1 //===- BranchProbabilityInfo.h - Branch Probability Analysis ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass is used to evaluate branch probabilties. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H 14 #define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/IR/ValueHandle.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/BranchProbability.h" 25 #include <cassert> 26 #include <cstdint> 27 #include <memory> 28 #include <utility> 29 30 namespace llvm { 31 32 class Function; 33 class Loop; 34 class LoopInfo; 35 class raw_ostream; 36 class DominatorTree; 37 class PostDominatorTree; 38 class TargetLibraryInfo; 39 class Value; 40 41 /// Analysis providing branch probability information. 42 /// 43 /// This is a function analysis which provides information on the relative 44 /// probabilities of each "edge" in the function's CFG where such an edge is 45 /// defined by a pair (PredBlock and an index in the successors). The 46 /// probability of an edge from one block is always relative to the 47 /// probabilities of other edges from the block. The probabilites of all edges 48 /// from a block sum to exactly one (100%). 49 /// We use a pair (PredBlock and an index in the successors) to uniquely 50 /// identify an edge, since we can have multiple edges from Src to Dst. 51 /// As an example, we can have a switch which jumps to Dst with value 0 and 52 /// value 10. 53 /// 54 /// Process of computing branch probabilities can be logically viewed as three 55 /// step process: 56 /// 57 /// First, if there is a profile information associated with the branch then 58 /// it is trivially translated to branch probabilities. There is one exception 59 /// from this rule though. Probabilities for edges leading to "unreachable" 60 /// blocks (blocks with the estimated weight not greater than 61 /// UNREACHABLE_WEIGHT) are evaluated according to static estimation and 62 /// override profile information. If no branch probabilities were calculated 63 /// on this step then take the next one. 64 /// 65 /// Second, estimate absolute execution weights for each block based on 66 /// statically known information. Roots of such information are "cold", 67 /// "unreachable", "noreturn" and "unwind" blocks. Those blocks get their 68 /// weights set to BlockExecWeight::COLD, BlockExecWeight::UNREACHABLE, 69 /// BlockExecWeight::NORETURN and BlockExecWeight::UNWIND respectively. Then the 70 /// weights are propagated to the other blocks up the domination line. In 71 /// addition, if all successors have estimated weights set then maximum of these 72 /// weights assigned to the block itself (while this is not ideal heuristic in 73 /// theory it's simple and works reasonably well in most cases) and the process 74 /// repeats. Once the process of weights propagation converges branch 75 /// probabilities are set for all such branches that have at least one successor 76 /// with the weight set. Default execution weight (BlockExecWeight::DEFAULT) is 77 /// used for any successors which doesn't have its weight set. For loop back 78 /// branches we use their weights scaled by loop trip count equal to 79 /// 'LBH_TAKEN_WEIGHT/LBH_NOTTAKEN_WEIGHT'. 80 /// 81 /// Here is a simple example demonstrating how the described algorithm works. 82 /// 83 /// BB1 84 /// / \ 85 /// v v 86 /// BB2 BB3 87 /// / \ 88 /// v v 89 /// ColdBB UnreachBB 90 /// 91 /// Initially, ColdBB is associated with COLD_WEIGHT and UnreachBB with 92 /// UNREACHABLE_WEIGHT. COLD_WEIGHT is set to BB2 as maximum between its 93 /// successors. BB1 and BB3 has no explicit estimated weights and assumed to 94 /// have DEFAULT_WEIGHT. Based on assigned weights branches will have the 95 /// following probabilities: 96 /// P(BB1->BB2) = COLD_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) = 97 /// 0xffff / (0xffff + 0xfffff) = 0.0588(5.9%) 98 /// P(BB1->BB3) = DEFAULT_WEIGHT_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) = 99 /// 0xfffff / (0xffff + 0xfffff) = 0.941(94.1%) 100 /// P(BB2->ColdBB) = COLD_WEIGHT/(COLD_WEIGHT + UNREACHABLE_WEIGHT) = 1(100%) 101 /// P(BB2->UnreachBB) = 102 /// UNREACHABLE_WEIGHT/(COLD_WEIGHT+UNREACHABLE_WEIGHT) = 0(0%) 103 /// 104 /// If no branch probabilities were calculated on this step then take the next 105 /// one. 106 /// 107 /// Third, apply different kinds of local heuristics for each individual 108 /// branch until first match. For example probability of a pointer to be null is 109 /// estimated as PH_TAKEN_WEIGHT/(PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT). If 110 /// no local heuristic has been matched then branch is left with no explicit 111 /// probability set and assumed to have default probability. 112 class BranchProbabilityInfo { 113 public: 114 BranchProbabilityInfo() = default; 115 116 BranchProbabilityInfo(const Function &F, const LoopInfo &LI, 117 const TargetLibraryInfo *TLI = nullptr, 118 DominatorTree *DT = nullptr, 119 PostDominatorTree *PDT = nullptr) { 120 calculate(F, LI, TLI, DT, PDT); 121 } 122 123 BranchProbabilityInfo(BranchProbabilityInfo &&Arg) 124 : Handles(std::move(Arg.Handles)), Probs(std::move(Arg.Probs)), 125 LastF(Arg.LastF), 126 EstimatedBlockWeight(std::move(Arg.EstimatedBlockWeight)) { 127 for (auto &Handle : Handles) 128 Handle.setBPI(this); 129 } 130 131 BranchProbabilityInfo(const BranchProbabilityInfo &) = delete; 132 BranchProbabilityInfo &operator=(const BranchProbabilityInfo &) = delete; 133 134 BranchProbabilityInfo &operator=(BranchProbabilityInfo &&RHS) { 135 releaseMemory(); 136 Handles = std::move(RHS.Handles); 137 Probs = std::move(RHS.Probs); 138 EstimatedBlockWeight = std::move(RHS.EstimatedBlockWeight); 139 for (auto &Handle : Handles) 140 Handle.setBPI(this); 141 return *this; 142 } 143 144 bool invalidate(Function &, const PreservedAnalyses &PA, 145 FunctionAnalysisManager::Invalidator &); 146 147 void releaseMemory(); 148 149 void print(raw_ostream &OS) const; 150 151 /// Get an edge's probability, relative to other out-edges of the Src. 152 /// 153 /// This routine provides access to the fractional probability between zero 154 /// (0%) and one (100%) of this edge executing, relative to other edges 155 /// leaving the 'Src' block. The returned probability is never zero, and can 156 /// only be one if the source block has only one successor. 157 BranchProbability getEdgeProbability(const BasicBlock *Src, 158 unsigned IndexInSuccessors) const; 159 160 /// Get the probability of going from Src to Dst. 161 /// 162 /// It returns the sum of all probabilities for edges from Src to Dst. 163 BranchProbability getEdgeProbability(const BasicBlock *Src, 164 const BasicBlock *Dst) const; 165 166 BranchProbability getEdgeProbability(const BasicBlock *Src, 167 const_succ_iterator Dst) const; 168 169 /// Test if an edge is hot relative to other out-edges of the Src. 170 /// 171 /// Check whether this edge out of the source block is 'hot'. We define hot 172 /// as having a relative probability > 80%. 173 bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const; 174 175 /// Print an edge's probability. 176 /// 177 /// Retrieves an edge's probability similarly to \see getEdgeProbability, but 178 /// then prints that probability to the provided stream. That stream is then 179 /// returned. 180 raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src, 181 const BasicBlock *Dst) const; 182 183 public: 184 /// Set the raw probabilities for all edges from the given block. 185 /// 186 /// This allows a pass to explicitly set edge probabilities for a block. It 187 /// can be used when updating the CFG to update the branch probability 188 /// information. 189 void setEdgeProbability(const BasicBlock *Src, 190 const SmallVectorImpl<BranchProbability> &Probs); 191 192 /// Copy outgoing edge probabilities from \p Src to \p Dst. 193 /// 194 /// This allows to keep probabilities unset for the destination if they were 195 /// unset for source. 196 void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst); 197 198 /// Swap outgoing edges probabilities for \p Src with branch terminator 199 void swapSuccEdgesProbabilities(const BasicBlock *Src); 200 201 static BranchProbability getBranchProbStackProtector(bool IsLikely) { 202 static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20); 203 return IsLikely ? LikelyProb : LikelyProb.getCompl(); 204 } 205 206 void calculate(const Function &F, const LoopInfo &LI, 207 const TargetLibraryInfo *TLI, DominatorTree *DT, 208 PostDominatorTree *PDT); 209 210 /// Forget analysis results for the given basic block. 211 void eraseBlock(const BasicBlock *BB); 212 213 // Data structure to track SCCs for handling irreducible loops. 214 class SccInfo { 215 // Enum of types to classify basic blocks in SCC. Basic block belonging to 216 // SCC is 'Inner' until it is either 'Header' or 'Exiting'. Note that a 217 // basic block can be 'Header' and 'Exiting' at the same time. 218 enum SccBlockType { 219 Inner = 0x0, 220 Header = 0x1, 221 Exiting = 0x2, 222 }; 223 // Map of basic blocks to SCC IDs they belong to. If basic block doesn't 224 // belong to any SCC it is not in the map. 225 using SccMap = DenseMap<const BasicBlock *, int>; 226 // Each basic block in SCC is attributed with one or several types from 227 // SccBlockType. Map value has uint32_t type (instead of SccBlockType) 228 // since basic block may be for example "Header" and "Exiting" at the same 229 // time and we need to be able to keep more than one value from 230 // SccBlockType. 231 using SccBlockTypeMap = DenseMap<const BasicBlock *, uint32_t>; 232 // Vector containing classification of basic blocks for all SCCs where i'th 233 // vector element corresponds to SCC with ID equal to i. 234 using SccBlockTypeMaps = std::vector<SccBlockTypeMap>; 235 236 SccMap SccNums; 237 SccBlockTypeMaps SccBlocks; 238 239 public: 240 explicit SccInfo(const Function &F); 241 242 /// If \p BB belongs to some SCC then ID of that SCC is returned, otherwise 243 /// -1 is returned. If \p BB belongs to more than one SCC at the same time 244 /// result is undefined. 245 int getSCCNum(const BasicBlock *BB) const; 246 /// Returns true if \p BB is a 'header' block in SCC with \p SccNum ID, 247 /// false otherwise. 248 bool isSCCHeader(const BasicBlock *BB, int SccNum) const { 249 return getSccBlockType(BB, SccNum) & Header; 250 } 251 /// Returns true if \p BB is an 'exiting' block in SCC with \p SccNum ID, 252 /// false otherwise. 253 bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const { 254 return getSccBlockType(BB, SccNum) & Exiting; 255 } 256 /// Fills in \p Enters vector with all such blocks that don't belong to 257 /// SCC with \p SccNum ID but there is an edge to a block belonging to the 258 /// SCC. 259 void getSccEnterBlocks(int SccNum, 260 SmallVectorImpl<BasicBlock *> &Enters) const; 261 /// Fills in \p Exits vector with all such blocks that don't belong to 262 /// SCC with \p SccNum ID but there is an edge from a block belonging to the 263 /// SCC. 264 void getSccExitBlocks(int SccNum, 265 SmallVectorImpl<BasicBlock *> &Exits) const; 266 267 private: 268 /// Returns \p BB's type according to classification given by SccBlockType 269 /// enum. Please note that \p BB must belong to SSC with \p SccNum ID. 270 uint32_t getSccBlockType(const BasicBlock *BB, int SccNum) const; 271 /// Calculates \p BB's type and stores it in internal data structures for 272 /// future use. Please note that \p BB must belong to SSC with \p SccNum ID. 273 void calculateSccBlockType(const BasicBlock *BB, int SccNum); 274 }; 275 276 private: 277 // We need to store CallbackVH's in order to correctly handle basic block 278 // removal. 279 class BasicBlockCallbackVH final : public CallbackVH { 280 BranchProbabilityInfo *BPI; 281 282 void deleted() override { 283 assert(BPI != nullptr); 284 BPI->eraseBlock(cast<BasicBlock>(getValPtr())); 285 } 286 287 public: 288 void setBPI(BranchProbabilityInfo *BPI) { this->BPI = BPI; } 289 290 BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI = nullptr) 291 : CallbackVH(const_cast<Value *>(V)), BPI(BPI) {} 292 }; 293 294 /// Pair of Loop and SCC ID number. Used to unify handling of normal and 295 /// SCC based loop representations. 296 using LoopData = std::pair<Loop *, int>; 297 /// Helper class to keep basic block along with its loop data information. 298 class LoopBlock { 299 public: 300 explicit LoopBlock(const BasicBlock *BB, const LoopInfo &LI, 301 const SccInfo &SccI); 302 303 const BasicBlock *getBlock() const { return BB; } 304 BasicBlock *getBlock() { return const_cast<BasicBlock *>(BB); } 305 LoopData getLoopData() const { return LD; } 306 Loop *getLoop() const { return LD.first; } 307 int getSccNum() const { return LD.second; } 308 309 bool belongsToLoop() const { return getLoop() || getSccNum() != -1; } 310 bool belongsToSameLoop(const LoopBlock &LB) const { 311 return (LB.getLoop() && getLoop() == LB.getLoop()) || 312 (LB.getSccNum() != -1 && getSccNum() == LB.getSccNum()); 313 } 314 315 private: 316 const BasicBlock *const BB = nullptr; 317 LoopData LD = {nullptr, -1}; 318 }; 319 320 // Pair of LoopBlocks representing an edge from first to second block. 321 using LoopEdge = std::pair<const LoopBlock &, const LoopBlock &>; 322 323 DenseSet<BasicBlockCallbackVH, DenseMapInfo<Value*>> Handles; 324 325 // Since we allow duplicate edges from one basic block to another, we use 326 // a pair (PredBlock and an index in the successors) to specify an edge. 327 using Edge = std::pair<const BasicBlock *, unsigned>; 328 329 DenseMap<Edge, BranchProbability> Probs; 330 331 /// Track the last function we run over for printing. 332 const Function *LastF = nullptr; 333 334 const LoopInfo *LI = nullptr; 335 336 /// Keeps information about all SCCs in a function. 337 std::unique_ptr<const SccInfo> SccI; 338 339 /// Keeps mapping of a basic block to its estimated weight. 340 SmallDenseMap<const BasicBlock *, uint32_t> EstimatedBlockWeight; 341 342 /// Keeps mapping of a loop to estimated weight to enter the loop. 343 SmallDenseMap<LoopData, uint32_t> EstimatedLoopWeight; 344 345 /// Helper to construct LoopBlock for \p BB. 346 LoopBlock getLoopBlock(const BasicBlock *BB) const { 347 return LoopBlock(BB, *LI, *SccI); 348 } 349 350 /// Returns true if destination block belongs to some loop and source block is 351 /// either doesn't belong to any loop or belongs to a loop which is not inner 352 /// relative to the destination block. 353 bool isLoopEnteringEdge(const LoopEdge &Edge) const; 354 /// Returns true if source block belongs to some loop and destination block is 355 /// either doesn't belong to any loop or belongs to a loop which is not inner 356 /// relative to the source block. 357 bool isLoopExitingEdge(const LoopEdge &Edge) const; 358 /// Returns true if \p Edge is either enters to or exits from some loop, false 359 /// in all other cases. 360 bool isLoopEnteringExitingEdge(const LoopEdge &Edge) const; 361 /// Returns true if source and destination blocks belongs to the same loop and 362 /// destination block is loop header. 363 bool isLoopBackEdge(const LoopEdge &Edge) const; 364 // Fills in \p Enters vector with all "enter" blocks to a loop \LB belongs to. 365 void getLoopEnterBlocks(const LoopBlock &LB, 366 SmallVectorImpl<BasicBlock *> &Enters) const; 367 // Fills in \p Exits vector with all "exit" blocks from a loop \LB belongs to. 368 void getLoopExitBlocks(const LoopBlock &LB, 369 SmallVectorImpl<BasicBlock *> &Exits) const; 370 371 /// Returns estimated weight for \p BB. std::nullopt if \p BB has no estimated 372 /// weight. 373 std::optional<uint32_t> getEstimatedBlockWeight(const BasicBlock *BB) const; 374 375 /// Returns estimated weight to enter \p L. In other words it is weight of 376 /// loop's header block not scaled by trip count. Returns std::nullopt if \p L 377 /// has no no estimated weight. 378 std::optional<uint32_t> getEstimatedLoopWeight(const LoopData &L) const; 379 380 /// Return estimated weight for \p Edge. Returns std::nullopt if estimated 381 /// weight is unknown. 382 std::optional<uint32_t> getEstimatedEdgeWeight(const LoopEdge &Edge) const; 383 384 /// Iterates over all edges leading from \p SrcBB to \p Successors and 385 /// returns maximum of all estimated weights. If at least one edge has unknown 386 /// estimated weight std::nullopt is returned. 387 template <class IterT> 388 std::optional<uint32_t> 389 getMaxEstimatedEdgeWeight(const LoopBlock &SrcBB, 390 iterator_range<IterT> Successors) const; 391 392 /// If \p LoopBB has no estimated weight then set it to \p BBWeight and 393 /// return true. Otherwise \p BB's weight remains unchanged and false is 394 /// returned. In addition all blocks/loops that might need their weight to be 395 /// re-estimated are put into BlockWorkList/LoopWorkList. 396 bool updateEstimatedBlockWeight(LoopBlock &LoopBB, uint32_t BBWeight, 397 SmallVectorImpl<BasicBlock *> &BlockWorkList, 398 SmallVectorImpl<LoopBlock> &LoopWorkList); 399 400 /// Starting from \p LoopBB (including \p LoopBB itself) propagate \p BBWeight 401 /// up the domination tree. 402 void propagateEstimatedBlockWeight(const LoopBlock &LoopBB, DominatorTree *DT, 403 PostDominatorTree *PDT, uint32_t BBWeight, 404 SmallVectorImpl<BasicBlock *> &WorkList, 405 SmallVectorImpl<LoopBlock> &LoopWorkList); 406 407 /// Returns block's weight encoded in the IR. 408 std::optional<uint32_t> getInitialEstimatedBlockWeight(const BasicBlock *BB); 409 410 // Computes estimated weights for all blocks in \p F. 411 void computeEestimateBlockWeight(const Function &F, DominatorTree *DT, 412 PostDominatorTree *PDT); 413 414 /// Based on computed weights by \p computeEstimatedBlockWeight set 415 /// probabilities on branches. 416 bool calcEstimatedHeuristics(const BasicBlock *BB); 417 bool calcMetadataWeights(const BasicBlock *BB); 418 bool calcPointerHeuristics(const BasicBlock *BB); 419 bool calcZeroHeuristics(const BasicBlock *BB, const TargetLibraryInfo *TLI); 420 bool calcFloatingPointHeuristics(const BasicBlock *BB); 421 }; 422 423 /// Analysis pass which computes \c BranchProbabilityInfo. 424 class BranchProbabilityAnalysis 425 : public AnalysisInfoMixin<BranchProbabilityAnalysis> { 426 friend AnalysisInfoMixin<BranchProbabilityAnalysis>; 427 428 static AnalysisKey Key; 429 430 public: 431 /// Provide the result type for this analysis pass. 432 using Result = BranchProbabilityInfo; 433 434 /// Run the analysis pass over a function and produce BPI. 435 BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM); 436 }; 437 438 /// Printer pass for the \c BranchProbabilityAnalysis results. 439 class BranchProbabilityPrinterPass 440 : public PassInfoMixin<BranchProbabilityPrinterPass> { 441 raw_ostream &OS; 442 443 public: 444 explicit BranchProbabilityPrinterPass(raw_ostream &OS) : OS(OS) {} 445 446 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 447 448 static bool isRequired() { return true; } 449 }; 450 451 /// Legacy analysis pass which computes \c BranchProbabilityInfo. 452 class BranchProbabilityInfoWrapperPass : public FunctionPass { 453 BranchProbabilityInfo BPI; 454 455 public: 456 static char ID; 457 458 BranchProbabilityInfoWrapperPass(); 459 460 BranchProbabilityInfo &getBPI() { return BPI; } 461 const BranchProbabilityInfo &getBPI() const { return BPI; } 462 463 void getAnalysisUsage(AnalysisUsage &AU) const override; 464 bool runOnFunction(Function &F) override; 465 void releaseMemory() override; 466 void print(raw_ostream &OS, const Module *M = nullptr) const override; 467 }; 468 469 } // end namespace llvm 470 471 #endif // LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H 472