9639     case OMPD_parallel_master_taskloop_simd:
9640     case OMPD_requires:
9641     case OMPD_unknown:
9642     default:
9643       llvm_unreachable("Unexpected directive.");
9644     }
9645   }
9646 
9647   return nullptr;
9648 }
9649 
9650 /// Emit the user-defined mapper function. The code generation follows the
9651 /// pattern in the example below.
9652 /// \code
9653 /// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle,
9654 ///                                           void *base, void *begin,
9655 ///                                           int64_t size, int64_t type,
9656 ///                                           void *name = nullptr) {
9657 ///   // Allocate space for an array section first or add a base/begin for
9658 ///   // pointer dereference.
9659 ///   if ((size > 1 || (base != begin && maptype.IsPtrAndObj)) &&
9660 ///       !maptype.IsDelete)
9661 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
9662 ///                                 size*sizeof(Ty), clearToFromMember(type));
9663 ///   // Map members.
9664 ///   for (unsigned i = 0; i < size; i++) {
9665 ///     // For each component specified by this mapper:
9666 ///     for (auto c : begin[i]->all_components) {
9667 ///       if (c.hasMapper())
9668 ///         (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size,
9669 ///                       c.arg_type, c.arg_name);
9670 ///       else
9671 ///         __tgt_push_mapper_component(rt_mapper_handle, c.arg_base,
9672 ///                                     c.arg_begin, c.arg_size, c.arg_type,
9673 ///                                     c.arg_name);
9674 ///     }
9675 ///   }
9676 ///   // Delete the array section.
9677 ///   if (size > 1 && maptype.IsDelete)
9678 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
9679 ///                                 size*sizeof(Ty), clearToFromMember(type));
9680 /// }
9681 /// \endcode
emitUserDefinedMapper(const OMPDeclareMapperDecl * D,CodeGenFunction * CGF)9682 void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D,
9683                                             CodeGenFunction *CGF) {
9684   if (UDMMap.count(D) > 0)
9685     return;
9686   ASTContext &C = CGM.getContext();
9687   QualType Ty = D->getType();
9688   QualType PtrTy = C.getPointerType(Ty).withRestrict();
9689   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
9690   auto *MapperVarDecl =
9691       cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl());
9692   SourceLocation Loc = D->getLocation();
9693   CharUnits ElementSize = C.getTypeSizeInChars(Ty);
9694 
9695   // Prepare mapper function arguments and attributes.
9696   ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
9697                               C.VoidPtrTy, ImplicitParamDecl::Other);
9698   ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
9699                             ImplicitParamDecl::Other);
9700   ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
9701                              C.VoidPtrTy, ImplicitParamDecl::Other);
9702   ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
9703                             ImplicitParamDecl::Other);
9704   ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
9705                             ImplicitParamDecl::Other);
9706   ImplicitParamDecl NameArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
9707                             ImplicitParamDecl::Other);
9708   FunctionArgList Args;
9709   Args.push_back(&HandleArg);
9710   Args.push_back(&BaseArg);
9711   Args.push_back(&BeginArg);
9712   Args.push_back(&SizeArg);
9713   Args.push_back(&TypeArg);
9714   Args.push_back(&NameArg);
9715   const CGFunctionInfo &FnInfo =
9716       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
9717   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
9718   SmallString<64> TyStr;
9719   llvm::raw_svector_ostream Out(TyStr);
9720   CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out);
9721   std::string Name = getName({"omp_mapper", TyStr, D->getName()});
9722   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
9723                                     Name, &CGM.getModule());
9724   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
9725   Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
9726   // Start the mapper function code generation.
9727   CodeGenFunction MapperCGF(CGM);
9728   MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
9729   // Compute the starting and end addresses of array elements.
9730   llvm::Value *Size = MapperCGF.EmitLoadOfScalar(
9731       MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false,
9732       C.getPointerType(Int64Ty), Loc);
9733   // Prepare common arguments for array initiation and deletion.
9734   llvm::Value *Handle = MapperCGF.EmitLoadOfScalar(
9735       MapperCGF.GetAddrOfLocalVar(&HandleArg),
9736       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9737   llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar(
9738       MapperCGF.GetAddrOfLocalVar(&BaseArg),
9739       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9740   llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar(
9741       MapperCGF.GetAddrOfLocalVar(&BeginArg),
9742       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9743   // Convert the size in bytes into the number of array elements.
9744   Size = MapperCGF.Builder.CreateExactUDiv(
9745       Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9746   llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast(
9747       BeginIn, CGM.getTypes().ConvertTypeForMem(PtrTy));
9748   llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(PtrBegin, Size);
9749   llvm::Value *MapType = MapperCGF.EmitLoadOfScalar(
9750       MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false,
9751       C.getPointerType(Int64Ty), Loc);
9752   llvm::Value *MapName = MapperCGF.EmitLoadOfScalar(
9753       MapperCGF.GetAddrOfLocalVar(&NameArg),
9754       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9755 
9756   // Emit array initiation if this is an array section and \p MapType indicates
9757   // that memory allocation is required.
9758   llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head");
9759   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9760                              MapName, ElementSize, HeadBB, /*IsInit=*/true);
9761 
9762   // Emit a for loop to iterate through SizeArg of elements and map all of them.
9763 
9764   // Emit the loop header block.
9765   MapperCGF.EmitBlock(HeadBB);
9766   llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body");
9767   llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done");
9768   // Evaluate whether the initial condition is satisfied.
9769   llvm::Value *IsEmpty =
9770       MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty");
9771   MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
9772   llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock();
9773 
9774   // Emit the loop body block.
9775   MapperCGF.EmitBlock(BodyBB);
9776   llvm::BasicBlock *LastBB = BodyBB;
9777   llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI(
9778       PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent");
9779   PtrPHI->addIncoming(PtrBegin, EntryBB);
9780   Address PtrCurrent =
9781       Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg)
9782                           .getAlignment()
9783                           .alignmentOfArrayElement(ElementSize));
9784   // Privatize the declared variable of mapper to be the current array element.
9785   CodeGenFunction::OMPPrivateScope Scope(MapperCGF);
9786   Scope.addPrivate(MapperVarDecl, [PtrCurrent]() { return PtrCurrent; });
9787   (void)Scope.Privatize();
9788 
9789   // Get map clause information. Fill up the arrays with all mapped variables.
9790   MappableExprsHandler::MapCombinedInfoTy Info;
9791   MappableExprsHandler MEHandler(*D, MapperCGF);
9792   MEHandler.generateAllInfoForMapper(Info);
9793 
9794   // Call the runtime API __tgt_mapper_num_components to get the number of
9795   // pre-existing components.
9796   llvm::Value *OffloadingArgs[] = {Handle};
9797   llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall(
9798       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9799                                             OMPRTL___tgt_mapper_num_components),
9800       OffloadingArgs);
9801   llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl(
9802       PreviousSize,
9803       MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset()));
9804 
9805   // Fill up the runtime mapper handle for all components.
9806   for (unsigned I = 0; I < Info.BasePointers.size(); ++I) {
9807     llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast(
9808         *Info.BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9809     llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast(
9810         Info.Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9811     llvm::Value *CurSizeArg = Info.Sizes[I];
9812     llvm::Value *CurNameArg =
9813         (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo)
9814             ? llvm::ConstantPointerNull::get(CGM.VoidPtrTy)
9815             : emitMappingInformation(MapperCGF, OMPBuilder, Info.Exprs[I]);
9816 
9817     // Extract the MEMBER_OF field from the map type.
9818     llvm::Value *OriMapType = MapperCGF.Builder.getInt64(Info.Types[I]);
9819     llvm::Value *MemberMapType =
9820         MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize);
9821 
9822     // Combine the map type inherited from user-defined mapper with that
9823     // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM
9824     // bits of the \a MapType, which is the input argument of the mapper
9825     // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM
9826     // bits of MemberMapType.
9827     // [OpenMP 5.0], 1.2.6. map-type decay.
9828     //        | alloc |  to   | from  | tofrom | release | delete
9829     // ----------------------------------------------------------
9830     // alloc  | alloc | alloc | alloc | alloc  | release | delete
9831     // to     | alloc |  to   | alloc |   to   | release | delete
9832     // from   | alloc | alloc | from  |  from  | release | delete
9833     // tofrom | alloc |  to   | from  | tofrom | release | delete
9834     llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd(
9835         MapType,
9836         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO |
9837                                    MappableExprsHandler::OMP_MAP_FROM));
9838     llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc");
9839     llvm::BasicBlock *AllocElseBB =
9840         MapperCGF.createBasicBlock("omp.type.alloc.else");
9841     llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to");
9842     llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else");
9843     llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from");
9844     llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end");
9845     llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom);
9846     MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB);
9847     // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM.
9848     MapperCGF.EmitBlock(AllocBB);
9849     llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd(
9850         MemberMapType,
9851         MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9852                                      MappableExprsHandler::OMP_MAP_FROM)));
9853     MapperCGF.Builder.CreateBr(EndBB);
9854     MapperCGF.EmitBlock(AllocElseBB);
9855     llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ(
9856         LeftToFrom,
9857         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO));
9858     MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB);
9859     // In case of to, clear OMP_MAP_FROM.
9860     MapperCGF.EmitBlock(ToBB);
9861     llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd(
9862         MemberMapType,
9863         MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM));
9864     MapperCGF.Builder.CreateBr(EndBB);
9865     MapperCGF.EmitBlock(ToElseBB);
9866     llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ(
9867         LeftToFrom,
9868         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM));
9869     MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB);
9870     // In case of from, clear OMP_MAP_TO.
9871     MapperCGF.EmitBlock(FromBB);
9872     llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd(
9873         MemberMapType,
9874         MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO));
9875     // In case of tofrom, do nothing.
9876     MapperCGF.EmitBlock(EndBB);
9877     LastBB = EndBB;
9878     llvm::PHINode *CurMapType =
9879         MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype");
9880     CurMapType->addIncoming(AllocMapType, AllocBB);
9881     CurMapType->addIncoming(ToMapType, ToBB);
9882     CurMapType->addIncoming(FromMapType, FromBB);
9883     CurMapType->addIncoming(MemberMapType, ToElseBB);
9884 
9885     llvm::Value *OffloadingArgs[] = {Handle,     CurBaseArg, CurBeginArg,
9886                                      CurSizeArg, CurMapType, CurNameArg};
9887     if (Info.Mappers[I]) {
9888       // Call the corresponding mapper function.
9889       llvm::Function *MapperFunc = getOrCreateUserDefinedMapperFunc(
9890           cast<OMPDeclareMapperDecl>(Info.Mappers[I]));
9891       assert(MapperFunc && "Expect a valid mapper function is available.");
9892       MapperCGF.EmitNounwindRuntimeCall(MapperFunc, OffloadingArgs);
9893     } else {
9894       // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9895       // data structure.
9896       MapperCGF.EmitRuntimeCall(
9897           OMPBuilder.getOrCreateRuntimeFunction(
9898               CGM.getModule(), OMPRTL___tgt_push_mapper_component),
9899           OffloadingArgs);
9900     }
9901   }
9902 
9903   // Update the pointer to point to the next element that needs to be mapped,
9904   // and check whether we have mapped all elements.
9905   llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32(
9906       PtrPHI, /*Idx0=*/1, "omp.arraymap.next");
9907   PtrPHI->addIncoming(PtrNext, LastBB);
9908   llvm::Value *IsDone =
9909       MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone");
9910   llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit");
9911   MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB);
9912 
9913   MapperCGF.EmitBlock(ExitBB);
9914   // Emit array deletion if this is an array section and \p MapType indicates
9915   // that deletion is required.
9916   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9917                              MapName, ElementSize, DoneBB, /*IsInit=*/false);
9918 
9919   // Emit the function exit block.
9920   MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true);
9921   MapperCGF.FinishFunction();
9922   UDMMap.try_emplace(D, Fn);
9923   if (CGF) {
9924     auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn);
9925     Decls.second.push_back(D);
9926   }
9927 }
9928 
9929 /// Emit the array initialization or deletion portion for user-defined mapper
9930 /// code generation. First, it evaluates whether an array section is mapped and
9931 /// whether the \a MapType instructs to delete this section. If \a IsInit is
9932 /// true, and \a MapType indicates to not delete this array, array
9933 /// initialization code is generated. If \a IsInit is false, and \a MapType
9934 /// indicates to not this array, array deletion code is generated.
emitUDMapperArrayInitOrDel(CodeGenFunction & MapperCGF,llvm::Value * Handle,llvm::Value * Base,llvm::Value * Begin,llvm::Value * Size,llvm::Value * MapType,llvm::Value * MapName,CharUnits ElementSize,llvm::BasicBlock * ExitBB,bool IsInit)9935 void CGOpenMPRuntime::emitUDMapperArrayInitOrDel(
9936     CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base,
9937     llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType,
9938     llvm::Value *MapName, CharUnits ElementSize, llvm::BasicBlock *ExitBB,
9939     bool IsInit) {
9940   StringRef Prefix = IsInit ? ".init" : ".del";
9941 
9942   // Evaluate if this is an array section.
9943   llvm::BasicBlock *BodyBB =
9944       MapperCGF.createBasicBlock(getName({"omp.array", Prefix}));
9945   llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGT(
9946       Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray");
9947   llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd(
9948       MapType,
9949       MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE));
9950   llvm::Value *DeleteCond;
9951   llvm::Value *Cond;
9952   if (IsInit) {
9953     // base != begin?
9954     llvm::Value *BaseIsBegin = MapperCGF.Builder.CreateIsNotNull(
9955         MapperCGF.Builder.CreatePtrDiff(Base, Begin));
9956     // IsPtrAndObj?
9957     llvm::Value *PtrAndObjBit = MapperCGF.Builder.CreateAnd(
9958         MapType,
9959         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_PTR_AND_OBJ));
9960     PtrAndObjBit = MapperCGF.Builder.CreateIsNotNull(PtrAndObjBit);
9961     BaseIsBegin = MapperCGF.Builder.CreateAnd(BaseIsBegin, PtrAndObjBit);
9962     Cond = MapperCGF.Builder.CreateOr(IsArray, BaseIsBegin);
9963     DeleteCond = MapperCGF.Builder.CreateIsNull(
9964         DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9965   } else {
9966     Cond = IsArray;
9967     DeleteCond = MapperCGF.Builder.CreateIsNotNull(
9968         DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9969   }
9970   Cond = MapperCGF.Builder.CreateAnd(Cond, DeleteCond);
9971   MapperCGF.Builder.CreateCondBr(Cond, BodyBB, ExitBB);
9972 
9973   MapperCGF.EmitBlock(BodyBB);
9974   // Get the array size by multiplying element size and element number (i.e., \p
9975   // Size).
9976   llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul(
9977       Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9978   // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves
9979   // memory allocation/deletion purpose only.
9980   llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd(
9981       MapType,
9982       MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9983                                    MappableExprsHandler::OMP_MAP_FROM)));
9984   MapTypeArg = MapperCGF.Builder.CreateOr(
9985       MapTypeArg,
9986       MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_IMPLICIT));
9987 
9988   // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9989   // data structure.
9990   llvm::Value *OffloadingArgs[] = {Handle,    Base,       Begin,
9991                                    ArraySize, MapTypeArg, MapName};
9992   MapperCGF.EmitRuntimeCall(
9993       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9994                                             OMPRTL___tgt_push_mapper_component),
9995       OffloadingArgs);
9996 }
9997 
getOrCreateUserDefinedMapperFunc(const OMPDeclareMapperDecl * D)9998 llvm::Function *CGOpenMPRuntime::getOrCreateUserDefinedMapperFunc(
9999     const OMPDeclareMapperDecl *D) {
10000   auto I = UDMMap.find(D);
10001   if (I != UDMMap.end())
10002     return I->second;
10003   emitUserDefinedMapper(D);
10004   return UDMMap.lookup(D);
10005 }
10006 
emitTargetNumIterationsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Value * DeviceID,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)10007 void CGOpenMPRuntime::emitTargetNumIterationsCall(
10008     CodeGenFunction &CGF, const OMPExecutableDirective &D,
10009     llvm::Value *DeviceID,
10010     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
10011                                      const OMPLoopDirective &D)>
10012         SizeEmitter) {
10013   OpenMPDirectiveKind Kind = D.getDirectiveKind();
10014   const OMPExecutableDirective *TD = &D;
10015   // Get nested teams distribute kind directive, if any.
10016   if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
10017     TD = getNestedDistributeDirective(CGM.getContext(), D);
10018   if (!TD)
10019     return;
10020   const auto *LD = cast<OMPLoopDirective>(TD);
10021   auto &&CodeGen = [LD, DeviceID, SizeEmitter, &D, this](CodeGenFunction &CGF,
10022                                                          PrePostActionTy &) {
10023     if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) {
10024       llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10025       llvm::Value *Args[] = {RTLoc, DeviceID, NumIterations};
10026       CGF.EmitRuntimeCall(
10027           OMPBuilder.getOrCreateRuntimeFunction(
10028               CGM.getModule(), OMPRTL___kmpc_push_target_tripcount_mapper),
10029           Args);
10030     }
10031   };
10032   emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
10033 }
10034 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)10035 void CGOpenMPRuntime::emitTargetCall(
10036     CodeGenFunction &CGF, const OMPExecutableDirective &D,
10037     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
10038     llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
10039     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
10040                                      const OMPLoopDirective &D)>
10041         SizeEmitter) {
10042   if (!CGF.HaveInsertPoint())
10043     return;
10044 
10045   assert(OutlinedFn && "Invalid outlined function!");
10046 
10047   const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
10048                                  D.hasClausesOfKind<OMPNowaitClause>();
10049   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
10050   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
10051   auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
10052                                             PrePostActionTy &) {
10053     CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
10054   };
10055   emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
10056 
10057   CodeGenFunction::OMPTargetDataInfo InputInfo;
10058   llvm::Value *MapTypesArray = nullptr;
10059   llvm::Value *MapNamesArray = nullptr;
10060   // Fill up the pointer arrays and transfer execution to the device.
10061   auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
10062                     &MapTypesArray, &MapNamesArray, &CS, RequiresOuterTask,
10063                     &CapturedVars,
10064                     SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) {
10065     if (Device.getInt() == OMPC_DEVICE_ancestor) {
10066       // Reverse offloading is not supported, so just execute on the host.
10067       if (RequiresOuterTask) {
10068         CapturedVars.clear();
10069         CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
10070       }
10071       emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
10072       return;
10073     }
10074 
10075     // On top of the arrays that were filled up, the target offloading call
10076     // takes as arguments the device id as well as the host pointer. The host
10077     // pointer is used by the runtime library to identify the current target
10078     // region, so it only has to be unique and not necessarily point to
10079     // anything. It could be the pointer to the outlined function that
10080     // implements the target region, but we aren't using that so that the
10081     // compiler doesn't need to keep that, and could therefore inline the host
10082     // function if proven worthwhile during optimization.
10083 
10084     // From this point on, we need to have an ID of the target region defined.
10085     assert(OutlinedFnID && "Invalid outlined function ID!");
10086 
10087     // Emit device ID if any.
10088     llvm::Value *DeviceID;
10089     if (Device.getPointer()) {
10090       assert((Device.getInt() == OMPC_DEVICE_unknown ||
10091               Device.getInt() == OMPC_DEVICE_device_num) &&
10092              "Expected device_num modifier.");
10093       llvm::Value *DevVal = CGF.EmitScalarExpr(Device.getPointer());
10094       DeviceID =
10095           CGF.Builder.CreateIntCast(DevVal, CGF.Int64Ty, /*isSigned=*/true);
10096     } else {
10097       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10098     }
10099 
10100     // Emit the number of elements in the offloading arrays.
10101     llvm::Value *PointerNum =
10102         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
10103 
10104     // Return value of the runtime offloading call.
10105     llvm::Value *Return;
10106 
10107     llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
10108     llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
10109 
10110     // Source location for the ident struct
10111     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10112 
10113     // Emit tripcount for the target loop-based directive.
10114     emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter);
10115 
10116     bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
10117     // The target region is an outlined function launched by the runtime
10118     // via calls __tgt_target() or __tgt_target_teams().
10119     //
10120     // __tgt_target() launches a target region with one team and one thread,
10121     // executing a serial region.  This master thread may in turn launch
10122     // more threads within its team upon encountering a parallel region,
10123     // however, no additional teams can be launched on the device.
10124     //
10125     // __tgt_target_teams() launches a target region with one or more teams,
10126     // each with one or more threads.  This call is required for target
10127     // constructs such as:
10128     //  'target teams'
10129     //  'target' / 'teams'
10130     //  'target teams distribute parallel for'
10131     //  'target parallel'
10132     // and so on.
10133     //
10134     // Note that on the host and CPU targets, the runtime implementation of
10135     // these calls simply call the outlined function without forking threads.
10136     // The outlined functions themselves have runtime calls to
10137     // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
10138     // the compiler in emitTeamsCall() and emitParallelCall().
10139     //
10140     // In contrast, on the NVPTX target, the implementation of
10141     // __tgt_target_teams() launches a GPU kernel with the requested number
10142     // of teams and threads so no additional calls to the runtime are required.
10143     if (NumTeams) {
10144       // If we have NumTeams defined this means that we have an enclosed teams
10145       // region. Therefore we also expect to have NumThreads defined. These two
10146       // values should be defined in the presence of a teams directive,
10147       // regardless of having any clauses associated. If the user is using teams
10148       // but no clauses, these two values will be the default that should be
10149       // passed to the runtime library - a 32-bit integer with the value zero.
10150       assert(NumThreads && "Thread limit expression should be available along "
10151                            "with number of teams.");
10152       llvm::Value *OffloadingArgs[] = {RTLoc,
10153                                        DeviceID,
10154                                        OutlinedFnID,
10155                                        PointerNum,
10156                                        InputInfo.BasePointersArray.getPointer(),
10157                                        InputInfo.PointersArray.getPointer(),
10158                                        InputInfo.SizesArray.getPointer(),
10159                                        MapTypesArray,
10160                                        MapNamesArray,
10161                                        InputInfo.MappersArray.getPointer(),
10162                                        NumTeams,
10163                                        NumThreads};
10164       Return = CGF.EmitRuntimeCall(
10165           OMPBuilder.getOrCreateRuntimeFunction(
10166               CGM.getModule(), HasNowait
10167                                    ? OMPRTL___tgt_target_teams_nowait_mapper
10168                                    : OMPRTL___tgt_target_teams_mapper),
10169           OffloadingArgs);
10170     } else {
10171       llvm::Value *OffloadingArgs[] = {RTLoc,
10172                                        DeviceID,
10173                                        OutlinedFnID,
10174                                        PointerNum,
10175                                        InputInfo.BasePointersArray.getPointer(),
10176                                        InputInfo.PointersArray.getPointer(),
10177                                        InputInfo.SizesArray.getPointer(),
10178                                        MapTypesArray,
10179                                        MapNamesArray,
10180                                        InputInfo.MappersArray.getPointer()};
10181       Return = CGF.EmitRuntimeCall(
10182           OMPBuilder.getOrCreateRuntimeFunction(
10183               CGM.getModule(), HasNowait ? OMPRTL___tgt_target_nowait_mapper
10184                                          : OMPRTL___tgt_target_mapper),
10185           OffloadingArgs);
10186     }
10187 
10188     // Check the error code and execute the host version if required.
10189     llvm::BasicBlock *OffloadFailedBlock =
10190         CGF.createBasicBlock("omp_offload.failed");
10191     llvm::BasicBlock *OffloadContBlock =
10192         CGF.createBasicBlock("omp_offload.cont");
10193     llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
10194     CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
10195 
10196     CGF.EmitBlock(OffloadFailedBlock);
10197     if (RequiresOuterTask) {
10198       CapturedVars.clear();
10199       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
10200     }
10201     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
10202     CGF.EmitBranch(OffloadContBlock);
10203 
10204     CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
10205   };
10206 
10207   // Notify that the host version must be executed.
10208   auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
10209                     RequiresOuterTask](CodeGenFunction &CGF,
10210                                        PrePostActionTy &) {
10211     if (RequiresOuterTask) {
10212       CapturedVars.clear();
10213       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
10214     }
10215     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
10216   };
10217 
10218   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
10219                           &MapNamesArray, &CapturedVars, RequiresOuterTask,
10220                           &CS](CodeGenFunction &CGF, PrePostActionTy &) {
10221     // Fill up the arrays with all the captured variables.
10222     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
10223 
10224     // Get mappable expression information.
10225     MappableExprsHandler MEHandler(D, CGF);
10226     llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
10227     llvm::DenseSet<CanonicalDeclPtr<const Decl>> MappedVarSet;
10228 
10229     auto RI = CS.getCapturedRecordDecl()->field_begin();
10230     auto *CV = CapturedVars.begin();
10231     for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
10232                                               CE = CS.capture_end();
10233          CI != CE; ++CI, ++RI, ++CV) {
10234       MappableExprsHandler::MapCombinedInfoTy CurInfo;
10235       MappableExprsHandler::StructRangeInfoTy PartialStruct;
10236 
10237       // VLA sizes are passed to the outlined region by copy and do not have map
10238       // information associated.
10239       if (CI->capturesVariableArrayType()) {
10240         CurInfo.Exprs.push_back(nullptr);
10241         CurInfo.BasePointers.push_back(*CV);
10242         CurInfo.Pointers.push_back(*CV);
10243         CurInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
10244             CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
10245         // Copy to the device as an argument. No need to retrieve it.
10246         CurInfo.Types.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
10247                                 MappableExprsHandler::OMP_MAP_TARGET_PARAM |
10248                                 MappableExprsHandler::OMP_MAP_IMPLICIT);
10249         CurInfo.Mappers.push_back(nullptr);
10250       } else {
10251         // If we have any information in the map clause, we use it, otherwise we
10252         // just do a default mapping.
10253         MEHandler.generateInfoForCapture(CI, *CV, CurInfo, PartialStruct);
10254         if (!CI->capturesThis())
10255           MappedVarSet.insert(CI->getCapturedVar());
10256         else
10257           MappedVarSet.insert(nullptr);
10258         if (CurInfo.BasePointers.empty() && !PartialStruct.Base.isValid())
10259           MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurInfo);
10260         // Generate correct mapping for variables captured by reference in
10261         // lambdas.
10262         if (CI->capturesVariable())
10263           MEHandler.generateInfoForLambdaCaptures(CI->getCapturedVar(), *CV,
10264                                                   CurInfo, LambdaPointers);
10265       }
10266       // We expect to have at least an element of information for this capture.
10267       assert((!CurInfo.BasePointers.empty() || PartialStruct.Base.isValid()) &&
10268              "Non-existing map pointer for capture!");
10269       assert(CurInfo.BasePointers.size() == CurInfo.Pointers.size() &&
10270              CurInfo.BasePointers.size() == CurInfo.Sizes.size() &&
10271              CurInfo.BasePointers.size() == CurInfo.Types.size() &&
10272              CurInfo.BasePointers.size() == CurInfo.Mappers.size() &&
10273              "Inconsistent map information sizes!");
10274 
10275       // If there is an entry in PartialStruct it means we have a struct with
10276       // individual members mapped. Emit an extra combined entry.
10277       if (PartialStruct.Base.isValid()) {
10278         CombinedInfo.append(PartialStruct.PreliminaryMapData);
10279         MEHandler.emitCombinedEntry(
10280             CombinedInfo, CurInfo.Types, PartialStruct, nullptr,
10281             !PartialStruct.PreliminaryMapData.BasePointers.empty());
10282       }
10283 
10284       // We need to append the results of this capture to what we already have.
10285       CombinedInfo.append(CurInfo);
10286     }
10287     // Adjust MEMBER_OF flags for the lambdas captures.
10288     MEHandler.adjustMemberOfForLambdaCaptures(
10289         LambdaPointers, CombinedInfo.BasePointers, CombinedInfo.Pointers,
10290         CombinedInfo.Types);
10291     // Map any list items in a map clause that were not captures because they
10292     // weren't referenced within the construct.
10293     MEHandler.generateAllInfo(CombinedInfo, MappedVarSet);
10294 
10295     TargetDataInfo Info;
10296     // Fill up the arrays and create the arguments.
10297     emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder);
10298     emitOffloadingArraysArgument(
10299         CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray,
10300         Info.MapTypesArray, Info.MapNamesArray, Info.MappersArray, Info,
10301         {/*ForEndTask=*/false});
10302 
10303     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
10304     InputInfo.BasePointersArray =
10305         Address(Info.BasePointersArray, CGM.getPointerAlign());
10306     InputInfo.PointersArray =
10307         Address(Info.PointersArray, CGM.getPointerAlign());
10308     InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
10309     InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign());
10310     MapTypesArray = Info.MapTypesArray;
10311     MapNamesArray = Info.MapNamesArray;
10312     if (RequiresOuterTask)
10313       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
10314     else
10315       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
10316   };
10317 
10318   auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
10319                              CodeGenFunction &CGF, PrePostActionTy &) {
10320     if (RequiresOuterTask) {
10321       CodeGenFunction::OMPTargetDataInfo InputInfo;
10322       CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
10323     } else {
10324       emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
10325     }
10326   };
10327 
10328   // If we have a target function ID it means that we need to support
10329   // offloading, otherwise, just execute on the host. We need to execute on host
10330   // regardless of the conditional in the if clause if, e.g., the user do not
10331   // specify target triples.
10332   if (OutlinedFnID) {
10333     if (IfCond) {
10334       emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
10335     } else {
10336       RegionCodeGenTy ThenRCG(TargetThenGen);
10337       ThenRCG(CGF);
10338     }
10339   } else {
10340     RegionCodeGenTy ElseRCG(TargetElseGen);
10341     ElseRCG(CGF);
10342   }
10343 }
10344 
scanForTargetRegionsFunctions(const Stmt * S,StringRef ParentName)10345 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
10346                                                     StringRef ParentName) {
10347   if (!S)
10348     return;
10349 
10350   // Codegen OMP target directives that offload compute to the device.
10351   bool RequiresDeviceCodegen =
10352       isa<OMPExecutableDirective>(S) &&
10353       isOpenMPTargetExecutionDirective(
10354           cast<OMPExecutableDirective>(S)->getDirectiveKind());
10355 
10356   if (RequiresDeviceCodegen) {
10357     const auto &E = *cast<OMPExecutableDirective>(S);
10358     unsigned DeviceID;
10359     unsigned FileID;
10360     unsigned Line;
10361     getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
10362                              FileID, Line);
10363 
10364     // Is this a target region that should not be emitted as an entry point? If
10365     // so just signal we are done with this target region.
10366     if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
10367                                                             ParentName, Line))
10368       return;
10369 
10370     switch (E.getDirectiveKind()) {
10371     case OMPD_target:
10372       CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
10373                                                    cast<OMPTargetDirective>(E));
10374       break;
10375     case OMPD_target_parallel:
10376       CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
10377           CGM, ParentName, cast<OMPTargetParallelDirective>(E));
10378       break;
10379     case OMPD_target_teams:
10380       CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
10381           CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
10382       break;
10383     case OMPD_target_teams_distribute:
10384       CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
10385           CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
10386       break;
10387     case OMPD_target_teams_distribute_simd:
10388       CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
10389           CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
10390       break;
10391     case OMPD_target_parallel_for:
10392       CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
10393           CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
10394       break;
10395     case OMPD_target_parallel_for_simd:
10396       CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
10397           CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
10398       break;
10399     case OMPD_target_simd:
10400       CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
10401           CGM, ParentName, cast<OMPTargetSimdDirective>(E));
10402       break;
10403     case OMPD_target_teams_distribute_parallel_for:
10404       CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
10405           CGM, ParentName,
10406           cast<OMPTargetTeamsDistributeParallelForDirective>(E));
10407       break;
10408     case OMPD_target_teams_distribute_parallel_for_simd:
10409       CodeGenFunction::
10410           EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
10411               CGM, ParentName,
10412               cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
10413       break;
10414     case OMPD_parallel:
10415     case OMPD_for:
10416     case OMPD_parallel_for:
10417     case OMPD_parallel_master:
10418     case OMPD_parallel_sections:
10419     case OMPD_for_simd:
10420     case OMPD_parallel_for_simd:
10421     case OMPD_cancel:
10422     case OMPD_cancellation_point:
10423     case OMPD_ordered:
10424     case OMPD_threadprivate:
10425     case OMPD_allocate:
10426     case OMPD_task:
10427     case OMPD_simd:
10428     case OMPD_tile:
10429     case OMPD_sections:
10430     case OMPD_section:
10431     case OMPD_single:
10432     case OMPD_master:
10433     case OMPD_critical:
10434     case OMPD_taskyield:
10435     case OMPD_barrier:
10436     case OMPD_taskwait:
10437     case OMPD_taskgroup:
10438     case OMPD_atomic:
10439     case OMPD_flush:
10440     case OMPD_depobj:
10441     case OMPD_scan:
10442     case OMPD_teams:
10443     case OMPD_target_data:
10444     case OMPD_target_exit_data:
10445     case OMPD_target_enter_data:
10446     case OMPD_distribute:
10447     case OMPD_distribute_simd:
10448     case OMPD_distribute_parallel_for:
10449     case OMPD_distribute_parallel_for_simd:
10450     case OMPD_teams_distribute:
10451     case OMPD_teams_distribute_simd:
10452     case OMPD_teams_distribute_parallel_for:
10453     case OMPD_teams_distribute_parallel_for_simd:
10454     case OMPD_target_update:
10455     case OMPD_declare_simd:
10456     case OMPD_declare_variant:
10457     case OMPD_begin_declare_variant:
10458     case OMPD_end_declare_variant:
10459     case OMPD_declare_target:
10460     case OMPD_end_declare_target:
10461     case OMPD_declare_reduction:
10462     case OMPD_declare_mapper:
10463     case OMPD_taskloop:
10464     case OMPD_taskloop_simd:
10465     case OMPD_master_taskloop:
10466     case OMPD_master_taskloop_simd:
10467     case OMPD_parallel_master_taskloop:
10468     case OMPD_parallel_master_taskloop_simd:
10469     case OMPD_requires:
10470     case OMPD_unknown:
10471     default:
10472       llvm_unreachable("Unknown target directive for OpenMP device codegen.");
10473     }
10474     return;
10475   }
10476 
10477   if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
10478     if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
10479       return;
10480 
10481     scanForTargetRegionsFunctions(E->getRawStmt(), ParentName);
10482     return;
10483   }
10484 
10485   // If this is a lambda function, look into its body.
10486   if (const auto *L = dyn_cast<LambdaExpr>(S))
10487     S = L->getBody();
10488 
10489   // Keep looking for target regions recursively.
10490   for (const Stmt *II : S->children())
10491     scanForTargetRegionsFunctions(II, ParentName);
10492 }
10493 
isAssumedToBeNotEmitted(const ValueDecl * VD,bool IsDevice)10494 static bool isAssumedToBeNotEmitted(const ValueDecl *VD, bool IsDevice) {
10495   Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
10496       OMPDeclareTargetDeclAttr::getDeviceType(VD);
10497   if (!DevTy)
10498     return false;
10499   // Do not emit device_type(nohost) functions for the host.
10500   if (!IsDevice && DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
10501     return true;
10502   // Do not emit device_type(host) functions for the device.
10503   if (IsDevice && DevTy == OMPDeclareTargetDeclAttr::DT_Host)
10504     return true;
10505   return false;
10506 }
10507 
emitTargetFunctions(GlobalDecl GD)10508 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
10509   // If emitting code for the host, we do not process FD here. Instead we do
10510   // the normal code generation.
10511   if (!CGM.getLangOpts().OpenMPIsDevice) {
10512     if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
10513       if (isAssumedToBeNotEmitted(cast<ValueDecl>(FD),
10514                                   CGM.getLangOpts().OpenMPIsDevice))
10515         return true;
10516     return false;
10517   }
10518 
10519   const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
10520   // Try to detect target regions in the function.
10521   if (const auto *FD = dyn_cast<FunctionDecl>(VD)) {
10522     StringRef Name = CGM.getMangledName(GD);
10523     scanForTargetRegionsFunctions(FD->getBody(), Name);
10524     if (isAssumedToBeNotEmitted(cast<ValueDecl>(FD),
10525                                 CGM.getLangOpts().OpenMPIsDevice))
10526       return true;
10527   }
10528 
10529   // Do not to emit function if it is not marked as declare target.
10530   return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
10531          AlreadyEmittedTargetDecls.count(VD) == 0;
10532 }
10533 
emitTargetGlobalVariable(GlobalDecl GD)10534 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
10535   if (isAssumedToBeNotEmitted(cast<ValueDecl>(GD.getDecl()),
10536                               CGM.getLangOpts().OpenMPIsDevice))
10537     return true;
10538 
10539   if (!CGM.getLangOpts().OpenMPIsDevice)
10540     return false;
10541 
10542   // Check if there are Ctors/Dtors in this declaration and look for target
10543   // regions in it. We use the complete variant to produce the kernel name
10544   // mangling.
10545   QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
10546   if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
10547     for (const CXXConstructorDecl *Ctor : RD->ctors()) {
10548       StringRef ParentName =
10549           CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
10550       scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
10551     }
10552     if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
10553       StringRef ParentName =
10554           CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
10555       scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
10556     }
10557   }
10558 
10559   // Do not to emit variable if it is not marked as declare target.
10560   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10561       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
10562           cast<VarDecl>(GD.getDecl()));
10563   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
10564       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10565        HasRequiresUnifiedSharedMemory)) {
10566     DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
10567     return true;
10568   }
10569   return false;
10570 }
10571 
10572 llvm::Constant *
registerTargetFirstprivateCopy(CodeGenFunction & CGF,const VarDecl * VD)10573 CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
10574                                                 const VarDecl *VD) {
10575   assert(VD->getType().isConstant(CGM.getContext()) &&
10576          "Expected constant variable.");
10577   StringRef VarName;
10578   llvm::Constant *Addr;
10579   llvm::GlobalValue::LinkageTypes Linkage;
10580   QualType Ty = VD->getType();
10581   SmallString<128> Buffer;
10582   {
10583     unsigned DeviceID;
10584     unsigned FileID;
10585     unsigned Line;
10586     getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
10587                              FileID, Line);
10588     llvm::raw_svector_ostream OS(Buffer);
10589     OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
10590        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
10591     VarName = OS.str();
10592   }
10593   Linkage = llvm::GlobalValue::InternalLinkage;
10594   Addr =
10595       getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
10596                                   getDefaultFirstprivateAddressSpace());
10597   cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
10598   CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
10599   CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
10600   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
10601       VarName, Addr, VarSize,
10602       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
10603   return Addr;
10604 }
10605 
registerTargetGlobalVariable(const VarDecl * VD,llvm::Constant * Addr)10606 void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
10607                                                    llvm::Constant *Addr) {
10608   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
10609       !CGM.getLangOpts().OpenMPIsDevice)
10610     return;
10611 
10612   // If we have host/nohost variables, they do not need to be registered.
10613   Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
10614       OMPDeclareTargetDeclAttr::getDeviceType(VD);
10615   if (DevTy && DevTy.getValue() != OMPDeclareTargetDeclAttr::DT_Any)
10616     return;
10617 
10618   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10619       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
10620   if (!Res) {
10621     if (CGM.getLangOpts().OpenMPIsDevice) {
10622       // Register non-target variables being emitted in device code (debug info
10623       // may cause this).
10624       StringRef VarName = CGM.getMangledName(VD);
10625       EmittedNonTargetVariables.try_emplace(VarName, Addr);
10626     }
10627     return;
10628   }
10629   // Register declare target variables.
10630   OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
10631   StringRef VarName;
10632   CharUnits VarSize;
10633   llvm::GlobalValue::LinkageTypes Linkage;
10634 
10635   if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10636       !HasRequiresUnifiedSharedMemory) {
10637     Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
10638     VarName = CGM.getMangledName(VD);
10639     if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
10640       VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
10641       assert(!VarSize.isZero() && "Expected non-zero size of the variable");
10642     } else {
10643       VarSize = CharUnits::Zero();
10644     }
10645     Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
10646     // Temp solution to prevent optimizations of the internal variables.
10647     if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
10648       // Do not create a "ref-variable" if the original is not also available
10649       // on the host.
10650       if (!OffloadEntriesInfoManager.hasDeviceGlobalVarEntryInfo(VarName))
10651         return;
10652       std::string RefName = getName({VarName, "ref"});
10653       if (!CGM.GetGlobalValue(RefName)) {
10654         llvm::Constant *AddrRef =
10655             getOrCreateInternalVariable(Addr->getType(), RefName);
10656         auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
10657         GVAddrRef->setConstant(/*Val=*/true);
10658         GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
10659         GVAddrRef->setInitializer(Addr);
10660         CGM.addCompilerUsedGlobal(GVAddrRef);
10661       }
10662     }
10663   } else {
10664     assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
10665             (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10666              HasRequiresUnifiedSharedMemory)) &&
10667            "Declare target attribute must link or to with unified memory.");
10668     if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
10669       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
10670     else
10671       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
10672 
10673     if (CGM.getLangOpts().OpenMPIsDevice) {
10674       VarName = Addr->getName();
10675       Addr = nullptr;
10676     } else {
10677       VarName = getAddrOfDeclareTargetVar(VD).getName();
10678       Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
10679     }
10680     VarSize = CGM.getPointerSize();
10681     Linkage = llvm::GlobalValue::WeakAnyLinkage;
10682   }
10683 
10684   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
10685       VarName, Addr, VarSize, Flags, Linkage);
10686 }
10687 
emitTargetGlobal(GlobalDecl GD)10688 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
10689   if (isa<FunctionDecl>(GD.getDecl()) ||
10690       isa<OMPDeclareReductionDecl>(GD.getDecl()))
10691     return emitTargetFunctions(GD);
10692 
10693   return emitTargetGlobalVariable(GD);
10694 }
10695 
emitDeferredTargetDecls() const10696 void CGOpenMPRuntime::emitDeferredTargetDecls() const {
10697   for (const VarDecl *VD : DeferredGlobalVariables) {
10698     llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10699         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
10700     if (!Res)
10701       continue;
10702     if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10703         !HasRequiresUnifiedSharedMemory) {
10704       CGM.EmitGlobal(VD);
10705     } else {
10706       assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
10707               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10708                HasRequiresUnifiedSharedMemory)) &&
10709              "Expected link clause or to clause with unified memory.");
10710       (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
10711     }
10712   }
10713 }
10714 
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const10715 void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
10716     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
10717   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
10718          " Expected target-based directive.");
10719 }
10720 
processRequiresDirective(const OMPRequiresDecl * D)10721 void CGOpenMPRuntime::processRequiresDirective(const OMPRequiresDecl *D) {
10722   for (const OMPClause *Clause : D->clauselists()) {
10723     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
10724       HasRequiresUnifiedSharedMemory = true;
10725     } else if (const auto *AC =
10726                    dyn_cast<OMPAtomicDefaultMemOrderClause>(Clause)) {
10727       switch (AC->getAtomicDefaultMemOrderKind()) {
10728       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_acq_rel:
10729         RequiresAtomicOrdering = llvm::AtomicOrdering::AcquireRelease;
10730         break;
10731       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_seq_cst:
10732         RequiresAtomicOrdering = llvm::AtomicOrdering::SequentiallyConsistent;
10733         break;
10734       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_relaxed:
10735         RequiresAtomicOrdering = llvm::AtomicOrdering::Monotonic;
10736         break;
10737       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown:
10738         break;
10739       }
10740     }
10741   }
10742 }
10743 
getDefaultMemoryOrdering() const10744 llvm::AtomicOrdering CGOpenMPRuntime::getDefaultMemoryOrdering() const {
10745   return RequiresAtomicOrdering;
10746 }
10747 
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)10748 bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
10749                                                        LangAS &AS) {
10750   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
10751     return false;
10752   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
10753   switch(A->getAllocatorType()) {
10754   case OMPAllocateDeclAttr::OMPNullMemAlloc:
10755   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
10756   // Not supported, fallback to the default mem space.
10757   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
10758   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
10759   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
10760   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
10761   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
10762   case OMPAllocateDeclAttr::OMPConstMemAlloc:
10763   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
10764     AS = LangAS::Default;
10765     return true;
10766   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
10767     llvm_unreachable("Expected predefined allocator for the variables with the "
10768                      "static storage.");
10769   }
10770   return false;
10771 }
10772 
hasRequiresUnifiedSharedMemory() const10773 bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
10774   return HasRequiresUnifiedSharedMemory;
10775 }
10776 
DisableAutoDeclareTargetRAII(CodeGenModule & CGM)10777 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
10778     CodeGenModule &CGM)
10779     : CGM(CGM) {
10780   if (CGM.getLangOpts().OpenMPIsDevice) {
10781     SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
10782     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
10783   }
10784 }
10785 
~DisableAutoDeclareTargetRAII()10786 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
10787   if (CGM.getLangOpts().OpenMPIsDevice)
10788     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
10789 }
10790 
markAsGlobalTarget(GlobalDecl GD)10791 bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
10792   if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
10793     return true;
10794 
10795   const auto *D = cast<FunctionDecl>(GD.getDecl());
10796   // Do not to emit function if it is marked as declare target as it was already
10797   // emitted.
10798   if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
10799     if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) {
10800       if (auto *F = dyn_cast_or_null<llvm::Function>(
10801               CGM.GetGlobalValue(CGM.getMangledName(GD))))
10802         return !F->isDeclaration();
10803       return false;
10804     }
10805     return true;
10806   }
10807 
10808   return !AlreadyEmittedTargetDecls.insert(D).second;
10809 }
10810 
emitRequiresDirectiveRegFun()10811 llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
10812   // If we don't have entries or if we are emitting code for the device, we
10813   // don't need to do anything.
10814   if (CGM.getLangOpts().OMPTargetTriples.empty() ||
10815       CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
10816       (OffloadEntriesInfoManager.empty() &&
10817        !HasEmittedDeclareTargetRegion &&
10818        !HasEmittedTargetRegion))
10819     return nullptr;
10820 
10821   // Create and register the function that handles the requires directives.
10822   ASTContext &C = CGM.getContext();
10823 
10824   llvm::Function *RequiresRegFn;
10825   {
10826     CodeGenFunction CGF(CGM);
10827     const auto &FI = CGM.getTypes().arrangeNullaryFunction();
10828     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
10829     std::string ReqName = getName({"omp_offloading", "requires_reg"});
10830     RequiresRegFn = CGM.CreateGlobalInitOrCleanUpFunction(FTy, ReqName, FI);
10831     CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
10832     OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
10833     // TODO: check for other requires clauses.
10834     // The requires directive takes effect only when a target region is
10835     // present in the compilation unit. Otherwise it is ignored and not
10836     // passed to the runtime. This avoids the runtime from throwing an error
10837     // for mismatching requires clauses across compilation units that don't
10838     // contain at least 1 target region.
10839     assert((HasEmittedTargetRegion ||
10840             HasEmittedDeclareTargetRegion ||
10841             !OffloadEntriesInfoManager.empty()) &&
10842            "Target or declare target region expected.");
10843     if (HasRequiresUnifiedSharedMemory)
10844       Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
10845     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10846                             CGM.getModule(), OMPRTL___tgt_register_requires),
10847                         llvm::ConstantInt::get(CGM.Int64Ty, Flags));
10848     CGF.FinishFunction();
10849   }
10850   return RequiresRegFn;
10851 }
10852 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)10853 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
10854                                     const OMPExecutableDirective &D,
10855                                     SourceLocation Loc,
10856                                     llvm::Function *OutlinedFn,
10857                                     ArrayRef<llvm::Value *> CapturedVars) {
10858   if (!CGF.HaveInsertPoint())
10859     return;
10860 
10861   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10862   CodeGenFunction::RunCleanupsScope Scope(CGF);
10863 
10864   // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
10865   llvm::Value *Args[] = {
10866       RTLoc,
10867       CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
10868       CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
10869   llvm::SmallVector<llvm::Value *, 16> RealArgs;
10870   RealArgs.append(std::begin(Args), std::end(Args));
10871   RealArgs.append(CapturedVars.begin(), CapturedVars.end());
10872 
10873   llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
10874       CGM.getModule(), OMPRTL___kmpc_fork_teams);
10875   CGF.EmitRuntimeCall(RTLFn, RealArgs);
10876 }
10877 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)10878 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
10879                                          const Expr *NumTeams,
10880                                          const Expr *ThreadLimit,
10881                                          SourceLocation Loc) {
10882   if (!CGF.HaveInsertPoint())
10883     return;
10884 
10885   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10886 
10887   llvm::Value *NumTeamsVal =
10888       NumTeams
10889           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
10890                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
10891           : CGF.Builder.getInt32(0);
10892 
10893   llvm::Value *ThreadLimitVal =
10894       ThreadLimit
10895           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
10896                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
10897           : CGF.Builder.getInt32(0);
10898 
10899   // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
10900   llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
10901                                      ThreadLimitVal};
10902   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10903                           CGM.getModule(), OMPRTL___kmpc_push_num_teams),
10904                       PushNumTeamsArgs);
10905 }
10906 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)10907 void CGOpenMPRuntime::emitTargetDataCalls(
10908     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10909     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
10910   if (!CGF.HaveInsertPoint())
10911     return;
10912 
10913   // Action used to replace the default codegen action and turn privatization
10914   // off.
10915   PrePostActionTy NoPrivAction;
10916 
10917   // Generate the code for the opening of the data environment. Capture all the
10918   // arguments of the runtime call by reference because they are used in the
10919   // closing of the region.
10920   auto &&BeginThenGen = [this, &D, Device, &Info,
10921                          &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
10922     // Fill up the arrays with all the mapped variables.
10923     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
10924 
10925     // Get map clause information.
10926     MappableExprsHandler MEHandler(D, CGF);
10927     MEHandler.generateAllInfo(CombinedInfo);
10928 
10929     // Fill up the arrays and create the arguments.
10930     emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder,
10931                          /*IsNonContiguous=*/true);
10932 
10933     llvm::Value *BasePointersArrayArg = nullptr;
10934     llvm::Value *PointersArrayArg = nullptr;
10935     llvm::Value *SizesArrayArg = nullptr;
10936     llvm::Value *MapTypesArrayArg = nullptr;
10937     llvm::Value *MapNamesArrayArg = nullptr;
10938     llvm::Value *MappersArrayArg = nullptr;
10939     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10940                                  SizesArrayArg, MapTypesArrayArg,
10941                                  MapNamesArrayArg, MappersArrayArg, Info);
10942 
10943     // Emit device ID if any.
10944     llvm::Value *DeviceID = nullptr;
10945     if (Device) {
10946       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10947                                            CGF.Int64Ty, /*isSigned=*/true);
10948     } else {
10949       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10950     }
10951 
10952     // Emit the number of elements in the offloading arrays.
10953     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10954     //
10955     // Source location for the ident struct
10956     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10957 
10958     llvm::Value *OffloadingArgs[] = {RTLoc,
10959                                      DeviceID,
10960                                      PointerNum,
10961                                      BasePointersArrayArg,
10962                                      PointersArrayArg,
10963                                      SizesArrayArg,
10964                                      MapTypesArrayArg,
10965                                      MapNamesArrayArg,
10966                                      MappersArrayArg};
10967     CGF.EmitRuntimeCall(
10968         OMPBuilder.getOrCreateRuntimeFunction(
10969             CGM.getModule(), OMPRTL___tgt_target_data_begin_mapper),
10970         OffloadingArgs);
10971 
10972     // If device pointer privatization is required, emit the body of the region
10973     // here. It will have to be duplicated: with and without privatization.
10974     if (!Info.CaptureDeviceAddrMap.empty())
10975       CodeGen(CGF);
10976   };
10977 
10978   // Generate code for the closing of the data region.
10979   auto &&EndThenGen = [this, Device, &Info, &D](CodeGenFunction &CGF,
10980                                                 PrePostActionTy &) {
10981     assert(Info.isValid() && "Invalid data environment closing arguments.");
10982 
10983     llvm::Value *BasePointersArrayArg = nullptr;
10984     llvm::Value *PointersArrayArg = nullptr;
10985     llvm::Value *SizesArrayArg = nullptr;
10986     llvm::Value *MapTypesArrayArg = nullptr;
10987     llvm::Value *MapNamesArrayArg = nullptr;
10988     llvm::Value *MappersArrayArg = nullptr;
10989     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10990                                  SizesArrayArg, MapTypesArrayArg,
10991                                  MapNamesArrayArg, MappersArrayArg, Info,
10992                                  {/*ForEndCall=*/true});
10993 
10994     // Emit device ID if any.
10995     llvm::Value *DeviceID = nullptr;
10996     if (Device) {
10997       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10998                                            CGF.Int64Ty, /*isSigned=*/true);
10999     } else {
11000       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
11001     }
11002 
11003     // Emit the number of elements in the offloading arrays.
11004     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
11005 
11006     // Source location for the ident struct
11007     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
11008 
11009     llvm::Value *OffloadingArgs[] = {RTLoc,
11010                                      DeviceID,
11011                                      PointerNum,
11012                                      BasePointersArrayArg,
11013                                      PointersArrayArg,
11014                                      SizesArrayArg,
11015                                      MapTypesArrayArg,
11016                                      MapNamesArrayArg,
11017                                      MappersArrayArg};
11018     CGF.EmitRuntimeCall(
11019         OMPBuilder.getOrCreateRuntimeFunction(
11020             CGM.getModule(), OMPRTL___tgt_target_data_end_mapper),
11021         OffloadingArgs);
11022   };
11023 
11024   // If we need device pointer privatization, we need to emit the body of the
11025   // region with no privatization in the 'else' branch of the conditional.
11026   // Otherwise, we don't have to do anything.
11027   auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
11028                                                          PrePostActionTy &) {
11029     if (!Info.CaptureDeviceAddrMap.empty()) {
11030       CodeGen.setAction(NoPrivAction);
11031       CodeGen(CGF);
11032     }
11033   };
11034 
11035   // We don't have to do anything to close the region if the if clause evaluates
11036   // to false.
11037   auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
11038 
11039   if (IfCond) {
11040     emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
11041   } else {
11042     RegionCodeGenTy RCG(BeginThenGen);
11043     RCG(CGF);
11044   }
11045 
11046   // If we don't require privatization of device pointers, we emit the body in
11047   // between the runtime calls. This avoids duplicating the body code.
11048   if (Info.CaptureDeviceAddrMap.empty()) {
11049     CodeGen.setAction(NoPrivAction);
11050     CodeGen(CGF);
11051   }
11052 
11053   if (IfCond) {
11054     emitIfClause(CGF, IfCond, EndThenGen, EndElseGen);
11055   } else {
11056     RegionCodeGenTy RCG(EndThenGen);
11057     RCG(CGF);
11058   }
11059 }
11060 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)11061 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
11062     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
11063     const Expr *Device) {
11064   if (!CGF.HaveInsertPoint())
11065     return;
11066 
11067   assert((isa<OMPTargetEnterDataDirective>(D) ||
11068           isa<OMPTargetExitDataDirective>(D) ||
11069           isa<OMPTargetUpdateDirective>(D)) &&
11070          "Expecting either target enter, exit data, or update directives.");
11071 
11072   CodeGenFunction::OMPTargetDataInfo InputInfo;
11073   llvm::Value *MapTypesArray = nullptr;
11074   llvm::Value *MapNamesArray = nullptr;
11075   // Generate the code for the opening of the data environment.
11076   auto &&ThenGen = [this, &D, Device, &InputInfo, &MapTypesArray,
11077                     &MapNamesArray](CodeGenFunction &CGF, PrePostActionTy &) {
11078     // Emit device ID if any.
11079     llvm::Value *DeviceID = nullptr;
11080     if (Device) {
11081       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
11082                                            CGF.Int64Ty, /*isSigned=*/true);
11083     } else {
11084       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
11085     }
11086 
11087     // Emit the number of elements in the offloading arrays.
11088     llvm::Constant *PointerNum =
11089         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
11090 
11091     // Source location for the ident struct
11092     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
11093 
11094     llvm::Value *OffloadingArgs[] = {RTLoc,
11095                                      DeviceID,
11096                                      PointerNum,
11097                                      InputInfo.BasePointersArray.getPointer(),
11098                                      InputInfo.PointersArray.getPointer(),
11099                                      InputInfo.SizesArray.getPointer(),
11100                                      MapTypesArray,
11101                                      MapNamesArray,
11102                                      InputInfo.MappersArray.getPointer()};
11103 
11104     // Select the right runtime function call for each standalone
11105     // directive.
11106     const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
11107     RuntimeFunction RTLFn;
11108     switch (D.getDirectiveKind()) {
11109     case OMPD_target_enter_data:
11110       RTLFn = HasNowait ? OMPRTL___tgt_target_data_begin_nowait_mapper
11111                         : OMPRTL___tgt_target_data_begin_mapper;
11112       break;
11113     case OMPD_target_exit_data:
11114       RTLFn = HasNowait ? OMPRTL___tgt_target_data_end_nowait_mapper
11115                         : OMPRTL___tgt_target_data_end_mapper;
11116       break;
11117     case OMPD_target_update:
11118       RTLFn = HasNowait ? OMPRTL___tgt_target_data_update_nowait_mapper
11119                         : OMPRTL___tgt_target_data_update_mapper;
11120       break;
11121     case OMPD_parallel:
11122     case OMPD_for:
11123     case OMPD_parallel_for:
11124     case OMPD_parallel_master:
11125     case OMPD_parallel_sections:
11126     case OMPD_for_simd:
11127     case OMPD_parallel_for_simd:
11128     case OMPD_cancel:
11129     case OMPD_cancellation_point:
11130     case OMPD_ordered:
11131     case OMPD_threadprivate:
11132     case OMPD_allocate:
11133     case OMPD_task:
11134     case OMPD_simd:
11135     case OMPD_tile:
11136     case OMPD_sections:
11137     case OMPD_section:
11138     case OMPD_single:
11139     case OMPD_master:
11140     case OMPD_critical:
11141     case OMPD_taskyield:
11142     case OMPD_barrier:
11143     case OMPD_taskwait:
11144     case OMPD_taskgroup:
11145     case OMPD_atomic:
11146     case OMPD_flush:
11147     case OMPD_depobj:
11148     case OMPD_scan:
11149     case OMPD_teams:
11150     case OMPD_target_data:
11151     case OMPD_distribute:
11152     case OMPD_distribute_simd:
11153     case OMPD_distribute_parallel_for:
11154     case OMPD_distribute_parallel_for_simd:
11155     case OMPD_teams_distribute:
11156     case OMPD_teams_distribute_simd:
11157     case OMPD_teams_distribute_parallel_for:
11158     case OMPD_teams_distribute_parallel_for_simd:
11159     case OMPD_declare_simd:
11160     case OMPD_declare_variant:
11161     case OMPD_begin_declare_variant:
11162     case OMPD_end_declare_variant:
11163     case OMPD_declare_target:
11164     case OMPD_end_declare_target:
11165     case OMPD_declare_reduction:
11166     case OMPD_declare_mapper:
11167     case OMPD_taskloop:
11168     case OMPD_taskloop_simd:
11169     case OMPD_master_taskloop:
11170     case OMPD_master_taskloop_simd:
11171     case OMPD_parallel_master_taskloop:
11172     case OMPD_parallel_master_taskloop_simd:
11173     case OMPD_target:
11174     case OMPD_target_simd:
11175     case OMPD_target_teams_distribute:
11176     case OMPD_target_teams_distribute_simd:
11177     case OMPD_target_teams_distribute_parallel_for:
11178     case OMPD_target_teams_distribute_parallel_for_simd:
11179     case OMPD_target_teams:
11180     case OMPD_target_parallel:
11181     case OMPD_target_parallel_for:
11182     case OMPD_target_parallel_for_simd:
11183     case OMPD_requires:
11184     case OMPD_unknown:
11185     default:
11186       llvm_unreachable("Unexpected standalone target data directive.");
11187       break;
11188     }
11189     CGF.EmitRuntimeCall(
11190         OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), RTLFn),
11191         OffloadingArgs);
11192   };
11193 
11194   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
11195                           &MapNamesArray](CodeGenFunction &CGF,
11196                                           PrePostActionTy &) {
11197     // Fill up the arrays with all the mapped variables.
11198     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
11199 
11200     // Get map clause information.
11201     MappableExprsHandler MEHandler(D, CGF);
11202     MEHandler.generateAllInfo(CombinedInfo);
11203 
11204     TargetDataInfo Info;
11205     // Fill up the arrays and create the arguments.
11206     emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder,
11207                          /*IsNonContiguous=*/true);
11208     bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
11209                              D.hasClausesOfKind<OMPNowaitClause>();
11210     emitOffloadingArraysArgument(
11211         CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray,
11212         Info.MapTypesArray, Info.MapNamesArray, Info.MappersArray, Info,
11213         {/*ForEndTask=*/false});
11214     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
11215     InputInfo.BasePointersArray =
11216         Address(Info.BasePointersArray, CGM.getPointerAlign());
11217     InputInfo.PointersArray =
11218         Address(Info.PointersArray, CGM.getPointerAlign());
11219     InputInfo.SizesArray =
11220         Address(Info.SizesArray, CGM.getPointerAlign());
11221     InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign());
11222     MapTypesArray = Info.MapTypesArray;
11223     MapNamesArray = Info.MapNamesArray;
11224     if (RequiresOuterTask)
11225       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
11226     else
11227       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
11228   };
11229 
11230   if (IfCond) {
11231     emitIfClause(CGF, IfCond, TargetThenGen,
11232                  [](CodeGenFunction &CGF, PrePostActionTy &) {});
11233   } else {
11234     RegionCodeGenTy ThenRCG(TargetThenGen);
11235     ThenRCG(CGF);
11236   }
11237 }
11238 
11239 namespace {
11240   /// Kind of parameter in a function with 'declare simd' directive.
11241   enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
11242   /// Attribute set of the parameter.
11243   struct ParamAttrTy {
11244     ParamKindTy Kind = Vector;
11245     llvm::APSInt StrideOrArg;
11246     llvm::APSInt Alignment;
11247   };
11248 } // namespace
11249 
evaluateCDTSize(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)11250 static unsigned evaluateCDTSize(const FunctionDecl *FD,
11251                                 ArrayRef<ParamAttrTy> ParamAttrs) {
11252   // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
11253   // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
11254   // of that clause. The VLEN value must be power of 2.
11255   // In other case the notion of the function`s "characteristic data type" (CDT)
11256   // is used to compute the vector length.
11257   // CDT is defined in the following order:
11258   //   a) For non-void function, the CDT is the return type.
11259   //   b) If the function has any non-uniform, non-linear parameters, then the
11260   //   CDT is the type of the first such parameter.
11261   //   c) If the CDT determined by a) or b) above is struct, union, or class
11262   //   type which is pass-by-value (except for the type that maps to the
11263   //   built-in complex data type), the characteristic data type is int.
11264   //   d) If none of the above three cases is applicable, the CDT is int.
11265   // The VLEN is then determined based on the CDT and the size of vector
11266   // register of that ISA for which current vector version is generated. The
11267   // VLEN is computed using the formula below:
11268   //   VLEN  = sizeof(vector_register) / sizeof(CDT),
11269   // where vector register size specified in section 3.2.1 Registers and the
11270   // Stack Frame of original AMD64 ABI document.
11271   QualType RetType = FD->getReturnType();
11272   if (RetType.isNull())
11273     return 0;
11274   ASTContext &C = FD->getASTContext();
11275   QualType CDT;
11276   if (!RetType.isNull() && !RetType->isVoidType()) {
11277     CDT = RetType;
11278   } else {
11279     unsigned Offset = 0;
11280     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11281       if (ParamAttrs[Offset].Kind == Vector)
11282         CDT = C.getPointerType(C.getRecordType(MD->getParent()));
11283       ++Offset;
11284     }
11285     if (CDT.isNull()) {
11286       for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
11287         if (ParamAttrs[I + Offset].Kind == Vector) {
11288           CDT = FD->getParamDecl(I)->getType();
11289           break;
11290         }
11291       }
11292     }
11293   }
11294   if (CDT.isNull())
11295     CDT = C.IntTy;
11296   CDT = CDT->getCanonicalTypeUnqualified();
11297   if (CDT->isRecordType() || CDT->isUnionType())
11298     CDT = C.IntTy;
11299   return C.getTypeSize(CDT);
11300 }
11301 
11302 static void
emitX86DeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn,const llvm::APSInt & VLENVal,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State)11303 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
11304                            const llvm::APSInt &VLENVal,
11305                            ArrayRef<ParamAttrTy> ParamAttrs,
11306                            OMPDeclareSimdDeclAttr::BranchStateTy State) {
11307   struct ISADataTy {
11308     char ISA;
11309     unsigned VecRegSize;
11310   };
11311   ISADataTy ISAData[] = {
11312       {
11313           'b', 128
11314       }, // SSE
11315       {
11316           'c', 256
11317       }, // AVX
11318       {
11319           'd', 256
11320       }, // AVX2
11321       {
11322           'e', 512
11323       }, // AVX512
11324   };
11325   llvm::SmallVector<char, 2> Masked;
11326   switch (State) {
11327   case OMPDeclareSimdDeclAttr::BS_Undefined:
11328     Masked.push_back('N');
11329     Masked.push_back('M');
11330     break;
11331   case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11332     Masked.push_back('N');
11333     break;
11334   case OMPDeclareSimdDeclAttr::BS_Inbranch:
11335     Masked.push_back('M');
11336     break;
11337   }
11338   for (char Mask : Masked) {
11339     for (const ISADataTy &Data : ISAData) {
11340       SmallString<256> Buffer;
11341       llvm::raw_svector_ostream Out(Buffer);
11342       Out << "_ZGV" << Data.ISA << Mask;
11343       if (!VLENVal) {
11344         unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
11345         assert(NumElts && "Non-zero simdlen/cdtsize expected");
11346         Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
11347       } else {
11348         Out << VLENVal;
11349       }
11350       for (const ParamAttrTy &ParamAttr : ParamAttrs) {
11351         switch (ParamAttr.Kind){
11352         case LinearWithVarStride:
11353           Out << 's' << ParamAttr.StrideOrArg;
11354           break;
11355         case Linear:
11356           Out << 'l';
11357           if (ParamAttr.StrideOrArg != 1)
11358             Out << ParamAttr.StrideOrArg;
11359           break;
11360         case Uniform:
11361           Out << 'u';
11362           break;
11363         case Vector:
11364           Out << 'v';
11365           break;
11366         }
11367         if (!!ParamAttr.Alignment)
11368           Out << 'a' << ParamAttr.Alignment;
11369       }
11370       Out << '_' << Fn->getName();
11371       Fn->addFnAttr(Out.str());
11372     }
11373   }
11374 }
11375 
11376 // This are the Functions that are needed to mangle the name of the
11377 // vector functions generated by the compiler, according to the rules
11378 // defined in the "Vector Function ABI specifications for AArch64",
11379 // available at
11380 // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
11381 
11382 /// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
11383 ///
11384 /// TODO: Need to implement the behavior for reference marked with a
11385 /// var or no linear modifiers (1.b in the section). For this, we
11386 /// need to extend ParamKindTy to support the linear modifiers.
getAArch64MTV(QualType QT,ParamKindTy Kind)11387 static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
11388   QT = QT.getCanonicalType();
11389 
11390   if (QT->isVoidType())
11391     return false;
11392 
11393   if (Kind == ParamKindTy::Uniform)
11394     return false;
11395 
11396   if (Kind == ParamKindTy::Linear)
11397     return false;
11398 
11399   // TODO: Handle linear references with modifiers
11400 
11401   if (Kind == ParamKindTy::LinearWithVarStride)
11402     return false;
11403 
11404   return true;
11405 }
11406 
11407 /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
getAArch64PBV(QualType QT,ASTContext & C)11408 static bool getAArch64PBV(QualType QT, ASTContext &C) {
11409   QT = QT.getCanonicalType();
11410   unsigned Size = C.getTypeSize(QT);
11411 
11412   // Only scalars and complex within 16 bytes wide set PVB to true.
11413   if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
11414     return false;
11415 
11416   if (QT->isFloatingType())
11417     return true;
11418 
11419   if (QT->isIntegerType())
11420     return true;
11421 
11422   if (QT->isPointerType())
11423     return true;
11424 
11425   // TODO: Add support for complex types (section 3.1.2, item 2).
11426 
11427   return false;
11428 }
11429 
11430 /// Computes the lane size (LS) of a return type or of an input parameter,
11431 /// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
11432 /// TODO: Add support for references, section 3.2.1, item 1.
getAArch64LS(QualType QT,ParamKindTy Kind,ASTContext & C)11433 static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
11434   if (!getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
11435     QualType PTy = QT.getCanonicalType()->getPointeeType();
11436     if (getAArch64PBV(PTy, C))
11437       return C.getTypeSize(PTy);
11438   }
11439   if (getAArch64PBV(QT, C))
11440     return C.getTypeSize(QT);
11441 
11442   return C.getTypeSize(C.getUIntPtrType());
11443 }
11444 
11445 // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
11446 // signature of the scalar function, as defined in 3.2.2 of the
11447 // AAVFABI.
11448 static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)11449 getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
11450   QualType RetType = FD->getReturnType().getCanonicalType();
11451 
11452   ASTContext &C = FD->getASTContext();
11453 
11454   bool OutputBecomesInput = false;
11455 
11456   llvm::SmallVector<unsigned, 8> Sizes;
11457   if (!RetType->isVoidType()) {
11458     Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
11459     if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
11460       OutputBecomesInput = true;
11461   }
11462   for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
11463     QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
11464     Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
11465   }
11466 
11467   assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
11468   // The LS of a function parameter / return value can only be a power
11469   // of 2, starting from 8 bits, up to 128.
11470   assert(std::all_of(Sizes.begin(), Sizes.end(),
11471                      [](unsigned Size) {
11472                        return Size == 8 || Size == 16 || Size == 32 ||
11473                               Size == 64 || Size == 128;
11474                      }) &&
11475          "Invalid size");
11476 
11477   return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
11478                          *std::max_element(std::begin(Sizes), std::end(Sizes)),
11479                          OutputBecomesInput);
11480 }
11481 
11482 /// Mangle the parameter part of the vector function name according to
11483 /// their OpenMP classification. The mangling function is defined in
11484 /// section 3.5 of the AAVFABI.
mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs)11485 static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
11486   SmallString<256> Buffer;
11487   llvm::raw_svector_ostream Out(Buffer);
11488   for (const auto &ParamAttr : ParamAttrs) {
11489     switch (ParamAttr.Kind) {
11490     case LinearWithVarStride:
11491       Out << "ls" << ParamAttr.StrideOrArg;
11492       break;
11493     case Linear:
11494       Out << 'l';
11495       // Don't print the step value if it is not present or if it is
11496       // equal to 1.
11497       if (ParamAttr.StrideOrArg != 1)
11498         Out << ParamAttr.StrideOrArg;
11499       break;
11500     case Uniform:
11501       Out << 'u';
11502       break;
11503     case Vector:
11504       Out << 'v';
11505       break;
11506     }
11507 
11508     if (!!ParamAttr.Alignment)
11509       Out << 'a' << ParamAttr.Alignment;
11510   }
11511 
11512   return std::string(Out.str());
11513 }
11514 
11515 // Function used to add the attribute. The parameter `VLEN` is
11516 // templated to allow the use of "x" when targeting scalable functions
11517 // for SVE.
11518 template <typename T>
addAArch64VectorName(T VLEN,StringRef LMask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)11519 static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
11520                                  char ISA, StringRef ParSeq,
11521                                  StringRef MangledName, bool OutputBecomesInput,
11522                                  llvm::Function *Fn) {
11523   SmallString<256> Buffer;
11524   llvm::raw_svector_ostream Out(Buffer);
11525   Out << Prefix << ISA << LMask << VLEN;
11526   if (OutputBecomesInput)
11527     Out << "v";
11528   Out << ParSeq << "_" << MangledName;
11529   Fn->addFnAttr(Out.str());
11530 }
11531 
11532 // Helper function to generate the Advanced SIMD names depending on
11533 // the value of the NDS when simdlen is not present.
addAArch64AdvSIMDNDSNames(unsigned NDS,StringRef Mask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)11534 static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
11535                                       StringRef Prefix, char ISA,
11536                                       StringRef ParSeq, StringRef MangledName,
11537                                       bool OutputBecomesInput,
11538                                       llvm::Function *Fn) {
11539   switch (NDS) {
11540   case 8:
11541     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
11542                          OutputBecomesInput, Fn);
11543     addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
11544                          OutputBecomesInput, Fn);
11545     break;
11546   case 16:
11547     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
11548                          OutputBecomesInput, Fn);
11549     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
11550                          OutputBecomesInput, Fn);
11551     break;
11552   case 32:
11553     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
11554                          OutputBecomesInput, Fn);
11555     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
11556                          OutputBecomesInput, Fn);
11557     break;
11558   case 64:
11559   case 128:
11560     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
11561                          OutputBecomesInput, Fn);
11562     break;
11563   default:
11564     llvm_unreachable("Scalar type is too wide.");
11565   }
11566 }
11567 
11568 /// Emit vector function attributes for AArch64, as defined in the AAVFABI.
emitAArch64DeclareSimdFunction(CodeGenModule & CGM,const FunctionDecl * FD,unsigned UserVLEN,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State,StringRef MangledName,char ISA,unsigned VecRegSize,llvm::Function * Fn,SourceLocation SLoc)11569 static void emitAArch64DeclareSimdFunction(
11570     CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
11571     ArrayRef<ParamAttrTy> ParamAttrs,
11572     OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
11573     char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
11574 
11575   // Get basic data for building the vector signature.
11576   const auto Data = getNDSWDS(FD, ParamAttrs);
11577   const unsigned NDS = std::get<0>(Data);
11578   const unsigned WDS = std::get<1>(Data);
11579   const bool OutputBecomesInput = std::get<2>(Data);
11580 
11581   // Check the values provided via `simdlen` by the user.
11582   // 1. A `simdlen(1)` doesn't produce vector signatures,
11583   if (UserVLEN == 1) {
11584     unsigned DiagID = CGM.getDiags().getCustomDiagID(
11585         DiagnosticsEngine::Warning,
11586         "The clause simdlen(1) has no effect when targeting aarch64.");
11587     CGM.getDiags().Report(SLoc, DiagID);
11588     return;
11589   }
11590 
11591   // 2. Section 3.3.1, item 1: user input must be a power of 2 for
11592   // Advanced SIMD output.
11593   if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
11594     unsigned DiagID = CGM.getDiags().getCustomDiagID(
11595         DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
11596                                     "power of 2 when targeting Advanced SIMD.");
11597     CGM.getDiags().Report(SLoc, DiagID);
11598     return;
11599   }
11600 
11601   // 3. Section 3.4.1. SVE fixed lengh must obey the architectural
11602   // limits.
11603   if (ISA == 's' && UserVLEN != 0) {
11604     if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
11605       unsigned DiagID = CGM.getDiags().getCustomDiagID(
11606           DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
11607                                       "lanes in the architectural constraints "
11608                                       "for SVE (min is 128-bit, max is "
11609                                       "2048-bit, by steps of 128-bit)");
11610       CGM.getDiags().Report(SLoc, DiagID) << WDS;
11611       return;
11612     }
11613   }
11614 
11615   // Sort out parameter sequence.
11616   const std::string ParSeq = mangleVectorParameters(ParamAttrs);
11617   StringRef Prefix = "_ZGV";
11618   // Generate simdlen from user input (if any).
11619   if (UserVLEN) {
11620     if (ISA == 's') {
11621       // SVE generates only a masked function.
11622       addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11623                            OutputBecomesInput, Fn);
11624     } else {
11625       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
11626       // Advanced SIMD generates one or two functions, depending on
11627       // the `[not]inbranch` clause.
11628       switch (State) {
11629       case OMPDeclareSimdDeclAttr::BS_Undefined:
11630         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
11631                              OutputBecomesInput, Fn);
11632         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11633                              OutputBecomesInput, Fn);
11634         break;
11635       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11636         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
11637                              OutputBecomesInput, Fn);
11638         break;
11639       case OMPDeclareSimdDeclAttr::BS_Inbranch:
11640         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11641                              OutputBecomesInput, Fn);
11642         break;
11643       }
11644     }
11645   } else {
11646     // If no user simdlen is provided, follow the AAVFABI rules for
11647     // generating the vector length.
11648     if (ISA == 's') {
11649       // SVE, section 3.4.1, item 1.
11650       addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
11651                            OutputBecomesInput, Fn);
11652     } else {
11653       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
11654       // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
11655       // two vector names depending on the use of the clause
11656       // `[not]inbranch`.
11657       switch (State) {
11658       case OMPDeclareSimdDeclAttr::BS_Undefined:
11659         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
11660                                   OutputBecomesInput, Fn);
11661         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
11662                                   OutputBecomesInput, Fn);
11663         break;
11664       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11665         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
11666                                   OutputBecomesInput, Fn);
11667         break;
11668       case OMPDeclareSimdDeclAttr::BS_Inbranch:
11669         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
11670                                   OutputBecomesInput, Fn);
11671         break;
11672       }
11673     }
11674   }
11675 }
11676 
emitDeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn)11677 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
11678                                               llvm::Function *Fn) {
11679   ASTContext &C = CGM.getContext();
11680   FD = FD->getMostRecentDecl();
11681   // Map params to their positions in function decl.
11682   llvm::DenseMap<const Decl *, unsigned> ParamPositions;
11683   if (isa<CXXMethodDecl>(FD))
11684     ParamPositions.try_emplace(FD, 0);
11685   unsigned ParamPos = ParamPositions.size();
11686   for (const ParmVarDecl *P : FD->parameters()) {
11687     ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
11688     ++ParamPos;
11689   }
11690   while (FD) {
11691     for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
11692       llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
11693       // Mark uniform parameters.
11694       for (const Expr *E : Attr->uniforms()) {
11695         E = E->IgnoreParenImpCasts();
11696         unsigned Pos;
11697         if (isa<CXXThisExpr>(E)) {
11698           Pos = ParamPositions[FD];
11699         } else {
11700           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11701                                 ->getCanonicalDecl();
11702           Pos = ParamPositions[PVD];
11703         }
11704         ParamAttrs[Pos].Kind = Uniform;
11705       }
11706       // Get alignment info.
11707       auto NI = Attr->alignments_begin();
11708       for (const Expr *E : Attr->aligneds()) {
11709         E = E->IgnoreParenImpCasts();
11710         unsigned Pos;
11711         QualType ParmTy;
11712         if (isa<CXXThisExpr>(E)) {
11713           Pos = ParamPositions[FD];
11714           ParmTy = E->getType();
11715         } else {
11716           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11717                                 ->getCanonicalDecl();
11718           Pos = ParamPositions[PVD];
11719           ParmTy = PVD->getType();
11720         }
11721         ParamAttrs[Pos].Alignment =
11722             (*NI)
11723                 ? (*NI)->EvaluateKnownConstInt(C)
11724                 : llvm::APSInt::getUnsigned(
11725                       C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
11726                           .getQuantity());
11727         ++NI;
11728       }
11729       // Mark linear parameters.
11730       auto SI = Attr->steps_begin();
11731       auto MI = Attr->modifiers_begin();
11732       for (const Expr *E : Attr->linears()) {
11733         E = E->IgnoreParenImpCasts();
11734         unsigned Pos;
11735         // Rescaling factor needed to compute the linear parameter
11736         // value in the mangled name.
11737         unsigned PtrRescalingFactor = 1;
11738         if (isa<CXXThisExpr>(E)) {
11739           Pos = ParamPositions[FD];
11740         } else {
11741           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11742                                 ->getCanonicalDecl();
11743           Pos = ParamPositions[PVD];
11744           if (auto *P = dyn_cast<PointerType>(PVD->getType()))
11745             PtrRescalingFactor = CGM.getContext()
11746                                      .getTypeSizeInChars(P->getPointeeType())
11747                                      .getQuantity();
11748         }
11749         ParamAttrTy &ParamAttr = ParamAttrs[Pos];
11750         ParamAttr.Kind = Linear;
11751         // Assuming a stride of 1, for `linear` without modifiers.
11752         ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(1);
11753         if (*SI) {
11754           Expr::EvalResult Result;
11755           if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
11756             if (const auto *DRE =
11757                     cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
11758               if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
11759                 ParamAttr.Kind = LinearWithVarStride;
11760                 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
11761                     ParamPositions[StridePVD->getCanonicalDecl()]);
11762               }
11763             }
11764           } else {
11765             ParamAttr.StrideOrArg = Result.Val.getInt();
11766           }
11767         }
11768         // If we are using a linear clause on a pointer, we need to
11769         // rescale the value of linear_step with the byte size of the
11770         // pointee type.
11771         if (Linear == ParamAttr.Kind)
11772           ParamAttr.StrideOrArg = ParamAttr.StrideOrArg * PtrRescalingFactor;
11773         ++SI;
11774         ++MI;
11775       }
11776       llvm::APSInt VLENVal;
11777       SourceLocation ExprLoc;
11778       const Expr *VLENExpr = Attr->getSimdlen();
11779       if (VLENExpr) {
11780         VLENVal = VLENExpr->EvaluateKnownConstInt(C);
11781         ExprLoc = VLENExpr->getExprLoc();
11782       }
11783       OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
11784       if (CGM.getTriple().isX86()) {
11785         emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
11786       } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
11787         unsigned VLEN = VLENVal.getExtValue();
11788         StringRef MangledName = Fn->getName();
11789         if (CGM.getTarget().hasFeature("sve"))
11790           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
11791                                          MangledName, 's', 128, Fn, ExprLoc);
11792         if (CGM.getTarget().hasFeature("neon"))
11793           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
11794                                          MangledName, 'n', 128, Fn, ExprLoc);
11795       }
11796     }
11797     FD = FD->getPreviousDecl();
11798   }
11799 }
11800 
11801 namespace {
11802 /// Cleanup action for doacross support.
11803 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
11804 public:
11805   static const int DoacrossFinArgs = 2;
11806 
11807 private:
11808   llvm::FunctionCallee RTLFn;
11809   llvm::Value *Args[DoacrossFinArgs];
11810 
11811 public:
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)11812   DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
11813                     ArrayRef<llvm::Value *> CallArgs)
11814       : RTLFn(RTLFn) {
11815     assert(CallArgs.size() == DoacrossFinArgs);
11816     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
11817   }
Emit(CodeGenFunction & CGF,Flags)11818   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
11819     if (!CGF.HaveInsertPoint())
11820       return;
11821     CGF.EmitRuntimeCall(RTLFn, Args);
11822   }
11823 };
11824 } // namespace
11825 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)11826 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
11827                                        const OMPLoopDirective &D,
11828                                        ArrayRef<Expr *> NumIterations) {
11829   if (!CGF.HaveInsertPoint())
11830     return;
11831 
11832   ASTContext &C = CGM.getContext();
11833   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
11834   RecordDecl *RD;
11835   if (KmpDimTy.isNull()) {
11836     // Build struct kmp_dim {  // loop bounds info casted to kmp_int64
11837     //  kmp_int64 lo; // lower
11838     //  kmp_int64 up; // upper
11839     //  kmp_int64 st; // stride
11840     // };
11841     RD = C.buildImplicitRecord("kmp_dim");
11842     RD->startDefinition();
11843     addFieldToRecordDecl(C, RD, Int64Ty);
11844     addFieldToRecordDecl(C, RD, Int64Ty);
11845     addFieldToRecordDecl(C, RD, Int64Ty);
11846     RD->completeDefinition();
11847     KmpDimTy = C.getRecordType(RD);
11848   } else {
11849     RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
11850   }
11851   llvm::APInt Size(/*numBits=*/32, NumIterations.size());
11852   QualType ArrayTy =
11853       C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0);
11854 
11855   Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
11856   CGF.EmitNullInitialization(DimsAddr, ArrayTy);
11857   enum { LowerFD = 0, UpperFD, StrideFD };
11858   // Fill dims with data.
11859   for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
11860     LValue DimsLVal = CGF.MakeAddrLValue(
11861         CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
11862     // dims.upper = num_iterations;
11863     LValue UpperLVal = CGF.EmitLValueForField(
11864         DimsLVal, *std::next(RD->field_begin(), UpperFD));
11865     llvm::Value *NumIterVal = CGF.EmitScalarConversion(
11866         CGF.EmitScalarExpr(NumIterations[I]), NumIterations[I]->getType(),
11867         Int64Ty, NumIterations[I]->getExprLoc());
11868     CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
11869     // dims.stride = 1;
11870     LValue StrideLVal = CGF.EmitLValueForField(
11871         DimsLVal, *std::next(RD->field_begin(), StrideFD));
11872     CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
11873                           StrideLVal);
11874   }
11875 
11876   // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
11877   // kmp_int32 num_dims, struct kmp_dim * dims);
11878   llvm::Value *Args[] = {
11879       emitUpdateLocation(CGF, D.getBeginLoc()),
11880       getThreadID(CGF, D.getBeginLoc()),
11881       llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
11882       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11883           CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
11884           CGM.VoidPtrTy)};
11885 
11886   llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11887       CGM.getModule(), OMPRTL___kmpc_doacross_init);
11888   CGF.EmitRuntimeCall(RTLFn, Args);
11889   llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
11890       emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
11891   llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11892       CGM.getModule(), OMPRTL___kmpc_doacross_fini);
11893   CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
11894                                              llvm::makeArrayRef(FiniArgs));
11895 }
11896 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)11897 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
11898                                           const OMPDependClause *C) {
11899   QualType Int64Ty =
11900       CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
11901   llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
11902   QualType ArrayTy = CGM.getContext().getConstantArrayType(
11903       Int64Ty, Size, nullptr, ArrayType::Normal, 0);
11904   Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
11905   for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
11906     const Expr *CounterVal = C->getLoopData(I);
11907     assert(CounterVal);
11908     llvm::Value *CntVal = CGF.EmitScalarConversion(
11909         CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
11910         CounterVal->getExprLoc());
11911     CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
11912                           /*Volatile=*/false, Int64Ty);
11913   }
11914   llvm::Value *Args[] = {
11915       emitUpdateLocation(CGF, C->getBeginLoc()),
11916       getThreadID(CGF, C->getBeginLoc()),
11917       CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
11918   llvm::FunctionCallee RTLFn;
11919   if (C->getDependencyKind() == OMPC_DEPEND_source) {
11920     RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11921                                                   OMPRTL___kmpc_doacross_post);
11922   } else {
11923     assert(C->getDependencyKind() == OMPC_DEPEND_sink);
11924     RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11925                                                   OMPRTL___kmpc_doacross_wait);
11926   }
11927   CGF.EmitRuntimeCall(RTLFn, Args);
11928 }
11929 
emitCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args) const11930 void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
11931                                llvm::FunctionCallee Callee,
11932                                ArrayRef<llvm::Value *> Args) const {
11933   assert(Loc.isValid() && "Outlined function call location must be valid.");
11934   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
11935 
11936   if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
11937     if (Fn->doesNotThrow()) {
11938       CGF.EmitNounwindRuntimeCall(Fn, Args);
11939       return;
11940     }
11941   }
11942   CGF.EmitRuntimeCall(Callee, Args);
11943 }
11944 
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const11945 void CGOpenMPRuntime::emitOutlinedFunctionCall(
11946     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
11947     ArrayRef<llvm::Value *> Args) const {
11948   emitCall(CGF, Loc, OutlinedFn, Args);
11949 }
11950 
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)11951 void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
11952   if (const auto *FD = dyn_cast<FunctionDecl>(D))
11953     if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
11954       HasEmittedDeclareTargetRegion = true;
11955 }
11956 
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const11957 Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
11958                                              const VarDecl *NativeParam,
11959                                              const VarDecl *TargetParam) const {
11960   return CGF.GetAddrOfLocalVar(NativeParam);
11961 }
11962 
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)11963 Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
11964                                                    const VarDecl *VD) {
11965   if (!VD)
11966     return Address::invalid();
11967   Address UntiedAddr = Address::invalid();
11968   Address UntiedRealAddr = Address::invalid();
11969   auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
11970   if (It != FunctionToUntiedTaskStackMap.end()) {
11971     const UntiedLocalVarsAddressesMap &UntiedData =
11972         UntiedLocalVarsStack[It->second];
11973     auto I = UntiedData.find(VD);
11974     if (I != UntiedData.end()) {
11975       UntiedAddr = I->second.first;
11976       UntiedRealAddr = I->second.second;
11977     }
11978   }
11979   const VarDecl *CVD = VD->getCanonicalDecl();
11980   if (CVD->hasAttr<OMPAllocateDeclAttr>()) {
11981     // Use the default allocation.
11982     if (!isAllocatableDecl(VD))
11983       return UntiedAddr;
11984     llvm::Value *Size;
11985     CharUnits Align = CGM.getContext().getDeclAlign(CVD);
11986     if (CVD->getType()->isVariablyModifiedType()) {
11987       Size = CGF.getTypeSize(CVD->getType());
11988       // Align the size: ((size + align - 1) / align) * align
11989       Size = CGF.Builder.CreateNUWAdd(
11990           Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
11991       Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
11992       Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
11993     } else {
11994       CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
11995       Size = CGM.getSize(Sz.alignTo(Align));
11996     }
11997     llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
11998     const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
11999     assert(AA->getAllocator() &&
12000            "Expected allocator expression for non-default allocator.");
12001     llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
12002     // According to the standard, the original allocator type is a enum
12003     // (integer). Convert to pointer type, if required.
12004     Allocator = CGF.EmitScalarConversion(
12005         Allocator, AA->getAllocator()->getType(), CGF.getContext().VoidPtrTy,
12006         AA->getAllocator()->getExprLoc());
12007     llvm::Value *Args[] = {ThreadID, Size, Allocator};
12008 
12009     llvm::Value *Addr =
12010         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
12011                                 CGM.getModule(), OMPRTL___kmpc_alloc),
12012                             Args, getName({CVD->getName(), ".void.addr"}));
12013     llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
12014         CGM.getModule(), OMPRTL___kmpc_free);
12015     QualType Ty = CGM.getContext().getPointerType(CVD->getType());
12016     Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
12017         Addr, CGF.ConvertTypeForMem(Ty), getName({CVD->getName(), ".addr"}));
12018     if (UntiedAddr.isValid())
12019       CGF.EmitStoreOfScalar(Addr, UntiedAddr, /*Volatile=*/false, Ty);
12020 
12021     // Cleanup action for allocate support.
12022     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
12023       llvm::FunctionCallee RTLFn;
12024       unsigned LocEncoding;
12025       Address Addr;
12026       const Expr *Allocator;
12027 
12028     public:
12029       OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn, unsigned LocEncoding,
12030                            Address Addr, const Expr *Allocator)
12031           : RTLFn(RTLFn), LocEncoding(LocEncoding), Addr(Addr),
12032             Allocator(Allocator) {}
12033       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
12034         if (!CGF.HaveInsertPoint())
12035           return;
12036         llvm::Value *Args[3];
12037         Args[0] = CGF.CGM.getOpenMPRuntime().getThreadID(
12038             CGF, SourceLocation::getFromRawEncoding(LocEncoding));
12039         Args[1] = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
12040             Addr.getPointer(), CGF.VoidPtrTy);
12041         llvm::Value *AllocVal = CGF.EmitScalarExpr(Allocator);
12042         // According to the standard, the original allocator type is a enum
12043         // (integer). Convert to pointer type, if required.
12044         AllocVal = CGF.EmitScalarConversion(AllocVal, Allocator->getType(),
12045                                             CGF.getContext().VoidPtrTy,
12046                                             Allocator->getExprLoc());
12047         Args[2] = AllocVal;
12048 
12049         CGF.EmitRuntimeCall(RTLFn, Args);
12050       }
12051     };
12052     Address VDAddr =
12053         UntiedRealAddr.isValid() ? UntiedRealAddr : Address(Addr, Align);
12054     CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(
12055         NormalAndEHCleanup, FiniRTLFn, CVD->getLocation().getRawEncoding(),
12056         VDAddr, AA->getAllocator());
12057     if (UntiedRealAddr.isValid())
12058       if (auto *Region =
12059               dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
12060         Region->emitUntiedSwitch(CGF);
12061     return VDAddr;
12062   }
12063   return UntiedAddr;
12064 }
12065 
isLocalVarInUntiedTask(CodeGenFunction & CGF,const VarDecl * VD) const12066 bool CGOpenMPRuntime::isLocalVarInUntiedTask(CodeGenFunction &CGF,
12067                                              const VarDecl *VD) const {
12068   auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
12069   if (It == FunctionToUntiedTaskStackMap.end())
12070     return false;
12071   return UntiedLocalVarsStack[It->second].count(VD) > 0;
12072 }
12073 
NontemporalDeclsRAII(CodeGenModule & CGM,const OMPLoopDirective & S)12074 CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII(
12075     CodeGenModule &CGM, const OMPLoopDirective &S)
12076     : CGM(CGM), NeedToPush(S.hasClausesOfKind<OMPNontemporalClause>()) {
12077   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
12078   if (!NeedToPush)
12079     return;
12080   NontemporalDeclsSet &DS =
12081       CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back();
12082   for (const auto *C : S.getClausesOfKind<OMPNontemporalClause>()) {
12083     for (const Stmt *Ref : C->private_refs()) {
12084       const auto *SimpleRefExpr = cast<Expr>(Ref)->IgnoreParenImpCasts();
12085       const ValueDecl *VD;
12086       if (const auto *DRE = dyn_cast<DeclRefExpr>(SimpleRefExpr)) {
12087         VD = DRE->getDecl();
12088       } else {
12089         const auto *ME = cast<MemberExpr>(SimpleRefExpr);
12090         assert((ME->isImplicitCXXThis() ||
12091                 isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) &&
12092                "Expected member of current class.");
12093         VD = ME->getMemberDecl();
12094       }
12095       DS.insert(VD);
12096     }
12097   }
12098 }
12099 
~NontemporalDeclsRAII()12100 CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() {
12101   if (!NeedToPush)
12102     return;
12103   CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back();
12104 }
12105 
UntiedTaskLocalDeclsRAII(CodeGenFunction & CGF,const llvm::MapVector<CanonicalDeclPtr<const VarDecl>,std::pair<Address,Address>> & LocalVars)12106 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::UntiedTaskLocalDeclsRAII(
12107     CodeGenFunction &CGF,
12108     const llvm::MapVector<CanonicalDeclPtr<const VarDecl>,
12109                           std::pair<Address, Address>> &LocalVars)
12110     : CGM(CGF.CGM), NeedToPush(!LocalVars.empty()) {
12111   if (!NeedToPush)
12112     return;
12113   CGM.getOpenMPRuntime().FunctionToUntiedTaskStackMap.try_emplace(
12114       CGF.CurFn, CGM.getOpenMPRuntime().UntiedLocalVarsStack.size());
12115   CGM.getOpenMPRuntime().UntiedLocalVarsStack.push_back(LocalVars);
12116 }
12117 
~UntiedTaskLocalDeclsRAII()12118 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::~UntiedTaskLocalDeclsRAII() {
12119   if (!NeedToPush)
12120     return;
12121   CGM.getOpenMPRuntime().UntiedLocalVarsStack.pop_back();
12122 }
12123 
isNontemporalDecl(const ValueDecl * VD) const12124 bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const {
12125   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
12126 
12127   return llvm::any_of(
12128       CGM.getOpenMPRuntime().NontemporalDeclsStack,
12129       [VD](const NontemporalDeclsSet &Set) { return Set.count(VD) > 0; });
12130 }
12131 
tryToDisableInnerAnalysis(const OMPExecutableDirective & S,llvm::DenseSet<CanonicalDeclPtr<const Decl>> & NeedToAddForLPCsAsDisabled) const12132 void CGOpenMPRuntime::LastprivateConditionalRAII::tryToDisableInnerAnalysis(
12133     const OMPExecutableDirective &S,
12134     llvm::DenseSet<CanonicalDeclPtr<const Decl>> &NeedToAddForLPCsAsDisabled)
12135     const {
12136   llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToCheckForLPCs;
12137   // Vars in target/task regions must be excluded completely.
12138   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()) ||
12139       isOpenMPTaskingDirective(S.getDirectiveKind())) {
12140     SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
12141     getOpenMPCaptureRegions(CaptureRegions, S.getDirectiveKind());
12142     const CapturedStmt *CS = S.getCapturedStmt(CaptureRegions.front());
12143     for (const CapturedStmt::Capture &Cap : CS->captures()) {
12144       if (Cap.capturesVariable() || Cap.capturesVariableByCopy())
12145         NeedToCheckForLPCs.insert(Cap.getCapturedVar());
12146     }
12147   }
12148   // Exclude vars in private clauses.
12149   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
12150     for (const Expr *Ref : C->varlists()) {
12151       if (!Ref->getType()->isScalarType())
12152         continue;
12153       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12154       if (!DRE)
12155         continue;
12156       NeedToCheckForLPCs.insert(DRE->getDecl());
12157     }
12158   }
12159   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
12160     for (const Expr *Ref : C->varlists()) {
12161       if (!Ref->getType()->isScalarType())
12162         continue;
12163       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12164       if (!DRE)
12165         continue;
12166       NeedToCheckForLPCs.insert(DRE->getDecl());
12167     }
12168   }
12169   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
12170     for (const Expr *Ref : C->varlists()) {
12171       if (!Ref->getType()->isScalarType())
12172         continue;
12173       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12174       if (!DRE)
12175         continue;
12176       NeedToCheckForLPCs.insert(DRE->getDecl());
12177     }
12178   }
12179   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
12180     for (const Expr *Ref : C->varlists()) {
12181       if (!Ref->getType()->isScalarType())
12182         continue;
12183       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12184       if (!DRE)
12185         continue;
12186       NeedToCheckForLPCs.insert(DRE->getDecl());
12187     }
12188   }
12189   for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
12190     for (const Expr *Ref : C->varlists()) {
12191       if (!Ref->getType()->isScalarType())
12192         continue;
12193       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12194       if (!DRE)
12195         continue;
12196       NeedToCheckForLPCs.insert(DRE->getDecl());
12197     }
12198   }
12199   for (const Decl *VD : NeedToCheckForLPCs) {
12200     for (const LastprivateConditionalData &Data :
12201          llvm::reverse(CGM.getOpenMPRuntime().LastprivateConditionalStack)) {
12202       if (Data.DeclToUniqueName.count(VD) > 0) {
12203         if (!Data.Disabled)
12204           NeedToAddForLPCsAsDisabled.insert(VD);
12205         break;
12206       }
12207     }
12208   }
12209 }
12210 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S,LValue IVLVal)12211 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
12212     CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal)
12213     : CGM(CGF.CGM),
12214       Action((CGM.getLangOpts().OpenMP >= 50 &&
12215               llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(),
12216                            [](const OMPLastprivateClause *C) {
12217                              return C->getKind() ==
12218                                     OMPC_LASTPRIVATE_conditional;
12219                            }))
12220                  ? ActionToDo::PushAsLastprivateConditional
12221                  : ActionToDo::DoNotPush) {
12222   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
12223   if (CGM.getLangOpts().OpenMP < 50 || Action == ActionToDo::DoNotPush)
12224     return;
12225   assert(Action == ActionToDo::PushAsLastprivateConditional &&
12226          "Expected a push action.");
12227   LastprivateConditionalData &Data =
12228       CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
12229   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
12230     if (C->getKind() != OMPC_LASTPRIVATE_conditional)
12231       continue;
12232 
12233     for (const Expr *Ref : C->varlists()) {
12234       Data.DeclToUniqueName.insert(std::make_pair(
12235           cast<DeclRefExpr>(Ref->IgnoreParenImpCasts())->getDecl(),
12236           SmallString<16>(generateUniqueName(CGM, "pl_cond", Ref))));
12237     }
12238   }
12239   Data.IVLVal = IVLVal;
12240   Data.Fn = CGF.CurFn;
12241 }
12242 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S)12243 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
12244     CodeGenFunction &CGF, const OMPExecutableDirective &S)
12245     : CGM(CGF.CGM), Action(ActionToDo::DoNotPush) {
12246   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
12247   if (CGM.getLangOpts().OpenMP < 50)
12248     return;
12249   llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToAddForLPCsAsDisabled;
12250   tryToDisableInnerAnalysis(S, NeedToAddForLPCsAsDisabled);
12251   if (!NeedToAddForLPCsAsDisabled.empty()) {
12252     Action = ActionToDo::DisableLastprivateConditional;
12253     LastprivateConditionalData &Data =
12254         CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
12255     for (const Decl *VD : NeedToAddForLPCsAsDisabled)
12256       Data.DeclToUniqueName.insert(std::make_pair(VD, SmallString<16>()));
12257     Data.Fn = CGF.CurFn;
12258     Data.Disabled = true;
12259   }
12260 }
12261 
12262 CGOpenMPRuntime::LastprivateConditionalRAII
disable(CodeGenFunction & CGF,const OMPExecutableDirective & S)12263 CGOpenMPRuntime::LastprivateConditionalRAII::disable(
12264     CodeGenFunction &CGF, const OMPExecutableDirective &S) {
12265   return LastprivateConditionalRAII(CGF, S);
12266 }
12267 
~LastprivateConditionalRAII()12268 CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() {
12269   if (CGM.getLangOpts().OpenMP < 50)
12270     return;
12271   if (Action == ActionToDo::DisableLastprivateConditional) {
12272     assert(CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
12273            "Expected list of disabled private vars.");
12274     CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
12275   }
12276   if (Action == ActionToDo::PushAsLastprivateConditional) {
12277     assert(
12278         !CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
12279         "Expected list of lastprivate conditional vars.");
12280     CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
12281   }
12282 }
12283 
emitLastprivateConditionalInit(CodeGenFunction & CGF,const VarDecl * VD)12284 Address CGOpenMPRuntime::emitLastprivateConditionalInit(CodeGenFunction &CGF,
12285                                                         const VarDecl *VD) {
12286   ASTContext &C = CGM.getContext();
12287   auto I = LastprivateConditionalToTypes.find(CGF.CurFn);
12288   if (I == LastprivateConditionalToTypes.end())
12289     I = LastprivateConditionalToTypes.try_emplace(CGF.CurFn).first;
12290   QualType NewType;
12291   const FieldDecl *VDField;
12292   const FieldDecl *FiredField;
12293   LValue BaseLVal;
12294   auto VI = I->getSecond().find(VD);
12295   if (VI == I->getSecond().end()) {
12296     RecordDecl *RD = C.buildImplicitRecord("lasprivate.conditional");
12297     RD->startDefinition();
12298     VDField = addFieldToRecordDecl(C, RD, VD->getType().getNonReferenceType());
12299     FiredField = addFieldToRecordDecl(C, RD, C.CharTy);
12300     RD->completeDefinition();
12301     NewType = C.getRecordType(RD);
12302     Address Addr = CGF.CreateMemTemp(NewType, C.getDeclAlign(VD), VD->getName());
12303     BaseLVal = CGF.MakeAddrLValue(Addr, NewType, AlignmentSource::Decl);
12304     I->getSecond().try_emplace(VD, NewType, VDField, FiredField, BaseLVal);
12305   } else {
12306     NewType = std::get<0>(VI->getSecond());
12307     VDField = std::get<1>(VI->getSecond());
12308     FiredField = std::get<2>(VI->getSecond());
12309     BaseLVal = std::get<3>(VI->getSecond());
12310   }
12311   LValue FiredLVal =
12312       CGF.EmitLValueForField(BaseLVal, FiredField);
12313   CGF.EmitStoreOfScalar(
12314       llvm::ConstantInt::getNullValue(CGF.ConvertTypeForMem(C.CharTy)),
12315       FiredLVal);
12316   return CGF.EmitLValueForField(BaseLVal, VDField).getAddress(CGF);
12317 }
12318 
12319 namespace {
12320 /// Checks if the lastprivate conditional variable is referenced in LHS.
12321 class LastprivateConditionalRefChecker final
12322     : public ConstStmtVisitor<LastprivateConditionalRefChecker, bool> {
12323   ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM;
12324   const Expr *FoundE = nullptr;
12325   const Decl *FoundD = nullptr;
12326   StringRef UniqueDeclName;
12327   LValue IVLVal;
12328   llvm::Function *FoundFn = nullptr;
12329   SourceLocation Loc;
12330 
12331 public:
VisitDeclRefExpr(const DeclRefExpr * E)12332   bool VisitDeclRefExpr(const DeclRefExpr *E) {
12333     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
12334          llvm::reverse(LPM)) {
12335       auto It = D.DeclToUniqueName.find(E->getDecl());
12336       if (It == D.DeclToUniqueName.end())
12337         continue;
12338       if (D.Disabled)
12339         return false;
12340       FoundE = E;
12341       FoundD = E->getDecl()->getCanonicalDecl();
12342       UniqueDeclName = It->second;
12343       IVLVal = D.IVLVal;
12344       FoundFn = D.Fn;
12345       break;
12346     }
12347     return FoundE == E;
12348   }
VisitMemberExpr(const MemberExpr * E)12349   bool VisitMemberExpr(const MemberExpr *E) {
12350     if (!CodeGenFunction::IsWrappedCXXThis(E->getBase()))
12351       return false;
12352     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
12353          llvm::reverse(LPM)) {
12354       auto It = D.DeclToUniqueName.find(E->getMemberDecl());
12355       if (It == D.DeclToUniqueName.end())
12356         continue;
12357       if (D.Disabled)
12358         return false;
12359       FoundE = E;
12360       FoundD = E->getMemberDecl()->getCanonicalDecl();
12361       UniqueDeclName = It->second;
12362       IVLVal = D.IVLVal;
12363       FoundFn = D.Fn;
12364       break;
12365     }
12366     return FoundE == E;
12367   }
VisitStmt(const Stmt * S)12368   bool VisitStmt(const Stmt *S) {
12369     for (const Stmt *Child : S->children()) {
12370       if (!Child)
12371         continue;
12372       if (const auto *E = dyn_cast<Expr>(Child))
12373         if (!E->isGLValue())
12374           continue;
12375       if (Visit(Child))
12376         return true;
12377     }
12378     return false;
12379   }
LastprivateConditionalRefChecker(ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)12380   explicit LastprivateConditionalRefChecker(
12381       ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)
12382       : LPM(LPM) {}
12383   std::tuple<const Expr *, const Decl *, StringRef, LValue, llvm::Function *>
getFoundData() const12384   getFoundData() const {
12385     return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn);
12386   }
12387 };
12388 } // namespace
12389 
emitLastprivateConditionalUpdate(CodeGenFunction & CGF,LValue IVLVal,StringRef UniqueDeclName,LValue LVal,SourceLocation Loc)12390 void CGOpenMPRuntime::emitLastprivateConditionalUpdate(CodeGenFunction &CGF,
12391                                                        LValue IVLVal,
12392                                                        StringRef UniqueDeclName,
12393                                                        LValue LVal,
12394                                                        SourceLocation Loc) {
12395   // Last updated loop counter for the lastprivate conditional var.
12396   // int<xx> last_iv = 0;
12397   llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType());
12398   llvm::Constant *LastIV =
12399       getOrCreateInternalVariable(LLIVTy, getName({UniqueDeclName, "iv"}));
12400   cast<llvm::GlobalVariable>(LastIV)->setAlignment(
12401       IVLVal.getAlignment().getAsAlign());
12402   LValue LastIVLVal = CGF.MakeNaturalAlignAddrLValue(LastIV, IVLVal.getType());
12403 
12404   // Last value of the lastprivate conditional.
12405   // decltype(priv_a) last_a;
12406   llvm::Constant *Last = getOrCreateInternalVariable(
12407       CGF.ConvertTypeForMem(LVal.getType()), UniqueDeclName);
12408   cast<llvm::GlobalVariable>(Last)->setAlignment(
12409       LVal.getAlignment().getAsAlign());
12410   LValue LastLVal =
12411       CGF.MakeAddrLValue(Last, LVal.getType(), LVal.getAlignment());
12412 
12413   // Global loop counter. Required to handle inner parallel-for regions.
12414   // iv
12415   llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, Loc);
12416 
12417   // #pragma omp critical(a)
12418   // if (last_iv <= iv) {
12419   //   last_iv = iv;
12420   //   last_a = priv_a;
12421   // }
12422   auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal,
12423                     Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
12424     Action.Enter(CGF);
12425     llvm::Value *LastIVVal = CGF.EmitLoadOfScalar(LastIVLVal, Loc);
12426     // (last_iv <= iv) ? Check if the variable is updated and store new
12427     // value in global var.
12428     llvm::Value *CmpRes;
12429     if (IVLVal.getType()->isSignedIntegerType()) {
12430       CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal);
12431     } else {
12432       assert(IVLVal.getType()->isUnsignedIntegerType() &&
12433              "Loop iteration variable must be integer.");
12434       CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal);
12435     }
12436     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then");
12437     llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit");
12438     CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB);
12439     // {
12440     CGF.EmitBlock(ThenBB);
12441 
12442     //   last_iv = iv;
12443     CGF.EmitStoreOfScalar(IVVal, LastIVLVal);
12444 
12445     //   last_a = priv_a;
12446     switch (CGF.getEvaluationKind(LVal.getType())) {
12447     case TEK_Scalar: {
12448       llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, Loc);
12449       CGF.EmitStoreOfScalar(PrivVal, LastLVal);
12450       break;
12451     }
12452     case TEK_Complex: {
12453       CodeGenFunction::ComplexPairTy PrivVal = CGF.EmitLoadOfComplex(LVal, Loc);
12454       CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false);
12455       break;
12456     }
12457     case TEK_Aggregate:
12458       llvm_unreachable(
12459           "Aggregates are not supported in lastprivate conditional.");
12460     }
12461     // }
12462     CGF.EmitBranch(ExitBB);
12463     // There is no need to emit line number for unconditional branch.
12464     (void)ApplyDebugLocation::CreateEmpty(CGF);
12465     CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
12466   };
12467 
12468   if (CGM.getLangOpts().OpenMPSimd) {
12469     // Do not emit as a critical region as no parallel region could be emitted.
12470     RegionCodeGenTy ThenRCG(CodeGen);
12471     ThenRCG(CGF);
12472   } else {
12473     emitCriticalRegion(CGF, UniqueDeclName, CodeGen, Loc);
12474   }
12475 }
12476 
checkAndEmitLastprivateConditional(CodeGenFunction & CGF,const Expr * LHS)12477 void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF,
12478                                                          const Expr *LHS) {
12479   if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
12480     return;
12481   LastprivateConditionalRefChecker Checker(LastprivateConditionalStack);
12482   if (!Checker.Visit(LHS))
12483     return;
12484   const Expr *FoundE;
12485   const Decl *FoundD;
12486   StringRef UniqueDeclName;
12487   LValue IVLVal;
12488   llvm::Function *FoundFn;
12489   std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn) =
12490       Checker.getFoundData();
12491   if (FoundFn != CGF.CurFn) {
12492     // Special codegen for inner parallel regions.
12493     // ((struct.lastprivate.conditional*)&priv_a)->Fired = 1;
12494     auto It = LastprivateConditionalToTypes[FoundFn].find(FoundD);
12495     assert(It != LastprivateConditionalToTypes[FoundFn].end() &&
12496            "Lastprivate conditional is not found in outer region.");
12497     QualType StructTy = std::get<0>(It->getSecond());
12498     const FieldDecl* FiredDecl = std::get<2>(It->getSecond());
12499     LValue PrivLVal = CGF.EmitLValue(FoundE);
12500     Address StructAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
12501         PrivLVal.getAddress(CGF),
12502         CGF.ConvertTypeForMem(CGF.getContext().getPointerType(StructTy)));
12503     LValue BaseLVal =
12504         CGF.MakeAddrLValue(StructAddr, StructTy, AlignmentSource::Decl);
12505     LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredDecl);
12506     CGF.EmitAtomicStore(RValue::get(llvm::ConstantInt::get(
12507                             CGF.ConvertTypeForMem(FiredDecl->getType()), 1)),
12508                         FiredLVal, llvm::AtomicOrdering::Unordered,
12509                         /*IsVolatile=*/true, /*isInit=*/false);
12510     return;
12511   }
12512 
12513   // Private address of the lastprivate conditional in the current context.
12514   // priv_a
12515   LValue LVal = CGF.EmitLValue(FoundE);
12516   emitLastprivateConditionalUpdate(CGF, IVLVal, UniqueDeclName, LVal,
12517                                    FoundE->getExprLoc());
12518 }
12519 
checkAndEmitSharedLastprivateConditional(CodeGenFunction & CGF,const OMPExecutableDirective & D,const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> & IgnoredDecls)12520 void CGOpenMPRuntime::checkAndEmitSharedLastprivateConditional(
12521     CodeGenFunction &CGF, const OMPExecutableDirective &D,
12522     const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> &IgnoredDecls) {
12523   if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
12524     return;
12525   auto Range = llvm::reverse(LastprivateConditionalStack);
12526   auto It = llvm::find_if(
12527       Range, [](const LastprivateConditionalData &D) { return !D.Disabled; });
12528   if (It == Range.end() || It->Fn != CGF.CurFn)
12529     return;
12530   auto LPCI = LastprivateConditionalToTypes.find(It->Fn);
12531   assert(LPCI != LastprivateConditionalToTypes.end() &&
12532          "Lastprivates must be registered already.");
12533   SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
12534   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
12535   const CapturedStmt *CS = D.getCapturedStmt(CaptureRegions.back());
12536   for (const auto &Pair : It->DeclToUniqueName) {
12537     const auto *VD = cast<VarDecl>(Pair.first->getCanonicalDecl());
12538     if (!CS->capturesVariable(VD) || IgnoredDecls.count(VD) > 0)
12539       continue;
12540     auto I = LPCI->getSecond().find(Pair.first);
12541     assert(I != LPCI->getSecond().end() &&
12542            "Lastprivate must be rehistered already.");
12543     // bool Cmp = priv_a.Fired != 0;
12544     LValue BaseLVal = std::get<3>(I->getSecond());
12545     LValue FiredLVal =
12546         CGF.EmitLValueForField(BaseLVal, std::get<2>(I->getSecond()));
12547     llvm::Value *Res = CGF.EmitLoadOfScalar(FiredLVal, D.getBeginLoc());
12548     llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Res);
12549     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lpc.then");
12550     llvm::BasicBlock *DoneBB = CGF.createBasicBlock("lpc.done");
12551     // if (Cmp) {
12552     CGF.Builder.CreateCondBr(Cmp, ThenBB, DoneBB);
12553     CGF.EmitBlock(ThenBB);
12554     Address Addr = CGF.GetAddrOfLocalVar(VD);
12555     LValue LVal;
12556     if (VD->getType()->isReferenceType())
12557       LVal = CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
12558                                            AlignmentSource::Decl);
12559     else
12560       LVal = CGF.MakeAddrLValue(Addr, VD->getType().getNonReferenceType(),
12561                                 AlignmentSource::Decl);
12562     emitLastprivateConditionalUpdate(CGF, It->IVLVal, Pair.second, LVal,
12563                                      D.getBeginLoc());
12564     auto AL = ApplyDebugLocation::CreateArtificial(CGF);
12565     CGF.EmitBlock(DoneBB, /*IsFinal=*/true);
12566     // }
12567   }
12568 }
12569 
emitLastprivateConditionalFinalUpdate(CodeGenFunction & CGF,LValue PrivLVal,const VarDecl * VD,SourceLocation Loc)12570 void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate(
12571     CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD,
12572     SourceLocation Loc) {
12573   if (CGF.getLangOpts().OpenMP < 50)
12574     return;
12575   auto It = LastprivateConditionalStack.back().DeclToUniqueName.find(VD);
12576   assert(It != LastprivateConditionalStack.back().DeclToUniqueName.end() &&
12577          "Unknown lastprivate conditional variable.");
12578   StringRef UniqueName = It->second;
12579   llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName);
12580   // The variable was not updated in the region - exit.
12581   if (!GV)
12582     return;
12583   LValue LPLVal = CGF.MakeAddrLValue(
12584       GV, PrivLVal.getType().getNonReferenceType(), PrivLVal.getAlignment());
12585   llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc);
12586   CGF.EmitStoreOfScalar(Res, PrivLVal);
12587 }
12588 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)12589 llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
12590     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12591     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
12592   llvm_unreachable("Not supported in SIMD-only mode");
12593 }
12594 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)12595 llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
12596     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12597     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
12598   llvm_unreachable("Not supported in SIMD-only mode");
12599 }
12600 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)12601 llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
12602     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12603     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
12604     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
12605     bool Tied, unsigned &NumberOfParts) {
12606   llvm_unreachable("Not supported in SIMD-only mode");
12607 }
12608 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)12609 void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
12610                                            SourceLocation Loc,
12611                                            llvm::Function *OutlinedFn,
12612                                            ArrayRef<llvm::Value *> CapturedVars,
12613                                            const Expr *IfCond) {
12614   llvm_unreachable("Not supported in SIMD-only mode");
12615 }
12616 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)12617 void CGOpenMPSIMDRuntime::emitCriticalRegion(
12618     CodeGenFunction &CGF, StringRef CriticalName,
12619     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
12620     const Expr *Hint) {
12621   llvm_unreachable("Not supported in SIMD-only mode");
12622 }
12623 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)12624 void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
12625                                            const RegionCodeGenTy &MasterOpGen,
12626                                            SourceLocation Loc) {
12627   llvm_unreachable("Not supported in SIMD-only mode");
12628 }
12629 
emitMaskedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc,const Expr * Filter)12630 void CGOpenMPSIMDRuntime::emitMaskedRegion(CodeGenFunction &CGF,
12631                                            const RegionCodeGenTy &MasterOpGen,
12632                                            SourceLocation Loc,
12633                                            const Expr *Filter) {
12634   llvm_unreachable("Not supported in SIMD-only mode");
12635 }
12636 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)12637 void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
12638                                             SourceLocation Loc) {
12639   llvm_unreachable("Not supported in SIMD-only mode");
12640 }
12641 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)12642 void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
12643     CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
12644     SourceLocation Loc) {
12645   llvm_unreachable("Not supported in SIMD-only mode");
12646 }
12647 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps)12648 void CGOpenMPSIMDRuntime::emitSingleRegion(
12649     CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
12650     SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
12651     ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
12652     ArrayRef<const Expr *> AssignmentOps) {
12653   llvm_unreachable("Not supported in SIMD-only mode");
12654 }
12655 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)12656 void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
12657                                             const RegionCodeGenTy &OrderedOpGen,
12658                                             SourceLocation Loc,
12659                                             bool IsThreads) {
12660   llvm_unreachable("Not supported in SIMD-only mode");
12661 }
12662 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)12663 void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
12664                                           SourceLocation Loc,
12665                                           OpenMPDirectiveKind Kind,
12666                                           bool EmitChecks,
12667                                           bool ForceSimpleCall) {
12668   llvm_unreachable("Not supported in SIMD-only mode");
12669 }
12670 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)12671 void CGOpenMPSIMDRuntime::emitForDispatchInit(
12672     CodeGenFunction &CGF, SourceLocation Loc,
12673     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
12674     bool Ordered, const DispatchRTInput &DispatchValues) {
12675   llvm_unreachable("Not supported in SIMD-only mode");
12676 }
12677 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)12678 void CGOpenMPSIMDRuntime::emitForStaticInit(
12679     CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
12680     const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
12681   llvm_unreachable("Not supported in SIMD-only mode");
12682 }
12683 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const StaticRTInput & Values)12684 void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
12685     CodeGenFunction &CGF, SourceLocation Loc,
12686     OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
12687   llvm_unreachable("Not supported in SIMD-only mode");
12688 }
12689 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)12690 void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
12691                                                      SourceLocation Loc,
12692                                                      unsigned IVSize,
12693                                                      bool IVSigned) {
12694   llvm_unreachable("Not supported in SIMD-only mode");
12695 }
12696 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)12697 void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
12698                                               SourceLocation Loc,
12699                                               OpenMPDirectiveKind DKind) {
12700   llvm_unreachable("Not supported in SIMD-only mode");
12701 }
12702 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)12703 llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
12704                                               SourceLocation Loc,
12705                                               unsigned IVSize, bool IVSigned,
12706                                               Address IL, Address LB,
12707                                               Address UB, Address ST) {
12708   llvm_unreachable("Not supported in SIMD-only mode");
12709 }
12710 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)12711 void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
12712                                                llvm::Value *NumThreads,
12713                                                SourceLocation Loc) {
12714   llvm_unreachable("Not supported in SIMD-only mode");
12715 }
12716 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)12717 void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
12718                                              ProcBindKind ProcBind,
12719                                              SourceLocation Loc) {
12720   llvm_unreachable("Not supported in SIMD-only mode");
12721 }
12722 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)12723 Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
12724                                                     const VarDecl *VD,
12725                                                     Address VDAddr,
12726                                                     SourceLocation Loc) {
12727   llvm_unreachable("Not supported in SIMD-only mode");
12728 }
12729 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)12730 llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
12731     const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
12732     CodeGenFunction *CGF) {
12733   llvm_unreachable("Not supported in SIMD-only mode");
12734 }
12735 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)12736 Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
12737     CodeGenFunction &CGF, QualType VarType, StringRef Name) {
12738   llvm_unreachable("Not supported in SIMD-only mode");
12739 }
12740 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * > Vars,SourceLocation Loc,llvm::AtomicOrdering AO)12741 void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
12742                                     ArrayRef<const Expr *> Vars,
12743                                     SourceLocation Loc,
12744                                     llvm::AtomicOrdering AO) {
12745   llvm_unreachable("Not supported in SIMD-only mode");
12746 }
12747 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)12748 void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
12749                                        const OMPExecutableDirective &D,
12750                                        llvm::Function *TaskFunction,
12751                                        QualType SharedsTy, Address Shareds,
12752                                        const Expr *IfCond,
12753                                        const OMPTaskDataTy &Data) {
12754   llvm_unreachable("Not supported in SIMD-only mode");
12755 }
12756 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)12757 void CGOpenMPSIMDRuntime::emitTaskLoopCall(
12758     CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
12759     llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
12760     const Expr *IfCond, const OMPTaskDataTy &Data) {
12761   llvm_unreachable("Not supported in SIMD-only mode");
12762 }
12763 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)12764 void CGOpenMPSIMDRuntime::emitReduction(
12765     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
12766     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
12767     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
12768   assert(Options.SimpleReduction && "Only simple reduction is expected.");
12769   CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
12770                                  ReductionOps, Options);
12771 }
12772 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)12773 llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
12774     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
12775     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
12776   llvm_unreachable("Not supported in SIMD-only mode");
12777 }
12778 
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)12779 void CGOpenMPSIMDRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
12780                                                 SourceLocation Loc,
12781                                                 bool IsWorksharingReduction) {
12782   llvm_unreachable("Not supported in SIMD-only mode");
12783 }
12784 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)12785 void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
12786                                                   SourceLocation Loc,
12787                                                   ReductionCodeGen &RCG,
12788                                                   unsigned N) {
12789   llvm_unreachable("Not supported in SIMD-only mode");
12790 }
12791 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)12792 Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
12793                                                   SourceLocation Loc,
12794                                                   llvm::Value *ReductionsPtr,
12795                                                   LValue SharedLVal) {
12796   llvm_unreachable("Not supported in SIMD-only mode");
12797 }
12798 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)12799 void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
12800                                            SourceLocation Loc) {
12801   llvm_unreachable("Not supported in SIMD-only mode");
12802 }
12803 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)12804 void CGOpenMPSIMDRuntime::emitCancellationPointCall(
12805     CodeGenFunction &CGF, SourceLocation Loc,
12806     OpenMPDirectiveKind CancelRegion) {
12807   llvm_unreachable("Not supported in SIMD-only mode");
12808 }
12809 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)12810 void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
12811                                          SourceLocation Loc, const Expr *IfCond,
12812                                          OpenMPDirectiveKind CancelRegion) {
12813   llvm_unreachable("Not supported in SIMD-only mode");
12814 }
12815 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)12816 void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
12817     const OMPExecutableDirective &D, StringRef ParentName,
12818     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
12819     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
12820   llvm_unreachable("Not supported in SIMD-only mode");
12821 }
12822 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)12823 void CGOpenMPSIMDRuntime::emitTargetCall(
12824     CodeGenFunction &CGF, const OMPExecutableDirective &D,
12825     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
12826     llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
12827     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
12828                                      const OMPLoopDirective &D)>
12829         SizeEmitter) {
12830   llvm_unreachable("Not supported in SIMD-only mode");
12831 }
12832 
emitTargetFunctions(GlobalDecl GD)12833 bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
12834   llvm_unreachable("Not supported in SIMD-only mode");
12835 }
12836 
emitTargetGlobalVariable(GlobalDecl GD)12837 bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
12838   llvm_unreachable("Not supported in SIMD-only mode");
12839 }
12840 
emitTargetGlobal(GlobalDecl GD)12841 bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
12842   return false;
12843 }
12844 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)12845 void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
12846                                         const OMPExecutableDirective &D,
12847                                         SourceLocation Loc,
12848                                         llvm::Function *OutlinedFn,
12849                                         ArrayRef<llvm::Value *> CapturedVars) {
12850   llvm_unreachable("Not supported in SIMD-only mode");
12851 }
12852 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)12853 void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
12854                                              const Expr *NumTeams,
12855                                              const Expr *ThreadLimit,
12856                                              SourceLocation Loc) {
12857   llvm_unreachable("Not supported in SIMD-only mode");
12858 }
12859 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)12860 void CGOpenMPSIMDRuntime::emitTargetDataCalls(
12861     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
12862     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
12863   llvm_unreachable("Not supported in SIMD-only mode");
12864 }
12865 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)12866 void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
12867     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
12868     const Expr *Device) {
12869   llvm_unreachable("Not supported in SIMD-only mode");
12870 }
12871 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)12872 void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
12873                                            const OMPLoopDirective &D,
12874                                            ArrayRef<Expr *> NumIterations) {
12875   llvm_unreachable("Not supported in SIMD-only mode");
12876 }
12877 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)12878 void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
12879                                               const OMPDependClause *C) {
12880   llvm_unreachable("Not supported in SIMD-only mode");
12881 }
12882 
12883 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const12884 CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
12885                                         const VarDecl *NativeParam) const {
12886   llvm_unreachable("Not supported in SIMD-only mode");
12887 }
12888 
12889 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const12890 CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
12891                                          const VarDecl *NativeParam,
12892                                          const VarDecl *TargetParam) const {
12893   llvm_unreachable("Not supported in SIMD-only mode");
12894 }
12895