1 //===- TruncInstCombine.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // TruncInstCombine - looks for expression dags post-dominated by TruncInst and
10 // for each eligible dag, it will create a reduced bit-width expression, replace
11 // the old expression with this new one and remove the old expression.
12 // Eligible expression dag is such that:
13 // 1. Contains only supported instructions.
14 // 2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
15 // 3. Can be evaluated into type with reduced legal bit-width.
16 // 4. All instructions in the dag must not have users outside the dag.
17 // The only exception is for {ZExt, SExt}Inst with operand type equal to
18 // the new reduced type evaluated in (3).
19 //
20 // The motivation for this optimization is that evaluating and expression using
21 // smaller bit-width is preferable, especially for vectorization where we can
22 // fit more values in one vectorized instruction. In addition, this optimization
23 // may decrease the number of cast instructions, but will not increase it.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "AggressiveInstCombineInternal.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "aggressive-instcombine"
40
41 STATISTIC(
42 NumDAGsReduced,
43 "Number of truncations eliminated by reducing bit width of expression DAG");
44 STATISTIC(NumInstrsReduced,
45 "Number of instructions whose bit width was reduced");
46
47 /// Given an instruction and a container, it fills all the relevant operands of
48 /// that instruction, with respect to the Trunc expression dag optimizaton.
getRelevantOperands(Instruction * I,SmallVectorImpl<Value * > & Ops)49 static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) {
50 unsigned Opc = I->getOpcode();
51 switch (Opc) {
52 case Instruction::Trunc:
53 case Instruction::ZExt:
54 case Instruction::SExt:
55 // These CastInst are considered leaves of the evaluated expression, thus,
56 // their operands are not relevent.
57 break;
58 case Instruction::Add:
59 case Instruction::Sub:
60 case Instruction::Mul:
61 case Instruction::And:
62 case Instruction::Or:
63 case Instruction::Xor:
64 Ops.push_back(I->getOperand(0));
65 Ops.push_back(I->getOperand(1));
66 break;
67 case Instruction::Select:
68 Ops.push_back(I->getOperand(1));
69 Ops.push_back(I->getOperand(2));
70 break;
71 default:
72 llvm_unreachable("Unreachable!");
73 }
74 }
75
buildTruncExpressionDag()76 bool TruncInstCombine::buildTruncExpressionDag() {
77 SmallVector<Value *, 8> Worklist;
78 SmallVector<Instruction *, 8> Stack;
79 // Clear old expression dag.
80 InstInfoMap.clear();
81
82 Worklist.push_back(CurrentTruncInst->getOperand(0));
83
84 while (!Worklist.empty()) {
85 Value *Curr = Worklist.back();
86
87 if (isa<Constant>(Curr)) {
88 Worklist.pop_back();
89 continue;
90 }
91
92 auto *I = dyn_cast<Instruction>(Curr);
93 if (!I)
94 return false;
95
96 if (!Stack.empty() && Stack.back() == I) {
97 // Already handled all instruction operands, can remove it from both the
98 // Worklist and the Stack, and add it to the instruction info map.
99 Worklist.pop_back();
100 Stack.pop_back();
101 // Insert I to the Info map.
102 InstInfoMap.insert(std::make_pair(I, Info()));
103 continue;
104 }
105
106 if (InstInfoMap.count(I)) {
107 Worklist.pop_back();
108 continue;
109 }
110
111 // Add the instruction to the stack before start handling its operands.
112 Stack.push_back(I);
113
114 unsigned Opc = I->getOpcode();
115 switch (Opc) {
116 case Instruction::Trunc:
117 case Instruction::ZExt:
118 case Instruction::SExt:
119 // trunc(trunc(x)) -> trunc(x)
120 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
121 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new
122 // dest
123 break;
124 case Instruction::Add:
125 case Instruction::Sub:
126 case Instruction::Mul:
127 case Instruction::And:
128 case Instruction::Or:
129 case Instruction::Xor:
130 case Instruction::Select: {
131 SmallVector<Value *, 2> Operands;
132 getRelevantOperands(I, Operands);
133 append_range(Worklist, Operands);
134 break;
135 }
136 default:
137 // TODO: Can handle more cases here:
138 // 1. shufflevector, extractelement, insertelement
139 // 2. udiv, urem
140 // 3. shl, lshr, ashr
141 // 4. phi node(and loop handling)
142 // ...
143 return false;
144 }
145 }
146 return true;
147 }
148
getMinBitWidth()149 unsigned TruncInstCombine::getMinBitWidth() {
150 SmallVector<Value *, 8> Worklist;
151 SmallVector<Instruction *, 8> Stack;
152
153 Value *Src = CurrentTruncInst->getOperand(0);
154 Type *DstTy = CurrentTruncInst->getType();
155 unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
156 unsigned OrigBitWidth =
157 CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
158
159 if (isa<Constant>(Src))
160 return TruncBitWidth;
161
162 Worklist.push_back(Src);
163 InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;
164
165 while (!Worklist.empty()) {
166 Value *Curr = Worklist.back();
167
168 if (isa<Constant>(Curr)) {
169 Worklist.pop_back();
170 continue;
171 }
172
173 // Otherwise, it must be an instruction.
174 auto *I = cast<Instruction>(Curr);
175
176 auto &Info = InstInfoMap[I];
177
178 SmallVector<Value *, 2> Operands;
179 getRelevantOperands(I, Operands);
180
181 if (!Stack.empty() && Stack.back() == I) {
182 // Already handled all instruction operands, can remove it from both, the
183 // Worklist and the Stack, and update MinBitWidth.
184 Worklist.pop_back();
185 Stack.pop_back();
186 for (auto *Operand : Operands)
187 if (auto *IOp = dyn_cast<Instruction>(Operand))
188 Info.MinBitWidth =
189 std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
190 continue;
191 }
192
193 // Add the instruction to the stack before start handling its operands.
194 Stack.push_back(I);
195 unsigned ValidBitWidth = Info.ValidBitWidth;
196
197 // Update minimum bit-width before handling its operands. This is required
198 // when the instruction is part of a loop.
199 Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);
200
201 for (auto *Operand : Operands)
202 if (auto *IOp = dyn_cast<Instruction>(Operand)) {
203 // If we already calculated the minimum bit-width for this valid
204 // bit-width, or for a smaller valid bit-width, then just keep the
205 // answer we already calculated.
206 unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
207 if (IOpBitwidth >= ValidBitWidth)
208 continue;
209 InstInfoMap[IOp].ValidBitWidth = ValidBitWidth;
210 Worklist.push_back(IOp);
211 }
212 }
213 unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
214 assert(MinBitWidth >= TruncBitWidth);
215
216 if (MinBitWidth > TruncBitWidth) {
217 // In this case reducing expression with vector type might generate a new
218 // vector type, which is not preferable as it might result in generating
219 // sub-optimal code.
220 if (DstTy->isVectorTy())
221 return OrigBitWidth;
222 // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
223 Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
224 // Update minimum bit-width with the new destination type bit-width if
225 // succeeded to find such, otherwise, with original bit-width.
226 MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
227 } else { // MinBitWidth == TruncBitWidth
228 // In this case the expression can be evaluated with the trunc instruction
229 // destination type, and trunc instruction can be omitted. However, we
230 // should not perform the evaluation if the original type is a legal scalar
231 // type and the target type is illegal.
232 bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
233 bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
234 if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
235 return OrigBitWidth;
236 }
237 return MinBitWidth;
238 }
239
getBestTruncatedType()240 Type *TruncInstCombine::getBestTruncatedType() {
241 if (!buildTruncExpressionDag())
242 return nullptr;
243
244 // We don't want to duplicate instructions, which isn't profitable. Thus, we
245 // can't shrink something that has multiple users, unless all users are
246 // post-dominated by the trunc instruction, i.e., were visited during the
247 // expression evaluation.
248 unsigned DesiredBitWidth = 0;
249 for (auto Itr : InstInfoMap) {
250 Instruction *I = Itr.first;
251 if (I->hasOneUse())
252 continue;
253 bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
254 for (auto *U : I->users())
255 if (auto *UI = dyn_cast<Instruction>(U))
256 if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
257 if (!IsExtInst)
258 return nullptr;
259 // If this is an extension from the dest type, we can eliminate it,
260 // even if it has multiple users. Thus, update the DesiredBitWidth and
261 // validate all extension instructions agrees on same DesiredBitWidth.
262 unsigned ExtInstBitWidth =
263 I->getOperand(0)->getType()->getScalarSizeInBits();
264 if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
265 return nullptr;
266 DesiredBitWidth = ExtInstBitWidth;
267 }
268 }
269
270 unsigned OrigBitWidth =
271 CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
272
273 // Calculate minimum allowed bit-width allowed for shrinking the currently
274 // visited truncate's operand.
275 unsigned MinBitWidth = getMinBitWidth();
276
277 // Check that we can shrink to smaller bit-width than original one and that
278 // it is similar to the DesiredBitWidth is such exists.
279 if (MinBitWidth >= OrigBitWidth ||
280 (DesiredBitWidth && DesiredBitWidth != MinBitWidth))
281 return nullptr;
282
283 return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
284 }
285
286 /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
287 /// for \p V, according to its type, if it vector type, return the vector
288 /// version of \p Ty, otherwise return \p Ty.
getReducedType(Value * V,Type * Ty)289 static Type *getReducedType(Value *V, Type *Ty) {
290 assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
291 if (auto *VTy = dyn_cast<VectorType>(V->getType()))
292 return VectorType::get(Ty, VTy->getElementCount());
293 return Ty;
294 }
295
getReducedOperand(Value * V,Type * SclTy)296 Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
297 Type *Ty = getReducedType(V, SclTy);
298 if (auto *C = dyn_cast<Constant>(V)) {
299 C = ConstantExpr::getIntegerCast(C, Ty, false);
300 // If we got a constantexpr back, try to simplify it with DL info.
301 return ConstantFoldConstant(C, DL, &TLI);
302 }
303
304 auto *I = cast<Instruction>(V);
305 Info Entry = InstInfoMap.lookup(I);
306 assert(Entry.NewValue);
307 return Entry.NewValue;
308 }
309
ReduceExpressionDag(Type * SclTy)310 void TruncInstCombine::ReduceExpressionDag(Type *SclTy) {
311 NumInstrsReduced += InstInfoMap.size();
312 for (auto &Itr : InstInfoMap) { // Forward
313 Instruction *I = Itr.first;
314 TruncInstCombine::Info &NodeInfo = Itr.second;
315
316 assert(!NodeInfo.NewValue && "Instruction has been evaluated");
317
318 IRBuilder<> Builder(I);
319 Value *Res = nullptr;
320 unsigned Opc = I->getOpcode();
321 switch (Opc) {
322 case Instruction::Trunc:
323 case Instruction::ZExt:
324 case Instruction::SExt: {
325 Type *Ty = getReducedType(I, SclTy);
326 // If the source type of the cast is the type we're trying for then we can
327 // just return the source. There's no need to insert it because it is not
328 // new.
329 if (I->getOperand(0)->getType() == Ty) {
330 assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
331 NodeInfo.NewValue = I->getOperand(0);
332 continue;
333 }
334 // Otherwise, must be the same type of cast, so just reinsert a new one.
335 // This also handles the case of zext(trunc(x)) -> zext(x).
336 Res = Builder.CreateIntCast(I->getOperand(0), Ty,
337 Opc == Instruction::SExt);
338
339 // Update Worklist entries with new value if needed.
340 // There are three possible changes to the Worklist:
341 // 1. Update Old-TruncInst -> New-TruncInst.
342 // 2. Remove Old-TruncInst (if New node is not TruncInst).
343 // 3. Add New-TruncInst (if Old node was not TruncInst).
344 auto *Entry = find(Worklist, I);
345 if (Entry != Worklist.end()) {
346 if (auto *NewCI = dyn_cast<TruncInst>(Res))
347 *Entry = NewCI;
348 else
349 Worklist.erase(Entry);
350 } else if (auto *NewCI = dyn_cast<TruncInst>(Res))
351 Worklist.push_back(NewCI);
352 break;
353 }
354 case Instruction::Add:
355 case Instruction::Sub:
356 case Instruction::Mul:
357 case Instruction::And:
358 case Instruction::Or:
359 case Instruction::Xor: {
360 Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
361 Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
362 Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
363 break;
364 }
365 case Instruction::Select: {
366 Value *Op0 = I->getOperand(0);
367 Value *LHS = getReducedOperand(I->getOperand(1), SclTy);
368 Value *RHS = getReducedOperand(I->getOperand(2), SclTy);
369 Res = Builder.CreateSelect(Op0, LHS, RHS);
370 break;
371 }
372 default:
373 llvm_unreachable("Unhandled instruction");
374 }
375
376 NodeInfo.NewValue = Res;
377 if (auto *ResI = dyn_cast<Instruction>(Res))
378 ResI->takeName(I);
379 }
380
381 Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
382 Type *DstTy = CurrentTruncInst->getType();
383 if (Res->getType() != DstTy) {
384 IRBuilder<> Builder(CurrentTruncInst);
385 Res = Builder.CreateIntCast(Res, DstTy, false);
386 if (auto *ResI = dyn_cast<Instruction>(Res))
387 ResI->takeName(CurrentTruncInst);
388 }
389 CurrentTruncInst->replaceAllUsesWith(Res);
390
391 // Erase old expression dag, which was replaced by the reduced expression dag.
392 // We iterate backward, which means we visit the instruction before we visit
393 // any of its operands, this way, when we get to the operand, we already
394 // removed the instructions (from the expression dag) that uses it.
395 CurrentTruncInst->eraseFromParent();
396 for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) {
397 // We still need to check that the instruction has no users before we erase
398 // it, because {SExt, ZExt}Inst Instruction might have other users that was
399 // not reduced, in such case, we need to keep that instruction.
400 if (I->first->use_empty())
401 I->first->eraseFromParent();
402 }
403 }
404
run(Function & F)405 bool TruncInstCombine::run(Function &F) {
406 bool MadeIRChange = false;
407
408 // Collect all TruncInst in the function into the Worklist for evaluating.
409 for (auto &BB : F) {
410 // Ignore unreachable basic block.
411 if (!DT.isReachableFromEntry(&BB))
412 continue;
413 for (auto &I : BB)
414 if (auto *CI = dyn_cast<TruncInst>(&I))
415 Worklist.push_back(CI);
416 }
417
418 // Process all TruncInst in the Worklist, for each instruction:
419 // 1. Check if it dominates an eligible expression dag to be reduced.
420 // 2. Create a reduced expression dag and replace the old one with it.
421 while (!Worklist.empty()) {
422 CurrentTruncInst = Worklist.pop_back_val();
423
424 if (Type *NewDstSclTy = getBestTruncatedType()) {
425 LLVM_DEBUG(
426 dbgs() << "ICE: TruncInstCombine reducing type of expression dag "
427 "dominated by: "
428 << CurrentTruncInst << '\n');
429 ReduceExpressionDag(NewDstSclTy);
430 ++NumDAGsReduced;
431 MadeIRChange = true;
432 }
433 }
434
435 return MadeIRChange;
436 }
437