1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implement a loop-aware load elimination pass. 10 // 11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a 12 // distance of one between stores and loads. These form the candidates for the 13 // transformation. The source value of each store then propagated to the user 14 // of the corresponding load. This makes the load dead. 15 // 16 // The pass can also version the loop and add memchecks in order to prove that 17 // may-aliasing stores can't change the value in memory before it's read by the 18 // load. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DepthFirstIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/BlockFrequencyInfo.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 34 #include "llvm/Analysis/LoopAccessAnalysis.h" 35 #include "llvm/Analysis/LoopAnalysisManager.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 40 #include "llvm/Analysis/TargetLibraryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/PassManager.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Utils/LoopSimplify.h" 53 #include "llvm/Transforms/Utils/LoopVersioning.h" 54 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 55 #include "llvm/Transforms/Utils/SizeOpts.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <forward_list> 59 #include <tuple> 60 #include <utility> 61 62 using namespace llvm; 63 64 #define LLE_OPTION "loop-load-elim" 65 #define DEBUG_TYPE LLE_OPTION 66 67 static cl::opt<unsigned> CheckPerElim( 68 "runtime-check-per-loop-load-elim", cl::Hidden, 69 cl::desc("Max number of memchecks allowed per eliminated load on average"), 70 cl::init(1)); 71 72 static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 73 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 74 cl::desc("The maximum number of SCEV checks allowed for Loop " 75 "Load Elimination")); 76 77 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 78 79 namespace { 80 81 /// Represent a store-to-forwarding candidate. 82 struct StoreToLoadForwardingCandidate { 83 LoadInst *Load; 84 StoreInst *Store; 85 86 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 87 : Load(Load), Store(Store) {} 88 89 /// Return true if the dependence from the store to the load has an 90 /// absolute distance of one. 91 /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop) 92 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 93 Loop *L) const { 94 Value *LoadPtr = Load->getPointerOperand(); 95 Value *StorePtr = Store->getPointerOperand(); 96 Type *LoadType = getLoadStoreType(Load); 97 auto &DL = Load->getDataLayout(); 98 99 assert(LoadPtr->getType()->getPointerAddressSpace() == 100 StorePtr->getType()->getPointerAddressSpace() && 101 DL.getTypeSizeInBits(LoadType) == 102 DL.getTypeSizeInBits(getLoadStoreType(Store)) && 103 "Should be a known dependence"); 104 105 int64_t StrideLoad = getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0); 106 int64_t StrideStore = getPtrStride(PSE, LoadType, StorePtr, L).value_or(0); 107 if (!StrideLoad || !StrideStore || StrideLoad != StrideStore) 108 return false; 109 110 // TODO: This check for stride values other than 1 and -1 can be eliminated. 111 // However, doing so may cause the LoopAccessAnalysis to overcompensate, 112 // generating numerous non-wrap runtime checks that may undermine the 113 // benefits of load elimination. To safely implement support for non-unit 114 // strides, we would need to ensure either that the processed case does not 115 // require these additional checks, or improve the LAA to handle them more 116 // efficiently, or potentially both. 117 if (std::abs(StrideLoad) != 1) 118 return false; 119 120 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 121 122 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 123 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 124 125 // We don't need to check non-wrapping here because forward/backward 126 // dependence wouldn't be valid if these weren't monotonic accesses. 127 auto *Dist = dyn_cast<SCEVConstant>( 128 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 129 if (!Dist) 130 return false; 131 const APInt &Val = Dist->getAPInt(); 132 return Val == TypeByteSize * StrideLoad; 133 } 134 135 Value *getLoadPtr() const { return Load->getPointerOperand(); } 136 137 #ifndef NDEBUG 138 friend raw_ostream &operator<<(raw_ostream &OS, 139 const StoreToLoadForwardingCandidate &Cand) { 140 OS << *Cand.Store << " -->\n"; 141 OS.indent(2) << *Cand.Load << "\n"; 142 return OS; 143 } 144 #endif 145 }; 146 147 } // end anonymous namespace 148 149 /// Check if the store dominates all latches, so as long as there is no 150 /// intervening store this value will be loaded in the next iteration. 151 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 152 DominatorTree *DT) { 153 SmallVector<BasicBlock *, 8> Latches; 154 L->getLoopLatches(Latches); 155 return llvm::all_of(Latches, [&](const BasicBlock *Latch) { 156 return DT->dominates(StoreBlock, Latch); 157 }); 158 } 159 160 /// Return true if the load is not executed on all paths in the loop. 161 static bool isLoadConditional(LoadInst *Load, Loop *L) { 162 return Load->getParent() != L->getHeader(); 163 } 164 165 namespace { 166 167 /// The per-loop class that does most of the work. 168 class LoadEliminationForLoop { 169 public: 170 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 171 DominatorTree *DT, BlockFrequencyInfo *BFI, 172 ProfileSummaryInfo* PSI) 173 : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {} 174 175 /// Look through the loop-carried and loop-independent dependences in 176 /// this loop and find store->load dependences. 177 /// 178 /// Note that no candidate is returned if LAA has failed to analyze the loop 179 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 180 std::forward_list<StoreToLoadForwardingCandidate> 181 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 182 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 183 184 const auto &DepChecker = LAI.getDepChecker(); 185 const auto *Deps = DepChecker.getDependences(); 186 if (!Deps) 187 return Candidates; 188 189 // Find store->load dependences (consequently true dep). Both lexically 190 // forward and backward dependences qualify. Disqualify loads that have 191 // other unknown dependences. 192 193 SmallPtrSet<Instruction *, 4> LoadsWithUnknownDependence; 194 195 for (const auto &Dep : *Deps) { 196 Instruction *Source = Dep.getSource(DepChecker); 197 Instruction *Destination = Dep.getDestination(DepChecker); 198 199 if (Dep.Type == MemoryDepChecker::Dependence::Unknown || 200 Dep.Type == MemoryDepChecker::Dependence::IndirectUnsafe) { 201 if (isa<LoadInst>(Source)) 202 LoadsWithUnknownDependence.insert(Source); 203 if (isa<LoadInst>(Destination)) 204 LoadsWithUnknownDependence.insert(Destination); 205 continue; 206 } 207 208 if (Dep.isBackward()) 209 // Note that the designations source and destination follow the program 210 // order, i.e. source is always first. (The direction is given by the 211 // DepType.) 212 std::swap(Source, Destination); 213 else 214 assert(Dep.isForward() && "Needs to be a forward dependence"); 215 216 auto *Store = dyn_cast<StoreInst>(Source); 217 if (!Store) 218 continue; 219 auto *Load = dyn_cast<LoadInst>(Destination); 220 if (!Load) 221 continue; 222 223 // Only propagate if the stored values are bit/pointer castable. 224 if (!CastInst::isBitOrNoopPointerCastable( 225 getLoadStoreType(Store), getLoadStoreType(Load), 226 Store->getDataLayout())) 227 continue; 228 229 Candidates.emplace_front(Load, Store); 230 } 231 232 if (!LoadsWithUnknownDependence.empty()) 233 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 234 return LoadsWithUnknownDependence.count(C.Load); 235 }); 236 237 return Candidates; 238 } 239 240 /// Return the index of the instruction according to program order. 241 unsigned getInstrIndex(Instruction *Inst) { 242 auto I = InstOrder.find(Inst); 243 assert(I != InstOrder.end() && "No index for instruction"); 244 return I->second; 245 } 246 247 /// If a load has multiple candidates associated (i.e. different 248 /// stores), it means that it could be forwarding from multiple stores 249 /// depending on control flow. Remove these candidates. 250 /// 251 /// Here, we rely on LAA to include the relevant loop-independent dependences. 252 /// LAA is known to omit these in the very simple case when the read and the 253 /// write within an alias set always takes place using the *same* pointer. 254 /// 255 /// However, we know that this is not the case here, i.e. we can rely on LAA 256 /// to provide us with loop-independent dependences for the cases we're 257 /// interested. Consider the case for example where a loop-independent 258 /// dependece S1->S2 invalidates the forwarding S3->S2. 259 /// 260 /// A[i] = ... (S1) 261 /// ... = A[i] (S2) 262 /// A[i+1] = ... (S3) 263 /// 264 /// LAA will perform dependence analysis here because there are two 265 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 266 void removeDependencesFromMultipleStores( 267 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 268 // If Store is nullptr it means that we have multiple stores forwarding to 269 // this store. 270 using LoadToSingleCandT = 271 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>; 272 LoadToSingleCandT LoadToSingleCand; 273 274 for (const auto &Cand : Candidates) { 275 bool NewElt; 276 LoadToSingleCandT::iterator Iter; 277 278 std::tie(Iter, NewElt) = 279 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 280 if (!NewElt) { 281 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 282 // Already multiple stores forward to this load. 283 if (OtherCand == nullptr) 284 continue; 285 286 // Handle the very basic case when the two stores are in the same block 287 // so deciding which one forwards is easy. The later one forwards as 288 // long as they both have a dependence distance of one to the load. 289 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 290 Cand.isDependenceDistanceOfOne(PSE, L) && 291 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 292 // They are in the same block, the later one will forward to the load. 293 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 294 OtherCand = &Cand; 295 } else 296 OtherCand = nullptr; 297 } 298 } 299 300 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 301 if (LoadToSingleCand[Cand.Load] != &Cand) { 302 LLVM_DEBUG( 303 dbgs() << "Removing from candidates: \n" 304 << Cand 305 << " The load may have multiple stores forwarding to " 306 << "it\n"); 307 return true; 308 } 309 return false; 310 }); 311 } 312 313 /// Given two pointers operations by their RuntimePointerChecking 314 /// indices, return true if they require an alias check. 315 /// 316 /// We need a check if one is a pointer for a candidate load and the other is 317 /// a pointer for a possibly intervening store. 318 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 319 const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath, 320 const SmallPtrSetImpl<Value *> &CandLoadPtrs) { 321 Value *Ptr1 = 322 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 323 Value *Ptr2 = 324 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 325 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 326 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 327 } 328 329 /// Return pointers that are possibly written to on the path from a 330 /// forwarding store to a load. 331 /// 332 /// These pointers need to be alias-checked against the forwarding candidates. 333 SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath( 334 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 335 // From FirstStore to LastLoad neither of the elimination candidate loads 336 // should overlap with any of the stores. 337 // 338 // E.g.: 339 // 340 // st1 C[i] 341 // ld1 B[i] <-------, 342 // ld0 A[i] <----, | * LastLoad 343 // ... | | 344 // st2 E[i] | | 345 // st3 B[i+1] -- | -' * FirstStore 346 // st0 A[i+1] ---' 347 // st4 D[i] 348 // 349 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 350 // ld0. 351 352 LoadInst *LastLoad = 353 llvm::max_element(Candidates, 354 [&](const StoreToLoadForwardingCandidate &A, 355 const StoreToLoadForwardingCandidate &B) { 356 return getInstrIndex(A.Load) < 357 getInstrIndex(B.Load); 358 }) 359 ->Load; 360 StoreInst *FirstStore = 361 llvm::min_element(Candidates, 362 [&](const StoreToLoadForwardingCandidate &A, 363 const StoreToLoadForwardingCandidate &B) { 364 return getInstrIndex(A.Store) < 365 getInstrIndex(B.Store); 366 }) 367 ->Store; 368 369 // We're looking for stores after the first forwarding store until the end 370 // of the loop, then from the beginning of the loop until the last 371 // forwarded-to load. Collect the pointer for the stores. 372 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath; 373 374 auto InsertStorePtr = [&](Instruction *I) { 375 if (auto *S = dyn_cast<StoreInst>(I)) 376 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 377 }; 378 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 379 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 380 MemInstrs.end(), InsertStorePtr); 381 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 382 InsertStorePtr); 383 384 return PtrsWrittenOnFwdingPath; 385 } 386 387 /// Determine the pointer alias checks to prove that there are no 388 /// intervening stores. 389 SmallVector<RuntimePointerCheck, 4> collectMemchecks( 390 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 391 392 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath = 393 findPointersWrittenOnForwardingPath(Candidates); 394 395 // Collect the pointers of the candidate loads. 396 SmallPtrSet<Value *, 4> CandLoadPtrs; 397 for (const auto &Candidate : Candidates) 398 CandLoadPtrs.insert(Candidate.getLoadPtr()); 399 400 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 401 SmallVector<RuntimePointerCheck, 4> Checks; 402 403 copy_if(AllChecks, std::back_inserter(Checks), 404 [&](const RuntimePointerCheck &Check) { 405 for (auto PtrIdx1 : Check.first->Members) 406 for (auto PtrIdx2 : Check.second->Members) 407 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath, 408 CandLoadPtrs)) 409 return true; 410 return false; 411 }); 412 413 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() 414 << "):\n"); 415 LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 416 417 return Checks; 418 } 419 420 /// Perform the transformation for a candidate. 421 void 422 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 423 SCEVExpander &SEE) { 424 // loop: 425 // %x = load %gep_i 426 // = ... %x 427 // store %y, %gep_i_plus_1 428 // 429 // => 430 // 431 // ph: 432 // %x.initial = load %gep_0 433 // loop: 434 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 435 // %x = load %gep_i <---- now dead 436 // = ... %x.storeforward 437 // store %y, %gep_i_plus_1 438 439 Value *Ptr = Cand.Load->getPointerOperand(); 440 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 441 auto *PH = L->getLoopPreheader(); 442 assert(PH && "Preheader should exist!"); 443 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 444 PH->getTerminator()); 445 Value *Initial = 446 new LoadInst(Cand.Load->getType(), InitialPtr, "load_initial", 447 /* isVolatile */ false, Cand.Load->getAlign(), 448 PH->getTerminator()->getIterator()); 449 // We don't give any debug location to Initial, because it is inserted 450 // into the loop's preheader. A debug location inside the loop will cause 451 // a misleading stepping when debugging. The test update-debugloc-store 452 // -forwarded.ll checks this. 453 454 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded"); 455 PHI->insertBefore(L->getHeader()->begin()); 456 PHI->addIncoming(Initial, PH); 457 458 Type *LoadType = Initial->getType(); 459 Type *StoreType = Cand.Store->getValueOperand()->getType(); 460 auto &DL = Cand.Load->getDataLayout(); 461 (void)DL; 462 463 assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) && 464 "The type sizes should match!"); 465 466 Value *StoreValue = Cand.Store->getValueOperand(); 467 if (LoadType != StoreType) { 468 StoreValue = CastInst::CreateBitOrPointerCast(StoreValue, LoadType, 469 "store_forward_cast", 470 Cand.Store->getIterator()); 471 // Because it casts the old `load` value and is used by the new `phi` 472 // which replaces the old `load`, we give the `load`'s debug location 473 // to it. 474 cast<Instruction>(StoreValue)->setDebugLoc(Cand.Load->getDebugLoc()); 475 } 476 477 PHI->addIncoming(StoreValue, L->getLoopLatch()); 478 479 Cand.Load->replaceAllUsesWith(PHI); 480 PHI->setDebugLoc(Cand.Load->getDebugLoc()); 481 } 482 483 /// Top-level driver for each loop: find store->load forwarding 484 /// candidates, add run-time checks and perform transformation. 485 bool processLoop() { 486 LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 487 << "\" checking " << *L << "\n"); 488 489 // Look for store-to-load forwarding cases across the 490 // backedge. E.g.: 491 // 492 // loop: 493 // %x = load %gep_i 494 // = ... %x 495 // store %y, %gep_i_plus_1 496 // 497 // => 498 // 499 // ph: 500 // %x.initial = load %gep_0 501 // loop: 502 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 503 // %x = load %gep_i <---- now dead 504 // = ... %x.storeforward 505 // store %y, %gep_i_plus_1 506 507 // First start with store->load dependences. 508 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 509 if (StoreToLoadDependences.empty()) 510 return false; 511 512 // Generate an index for each load and store according to the original 513 // program order. This will be used later. 514 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 515 516 // To keep things simple for now, remove those where the load is potentially 517 // fed by multiple stores. 518 removeDependencesFromMultipleStores(StoreToLoadDependences); 519 if (StoreToLoadDependences.empty()) 520 return false; 521 522 // Filter the candidates further. 523 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 524 for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) { 525 LLVM_DEBUG(dbgs() << "Candidate " << Cand); 526 527 // Make sure that the stored values is available everywhere in the loop in 528 // the next iteration. 529 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 530 continue; 531 532 // If the load is conditional we can't hoist its 0-iteration instance to 533 // the preheader because that would make it unconditional. Thus we would 534 // access a memory location that the original loop did not access. 535 if (isLoadConditional(Cand.Load, L)) 536 continue; 537 538 // Check whether the SCEV difference is the same as the induction step, 539 // thus we load the value in the next iteration. 540 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 541 continue; 542 543 assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) && 544 "Loading from something other than indvar?"); 545 assert( 546 isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) && 547 "Storing to something other than indvar?"); 548 549 Candidates.push_back(Cand); 550 LLVM_DEBUG( 551 dbgs() 552 << Candidates.size() 553 << ". Valid store-to-load forwarding across the loop backedge\n"); 554 } 555 if (Candidates.empty()) 556 return false; 557 558 // Check intervening may-alias stores. These need runtime checks for alias 559 // disambiguation. 560 SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates); 561 562 // Too many checks are likely to outweigh the benefits of forwarding. 563 if (Checks.size() > Candidates.size() * CheckPerElim) { 564 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n"); 565 return false; 566 } 567 568 if (LAI.getPSE().getPredicate().getComplexity() > 569 LoadElimSCEVCheckThreshold) { 570 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 571 return false; 572 } 573 574 if (!L->isLoopSimplifyForm()) { 575 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form"); 576 return false; 577 } 578 579 if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) { 580 if (LAI.hasConvergentOp()) { 581 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with " 582 "convergent calls\n"); 583 return false; 584 } 585 586 auto *HeaderBB = L->getHeader(); 587 if (llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI, 588 PGSOQueryType::IRPass)) { 589 LLVM_DEBUG( 590 dbgs() << "Versioning is needed but not allowed when optimizing " 591 "for size.\n"); 592 return false; 593 } 594 595 // Point of no-return, start the transformation. First, version the loop 596 // if necessary. 597 598 LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE()); 599 LV.versionLoop(); 600 601 // After versioning, some of the candidates' pointers could stop being 602 // SCEVAddRecs. We need to filter them out. 603 auto NoLongerGoodCandidate = [this]( 604 const StoreToLoadForwardingCandidate &Cand) { 605 return !isa<SCEVAddRecExpr>( 606 PSE.getSCEV(Cand.Load->getPointerOperand())) || 607 !isa<SCEVAddRecExpr>( 608 PSE.getSCEV(Cand.Store->getPointerOperand())); 609 }; 610 llvm::erase_if(Candidates, NoLongerGoodCandidate); 611 } 612 613 // Next, propagate the value stored by the store to the users of the load. 614 // Also for the first iteration, generate the initial value of the load. 615 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getDataLayout(), 616 "storeforward"); 617 for (const auto &Cand : Candidates) 618 propagateStoredValueToLoadUsers(Cand, SEE); 619 NumLoopLoadEliminted += Candidates.size(); 620 621 return true; 622 } 623 624 private: 625 Loop *L; 626 627 /// Maps the load/store instructions to their index according to 628 /// program order. 629 DenseMap<Instruction *, unsigned> InstOrder; 630 631 // Analyses used. 632 LoopInfo *LI; 633 const LoopAccessInfo &LAI; 634 DominatorTree *DT; 635 BlockFrequencyInfo *BFI; 636 ProfileSummaryInfo *PSI; 637 PredicatedScalarEvolution PSE; 638 }; 639 640 } // end anonymous namespace 641 642 static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, 643 DominatorTree &DT, 644 BlockFrequencyInfo *BFI, 645 ProfileSummaryInfo *PSI, 646 ScalarEvolution *SE, AssumptionCache *AC, 647 LoopAccessInfoManager &LAIs) { 648 // Build up a worklist of inner-loops to transform to avoid iterator 649 // invalidation. 650 // FIXME: This logic comes from other passes that actually change the loop 651 // nest structure. It isn't clear this is necessary (or useful) for a pass 652 // which merely optimizes the use of loads in a loop. 653 SmallVector<Loop *, 8> Worklist; 654 655 bool Changed = false; 656 657 for (Loop *TopLevelLoop : LI) 658 for (Loop *L : depth_first(TopLevelLoop)) { 659 Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false); 660 // We only handle inner-most loops. 661 if (L->isInnermost()) 662 Worklist.push_back(L); 663 } 664 665 // Now walk the identified inner loops. 666 for (Loop *L : Worklist) { 667 // Match historical behavior 668 if (!L->isRotatedForm() || !L->getExitingBlock()) 669 continue; 670 // The actual work is performed by LoadEliminationForLoop. 671 LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI); 672 Changed |= LEL.processLoop(); 673 if (Changed) 674 LAIs.clear(); 675 } 676 return Changed; 677 } 678 679 PreservedAnalyses LoopLoadEliminationPass::run(Function &F, 680 FunctionAnalysisManager &AM) { 681 auto &LI = AM.getResult<LoopAnalysis>(F); 682 // There are no loops in the function. Return before computing other expensive 683 // analyses. 684 if (LI.empty()) 685 return PreservedAnalyses::all(); 686 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 687 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 688 auto &AC = AM.getResult<AssumptionAnalysis>(F); 689 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 690 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 691 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 692 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 693 LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F); 694 695 bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs); 696 697 if (!Changed) 698 return PreservedAnalyses::all(); 699 700 PreservedAnalyses PA; 701 PA.preserve<DominatorTreeAnalysis>(); 702 PA.preserve<LoopAnalysis>(); 703 return PA; 704 } 705