1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "AArch64ISelLowering.h"
14 #include "AArch64CallingConvention.h"
15 #include "AArch64ExpandImm.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ObjCARCUtil.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/CodeGen/CallingConvLower.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/RuntimeLibcalls.h"
43 #include "llvm/CodeGen/SelectionDAG.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/TargetCallingConv.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Attributes.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/IntrinsicsAArch64.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/OperandTraits.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/MC/MCRegisterInfo.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CodeGen.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/KnownBits.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Target/TargetMachine.h"
80 #include "llvm/Target/TargetOptions.h"
81 #include <algorithm>
82 #include <bitset>
83 #include <cassert>
84 #include <cctype>
85 #include <cstdint>
86 #include <cstdlib>
87 #include <iterator>
88 #include <limits>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92
93 using namespace llvm;
94 using namespace llvm::PatternMatch;
95
96 #define DEBUG_TYPE "aarch64-lower"
97
98 STATISTIC(NumTailCalls, "Number of tail calls");
99 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
100 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
101
102 // FIXME: The necessary dtprel relocations don't seem to be supported
103 // well in the GNU bfd and gold linkers at the moment. Therefore, by
104 // default, for now, fall back to GeneralDynamic code generation.
105 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
106 "aarch64-elf-ldtls-generation", cl::Hidden,
107 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
108 cl::init(false));
109
110 static cl::opt<bool>
111 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
112 cl::desc("Enable AArch64 logical imm instruction "
113 "optimization"),
114 cl::init(true));
115
116 // Temporary option added for the purpose of testing functionality added
117 // to DAGCombiner.cpp in D92230. It is expected that this can be removed
118 // in future when both implementations will be based off MGATHER rather
119 // than the GLD1 nodes added for the SVE gather load intrinsics.
120 static cl::opt<bool>
121 EnableCombineMGatherIntrinsics("aarch64-enable-mgather-combine", cl::Hidden,
122 cl::desc("Combine extends of AArch64 masked "
123 "gather intrinsics"),
124 cl::init(true));
125
126 /// Value type used for condition codes.
127 static const MVT MVT_CC = MVT::i32;
128
getPackedSVEVectorVT(EVT VT)129 static inline EVT getPackedSVEVectorVT(EVT VT) {
130 switch (VT.getSimpleVT().SimpleTy) {
131 default:
132 llvm_unreachable("unexpected element type for vector");
133 case MVT::i8:
134 return MVT::nxv16i8;
135 case MVT::i16:
136 return MVT::nxv8i16;
137 case MVT::i32:
138 return MVT::nxv4i32;
139 case MVT::i64:
140 return MVT::nxv2i64;
141 case MVT::f16:
142 return MVT::nxv8f16;
143 case MVT::f32:
144 return MVT::nxv4f32;
145 case MVT::f64:
146 return MVT::nxv2f64;
147 case MVT::bf16:
148 return MVT::nxv8bf16;
149 }
150 }
151
152 // NOTE: Currently there's only a need to return integer vector types. If this
153 // changes then just add an extra "type" parameter.
getPackedSVEVectorVT(ElementCount EC)154 static inline EVT getPackedSVEVectorVT(ElementCount EC) {
155 switch (EC.getKnownMinValue()) {
156 default:
157 llvm_unreachable("unexpected element count for vector");
158 case 16:
159 return MVT::nxv16i8;
160 case 8:
161 return MVT::nxv8i16;
162 case 4:
163 return MVT::nxv4i32;
164 case 2:
165 return MVT::nxv2i64;
166 }
167 }
168
getPromotedVTForPredicate(EVT VT)169 static inline EVT getPromotedVTForPredicate(EVT VT) {
170 assert(VT.isScalableVector() && (VT.getVectorElementType() == MVT::i1) &&
171 "Expected scalable predicate vector type!");
172 switch (VT.getVectorMinNumElements()) {
173 default:
174 llvm_unreachable("unexpected element count for vector");
175 case 2:
176 return MVT::nxv2i64;
177 case 4:
178 return MVT::nxv4i32;
179 case 8:
180 return MVT::nxv8i16;
181 case 16:
182 return MVT::nxv16i8;
183 }
184 }
185
186 /// Returns true if VT's elements occupy the lowest bit positions of its
187 /// associated register class without any intervening space.
188 ///
189 /// For example, nxv2f16, nxv4f16 and nxv8f16 are legal types that belong to the
190 /// same register class, but only nxv8f16 can be treated as a packed vector.
isPackedVectorType(EVT VT,SelectionDAG & DAG)191 static inline bool isPackedVectorType(EVT VT, SelectionDAG &DAG) {
192 assert(VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
193 "Expected legal vector type!");
194 return VT.isFixedLengthVector() ||
195 VT.getSizeInBits().getKnownMinSize() == AArch64::SVEBitsPerBlock;
196 }
197
198 // Returns true for ####_MERGE_PASSTHRU opcodes, whose operands have a leading
199 // predicate and end with a passthru value matching the result type.
isMergePassthruOpcode(unsigned Opc)200 static bool isMergePassthruOpcode(unsigned Opc) {
201 switch (Opc) {
202 default:
203 return false;
204 case AArch64ISD::BITREVERSE_MERGE_PASSTHRU:
205 case AArch64ISD::BSWAP_MERGE_PASSTHRU:
206 case AArch64ISD::CTLZ_MERGE_PASSTHRU:
207 case AArch64ISD::CTPOP_MERGE_PASSTHRU:
208 case AArch64ISD::DUP_MERGE_PASSTHRU:
209 case AArch64ISD::ABS_MERGE_PASSTHRU:
210 case AArch64ISD::NEG_MERGE_PASSTHRU:
211 case AArch64ISD::FNEG_MERGE_PASSTHRU:
212 case AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU:
213 case AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU:
214 case AArch64ISD::FCEIL_MERGE_PASSTHRU:
215 case AArch64ISD::FFLOOR_MERGE_PASSTHRU:
216 case AArch64ISD::FNEARBYINT_MERGE_PASSTHRU:
217 case AArch64ISD::FRINT_MERGE_PASSTHRU:
218 case AArch64ISD::FROUND_MERGE_PASSTHRU:
219 case AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU:
220 case AArch64ISD::FTRUNC_MERGE_PASSTHRU:
221 case AArch64ISD::FP_ROUND_MERGE_PASSTHRU:
222 case AArch64ISD::FP_EXTEND_MERGE_PASSTHRU:
223 case AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU:
224 case AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU:
225 case AArch64ISD::FCVTZU_MERGE_PASSTHRU:
226 case AArch64ISD::FCVTZS_MERGE_PASSTHRU:
227 case AArch64ISD::FSQRT_MERGE_PASSTHRU:
228 case AArch64ISD::FRECPX_MERGE_PASSTHRU:
229 case AArch64ISD::FABS_MERGE_PASSTHRU:
230 return true;
231 }
232 }
233
AArch64TargetLowering(const TargetMachine & TM,const AArch64Subtarget & STI)234 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
235 const AArch64Subtarget &STI)
236 : TargetLowering(TM), Subtarget(&STI) {
237 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
238 // we have to make something up. Arbitrarily, choose ZeroOrOne.
239 setBooleanContents(ZeroOrOneBooleanContent);
240 // When comparing vectors the result sets the different elements in the
241 // vector to all-one or all-zero.
242 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
243
244 // Set up the register classes.
245 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
246 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
247
248 if (Subtarget->hasFPARMv8()) {
249 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
250 addRegisterClass(MVT::bf16, &AArch64::FPR16RegClass);
251 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
252 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
253 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
254 }
255
256 if (Subtarget->hasNEON()) {
257 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
258 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
259 // Someone set us up the NEON.
260 addDRTypeForNEON(MVT::v2f32);
261 addDRTypeForNEON(MVT::v8i8);
262 addDRTypeForNEON(MVT::v4i16);
263 addDRTypeForNEON(MVT::v2i32);
264 addDRTypeForNEON(MVT::v1i64);
265 addDRTypeForNEON(MVT::v1f64);
266 addDRTypeForNEON(MVT::v4f16);
267 if (Subtarget->hasBF16())
268 addDRTypeForNEON(MVT::v4bf16);
269
270 addQRTypeForNEON(MVT::v4f32);
271 addQRTypeForNEON(MVT::v2f64);
272 addQRTypeForNEON(MVT::v16i8);
273 addQRTypeForNEON(MVT::v8i16);
274 addQRTypeForNEON(MVT::v4i32);
275 addQRTypeForNEON(MVT::v2i64);
276 addQRTypeForNEON(MVT::v8f16);
277 if (Subtarget->hasBF16())
278 addQRTypeForNEON(MVT::v8bf16);
279 }
280
281 if (Subtarget->hasSVE()) {
282 // Add legal sve predicate types
283 addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass);
284 addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass);
285 addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass);
286 addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass);
287
288 // Add legal sve data types
289 addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass);
290 addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass);
291 addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass);
292 addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass);
293
294 addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass);
295 addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass);
296 addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass);
297 addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass);
298 addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass);
299 addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass);
300
301 if (Subtarget->hasBF16()) {
302 addRegisterClass(MVT::nxv2bf16, &AArch64::ZPRRegClass);
303 addRegisterClass(MVT::nxv4bf16, &AArch64::ZPRRegClass);
304 addRegisterClass(MVT::nxv8bf16, &AArch64::ZPRRegClass);
305 }
306
307 if (Subtarget->useSVEForFixedLengthVectors()) {
308 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
309 if (useSVEForFixedLengthVectorVT(VT))
310 addRegisterClass(VT, &AArch64::ZPRRegClass);
311
312 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
313 if (useSVEForFixedLengthVectorVT(VT))
314 addRegisterClass(VT, &AArch64::ZPRRegClass);
315 }
316
317 for (auto VT : { MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64 }) {
318 setOperationAction(ISD::SADDSAT, VT, Legal);
319 setOperationAction(ISD::UADDSAT, VT, Legal);
320 setOperationAction(ISD::SSUBSAT, VT, Legal);
321 setOperationAction(ISD::USUBSAT, VT, Legal);
322 setOperationAction(ISD::UREM, VT, Expand);
323 setOperationAction(ISD::SREM, VT, Expand);
324 setOperationAction(ISD::SDIVREM, VT, Expand);
325 setOperationAction(ISD::UDIVREM, VT, Expand);
326 }
327
328 for (auto VT :
329 { MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8,
330 MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 })
331 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal);
332
333 for (auto VT :
334 { MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32, MVT::nxv4f32,
335 MVT::nxv2f64 }) {
336 setCondCodeAction(ISD::SETO, VT, Expand);
337 setCondCodeAction(ISD::SETOLT, VT, Expand);
338 setCondCodeAction(ISD::SETLT, VT, Expand);
339 setCondCodeAction(ISD::SETOLE, VT, Expand);
340 setCondCodeAction(ISD::SETLE, VT, Expand);
341 setCondCodeAction(ISD::SETULT, VT, Expand);
342 setCondCodeAction(ISD::SETULE, VT, Expand);
343 setCondCodeAction(ISD::SETUGE, VT, Expand);
344 setCondCodeAction(ISD::SETUGT, VT, Expand);
345 setCondCodeAction(ISD::SETUEQ, VT, Expand);
346 setCondCodeAction(ISD::SETUNE, VT, Expand);
347
348 setOperationAction(ISD::FREM, VT, Expand);
349 setOperationAction(ISD::FPOW, VT, Expand);
350 setOperationAction(ISD::FPOWI, VT, Expand);
351 setOperationAction(ISD::FCOS, VT, Expand);
352 setOperationAction(ISD::FSIN, VT, Expand);
353 setOperationAction(ISD::FSINCOS, VT, Expand);
354 setOperationAction(ISD::FEXP, VT, Expand);
355 setOperationAction(ISD::FEXP2, VT, Expand);
356 setOperationAction(ISD::FLOG, VT, Expand);
357 setOperationAction(ISD::FLOG2, VT, Expand);
358 setOperationAction(ISD::FLOG10, VT, Expand);
359 }
360 }
361
362 // Compute derived properties from the register classes
363 computeRegisterProperties(Subtarget->getRegisterInfo());
364
365 // Provide all sorts of operation actions
366 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
367 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
368 setOperationAction(ISD::SETCC, MVT::i32, Custom);
369 setOperationAction(ISD::SETCC, MVT::i64, Custom);
370 setOperationAction(ISD::SETCC, MVT::f16, Custom);
371 setOperationAction(ISD::SETCC, MVT::f32, Custom);
372 setOperationAction(ISD::SETCC, MVT::f64, Custom);
373 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
374 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
375 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
376 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
377 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
378 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
379 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
380 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
381 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
382 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
383 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
384 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
385 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
386 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
387 setOperationAction(ISD::SELECT, MVT::i32, Custom);
388 setOperationAction(ISD::SELECT, MVT::i64, Custom);
389 setOperationAction(ISD::SELECT, MVT::f16, Custom);
390 setOperationAction(ISD::SELECT, MVT::f32, Custom);
391 setOperationAction(ISD::SELECT, MVT::f64, Custom);
392 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
393 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
394 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
395 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
396 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
397 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
398 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
399
400 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
401 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
402 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
403
404 setOperationAction(ISD::FREM, MVT::f32, Expand);
405 setOperationAction(ISD::FREM, MVT::f64, Expand);
406 setOperationAction(ISD::FREM, MVT::f80, Expand);
407
408 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
409
410 // Custom lowering hooks are needed for XOR
411 // to fold it into CSINC/CSINV.
412 setOperationAction(ISD::XOR, MVT::i32, Custom);
413 setOperationAction(ISD::XOR, MVT::i64, Custom);
414
415 // Virtually no operation on f128 is legal, but LLVM can't expand them when
416 // there's a valid register class, so we need custom operations in most cases.
417 setOperationAction(ISD::FABS, MVT::f128, Expand);
418 setOperationAction(ISD::FADD, MVT::f128, LibCall);
419 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
420 setOperationAction(ISD::FCOS, MVT::f128, Expand);
421 setOperationAction(ISD::FDIV, MVT::f128, LibCall);
422 setOperationAction(ISD::FMA, MVT::f128, Expand);
423 setOperationAction(ISD::FMUL, MVT::f128, LibCall);
424 setOperationAction(ISD::FNEG, MVT::f128, Expand);
425 setOperationAction(ISD::FPOW, MVT::f128, Expand);
426 setOperationAction(ISD::FREM, MVT::f128, Expand);
427 setOperationAction(ISD::FRINT, MVT::f128, Expand);
428 setOperationAction(ISD::FSIN, MVT::f128, Expand);
429 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
430 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
431 setOperationAction(ISD::FSUB, MVT::f128, LibCall);
432 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
433 setOperationAction(ISD::SETCC, MVT::f128, Custom);
434 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
435 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
436 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
437 setOperationAction(ISD::SELECT, MVT::f128, Custom);
438 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
439 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
440
441 // Lowering for many of the conversions is actually specified by the non-f128
442 // type. The LowerXXX function will be trivial when f128 isn't involved.
443 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
444 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
445 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
446 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
447 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
448 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom);
449 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
450 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
451 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
452 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
453 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
454 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom);
455 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
456 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
457 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
458 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
459 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
460 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom);
461 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
462 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
463 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
464 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
465 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
466 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom);
467 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
468 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
469 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
470 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
471 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
472 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom);
473
474 setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom);
475 setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom);
476 setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom);
477 setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom);
478
479 // Variable arguments.
480 setOperationAction(ISD::VASTART, MVT::Other, Custom);
481 setOperationAction(ISD::VAARG, MVT::Other, Custom);
482 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
483 setOperationAction(ISD::VAEND, MVT::Other, Expand);
484
485 // Variable-sized objects.
486 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
487 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
488
489 if (Subtarget->isTargetWindows())
490 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
491 else
492 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
493
494 // Constant pool entries
495 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
496
497 // BlockAddress
498 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
499
500 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
501 setOperationAction(ISD::ADDC, MVT::i32, Custom);
502 setOperationAction(ISD::ADDE, MVT::i32, Custom);
503 setOperationAction(ISD::SUBC, MVT::i32, Custom);
504 setOperationAction(ISD::SUBE, MVT::i32, Custom);
505 setOperationAction(ISD::ADDC, MVT::i64, Custom);
506 setOperationAction(ISD::ADDE, MVT::i64, Custom);
507 setOperationAction(ISD::SUBC, MVT::i64, Custom);
508 setOperationAction(ISD::SUBE, MVT::i64, Custom);
509
510 // AArch64 lacks both left-rotate and popcount instructions.
511 setOperationAction(ISD::ROTL, MVT::i32, Expand);
512 setOperationAction(ISD::ROTL, MVT::i64, Expand);
513 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
514 setOperationAction(ISD::ROTL, VT, Expand);
515 setOperationAction(ISD::ROTR, VT, Expand);
516 }
517
518 // AArch64 doesn't have i32 MULH{S|U}.
519 setOperationAction(ISD::MULHU, MVT::i32, Expand);
520 setOperationAction(ISD::MULHS, MVT::i32, Expand);
521
522 // AArch64 doesn't have {U|S}MUL_LOHI.
523 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
524 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
525
526 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
527 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
528 setOperationAction(ISD::CTPOP, MVT::i128, Custom);
529
530 setOperationAction(ISD::ABS, MVT::i32, Custom);
531 setOperationAction(ISD::ABS, MVT::i64, Custom);
532
533 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
534 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
535 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
536 setOperationAction(ISD::SDIVREM, VT, Expand);
537 setOperationAction(ISD::UDIVREM, VT, Expand);
538 }
539 setOperationAction(ISD::SREM, MVT::i32, Expand);
540 setOperationAction(ISD::SREM, MVT::i64, Expand);
541 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
542 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
543 setOperationAction(ISD::UREM, MVT::i32, Expand);
544 setOperationAction(ISD::UREM, MVT::i64, Expand);
545
546 // Custom lower Add/Sub/Mul with overflow.
547 setOperationAction(ISD::SADDO, MVT::i32, Custom);
548 setOperationAction(ISD::SADDO, MVT::i64, Custom);
549 setOperationAction(ISD::UADDO, MVT::i32, Custom);
550 setOperationAction(ISD::UADDO, MVT::i64, Custom);
551 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
552 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
553 setOperationAction(ISD::USUBO, MVT::i32, Custom);
554 setOperationAction(ISD::USUBO, MVT::i64, Custom);
555 setOperationAction(ISD::SMULO, MVT::i32, Custom);
556 setOperationAction(ISD::SMULO, MVT::i64, Custom);
557 setOperationAction(ISD::UMULO, MVT::i32, Custom);
558 setOperationAction(ISD::UMULO, MVT::i64, Custom);
559
560 setOperationAction(ISD::FSIN, MVT::f32, Expand);
561 setOperationAction(ISD::FSIN, MVT::f64, Expand);
562 setOperationAction(ISD::FCOS, MVT::f32, Expand);
563 setOperationAction(ISD::FCOS, MVT::f64, Expand);
564 setOperationAction(ISD::FPOW, MVT::f32, Expand);
565 setOperationAction(ISD::FPOW, MVT::f64, Expand);
566 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
567 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
568 if (Subtarget->hasFullFP16())
569 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
570 else
571 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
572
573 setOperationAction(ISD::FREM, MVT::f16, Promote);
574 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
575 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
576 setOperationAction(ISD::FPOW, MVT::f16, Promote);
577 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
578 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
579 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
580 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
581 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
582 setOperationAction(ISD::FCOS, MVT::f16, Promote);
583 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
584 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
585 setOperationAction(ISD::FSIN, MVT::f16, Promote);
586 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
587 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
588 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
589 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
590 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
591 setOperationAction(ISD::FEXP, MVT::f16, Promote);
592 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
593 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
594 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
595 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
596 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
597 setOperationAction(ISD::FLOG, MVT::f16, Promote);
598 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
599 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
600 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
601 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
602 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
603 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
604 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
605 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
606
607 if (!Subtarget->hasFullFP16()) {
608 setOperationAction(ISD::SELECT, MVT::f16, Promote);
609 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
610 setOperationAction(ISD::SETCC, MVT::f16, Promote);
611 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
612 setOperationAction(ISD::FADD, MVT::f16, Promote);
613 setOperationAction(ISD::FSUB, MVT::f16, Promote);
614 setOperationAction(ISD::FMUL, MVT::f16, Promote);
615 setOperationAction(ISD::FDIV, MVT::f16, Promote);
616 setOperationAction(ISD::FMA, MVT::f16, Promote);
617 setOperationAction(ISD::FNEG, MVT::f16, Promote);
618 setOperationAction(ISD::FABS, MVT::f16, Promote);
619 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
620 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
621 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
622 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
623 setOperationAction(ISD::FRINT, MVT::f16, Promote);
624 setOperationAction(ISD::FROUND, MVT::f16, Promote);
625 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
626 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
627 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
628 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
629 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
630 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
631
632 // promote v4f16 to v4f32 when that is known to be safe.
633 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
634 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
635 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
636 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
637 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
638 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
639 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
640 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
641
642 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
643 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
644 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
645 setOperationAction(ISD::FROUNDEVEN, MVT::v4f16, Expand);
646 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
647 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
648 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
649 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
650 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
651 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
652 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
653 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
654 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
655 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
656 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
657 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
658
659 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
660 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
661 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
662 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
663 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
664 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
665 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
666 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
667 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
668 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
669 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
670 setOperationAction(ISD::FROUNDEVEN, MVT::v8f16, Expand);
671 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
672 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
673 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
674 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
675 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
676 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
677 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
678 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
679 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
680 }
681
682 // AArch64 has implementations of a lot of rounding-like FP operations.
683 for (MVT Ty : {MVT::f32, MVT::f64}) {
684 setOperationAction(ISD::FFLOOR, Ty, Legal);
685 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
686 setOperationAction(ISD::FCEIL, Ty, Legal);
687 setOperationAction(ISD::FRINT, Ty, Legal);
688 setOperationAction(ISD::FTRUNC, Ty, Legal);
689 setOperationAction(ISD::FROUND, Ty, Legal);
690 setOperationAction(ISD::FROUNDEVEN, Ty, Legal);
691 setOperationAction(ISD::FMINNUM, Ty, Legal);
692 setOperationAction(ISD::FMAXNUM, Ty, Legal);
693 setOperationAction(ISD::FMINIMUM, Ty, Legal);
694 setOperationAction(ISD::FMAXIMUM, Ty, Legal);
695 setOperationAction(ISD::LROUND, Ty, Legal);
696 setOperationAction(ISD::LLROUND, Ty, Legal);
697 setOperationAction(ISD::LRINT, Ty, Legal);
698 setOperationAction(ISD::LLRINT, Ty, Legal);
699 }
700
701 if (Subtarget->hasFullFP16()) {
702 setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
703 setOperationAction(ISD::FFLOOR, MVT::f16, Legal);
704 setOperationAction(ISD::FCEIL, MVT::f16, Legal);
705 setOperationAction(ISD::FRINT, MVT::f16, Legal);
706 setOperationAction(ISD::FTRUNC, MVT::f16, Legal);
707 setOperationAction(ISD::FROUND, MVT::f16, Legal);
708 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Legal);
709 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
710 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
711 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
712 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
713 }
714
715 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
716
717 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
718 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
719
720 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
721 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
722 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
723 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
724 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
725
726 // Generate outline atomics library calls only if LSE was not specified for
727 // subtarget
728 if (Subtarget->outlineAtomics() && !Subtarget->hasLSE()) {
729 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, LibCall);
730 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, LibCall);
731 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall);
732 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, LibCall);
733 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, LibCall);
734 setOperationAction(ISD::ATOMIC_SWAP, MVT::i8, LibCall);
735 setOperationAction(ISD::ATOMIC_SWAP, MVT::i16, LibCall);
736 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall);
737 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, LibCall);
738 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i8, LibCall);
739 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i16, LibCall);
740 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall);
741 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, LibCall);
742 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i8, LibCall);
743 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i16, LibCall);
744 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall);
745 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, LibCall);
746 setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i8, LibCall);
747 setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i16, LibCall);
748 setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i32, LibCall);
749 setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i64, LibCall);
750 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i8, LibCall);
751 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i16, LibCall);
752 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall);
753 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, LibCall);
754 #define LCALLNAMES(A, B, N) \
755 setLibcallName(A##N##_RELAX, #B #N "_relax"); \
756 setLibcallName(A##N##_ACQ, #B #N "_acq"); \
757 setLibcallName(A##N##_REL, #B #N "_rel"); \
758 setLibcallName(A##N##_ACQ_REL, #B #N "_acq_rel");
759 #define LCALLNAME4(A, B) \
760 LCALLNAMES(A, B, 1) \
761 LCALLNAMES(A, B, 2) LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8)
762 #define LCALLNAME5(A, B) \
763 LCALLNAMES(A, B, 1) \
764 LCALLNAMES(A, B, 2) \
765 LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) LCALLNAMES(A, B, 16)
766 LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, __aarch64_cas)
767 LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, __aarch64_swp)
768 LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, __aarch64_ldadd)
769 LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, __aarch64_ldset)
770 LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, __aarch64_ldclr)
771 LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, __aarch64_ldeor)
772 #undef LCALLNAMES
773 #undef LCALLNAME4
774 #undef LCALLNAME5
775 }
776
777 // 128-bit loads and stores can be done without expanding
778 setOperationAction(ISD::LOAD, MVT::i128, Custom);
779 setOperationAction(ISD::STORE, MVT::i128, Custom);
780
781 // 256 bit non-temporal stores can be lowered to STNP. Do this as part of the
782 // custom lowering, as there are no un-paired non-temporal stores and
783 // legalization will break up 256 bit inputs.
784 setOperationAction(ISD::STORE, MVT::v32i8, Custom);
785 setOperationAction(ISD::STORE, MVT::v16i16, Custom);
786 setOperationAction(ISD::STORE, MVT::v16f16, Custom);
787 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
788 setOperationAction(ISD::STORE, MVT::v8f32, Custom);
789 setOperationAction(ISD::STORE, MVT::v4f64, Custom);
790 setOperationAction(ISD::STORE, MVT::v4i64, Custom);
791
792 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
793 // This requires the Performance Monitors extension.
794 if (Subtarget->hasPerfMon())
795 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
796
797 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
798 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
799 // Issue __sincos_stret if available.
800 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
801 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
802 } else {
803 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
804 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
805 }
806
807 if (Subtarget->getTargetTriple().isOSMSVCRT()) {
808 // MSVCRT doesn't have powi; fall back to pow
809 setLibcallName(RTLIB::POWI_F32, nullptr);
810 setLibcallName(RTLIB::POWI_F64, nullptr);
811 }
812
813 // Make floating-point constants legal for the large code model, so they don't
814 // become loads from the constant pool.
815 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
816 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
817 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
818 }
819
820 // AArch64 does not have floating-point extending loads, i1 sign-extending
821 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
822 for (MVT VT : MVT::fp_valuetypes()) {
823 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
824 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
825 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
826 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
827 }
828 for (MVT VT : MVT::integer_valuetypes())
829 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
830
831 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
832 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
833 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
834 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
835 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
836 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
837 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
838
839 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
840 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
841 setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
842
843 // Indexed loads and stores are supported.
844 for (unsigned im = (unsigned)ISD::PRE_INC;
845 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
846 setIndexedLoadAction(im, MVT::i8, Legal);
847 setIndexedLoadAction(im, MVT::i16, Legal);
848 setIndexedLoadAction(im, MVT::i32, Legal);
849 setIndexedLoadAction(im, MVT::i64, Legal);
850 setIndexedLoadAction(im, MVT::f64, Legal);
851 setIndexedLoadAction(im, MVT::f32, Legal);
852 setIndexedLoadAction(im, MVT::f16, Legal);
853 setIndexedLoadAction(im, MVT::bf16, Legal);
854 setIndexedStoreAction(im, MVT::i8, Legal);
855 setIndexedStoreAction(im, MVT::i16, Legal);
856 setIndexedStoreAction(im, MVT::i32, Legal);
857 setIndexedStoreAction(im, MVT::i64, Legal);
858 setIndexedStoreAction(im, MVT::f64, Legal);
859 setIndexedStoreAction(im, MVT::f32, Legal);
860 setIndexedStoreAction(im, MVT::f16, Legal);
861 setIndexedStoreAction(im, MVT::bf16, Legal);
862 }
863
864 // Trap.
865 setOperationAction(ISD::TRAP, MVT::Other, Legal);
866 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
867 setOperationAction(ISD::UBSANTRAP, MVT::Other, Legal);
868
869 // We combine OR nodes for bitfield operations.
870 setTargetDAGCombine(ISD::OR);
871 // Try to create BICs for vector ANDs.
872 setTargetDAGCombine(ISD::AND);
873
874 // Vector add and sub nodes may conceal a high-half opportunity.
875 // Also, try to fold ADD into CSINC/CSINV..
876 setTargetDAGCombine(ISD::ADD);
877 setTargetDAGCombine(ISD::ABS);
878 setTargetDAGCombine(ISD::SUB);
879 setTargetDAGCombine(ISD::SRL);
880 setTargetDAGCombine(ISD::XOR);
881 setTargetDAGCombine(ISD::SINT_TO_FP);
882 setTargetDAGCombine(ISD::UINT_TO_FP);
883
884 // TODO: Do the same for FP_TO_*INT_SAT.
885 setTargetDAGCombine(ISD::FP_TO_SINT);
886 setTargetDAGCombine(ISD::FP_TO_UINT);
887 setTargetDAGCombine(ISD::FDIV);
888
889 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
890
891 setTargetDAGCombine(ISD::ANY_EXTEND);
892 setTargetDAGCombine(ISD::ZERO_EXTEND);
893 setTargetDAGCombine(ISD::SIGN_EXTEND);
894 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
895 setTargetDAGCombine(ISD::TRUNCATE);
896 setTargetDAGCombine(ISD::CONCAT_VECTORS);
897 setTargetDAGCombine(ISD::STORE);
898 if (Subtarget->supportsAddressTopByteIgnored())
899 setTargetDAGCombine(ISD::LOAD);
900
901 setTargetDAGCombine(ISD::MUL);
902
903 setTargetDAGCombine(ISD::SELECT);
904 setTargetDAGCombine(ISD::VSELECT);
905
906 setTargetDAGCombine(ISD::INTRINSIC_VOID);
907 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
908 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
909 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
910 setTargetDAGCombine(ISD::VECREDUCE_ADD);
911 setTargetDAGCombine(ISD::STEP_VECTOR);
912
913 setTargetDAGCombine(ISD::GlobalAddress);
914
915 // In case of strict alignment, avoid an excessive number of byte wide stores.
916 MaxStoresPerMemsetOptSize = 8;
917 MaxStoresPerMemset = Subtarget->requiresStrictAlign()
918 ? MaxStoresPerMemsetOptSize : 32;
919
920 MaxGluedStoresPerMemcpy = 4;
921 MaxStoresPerMemcpyOptSize = 4;
922 MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
923 ? MaxStoresPerMemcpyOptSize : 16;
924
925 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
926
927 MaxLoadsPerMemcmpOptSize = 4;
928 MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign()
929 ? MaxLoadsPerMemcmpOptSize : 8;
930
931 setStackPointerRegisterToSaveRestore(AArch64::SP);
932
933 setSchedulingPreference(Sched::Hybrid);
934
935 EnableExtLdPromotion = true;
936
937 // Set required alignment.
938 setMinFunctionAlignment(Align(4));
939 // Set preferred alignments.
940 setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment()));
941 setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment()));
942
943 // Only change the limit for entries in a jump table if specified by
944 // the sub target, but not at the command line.
945 unsigned MaxJT = STI.getMaximumJumpTableSize();
946 if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
947 setMaximumJumpTableSize(MaxJT);
948
949 setHasExtractBitsInsn(true);
950
951 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
952
953 if (Subtarget->hasNEON()) {
954 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
955 // silliness like this:
956 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
957 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
958 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
959 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
960 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
961 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
962 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
963 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
964 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
965 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
966 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
967 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
968 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
969 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
970 setOperationAction(ISD::FROUNDEVEN, MVT::v1f64, Expand);
971 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
972 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
973 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
974 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
975 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
976 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
977 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
978 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
979 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
980 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
981 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
982
983 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
984 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
985 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
986 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
987 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
988
989 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
990
991 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
992 // elements smaller than i32, so promote the input to i32 first.
993 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
994 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
995 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
996 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
997 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v16i8, MVT::v16i32);
998 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v16i8, MVT::v16i32);
999
1000 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
1001 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
1002 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
1003 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
1004 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
1005 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
1006 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
1007 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
1008 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
1009
1010 if (Subtarget->hasFullFP16()) {
1011 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1012 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1013 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
1014 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
1015 } else {
1016 // when AArch64 doesn't have fullfp16 support, promote the input
1017 // to i32 first.
1018 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
1019 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
1020 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
1021 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
1022 }
1023
1024 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
1025 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
1026 setOperationAction(ISD::BITREVERSE, MVT::v8i8, Legal);
1027 setOperationAction(ISD::BITREVERSE, MVT::v16i8, Legal);
1028
1029 // AArch64 doesn't have MUL.2d:
1030 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
1031 // Custom handling for some quad-vector types to detect MULL.
1032 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
1033 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
1034 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
1035
1036 // Saturates
1037 for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
1038 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
1039 setOperationAction(ISD::SADDSAT, VT, Legal);
1040 setOperationAction(ISD::UADDSAT, VT, Legal);
1041 setOperationAction(ISD::SSUBSAT, VT, Legal);
1042 setOperationAction(ISD::USUBSAT, VT, Legal);
1043 }
1044
1045 // Vector reductions
1046 for (MVT VT : { MVT::v4f16, MVT::v2f32,
1047 MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
1048 if (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()) {
1049 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1050 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1051
1052 setOperationAction(ISD::VECREDUCE_FADD, VT, Legal);
1053 }
1054 }
1055 for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
1056 MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
1057 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
1058 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
1059 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
1060 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
1061 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
1062 }
1063 setOperationAction(ISD::VECREDUCE_ADD, MVT::v2i64, Custom);
1064
1065 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
1066 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
1067 // Likewise, narrowing and extending vector loads/stores aren't handled
1068 // directly.
1069 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1070 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
1071
1072 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
1073 setOperationAction(ISD::MULHS, VT, Legal);
1074 setOperationAction(ISD::MULHU, VT, Legal);
1075 } else {
1076 setOperationAction(ISD::MULHS, VT, Expand);
1077 setOperationAction(ISD::MULHU, VT, Expand);
1078 }
1079 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
1080 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
1081
1082 setOperationAction(ISD::BSWAP, VT, Expand);
1083 setOperationAction(ISD::CTTZ, VT, Expand);
1084
1085 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
1086 setTruncStoreAction(VT, InnerVT, Expand);
1087 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
1088 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
1089 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
1090 }
1091 }
1092
1093 // AArch64 has implementations of a lot of rounding-like FP operations.
1094 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
1095 setOperationAction(ISD::FFLOOR, Ty, Legal);
1096 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
1097 setOperationAction(ISD::FCEIL, Ty, Legal);
1098 setOperationAction(ISD::FRINT, Ty, Legal);
1099 setOperationAction(ISD::FTRUNC, Ty, Legal);
1100 setOperationAction(ISD::FROUND, Ty, Legal);
1101 setOperationAction(ISD::FROUNDEVEN, Ty, Legal);
1102 }
1103
1104 if (Subtarget->hasFullFP16()) {
1105 for (MVT Ty : {MVT::v4f16, MVT::v8f16}) {
1106 setOperationAction(ISD::FFLOOR, Ty, Legal);
1107 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
1108 setOperationAction(ISD::FCEIL, Ty, Legal);
1109 setOperationAction(ISD::FRINT, Ty, Legal);
1110 setOperationAction(ISD::FTRUNC, Ty, Legal);
1111 setOperationAction(ISD::FROUND, Ty, Legal);
1112 setOperationAction(ISD::FROUNDEVEN, Ty, Legal);
1113 }
1114 }
1115
1116 if (Subtarget->hasSVE())
1117 setOperationAction(ISD::VSCALE, MVT::i32, Custom);
1118
1119 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
1120 }
1121
1122 if (Subtarget->hasSVE()) {
1123 for (auto VT : {MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64}) {
1124 setOperationAction(ISD::BITREVERSE, VT, Custom);
1125 setOperationAction(ISD::BSWAP, VT, Custom);
1126 setOperationAction(ISD::CTLZ, VT, Custom);
1127 setOperationAction(ISD::CTPOP, VT, Custom);
1128 setOperationAction(ISD::CTTZ, VT, Custom);
1129 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
1130 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
1131 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
1132 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
1133 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
1134 setOperationAction(ISD::MGATHER, VT, Custom);
1135 setOperationAction(ISD::MSCATTER, VT, Custom);
1136 setOperationAction(ISD::MUL, VT, Custom);
1137 setOperationAction(ISD::MULHS, VT, Custom);
1138 setOperationAction(ISD::MULHU, VT, Custom);
1139 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
1140 setOperationAction(ISD::SELECT, VT, Custom);
1141 setOperationAction(ISD::SETCC, VT, Custom);
1142 setOperationAction(ISD::SDIV, VT, Custom);
1143 setOperationAction(ISD::UDIV, VT, Custom);
1144 setOperationAction(ISD::SMIN, VT, Custom);
1145 setOperationAction(ISD::UMIN, VT, Custom);
1146 setOperationAction(ISD::SMAX, VT, Custom);
1147 setOperationAction(ISD::UMAX, VT, Custom);
1148 setOperationAction(ISD::SHL, VT, Custom);
1149 setOperationAction(ISD::SRL, VT, Custom);
1150 setOperationAction(ISD::SRA, VT, Custom);
1151 setOperationAction(ISD::ABS, VT, Custom);
1152 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
1153 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
1154 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
1155 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
1156 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
1157 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
1158 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
1159 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
1160
1161 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
1162 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
1163 setOperationAction(ISD::SELECT_CC, VT, Expand);
1164 setOperationAction(ISD::ROTL, VT, Expand);
1165 setOperationAction(ISD::ROTR, VT, Expand);
1166 }
1167
1168 // Illegal unpacked integer vector types.
1169 for (auto VT : {MVT::nxv8i8, MVT::nxv4i16, MVT::nxv2i32}) {
1170 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1171 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
1172 }
1173
1174 for (auto VT : {MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1}) {
1175 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
1176 setOperationAction(ISD::SELECT, VT, Custom);
1177 setOperationAction(ISD::SETCC, VT, Custom);
1178 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
1179 setOperationAction(ISD::TRUNCATE, VT, Custom);
1180 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
1181 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
1182 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
1183
1184 setOperationAction(ISD::SELECT_CC, VT, Expand);
1185 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1186
1187 // There are no legal MVT::nxv16f## based types.
1188 if (VT != MVT::nxv16i1) {
1189 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
1190 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
1191 }
1192
1193 // NEON doesn't support masked loads or stores, but SVE does
1194 for (auto VT :
1195 {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32, MVT::v1f64,
1196 MVT::v2f64, MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16,
1197 MVT::v2i32, MVT::v4i32, MVT::v1i64, MVT::v2i64}) {
1198 setOperationAction(ISD::MLOAD, VT, Custom);
1199 setOperationAction(ISD::MSTORE, VT, Custom);
1200 }
1201 }
1202
1203 for (MVT VT : MVT::fp_scalable_vector_valuetypes()) {
1204 for (MVT InnerVT : MVT::fp_scalable_vector_valuetypes()) {
1205 // Avoid marking truncating FP stores as legal to prevent the
1206 // DAGCombiner from creating unsupported truncating stores.
1207 setTruncStoreAction(VT, InnerVT, Expand);
1208 // SVE does not have floating-point extending loads.
1209 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
1210 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
1211 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
1212 }
1213 }
1214
1215 for (auto VT : {MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32,
1216 MVT::nxv4f32, MVT::nxv2f64}) {
1217 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
1218 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
1219 setOperationAction(ISD::MGATHER, VT, Custom);
1220 setOperationAction(ISD::MSCATTER, VT, Custom);
1221 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
1222 setOperationAction(ISD::SELECT, VT, Custom);
1223 setOperationAction(ISD::FADD, VT, Custom);
1224 setOperationAction(ISD::FDIV, VT, Custom);
1225 setOperationAction(ISD::FMA, VT, Custom);
1226 setOperationAction(ISD::FMAXIMUM, VT, Custom);
1227 setOperationAction(ISD::FMAXNUM, VT, Custom);
1228 setOperationAction(ISD::FMINIMUM, VT, Custom);
1229 setOperationAction(ISD::FMINNUM, VT, Custom);
1230 setOperationAction(ISD::FMUL, VT, Custom);
1231 setOperationAction(ISD::FNEG, VT, Custom);
1232 setOperationAction(ISD::FSUB, VT, Custom);
1233 setOperationAction(ISD::FCEIL, VT, Custom);
1234 setOperationAction(ISD::FFLOOR, VT, Custom);
1235 setOperationAction(ISD::FNEARBYINT, VT, Custom);
1236 setOperationAction(ISD::FRINT, VT, Custom);
1237 setOperationAction(ISD::FROUND, VT, Custom);
1238 setOperationAction(ISD::FROUNDEVEN, VT, Custom);
1239 setOperationAction(ISD::FTRUNC, VT, Custom);
1240 setOperationAction(ISD::FSQRT, VT, Custom);
1241 setOperationAction(ISD::FABS, VT, Custom);
1242 setOperationAction(ISD::FP_EXTEND, VT, Custom);
1243 setOperationAction(ISD::FP_ROUND, VT, Custom);
1244 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1245 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1246 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1247 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1248
1249 setOperationAction(ISD::SELECT_CC, VT, Expand);
1250 }
1251
1252 for (auto VT : {MVT::nxv2bf16, MVT::nxv4bf16, MVT::nxv8bf16}) {
1253 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
1254 setOperationAction(ISD::MGATHER, VT, Custom);
1255 setOperationAction(ISD::MSCATTER, VT, Custom);
1256 }
1257
1258 setOperationAction(ISD::SPLAT_VECTOR, MVT::nxv8bf16, Custom);
1259
1260 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
1261 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
1262
1263 // NOTE: Currently this has to happen after computeRegisterProperties rather
1264 // than the preferred option of combining it with the addRegisterClass call.
1265 if (Subtarget->useSVEForFixedLengthVectors()) {
1266 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
1267 if (useSVEForFixedLengthVectorVT(VT))
1268 addTypeForFixedLengthSVE(VT);
1269 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
1270 if (useSVEForFixedLengthVectorVT(VT))
1271 addTypeForFixedLengthSVE(VT);
1272
1273 // 64bit results can mean a bigger than NEON input.
1274 for (auto VT : {MVT::v8i8, MVT::v4i16})
1275 setOperationAction(ISD::TRUNCATE, VT, Custom);
1276 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Custom);
1277
1278 // 128bit results imply a bigger than NEON input.
1279 for (auto VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
1280 setOperationAction(ISD::TRUNCATE, VT, Custom);
1281 for (auto VT : {MVT::v8f16, MVT::v4f32})
1282 setOperationAction(ISD::FP_ROUND, VT, Expand);
1283
1284 // These operations are not supported on NEON but SVE can do them.
1285 setOperationAction(ISD::BITREVERSE, MVT::v1i64, Custom);
1286 setOperationAction(ISD::CTLZ, MVT::v1i64, Custom);
1287 setOperationAction(ISD::CTLZ, MVT::v2i64, Custom);
1288 setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
1289 setOperationAction(ISD::MUL, MVT::v1i64, Custom);
1290 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
1291 setOperationAction(ISD::MULHS, MVT::v1i64, Custom);
1292 setOperationAction(ISD::MULHS, MVT::v2i64, Custom);
1293 setOperationAction(ISD::MULHU, MVT::v1i64, Custom);
1294 setOperationAction(ISD::MULHU, MVT::v2i64, Custom);
1295 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
1296 setOperationAction(ISD::SDIV, MVT::v16i8, Custom);
1297 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
1298 setOperationAction(ISD::SDIV, MVT::v8i16, Custom);
1299 setOperationAction(ISD::SDIV, MVT::v2i32, Custom);
1300 setOperationAction(ISD::SDIV, MVT::v4i32, Custom);
1301 setOperationAction(ISD::SDIV, MVT::v1i64, Custom);
1302 setOperationAction(ISD::SDIV, MVT::v2i64, Custom);
1303 setOperationAction(ISD::SMAX, MVT::v1i64, Custom);
1304 setOperationAction(ISD::SMAX, MVT::v2i64, Custom);
1305 setOperationAction(ISD::SMIN, MVT::v1i64, Custom);
1306 setOperationAction(ISD::SMIN, MVT::v2i64, Custom);
1307 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
1308 setOperationAction(ISD::UDIV, MVT::v16i8, Custom);
1309 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
1310 setOperationAction(ISD::UDIV, MVT::v8i16, Custom);
1311 setOperationAction(ISD::UDIV, MVT::v2i32, Custom);
1312 setOperationAction(ISD::UDIV, MVT::v4i32, Custom);
1313 setOperationAction(ISD::UDIV, MVT::v1i64, Custom);
1314 setOperationAction(ISD::UDIV, MVT::v2i64, Custom);
1315 setOperationAction(ISD::UMAX, MVT::v1i64, Custom);
1316 setOperationAction(ISD::UMAX, MVT::v2i64, Custom);
1317 setOperationAction(ISD::UMIN, MVT::v1i64, Custom);
1318 setOperationAction(ISD::UMIN, MVT::v2i64, Custom);
1319 setOperationAction(ISD::VECREDUCE_SMAX, MVT::v2i64, Custom);
1320 setOperationAction(ISD::VECREDUCE_SMIN, MVT::v2i64, Custom);
1321 setOperationAction(ISD::VECREDUCE_UMAX, MVT::v2i64, Custom);
1322 setOperationAction(ISD::VECREDUCE_UMIN, MVT::v2i64, Custom);
1323
1324 // Int operations with no NEON support.
1325 for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16,
1326 MVT::v2i32, MVT::v4i32, MVT::v2i64}) {
1327 setOperationAction(ISD::BITREVERSE, VT, Custom);
1328 setOperationAction(ISD::CTTZ, VT, Custom);
1329 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
1330 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
1331 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
1332 }
1333
1334 // FP operations with no NEON support.
1335 for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32,
1336 MVT::v1f64, MVT::v2f64})
1337 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1338
1339 // Use SVE for vectors with more than 2 elements.
1340 for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v4f32})
1341 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1342 }
1343
1344 setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv2i1, MVT::nxv2i64);
1345 setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv4i1, MVT::nxv4i32);
1346 setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv8i1, MVT::nxv8i16);
1347 setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv16i1, MVT::nxv16i8);
1348 }
1349
1350 PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
1351 }
1352
addTypeForNEON(MVT VT,MVT PromotedBitwiseVT)1353 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
1354 assert(VT.isVector() && "VT should be a vector type");
1355
1356 if (VT.isFloatingPoint()) {
1357 MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
1358 setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
1359 setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
1360 }
1361
1362 // Mark vector float intrinsics as expand.
1363 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
1364 setOperationAction(ISD::FSIN, VT, Expand);
1365 setOperationAction(ISD::FCOS, VT, Expand);
1366 setOperationAction(ISD::FPOW, VT, Expand);
1367 setOperationAction(ISD::FLOG, VT, Expand);
1368 setOperationAction(ISD::FLOG2, VT, Expand);
1369 setOperationAction(ISD::FLOG10, VT, Expand);
1370 setOperationAction(ISD::FEXP, VT, Expand);
1371 setOperationAction(ISD::FEXP2, VT, Expand);
1372
1373 // But we do support custom-lowering for FCOPYSIGN.
1374 setOperationAction(ISD::FCOPYSIGN, VT, Custom);
1375 }
1376
1377 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1378 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
1379 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
1380 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
1381 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1382 setOperationAction(ISD::SRA, VT, Custom);
1383 setOperationAction(ISD::SRL, VT, Custom);
1384 setOperationAction(ISD::SHL, VT, Custom);
1385 setOperationAction(ISD::OR, VT, Custom);
1386 setOperationAction(ISD::SETCC, VT, Custom);
1387 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
1388
1389 setOperationAction(ISD::SELECT, VT, Expand);
1390 setOperationAction(ISD::SELECT_CC, VT, Expand);
1391 setOperationAction(ISD::VSELECT, VT, Expand);
1392 for (MVT InnerVT : MVT::all_valuetypes())
1393 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
1394
1395 // CNT supports only B element sizes, then use UADDLP to widen.
1396 if (VT != MVT::v8i8 && VT != MVT::v16i8)
1397 setOperationAction(ISD::CTPOP, VT, Custom);
1398
1399 setOperationAction(ISD::UDIV, VT, Expand);
1400 setOperationAction(ISD::SDIV, VT, Expand);
1401 setOperationAction(ISD::UREM, VT, Expand);
1402 setOperationAction(ISD::SREM, VT, Expand);
1403 setOperationAction(ISD::FREM, VT, Expand);
1404
1405 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
1406 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
1407
1408 if (!VT.isFloatingPoint())
1409 setOperationAction(ISD::ABS, VT, Legal);
1410
1411 // [SU][MIN|MAX] are available for all NEON types apart from i64.
1412 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
1413 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
1414 setOperationAction(Opcode, VT, Legal);
1415
1416 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
1417 if (VT.isFloatingPoint() &&
1418 VT.getVectorElementType() != MVT::bf16 &&
1419 (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
1420 for (unsigned Opcode :
1421 {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM})
1422 setOperationAction(Opcode, VT, Legal);
1423
1424 if (Subtarget->isLittleEndian()) {
1425 for (unsigned im = (unsigned)ISD::PRE_INC;
1426 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1427 setIndexedLoadAction(im, VT, Legal);
1428 setIndexedStoreAction(im, VT, Legal);
1429 }
1430 }
1431 }
1432
addTypeForFixedLengthSVE(MVT VT)1433 void AArch64TargetLowering::addTypeForFixedLengthSVE(MVT VT) {
1434 assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
1435
1436 // By default everything must be expanded.
1437 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
1438 setOperationAction(Op, VT, Expand);
1439
1440 // We use EXTRACT_SUBVECTOR to "cast" a scalable vector to a fixed length one.
1441 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1442
1443 if (VT.isFloatingPoint()) {
1444 setCondCodeAction(ISD::SETO, VT, Expand);
1445 setCondCodeAction(ISD::SETOLT, VT, Expand);
1446 setCondCodeAction(ISD::SETLT, VT, Expand);
1447 setCondCodeAction(ISD::SETOLE, VT, Expand);
1448 setCondCodeAction(ISD::SETLE, VT, Expand);
1449 setCondCodeAction(ISD::SETULT, VT, Expand);
1450 setCondCodeAction(ISD::SETULE, VT, Expand);
1451 setCondCodeAction(ISD::SETUGE, VT, Expand);
1452 setCondCodeAction(ISD::SETUGT, VT, Expand);
1453 setCondCodeAction(ISD::SETUEQ, VT, Expand);
1454 setCondCodeAction(ISD::SETUNE, VT, Expand);
1455 }
1456
1457 // Lower fixed length vector operations to scalable equivalents.
1458 setOperationAction(ISD::ABS, VT, Custom);
1459 setOperationAction(ISD::ADD, VT, Custom);
1460 setOperationAction(ISD::AND, VT, Custom);
1461 setOperationAction(ISD::ANY_EXTEND, VT, Custom);
1462 setOperationAction(ISD::BITCAST, VT, Custom);
1463 setOperationAction(ISD::BITREVERSE, VT, Custom);
1464 setOperationAction(ISD::BSWAP, VT, Custom);
1465 setOperationAction(ISD::CTLZ, VT, Custom);
1466 setOperationAction(ISD::CTPOP, VT, Custom);
1467 setOperationAction(ISD::CTTZ, VT, Custom);
1468 setOperationAction(ISD::FABS, VT, Custom);
1469 setOperationAction(ISD::FADD, VT, Custom);
1470 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1471 setOperationAction(ISD::FCEIL, VT, Custom);
1472 setOperationAction(ISD::FDIV, VT, Custom);
1473 setOperationAction(ISD::FFLOOR, VT, Custom);
1474 setOperationAction(ISD::FMA, VT, Custom);
1475 setOperationAction(ISD::FMAXIMUM, VT, Custom);
1476 setOperationAction(ISD::FMAXNUM, VT, Custom);
1477 setOperationAction(ISD::FMINIMUM, VT, Custom);
1478 setOperationAction(ISD::FMINNUM, VT, Custom);
1479 setOperationAction(ISD::FMUL, VT, Custom);
1480 setOperationAction(ISD::FNEARBYINT, VT, Custom);
1481 setOperationAction(ISD::FNEG, VT, Custom);
1482 setOperationAction(ISD::FRINT, VT, Custom);
1483 setOperationAction(ISD::FROUND, VT, Custom);
1484 setOperationAction(ISD::FROUNDEVEN, VT, Custom);
1485 setOperationAction(ISD::FSQRT, VT, Custom);
1486 setOperationAction(ISD::FSUB, VT, Custom);
1487 setOperationAction(ISD::FTRUNC, VT, Custom);
1488 setOperationAction(ISD::LOAD, VT, Custom);
1489 setOperationAction(ISD::MLOAD, VT, Custom);
1490 setOperationAction(ISD::MSTORE, VT, Custom);
1491 setOperationAction(ISD::MUL, VT, Custom);
1492 setOperationAction(ISD::MULHS, VT, Custom);
1493 setOperationAction(ISD::MULHU, VT, Custom);
1494 setOperationAction(ISD::OR, VT, Custom);
1495 setOperationAction(ISD::SDIV, VT, Custom);
1496 setOperationAction(ISD::SELECT, VT, Custom);
1497 setOperationAction(ISD::SETCC, VT, Custom);
1498 setOperationAction(ISD::SHL, VT, Custom);
1499 setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
1500 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom);
1501 setOperationAction(ISD::SMAX, VT, Custom);
1502 setOperationAction(ISD::SMIN, VT, Custom);
1503 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
1504 setOperationAction(ISD::SRA, VT, Custom);
1505 setOperationAction(ISD::SRL, VT, Custom);
1506 setOperationAction(ISD::STORE, VT, Custom);
1507 setOperationAction(ISD::SUB, VT, Custom);
1508 setOperationAction(ISD::TRUNCATE, VT, Custom);
1509 setOperationAction(ISD::UDIV, VT, Custom);
1510 setOperationAction(ISD::UMAX, VT, Custom);
1511 setOperationAction(ISD::UMIN, VT, Custom);
1512 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
1513 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
1514 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1515 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1516 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1517 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1518 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
1519 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
1520 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
1521 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
1522 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
1523 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
1524 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
1525 setOperationAction(ISD::VSELECT, VT, Custom);
1526 setOperationAction(ISD::XOR, VT, Custom);
1527 setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
1528 }
1529
addDRTypeForNEON(MVT VT)1530 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
1531 addRegisterClass(VT, &AArch64::FPR64RegClass);
1532 addTypeForNEON(VT, MVT::v2i32);
1533 }
1534
addQRTypeForNEON(MVT VT)1535 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
1536 addRegisterClass(VT, &AArch64::FPR128RegClass);
1537 addTypeForNEON(VT, MVT::v4i32);
1538 }
1539
getSetCCResultType(const DataLayout &,LLVMContext & C,EVT VT) const1540 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &,
1541 LLVMContext &C, EVT VT) const {
1542 if (!VT.isVector())
1543 return MVT::i32;
1544 if (VT.isScalableVector())
1545 return EVT::getVectorVT(C, MVT::i1, VT.getVectorElementCount());
1546 return VT.changeVectorElementTypeToInteger();
1547 }
1548
optimizeLogicalImm(SDValue Op,unsigned Size,uint64_t Imm,const APInt & Demanded,TargetLowering::TargetLoweringOpt & TLO,unsigned NewOpc)1549 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
1550 const APInt &Demanded,
1551 TargetLowering::TargetLoweringOpt &TLO,
1552 unsigned NewOpc) {
1553 uint64_t OldImm = Imm, NewImm, Enc;
1554 uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
1555
1556 // Return if the immediate is already all zeros, all ones, a bimm32 or a
1557 // bimm64.
1558 if (Imm == 0 || Imm == Mask ||
1559 AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
1560 return false;
1561
1562 unsigned EltSize = Size;
1563 uint64_t DemandedBits = Demanded.getZExtValue();
1564
1565 // Clear bits that are not demanded.
1566 Imm &= DemandedBits;
1567
1568 while (true) {
1569 // The goal here is to set the non-demanded bits in a way that minimizes
1570 // the number of switching between 0 and 1. In order to achieve this goal,
1571 // we set the non-demanded bits to the value of the preceding demanded bits.
1572 // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
1573 // non-demanded bit), we copy bit0 (1) to the least significant 'x',
1574 // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
1575 // The final result is 0b11000011.
1576 uint64_t NonDemandedBits = ~DemandedBits;
1577 uint64_t InvertedImm = ~Imm & DemandedBits;
1578 uint64_t RotatedImm =
1579 ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
1580 NonDemandedBits;
1581 uint64_t Sum = RotatedImm + NonDemandedBits;
1582 bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
1583 uint64_t Ones = (Sum + Carry) & NonDemandedBits;
1584 NewImm = (Imm | Ones) & Mask;
1585
1586 // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
1587 // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
1588 // we halve the element size and continue the search.
1589 if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
1590 break;
1591
1592 // We cannot shrink the element size any further if it is 2-bits.
1593 if (EltSize == 2)
1594 return false;
1595
1596 EltSize /= 2;
1597 Mask >>= EltSize;
1598 uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
1599
1600 // Return if there is mismatch in any of the demanded bits of Imm and Hi.
1601 if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
1602 return false;
1603
1604 // Merge the upper and lower halves of Imm and DemandedBits.
1605 Imm |= Hi;
1606 DemandedBits |= DemandedBitsHi;
1607 }
1608
1609 ++NumOptimizedImms;
1610
1611 // Replicate the element across the register width.
1612 while (EltSize < Size) {
1613 NewImm |= NewImm << EltSize;
1614 EltSize *= 2;
1615 }
1616
1617 (void)OldImm;
1618 assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
1619 "demanded bits should never be altered");
1620 assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
1621
1622 // Create the new constant immediate node.
1623 EVT VT = Op.getValueType();
1624 SDLoc DL(Op);
1625 SDValue New;
1626
1627 // If the new constant immediate is all-zeros or all-ones, let the target
1628 // independent DAG combine optimize this node.
1629 if (NewImm == 0 || NewImm == OrigMask) {
1630 New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
1631 TLO.DAG.getConstant(NewImm, DL, VT));
1632 // Otherwise, create a machine node so that target independent DAG combine
1633 // doesn't undo this optimization.
1634 } else {
1635 Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
1636 SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
1637 New = SDValue(
1638 TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
1639 }
1640
1641 return TLO.CombineTo(Op, New);
1642 }
1643
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const1644 bool AArch64TargetLowering::targetShrinkDemandedConstant(
1645 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
1646 TargetLoweringOpt &TLO) const {
1647 // Delay this optimization to as late as possible.
1648 if (!TLO.LegalOps)
1649 return false;
1650
1651 if (!EnableOptimizeLogicalImm)
1652 return false;
1653
1654 EVT VT = Op.getValueType();
1655 if (VT.isVector())
1656 return false;
1657
1658 unsigned Size = VT.getSizeInBits();
1659 assert((Size == 32 || Size == 64) &&
1660 "i32 or i64 is expected after legalization.");
1661
1662 // Exit early if we demand all bits.
1663 if (DemandedBits.countPopulation() == Size)
1664 return false;
1665
1666 unsigned NewOpc;
1667 switch (Op.getOpcode()) {
1668 default:
1669 return false;
1670 case ISD::AND:
1671 NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
1672 break;
1673 case ISD::OR:
1674 NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
1675 break;
1676 case ISD::XOR:
1677 NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
1678 break;
1679 }
1680 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1681 if (!C)
1682 return false;
1683 uint64_t Imm = C->getZExtValue();
1684 return optimizeLogicalImm(Op, Size, Imm, DemandedBits, TLO, NewOpc);
1685 }
1686
1687 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
1688 /// Mask are known to be either zero or one and return them Known.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const1689 void AArch64TargetLowering::computeKnownBitsForTargetNode(
1690 const SDValue Op, KnownBits &Known,
1691 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
1692 switch (Op.getOpcode()) {
1693 default:
1694 break;
1695 case AArch64ISD::CSEL: {
1696 KnownBits Known2;
1697 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1698 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1699 Known = KnownBits::commonBits(Known, Known2);
1700 break;
1701 }
1702 case AArch64ISD::LOADgot:
1703 case AArch64ISD::ADDlow: {
1704 if (!Subtarget->isTargetILP32())
1705 break;
1706 // In ILP32 mode all valid pointers are in the low 4GB of the address-space.
1707 Known.Zero = APInt::getHighBitsSet(64, 32);
1708 break;
1709 }
1710 case ISD::INTRINSIC_W_CHAIN: {
1711 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
1712 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
1713 switch (IntID) {
1714 default: return;
1715 case Intrinsic::aarch64_ldaxr:
1716 case Intrinsic::aarch64_ldxr: {
1717 unsigned BitWidth = Known.getBitWidth();
1718 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
1719 unsigned MemBits = VT.getScalarSizeInBits();
1720 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1721 return;
1722 }
1723 }
1724 break;
1725 }
1726 case ISD::INTRINSIC_WO_CHAIN:
1727 case ISD::INTRINSIC_VOID: {
1728 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1729 switch (IntNo) {
1730 default:
1731 break;
1732 case Intrinsic::aarch64_neon_umaxv:
1733 case Intrinsic::aarch64_neon_uminv: {
1734 // Figure out the datatype of the vector operand. The UMINV instruction
1735 // will zero extend the result, so we can mark as known zero all the
1736 // bits larger than the element datatype. 32-bit or larget doesn't need
1737 // this as those are legal types and will be handled by isel directly.
1738 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
1739 unsigned BitWidth = Known.getBitWidth();
1740 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1741 assert(BitWidth >= 8 && "Unexpected width!");
1742 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
1743 Known.Zero |= Mask;
1744 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1745 assert(BitWidth >= 16 && "Unexpected width!");
1746 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
1747 Known.Zero |= Mask;
1748 }
1749 break;
1750 } break;
1751 }
1752 }
1753 }
1754 }
1755
getScalarShiftAmountTy(const DataLayout & DL,EVT) const1756 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
1757 EVT) const {
1758 return MVT::i64;
1759 }
1760
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const1761 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1762 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1763 bool *Fast) const {
1764 if (Subtarget->requiresStrictAlign())
1765 return false;
1766
1767 if (Fast) {
1768 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1769 *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
1770 // See comments in performSTORECombine() for more details about
1771 // these conditions.
1772
1773 // Code that uses clang vector extensions can mark that it
1774 // wants unaligned accesses to be treated as fast by
1775 // underspecifying alignment to be 1 or 2.
1776 Alignment <= 2 ||
1777
1778 // Disregard v2i64. Memcpy lowering produces those and splitting
1779 // them regresses performance on micro-benchmarks and olden/bh.
1780 VT == MVT::v2i64;
1781 }
1782 return true;
1783 }
1784
1785 // Same as above but handling LLTs instead.
allowsMisalignedMemoryAccesses(LLT Ty,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const1786 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1787 LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1788 bool *Fast) const {
1789 if (Subtarget->requiresStrictAlign())
1790 return false;
1791
1792 if (Fast) {
1793 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1794 *Fast = !Subtarget->isMisaligned128StoreSlow() ||
1795 Ty.getSizeInBytes() != 16 ||
1796 // See comments in performSTORECombine() for more details about
1797 // these conditions.
1798
1799 // Code that uses clang vector extensions can mark that it
1800 // wants unaligned accesses to be treated as fast by
1801 // underspecifying alignment to be 1 or 2.
1802 Alignment <= 2 ||
1803
1804 // Disregard v2i64. Memcpy lowering produces those and splitting
1805 // them regresses performance on micro-benchmarks and olden/bh.
1806 Ty == LLT::vector(2, 64);
1807 }
1808 return true;
1809 }
1810
1811 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1812 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1813 const TargetLibraryInfo *libInfo) const {
1814 return AArch64::createFastISel(funcInfo, libInfo);
1815 }
1816
getTargetNodeName(unsigned Opcode) const1817 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
1818 #define MAKE_CASE(V) \
1819 case V: \
1820 return #V;
1821 switch ((AArch64ISD::NodeType)Opcode) {
1822 case AArch64ISD::FIRST_NUMBER:
1823 break;
1824 MAKE_CASE(AArch64ISD::CALL)
1825 MAKE_CASE(AArch64ISD::ADRP)
1826 MAKE_CASE(AArch64ISD::ADR)
1827 MAKE_CASE(AArch64ISD::ADDlow)
1828 MAKE_CASE(AArch64ISD::LOADgot)
1829 MAKE_CASE(AArch64ISD::RET_FLAG)
1830 MAKE_CASE(AArch64ISD::BRCOND)
1831 MAKE_CASE(AArch64ISD::CSEL)
1832 MAKE_CASE(AArch64ISD::CSINV)
1833 MAKE_CASE(AArch64ISD::CSNEG)
1834 MAKE_CASE(AArch64ISD::CSINC)
1835 MAKE_CASE(AArch64ISD::THREAD_POINTER)
1836 MAKE_CASE(AArch64ISD::TLSDESC_CALLSEQ)
1837 MAKE_CASE(AArch64ISD::ADD_PRED)
1838 MAKE_CASE(AArch64ISD::MUL_PRED)
1839 MAKE_CASE(AArch64ISD::MULHS_PRED)
1840 MAKE_CASE(AArch64ISD::MULHU_PRED)
1841 MAKE_CASE(AArch64ISD::SDIV_PRED)
1842 MAKE_CASE(AArch64ISD::SHL_PRED)
1843 MAKE_CASE(AArch64ISD::SMAX_PRED)
1844 MAKE_CASE(AArch64ISD::SMIN_PRED)
1845 MAKE_CASE(AArch64ISD::SRA_PRED)
1846 MAKE_CASE(AArch64ISD::SRL_PRED)
1847 MAKE_CASE(AArch64ISD::SUB_PRED)
1848 MAKE_CASE(AArch64ISD::UDIV_PRED)
1849 MAKE_CASE(AArch64ISD::UMAX_PRED)
1850 MAKE_CASE(AArch64ISD::UMIN_PRED)
1851 MAKE_CASE(AArch64ISD::FNEG_MERGE_PASSTHRU)
1852 MAKE_CASE(AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU)
1853 MAKE_CASE(AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU)
1854 MAKE_CASE(AArch64ISD::FCEIL_MERGE_PASSTHRU)
1855 MAKE_CASE(AArch64ISD::FFLOOR_MERGE_PASSTHRU)
1856 MAKE_CASE(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU)
1857 MAKE_CASE(AArch64ISD::FRINT_MERGE_PASSTHRU)
1858 MAKE_CASE(AArch64ISD::FROUND_MERGE_PASSTHRU)
1859 MAKE_CASE(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU)
1860 MAKE_CASE(AArch64ISD::FTRUNC_MERGE_PASSTHRU)
1861 MAKE_CASE(AArch64ISD::FP_ROUND_MERGE_PASSTHRU)
1862 MAKE_CASE(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU)
1863 MAKE_CASE(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU)
1864 MAKE_CASE(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU)
1865 MAKE_CASE(AArch64ISD::FCVTZU_MERGE_PASSTHRU)
1866 MAKE_CASE(AArch64ISD::FCVTZS_MERGE_PASSTHRU)
1867 MAKE_CASE(AArch64ISD::FSQRT_MERGE_PASSTHRU)
1868 MAKE_CASE(AArch64ISD::FRECPX_MERGE_PASSTHRU)
1869 MAKE_CASE(AArch64ISD::FABS_MERGE_PASSTHRU)
1870 MAKE_CASE(AArch64ISD::ABS_MERGE_PASSTHRU)
1871 MAKE_CASE(AArch64ISD::NEG_MERGE_PASSTHRU)
1872 MAKE_CASE(AArch64ISD::SETCC_MERGE_ZERO)
1873 MAKE_CASE(AArch64ISD::ADC)
1874 MAKE_CASE(AArch64ISD::SBC)
1875 MAKE_CASE(AArch64ISD::ADDS)
1876 MAKE_CASE(AArch64ISD::SUBS)
1877 MAKE_CASE(AArch64ISD::ADCS)
1878 MAKE_CASE(AArch64ISD::SBCS)
1879 MAKE_CASE(AArch64ISD::ANDS)
1880 MAKE_CASE(AArch64ISD::CCMP)
1881 MAKE_CASE(AArch64ISD::CCMN)
1882 MAKE_CASE(AArch64ISD::FCCMP)
1883 MAKE_CASE(AArch64ISD::FCMP)
1884 MAKE_CASE(AArch64ISD::STRICT_FCMP)
1885 MAKE_CASE(AArch64ISD::STRICT_FCMPE)
1886 MAKE_CASE(AArch64ISD::DUP)
1887 MAKE_CASE(AArch64ISD::DUPLANE8)
1888 MAKE_CASE(AArch64ISD::DUPLANE16)
1889 MAKE_CASE(AArch64ISD::DUPLANE32)
1890 MAKE_CASE(AArch64ISD::DUPLANE64)
1891 MAKE_CASE(AArch64ISD::MOVI)
1892 MAKE_CASE(AArch64ISD::MOVIshift)
1893 MAKE_CASE(AArch64ISD::MOVIedit)
1894 MAKE_CASE(AArch64ISD::MOVImsl)
1895 MAKE_CASE(AArch64ISD::FMOV)
1896 MAKE_CASE(AArch64ISD::MVNIshift)
1897 MAKE_CASE(AArch64ISD::MVNImsl)
1898 MAKE_CASE(AArch64ISD::BICi)
1899 MAKE_CASE(AArch64ISD::ORRi)
1900 MAKE_CASE(AArch64ISD::BSP)
1901 MAKE_CASE(AArch64ISD::NEG)
1902 MAKE_CASE(AArch64ISD::EXTR)
1903 MAKE_CASE(AArch64ISD::ZIP1)
1904 MAKE_CASE(AArch64ISD::ZIP2)
1905 MAKE_CASE(AArch64ISD::UZP1)
1906 MAKE_CASE(AArch64ISD::UZP2)
1907 MAKE_CASE(AArch64ISD::TRN1)
1908 MAKE_CASE(AArch64ISD::TRN2)
1909 MAKE_CASE(AArch64ISD::REV16)
1910 MAKE_CASE(AArch64ISD::REV32)
1911 MAKE_CASE(AArch64ISD::REV64)
1912 MAKE_CASE(AArch64ISD::EXT)
1913 MAKE_CASE(AArch64ISD::VSHL)
1914 MAKE_CASE(AArch64ISD::VLSHR)
1915 MAKE_CASE(AArch64ISD::VASHR)
1916 MAKE_CASE(AArch64ISD::VSLI)
1917 MAKE_CASE(AArch64ISD::VSRI)
1918 MAKE_CASE(AArch64ISD::CMEQ)
1919 MAKE_CASE(AArch64ISD::CMGE)
1920 MAKE_CASE(AArch64ISD::CMGT)
1921 MAKE_CASE(AArch64ISD::CMHI)
1922 MAKE_CASE(AArch64ISD::CMHS)
1923 MAKE_CASE(AArch64ISD::FCMEQ)
1924 MAKE_CASE(AArch64ISD::FCMGE)
1925 MAKE_CASE(AArch64ISD::FCMGT)
1926 MAKE_CASE(AArch64ISD::CMEQz)
1927 MAKE_CASE(AArch64ISD::CMGEz)
1928 MAKE_CASE(AArch64ISD::CMGTz)
1929 MAKE_CASE(AArch64ISD::CMLEz)
1930 MAKE_CASE(AArch64ISD::CMLTz)
1931 MAKE_CASE(AArch64ISD::FCMEQz)
1932 MAKE_CASE(AArch64ISD::FCMGEz)
1933 MAKE_CASE(AArch64ISD::FCMGTz)
1934 MAKE_CASE(AArch64ISD::FCMLEz)
1935 MAKE_CASE(AArch64ISD::FCMLTz)
1936 MAKE_CASE(AArch64ISD::SADDV)
1937 MAKE_CASE(AArch64ISD::UADDV)
1938 MAKE_CASE(AArch64ISD::SRHADD)
1939 MAKE_CASE(AArch64ISD::URHADD)
1940 MAKE_CASE(AArch64ISD::SHADD)
1941 MAKE_CASE(AArch64ISD::UHADD)
1942 MAKE_CASE(AArch64ISD::SDOT)
1943 MAKE_CASE(AArch64ISD::UDOT)
1944 MAKE_CASE(AArch64ISD::SMINV)
1945 MAKE_CASE(AArch64ISD::UMINV)
1946 MAKE_CASE(AArch64ISD::SMAXV)
1947 MAKE_CASE(AArch64ISD::UMAXV)
1948 MAKE_CASE(AArch64ISD::SADDV_PRED)
1949 MAKE_CASE(AArch64ISD::UADDV_PRED)
1950 MAKE_CASE(AArch64ISD::SMAXV_PRED)
1951 MAKE_CASE(AArch64ISD::UMAXV_PRED)
1952 MAKE_CASE(AArch64ISD::SMINV_PRED)
1953 MAKE_CASE(AArch64ISD::UMINV_PRED)
1954 MAKE_CASE(AArch64ISD::ORV_PRED)
1955 MAKE_CASE(AArch64ISD::EORV_PRED)
1956 MAKE_CASE(AArch64ISD::ANDV_PRED)
1957 MAKE_CASE(AArch64ISD::CLASTA_N)
1958 MAKE_CASE(AArch64ISD::CLASTB_N)
1959 MAKE_CASE(AArch64ISD::LASTA)
1960 MAKE_CASE(AArch64ISD::LASTB)
1961 MAKE_CASE(AArch64ISD::REINTERPRET_CAST)
1962 MAKE_CASE(AArch64ISD::TBL)
1963 MAKE_CASE(AArch64ISD::FADD_PRED)
1964 MAKE_CASE(AArch64ISD::FADDA_PRED)
1965 MAKE_CASE(AArch64ISD::FADDV_PRED)
1966 MAKE_CASE(AArch64ISD::FDIV_PRED)
1967 MAKE_CASE(AArch64ISD::FMA_PRED)
1968 MAKE_CASE(AArch64ISD::FMAX_PRED)
1969 MAKE_CASE(AArch64ISD::FMAXV_PRED)
1970 MAKE_CASE(AArch64ISD::FMAXNM_PRED)
1971 MAKE_CASE(AArch64ISD::FMAXNMV_PRED)
1972 MAKE_CASE(AArch64ISD::FMIN_PRED)
1973 MAKE_CASE(AArch64ISD::FMINV_PRED)
1974 MAKE_CASE(AArch64ISD::FMINNM_PRED)
1975 MAKE_CASE(AArch64ISD::FMINNMV_PRED)
1976 MAKE_CASE(AArch64ISD::FMUL_PRED)
1977 MAKE_CASE(AArch64ISD::FSUB_PRED)
1978 MAKE_CASE(AArch64ISD::BIC)
1979 MAKE_CASE(AArch64ISD::BIT)
1980 MAKE_CASE(AArch64ISD::CBZ)
1981 MAKE_CASE(AArch64ISD::CBNZ)
1982 MAKE_CASE(AArch64ISD::TBZ)
1983 MAKE_CASE(AArch64ISD::TBNZ)
1984 MAKE_CASE(AArch64ISD::TC_RETURN)
1985 MAKE_CASE(AArch64ISD::PREFETCH)
1986 MAKE_CASE(AArch64ISD::SITOF)
1987 MAKE_CASE(AArch64ISD::UITOF)
1988 MAKE_CASE(AArch64ISD::NVCAST)
1989 MAKE_CASE(AArch64ISD::MRS)
1990 MAKE_CASE(AArch64ISD::SQSHL_I)
1991 MAKE_CASE(AArch64ISD::UQSHL_I)
1992 MAKE_CASE(AArch64ISD::SRSHR_I)
1993 MAKE_CASE(AArch64ISD::URSHR_I)
1994 MAKE_CASE(AArch64ISD::SQSHLU_I)
1995 MAKE_CASE(AArch64ISD::WrapperLarge)
1996 MAKE_CASE(AArch64ISD::LD2post)
1997 MAKE_CASE(AArch64ISD::LD3post)
1998 MAKE_CASE(AArch64ISD::LD4post)
1999 MAKE_CASE(AArch64ISD::ST2post)
2000 MAKE_CASE(AArch64ISD::ST3post)
2001 MAKE_CASE(AArch64ISD::ST4post)
2002 MAKE_CASE(AArch64ISD::LD1x2post)
2003 MAKE_CASE(AArch64ISD::LD1x3post)
2004 MAKE_CASE(AArch64ISD::LD1x4post)
2005 MAKE_CASE(AArch64ISD::ST1x2post)
2006 MAKE_CASE(AArch64ISD::ST1x3post)
2007 MAKE_CASE(AArch64ISD::ST1x4post)
2008 MAKE_CASE(AArch64ISD::LD1DUPpost)
2009 MAKE_CASE(AArch64ISD::LD2DUPpost)
2010 MAKE_CASE(AArch64ISD::LD3DUPpost)
2011 MAKE_CASE(AArch64ISD::LD4DUPpost)
2012 MAKE_CASE(AArch64ISD::LD1LANEpost)
2013 MAKE_CASE(AArch64ISD::LD2LANEpost)
2014 MAKE_CASE(AArch64ISD::LD3LANEpost)
2015 MAKE_CASE(AArch64ISD::LD4LANEpost)
2016 MAKE_CASE(AArch64ISD::ST2LANEpost)
2017 MAKE_CASE(AArch64ISD::ST3LANEpost)
2018 MAKE_CASE(AArch64ISD::ST4LANEpost)
2019 MAKE_CASE(AArch64ISD::SMULL)
2020 MAKE_CASE(AArch64ISD::UMULL)
2021 MAKE_CASE(AArch64ISD::FRECPE)
2022 MAKE_CASE(AArch64ISD::FRECPS)
2023 MAKE_CASE(AArch64ISD::FRSQRTE)
2024 MAKE_CASE(AArch64ISD::FRSQRTS)
2025 MAKE_CASE(AArch64ISD::STG)
2026 MAKE_CASE(AArch64ISD::STZG)
2027 MAKE_CASE(AArch64ISD::ST2G)
2028 MAKE_CASE(AArch64ISD::STZ2G)
2029 MAKE_CASE(AArch64ISD::SUNPKHI)
2030 MAKE_CASE(AArch64ISD::SUNPKLO)
2031 MAKE_CASE(AArch64ISD::UUNPKHI)
2032 MAKE_CASE(AArch64ISD::UUNPKLO)
2033 MAKE_CASE(AArch64ISD::INSR)
2034 MAKE_CASE(AArch64ISD::PTEST)
2035 MAKE_CASE(AArch64ISD::PTRUE)
2036 MAKE_CASE(AArch64ISD::LD1_MERGE_ZERO)
2037 MAKE_CASE(AArch64ISD::LD1S_MERGE_ZERO)
2038 MAKE_CASE(AArch64ISD::LDNF1_MERGE_ZERO)
2039 MAKE_CASE(AArch64ISD::LDNF1S_MERGE_ZERO)
2040 MAKE_CASE(AArch64ISD::LDFF1_MERGE_ZERO)
2041 MAKE_CASE(AArch64ISD::LDFF1S_MERGE_ZERO)
2042 MAKE_CASE(AArch64ISD::LD1RQ_MERGE_ZERO)
2043 MAKE_CASE(AArch64ISD::LD1RO_MERGE_ZERO)
2044 MAKE_CASE(AArch64ISD::SVE_LD2_MERGE_ZERO)
2045 MAKE_CASE(AArch64ISD::SVE_LD3_MERGE_ZERO)
2046 MAKE_CASE(AArch64ISD::SVE_LD4_MERGE_ZERO)
2047 MAKE_CASE(AArch64ISD::GLD1_MERGE_ZERO)
2048 MAKE_CASE(AArch64ISD::GLD1_SCALED_MERGE_ZERO)
2049 MAKE_CASE(AArch64ISD::GLD1_SXTW_MERGE_ZERO)
2050 MAKE_CASE(AArch64ISD::GLD1_UXTW_MERGE_ZERO)
2051 MAKE_CASE(AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO)
2052 MAKE_CASE(AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO)
2053 MAKE_CASE(AArch64ISD::GLD1_IMM_MERGE_ZERO)
2054 MAKE_CASE(AArch64ISD::GLD1S_MERGE_ZERO)
2055 MAKE_CASE(AArch64ISD::GLD1S_SCALED_MERGE_ZERO)
2056 MAKE_CASE(AArch64ISD::GLD1S_SXTW_MERGE_ZERO)
2057 MAKE_CASE(AArch64ISD::GLD1S_UXTW_MERGE_ZERO)
2058 MAKE_CASE(AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO)
2059 MAKE_CASE(AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO)
2060 MAKE_CASE(AArch64ISD::GLD1S_IMM_MERGE_ZERO)
2061 MAKE_CASE(AArch64ISD::GLDFF1_MERGE_ZERO)
2062 MAKE_CASE(AArch64ISD::GLDFF1_SCALED_MERGE_ZERO)
2063 MAKE_CASE(AArch64ISD::GLDFF1_SXTW_MERGE_ZERO)
2064 MAKE_CASE(AArch64ISD::GLDFF1_UXTW_MERGE_ZERO)
2065 MAKE_CASE(AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO)
2066 MAKE_CASE(AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO)
2067 MAKE_CASE(AArch64ISD::GLDFF1_IMM_MERGE_ZERO)
2068 MAKE_CASE(AArch64ISD::GLDFF1S_MERGE_ZERO)
2069 MAKE_CASE(AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO)
2070 MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO)
2071 MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO)
2072 MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO)
2073 MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO)
2074 MAKE_CASE(AArch64ISD::GLDFF1S_IMM_MERGE_ZERO)
2075 MAKE_CASE(AArch64ISD::GLDNT1_MERGE_ZERO)
2076 MAKE_CASE(AArch64ISD::GLDNT1_INDEX_MERGE_ZERO)
2077 MAKE_CASE(AArch64ISD::GLDNT1S_MERGE_ZERO)
2078 MAKE_CASE(AArch64ISD::ST1_PRED)
2079 MAKE_CASE(AArch64ISD::SST1_PRED)
2080 MAKE_CASE(AArch64ISD::SST1_SCALED_PRED)
2081 MAKE_CASE(AArch64ISD::SST1_SXTW_PRED)
2082 MAKE_CASE(AArch64ISD::SST1_UXTW_PRED)
2083 MAKE_CASE(AArch64ISD::SST1_SXTW_SCALED_PRED)
2084 MAKE_CASE(AArch64ISD::SST1_UXTW_SCALED_PRED)
2085 MAKE_CASE(AArch64ISD::SST1_IMM_PRED)
2086 MAKE_CASE(AArch64ISD::SSTNT1_PRED)
2087 MAKE_CASE(AArch64ISD::SSTNT1_INDEX_PRED)
2088 MAKE_CASE(AArch64ISD::LDP)
2089 MAKE_CASE(AArch64ISD::STP)
2090 MAKE_CASE(AArch64ISD::STNP)
2091 MAKE_CASE(AArch64ISD::BITREVERSE_MERGE_PASSTHRU)
2092 MAKE_CASE(AArch64ISD::BSWAP_MERGE_PASSTHRU)
2093 MAKE_CASE(AArch64ISD::CTLZ_MERGE_PASSTHRU)
2094 MAKE_CASE(AArch64ISD::CTPOP_MERGE_PASSTHRU)
2095 MAKE_CASE(AArch64ISD::DUP_MERGE_PASSTHRU)
2096 MAKE_CASE(AArch64ISD::INDEX_VECTOR)
2097 MAKE_CASE(AArch64ISD::UABD)
2098 MAKE_CASE(AArch64ISD::SABD)
2099 MAKE_CASE(AArch64ISD::CALL_RVMARKER)
2100 }
2101 #undef MAKE_CASE
2102 return nullptr;
2103 }
2104
2105 MachineBasicBlock *
EmitF128CSEL(MachineInstr & MI,MachineBasicBlock * MBB) const2106 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
2107 MachineBasicBlock *MBB) const {
2108 // We materialise the F128CSEL pseudo-instruction as some control flow and a
2109 // phi node:
2110
2111 // OrigBB:
2112 // [... previous instrs leading to comparison ...]
2113 // b.ne TrueBB
2114 // b EndBB
2115 // TrueBB:
2116 // ; Fallthrough
2117 // EndBB:
2118 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
2119
2120 MachineFunction *MF = MBB->getParent();
2121 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2122 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
2123 DebugLoc DL = MI.getDebugLoc();
2124 MachineFunction::iterator It = ++MBB->getIterator();
2125
2126 Register DestReg = MI.getOperand(0).getReg();
2127 Register IfTrueReg = MI.getOperand(1).getReg();
2128 Register IfFalseReg = MI.getOperand(2).getReg();
2129 unsigned CondCode = MI.getOperand(3).getImm();
2130 bool NZCVKilled = MI.getOperand(4).isKill();
2131
2132 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
2133 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
2134 MF->insert(It, TrueBB);
2135 MF->insert(It, EndBB);
2136
2137 // Transfer rest of current basic-block to EndBB
2138 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
2139 MBB->end());
2140 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
2141
2142 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
2143 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
2144 MBB->addSuccessor(TrueBB);
2145 MBB->addSuccessor(EndBB);
2146
2147 // TrueBB falls through to the end.
2148 TrueBB->addSuccessor(EndBB);
2149
2150 if (!NZCVKilled) {
2151 TrueBB->addLiveIn(AArch64::NZCV);
2152 EndBB->addLiveIn(AArch64::NZCV);
2153 }
2154
2155 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
2156 .addReg(IfTrueReg)
2157 .addMBB(TrueBB)
2158 .addReg(IfFalseReg)
2159 .addMBB(MBB);
2160
2161 MI.eraseFromParent();
2162 return EndBB;
2163 }
2164
EmitLoweredCatchRet(MachineInstr & MI,MachineBasicBlock * BB) const2165 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
2166 MachineInstr &MI, MachineBasicBlock *BB) const {
2167 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2168 BB->getParent()->getFunction().getPersonalityFn())) &&
2169 "SEH does not use catchret!");
2170 return BB;
2171 }
2172
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const2173 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
2174 MachineInstr &MI, MachineBasicBlock *BB) const {
2175 switch (MI.getOpcode()) {
2176 default:
2177 #ifndef NDEBUG
2178 MI.dump();
2179 #endif
2180 llvm_unreachable("Unexpected instruction for custom inserter!");
2181
2182 case AArch64::F128CSEL:
2183 return EmitF128CSEL(MI, BB);
2184
2185 case TargetOpcode::STACKMAP:
2186 case TargetOpcode::PATCHPOINT:
2187 case TargetOpcode::STATEPOINT:
2188 return emitPatchPoint(MI, BB);
2189
2190 case AArch64::CATCHRET:
2191 return EmitLoweredCatchRet(MI, BB);
2192 }
2193 }
2194
2195 //===----------------------------------------------------------------------===//
2196 // AArch64 Lowering private implementation.
2197 //===----------------------------------------------------------------------===//
2198
2199 //===----------------------------------------------------------------------===//
2200 // Lowering Code
2201 //===----------------------------------------------------------------------===//
2202
2203 /// isZerosVector - Check whether SDNode N is a zero-filled vector.
isZerosVector(const SDNode * N)2204 static bool isZerosVector(const SDNode *N) {
2205 // Look through a bit convert.
2206 while (N->getOpcode() == ISD::BITCAST)
2207 N = N->getOperand(0).getNode();
2208
2209 if (ISD::isConstantSplatVectorAllZeros(N))
2210 return true;
2211
2212 if (N->getOpcode() != AArch64ISD::DUP)
2213 return false;
2214
2215 auto Opnd0 = N->getOperand(0);
2216 auto *CINT = dyn_cast<ConstantSDNode>(Opnd0);
2217 auto *CFP = dyn_cast<ConstantFPSDNode>(Opnd0);
2218 return (CINT && CINT->isNullValue()) || (CFP && CFP->isZero());
2219 }
2220
2221 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
2222 /// CC
changeIntCCToAArch64CC(ISD::CondCode CC)2223 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
2224 switch (CC) {
2225 default:
2226 llvm_unreachable("Unknown condition code!");
2227 case ISD::SETNE:
2228 return AArch64CC::NE;
2229 case ISD::SETEQ:
2230 return AArch64CC::EQ;
2231 case ISD::SETGT:
2232 return AArch64CC::GT;
2233 case ISD::SETGE:
2234 return AArch64CC::GE;
2235 case ISD::SETLT:
2236 return AArch64CC::LT;
2237 case ISD::SETLE:
2238 return AArch64CC::LE;
2239 case ISD::SETUGT:
2240 return AArch64CC::HI;
2241 case ISD::SETUGE:
2242 return AArch64CC::HS;
2243 case ISD::SETULT:
2244 return AArch64CC::LO;
2245 case ISD::SETULE:
2246 return AArch64CC::LS;
2247 }
2248 }
2249
2250 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
changeFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)2251 static void changeFPCCToAArch64CC(ISD::CondCode CC,
2252 AArch64CC::CondCode &CondCode,
2253 AArch64CC::CondCode &CondCode2) {
2254 CondCode2 = AArch64CC::AL;
2255 switch (CC) {
2256 default:
2257 llvm_unreachable("Unknown FP condition!");
2258 case ISD::SETEQ:
2259 case ISD::SETOEQ:
2260 CondCode = AArch64CC::EQ;
2261 break;
2262 case ISD::SETGT:
2263 case ISD::SETOGT:
2264 CondCode = AArch64CC::GT;
2265 break;
2266 case ISD::SETGE:
2267 case ISD::SETOGE:
2268 CondCode = AArch64CC::GE;
2269 break;
2270 case ISD::SETOLT:
2271 CondCode = AArch64CC::MI;
2272 break;
2273 case ISD::SETOLE:
2274 CondCode = AArch64CC::LS;
2275 break;
2276 case ISD::SETONE:
2277 CondCode = AArch64CC::MI;
2278 CondCode2 = AArch64CC::GT;
2279 break;
2280 case ISD::SETO:
2281 CondCode = AArch64CC::VC;
2282 break;
2283 case ISD::SETUO:
2284 CondCode = AArch64CC::VS;
2285 break;
2286 case ISD::SETUEQ:
2287 CondCode = AArch64CC::EQ;
2288 CondCode2 = AArch64CC::VS;
2289 break;
2290 case ISD::SETUGT:
2291 CondCode = AArch64CC::HI;
2292 break;
2293 case ISD::SETUGE:
2294 CondCode = AArch64CC::PL;
2295 break;
2296 case ISD::SETLT:
2297 case ISD::SETULT:
2298 CondCode = AArch64CC::LT;
2299 break;
2300 case ISD::SETLE:
2301 case ISD::SETULE:
2302 CondCode = AArch64CC::LE;
2303 break;
2304 case ISD::SETNE:
2305 case ISD::SETUNE:
2306 CondCode = AArch64CC::NE;
2307 break;
2308 }
2309 }
2310
2311 /// Convert a DAG fp condition code to an AArch64 CC.
2312 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
2313 /// should be AND'ed instead of OR'ed.
changeFPCCToANDAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)2314 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
2315 AArch64CC::CondCode &CondCode,
2316 AArch64CC::CondCode &CondCode2) {
2317 CondCode2 = AArch64CC::AL;
2318 switch (CC) {
2319 default:
2320 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
2321 assert(CondCode2 == AArch64CC::AL);
2322 break;
2323 case ISD::SETONE:
2324 // (a one b)
2325 // == ((a olt b) || (a ogt b))
2326 // == ((a ord b) && (a une b))
2327 CondCode = AArch64CC::VC;
2328 CondCode2 = AArch64CC::NE;
2329 break;
2330 case ISD::SETUEQ:
2331 // (a ueq b)
2332 // == ((a uno b) || (a oeq b))
2333 // == ((a ule b) && (a uge b))
2334 CondCode = AArch64CC::PL;
2335 CondCode2 = AArch64CC::LE;
2336 break;
2337 }
2338 }
2339
2340 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
2341 /// CC usable with the vector instructions. Fewer operations are available
2342 /// without a real NZCV register, so we have to use less efficient combinations
2343 /// to get the same effect.
changeVectorFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2,bool & Invert)2344 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
2345 AArch64CC::CondCode &CondCode,
2346 AArch64CC::CondCode &CondCode2,
2347 bool &Invert) {
2348 Invert = false;
2349 switch (CC) {
2350 default:
2351 // Mostly the scalar mappings work fine.
2352 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
2353 break;
2354 case ISD::SETUO:
2355 Invert = true;
2356 LLVM_FALLTHROUGH;
2357 case ISD::SETO:
2358 CondCode = AArch64CC::MI;
2359 CondCode2 = AArch64CC::GE;
2360 break;
2361 case ISD::SETUEQ:
2362 case ISD::SETULT:
2363 case ISD::SETULE:
2364 case ISD::SETUGT:
2365 case ISD::SETUGE:
2366 // All of the compare-mask comparisons are ordered, but we can switch
2367 // between the two by a double inversion. E.g. ULE == !OGT.
2368 Invert = true;
2369 changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32),
2370 CondCode, CondCode2);
2371 break;
2372 }
2373 }
2374
isLegalArithImmed(uint64_t C)2375 static bool isLegalArithImmed(uint64_t C) {
2376 // Matches AArch64DAGToDAGISel::SelectArithImmed().
2377 bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
2378 LLVM_DEBUG(dbgs() << "Is imm " << C
2379 << " legal: " << (IsLegal ? "yes\n" : "no\n"));
2380 return IsLegal;
2381 }
2382
2383 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
2384 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
2385 // can be set differently by this operation. It comes down to whether
2386 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
2387 // everything is fine. If not then the optimization is wrong. Thus general
2388 // comparisons are only valid if op2 != 0.
2389 //
2390 // So, finally, the only LLVM-native comparisons that don't mention C and V
2391 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
2392 // the absence of information about op2.
isCMN(SDValue Op,ISD::CondCode CC)2393 static bool isCMN(SDValue Op, ISD::CondCode CC) {
2394 return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
2395 (CC == ISD::SETEQ || CC == ISD::SETNE);
2396 }
2397
emitStrictFPComparison(SDValue LHS,SDValue RHS,const SDLoc & dl,SelectionDAG & DAG,SDValue Chain,bool IsSignaling)2398 static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl,
2399 SelectionDAG &DAG, SDValue Chain,
2400 bool IsSignaling) {
2401 EVT VT = LHS.getValueType();
2402 assert(VT != MVT::f128);
2403 assert(VT != MVT::f16 && "Lowering of strict fp16 not yet implemented");
2404 unsigned Opcode =
2405 IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP;
2406 return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS});
2407 }
2408
emitComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,const SDLoc & dl,SelectionDAG & DAG)2409 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2410 const SDLoc &dl, SelectionDAG &DAG) {
2411 EVT VT = LHS.getValueType();
2412 const bool FullFP16 =
2413 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
2414
2415 if (VT.isFloatingPoint()) {
2416 assert(VT != MVT::f128);
2417 if (VT == MVT::f16 && !FullFP16) {
2418 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
2419 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
2420 VT = MVT::f32;
2421 }
2422 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
2423 }
2424
2425 // The CMP instruction is just an alias for SUBS, and representing it as
2426 // SUBS means that it's possible to get CSE with subtract operations.
2427 // A later phase can perform the optimization of setting the destination
2428 // register to WZR/XZR if it ends up being unused.
2429 unsigned Opcode = AArch64ISD::SUBS;
2430
2431 if (isCMN(RHS, CC)) {
2432 // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
2433 Opcode = AArch64ISD::ADDS;
2434 RHS = RHS.getOperand(1);
2435 } else if (isCMN(LHS, CC)) {
2436 // As we are looking for EQ/NE compares, the operands can be commuted ; can
2437 // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
2438 Opcode = AArch64ISD::ADDS;
2439 LHS = LHS.getOperand(1);
2440 } else if (isNullConstant(RHS) && !isUnsignedIntSetCC(CC)) {
2441 if (LHS.getOpcode() == ISD::AND) {
2442 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
2443 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
2444 // of the signed comparisons.
2445 const SDValue ANDSNode = DAG.getNode(AArch64ISD::ANDS, dl,
2446 DAG.getVTList(VT, MVT_CC),
2447 LHS.getOperand(0),
2448 LHS.getOperand(1));
2449 // Replace all users of (and X, Y) with newly generated (ands X, Y)
2450 DAG.ReplaceAllUsesWith(LHS, ANDSNode);
2451 return ANDSNode.getValue(1);
2452 } else if (LHS.getOpcode() == AArch64ISD::ANDS) {
2453 // Use result of ANDS
2454 return LHS.getValue(1);
2455 }
2456 }
2457
2458 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
2459 .getValue(1);
2460 }
2461
2462 /// \defgroup AArch64CCMP CMP;CCMP matching
2463 ///
2464 /// These functions deal with the formation of CMP;CCMP;... sequences.
2465 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
2466 /// a comparison. They set the NZCV flags to a predefined value if their
2467 /// predicate is false. This allows to express arbitrary conjunctions, for
2468 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
2469 /// expressed as:
2470 /// cmp A
2471 /// ccmp B, inv(CB), CA
2472 /// check for CB flags
2473 ///
2474 /// This naturally lets us implement chains of AND operations with SETCC
2475 /// operands. And we can even implement some other situations by transforming
2476 /// them:
2477 /// - We can implement (NEG SETCC) i.e. negating a single comparison by
2478 /// negating the flags used in a CCMP/FCCMP operations.
2479 /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
2480 /// by negating the flags we test for afterwards. i.e.
2481 /// NEG (CMP CCMP CCCMP ...) can be implemented.
2482 /// - Note that we can only ever negate all previously processed results.
2483 /// What we can not implement by flipping the flags to test is a negation
2484 /// of two sub-trees (because the negation affects all sub-trees emitted so
2485 /// far, so the 2nd sub-tree we emit would also affect the first).
2486 /// With those tools we can implement some OR operations:
2487 /// - (OR (SETCC A) (SETCC B)) can be implemented via:
2488 /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
2489 /// - After transforming OR to NEG/AND combinations we may be able to use NEG
2490 /// elimination rules from earlier to implement the whole thing as a
2491 /// CCMP/FCCMP chain.
2492 ///
2493 /// As complete example:
2494 /// or (or (setCA (cmp A)) (setCB (cmp B)))
2495 /// (and (setCC (cmp C)) (setCD (cmp D)))"
2496 /// can be reassociated to:
2497 /// or (and (setCC (cmp C)) setCD (cmp D))
2498 // (or (setCA (cmp A)) (setCB (cmp B)))
2499 /// can be transformed to:
2500 /// not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
2501 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
2502 /// which can be implemented as:
2503 /// cmp C
2504 /// ccmp D, inv(CD), CC
2505 /// ccmp A, CA, inv(CD)
2506 /// ccmp B, CB, inv(CA)
2507 /// check for CB flags
2508 ///
2509 /// A counterexample is "or (and A B) (and C D)" which translates to
2510 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
2511 /// can only implement 1 of the inner (not) operations, but not both!
2512 /// @{
2513
2514 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
emitConditionalComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue CCOp,AArch64CC::CondCode Predicate,AArch64CC::CondCode OutCC,const SDLoc & DL,SelectionDAG & DAG)2515 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
2516 ISD::CondCode CC, SDValue CCOp,
2517 AArch64CC::CondCode Predicate,
2518 AArch64CC::CondCode OutCC,
2519 const SDLoc &DL, SelectionDAG &DAG) {
2520 unsigned Opcode = 0;
2521 const bool FullFP16 =
2522 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
2523
2524 if (LHS.getValueType().isFloatingPoint()) {
2525 assert(LHS.getValueType() != MVT::f128);
2526 if (LHS.getValueType() == MVT::f16 && !FullFP16) {
2527 LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
2528 RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
2529 }
2530 Opcode = AArch64ISD::FCCMP;
2531 } else if (RHS.getOpcode() == ISD::SUB) {
2532 SDValue SubOp0 = RHS.getOperand(0);
2533 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2534 // See emitComparison() on why we can only do this for SETEQ and SETNE.
2535 Opcode = AArch64ISD::CCMN;
2536 RHS = RHS.getOperand(1);
2537 }
2538 }
2539 if (Opcode == 0)
2540 Opcode = AArch64ISD::CCMP;
2541
2542 SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
2543 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
2544 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
2545 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
2546 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
2547 }
2548
2549 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
2550 /// expressed as a conjunction. See \ref AArch64CCMP.
2551 /// \param CanNegate Set to true if we can negate the whole sub-tree just by
2552 /// changing the conditions on the SETCC tests.
2553 /// (this means we can call emitConjunctionRec() with
2554 /// Negate==true on this sub-tree)
2555 /// \param MustBeFirst Set to true if this subtree needs to be negated and we
2556 /// cannot do the negation naturally. We are required to
2557 /// emit the subtree first in this case.
2558 /// \param WillNegate Is true if are called when the result of this
2559 /// subexpression must be negated. This happens when the
2560 /// outer expression is an OR. We can use this fact to know
2561 /// that we have a double negation (or (or ...) ...) that
2562 /// can be implemented for free.
canEmitConjunction(const SDValue Val,bool & CanNegate,bool & MustBeFirst,bool WillNegate,unsigned Depth=0)2563 static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
2564 bool &MustBeFirst, bool WillNegate,
2565 unsigned Depth = 0) {
2566 if (!Val.hasOneUse())
2567 return false;
2568 unsigned Opcode = Val->getOpcode();
2569 if (Opcode == ISD::SETCC) {
2570 if (Val->getOperand(0).getValueType() == MVT::f128)
2571 return false;
2572 CanNegate = true;
2573 MustBeFirst = false;
2574 return true;
2575 }
2576 // Protect against exponential runtime and stack overflow.
2577 if (Depth > 6)
2578 return false;
2579 if (Opcode == ISD::AND || Opcode == ISD::OR) {
2580 bool IsOR = Opcode == ISD::OR;
2581 SDValue O0 = Val->getOperand(0);
2582 SDValue O1 = Val->getOperand(1);
2583 bool CanNegateL;
2584 bool MustBeFirstL;
2585 if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
2586 return false;
2587 bool CanNegateR;
2588 bool MustBeFirstR;
2589 if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
2590 return false;
2591
2592 if (MustBeFirstL && MustBeFirstR)
2593 return false;
2594
2595 if (IsOR) {
2596 // For an OR expression we need to be able to naturally negate at least
2597 // one side or we cannot do the transformation at all.
2598 if (!CanNegateL && !CanNegateR)
2599 return false;
2600 // If we the result of the OR will be negated and we can naturally negate
2601 // the leafs, then this sub-tree as a whole negates naturally.
2602 CanNegate = WillNegate && CanNegateL && CanNegateR;
2603 // If we cannot naturally negate the whole sub-tree, then this must be
2604 // emitted first.
2605 MustBeFirst = !CanNegate;
2606 } else {
2607 assert(Opcode == ISD::AND && "Must be OR or AND");
2608 // We cannot naturally negate an AND operation.
2609 CanNegate = false;
2610 MustBeFirst = MustBeFirstL || MustBeFirstR;
2611 }
2612 return true;
2613 }
2614 return false;
2615 }
2616
2617 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
2618 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
2619 /// Tries to transform the given i1 producing node @p Val to a series compare
2620 /// and conditional compare operations. @returns an NZCV flags producing node
2621 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
2622 /// transformation was not possible.
2623 /// \p Negate is true if we want this sub-tree being negated just by changing
2624 /// SETCC conditions.
emitConjunctionRec(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC,bool Negate,SDValue CCOp,AArch64CC::CondCode Predicate)2625 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
2626 AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
2627 AArch64CC::CondCode Predicate) {
2628 // We're at a tree leaf, produce a conditional comparison operation.
2629 unsigned Opcode = Val->getOpcode();
2630 if (Opcode == ISD::SETCC) {
2631 SDValue LHS = Val->getOperand(0);
2632 SDValue RHS = Val->getOperand(1);
2633 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
2634 bool isInteger = LHS.getValueType().isInteger();
2635 if (Negate)
2636 CC = getSetCCInverse(CC, LHS.getValueType());
2637 SDLoc DL(Val);
2638 // Determine OutCC and handle FP special case.
2639 if (isInteger) {
2640 OutCC = changeIntCCToAArch64CC(CC);
2641 } else {
2642 assert(LHS.getValueType().isFloatingPoint());
2643 AArch64CC::CondCode ExtraCC;
2644 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
2645 // Some floating point conditions can't be tested with a single condition
2646 // code. Construct an additional comparison in this case.
2647 if (ExtraCC != AArch64CC::AL) {
2648 SDValue ExtraCmp;
2649 if (!CCOp.getNode())
2650 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
2651 else
2652 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
2653 ExtraCC, DL, DAG);
2654 CCOp = ExtraCmp;
2655 Predicate = ExtraCC;
2656 }
2657 }
2658
2659 // Produce a normal comparison if we are first in the chain
2660 if (!CCOp)
2661 return emitComparison(LHS, RHS, CC, DL, DAG);
2662 // Otherwise produce a ccmp.
2663 return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
2664 DAG);
2665 }
2666 assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
2667
2668 bool IsOR = Opcode == ISD::OR;
2669
2670 SDValue LHS = Val->getOperand(0);
2671 bool CanNegateL;
2672 bool MustBeFirstL;
2673 bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
2674 assert(ValidL && "Valid conjunction/disjunction tree");
2675 (void)ValidL;
2676
2677 SDValue RHS = Val->getOperand(1);
2678 bool CanNegateR;
2679 bool MustBeFirstR;
2680 bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
2681 assert(ValidR && "Valid conjunction/disjunction tree");
2682 (void)ValidR;
2683
2684 // Swap sub-tree that must come first to the right side.
2685 if (MustBeFirstL) {
2686 assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
2687 std::swap(LHS, RHS);
2688 std::swap(CanNegateL, CanNegateR);
2689 std::swap(MustBeFirstL, MustBeFirstR);
2690 }
2691
2692 bool NegateR;
2693 bool NegateAfterR;
2694 bool NegateL;
2695 bool NegateAfterAll;
2696 if (Opcode == ISD::OR) {
2697 // Swap the sub-tree that we can negate naturally to the left.
2698 if (!CanNegateL) {
2699 assert(CanNegateR && "at least one side must be negatable");
2700 assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
2701 assert(!Negate);
2702 std::swap(LHS, RHS);
2703 NegateR = false;
2704 NegateAfterR = true;
2705 } else {
2706 // Negate the left sub-tree if possible, otherwise negate the result.
2707 NegateR = CanNegateR;
2708 NegateAfterR = !CanNegateR;
2709 }
2710 NegateL = true;
2711 NegateAfterAll = !Negate;
2712 } else {
2713 assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
2714 assert(!Negate && "Valid conjunction/disjunction tree");
2715
2716 NegateL = false;
2717 NegateR = false;
2718 NegateAfterR = false;
2719 NegateAfterAll = false;
2720 }
2721
2722 // Emit sub-trees.
2723 AArch64CC::CondCode RHSCC;
2724 SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
2725 if (NegateAfterR)
2726 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
2727 SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
2728 if (NegateAfterAll)
2729 OutCC = AArch64CC::getInvertedCondCode(OutCC);
2730 return CmpL;
2731 }
2732
2733 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
2734 /// In some cases this is even possible with OR operations in the expression.
2735 /// See \ref AArch64CCMP.
2736 /// \see emitConjunctionRec().
emitConjunction(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC)2737 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
2738 AArch64CC::CondCode &OutCC) {
2739 bool DummyCanNegate;
2740 bool DummyMustBeFirst;
2741 if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
2742 return SDValue();
2743
2744 return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
2745 }
2746
2747 /// @}
2748
2749 /// Returns how profitable it is to fold a comparison's operand's shift and/or
2750 /// extension operations.
getCmpOperandFoldingProfit(SDValue Op)2751 static unsigned getCmpOperandFoldingProfit(SDValue Op) {
2752 auto isSupportedExtend = [&](SDValue V) {
2753 if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
2754 return true;
2755
2756 if (V.getOpcode() == ISD::AND)
2757 if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2758 uint64_t Mask = MaskCst->getZExtValue();
2759 return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
2760 }
2761
2762 return false;
2763 };
2764
2765 if (!Op.hasOneUse())
2766 return 0;
2767
2768 if (isSupportedExtend(Op))
2769 return 1;
2770
2771 unsigned Opc = Op.getOpcode();
2772 if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
2773 if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2774 uint64_t Shift = ShiftCst->getZExtValue();
2775 if (isSupportedExtend(Op.getOperand(0)))
2776 return (Shift <= 4) ? 2 : 1;
2777 EVT VT = Op.getValueType();
2778 if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
2779 return 1;
2780 }
2781
2782 return 0;
2783 }
2784
getAArch64Cmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & AArch64cc,SelectionDAG & DAG,const SDLoc & dl)2785 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2786 SDValue &AArch64cc, SelectionDAG &DAG,
2787 const SDLoc &dl) {
2788 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2789 EVT VT = RHS.getValueType();
2790 uint64_t C = RHSC->getZExtValue();
2791 if (!isLegalArithImmed(C)) {
2792 // Constant does not fit, try adjusting it by one?
2793 switch (CC) {
2794 default:
2795 break;
2796 case ISD::SETLT:
2797 case ISD::SETGE:
2798 if ((VT == MVT::i32 && C != 0x80000000 &&
2799 isLegalArithImmed((uint32_t)(C - 1))) ||
2800 (VT == MVT::i64 && C != 0x80000000ULL &&
2801 isLegalArithImmed(C - 1ULL))) {
2802 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2803 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
2804 RHS = DAG.getConstant(C, dl, VT);
2805 }
2806 break;
2807 case ISD::SETULT:
2808 case ISD::SETUGE:
2809 if ((VT == MVT::i32 && C != 0 &&
2810 isLegalArithImmed((uint32_t)(C - 1))) ||
2811 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
2812 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2813 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
2814 RHS = DAG.getConstant(C, dl, VT);
2815 }
2816 break;
2817 case ISD::SETLE:
2818 case ISD::SETGT:
2819 if ((VT == MVT::i32 && C != INT32_MAX &&
2820 isLegalArithImmed((uint32_t)(C + 1))) ||
2821 (VT == MVT::i64 && C != INT64_MAX &&
2822 isLegalArithImmed(C + 1ULL))) {
2823 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2824 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
2825 RHS = DAG.getConstant(C, dl, VT);
2826 }
2827 break;
2828 case ISD::SETULE:
2829 case ISD::SETUGT:
2830 if ((VT == MVT::i32 && C != UINT32_MAX &&
2831 isLegalArithImmed((uint32_t)(C + 1))) ||
2832 (VT == MVT::i64 && C != UINT64_MAX &&
2833 isLegalArithImmed(C + 1ULL))) {
2834 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2835 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
2836 RHS = DAG.getConstant(C, dl, VT);
2837 }
2838 break;
2839 }
2840 }
2841 }
2842
2843 // Comparisons are canonicalized so that the RHS operand is simpler than the
2844 // LHS one, the extreme case being when RHS is an immediate. However, AArch64
2845 // can fold some shift+extend operations on the RHS operand, so swap the
2846 // operands if that can be done.
2847 //
2848 // For example:
2849 // lsl w13, w11, #1
2850 // cmp w13, w12
2851 // can be turned into:
2852 // cmp w12, w11, lsl #1
2853 if (!isa<ConstantSDNode>(RHS) ||
2854 !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) {
2855 SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS;
2856
2857 if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) {
2858 std::swap(LHS, RHS);
2859 CC = ISD::getSetCCSwappedOperands(CC);
2860 }
2861 }
2862
2863 SDValue Cmp;
2864 AArch64CC::CondCode AArch64CC;
2865 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
2866 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
2867
2868 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
2869 // For the i8 operand, the largest immediate is 255, so this can be easily
2870 // encoded in the compare instruction. For the i16 operand, however, the
2871 // largest immediate cannot be encoded in the compare.
2872 // Therefore, use a sign extending load and cmn to avoid materializing the
2873 // -1 constant. For example,
2874 // movz w1, #65535
2875 // ldrh w0, [x0, #0]
2876 // cmp w0, w1
2877 // >
2878 // ldrsh w0, [x0, #0]
2879 // cmn w0, #1
2880 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
2881 // if and only if (sext LHS) == (sext RHS). The checks are in place to
2882 // ensure both the LHS and RHS are truly zero extended and to make sure the
2883 // transformation is profitable.
2884 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
2885 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
2886 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
2887 LHS.getNode()->hasNUsesOfValue(1, 0)) {
2888 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
2889 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
2890 SDValue SExt =
2891 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
2892 DAG.getValueType(MVT::i16));
2893 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
2894 RHS.getValueType()),
2895 CC, dl, DAG);
2896 AArch64CC = changeIntCCToAArch64CC(CC);
2897 }
2898 }
2899
2900 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
2901 if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
2902 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
2903 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
2904 }
2905 }
2906 }
2907
2908 if (!Cmp) {
2909 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
2910 AArch64CC = changeIntCCToAArch64CC(CC);
2911 }
2912 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
2913 return Cmp;
2914 }
2915
2916 static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode & CC,SDValue Op,SelectionDAG & DAG)2917 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
2918 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
2919 "Unsupported value type");
2920 SDValue Value, Overflow;
2921 SDLoc DL(Op);
2922 SDValue LHS = Op.getOperand(0);
2923 SDValue RHS = Op.getOperand(1);
2924 unsigned Opc = 0;
2925 switch (Op.getOpcode()) {
2926 default:
2927 llvm_unreachable("Unknown overflow instruction!");
2928 case ISD::SADDO:
2929 Opc = AArch64ISD::ADDS;
2930 CC = AArch64CC::VS;
2931 break;
2932 case ISD::UADDO:
2933 Opc = AArch64ISD::ADDS;
2934 CC = AArch64CC::HS;
2935 break;
2936 case ISD::SSUBO:
2937 Opc = AArch64ISD::SUBS;
2938 CC = AArch64CC::VS;
2939 break;
2940 case ISD::USUBO:
2941 Opc = AArch64ISD::SUBS;
2942 CC = AArch64CC::LO;
2943 break;
2944 // Multiply needs a little bit extra work.
2945 case ISD::SMULO:
2946 case ISD::UMULO: {
2947 CC = AArch64CC::NE;
2948 bool IsSigned = Op.getOpcode() == ISD::SMULO;
2949 if (Op.getValueType() == MVT::i32) {
2950 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2951 // For a 32 bit multiply with overflow check we want the instruction
2952 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
2953 // need to generate the following pattern:
2954 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
2955 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
2956 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
2957 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2958 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
2959 DAG.getConstant(0, DL, MVT::i64));
2960 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
2961 // operation. We need to clear out the upper 32 bits, because we used a
2962 // widening multiply that wrote all 64 bits. In the end this should be a
2963 // noop.
2964 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
2965 if (IsSigned) {
2966 // The signed overflow check requires more than just a simple check for
2967 // any bit set in the upper 32 bits of the result. These bits could be
2968 // just the sign bits of a negative number. To perform the overflow
2969 // check we have to arithmetic shift right the 32nd bit of the result by
2970 // 31 bits. Then we compare the result to the upper 32 bits.
2971 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
2972 DAG.getConstant(32, DL, MVT::i64));
2973 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
2974 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
2975 DAG.getConstant(31, DL, MVT::i64));
2976 // It is important that LowerBits is last, otherwise the arithmetic
2977 // shift will not be folded into the compare (SUBS).
2978 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
2979 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2980 .getValue(1);
2981 } else {
2982 // The overflow check for unsigned multiply is easy. We only need to
2983 // check if any of the upper 32 bits are set. This can be done with a
2984 // CMP (shifted register). For that we need to generate the following
2985 // pattern:
2986 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
2987 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2988 DAG.getConstant(32, DL, MVT::i64));
2989 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2990 Overflow =
2991 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2992 DAG.getConstant(0, DL, MVT::i64),
2993 UpperBits).getValue(1);
2994 }
2995 break;
2996 }
2997 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
2998 // For the 64 bit multiply
2999 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
3000 if (IsSigned) {
3001 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
3002 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
3003 DAG.getConstant(63, DL, MVT::i64));
3004 // It is important that LowerBits is last, otherwise the arithmetic
3005 // shift will not be folded into the compare (SUBS).
3006 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
3007 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
3008 .getValue(1);
3009 } else {
3010 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
3011 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
3012 Overflow =
3013 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
3014 DAG.getConstant(0, DL, MVT::i64),
3015 UpperBits).getValue(1);
3016 }
3017 break;
3018 }
3019 } // switch (...)
3020
3021 if (Opc) {
3022 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
3023
3024 // Emit the AArch64 operation with overflow check.
3025 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
3026 Overflow = Value.getValue(1);
3027 }
3028 return std::make_pair(Value, Overflow);
3029 }
3030
LowerXOR(SDValue Op,SelectionDAG & DAG) const3031 SDValue AArch64TargetLowering::LowerXOR(SDValue Op, SelectionDAG &DAG) const {
3032 if (useSVEForFixedLengthVectorVT(Op.getValueType()))
3033 return LowerToScalableOp(Op, DAG);
3034
3035 SDValue Sel = Op.getOperand(0);
3036 SDValue Other = Op.getOperand(1);
3037 SDLoc dl(Sel);
3038
3039 // If the operand is an overflow checking operation, invert the condition
3040 // code and kill the Not operation. I.e., transform:
3041 // (xor (overflow_op_bool, 1))
3042 // -->
3043 // (csel 1, 0, invert(cc), overflow_op_bool)
3044 // ... which later gets transformed to just a cset instruction with an
3045 // inverted condition code, rather than a cset + eor sequence.
3046 if (isOneConstant(Other) && ISD::isOverflowIntrOpRes(Sel)) {
3047 // Only lower legal XALUO ops.
3048 if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
3049 return SDValue();
3050
3051 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
3052 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
3053 AArch64CC::CondCode CC;
3054 SDValue Value, Overflow;
3055 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
3056 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
3057 return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
3058 CCVal, Overflow);
3059 }
3060 // If neither operand is a SELECT_CC, give up.
3061 if (Sel.getOpcode() != ISD::SELECT_CC)
3062 std::swap(Sel, Other);
3063 if (Sel.getOpcode() != ISD::SELECT_CC)
3064 return Op;
3065
3066 // The folding we want to perform is:
3067 // (xor x, (select_cc a, b, cc, 0, -1) )
3068 // -->
3069 // (csel x, (xor x, -1), cc ...)
3070 //
3071 // The latter will get matched to a CSINV instruction.
3072
3073 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
3074 SDValue LHS = Sel.getOperand(0);
3075 SDValue RHS = Sel.getOperand(1);
3076 SDValue TVal = Sel.getOperand(2);
3077 SDValue FVal = Sel.getOperand(3);
3078
3079 // FIXME: This could be generalized to non-integer comparisons.
3080 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
3081 return Op;
3082
3083 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3084 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3085
3086 // The values aren't constants, this isn't the pattern we're looking for.
3087 if (!CFVal || !CTVal)
3088 return Op;
3089
3090 // We can commute the SELECT_CC by inverting the condition. This
3091 // might be needed to make this fit into a CSINV pattern.
3092 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3093 std::swap(TVal, FVal);
3094 std::swap(CTVal, CFVal);
3095 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
3096 }
3097
3098 // If the constants line up, perform the transform!
3099 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
3100 SDValue CCVal;
3101 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3102
3103 FVal = Other;
3104 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
3105 DAG.getConstant(-1ULL, dl, Other.getValueType()));
3106
3107 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
3108 CCVal, Cmp);
3109 }
3110
3111 return Op;
3112 }
3113
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)3114 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
3115 EVT VT = Op.getValueType();
3116
3117 // Let legalize expand this if it isn't a legal type yet.
3118 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3119 return SDValue();
3120
3121 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3122
3123 unsigned Opc;
3124 bool ExtraOp = false;
3125 switch (Op.getOpcode()) {
3126 default:
3127 llvm_unreachable("Invalid code");
3128 case ISD::ADDC:
3129 Opc = AArch64ISD::ADDS;
3130 break;
3131 case ISD::SUBC:
3132 Opc = AArch64ISD::SUBS;
3133 break;
3134 case ISD::ADDE:
3135 Opc = AArch64ISD::ADCS;
3136 ExtraOp = true;
3137 break;
3138 case ISD::SUBE:
3139 Opc = AArch64ISD::SBCS;
3140 ExtraOp = true;
3141 break;
3142 }
3143
3144 if (!ExtraOp)
3145 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
3146 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
3147 Op.getOperand(2));
3148 }
3149
LowerXALUO(SDValue Op,SelectionDAG & DAG)3150 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
3151 // Let legalize expand this if it isn't a legal type yet.
3152 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
3153 return SDValue();
3154
3155 SDLoc dl(Op);
3156 AArch64CC::CondCode CC;
3157 // The actual operation that sets the overflow or carry flag.
3158 SDValue Value, Overflow;
3159 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
3160
3161 // We use 0 and 1 as false and true values.
3162 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
3163 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
3164
3165 // We use an inverted condition, because the conditional select is inverted
3166 // too. This will allow it to be selected to a single instruction:
3167 // CSINC Wd, WZR, WZR, invert(cond).
3168 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
3169 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
3170 CCVal, Overflow);
3171
3172 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
3173 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
3174 }
3175
3176 // Prefetch operands are:
3177 // 1: Address to prefetch
3178 // 2: bool isWrite
3179 // 3: int locality (0 = no locality ... 3 = extreme locality)
3180 // 4: bool isDataCache
LowerPREFETCH(SDValue Op,SelectionDAG & DAG)3181 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
3182 SDLoc DL(Op);
3183 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3184 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
3185 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3186
3187 bool IsStream = !Locality;
3188 // When the locality number is set
3189 if (Locality) {
3190 // The front-end should have filtered out the out-of-range values
3191 assert(Locality <= 3 && "Prefetch locality out-of-range");
3192 // The locality degree is the opposite of the cache speed.
3193 // Put the number the other way around.
3194 // The encoding starts at 0 for level 1
3195 Locality = 3 - Locality;
3196 }
3197
3198 // built the mask value encoding the expected behavior.
3199 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
3200 (!IsData << 3) | // IsDataCache bit
3201 (Locality << 1) | // Cache level bits
3202 (unsigned)IsStream; // Stream bit
3203 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
3204 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
3205 }
3206
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const3207 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
3208 SelectionDAG &DAG) const {
3209 if (Op.getValueType().isScalableVector())
3210 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_EXTEND_MERGE_PASSTHRU);
3211
3212 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
3213 return SDValue();
3214 }
3215
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const3216 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
3217 SelectionDAG &DAG) const {
3218 if (Op.getValueType().isScalableVector())
3219 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_ROUND_MERGE_PASSTHRU);
3220
3221 bool IsStrict = Op->isStrictFPOpcode();
3222 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
3223 EVT SrcVT = SrcVal.getValueType();
3224
3225 if (SrcVT != MVT::f128) {
3226 // Expand cases where the input is a vector bigger than NEON.
3227 if (useSVEForFixedLengthVectorVT(SrcVT))
3228 return SDValue();
3229
3230 // It's legal except when f128 is involved
3231 return Op;
3232 }
3233
3234 return SDValue();
3235 }
3236
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG) const3237 SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op,
3238 SelectionDAG &DAG) const {
3239 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
3240 // Any additional optimization in this function should be recorded
3241 // in the cost tables.
3242 EVT InVT = Op.getOperand(0).getValueType();
3243 EVT VT = Op.getValueType();
3244
3245 if (VT.isScalableVector()) {
3246 unsigned Opcode = Op.getOpcode() == ISD::FP_TO_UINT
3247 ? AArch64ISD::FCVTZU_MERGE_PASSTHRU
3248 : AArch64ISD::FCVTZS_MERGE_PASSTHRU;
3249 return LowerToPredicatedOp(Op, DAG, Opcode);
3250 }
3251
3252 unsigned NumElts = InVT.getVectorNumElements();
3253
3254 // f16 conversions are promoted to f32 when full fp16 is not supported.
3255 if (InVT.getVectorElementType() == MVT::f16 &&
3256 !Subtarget->hasFullFP16()) {
3257 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
3258 SDLoc dl(Op);
3259 return DAG.getNode(
3260 Op.getOpcode(), dl, Op.getValueType(),
3261 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
3262 }
3263
3264 uint64_t VTSize = VT.getFixedSizeInBits();
3265 uint64_t InVTSize = InVT.getFixedSizeInBits();
3266 if (VTSize < InVTSize) {
3267 SDLoc dl(Op);
3268 SDValue Cv =
3269 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
3270 Op.getOperand(0));
3271 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
3272 }
3273
3274 if (VTSize > InVTSize) {
3275 SDLoc dl(Op);
3276 MVT ExtVT =
3277 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
3278 VT.getVectorNumElements());
3279 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
3280 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
3281 }
3282
3283 // Type changing conversions are illegal.
3284 return Op;
3285 }
3286
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const3287 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
3288 SelectionDAG &DAG) const {
3289 bool IsStrict = Op->isStrictFPOpcode();
3290 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
3291
3292 if (SrcVal.getValueType().isVector())
3293 return LowerVectorFP_TO_INT(Op, DAG);
3294
3295 // f16 conversions are promoted to f32 when full fp16 is not supported.
3296 if (SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
3297 assert(!IsStrict && "Lowering of strict fp16 not yet implemented");
3298 SDLoc dl(Op);
3299 return DAG.getNode(
3300 Op.getOpcode(), dl, Op.getValueType(),
3301 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal));
3302 }
3303
3304 if (SrcVal.getValueType() != MVT::f128) {
3305 // It's legal except when f128 is involved
3306 return Op;
3307 }
3308
3309 return SDValue();
3310 }
3311
LowerFP_TO_INT_SAT(SDValue Op,SelectionDAG & DAG) const3312 SDValue AArch64TargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
3313 SelectionDAG &DAG) const {
3314 // AArch64 FP-to-int conversions saturate to the destination register size, so
3315 // we can lower common saturating conversions to simple instructions.
3316 SDValue SrcVal = Op.getOperand(0);
3317
3318 EVT SrcVT = SrcVal.getValueType();
3319 EVT DstVT = Op.getValueType();
3320
3321 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3322 uint64_t SatWidth = SatVT.getScalarSizeInBits();
3323 uint64_t DstWidth = DstVT.getScalarSizeInBits();
3324 assert(SatWidth <= DstWidth && "Saturation width cannot exceed result width");
3325
3326 // TODO: Support lowering of NEON and SVE conversions.
3327 if (SrcVT.isVector())
3328 return SDValue();
3329
3330 // TODO: Saturate to SatWidth explicitly.
3331 if (SatWidth != DstWidth)
3332 return SDValue();
3333
3334 // In the absence of FP16 support, promote f32 to f16, like LowerFP_TO_INT().
3335 if (SrcVT == MVT::f16 && !Subtarget->hasFullFP16())
3336 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
3337 DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, SrcVal),
3338 Op.getOperand(1));
3339
3340 // Cases that we can emit directly.
3341 if ((SrcVT == MVT::f64 || SrcVT == MVT::f32 ||
3342 (SrcVT == MVT::f16 && Subtarget->hasFullFP16())) &&
3343 (DstVT == MVT::i64 || DstVT == MVT::i32))
3344 return Op;
3345
3346 // For all other cases, fall back on the expanded form.
3347 return SDValue();
3348 }
3349
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG) const3350 SDValue AArch64TargetLowering::LowerVectorINT_TO_FP(SDValue Op,
3351 SelectionDAG &DAG) const {
3352 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
3353 // Any additional optimization in this function should be recorded
3354 // in the cost tables.
3355 EVT VT = Op.getValueType();
3356 SDLoc dl(Op);
3357 SDValue In = Op.getOperand(0);
3358 EVT InVT = In.getValueType();
3359 unsigned Opc = Op.getOpcode();
3360 bool IsSigned = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
3361
3362 if (VT.isScalableVector()) {
3363 if (InVT.getVectorElementType() == MVT::i1) {
3364 // We can't directly extend an SVE predicate; extend it first.
3365 unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3366 EVT CastVT = getPromotedVTForPredicate(InVT);
3367 In = DAG.getNode(CastOpc, dl, CastVT, In);
3368 return DAG.getNode(Opc, dl, VT, In);
3369 }
3370
3371 unsigned Opcode = IsSigned ? AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU
3372 : AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU;
3373 return LowerToPredicatedOp(Op, DAG, Opcode);
3374 }
3375
3376 uint64_t VTSize = VT.getFixedSizeInBits();
3377 uint64_t InVTSize = InVT.getFixedSizeInBits();
3378 if (VTSize < InVTSize) {
3379 MVT CastVT =
3380 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
3381 InVT.getVectorNumElements());
3382 In = DAG.getNode(Opc, dl, CastVT, In);
3383 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
3384 }
3385
3386 if (VTSize > InVTSize) {
3387 unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3388 EVT CastVT = VT.changeVectorElementTypeToInteger();
3389 In = DAG.getNode(CastOpc, dl, CastVT, In);
3390 return DAG.getNode(Opc, dl, VT, In);
3391 }
3392
3393 return Op;
3394 }
3395
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const3396 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
3397 SelectionDAG &DAG) const {
3398 if (Op.getValueType().isVector())
3399 return LowerVectorINT_TO_FP(Op, DAG);
3400
3401 bool IsStrict = Op->isStrictFPOpcode();
3402 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
3403
3404 // f16 conversions are promoted to f32 when full fp16 is not supported.
3405 if (Op.getValueType() == MVT::f16 &&
3406 !Subtarget->hasFullFP16()) {
3407 assert(!IsStrict && "Lowering of strict fp16 not yet implemented");
3408 SDLoc dl(Op);
3409 return DAG.getNode(
3410 ISD::FP_ROUND, dl, MVT::f16,
3411 DAG.getNode(Op.getOpcode(), dl, MVT::f32, SrcVal),
3412 DAG.getIntPtrConstant(0, dl));
3413 }
3414
3415 // i128 conversions are libcalls.
3416 if (SrcVal.getValueType() == MVT::i128)
3417 return SDValue();
3418
3419 // Other conversions are legal, unless it's to the completely software-based
3420 // fp128.
3421 if (Op.getValueType() != MVT::f128)
3422 return Op;
3423 return SDValue();
3424 }
3425
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const3426 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
3427 SelectionDAG &DAG) const {
3428 // For iOS, we want to call an alternative entry point: __sincos_stret,
3429 // which returns the values in two S / D registers.
3430 SDLoc dl(Op);
3431 SDValue Arg = Op.getOperand(0);
3432 EVT ArgVT = Arg.getValueType();
3433 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
3434
3435 ArgListTy Args;
3436 ArgListEntry Entry;
3437
3438 Entry.Node = Arg;
3439 Entry.Ty = ArgTy;
3440 Entry.IsSExt = false;
3441 Entry.IsZExt = false;
3442 Args.push_back(Entry);
3443
3444 RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
3445 : RTLIB::SINCOS_STRET_F32;
3446 const char *LibcallName = getLibcallName(LC);
3447 SDValue Callee =
3448 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
3449
3450 StructType *RetTy = StructType::get(ArgTy, ArgTy);
3451 TargetLowering::CallLoweringInfo CLI(DAG);
3452 CLI.setDebugLoc(dl)
3453 .setChain(DAG.getEntryNode())
3454 .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
3455
3456 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3457 return CallResult.first;
3458 }
3459
LowerBITCAST(SDValue Op,SelectionDAG & DAG) const3460 SDValue AArch64TargetLowering::LowerBITCAST(SDValue Op,
3461 SelectionDAG &DAG) const {
3462 EVT OpVT = Op.getValueType();
3463
3464 if (useSVEForFixedLengthVectorVT(OpVT))
3465 return LowerFixedLengthBitcastToSVE(Op, DAG);
3466
3467 if (OpVT != MVT::f16 && OpVT != MVT::bf16)
3468 return SDValue();
3469
3470 assert(Op.getOperand(0).getValueType() == MVT::i16);
3471 SDLoc DL(Op);
3472
3473 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
3474 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
3475 return SDValue(
3476 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, OpVT, Op,
3477 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
3478 0);
3479 }
3480
getExtensionTo64Bits(const EVT & OrigVT)3481 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
3482 if (OrigVT.getSizeInBits() >= 64)
3483 return OrigVT;
3484
3485 assert(OrigVT.isSimple() && "Expecting a simple value type");
3486
3487 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
3488 switch (OrigSimpleTy) {
3489 default: llvm_unreachable("Unexpected Vector Type");
3490 case MVT::v2i8:
3491 case MVT::v2i16:
3492 return MVT::v2i32;
3493 case MVT::v4i8:
3494 return MVT::v4i16;
3495 }
3496 }
3497
addRequiredExtensionForVectorMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)3498 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
3499 const EVT &OrigTy,
3500 const EVT &ExtTy,
3501 unsigned ExtOpcode) {
3502 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
3503 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
3504 // 64-bits we need to insert a new extension so that it will be 64-bits.
3505 assert(ExtTy.is128BitVector() && "Unexpected extension size");
3506 if (OrigTy.getSizeInBits() >= 64)
3507 return N;
3508
3509 // Must extend size to at least 64 bits to be used as an operand for VMULL.
3510 EVT NewVT = getExtensionTo64Bits(OrigTy);
3511
3512 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
3513 }
3514
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)3515 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
3516 bool isSigned) {
3517 EVT VT = N->getValueType(0);
3518
3519 if (N->getOpcode() != ISD::BUILD_VECTOR)
3520 return false;
3521
3522 for (const SDValue &Elt : N->op_values()) {
3523 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
3524 unsigned EltSize = VT.getScalarSizeInBits();
3525 unsigned HalfSize = EltSize / 2;
3526 if (isSigned) {
3527 if (!isIntN(HalfSize, C->getSExtValue()))
3528 return false;
3529 } else {
3530 if (!isUIntN(HalfSize, C->getZExtValue()))
3531 return false;
3532 }
3533 continue;
3534 }
3535 return false;
3536 }
3537
3538 return true;
3539 }
3540
skipExtensionForVectorMULL(SDNode * N,SelectionDAG & DAG)3541 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
3542 if (N->getOpcode() == ISD::SIGN_EXTEND ||
3543 N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND)
3544 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
3545 N->getOperand(0)->getValueType(0),
3546 N->getValueType(0),
3547 N->getOpcode());
3548
3549 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
3550 EVT VT = N->getValueType(0);
3551 SDLoc dl(N);
3552 unsigned EltSize = VT.getScalarSizeInBits() / 2;
3553 unsigned NumElts = VT.getVectorNumElements();
3554 MVT TruncVT = MVT::getIntegerVT(EltSize);
3555 SmallVector<SDValue, 8> Ops;
3556 for (unsigned i = 0; i != NumElts; ++i) {
3557 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
3558 const APInt &CInt = C->getAPIntValue();
3559 // Element types smaller than 32 bits are not legal, so use i32 elements.
3560 // The values are implicitly truncated so sext vs. zext doesn't matter.
3561 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
3562 }
3563 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
3564 }
3565
isSignExtended(SDNode * N,SelectionDAG & DAG)3566 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
3567 return N->getOpcode() == ISD::SIGN_EXTEND ||
3568 N->getOpcode() == ISD::ANY_EXTEND ||
3569 isExtendedBUILD_VECTOR(N, DAG, true);
3570 }
3571
isZeroExtended(SDNode * N,SelectionDAG & DAG)3572 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
3573 return N->getOpcode() == ISD::ZERO_EXTEND ||
3574 N->getOpcode() == ISD::ANY_EXTEND ||
3575 isExtendedBUILD_VECTOR(N, DAG, false);
3576 }
3577
isAddSubSExt(SDNode * N,SelectionDAG & DAG)3578 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
3579 unsigned Opcode = N->getOpcode();
3580 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
3581 SDNode *N0 = N->getOperand(0).getNode();
3582 SDNode *N1 = N->getOperand(1).getNode();
3583 return N0->hasOneUse() && N1->hasOneUse() &&
3584 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
3585 }
3586 return false;
3587 }
3588
isAddSubZExt(SDNode * N,SelectionDAG & DAG)3589 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
3590 unsigned Opcode = N->getOpcode();
3591 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
3592 SDNode *N0 = N->getOperand(0).getNode();
3593 SDNode *N1 = N->getOperand(1).getNode();
3594 return N0->hasOneUse() && N1->hasOneUse() &&
3595 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
3596 }
3597 return false;
3598 }
3599
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const3600 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3601 SelectionDAG &DAG) const {
3602 // The rounding mode is in bits 23:22 of the FPSCR.
3603 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3604 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3605 // so that the shift + and get folded into a bitfield extract.
3606 SDLoc dl(Op);
3607
3608 SDValue Chain = Op.getOperand(0);
3609 SDValue FPCR_64 = DAG.getNode(
3610 ISD::INTRINSIC_W_CHAIN, dl, {MVT::i64, MVT::Other},
3611 {Chain, DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl, MVT::i64)});
3612 Chain = FPCR_64.getValue(1);
3613 SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
3614 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
3615 DAG.getConstant(1U << 22, dl, MVT::i32));
3616 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3617 DAG.getConstant(22, dl, MVT::i32));
3618 SDValue AND = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3619 DAG.getConstant(3, dl, MVT::i32));
3620 return DAG.getMergeValues({AND, Chain}, dl);
3621 }
3622
LowerSET_ROUNDING(SDValue Op,SelectionDAG & DAG) const3623 SDValue AArch64TargetLowering::LowerSET_ROUNDING(SDValue Op,
3624 SelectionDAG &DAG) const {
3625 SDLoc DL(Op);
3626 SDValue Chain = Op->getOperand(0);
3627 SDValue RMValue = Op->getOperand(1);
3628
3629 // The rounding mode is in bits 23:22 of the FPCR.
3630 // The llvm.set.rounding argument value to the rounding mode in FPCR mapping
3631 // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
3632 // ((arg - 1) & 3) << 22).
3633 //
3634 // The argument of llvm.set.rounding must be within the segment [0, 3], so
3635 // NearestTiesToAway (4) is not handled here. It is responsibility of the code
3636 // generated llvm.set.rounding to ensure this condition.
3637
3638 // Calculate new value of FPCR[23:22].
3639 RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue,
3640 DAG.getConstant(1, DL, MVT::i32));
3641 RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue,
3642 DAG.getConstant(0x3, DL, MVT::i32));
3643 RMValue =
3644 DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue,
3645 DAG.getConstant(AArch64::RoundingBitsPos, DL, MVT::i32));
3646 RMValue = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, RMValue);
3647
3648 // Get current value of FPCR.
3649 SDValue Ops[] = {
3650 Chain, DAG.getTargetConstant(Intrinsic::aarch64_get_fpcr, DL, MVT::i64)};
3651 SDValue FPCR =
3652 DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i64, MVT::Other}, Ops);
3653 Chain = FPCR.getValue(1);
3654 FPCR = FPCR.getValue(0);
3655
3656 // Put new rounding mode into FPSCR[23:22].
3657 const int RMMask = ~(AArch64::Rounding::rmMask << AArch64::RoundingBitsPos);
3658 FPCR = DAG.getNode(ISD::AND, DL, MVT::i64, FPCR,
3659 DAG.getConstant(RMMask, DL, MVT::i64));
3660 FPCR = DAG.getNode(ISD::OR, DL, MVT::i64, FPCR, RMValue);
3661 SDValue Ops2[] = {
3662 Chain, DAG.getTargetConstant(Intrinsic::aarch64_set_fpcr, DL, MVT::i64),
3663 FPCR};
3664 return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
3665 }
3666
LowerMUL(SDValue Op,SelectionDAG & DAG) const3667 SDValue AArch64TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
3668 EVT VT = Op.getValueType();
3669
3670 // If SVE is available then i64 vector multiplications can also be made legal.
3671 bool OverrideNEON = VT == MVT::v2i64 || VT == MVT::v1i64;
3672
3673 if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT, OverrideNEON))
3674 return LowerToPredicatedOp(Op, DAG, AArch64ISD::MUL_PRED, OverrideNEON);
3675
3676 // Multiplications are only custom-lowered for 128-bit vectors so that
3677 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
3678 assert(VT.is128BitVector() && VT.isInteger() &&
3679 "unexpected type for custom-lowering ISD::MUL");
3680 SDNode *N0 = Op.getOperand(0).getNode();
3681 SDNode *N1 = Op.getOperand(1).getNode();
3682 unsigned NewOpc = 0;
3683 bool isMLA = false;
3684 bool isN0SExt = isSignExtended(N0, DAG);
3685 bool isN1SExt = isSignExtended(N1, DAG);
3686 if (isN0SExt && isN1SExt)
3687 NewOpc = AArch64ISD::SMULL;
3688 else {
3689 bool isN0ZExt = isZeroExtended(N0, DAG);
3690 bool isN1ZExt = isZeroExtended(N1, DAG);
3691 if (isN0ZExt && isN1ZExt)
3692 NewOpc = AArch64ISD::UMULL;
3693 else if (isN1SExt || isN1ZExt) {
3694 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
3695 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
3696 if (isN1SExt && isAddSubSExt(N0, DAG)) {
3697 NewOpc = AArch64ISD::SMULL;
3698 isMLA = true;
3699 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
3700 NewOpc = AArch64ISD::UMULL;
3701 isMLA = true;
3702 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
3703 std::swap(N0, N1);
3704 NewOpc = AArch64ISD::UMULL;
3705 isMLA = true;
3706 }
3707 }
3708
3709 if (!NewOpc) {
3710 if (VT == MVT::v2i64)
3711 // Fall through to expand this. It is not legal.
3712 return SDValue();
3713 else
3714 // Other vector multiplications are legal.
3715 return Op;
3716 }
3717 }
3718
3719 // Legalize to a S/UMULL instruction
3720 SDLoc DL(Op);
3721 SDValue Op0;
3722 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
3723 if (!isMLA) {
3724 Op0 = skipExtensionForVectorMULL(N0, DAG);
3725 assert(Op0.getValueType().is64BitVector() &&
3726 Op1.getValueType().is64BitVector() &&
3727 "unexpected types for extended operands to VMULL");
3728 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
3729 }
3730 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
3731 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
3732 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
3733 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
3734 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
3735 EVT Op1VT = Op1.getValueType();
3736 return DAG.getNode(N0->getOpcode(), DL, VT,
3737 DAG.getNode(NewOpc, DL, VT,
3738 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
3739 DAG.getNode(NewOpc, DL, VT,
3740 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
3741 }
3742
getPTrue(SelectionDAG & DAG,SDLoc DL,EVT VT,int Pattern)3743 static inline SDValue getPTrue(SelectionDAG &DAG, SDLoc DL, EVT VT,
3744 int Pattern) {
3745 return DAG.getNode(AArch64ISD::PTRUE, DL, VT,
3746 DAG.getTargetConstant(Pattern, DL, MVT::i32));
3747 }
3748
lowerConvertToSVBool(SDValue Op,SelectionDAG & DAG)3749 static SDValue lowerConvertToSVBool(SDValue Op, SelectionDAG &DAG) {
3750 SDLoc DL(Op);
3751 EVT OutVT = Op.getValueType();
3752 SDValue InOp = Op.getOperand(1);
3753 EVT InVT = InOp.getValueType();
3754
3755 // Return the operand if the cast isn't changing type,
3756 // i.e. <n x 16 x i1> -> <n x 16 x i1>
3757 if (InVT == OutVT)
3758 return InOp;
3759
3760 SDValue Reinterpret =
3761 DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, OutVT, InOp);
3762
3763 // If the argument converted to an svbool is a ptrue or a comparison, the
3764 // lanes introduced by the widening are zero by construction.
3765 switch (InOp.getOpcode()) {
3766 case AArch64ISD::SETCC_MERGE_ZERO:
3767 return Reinterpret;
3768 case ISD::INTRINSIC_WO_CHAIN:
3769 if (InOp.getConstantOperandVal(0) == Intrinsic::aarch64_sve_ptrue)
3770 return Reinterpret;
3771 }
3772
3773 // Otherwise, zero the newly introduced lanes.
3774 SDValue Mask = getPTrue(DAG, DL, InVT, AArch64SVEPredPattern::all);
3775 SDValue MaskReinterpret =
3776 DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, OutVT, Mask);
3777 return DAG.getNode(ISD::AND, DL, OutVT, Reinterpret, MaskReinterpret);
3778 }
3779
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3780 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3781 SelectionDAG &DAG) const {
3782 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3783 SDLoc dl(Op);
3784 switch (IntNo) {
3785 default: return SDValue(); // Don't custom lower most intrinsics.
3786 case Intrinsic::thread_pointer: {
3787 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3788 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
3789 }
3790 case Intrinsic::aarch64_neon_abs: {
3791 EVT Ty = Op.getValueType();
3792 if (Ty == MVT::i64) {
3793 SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
3794 Op.getOperand(1));
3795 Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
3796 return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
3797 } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
3798 return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
3799 } else {
3800 report_fatal_error("Unexpected type for AArch64 NEON intrinic");
3801 }
3802 }
3803 case Intrinsic::aarch64_neon_smax:
3804 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
3805 Op.getOperand(1), Op.getOperand(2));
3806 case Intrinsic::aarch64_neon_umax:
3807 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
3808 Op.getOperand(1), Op.getOperand(2));
3809 case Intrinsic::aarch64_neon_smin:
3810 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
3811 Op.getOperand(1), Op.getOperand(2));
3812 case Intrinsic::aarch64_neon_umin:
3813 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
3814 Op.getOperand(1), Op.getOperand(2));
3815
3816 case Intrinsic::aarch64_sve_sunpkhi:
3817 return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(),
3818 Op.getOperand(1));
3819 case Intrinsic::aarch64_sve_sunpklo:
3820 return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(),
3821 Op.getOperand(1));
3822 case Intrinsic::aarch64_sve_uunpkhi:
3823 return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(),
3824 Op.getOperand(1));
3825 case Intrinsic::aarch64_sve_uunpklo:
3826 return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(),
3827 Op.getOperand(1));
3828 case Intrinsic::aarch64_sve_clasta_n:
3829 return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(),
3830 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3831 case Intrinsic::aarch64_sve_clastb_n:
3832 return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(),
3833 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3834 case Intrinsic::aarch64_sve_lasta:
3835 return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(),
3836 Op.getOperand(1), Op.getOperand(2));
3837 case Intrinsic::aarch64_sve_lastb:
3838 return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(),
3839 Op.getOperand(1), Op.getOperand(2));
3840 case Intrinsic::aarch64_sve_rev:
3841 return DAG.getNode(ISD::VECTOR_REVERSE, dl, Op.getValueType(),
3842 Op.getOperand(1));
3843 case Intrinsic::aarch64_sve_tbl:
3844 return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(),
3845 Op.getOperand(1), Op.getOperand(2));
3846 case Intrinsic::aarch64_sve_trn1:
3847 return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(),
3848 Op.getOperand(1), Op.getOperand(2));
3849 case Intrinsic::aarch64_sve_trn2:
3850 return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(),
3851 Op.getOperand(1), Op.getOperand(2));
3852 case Intrinsic::aarch64_sve_uzp1:
3853 return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(),
3854 Op.getOperand(1), Op.getOperand(2));
3855 case Intrinsic::aarch64_sve_uzp2:
3856 return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(),
3857 Op.getOperand(1), Op.getOperand(2));
3858 case Intrinsic::aarch64_sve_zip1:
3859 return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(),
3860 Op.getOperand(1), Op.getOperand(2));
3861 case Intrinsic::aarch64_sve_zip2:
3862 return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(),
3863 Op.getOperand(1), Op.getOperand(2));
3864 case Intrinsic::aarch64_sve_ptrue:
3865 return DAG.getNode(AArch64ISD::PTRUE, dl, Op.getValueType(),
3866 Op.getOperand(1));
3867 case Intrinsic::aarch64_sve_clz:
3868 return DAG.getNode(AArch64ISD::CTLZ_MERGE_PASSTHRU, dl, Op.getValueType(),
3869 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3870 case Intrinsic::aarch64_sve_cnt: {
3871 SDValue Data = Op.getOperand(3);
3872 // CTPOP only supports integer operands.
3873 if (Data.getValueType().isFloatingPoint())
3874 Data = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Data);
3875 return DAG.getNode(AArch64ISD::CTPOP_MERGE_PASSTHRU, dl, Op.getValueType(),
3876 Op.getOperand(2), Data, Op.getOperand(1));
3877 }
3878 case Intrinsic::aarch64_sve_dupq_lane:
3879 return LowerDUPQLane(Op, DAG);
3880 case Intrinsic::aarch64_sve_convert_from_svbool:
3881 return DAG.getNode(AArch64ISD::REINTERPRET_CAST, dl, Op.getValueType(),
3882 Op.getOperand(1));
3883 case Intrinsic::aarch64_sve_convert_to_svbool:
3884 return lowerConvertToSVBool(Op, DAG);
3885 case Intrinsic::aarch64_sve_fneg:
3886 return DAG.getNode(AArch64ISD::FNEG_MERGE_PASSTHRU, dl, Op.getValueType(),
3887 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3888 case Intrinsic::aarch64_sve_frintp:
3889 return DAG.getNode(AArch64ISD::FCEIL_MERGE_PASSTHRU, dl, Op.getValueType(),
3890 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3891 case Intrinsic::aarch64_sve_frintm:
3892 return DAG.getNode(AArch64ISD::FFLOOR_MERGE_PASSTHRU, dl, Op.getValueType(),
3893 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3894 case Intrinsic::aarch64_sve_frinti:
3895 return DAG.getNode(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU, dl, Op.getValueType(),
3896 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3897 case Intrinsic::aarch64_sve_frintx:
3898 return DAG.getNode(AArch64ISD::FRINT_MERGE_PASSTHRU, dl, Op.getValueType(),
3899 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3900 case Intrinsic::aarch64_sve_frinta:
3901 return DAG.getNode(AArch64ISD::FROUND_MERGE_PASSTHRU, dl, Op.getValueType(),
3902 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3903 case Intrinsic::aarch64_sve_frintn:
3904 return DAG.getNode(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU, dl, Op.getValueType(),
3905 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3906 case Intrinsic::aarch64_sve_frintz:
3907 return DAG.getNode(AArch64ISD::FTRUNC_MERGE_PASSTHRU, dl, Op.getValueType(),
3908 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3909 case Intrinsic::aarch64_sve_ucvtf:
3910 return DAG.getNode(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU, dl,
3911 Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
3912 Op.getOperand(1));
3913 case Intrinsic::aarch64_sve_scvtf:
3914 return DAG.getNode(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU, dl,
3915 Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
3916 Op.getOperand(1));
3917 case Intrinsic::aarch64_sve_fcvtzu:
3918 return DAG.getNode(AArch64ISD::FCVTZU_MERGE_PASSTHRU, dl,
3919 Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
3920 Op.getOperand(1));
3921 case Intrinsic::aarch64_sve_fcvtzs:
3922 return DAG.getNode(AArch64ISD::FCVTZS_MERGE_PASSTHRU, dl,
3923 Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
3924 Op.getOperand(1));
3925 case Intrinsic::aarch64_sve_fsqrt:
3926 return DAG.getNode(AArch64ISD::FSQRT_MERGE_PASSTHRU, dl, Op.getValueType(),
3927 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3928 case Intrinsic::aarch64_sve_frecpx:
3929 return DAG.getNode(AArch64ISD::FRECPX_MERGE_PASSTHRU, dl, Op.getValueType(),
3930 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3931 case Intrinsic::aarch64_sve_fabs:
3932 return DAG.getNode(AArch64ISD::FABS_MERGE_PASSTHRU, dl, Op.getValueType(),
3933 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3934 case Intrinsic::aarch64_sve_abs:
3935 return DAG.getNode(AArch64ISD::ABS_MERGE_PASSTHRU, dl, Op.getValueType(),
3936 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3937 case Intrinsic::aarch64_sve_neg:
3938 return DAG.getNode(AArch64ISD::NEG_MERGE_PASSTHRU, dl, Op.getValueType(),
3939 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3940 case Intrinsic::aarch64_sve_insr: {
3941 SDValue Scalar = Op.getOperand(2);
3942 EVT ScalarTy = Scalar.getValueType();
3943 if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
3944 Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar);
3945
3946 return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(),
3947 Op.getOperand(1), Scalar);
3948 }
3949 case Intrinsic::aarch64_sve_rbit:
3950 return DAG.getNode(AArch64ISD::BITREVERSE_MERGE_PASSTHRU, dl,
3951 Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
3952 Op.getOperand(1));
3953 case Intrinsic::aarch64_sve_revb:
3954 return DAG.getNode(AArch64ISD::BSWAP_MERGE_PASSTHRU, dl, Op.getValueType(),
3955 Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
3956 case Intrinsic::aarch64_sve_sxtb:
3957 return DAG.getNode(
3958 AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
3959 Op.getOperand(2), Op.getOperand(3),
3960 DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)),
3961 Op.getOperand(1));
3962 case Intrinsic::aarch64_sve_sxth:
3963 return DAG.getNode(
3964 AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
3965 Op.getOperand(2), Op.getOperand(3),
3966 DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)),
3967 Op.getOperand(1));
3968 case Intrinsic::aarch64_sve_sxtw:
3969 return DAG.getNode(
3970 AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
3971 Op.getOperand(2), Op.getOperand(3),
3972 DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)),
3973 Op.getOperand(1));
3974 case Intrinsic::aarch64_sve_uxtb:
3975 return DAG.getNode(
3976 AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
3977 Op.getOperand(2), Op.getOperand(3),
3978 DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)),
3979 Op.getOperand(1));
3980 case Intrinsic::aarch64_sve_uxth:
3981 return DAG.getNode(
3982 AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
3983 Op.getOperand(2), Op.getOperand(3),
3984 DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)),
3985 Op.getOperand(1));
3986 case Intrinsic::aarch64_sve_uxtw:
3987 return DAG.getNode(
3988 AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
3989 Op.getOperand(2), Op.getOperand(3),
3990 DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)),
3991 Op.getOperand(1));
3992
3993 case Intrinsic::localaddress: {
3994 const auto &MF = DAG.getMachineFunction();
3995 const auto *RegInfo = Subtarget->getRegisterInfo();
3996 unsigned Reg = RegInfo->getLocalAddressRegister(MF);
3997 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
3998 Op.getSimpleValueType());
3999 }
4000
4001 case Intrinsic::eh_recoverfp: {
4002 // FIXME: This needs to be implemented to correctly handle highly aligned
4003 // stack objects. For now we simply return the incoming FP. Refer D53541
4004 // for more details.
4005 SDValue FnOp = Op.getOperand(1);
4006 SDValue IncomingFPOp = Op.getOperand(2);
4007 GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
4008 auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
4009 if (!Fn)
4010 report_fatal_error(
4011 "llvm.eh.recoverfp must take a function as the first argument");
4012 return IncomingFPOp;
4013 }
4014
4015 case Intrinsic::aarch64_neon_vsri:
4016 case Intrinsic::aarch64_neon_vsli: {
4017 EVT Ty = Op.getValueType();
4018
4019 if (!Ty.isVector())
4020 report_fatal_error("Unexpected type for aarch64_neon_vsli");
4021
4022 assert(Op.getConstantOperandVal(3) <= Ty.getScalarSizeInBits());
4023
4024 bool IsShiftRight = IntNo == Intrinsic::aarch64_neon_vsri;
4025 unsigned Opcode = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI;
4026 return DAG.getNode(Opcode, dl, Ty, Op.getOperand(1), Op.getOperand(2),
4027 Op.getOperand(3));
4028 }
4029
4030 case Intrinsic::aarch64_neon_srhadd:
4031 case Intrinsic::aarch64_neon_urhadd:
4032 case Intrinsic::aarch64_neon_shadd:
4033 case Intrinsic::aarch64_neon_uhadd: {
4034 bool IsSignedAdd = (IntNo == Intrinsic::aarch64_neon_srhadd ||
4035 IntNo == Intrinsic::aarch64_neon_shadd);
4036 bool IsRoundingAdd = (IntNo == Intrinsic::aarch64_neon_srhadd ||
4037 IntNo == Intrinsic::aarch64_neon_urhadd);
4038 unsigned Opcode =
4039 IsSignedAdd ? (IsRoundingAdd ? AArch64ISD::SRHADD : AArch64ISD::SHADD)
4040 : (IsRoundingAdd ? AArch64ISD::URHADD : AArch64ISD::UHADD);
4041 return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1),
4042 Op.getOperand(2));
4043 }
4044 case Intrinsic::aarch64_neon_sabd:
4045 case Intrinsic::aarch64_neon_uabd: {
4046 unsigned Opcode = IntNo == Intrinsic::aarch64_neon_uabd ? AArch64ISD::UABD
4047 : AArch64ISD::SABD;
4048 return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1),
4049 Op.getOperand(2));
4050 }
4051 case Intrinsic::aarch64_neon_sdot:
4052 case Intrinsic::aarch64_neon_udot:
4053 case Intrinsic::aarch64_sve_sdot:
4054 case Intrinsic::aarch64_sve_udot: {
4055 unsigned Opcode = (IntNo == Intrinsic::aarch64_neon_udot ||
4056 IntNo == Intrinsic::aarch64_sve_udot)
4057 ? AArch64ISD::UDOT
4058 : AArch64ISD::SDOT;
4059 return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1),
4060 Op.getOperand(2), Op.getOperand(3));
4061 }
4062 }
4063 }
4064
shouldExtendGSIndex(EVT VT,EVT & EltTy) const4065 bool AArch64TargetLowering::shouldExtendGSIndex(EVT VT, EVT &EltTy) const {
4066 if (VT.getVectorElementType() == MVT::i8 ||
4067 VT.getVectorElementType() == MVT::i16) {
4068 EltTy = MVT::i32;
4069 return true;
4070 }
4071 return false;
4072 }
4073
shouldRemoveExtendFromGSIndex(EVT VT) const4074 bool AArch64TargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
4075 if (VT.getVectorElementType() == MVT::i32 &&
4076 VT.getVectorElementCount().getKnownMinValue() >= 4)
4077 return true;
4078
4079 return false;
4080 }
4081
isVectorLoadExtDesirable(SDValue ExtVal) const4082 bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
4083 return ExtVal.getValueType().isScalableVector();
4084 }
4085
getGatherVecOpcode(bool IsScaled,bool IsSigned,bool NeedsExtend)4086 unsigned getGatherVecOpcode(bool IsScaled, bool IsSigned, bool NeedsExtend) {
4087 std::map<std::tuple<bool, bool, bool>, unsigned> AddrModes = {
4088 {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ false),
4089 AArch64ISD::GLD1_MERGE_ZERO},
4090 {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ true),
4091 AArch64ISD::GLD1_UXTW_MERGE_ZERO},
4092 {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ false),
4093 AArch64ISD::GLD1_MERGE_ZERO},
4094 {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ true),
4095 AArch64ISD::GLD1_SXTW_MERGE_ZERO},
4096 {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ false),
4097 AArch64ISD::GLD1_SCALED_MERGE_ZERO},
4098 {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ true),
4099 AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO},
4100 {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ false),
4101 AArch64ISD::GLD1_SCALED_MERGE_ZERO},
4102 {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ true),
4103 AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO},
4104 };
4105 auto Key = std::make_tuple(IsScaled, IsSigned, NeedsExtend);
4106 return AddrModes.find(Key)->second;
4107 }
4108
getScatterVecOpcode(bool IsScaled,bool IsSigned,bool NeedsExtend)4109 unsigned getScatterVecOpcode(bool IsScaled, bool IsSigned, bool NeedsExtend) {
4110 std::map<std::tuple<bool, bool, bool>, unsigned> AddrModes = {
4111 {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ false),
4112 AArch64ISD::SST1_PRED},
4113 {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ true),
4114 AArch64ISD::SST1_UXTW_PRED},
4115 {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ false),
4116 AArch64ISD::SST1_PRED},
4117 {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ true),
4118 AArch64ISD::SST1_SXTW_PRED},
4119 {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ false),
4120 AArch64ISD::SST1_SCALED_PRED},
4121 {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ true),
4122 AArch64ISD::SST1_UXTW_SCALED_PRED},
4123 {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ false),
4124 AArch64ISD::SST1_SCALED_PRED},
4125 {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ true),
4126 AArch64ISD::SST1_SXTW_SCALED_PRED},
4127 };
4128 auto Key = std::make_tuple(IsScaled, IsSigned, NeedsExtend);
4129 return AddrModes.find(Key)->second;
4130 }
4131
getSignExtendedGatherOpcode(unsigned Opcode)4132 unsigned getSignExtendedGatherOpcode(unsigned Opcode) {
4133 switch (Opcode) {
4134 default:
4135 llvm_unreachable("unimplemented opcode");
4136 return Opcode;
4137 case AArch64ISD::GLD1_MERGE_ZERO:
4138 return AArch64ISD::GLD1S_MERGE_ZERO;
4139 case AArch64ISD::GLD1_IMM_MERGE_ZERO:
4140 return AArch64ISD::GLD1S_IMM_MERGE_ZERO;
4141 case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
4142 return AArch64ISD::GLD1S_UXTW_MERGE_ZERO;
4143 case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
4144 return AArch64ISD::GLD1S_SXTW_MERGE_ZERO;
4145 case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
4146 return AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
4147 case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
4148 return AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO;
4149 case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
4150 return AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO;
4151 }
4152 }
4153
getGatherScatterIndexIsExtended(SDValue Index)4154 bool getGatherScatterIndexIsExtended(SDValue Index) {
4155 unsigned Opcode = Index.getOpcode();
4156 if (Opcode == ISD::SIGN_EXTEND_INREG)
4157 return true;
4158
4159 if (Opcode == ISD::AND) {
4160 SDValue Splat = Index.getOperand(1);
4161 if (Splat.getOpcode() != ISD::SPLAT_VECTOR)
4162 return false;
4163 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Splat.getOperand(0));
4164 if (!Mask || Mask->getZExtValue() != 0xFFFFFFFF)
4165 return false;
4166 return true;
4167 }
4168
4169 return false;
4170 }
4171
4172 // If the base pointer of a masked gather or scatter is null, we
4173 // may be able to swap BasePtr & Index and use the vector + register
4174 // or vector + immediate addressing mode, e.g.
4175 // VECTOR + REGISTER:
4176 // getelementptr nullptr, <vscale x N x T> (splat(%offset)) + %indices)
4177 // -> getelementptr %offset, <vscale x N x T> %indices
4178 // VECTOR + IMMEDIATE:
4179 // getelementptr nullptr, <vscale x N x T> (splat(#x)) + %indices)
4180 // -> getelementptr #x, <vscale x N x T> %indices
selectGatherScatterAddrMode(SDValue & BasePtr,SDValue & Index,EVT MemVT,unsigned & Opcode,bool IsGather,SelectionDAG & DAG)4181 void selectGatherScatterAddrMode(SDValue &BasePtr, SDValue &Index, EVT MemVT,
4182 unsigned &Opcode, bool IsGather,
4183 SelectionDAG &DAG) {
4184 if (!isNullConstant(BasePtr))
4185 return;
4186
4187 ConstantSDNode *Offset = nullptr;
4188 if (Index.getOpcode() == ISD::ADD)
4189 if (auto SplatVal = DAG.getSplatValue(Index.getOperand(1))) {
4190 if (isa<ConstantSDNode>(SplatVal))
4191 Offset = cast<ConstantSDNode>(SplatVal);
4192 else {
4193 BasePtr = SplatVal;
4194 Index = Index->getOperand(0);
4195 return;
4196 }
4197 }
4198
4199 unsigned NewOp =
4200 IsGather ? AArch64ISD::GLD1_IMM_MERGE_ZERO : AArch64ISD::SST1_IMM_PRED;
4201
4202 if (!Offset) {
4203 std::swap(BasePtr, Index);
4204 Opcode = NewOp;
4205 return;
4206 }
4207
4208 uint64_t OffsetVal = Offset->getZExtValue();
4209 unsigned ScalarSizeInBytes = MemVT.getScalarSizeInBits() / 8;
4210 auto ConstOffset = DAG.getConstant(OffsetVal, SDLoc(Index), MVT::i64);
4211
4212 if (OffsetVal % ScalarSizeInBytes || OffsetVal / ScalarSizeInBytes > 31) {
4213 // Index is out of range for the immediate addressing mode
4214 BasePtr = ConstOffset;
4215 Index = Index->getOperand(0);
4216 return;
4217 }
4218
4219 // Immediate is in range
4220 Opcode = NewOp;
4221 BasePtr = Index->getOperand(0);
4222 Index = ConstOffset;
4223 }
4224
LowerMGATHER(SDValue Op,SelectionDAG & DAG) const4225 SDValue AArch64TargetLowering::LowerMGATHER(SDValue Op,
4226 SelectionDAG &DAG) const {
4227 SDLoc DL(Op);
4228 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(Op);
4229 assert(MGT && "Can only custom lower gather load nodes");
4230
4231 SDValue Index = MGT->getIndex();
4232 SDValue Chain = MGT->getChain();
4233 SDValue PassThru = MGT->getPassThru();
4234 SDValue Mask = MGT->getMask();
4235 SDValue BasePtr = MGT->getBasePtr();
4236 ISD::LoadExtType ExtTy = MGT->getExtensionType();
4237
4238 ISD::MemIndexType IndexType = MGT->getIndexType();
4239 bool IsScaled =
4240 IndexType == ISD::SIGNED_SCALED || IndexType == ISD::UNSIGNED_SCALED;
4241 bool IsSigned =
4242 IndexType == ISD::SIGNED_SCALED || IndexType == ISD::SIGNED_UNSCALED;
4243 bool IdxNeedsExtend =
4244 getGatherScatterIndexIsExtended(Index) ||
4245 Index.getSimpleValueType().getVectorElementType() == MVT::i32;
4246 bool ResNeedsSignExtend = ExtTy == ISD::EXTLOAD || ExtTy == ISD::SEXTLOAD;
4247
4248 EVT VT = PassThru.getSimpleValueType();
4249 EVT MemVT = MGT->getMemoryVT();
4250 SDValue InputVT = DAG.getValueType(MemVT);
4251
4252 if (VT.getVectorElementType() == MVT::bf16 &&
4253 !static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasBF16())
4254 return SDValue();
4255
4256 // Handle FP data by using an integer gather and casting the result.
4257 if (VT.isFloatingPoint()) {
4258 EVT PassThruVT = getPackedSVEVectorVT(VT.getVectorElementCount());
4259 PassThru = getSVESafeBitCast(PassThruVT, PassThru, DAG);
4260 InputVT = DAG.getValueType(MemVT.changeVectorElementTypeToInteger());
4261 }
4262
4263 SDVTList VTs = DAG.getVTList(PassThru.getSimpleValueType(), MVT::Other);
4264
4265 if (getGatherScatterIndexIsExtended(Index))
4266 Index = Index.getOperand(0);
4267
4268 unsigned Opcode = getGatherVecOpcode(IsScaled, IsSigned, IdxNeedsExtend);
4269 selectGatherScatterAddrMode(BasePtr, Index, MemVT, Opcode,
4270 /*isGather=*/true, DAG);
4271
4272 if (ResNeedsSignExtend)
4273 Opcode = getSignExtendedGatherOpcode(Opcode);
4274
4275 SDValue Ops[] = {Chain, Mask, BasePtr, Index, InputVT, PassThru};
4276 SDValue Gather = DAG.getNode(Opcode, DL, VTs, Ops);
4277
4278 if (VT.isFloatingPoint()) {
4279 SDValue Cast = getSVESafeBitCast(VT, Gather, DAG);
4280 return DAG.getMergeValues({Cast, Gather.getValue(1)}, DL);
4281 }
4282
4283 return Gather;
4284 }
4285
LowerMSCATTER(SDValue Op,SelectionDAG & DAG) const4286 SDValue AArch64TargetLowering::LowerMSCATTER(SDValue Op,
4287 SelectionDAG &DAG) const {
4288 SDLoc DL(Op);
4289 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(Op);
4290 assert(MSC && "Can only custom lower scatter store nodes");
4291
4292 SDValue Index = MSC->getIndex();
4293 SDValue Chain = MSC->getChain();
4294 SDValue StoreVal = MSC->getValue();
4295 SDValue Mask = MSC->getMask();
4296 SDValue BasePtr = MSC->getBasePtr();
4297
4298 ISD::MemIndexType IndexType = MSC->getIndexType();
4299 bool IsScaled =
4300 IndexType == ISD::SIGNED_SCALED || IndexType == ISD::UNSIGNED_SCALED;
4301 bool IsSigned =
4302 IndexType == ISD::SIGNED_SCALED || IndexType == ISD::SIGNED_UNSCALED;
4303 bool NeedsExtend =
4304 getGatherScatterIndexIsExtended(Index) ||
4305 Index.getSimpleValueType().getVectorElementType() == MVT::i32;
4306
4307 EVT VT = StoreVal.getSimpleValueType();
4308 SDVTList VTs = DAG.getVTList(MVT::Other);
4309 EVT MemVT = MSC->getMemoryVT();
4310 SDValue InputVT = DAG.getValueType(MemVT);
4311
4312 if (VT.getVectorElementType() == MVT::bf16 &&
4313 !static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasBF16())
4314 return SDValue();
4315
4316 // Handle FP data by casting the data so an integer scatter can be used.
4317 if (VT.isFloatingPoint()) {
4318 EVT StoreValVT = getPackedSVEVectorVT(VT.getVectorElementCount());
4319 StoreVal = getSVESafeBitCast(StoreValVT, StoreVal, DAG);
4320 InputVT = DAG.getValueType(MemVT.changeVectorElementTypeToInteger());
4321 }
4322
4323 if (getGatherScatterIndexIsExtended(Index))
4324 Index = Index.getOperand(0);
4325
4326 unsigned Opcode = getScatterVecOpcode(IsScaled, IsSigned, NeedsExtend);
4327 selectGatherScatterAddrMode(BasePtr, Index, MemVT, Opcode,
4328 /*isGather=*/false, DAG);
4329
4330 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, InputVT};
4331 return DAG.getNode(Opcode, DL, VTs, Ops);
4332 }
4333
4334 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
LowerTruncateVectorStore(SDLoc DL,StoreSDNode * ST,EVT VT,EVT MemVT,SelectionDAG & DAG)4335 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
4336 EVT VT, EVT MemVT,
4337 SelectionDAG &DAG) {
4338 assert(VT.isVector() && "VT should be a vector type");
4339 assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
4340
4341 SDValue Value = ST->getValue();
4342
4343 // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
4344 // the word lane which represent the v4i8 subvector. It optimizes the store
4345 // to:
4346 //
4347 // xtn v0.8b, v0.8h
4348 // str s0, [x0]
4349
4350 SDValue Undef = DAG.getUNDEF(MVT::i16);
4351 SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
4352 {Undef, Undef, Undef, Undef});
4353
4354 SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
4355 Value, UndefVec);
4356 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
4357
4358 Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
4359 SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
4360 Trunc, DAG.getConstant(0, DL, MVT::i64));
4361
4362 return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
4363 ST->getBasePtr(), ST->getMemOperand());
4364 }
4365
4366 // Custom lowering for any store, vector or scalar and/or default or with
4367 // a truncate operations. Currently only custom lower truncate operation
4368 // from vector v4i16 to v4i8 or volatile stores of i128.
LowerSTORE(SDValue Op,SelectionDAG & DAG) const4369 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
4370 SelectionDAG &DAG) const {
4371 SDLoc Dl(Op);
4372 StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
4373 assert (StoreNode && "Can only custom lower store nodes");
4374
4375 SDValue Value = StoreNode->getValue();
4376
4377 EVT VT = Value.getValueType();
4378 EVT MemVT = StoreNode->getMemoryVT();
4379
4380 if (VT.isVector()) {
4381 if (useSVEForFixedLengthVectorVT(VT))
4382 return LowerFixedLengthVectorStoreToSVE(Op, DAG);
4383
4384 unsigned AS = StoreNode->getAddressSpace();
4385 Align Alignment = StoreNode->getAlign();
4386 if (Alignment < MemVT.getStoreSize() &&
4387 !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment,
4388 StoreNode->getMemOperand()->getFlags(),
4389 nullptr)) {
4390 return scalarizeVectorStore(StoreNode, DAG);
4391 }
4392
4393 if (StoreNode->isTruncatingStore()) {
4394 return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
4395 }
4396 // 256 bit non-temporal stores can be lowered to STNP. Do this as part of
4397 // the custom lowering, as there are no un-paired non-temporal stores and
4398 // legalization will break up 256 bit inputs.
4399 ElementCount EC = MemVT.getVectorElementCount();
4400 if (StoreNode->isNonTemporal() && MemVT.getSizeInBits() == 256u &&
4401 EC.isKnownEven() &&
4402 ((MemVT.getScalarSizeInBits() == 8u ||
4403 MemVT.getScalarSizeInBits() == 16u ||
4404 MemVT.getScalarSizeInBits() == 32u ||
4405 MemVT.getScalarSizeInBits() == 64u))) {
4406 SDValue Lo =
4407 DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl,
4408 MemVT.getHalfNumVectorElementsVT(*DAG.getContext()),
4409 StoreNode->getValue(), DAG.getConstant(0, Dl, MVT::i64));
4410 SDValue Hi =
4411 DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl,
4412 MemVT.getHalfNumVectorElementsVT(*DAG.getContext()),
4413 StoreNode->getValue(),
4414 DAG.getConstant(EC.getKnownMinValue() / 2, Dl, MVT::i64));
4415 SDValue Result = DAG.getMemIntrinsicNode(
4416 AArch64ISD::STNP, Dl, DAG.getVTList(MVT::Other),
4417 {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()},
4418 StoreNode->getMemoryVT(), StoreNode->getMemOperand());
4419 return Result;
4420 }
4421 } else if (MemVT == MVT::i128 && StoreNode->isVolatile()) {
4422 assert(StoreNode->getValue()->getValueType(0) == MVT::i128);
4423 SDValue Lo =
4424 DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(),
4425 DAG.getConstant(0, Dl, MVT::i64));
4426 SDValue Hi =
4427 DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(),
4428 DAG.getConstant(1, Dl, MVT::i64));
4429 SDValue Result = DAG.getMemIntrinsicNode(
4430 AArch64ISD::STP, Dl, DAG.getVTList(MVT::Other),
4431 {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()},
4432 StoreNode->getMemoryVT(), StoreNode->getMemOperand());
4433 return Result;
4434 }
4435
4436 return SDValue();
4437 }
4438
4439 // Generate SUBS and CSEL for integer abs.
LowerABS(SDValue Op,SelectionDAG & DAG) const4440 SDValue AArch64TargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
4441 MVT VT = Op.getSimpleValueType();
4442
4443 if (VT.isVector())
4444 return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABS_MERGE_PASSTHRU);
4445
4446 SDLoc DL(Op);
4447 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
4448 Op.getOperand(0));
4449 // Generate SUBS & CSEL.
4450 SDValue Cmp =
4451 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
4452 Op.getOperand(0), DAG.getConstant(0, DL, VT));
4453 return DAG.getNode(AArch64ISD::CSEL, DL, VT, Op.getOperand(0), Neg,
4454 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
4455 Cmp.getValue(1));
4456 }
4457
LowerOperation(SDValue Op,SelectionDAG & DAG) const4458 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
4459 SelectionDAG &DAG) const {
4460 LLVM_DEBUG(dbgs() << "Custom lowering: ");
4461 LLVM_DEBUG(Op.dump());
4462
4463 switch (Op.getOpcode()) {
4464 default:
4465 llvm_unreachable("unimplemented operand");
4466 return SDValue();
4467 case ISD::BITCAST:
4468 return LowerBITCAST(Op, DAG);
4469 case ISD::GlobalAddress:
4470 return LowerGlobalAddress(Op, DAG);
4471 case ISD::GlobalTLSAddress:
4472 return LowerGlobalTLSAddress(Op, DAG);
4473 case ISD::SETCC:
4474 case ISD::STRICT_FSETCC:
4475 case ISD::STRICT_FSETCCS:
4476 return LowerSETCC(Op, DAG);
4477 case ISD::BR_CC:
4478 return LowerBR_CC(Op, DAG);
4479 case ISD::SELECT:
4480 return LowerSELECT(Op, DAG);
4481 case ISD::SELECT_CC:
4482 return LowerSELECT_CC(Op, DAG);
4483 case ISD::JumpTable:
4484 return LowerJumpTable(Op, DAG);
4485 case ISD::BR_JT:
4486 return LowerBR_JT(Op, DAG);
4487 case ISD::ConstantPool:
4488 return LowerConstantPool(Op, DAG);
4489 case ISD::BlockAddress:
4490 return LowerBlockAddress(Op, DAG);
4491 case ISD::VASTART:
4492 return LowerVASTART(Op, DAG);
4493 case ISD::VACOPY:
4494 return LowerVACOPY(Op, DAG);
4495 case ISD::VAARG:
4496 return LowerVAARG(Op, DAG);
4497 case ISD::ADDC:
4498 case ISD::ADDE:
4499 case ISD::SUBC:
4500 case ISD::SUBE:
4501 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
4502 case ISD::SADDO:
4503 case ISD::UADDO:
4504 case ISD::SSUBO:
4505 case ISD::USUBO:
4506 case ISD::SMULO:
4507 case ISD::UMULO:
4508 return LowerXALUO(Op, DAG);
4509 case ISD::FADD:
4510 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FADD_PRED);
4511 case ISD::FSUB:
4512 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSUB_PRED);
4513 case ISD::FMUL:
4514 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMUL_PRED);
4515 case ISD::FMA:
4516 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMA_PRED);
4517 case ISD::FDIV:
4518 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FDIV_PRED);
4519 case ISD::FNEG:
4520 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEG_MERGE_PASSTHRU);
4521 case ISD::FCEIL:
4522 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FCEIL_MERGE_PASSTHRU);
4523 case ISD::FFLOOR:
4524 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FFLOOR_MERGE_PASSTHRU);
4525 case ISD::FNEARBYINT:
4526 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEARBYINT_MERGE_PASSTHRU);
4527 case ISD::FRINT:
4528 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FRINT_MERGE_PASSTHRU);
4529 case ISD::FROUND:
4530 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUND_MERGE_PASSTHRU);
4531 case ISD::FROUNDEVEN:
4532 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU);
4533 case ISD::FTRUNC:
4534 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FTRUNC_MERGE_PASSTHRU);
4535 case ISD::FSQRT:
4536 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSQRT_MERGE_PASSTHRU);
4537 case ISD::FABS:
4538 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FABS_MERGE_PASSTHRU);
4539 case ISD::FP_ROUND:
4540 case ISD::STRICT_FP_ROUND:
4541 return LowerFP_ROUND(Op, DAG);
4542 case ISD::FP_EXTEND:
4543 return LowerFP_EXTEND(Op, DAG);
4544 case ISD::FRAMEADDR:
4545 return LowerFRAMEADDR(Op, DAG);
4546 case ISD::SPONENTRY:
4547 return LowerSPONENTRY(Op, DAG);
4548 case ISD::RETURNADDR:
4549 return LowerRETURNADDR(Op, DAG);
4550 case ISD::ADDROFRETURNADDR:
4551 return LowerADDROFRETURNADDR(Op, DAG);
4552 case ISD::CONCAT_VECTORS:
4553 return LowerCONCAT_VECTORS(Op, DAG);
4554 case ISD::INSERT_VECTOR_ELT:
4555 return LowerINSERT_VECTOR_ELT(Op, DAG);
4556 case ISD::EXTRACT_VECTOR_ELT:
4557 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4558 case ISD::BUILD_VECTOR:
4559 return LowerBUILD_VECTOR(Op, DAG);
4560 case ISD::VECTOR_SHUFFLE:
4561 return LowerVECTOR_SHUFFLE(Op, DAG);
4562 case ISD::SPLAT_VECTOR:
4563 return LowerSPLAT_VECTOR(Op, DAG);
4564 case ISD::EXTRACT_SUBVECTOR:
4565 return LowerEXTRACT_SUBVECTOR(Op, DAG);
4566 case ISD::INSERT_SUBVECTOR:
4567 return LowerINSERT_SUBVECTOR(Op, DAG);
4568 case ISD::SDIV:
4569 case ISD::UDIV:
4570 return LowerDIV(Op, DAG);
4571 case ISD::SMIN:
4572 return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMIN_PRED,
4573 /*OverrideNEON=*/true);
4574 case ISD::UMIN:
4575 return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMIN_PRED,
4576 /*OverrideNEON=*/true);
4577 case ISD::SMAX:
4578 return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMAX_PRED,
4579 /*OverrideNEON=*/true);
4580 case ISD::UMAX:
4581 return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMAX_PRED,
4582 /*OverrideNEON=*/true);
4583 case ISD::SRA:
4584 case ISD::SRL:
4585 case ISD::SHL:
4586 return LowerVectorSRA_SRL_SHL(Op, DAG);
4587 case ISD::SHL_PARTS:
4588 case ISD::SRL_PARTS:
4589 case ISD::SRA_PARTS:
4590 return LowerShiftParts(Op, DAG);
4591 case ISD::CTPOP:
4592 return LowerCTPOP(Op, DAG);
4593 case ISD::FCOPYSIGN:
4594 return LowerFCOPYSIGN(Op, DAG);
4595 case ISD::OR:
4596 return LowerVectorOR(Op, DAG);
4597 case ISD::XOR:
4598 return LowerXOR(Op, DAG);
4599 case ISD::PREFETCH:
4600 return LowerPREFETCH(Op, DAG);
4601 case ISD::SINT_TO_FP:
4602 case ISD::UINT_TO_FP:
4603 case ISD::STRICT_SINT_TO_FP:
4604 case ISD::STRICT_UINT_TO_FP:
4605 return LowerINT_TO_FP(Op, DAG);
4606 case ISD::FP_TO_SINT:
4607 case ISD::FP_TO_UINT:
4608 case ISD::STRICT_FP_TO_SINT:
4609 case ISD::STRICT_FP_TO_UINT:
4610 return LowerFP_TO_INT(Op, DAG);
4611 case ISD::FP_TO_SINT_SAT:
4612 case ISD::FP_TO_UINT_SAT:
4613 return LowerFP_TO_INT_SAT(Op, DAG);
4614 case ISD::FSINCOS:
4615 return LowerFSINCOS(Op, DAG);
4616 case ISD::FLT_ROUNDS_:
4617 return LowerFLT_ROUNDS_(Op, DAG);
4618 case ISD::SET_ROUNDING:
4619 return LowerSET_ROUNDING(Op, DAG);
4620 case ISD::MUL:
4621 return LowerMUL(Op, DAG);
4622 case ISD::MULHS:
4623 return LowerToPredicatedOp(Op, DAG, AArch64ISD::MULHS_PRED,
4624 /*OverrideNEON=*/true);
4625 case ISD::MULHU:
4626 return LowerToPredicatedOp(Op, DAG, AArch64ISD::MULHU_PRED,
4627 /*OverrideNEON=*/true);
4628 case ISD::INTRINSIC_WO_CHAIN:
4629 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4630 case ISD::STORE:
4631 return LowerSTORE(Op, DAG);
4632 case ISD::MSTORE:
4633 return LowerFixedLengthVectorMStoreToSVE(Op, DAG);
4634 case ISD::MGATHER:
4635 return LowerMGATHER(Op, DAG);
4636 case ISD::MSCATTER:
4637 return LowerMSCATTER(Op, DAG);
4638 case ISD::VECREDUCE_SEQ_FADD:
4639 return LowerVECREDUCE_SEQ_FADD(Op, DAG);
4640 case ISD::VECREDUCE_ADD:
4641 case ISD::VECREDUCE_AND:
4642 case ISD::VECREDUCE_OR:
4643 case ISD::VECREDUCE_XOR:
4644 case ISD::VECREDUCE_SMAX:
4645 case ISD::VECREDUCE_SMIN:
4646 case ISD::VECREDUCE_UMAX:
4647 case ISD::VECREDUCE_UMIN:
4648 case ISD::VECREDUCE_FADD:
4649 case ISD::VECREDUCE_FMAX:
4650 case ISD::VECREDUCE_FMIN:
4651 return LowerVECREDUCE(Op, DAG);
4652 case ISD::ATOMIC_LOAD_SUB:
4653 return LowerATOMIC_LOAD_SUB(Op, DAG);
4654 case ISD::ATOMIC_LOAD_AND:
4655 return LowerATOMIC_LOAD_AND(Op, DAG);
4656 case ISD::DYNAMIC_STACKALLOC:
4657 return LowerDYNAMIC_STACKALLOC(Op, DAG);
4658 case ISD::VSCALE:
4659 return LowerVSCALE(Op, DAG);
4660 case ISD::ANY_EXTEND:
4661 case ISD::SIGN_EXTEND:
4662 case ISD::ZERO_EXTEND:
4663 return LowerFixedLengthVectorIntExtendToSVE(Op, DAG);
4664 case ISD::SIGN_EXTEND_INREG: {
4665 // Only custom lower when ExtraVT has a legal byte based element type.
4666 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4667 EVT ExtraEltVT = ExtraVT.getVectorElementType();
4668 if ((ExtraEltVT != MVT::i8) && (ExtraEltVT != MVT::i16) &&
4669 (ExtraEltVT != MVT::i32) && (ExtraEltVT != MVT::i64))
4670 return SDValue();
4671
4672 return LowerToPredicatedOp(Op, DAG,
4673 AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU);
4674 }
4675 case ISD::TRUNCATE:
4676 return LowerTRUNCATE(Op, DAG);
4677 case ISD::MLOAD:
4678 return LowerFixedLengthVectorMLoadToSVE(Op, DAG);
4679 case ISD::LOAD:
4680 if (useSVEForFixedLengthVectorVT(Op.getValueType()))
4681 return LowerFixedLengthVectorLoadToSVE(Op, DAG);
4682 llvm_unreachable("Unexpected request to lower ISD::LOAD");
4683 case ISD::ADD:
4684 return LowerToPredicatedOp(Op, DAG, AArch64ISD::ADD_PRED);
4685 case ISD::AND:
4686 return LowerToScalableOp(Op, DAG);
4687 case ISD::SUB:
4688 return LowerToPredicatedOp(Op, DAG, AArch64ISD::SUB_PRED);
4689 case ISD::FMAXIMUM:
4690 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAX_PRED);
4691 case ISD::FMAXNUM:
4692 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAXNM_PRED);
4693 case ISD::FMINIMUM:
4694 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMIN_PRED);
4695 case ISD::FMINNUM:
4696 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMINNM_PRED);
4697 case ISD::VSELECT:
4698 return LowerFixedLengthVectorSelectToSVE(Op, DAG);
4699 case ISD::ABS:
4700 return LowerABS(Op, DAG);
4701 case ISD::BITREVERSE:
4702 return LowerToPredicatedOp(Op, DAG, AArch64ISD::BITREVERSE_MERGE_PASSTHRU,
4703 /*OverrideNEON=*/true);
4704 case ISD::BSWAP:
4705 return LowerToPredicatedOp(Op, DAG, AArch64ISD::BSWAP_MERGE_PASSTHRU);
4706 case ISD::CTLZ:
4707 return LowerToPredicatedOp(Op, DAG, AArch64ISD::CTLZ_MERGE_PASSTHRU,
4708 /*OverrideNEON=*/true);
4709 case ISD::CTTZ:
4710 return LowerCTTZ(Op, DAG);
4711 }
4712 }
4713
mergeStoresAfterLegalization(EVT VT) const4714 bool AArch64TargetLowering::mergeStoresAfterLegalization(EVT VT) const {
4715 return !Subtarget->useSVEForFixedLengthVectors();
4716 }
4717
useSVEForFixedLengthVectorVT(EVT VT,bool OverrideNEON) const4718 bool AArch64TargetLowering::useSVEForFixedLengthVectorVT(
4719 EVT VT, bool OverrideNEON) const {
4720 if (!Subtarget->useSVEForFixedLengthVectors())
4721 return false;
4722
4723 if (!VT.isFixedLengthVector())
4724 return false;
4725
4726 // Don't use SVE for vectors we cannot scalarize if required.
4727 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
4728 // Fixed length predicates should be promoted to i8.
4729 // NOTE: This is consistent with how NEON (and thus 64/128bit vectors) work.
4730 case MVT::i1:
4731 default:
4732 return false;
4733 case MVT::i8:
4734 case MVT::i16:
4735 case MVT::i32:
4736 case MVT::i64:
4737 case MVT::f16:
4738 case MVT::f32:
4739 case MVT::f64:
4740 break;
4741 }
4742
4743 // All SVE implementations support NEON sized vectors.
4744 if (OverrideNEON && (VT.is128BitVector() || VT.is64BitVector()))
4745 return true;
4746
4747 // Ensure NEON MVTs only belong to a single register class.
4748 if (VT.getFixedSizeInBits() <= 128)
4749 return false;
4750
4751 // Don't use SVE for types that don't fit.
4752 if (VT.getFixedSizeInBits() > Subtarget->getMinSVEVectorSizeInBits())
4753 return false;
4754
4755 // TODO: Perhaps an artificial restriction, but worth having whilst getting
4756 // the base fixed length SVE support in place.
4757 if (!VT.isPow2VectorType())
4758 return false;
4759
4760 return true;
4761 }
4762
4763 //===----------------------------------------------------------------------===//
4764 // Calling Convention Implementation
4765 //===----------------------------------------------------------------------===//
4766
4767 /// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg) const4768 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
4769 bool IsVarArg) const {
4770 switch (CC) {
4771 default:
4772 report_fatal_error("Unsupported calling convention.");
4773 case CallingConv::WebKit_JS:
4774 return CC_AArch64_WebKit_JS;
4775 case CallingConv::GHC:
4776 return CC_AArch64_GHC;
4777 case CallingConv::C:
4778 case CallingConv::Fast:
4779 case CallingConv::PreserveMost:
4780 case CallingConv::CXX_FAST_TLS:
4781 case CallingConv::Swift:
4782 case CallingConv::SwiftTail:
4783 case CallingConv::Tail:
4784 if (Subtarget->isTargetWindows() && IsVarArg)
4785 return CC_AArch64_Win64_VarArg;
4786 if (!Subtarget->isTargetDarwin())
4787 return CC_AArch64_AAPCS;
4788 if (!IsVarArg)
4789 return CC_AArch64_DarwinPCS;
4790 return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg
4791 : CC_AArch64_DarwinPCS_VarArg;
4792 case CallingConv::Win64:
4793 return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
4794 case CallingConv::CFGuard_Check:
4795 return CC_AArch64_Win64_CFGuard_Check;
4796 case CallingConv::AArch64_VectorCall:
4797 case CallingConv::AArch64_SVE_VectorCall:
4798 return CC_AArch64_AAPCS;
4799 }
4800 }
4801
4802 CCAssignFn *
CCAssignFnForReturn(CallingConv::ID CC) const4803 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
4804 return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
4805 : RetCC_AArch64_AAPCS;
4806 }
4807
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4808 SDValue AArch64TargetLowering::LowerFormalArguments(
4809 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4810 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
4811 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4812 MachineFunction &MF = DAG.getMachineFunction();
4813 MachineFrameInfo &MFI = MF.getFrameInfo();
4814 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
4815
4816 // Assign locations to all of the incoming arguments.
4817 SmallVector<CCValAssign, 16> ArgLocs;
4818 DenseMap<unsigned, SDValue> CopiedRegs;
4819 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4820 *DAG.getContext());
4821
4822 // At this point, Ins[].VT may already be promoted to i32. To correctly
4823 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
4824 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
4825 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
4826 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
4827 // LocVT.
4828 unsigned NumArgs = Ins.size();
4829 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4830 unsigned CurArgIdx = 0;
4831 for (unsigned i = 0; i != NumArgs; ++i) {
4832 MVT ValVT = Ins[i].VT;
4833 if (Ins[i].isOrigArg()) {
4834 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
4835 CurArgIdx = Ins[i].getOrigArgIndex();
4836
4837 // Get type of the original argument.
4838 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
4839 /*AllowUnknown*/ true);
4840 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
4841 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
4842 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
4843 ValVT = MVT::i8;
4844 else if (ActualMVT == MVT::i16)
4845 ValVT = MVT::i16;
4846 }
4847 bool UseVarArgCC = false;
4848 if (IsWin64)
4849 UseVarArgCC = isVarArg;
4850 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, UseVarArgCC);
4851 bool Res =
4852 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
4853 assert(!Res && "Call operand has unhandled type");
4854 (void)Res;
4855 }
4856 SmallVector<SDValue, 16> ArgValues;
4857 unsigned ExtraArgLocs = 0;
4858 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4859 CCValAssign &VA = ArgLocs[i - ExtraArgLocs];
4860
4861 if (Ins[i].Flags.isByVal()) {
4862 // Byval is used for HFAs in the PCS, but the system should work in a
4863 // non-compliant manner for larger structs.
4864 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4865 int Size = Ins[i].Flags.getByValSize();
4866 unsigned NumRegs = (Size + 7) / 8;
4867
4868 // FIXME: This works on big-endian for composite byvals, which are the common
4869 // case. It should also work for fundamental types too.
4870 unsigned FrameIdx =
4871 MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
4872 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
4873 InVals.push_back(FrameIdxN);
4874
4875 continue;
4876 }
4877
4878 if (Ins[i].Flags.isSwiftAsync())
4879 MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
4880
4881 SDValue ArgValue;
4882 if (VA.isRegLoc()) {
4883 // Arguments stored in registers.
4884 EVT RegVT = VA.getLocVT();
4885 const TargetRegisterClass *RC;
4886
4887 if (RegVT == MVT::i32)
4888 RC = &AArch64::GPR32RegClass;
4889 else if (RegVT == MVT::i64)
4890 RC = &AArch64::GPR64RegClass;
4891 else if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4892 RC = &AArch64::FPR16RegClass;
4893 else if (RegVT == MVT::f32)
4894 RC = &AArch64::FPR32RegClass;
4895 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
4896 RC = &AArch64::FPR64RegClass;
4897 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
4898 RC = &AArch64::FPR128RegClass;
4899 else if (RegVT.isScalableVector() &&
4900 RegVT.getVectorElementType() == MVT::i1)
4901 RC = &AArch64::PPRRegClass;
4902 else if (RegVT.isScalableVector())
4903 RC = &AArch64::ZPRRegClass;
4904 else
4905 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4906
4907 // Transform the arguments in physical registers into virtual ones.
4908 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4909 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
4910
4911 // If this is an 8, 16 or 32-bit value, it is really passed promoted
4912 // to 64 bits. Insert an assert[sz]ext to capture this, then
4913 // truncate to the right size.
4914 switch (VA.getLocInfo()) {
4915 default:
4916 llvm_unreachable("Unknown loc info!");
4917 case CCValAssign::Full:
4918 break;
4919 case CCValAssign::Indirect:
4920 assert(VA.getValVT().isScalableVector() &&
4921 "Only scalable vectors can be passed indirectly");
4922 break;
4923 case CCValAssign::BCvt:
4924 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
4925 break;
4926 case CCValAssign::AExt:
4927 case CCValAssign::SExt:
4928 case CCValAssign::ZExt:
4929 break;
4930 case CCValAssign::AExtUpper:
4931 ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue,
4932 DAG.getConstant(32, DL, RegVT));
4933 ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT());
4934 break;
4935 }
4936 } else { // VA.isRegLoc()
4937 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
4938 unsigned ArgOffset = VA.getLocMemOffset();
4939 unsigned ArgSize = (VA.getLocInfo() == CCValAssign::Indirect
4940 ? VA.getLocVT().getSizeInBits()
4941 : VA.getValVT().getSizeInBits()) / 8;
4942
4943 uint32_t BEAlign = 0;
4944 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
4945 !Ins[i].Flags.isInConsecutiveRegs())
4946 BEAlign = 8 - ArgSize;
4947
4948 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
4949
4950 // Create load nodes to retrieve arguments from the stack.
4951 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4952
4953 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
4954 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
4955 MVT MemVT = VA.getValVT();
4956
4957 switch (VA.getLocInfo()) {
4958 default:
4959 break;
4960 case CCValAssign::Trunc:
4961 case CCValAssign::BCvt:
4962 MemVT = VA.getLocVT();
4963 break;
4964 case CCValAssign::Indirect:
4965 assert(VA.getValVT().isScalableVector() &&
4966 "Only scalable vectors can be passed indirectly");
4967 MemVT = VA.getLocVT();
4968 break;
4969 case CCValAssign::SExt:
4970 ExtType = ISD::SEXTLOAD;
4971 break;
4972 case CCValAssign::ZExt:
4973 ExtType = ISD::ZEXTLOAD;
4974 break;
4975 case CCValAssign::AExt:
4976 ExtType = ISD::EXTLOAD;
4977 break;
4978 }
4979
4980 ArgValue = DAG.getExtLoad(
4981 ExtType, DL, VA.getLocVT(), Chain, FIN,
4982 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
4983 MemVT);
4984
4985 }
4986
4987 if (VA.getLocInfo() == CCValAssign::Indirect) {
4988 assert(VA.getValVT().isScalableVector() &&
4989 "Only scalable vectors can be passed indirectly");
4990
4991 uint64_t PartSize = VA.getValVT().getStoreSize().getKnownMinSize();
4992 unsigned NumParts = 1;
4993 if (Ins[i].Flags.isInConsecutiveRegs()) {
4994 assert(!Ins[i].Flags.isInConsecutiveRegsLast());
4995 while (!Ins[i + NumParts - 1].Flags.isInConsecutiveRegsLast())
4996 ++NumParts;
4997 }
4998
4999 MVT PartLoad = VA.getValVT();
5000 SDValue Ptr = ArgValue;
5001
5002 // Ensure we generate all loads for each tuple part, whilst updating the
5003 // pointer after each load correctly using vscale.
5004 while (NumParts > 0) {
5005 ArgValue = DAG.getLoad(PartLoad, DL, Chain, Ptr, MachinePointerInfo());
5006 InVals.push_back(ArgValue);
5007 NumParts--;
5008 if (NumParts > 0) {
5009 SDValue BytesIncrement = DAG.getVScale(
5010 DL, Ptr.getValueType(),
5011 APInt(Ptr.getValueSizeInBits().getFixedSize(), PartSize));
5012 SDNodeFlags Flags;
5013 Flags.setNoUnsignedWrap(true);
5014 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
5015 BytesIncrement, Flags);
5016 ExtraArgLocs++;
5017 i++;
5018 }
5019 }
5020 } else {
5021 if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer())
5022 ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(),
5023 ArgValue, DAG.getValueType(MVT::i32));
5024 InVals.push_back(ArgValue);
5025 }
5026 }
5027 assert((ArgLocs.size() + ExtraArgLocs) == Ins.size());
5028
5029 // varargs
5030 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
5031 if (isVarArg) {
5032 if (!Subtarget->isTargetDarwin() || IsWin64) {
5033 // The AAPCS variadic function ABI is identical to the non-variadic
5034 // one. As a result there may be more arguments in registers and we should
5035 // save them for future reference.
5036 // Win64 variadic functions also pass arguments in registers, but all float
5037 // arguments are passed in integer registers.
5038 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
5039 }
5040
5041 // This will point to the next argument passed via stack.
5042 unsigned StackOffset = CCInfo.getNextStackOffset();
5043 // We currently pass all varargs at 8-byte alignment, or 4 for ILP32
5044 StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8);
5045 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
5046
5047 if (MFI.hasMustTailInVarArgFunc()) {
5048 SmallVector<MVT, 2> RegParmTypes;
5049 RegParmTypes.push_back(MVT::i64);
5050 RegParmTypes.push_back(MVT::f128);
5051 // Compute the set of forwarded registers. The rest are scratch.
5052 SmallVectorImpl<ForwardedRegister> &Forwards =
5053 FuncInfo->getForwardedMustTailRegParms();
5054 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
5055 CC_AArch64_AAPCS);
5056
5057 // Conservatively forward X8, since it might be used for aggregate return.
5058 if (!CCInfo.isAllocated(AArch64::X8)) {
5059 unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
5060 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
5061 }
5062 }
5063 }
5064
5065 // On Windows, InReg pointers must be returned, so record the pointer in a
5066 // virtual register at the start of the function so it can be returned in the
5067 // epilogue.
5068 if (IsWin64) {
5069 for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
5070 if (Ins[I].Flags.isInReg()) {
5071 assert(!FuncInfo->getSRetReturnReg());
5072
5073 MVT PtrTy = getPointerTy(DAG.getDataLayout());
5074 Register Reg =
5075 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
5076 FuncInfo->setSRetReturnReg(Reg);
5077
5078 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]);
5079 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
5080 break;
5081 }
5082 }
5083 }
5084
5085 unsigned StackArgSize = CCInfo.getNextStackOffset();
5086 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
5087 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
5088 // This is a non-standard ABI so by fiat I say we're allowed to make full
5089 // use of the stack area to be popped, which must be aligned to 16 bytes in
5090 // any case:
5091 StackArgSize = alignTo(StackArgSize, 16);
5092
5093 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
5094 // a multiple of 16.
5095 FuncInfo->setArgumentStackToRestore(StackArgSize);
5096
5097 // This realignment carries over to the available bytes below. Our own
5098 // callers will guarantee the space is free by giving an aligned value to
5099 // CALLSEQ_START.
5100 }
5101 // Even if we're not expected to free up the space, it's useful to know how
5102 // much is there while considering tail calls (because we can reuse it).
5103 FuncInfo->setBytesInStackArgArea(StackArgSize);
5104
5105 if (Subtarget->hasCustomCallingConv())
5106 Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
5107
5108 return Chain;
5109 }
5110
saveVarArgRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain) const5111 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
5112 SelectionDAG &DAG,
5113 const SDLoc &DL,
5114 SDValue &Chain) const {
5115 MachineFunction &MF = DAG.getMachineFunction();
5116 MachineFrameInfo &MFI = MF.getFrameInfo();
5117 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
5118 auto PtrVT = getPointerTy(DAG.getDataLayout());
5119 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
5120
5121 SmallVector<SDValue, 8> MemOps;
5122
5123 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
5124 AArch64::X3, AArch64::X4, AArch64::X5,
5125 AArch64::X6, AArch64::X7 };
5126 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
5127 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
5128
5129 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
5130 int GPRIdx = 0;
5131 if (GPRSaveSize != 0) {
5132 if (IsWin64) {
5133 GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
5134 if (GPRSaveSize & 15)
5135 // The extra size here, if triggered, will always be 8.
5136 MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
5137 } else
5138 GPRIdx = MFI.CreateStackObject(GPRSaveSize, Align(8), false);
5139
5140 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
5141
5142 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
5143 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
5144 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
5145 SDValue Store = DAG.getStore(
5146 Val.getValue(1), DL, Val, FIN,
5147 IsWin64
5148 ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
5149 GPRIdx,
5150 (i - FirstVariadicGPR) * 8)
5151 : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
5152 MemOps.push_back(Store);
5153 FIN =
5154 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
5155 }
5156 }
5157 FuncInfo->setVarArgsGPRIndex(GPRIdx);
5158 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
5159
5160 if (Subtarget->hasFPARMv8() && !IsWin64) {
5161 static const MCPhysReg FPRArgRegs[] = {
5162 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
5163 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
5164 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
5165 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
5166
5167 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
5168 int FPRIdx = 0;
5169 if (FPRSaveSize != 0) {
5170 FPRIdx = MFI.CreateStackObject(FPRSaveSize, Align(16), false);
5171
5172 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
5173
5174 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
5175 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
5176 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
5177
5178 SDValue Store = DAG.getStore(
5179 Val.getValue(1), DL, Val, FIN,
5180 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
5181 MemOps.push_back(Store);
5182 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
5183 DAG.getConstant(16, DL, PtrVT));
5184 }
5185 }
5186 FuncInfo->setVarArgsFPRIndex(FPRIdx);
5187 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
5188 }
5189
5190 if (!MemOps.empty()) {
5191 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
5192 }
5193 }
5194
5195 /// LowerCallResult - Lower the result values of a call into the
5196 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const5197 SDValue AArch64TargetLowering::LowerCallResult(
5198 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5199 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
5200 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
5201 SDValue ThisVal) const {
5202 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv);
5203 // Assign locations to each value returned by this call.
5204 SmallVector<CCValAssign, 16> RVLocs;
5205 DenseMap<unsigned, SDValue> CopiedRegs;
5206 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5207 *DAG.getContext());
5208 CCInfo.AnalyzeCallResult(Ins, RetCC);
5209
5210 // Copy all of the result registers out of their specified physreg.
5211 for (unsigned i = 0; i != RVLocs.size(); ++i) {
5212 CCValAssign VA = RVLocs[i];
5213
5214 // Pass 'this' value directly from the argument to return value, to avoid
5215 // reg unit interference
5216 if (i == 0 && isThisReturn) {
5217 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
5218 "unexpected return calling convention register assignment");
5219 InVals.push_back(ThisVal);
5220 continue;
5221 }
5222
5223 // Avoid copying a physreg twice since RegAllocFast is incompetent and only
5224 // allows one use of a physreg per block.
5225 SDValue Val = CopiedRegs.lookup(VA.getLocReg());
5226 if (!Val) {
5227 Val =
5228 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
5229 Chain = Val.getValue(1);
5230 InFlag = Val.getValue(2);
5231 CopiedRegs[VA.getLocReg()] = Val;
5232 }
5233
5234 switch (VA.getLocInfo()) {
5235 default:
5236 llvm_unreachable("Unknown loc info!");
5237 case CCValAssign::Full:
5238 break;
5239 case CCValAssign::BCvt:
5240 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
5241 break;
5242 case CCValAssign::AExtUpper:
5243 Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val,
5244 DAG.getConstant(32, DL, VA.getLocVT()));
5245 LLVM_FALLTHROUGH;
5246 case CCValAssign::AExt:
5247 LLVM_FALLTHROUGH;
5248 case CCValAssign::ZExt:
5249 Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT());
5250 break;
5251 }
5252
5253 InVals.push_back(Val);
5254 }
5255
5256 return Chain;
5257 }
5258
5259 /// Return true if the calling convention is one that we can guarantee TCO for.
canGuaranteeTCO(CallingConv::ID CC,bool GuaranteeTailCalls)5260 static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
5261 return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
5262 CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
5263 }
5264
5265 /// Return true if we might ever do TCO for calls with this calling convention.
mayTailCallThisCC(CallingConv::ID CC)5266 static bool mayTailCallThisCC(CallingConv::ID CC) {
5267 switch (CC) {
5268 case CallingConv::C:
5269 case CallingConv::AArch64_SVE_VectorCall:
5270 case CallingConv::PreserveMost:
5271 case CallingConv::Swift:
5272 case CallingConv::SwiftTail:
5273 case CallingConv::Tail:
5274 case CallingConv::Fast:
5275 return true;
5276 default:
5277 return false;
5278 }
5279 }
5280
isEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const5281 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
5282 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
5283 const SmallVectorImpl<ISD::OutputArg> &Outs,
5284 const SmallVectorImpl<SDValue> &OutVals,
5285 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
5286 if (!mayTailCallThisCC(CalleeCC))
5287 return false;
5288
5289 MachineFunction &MF = DAG.getMachineFunction();
5290 const Function &CallerF = MF.getFunction();
5291 CallingConv::ID CallerCC = CallerF.getCallingConv();
5292
5293 // Functions using the C or Fast calling convention that have an SVE signature
5294 // preserve more registers and should assume the SVE_VectorCall CC.
5295 // The check for matching callee-saved regs will determine whether it is
5296 // eligible for TCO.
5297 if ((CallerCC == CallingConv::C || CallerCC == CallingConv::Fast) &&
5298 AArch64RegisterInfo::hasSVEArgsOrReturn(&MF))
5299 CallerCC = CallingConv::AArch64_SVE_VectorCall;
5300
5301 bool CCMatch = CallerCC == CalleeCC;
5302
5303 // When using the Windows calling convention on a non-windows OS, we want
5304 // to back up and restore X18 in such functions; we can't do a tail call
5305 // from those functions.
5306 if (CallerCC == CallingConv::Win64 && !Subtarget->isTargetWindows() &&
5307 CalleeCC != CallingConv::Win64)
5308 return false;
5309
5310 // Byval parameters hand the function a pointer directly into the stack area
5311 // we want to reuse during a tail call. Working around this *is* possible (see
5312 // X86) but less efficient and uglier in LowerCall.
5313 for (Function::const_arg_iterator i = CallerF.arg_begin(),
5314 e = CallerF.arg_end();
5315 i != e; ++i) {
5316 if (i->hasByValAttr())
5317 return false;
5318
5319 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
5320 // In this case, it is necessary to save/restore X0 in the callee. Tail
5321 // call opt interferes with this. So we disable tail call opt when the
5322 // caller has an argument with "inreg" attribute.
5323
5324 // FIXME: Check whether the callee also has an "inreg" argument.
5325 if (i->hasInRegAttr())
5326 return false;
5327 }
5328
5329 if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt))
5330 return CCMatch;
5331
5332 // Externally-defined functions with weak linkage should not be
5333 // tail-called on AArch64 when the OS does not support dynamic
5334 // pre-emption of symbols, as the AAELF spec requires normal calls
5335 // to undefined weak functions to be replaced with a NOP or jump to the
5336 // next instruction. The behaviour of branch instructions in this
5337 // situation (as used for tail calls) is implementation-defined, so we
5338 // cannot rely on the linker replacing the tail call with a return.
5339 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5340 const GlobalValue *GV = G->getGlobal();
5341 const Triple &TT = getTargetMachine().getTargetTriple();
5342 if (GV->hasExternalWeakLinkage() &&
5343 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
5344 return false;
5345 }
5346
5347 // Now we search for cases where we can use a tail call without changing the
5348 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
5349 // concept.
5350
5351 // I want anyone implementing a new calling convention to think long and hard
5352 // about this assert.
5353 assert((!isVarArg || CalleeCC == CallingConv::C) &&
5354 "Unexpected variadic calling convention");
5355
5356 LLVMContext &C = *DAG.getContext();
5357 if (isVarArg && !Outs.empty()) {
5358 // At least two cases here: if caller is fastcc then we can't have any
5359 // memory arguments (we'd be expected to clean up the stack afterwards). If
5360 // caller is C then we could potentially use its argument area.
5361
5362 // FIXME: for now we take the most conservative of these in both cases:
5363 // disallow all variadic memory operands.
5364 SmallVector<CCValAssign, 16> ArgLocs;
5365 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
5366
5367 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
5368 for (const CCValAssign &ArgLoc : ArgLocs)
5369 if (!ArgLoc.isRegLoc())
5370 return false;
5371 }
5372
5373 // Check that the call results are passed in the same way.
5374 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
5375 CCAssignFnForCall(CalleeCC, isVarArg),
5376 CCAssignFnForCall(CallerCC, isVarArg)))
5377 return false;
5378 // The callee has to preserve all registers the caller needs to preserve.
5379 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
5380 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
5381 if (!CCMatch) {
5382 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
5383 if (Subtarget->hasCustomCallingConv()) {
5384 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
5385 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
5386 }
5387 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
5388 return false;
5389 }
5390
5391 // Nothing more to check if the callee is taking no arguments
5392 if (Outs.empty())
5393 return true;
5394
5395 SmallVector<CCValAssign, 16> ArgLocs;
5396 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
5397
5398 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
5399
5400 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
5401
5402 // If any of the arguments is passed indirectly, it must be SVE, so the
5403 // 'getBytesInStackArgArea' is not sufficient to determine whether we need to
5404 // allocate space on the stack. That is why we determine this explicitly here
5405 // the call cannot be a tailcall.
5406 if (llvm::any_of(ArgLocs, [](CCValAssign &A) {
5407 assert((A.getLocInfo() != CCValAssign::Indirect ||
5408 A.getValVT().isScalableVector()) &&
5409 "Expected value to be scalable");
5410 return A.getLocInfo() == CCValAssign::Indirect;
5411 }))
5412 return false;
5413
5414 // If the stack arguments for this call do not fit into our own save area then
5415 // the call cannot be made tail.
5416 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
5417 return false;
5418
5419 const MachineRegisterInfo &MRI = MF.getRegInfo();
5420 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
5421 return false;
5422
5423 return true;
5424 }
5425
addTokenForArgument(SDValue Chain,SelectionDAG & DAG,MachineFrameInfo & MFI,int ClobberedFI) const5426 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
5427 SelectionDAG &DAG,
5428 MachineFrameInfo &MFI,
5429 int ClobberedFI) const {
5430 SmallVector<SDValue, 8> ArgChains;
5431 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
5432 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
5433
5434 // Include the original chain at the beginning of the list. When this is
5435 // used by target LowerCall hooks, this helps legalize find the
5436 // CALLSEQ_BEGIN node.
5437 ArgChains.push_back(Chain);
5438
5439 // Add a chain value for each stack argument corresponding
5440 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
5441 UE = DAG.getEntryNode().getNode()->use_end();
5442 U != UE; ++U)
5443 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5444 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5445 if (FI->getIndex() < 0) {
5446 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
5447 int64_t InLastByte = InFirstByte;
5448 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
5449
5450 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
5451 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
5452 ArgChains.push_back(SDValue(L, 1));
5453 }
5454
5455 // Build a tokenfactor for all the chains.
5456 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5457 }
5458
DoesCalleeRestoreStack(CallingConv::ID CallCC,bool TailCallOpt) const5459 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
5460 bool TailCallOpt) const {
5461 return (CallCC == CallingConv::Fast && TailCallOpt) ||
5462 CallCC == CallingConv::Tail || CallCC == CallingConv::SwiftTail;
5463 }
5464
5465 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
5466 /// and add input and output parameter nodes.
5467 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const5468 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
5469 SmallVectorImpl<SDValue> &InVals) const {
5470 SelectionDAG &DAG = CLI.DAG;
5471 SDLoc &DL = CLI.DL;
5472 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
5473 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
5474 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
5475 SDValue Chain = CLI.Chain;
5476 SDValue Callee = CLI.Callee;
5477 bool &IsTailCall = CLI.IsTailCall;
5478 CallingConv::ID CallConv = CLI.CallConv;
5479 bool IsVarArg = CLI.IsVarArg;
5480
5481 MachineFunction &MF = DAG.getMachineFunction();
5482 MachineFunction::CallSiteInfo CSInfo;
5483 bool IsThisReturn = false;
5484
5485 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
5486 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
5487 bool IsSibCall = false;
5488 bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CallConv);
5489
5490 // Check callee args/returns for SVE registers and set calling convention
5491 // accordingly.
5492 if (CallConv == CallingConv::C || CallConv == CallingConv::Fast) {
5493 bool CalleeOutSVE = any_of(Outs, [](ISD::OutputArg &Out){
5494 return Out.VT.isScalableVector();
5495 });
5496 bool CalleeInSVE = any_of(Ins, [](ISD::InputArg &In){
5497 return In.VT.isScalableVector();
5498 });
5499
5500 if (CalleeInSVE || CalleeOutSVE)
5501 CallConv = CallingConv::AArch64_SVE_VectorCall;
5502 }
5503
5504 if (IsTailCall) {
5505 // Check if it's really possible to do a tail call.
5506 IsTailCall = isEligibleForTailCallOptimization(
5507 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
5508 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall())
5509 report_fatal_error("failed to perform tail call elimination on a call "
5510 "site marked musttail");
5511
5512 // A sibling call is one where we're under the usual C ABI and not planning
5513 // to change that but can still do a tail call:
5514 if (!TailCallOpt && IsTailCall && CallConv != CallingConv::Tail &&
5515 CallConv != CallingConv::SwiftTail)
5516 IsSibCall = true;
5517
5518 if (IsTailCall)
5519 ++NumTailCalls;
5520 }
5521
5522 // Analyze operands of the call, assigning locations to each operand.
5523 SmallVector<CCValAssign, 16> ArgLocs;
5524 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
5525 *DAG.getContext());
5526
5527 if (IsVarArg) {
5528 // Handle fixed and variable vector arguments differently.
5529 // Variable vector arguments always go into memory.
5530 unsigned NumArgs = Outs.size();
5531
5532 for (unsigned i = 0; i != NumArgs; ++i) {
5533 MVT ArgVT = Outs[i].VT;
5534 if (!Outs[i].IsFixed && ArgVT.isScalableVector())
5535 report_fatal_error("Passing SVE types to variadic functions is "
5536 "currently not supported");
5537
5538 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5539 bool UseVarArgCC = !Outs[i].IsFixed;
5540 // On Windows, the fixed arguments in a vararg call are passed in GPRs
5541 // too, so use the vararg CC to force them to integer registers.
5542 if (IsCalleeWin64)
5543 UseVarArgCC = true;
5544 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, UseVarArgCC);
5545 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
5546 assert(!Res && "Call operand has unhandled type");
5547 (void)Res;
5548 }
5549 } else {
5550 // At this point, Outs[].VT may already be promoted to i32. To correctly
5551 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
5552 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
5553 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
5554 // we use a special version of AnalyzeCallOperands to pass in ValVT and
5555 // LocVT.
5556 unsigned NumArgs = Outs.size();
5557 for (unsigned i = 0; i != NumArgs; ++i) {
5558 MVT ValVT = Outs[i].VT;
5559 // Get type of the original argument.
5560 EVT ActualVT = getValueType(DAG.getDataLayout(),
5561 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
5562 /*AllowUnknown*/ true);
5563 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
5564 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5565 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
5566 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
5567 ValVT = MVT::i8;
5568 else if (ActualMVT == MVT::i16)
5569 ValVT = MVT::i16;
5570
5571 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
5572 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
5573 assert(!Res && "Call operand has unhandled type");
5574 (void)Res;
5575 }
5576 }
5577
5578 // Get a count of how many bytes are to be pushed on the stack.
5579 unsigned NumBytes = CCInfo.getNextStackOffset();
5580
5581 if (IsSibCall) {
5582 // Since we're not changing the ABI to make this a tail call, the memory
5583 // operands are already available in the caller's incoming argument space.
5584 NumBytes = 0;
5585 }
5586
5587 // FPDiff is the byte offset of the call's argument area from the callee's.
5588 // Stores to callee stack arguments will be placed in FixedStackSlots offset
5589 // by this amount for a tail call. In a sibling call it must be 0 because the
5590 // caller will deallocate the entire stack and the callee still expects its
5591 // arguments to begin at SP+0. Completely unused for non-tail calls.
5592 int FPDiff = 0;
5593
5594 if (IsTailCall && !IsSibCall) {
5595 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
5596
5597 // Since callee will pop argument stack as a tail call, we must keep the
5598 // popped size 16-byte aligned.
5599 NumBytes = alignTo(NumBytes, 16);
5600
5601 // FPDiff will be negative if this tail call requires more space than we
5602 // would automatically have in our incoming argument space. Positive if we
5603 // can actually shrink the stack.
5604 FPDiff = NumReusableBytes - NumBytes;
5605
5606 // Update the required reserved area if this is the tail call requiring the
5607 // most argument stack space.
5608 if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff)
5609 FuncInfo->setTailCallReservedStack(-FPDiff);
5610
5611 // The stack pointer must be 16-byte aligned at all times it's used for a
5612 // memory operation, which in practice means at *all* times and in
5613 // particular across call boundaries. Therefore our own arguments started at
5614 // a 16-byte aligned SP and the delta applied for the tail call should
5615 // satisfy the same constraint.
5616 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
5617 }
5618
5619 // Adjust the stack pointer for the new arguments...
5620 // These operations are automatically eliminated by the prolog/epilog pass
5621 if (!IsSibCall)
5622 Chain = DAG.getCALLSEQ_START(Chain, IsTailCall ? 0 : NumBytes, 0, DL);
5623
5624 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
5625 getPointerTy(DAG.getDataLayout()));
5626
5627 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5628 SmallSet<unsigned, 8> RegsUsed;
5629 SmallVector<SDValue, 8> MemOpChains;
5630 auto PtrVT = getPointerTy(DAG.getDataLayout());
5631
5632 if (IsVarArg && CLI.CB && CLI.CB->isMustTailCall()) {
5633 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
5634 for (const auto &F : Forwards) {
5635 SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
5636 RegsToPass.emplace_back(F.PReg, Val);
5637 }
5638 }
5639
5640 // Walk the register/memloc assignments, inserting copies/loads.
5641 unsigned ExtraArgLocs = 0;
5642 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
5643 CCValAssign &VA = ArgLocs[i - ExtraArgLocs];
5644 SDValue Arg = OutVals[i];
5645 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5646
5647 // Promote the value if needed.
5648 switch (VA.getLocInfo()) {
5649 default:
5650 llvm_unreachable("Unknown loc info!");
5651 case CCValAssign::Full:
5652 break;
5653 case CCValAssign::SExt:
5654 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
5655 break;
5656 case CCValAssign::ZExt:
5657 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
5658 break;
5659 case CCValAssign::AExt:
5660 if (Outs[i].ArgVT == MVT::i1) {
5661 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
5662 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
5663 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
5664 }
5665 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
5666 break;
5667 case CCValAssign::AExtUpper:
5668 assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
5669 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
5670 Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
5671 DAG.getConstant(32, DL, VA.getLocVT()));
5672 break;
5673 case CCValAssign::BCvt:
5674 Arg = DAG.getBitcast(VA.getLocVT(), Arg);
5675 break;
5676 case CCValAssign::Trunc:
5677 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
5678 break;
5679 case CCValAssign::FPExt:
5680 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
5681 break;
5682 case CCValAssign::Indirect:
5683 assert(VA.getValVT().isScalableVector() &&
5684 "Only scalable vectors can be passed indirectly");
5685
5686 uint64_t StoreSize = VA.getValVT().getStoreSize().getKnownMinSize();
5687 uint64_t PartSize = StoreSize;
5688 unsigned NumParts = 1;
5689 if (Outs[i].Flags.isInConsecutiveRegs()) {
5690 assert(!Outs[i].Flags.isInConsecutiveRegsLast());
5691 while (!Outs[i + NumParts - 1].Flags.isInConsecutiveRegsLast())
5692 ++NumParts;
5693 StoreSize *= NumParts;
5694 }
5695
5696 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5697 Type *Ty = EVT(VA.getValVT()).getTypeForEVT(*DAG.getContext());
5698 Align Alignment = DAG.getDataLayout().getPrefTypeAlign(Ty);
5699 int FI = MFI.CreateStackObject(StoreSize, Alignment, false);
5700 MFI.setStackID(FI, TargetStackID::ScalableVector);
5701
5702 MachinePointerInfo MPI =
5703 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
5704 SDValue Ptr = DAG.getFrameIndex(
5705 FI, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout()));
5706 SDValue SpillSlot = Ptr;
5707
5708 // Ensure we generate all stores for each tuple part, whilst updating the
5709 // pointer after each store correctly using vscale.
5710 while (NumParts) {
5711 Chain = DAG.getStore(Chain, DL, OutVals[i], Ptr, MPI);
5712 NumParts--;
5713 if (NumParts > 0) {
5714 SDValue BytesIncrement = DAG.getVScale(
5715 DL, Ptr.getValueType(),
5716 APInt(Ptr.getValueSizeInBits().getFixedSize(), PartSize));
5717 SDNodeFlags Flags;
5718 Flags.setNoUnsignedWrap(true);
5719
5720 MPI = MachinePointerInfo(MPI.getAddrSpace());
5721 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
5722 BytesIncrement, Flags);
5723 ExtraArgLocs++;
5724 i++;
5725 }
5726 }
5727
5728 Arg = SpillSlot;
5729 break;
5730 }
5731
5732 if (VA.isRegLoc()) {
5733 if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
5734 Outs[0].VT == MVT::i64) {
5735 assert(VA.getLocVT() == MVT::i64 &&
5736 "unexpected calling convention register assignment");
5737 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
5738 "unexpected use of 'returned'");
5739 IsThisReturn = true;
5740 }
5741 if (RegsUsed.count(VA.getLocReg())) {
5742 // If this register has already been used then we're trying to pack
5743 // parts of an [N x i32] into an X-register. The extension type will
5744 // take care of putting the two halves in the right place but we have to
5745 // combine them.
5746 SDValue &Bits =
5747 llvm::find_if(RegsToPass,
5748 [=](const std::pair<unsigned, SDValue> &Elt) {
5749 return Elt.first == VA.getLocReg();
5750 })
5751 ->second;
5752 Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
5753 // Call site info is used for function's parameter entry value
5754 // tracking. For now we track only simple cases when parameter
5755 // is transferred through whole register.
5756 llvm::erase_if(CSInfo, [&VA](MachineFunction::ArgRegPair ArgReg) {
5757 return ArgReg.Reg == VA.getLocReg();
5758 });
5759 } else {
5760 RegsToPass.emplace_back(VA.getLocReg(), Arg);
5761 RegsUsed.insert(VA.getLocReg());
5762 const TargetOptions &Options = DAG.getTarget().Options;
5763 if (Options.EmitCallSiteInfo)
5764 CSInfo.emplace_back(VA.getLocReg(), i);
5765 }
5766 } else {
5767 assert(VA.isMemLoc());
5768
5769 SDValue DstAddr;
5770 MachinePointerInfo DstInfo;
5771
5772 // FIXME: This works on big-endian for composite byvals, which are the
5773 // common case. It should also work for fundamental types too.
5774 uint32_t BEAlign = 0;
5775 unsigned OpSize;
5776 if (VA.getLocInfo() == CCValAssign::Indirect)
5777 OpSize = VA.getLocVT().getFixedSizeInBits();
5778 else
5779 OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
5780 : VA.getValVT().getSizeInBits();
5781 OpSize = (OpSize + 7) / 8;
5782 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
5783 !Flags.isInConsecutiveRegs()) {
5784 if (OpSize < 8)
5785 BEAlign = 8 - OpSize;
5786 }
5787 unsigned LocMemOffset = VA.getLocMemOffset();
5788 int32_t Offset = LocMemOffset + BEAlign;
5789 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
5790 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
5791
5792 if (IsTailCall) {
5793 Offset = Offset + FPDiff;
5794 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5795
5796 DstAddr = DAG.getFrameIndex(FI, PtrVT);
5797 DstInfo =
5798 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
5799
5800 // Make sure any stack arguments overlapping with where we're storing
5801 // are loaded before this eventual operation. Otherwise they'll be
5802 // clobbered.
5803 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
5804 } else {
5805 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
5806
5807 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
5808 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
5809 LocMemOffset);
5810 }
5811
5812 if (Outs[i].Flags.isByVal()) {
5813 SDValue SizeNode =
5814 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
5815 SDValue Cpy = DAG.getMemcpy(
5816 Chain, DL, DstAddr, Arg, SizeNode,
5817 Outs[i].Flags.getNonZeroByValAlign(),
5818 /*isVol = */ false, /*AlwaysInline = */ false,
5819 /*isTailCall = */ false, DstInfo, MachinePointerInfo());
5820
5821 MemOpChains.push_back(Cpy);
5822 } else {
5823 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
5824 // promoted to a legal register type i32, we should truncate Arg back to
5825 // i1/i8/i16.
5826 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
5827 VA.getValVT() == MVT::i16)
5828 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
5829
5830 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
5831 MemOpChains.push_back(Store);
5832 }
5833 }
5834 }
5835
5836 if (!MemOpChains.empty())
5837 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
5838
5839 // Build a sequence of copy-to-reg nodes chained together with token chain
5840 // and flag operands which copy the outgoing args into the appropriate regs.
5841 SDValue InFlag;
5842 for (auto &RegToPass : RegsToPass) {
5843 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
5844 RegToPass.second, InFlag);
5845 InFlag = Chain.getValue(1);
5846 }
5847
5848 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
5849 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
5850 // node so that legalize doesn't hack it.
5851 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5852 auto GV = G->getGlobal();
5853 unsigned OpFlags =
5854 Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine());
5855 if (OpFlags & AArch64II::MO_GOT) {
5856 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
5857 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
5858 } else {
5859 const GlobalValue *GV = G->getGlobal();
5860 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
5861 }
5862 } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5863 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
5864 Subtarget->isTargetMachO()) {
5865 const char *Sym = S->getSymbol();
5866 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
5867 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
5868 } else {
5869 const char *Sym = S->getSymbol();
5870 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
5871 }
5872 }
5873
5874 // We don't usually want to end the call-sequence here because we would tidy
5875 // the frame up *after* the call, however in the ABI-changing tail-call case
5876 // we've carefully laid out the parameters so that when sp is reset they'll be
5877 // in the correct location.
5878 if (IsTailCall && !IsSibCall) {
5879 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
5880 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
5881 InFlag = Chain.getValue(1);
5882 }
5883
5884 std::vector<SDValue> Ops;
5885 Ops.push_back(Chain);
5886 Ops.push_back(Callee);
5887
5888 if (IsTailCall) {
5889 // Each tail call may have to adjust the stack by a different amount, so
5890 // this information must travel along with the operation for eventual
5891 // consumption by emitEpilogue.
5892 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
5893 }
5894
5895 // Add argument registers to the end of the list so that they are known live
5896 // into the call.
5897 for (auto &RegToPass : RegsToPass)
5898 Ops.push_back(DAG.getRegister(RegToPass.first,
5899 RegToPass.second.getValueType()));
5900
5901 // Add a register mask operand representing the call-preserved registers.
5902 const uint32_t *Mask;
5903 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
5904 if (IsThisReturn) {
5905 // For 'this' returns, use the X0-preserving mask if applicable
5906 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
5907 if (!Mask) {
5908 IsThisReturn = false;
5909 Mask = TRI->getCallPreservedMask(MF, CallConv);
5910 }
5911 } else
5912 Mask = TRI->getCallPreservedMask(MF, CallConv);
5913
5914 if (Subtarget->hasCustomCallingConv())
5915 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
5916
5917 if (TRI->isAnyArgRegReserved(MF))
5918 TRI->emitReservedArgRegCallError(MF);
5919
5920 assert(Mask && "Missing call preserved mask for calling convention");
5921 Ops.push_back(DAG.getRegisterMask(Mask));
5922
5923 if (InFlag.getNode())
5924 Ops.push_back(InFlag);
5925
5926 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
5927
5928 // If we're doing a tall call, use a TC_RETURN here rather than an
5929 // actual call instruction.
5930 if (IsTailCall) {
5931 MF.getFrameInfo().setHasTailCall();
5932 SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
5933 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
5934 return Ret;
5935 }
5936
5937 unsigned CallOpc = AArch64ISD::CALL;
5938 // Calls with operand bundle "clang.arc.attachedcall" are special. They should
5939 // be expanded to the call, directly followed by a special marker sequence.
5940 // Use the CALL_RVMARKER to do that.
5941 if (CLI.CB && objcarc::hasAttachedCallOpBundle(CLI.CB)) {
5942 assert(!IsTailCall &&
5943 "tail calls cannot be marked with clang.arc.attachedcall");
5944 CallOpc = AArch64ISD::CALL_RVMARKER;
5945 }
5946
5947 // Returns a chain and a flag for retval copy to use.
5948 Chain = DAG.getNode(CallOpc, DL, NodeTys, Ops);
5949 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
5950 InFlag = Chain.getValue(1);
5951 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
5952
5953 uint64_t CalleePopBytes =
5954 DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
5955
5956 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
5957 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
5958 InFlag, DL);
5959 if (!Ins.empty())
5960 InFlag = Chain.getValue(1);
5961
5962 // Handle result values, copying them out of physregs into vregs that we
5963 // return.
5964 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
5965 InVals, IsThisReturn,
5966 IsThisReturn ? OutVals[0] : SDValue());
5967 }
5968
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const5969 bool AArch64TargetLowering::CanLowerReturn(
5970 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
5971 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
5972 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv);
5973 SmallVector<CCValAssign, 16> RVLocs;
5974 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
5975 return CCInfo.CheckReturn(Outs, RetCC);
5976 }
5977
5978 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const5979 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
5980 bool isVarArg,
5981 const SmallVectorImpl<ISD::OutputArg> &Outs,
5982 const SmallVectorImpl<SDValue> &OutVals,
5983 const SDLoc &DL, SelectionDAG &DAG) const {
5984 auto &MF = DAG.getMachineFunction();
5985 auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
5986
5987 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv);
5988 SmallVector<CCValAssign, 16> RVLocs;
5989 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5990 *DAG.getContext());
5991 CCInfo.AnalyzeReturn(Outs, RetCC);
5992
5993 // Copy the result values into the output registers.
5994 SDValue Flag;
5995 SmallVector<std::pair<unsigned, SDValue>, 4> RetVals;
5996 SmallSet<unsigned, 4> RegsUsed;
5997 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
5998 ++i, ++realRVLocIdx) {
5999 CCValAssign &VA = RVLocs[i];
6000 assert(VA.isRegLoc() && "Can only return in registers!");
6001 SDValue Arg = OutVals[realRVLocIdx];
6002
6003 switch (VA.getLocInfo()) {
6004 default:
6005 llvm_unreachable("Unknown loc info!");
6006 case CCValAssign::Full:
6007 if (Outs[i].ArgVT == MVT::i1) {
6008 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
6009 // value. This is strictly redundant on Darwin (which uses "zeroext
6010 // i1"), but will be optimised out before ISel.
6011 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
6012 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
6013 }
6014 break;
6015 case CCValAssign::BCvt:
6016 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
6017 break;
6018 case CCValAssign::AExt:
6019 case CCValAssign::ZExt:
6020 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
6021 break;
6022 case CCValAssign::AExtUpper:
6023 assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
6024 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
6025 Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
6026 DAG.getConstant(32, DL, VA.getLocVT()));
6027 break;
6028 }
6029
6030 if (RegsUsed.count(VA.getLocReg())) {
6031 SDValue &Bits =
6032 llvm::find_if(RetVals, [=](const std::pair<unsigned, SDValue> &Elt) {
6033 return Elt.first == VA.getLocReg();
6034 })->second;
6035 Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
6036 } else {
6037 RetVals.emplace_back(VA.getLocReg(), Arg);
6038 RegsUsed.insert(VA.getLocReg());
6039 }
6040 }
6041
6042 SmallVector<SDValue, 4> RetOps(1, Chain);
6043 for (auto &RetVal : RetVals) {
6044 Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag);
6045 Flag = Chain.getValue(1);
6046 RetOps.push_back(
6047 DAG.getRegister(RetVal.first, RetVal.second.getValueType()));
6048 }
6049
6050 // Windows AArch64 ABIs require that for returning structs by value we copy
6051 // the sret argument into X0 for the return.
6052 // We saved the argument into a virtual register in the entry block,
6053 // so now we copy the value out and into X0.
6054 if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
6055 SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
6056 getPointerTy(MF.getDataLayout()));
6057
6058 unsigned RetValReg = AArch64::X0;
6059 Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag);
6060 Flag = Chain.getValue(1);
6061
6062 RetOps.push_back(
6063 DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
6064 }
6065
6066 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
6067 const MCPhysReg *I =
6068 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6069 if (I) {
6070 for (; *I; ++I) {
6071 if (AArch64::GPR64RegClass.contains(*I))
6072 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6073 else if (AArch64::FPR64RegClass.contains(*I))
6074 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6075 else
6076 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6077 }
6078 }
6079
6080 RetOps[0] = Chain; // Update chain.
6081
6082 // Add the flag if we have it.
6083 if (Flag.getNode())
6084 RetOps.push_back(Flag);
6085
6086 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
6087 }
6088
6089 //===----------------------------------------------------------------------===//
6090 // Other Lowering Code
6091 //===----------------------------------------------------------------------===//
6092
getTargetNode(GlobalAddressSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const6093 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
6094 SelectionDAG &DAG,
6095 unsigned Flag) const {
6096 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
6097 N->getOffset(), Flag);
6098 }
6099
getTargetNode(JumpTableSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const6100 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
6101 SelectionDAG &DAG,
6102 unsigned Flag) const {
6103 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
6104 }
6105
getTargetNode(ConstantPoolSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const6106 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
6107 SelectionDAG &DAG,
6108 unsigned Flag) const {
6109 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
6110 N->getOffset(), Flag);
6111 }
6112
getTargetNode(BlockAddressSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const6113 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
6114 SelectionDAG &DAG,
6115 unsigned Flag) const {
6116 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
6117 }
6118
6119 // (loadGOT sym)
6120 template <class NodeTy>
getGOT(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const6121 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
6122 unsigned Flags) const {
6123 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
6124 SDLoc DL(N);
6125 EVT Ty = getPointerTy(DAG.getDataLayout());
6126 SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
6127 // FIXME: Once remat is capable of dealing with instructions with register
6128 // operands, expand this into two nodes instead of using a wrapper node.
6129 return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
6130 }
6131
6132 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
6133 template <class NodeTy>
getAddrLarge(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const6134 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
6135 unsigned Flags) const {
6136 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
6137 SDLoc DL(N);
6138 EVT Ty = getPointerTy(DAG.getDataLayout());
6139 const unsigned char MO_NC = AArch64II::MO_NC;
6140 return DAG.getNode(
6141 AArch64ISD::WrapperLarge, DL, Ty,
6142 getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
6143 getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
6144 getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
6145 getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
6146 }
6147
6148 // (addlow (adrp %hi(sym)) %lo(sym))
6149 template <class NodeTy>
getAddr(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const6150 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
6151 unsigned Flags) const {
6152 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
6153 SDLoc DL(N);
6154 EVT Ty = getPointerTy(DAG.getDataLayout());
6155 SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
6156 SDValue Lo = getTargetNode(N, Ty, DAG,
6157 AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
6158 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
6159 return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
6160 }
6161
6162 // (adr sym)
6163 template <class NodeTy>
getAddrTiny(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const6164 SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
6165 unsigned Flags) const {
6166 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
6167 SDLoc DL(N);
6168 EVT Ty = getPointerTy(DAG.getDataLayout());
6169 SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
6170 return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
6171 }
6172
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const6173 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
6174 SelectionDAG &DAG) const {
6175 GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
6176 const GlobalValue *GV = GN->getGlobal();
6177 unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6178
6179 if (OpFlags != AArch64II::MO_NO_FLAG)
6180 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
6181 "unexpected offset in global node");
6182
6183 // This also catches the large code model case for Darwin, and tiny code
6184 // model with got relocations.
6185 if ((OpFlags & AArch64II::MO_GOT) != 0) {
6186 return getGOT(GN, DAG, OpFlags);
6187 }
6188
6189 SDValue Result;
6190 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
6191 Result = getAddrLarge(GN, DAG, OpFlags);
6192 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
6193 Result = getAddrTiny(GN, DAG, OpFlags);
6194 } else {
6195 Result = getAddr(GN, DAG, OpFlags);
6196 }
6197 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6198 SDLoc DL(GN);
6199 if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
6200 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
6201 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
6202 return Result;
6203 }
6204
6205 /// Convert a TLS address reference into the correct sequence of loads
6206 /// and calls to compute the variable's address (for Darwin, currently) and
6207 /// return an SDValue containing the final node.
6208
6209 /// Darwin only has one TLS scheme which must be capable of dealing with the
6210 /// fully general situation, in the worst case. This means:
6211 /// + "extern __thread" declaration.
6212 /// + Defined in a possibly unknown dynamic library.
6213 ///
6214 /// The general system is that each __thread variable has a [3 x i64] descriptor
6215 /// which contains information used by the runtime to calculate the address. The
6216 /// only part of this the compiler needs to know about is the first xword, which
6217 /// contains a function pointer that must be called with the address of the
6218 /// entire descriptor in "x0".
6219 ///
6220 /// Since this descriptor may be in a different unit, in general even the
6221 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
6222 /// is:
6223 /// adrp x0, _var@TLVPPAGE
6224 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
6225 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
6226 /// ; the function pointer
6227 /// blr x1 ; Uses descriptor address in x0
6228 /// ; Address of _var is now in x0.
6229 ///
6230 /// If the address of _var's descriptor *is* known to the linker, then it can
6231 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
6232 /// a slight efficiency gain.
6233 SDValue
LowerDarwinGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const6234 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
6235 SelectionDAG &DAG) const {
6236 assert(Subtarget->isTargetDarwin() &&
6237 "This function expects a Darwin target");
6238
6239 SDLoc DL(Op);
6240 MVT PtrVT = getPointerTy(DAG.getDataLayout());
6241 MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout());
6242 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6243
6244 SDValue TLVPAddr =
6245 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
6246 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
6247
6248 // The first entry in the descriptor is a function pointer that we must call
6249 // to obtain the address of the variable.
6250 SDValue Chain = DAG.getEntryNode();
6251 SDValue FuncTLVGet = DAG.getLoad(
6252 PtrMemVT, DL, Chain, DescAddr,
6253 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
6254 Align(PtrMemVT.getSizeInBits() / 8),
6255 MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6256 Chain = FuncTLVGet.getValue(1);
6257
6258 // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer.
6259 FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT);
6260
6261 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6262 MFI.setAdjustsStack(true);
6263
6264 // TLS calls preserve all registers except those that absolutely must be
6265 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
6266 // silly).
6267 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
6268 const uint32_t *Mask = TRI->getTLSCallPreservedMask();
6269 if (Subtarget->hasCustomCallingConv())
6270 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
6271
6272 // Finally, we can make the call. This is just a degenerate version of a
6273 // normal AArch64 call node: x0 takes the address of the descriptor, and
6274 // returns the address of the variable in this thread.
6275 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
6276 Chain =
6277 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
6278 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
6279 DAG.getRegisterMask(Mask), Chain.getValue(1));
6280 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
6281 }
6282
6283 /// Convert a thread-local variable reference into a sequence of instructions to
6284 /// compute the variable's address for the local exec TLS model of ELF targets.
6285 /// The sequence depends on the maximum TLS area size.
LowerELFTLSLocalExec(const GlobalValue * GV,SDValue ThreadBase,const SDLoc & DL,SelectionDAG & DAG) const6286 SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV,
6287 SDValue ThreadBase,
6288 const SDLoc &DL,
6289 SelectionDAG &DAG) const {
6290 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6291 SDValue TPOff, Addr;
6292
6293 switch (DAG.getTarget().Options.TLSSize) {
6294 default:
6295 llvm_unreachable("Unexpected TLS size");
6296
6297 case 12: {
6298 // mrs x0, TPIDR_EL0
6299 // add x0, x0, :tprel_lo12:a
6300 SDValue Var = DAG.getTargetGlobalAddress(
6301 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF);
6302 return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
6303 Var,
6304 DAG.getTargetConstant(0, DL, MVT::i32)),
6305 0);
6306 }
6307
6308 case 24: {
6309 // mrs x0, TPIDR_EL0
6310 // add x0, x0, :tprel_hi12:a
6311 // add x0, x0, :tprel_lo12_nc:a
6312 SDValue HiVar = DAG.getTargetGlobalAddress(
6313 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
6314 SDValue LoVar = DAG.getTargetGlobalAddress(
6315 GV, DL, PtrVT, 0,
6316 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
6317 Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
6318 HiVar,
6319 DAG.getTargetConstant(0, DL, MVT::i32)),
6320 0);
6321 return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr,
6322 LoVar,
6323 DAG.getTargetConstant(0, DL, MVT::i32)),
6324 0);
6325 }
6326
6327 case 32: {
6328 // mrs x1, TPIDR_EL0
6329 // movz x0, #:tprel_g1:a
6330 // movk x0, #:tprel_g0_nc:a
6331 // add x0, x1, x0
6332 SDValue HiVar = DAG.getTargetGlobalAddress(
6333 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
6334 SDValue LoVar = DAG.getTargetGlobalAddress(
6335 GV, DL, PtrVT, 0,
6336 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
6337 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
6338 DAG.getTargetConstant(16, DL, MVT::i32)),
6339 0);
6340 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
6341 DAG.getTargetConstant(0, DL, MVT::i32)),
6342 0);
6343 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
6344 }
6345
6346 case 48: {
6347 // mrs x1, TPIDR_EL0
6348 // movz x0, #:tprel_g2:a
6349 // movk x0, #:tprel_g1_nc:a
6350 // movk x0, #:tprel_g0_nc:a
6351 // add x0, x1, x0
6352 SDValue HiVar = DAG.getTargetGlobalAddress(
6353 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2);
6354 SDValue MiVar = DAG.getTargetGlobalAddress(
6355 GV, DL, PtrVT, 0,
6356 AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC);
6357 SDValue LoVar = DAG.getTargetGlobalAddress(
6358 GV, DL, PtrVT, 0,
6359 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
6360 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
6361 DAG.getTargetConstant(32, DL, MVT::i32)),
6362 0);
6363 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar,
6364 DAG.getTargetConstant(16, DL, MVT::i32)),
6365 0);
6366 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
6367 DAG.getTargetConstant(0, DL, MVT::i32)),
6368 0);
6369 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
6370 }
6371 }
6372 }
6373
6374 /// When accessing thread-local variables under either the general-dynamic or
6375 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
6376 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
6377 /// is a function pointer to carry out the resolution.
6378 ///
6379 /// The sequence is:
6380 /// adrp x0, :tlsdesc:var
6381 /// ldr x1, [x0, #:tlsdesc_lo12:var]
6382 /// add x0, x0, #:tlsdesc_lo12:var
6383 /// .tlsdesccall var
6384 /// blr x1
6385 /// (TPIDR_EL0 offset now in x0)
6386 ///
6387 /// The above sequence must be produced unscheduled, to enable the linker to
6388 /// optimize/relax this sequence.
6389 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
6390 /// above sequence, and expanded really late in the compilation flow, to ensure
6391 /// the sequence is produced as per above.
LowerELFTLSDescCallSeq(SDValue SymAddr,const SDLoc & DL,SelectionDAG & DAG) const6392 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
6393 const SDLoc &DL,
6394 SelectionDAG &DAG) const {
6395 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6396
6397 SDValue Chain = DAG.getEntryNode();
6398 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6399
6400 Chain =
6401 DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
6402 SDValue Glue = Chain.getValue(1);
6403
6404 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
6405 }
6406
6407 SDValue
LowerELFGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const6408 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
6409 SelectionDAG &DAG) const {
6410 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
6411
6412 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6413
6414 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
6415
6416 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
6417 if (Model == TLSModel::LocalDynamic)
6418 Model = TLSModel::GeneralDynamic;
6419 }
6420
6421 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
6422 Model != TLSModel::LocalExec)
6423 report_fatal_error("ELF TLS only supported in small memory model or "
6424 "in local exec TLS model");
6425 // Different choices can be made for the maximum size of the TLS area for a
6426 // module. For the small address model, the default TLS size is 16MiB and the
6427 // maximum TLS size is 4GiB.
6428 // FIXME: add tiny and large code model support for TLS access models other
6429 // than local exec. We currently generate the same code as small for tiny,
6430 // which may be larger than needed.
6431
6432 SDValue TPOff;
6433 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6434 SDLoc DL(Op);
6435 const GlobalValue *GV = GA->getGlobal();
6436
6437 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
6438
6439 if (Model == TLSModel::LocalExec) {
6440 return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG);
6441 } else if (Model == TLSModel::InitialExec) {
6442 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
6443 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
6444 } else if (Model == TLSModel::LocalDynamic) {
6445 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
6446 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
6447 // the beginning of the module's TLS region, followed by a DTPREL offset
6448 // calculation.
6449
6450 // These accesses will need deduplicating if there's more than one.
6451 AArch64FunctionInfo *MFI =
6452 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
6453 MFI->incNumLocalDynamicTLSAccesses();
6454
6455 // The call needs a relocation too for linker relaxation. It doesn't make
6456 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
6457 // the address.
6458 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
6459 AArch64II::MO_TLS);
6460
6461 // Now we can calculate the offset from TPIDR_EL0 to this module's
6462 // thread-local area.
6463 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
6464
6465 // Now use :dtprel_whatever: operations to calculate this variable's offset
6466 // in its thread-storage area.
6467 SDValue HiVar = DAG.getTargetGlobalAddress(
6468 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
6469 SDValue LoVar = DAG.getTargetGlobalAddress(
6470 GV, DL, MVT::i64, 0,
6471 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
6472
6473 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
6474 DAG.getTargetConstant(0, DL, MVT::i32)),
6475 0);
6476 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
6477 DAG.getTargetConstant(0, DL, MVT::i32)),
6478 0);
6479 } else if (Model == TLSModel::GeneralDynamic) {
6480 // The call needs a relocation too for linker relaxation. It doesn't make
6481 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
6482 // the address.
6483 SDValue SymAddr =
6484 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
6485
6486 // Finally we can make a call to calculate the offset from tpidr_el0.
6487 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
6488 } else
6489 llvm_unreachable("Unsupported ELF TLS access model");
6490
6491 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
6492 }
6493
6494 SDValue
LowerWindowsGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const6495 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
6496 SelectionDAG &DAG) const {
6497 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
6498
6499 SDValue Chain = DAG.getEntryNode();
6500 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6501 SDLoc DL(Op);
6502
6503 SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
6504
6505 // Load the ThreadLocalStoragePointer from the TEB
6506 // A pointer to the TLS array is located at offset 0x58 from the TEB.
6507 SDValue TLSArray =
6508 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
6509 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
6510 Chain = TLSArray.getValue(1);
6511
6512 // Load the TLS index from the C runtime;
6513 // This does the same as getAddr(), but without having a GlobalAddressSDNode.
6514 // This also does the same as LOADgot, but using a generic i32 load,
6515 // while LOADgot only loads i64.
6516 SDValue TLSIndexHi =
6517 DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
6518 SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
6519 "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
6520 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
6521 SDValue TLSIndex =
6522 DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
6523 TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
6524 Chain = TLSIndex.getValue(1);
6525
6526 // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
6527 // offset into the TLSArray.
6528 TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
6529 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
6530 DAG.getConstant(3, DL, PtrVT));
6531 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
6532 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
6533 MachinePointerInfo());
6534 Chain = TLS.getValue(1);
6535
6536 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6537 const GlobalValue *GV = GA->getGlobal();
6538 SDValue TGAHi = DAG.getTargetGlobalAddress(
6539 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
6540 SDValue TGALo = DAG.getTargetGlobalAddress(
6541 GV, DL, PtrVT, 0,
6542 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
6543
6544 // Add the offset from the start of the .tls section (section base).
6545 SDValue Addr =
6546 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
6547 DAG.getTargetConstant(0, DL, MVT::i32)),
6548 0);
6549 Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
6550 return Addr;
6551 }
6552
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const6553 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
6554 SelectionDAG &DAG) const {
6555 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6556 if (DAG.getTarget().useEmulatedTLS())
6557 return LowerToTLSEmulatedModel(GA, DAG);
6558
6559 if (Subtarget->isTargetDarwin())
6560 return LowerDarwinGlobalTLSAddress(Op, DAG);
6561 if (Subtarget->isTargetELF())
6562 return LowerELFGlobalTLSAddress(Op, DAG);
6563 if (Subtarget->isTargetWindows())
6564 return LowerWindowsGlobalTLSAddress(Op, DAG);
6565
6566 llvm_unreachable("Unexpected platform trying to use TLS");
6567 }
6568
6569 // Looks through \param Val to determine the bit that can be used to
6570 // check the sign of the value. It returns the unextended value and
6571 // the sign bit position.
lookThroughSignExtension(SDValue Val)6572 std::pair<SDValue, uint64_t> lookThroughSignExtension(SDValue Val) {
6573 if (Val.getOpcode() == ISD::SIGN_EXTEND_INREG)
6574 return {Val.getOperand(0),
6575 cast<VTSDNode>(Val.getOperand(1))->getVT().getFixedSizeInBits() -
6576 1};
6577
6578 if (Val.getOpcode() == ISD::SIGN_EXTEND)
6579 return {Val.getOperand(0),
6580 Val.getOperand(0)->getValueType(0).getFixedSizeInBits() - 1};
6581
6582 return {Val, Val.getValueSizeInBits() - 1};
6583 }
6584
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const6585 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
6586 SDValue Chain = Op.getOperand(0);
6587 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
6588 SDValue LHS = Op.getOperand(2);
6589 SDValue RHS = Op.getOperand(3);
6590 SDValue Dest = Op.getOperand(4);
6591 SDLoc dl(Op);
6592
6593 MachineFunction &MF = DAG.getMachineFunction();
6594 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
6595 // will not be produced, as they are conditional branch instructions that do
6596 // not set flags.
6597 bool ProduceNonFlagSettingCondBr =
6598 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
6599
6600 // Handle f128 first, since lowering it will result in comparing the return
6601 // value of a libcall against zero, which is just what the rest of LowerBR_CC
6602 // is expecting to deal with.
6603 if (LHS.getValueType() == MVT::f128) {
6604 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
6605
6606 // If softenSetCCOperands returned a scalar, we need to compare the result
6607 // against zero to select between true and false values.
6608 if (!RHS.getNode()) {
6609 RHS = DAG.getConstant(0, dl, LHS.getValueType());
6610 CC = ISD::SETNE;
6611 }
6612 }
6613
6614 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
6615 // instruction.
6616 if (ISD::isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
6617 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6618 // Only lower legal XALUO ops.
6619 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
6620 return SDValue();
6621
6622 // The actual operation with overflow check.
6623 AArch64CC::CondCode OFCC;
6624 SDValue Value, Overflow;
6625 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
6626
6627 if (CC == ISD::SETNE)
6628 OFCC = getInvertedCondCode(OFCC);
6629 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
6630
6631 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
6632 Overflow);
6633 }
6634
6635 if (LHS.getValueType().isInteger()) {
6636 assert((LHS.getValueType() == RHS.getValueType()) &&
6637 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
6638
6639 // If the RHS of the comparison is zero, we can potentially fold this
6640 // to a specialized branch.
6641 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
6642 if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
6643 if (CC == ISD::SETEQ) {
6644 // See if we can use a TBZ to fold in an AND as well.
6645 // TBZ has a smaller branch displacement than CBZ. If the offset is
6646 // out of bounds, a late MI-layer pass rewrites branches.
6647 // 403.gcc is an example that hits this case.
6648 if (LHS.getOpcode() == ISD::AND &&
6649 isa<ConstantSDNode>(LHS.getOperand(1)) &&
6650 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
6651 SDValue Test = LHS.getOperand(0);
6652 uint64_t Mask = LHS.getConstantOperandVal(1);
6653 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
6654 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
6655 Dest);
6656 }
6657
6658 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
6659 } else if (CC == ISD::SETNE) {
6660 // See if we can use a TBZ to fold in an AND as well.
6661 // TBZ has a smaller branch displacement than CBZ. If the offset is
6662 // out of bounds, a late MI-layer pass rewrites branches.
6663 // 403.gcc is an example that hits this case.
6664 if (LHS.getOpcode() == ISD::AND &&
6665 isa<ConstantSDNode>(LHS.getOperand(1)) &&
6666 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
6667 SDValue Test = LHS.getOperand(0);
6668 uint64_t Mask = LHS.getConstantOperandVal(1);
6669 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
6670 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
6671 Dest);
6672 }
6673
6674 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
6675 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
6676 // Don't combine AND since emitComparison converts the AND to an ANDS
6677 // (a.k.a. TST) and the test in the test bit and branch instruction
6678 // becomes redundant. This would also increase register pressure.
6679 uint64_t SignBitPos;
6680 std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS);
6681 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
6682 DAG.getConstant(SignBitPos, dl, MVT::i64), Dest);
6683 }
6684 }
6685 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
6686 LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
6687 // Don't combine AND since emitComparison converts the AND to an ANDS
6688 // (a.k.a. TST) and the test in the test bit and branch instruction
6689 // becomes redundant. This would also increase register pressure.
6690 uint64_t SignBitPos;
6691 std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS);
6692 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
6693 DAG.getConstant(SignBitPos, dl, MVT::i64), Dest);
6694 }
6695
6696 SDValue CCVal;
6697 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
6698 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
6699 Cmp);
6700 }
6701
6702 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::bf16 ||
6703 LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
6704
6705 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6706 // clean. Some of them require two branches to implement.
6707 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
6708 AArch64CC::CondCode CC1, CC2;
6709 changeFPCCToAArch64CC(CC, CC1, CC2);
6710 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
6711 SDValue BR1 =
6712 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
6713 if (CC2 != AArch64CC::AL) {
6714 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
6715 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
6716 Cmp);
6717 }
6718
6719 return BR1;
6720 }
6721
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const6722 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
6723 SelectionDAG &DAG) const {
6724 EVT VT = Op.getValueType();
6725 SDLoc DL(Op);
6726
6727 SDValue In1 = Op.getOperand(0);
6728 SDValue In2 = Op.getOperand(1);
6729 EVT SrcVT = In2.getValueType();
6730
6731 if (SrcVT.bitsLT(VT))
6732 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
6733 else if (SrcVT.bitsGT(VT))
6734 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
6735
6736 EVT VecVT;
6737 uint64_t EltMask;
6738 SDValue VecVal1, VecVal2;
6739
6740 auto setVecVal = [&] (int Idx) {
6741 if (!VT.isVector()) {
6742 VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
6743 DAG.getUNDEF(VecVT), In1);
6744 VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
6745 DAG.getUNDEF(VecVT), In2);
6746 } else {
6747 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
6748 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
6749 }
6750 };
6751
6752 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
6753 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
6754 EltMask = 0x80000000ULL;
6755 setVecVal(AArch64::ssub);
6756 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
6757 VecVT = MVT::v2i64;
6758
6759 // We want to materialize a mask with the high bit set, but the AdvSIMD
6760 // immediate moves cannot materialize that in a single instruction for
6761 // 64-bit elements. Instead, materialize zero and then negate it.
6762 EltMask = 0;
6763
6764 setVecVal(AArch64::dsub);
6765 } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
6766 VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
6767 EltMask = 0x8000ULL;
6768 setVecVal(AArch64::hsub);
6769 } else {
6770 llvm_unreachable("Invalid type for copysign!");
6771 }
6772
6773 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
6774
6775 // If we couldn't materialize the mask above, then the mask vector will be
6776 // the zero vector, and we need to negate it here.
6777 if (VT == MVT::f64 || VT == MVT::v2f64) {
6778 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
6779 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
6780 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
6781 }
6782
6783 SDValue Sel =
6784 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
6785
6786 if (VT == MVT::f16)
6787 return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
6788 if (VT == MVT::f32)
6789 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
6790 else if (VT == MVT::f64)
6791 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
6792 else
6793 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
6794 }
6795
LowerCTPOP(SDValue Op,SelectionDAG & DAG) const6796 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
6797 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
6798 Attribute::NoImplicitFloat))
6799 return SDValue();
6800
6801 if (!Subtarget->hasNEON())
6802 return SDValue();
6803
6804 // While there is no integer popcount instruction, it can
6805 // be more efficiently lowered to the following sequence that uses
6806 // AdvSIMD registers/instructions as long as the copies to/from
6807 // the AdvSIMD registers are cheap.
6808 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
6809 // CNT V0.8B, V0.8B // 8xbyte pop-counts
6810 // ADDV B0, V0.8B // sum 8xbyte pop-counts
6811 // UMOV X0, V0.B[0] // copy byte result back to integer reg
6812 SDValue Val = Op.getOperand(0);
6813 SDLoc DL(Op);
6814 EVT VT = Op.getValueType();
6815
6816 if (VT == MVT::i32 || VT == MVT::i64) {
6817 if (VT == MVT::i32)
6818 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
6819 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
6820
6821 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
6822 SDValue UaddLV = DAG.getNode(
6823 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
6824 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
6825
6826 if (VT == MVT::i64)
6827 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
6828 return UaddLV;
6829 } else if (VT == MVT::i128) {
6830 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Val);
6831
6832 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v16i8, Val);
6833 SDValue UaddLV = DAG.getNode(
6834 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
6835 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
6836
6837 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, UaddLV);
6838 }
6839
6840 if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT))
6841 return LowerToPredicatedOp(Op, DAG, AArch64ISD::CTPOP_MERGE_PASSTHRU);
6842
6843 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6844 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6845 "Unexpected type for custom ctpop lowering");
6846
6847 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6848 Val = DAG.getBitcast(VT8Bit, Val);
6849 Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);
6850
6851 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6852 unsigned EltSize = 8;
6853 unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6854 while (EltSize != VT.getScalarSizeInBits()) {
6855 EltSize *= 2;
6856 NumElts /= 2;
6857 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6858 Val = DAG.getNode(
6859 ISD::INTRINSIC_WO_CHAIN, DL, WidenVT,
6860 DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val);
6861 }
6862
6863 return Val;
6864 }
6865
LowerCTTZ(SDValue Op,SelectionDAG & DAG) const6866 SDValue AArch64TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
6867 EVT VT = Op.getValueType();
6868 assert(VT.isScalableVector() ||
6869 useSVEForFixedLengthVectorVT(VT, /*OverrideNEON=*/true));
6870
6871 SDLoc DL(Op);
6872 SDValue RBIT = DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(0));
6873 return DAG.getNode(ISD::CTLZ, DL, VT, RBIT);
6874 }
6875
LowerSETCC(SDValue Op,SelectionDAG & DAG) const6876 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6877
6878 if (Op.getValueType().isVector())
6879 return LowerVSETCC(Op, DAG);
6880
6881 bool IsStrict = Op->isStrictFPOpcode();
6882 bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
6883 unsigned OpNo = IsStrict ? 1 : 0;
6884 SDValue Chain;
6885 if (IsStrict)
6886 Chain = Op.getOperand(0);
6887 SDValue LHS = Op.getOperand(OpNo + 0);
6888 SDValue RHS = Op.getOperand(OpNo + 1);
6889 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(OpNo + 2))->get();
6890 SDLoc dl(Op);
6891
6892 // We chose ZeroOrOneBooleanContents, so use zero and one.
6893 EVT VT = Op.getValueType();
6894 SDValue TVal = DAG.getConstant(1, dl, VT);
6895 SDValue FVal = DAG.getConstant(0, dl, VT);
6896
6897 // Handle f128 first, since one possible outcome is a normal integer
6898 // comparison which gets picked up by the next if statement.
6899 if (LHS.getValueType() == MVT::f128) {
6900 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain,
6901 IsSignaling);
6902
6903 // If softenSetCCOperands returned a scalar, use it.
6904 if (!RHS.getNode()) {
6905 assert(LHS.getValueType() == Op.getValueType() &&
6906 "Unexpected setcc expansion!");
6907 return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS;
6908 }
6909 }
6910
6911 if (LHS.getValueType().isInteger()) {
6912 SDValue CCVal;
6913 SDValue Cmp = getAArch64Cmp(
6914 LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl);
6915
6916 // Note that we inverted the condition above, so we reverse the order of
6917 // the true and false operands here. This will allow the setcc to be
6918 // matched to a single CSINC instruction.
6919 SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
6920 return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res;
6921 }
6922
6923 // Now we know we're dealing with FP values.
6924 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
6925 LHS.getValueType() == MVT::f64);
6926
6927 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
6928 // and do the comparison.
6929 SDValue Cmp;
6930 if (IsStrict)
6931 Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling);
6932 else
6933 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
6934
6935 AArch64CC::CondCode CC1, CC2;
6936 changeFPCCToAArch64CC(CC, CC1, CC2);
6937 SDValue Res;
6938 if (CC2 == AArch64CC::AL) {
6939 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1,
6940 CC2);
6941 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
6942
6943 // Note that we inverted the condition above, so we reverse the order of
6944 // the true and false operands here. This will allow the setcc to be
6945 // matched to a single CSINC instruction.
6946 Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
6947 } else {
6948 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
6949 // totally clean. Some of them require two CSELs to implement. As is in
6950 // this case, we emit the first CSEL and then emit a second using the output
6951 // of the first as the RHS. We're effectively OR'ing the two CC's together.
6952
6953 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
6954 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
6955 SDValue CS1 =
6956 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
6957
6958 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
6959 Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
6960 }
6961 return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res;
6962 }
6963
LowerSELECT_CC(ISD::CondCode CC,SDValue LHS,SDValue RHS,SDValue TVal,SDValue FVal,const SDLoc & dl,SelectionDAG & DAG) const6964 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
6965 SDValue RHS, SDValue TVal,
6966 SDValue FVal, const SDLoc &dl,
6967 SelectionDAG &DAG) const {
6968 // Handle f128 first, because it will result in a comparison of some RTLIB
6969 // call result against zero.
6970 if (LHS.getValueType() == MVT::f128) {
6971 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
6972
6973 // If softenSetCCOperands returned a scalar, we need to compare the result
6974 // against zero to select between true and false values.
6975 if (!RHS.getNode()) {
6976 RHS = DAG.getConstant(0, dl, LHS.getValueType());
6977 CC = ISD::SETNE;
6978 }
6979 }
6980
6981 // Also handle f16, for which we need to do a f32 comparison.
6982 if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
6983 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
6984 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
6985 }
6986
6987 // Next, handle integers.
6988 if (LHS.getValueType().isInteger()) {
6989 assert((LHS.getValueType() == RHS.getValueType()) &&
6990 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
6991
6992 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
6993 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
6994 ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
6995 // Check for sign pattern (SELECT_CC setgt, iN lhs, -1, 1, -1) and transform
6996 // into (OR (ASR lhs, N-1), 1), which requires less instructions for the
6997 // supported types.
6998 if (CC == ISD::SETGT && RHSC && RHSC->isAllOnesValue() && CTVal && CFVal &&
6999 CTVal->isOne() && CFVal->isAllOnesValue() &&
7000 LHS.getValueType() == TVal.getValueType()) {
7001 EVT VT = LHS.getValueType();
7002 SDValue Shift =
7003 DAG.getNode(ISD::SRA, dl, VT, LHS,
7004 DAG.getConstant(VT.getSizeInBits() - 1, dl, VT));
7005 return DAG.getNode(ISD::OR, dl, VT, Shift, DAG.getConstant(1, dl, VT));
7006 }
7007
7008 unsigned Opcode = AArch64ISD::CSEL;
7009
7010 // If both the TVal and the FVal are constants, see if we can swap them in
7011 // order to for a CSINV or CSINC out of them.
7012 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
7013 std::swap(TVal, FVal);
7014 std::swap(CTVal, CFVal);
7015 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
7016 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
7017 std::swap(TVal, FVal);
7018 std::swap(CTVal, CFVal);
7019 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
7020 } else if (TVal.getOpcode() == ISD::XOR) {
7021 // If TVal is a NOT we want to swap TVal and FVal so that we can match
7022 // with a CSINV rather than a CSEL.
7023 if (isAllOnesConstant(TVal.getOperand(1))) {
7024 std::swap(TVal, FVal);
7025 std::swap(CTVal, CFVal);
7026 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
7027 }
7028 } else if (TVal.getOpcode() == ISD::SUB) {
7029 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
7030 // that we can match with a CSNEG rather than a CSEL.
7031 if (isNullConstant(TVal.getOperand(0))) {
7032 std::swap(TVal, FVal);
7033 std::swap(CTVal, CFVal);
7034 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
7035 }
7036 } else if (CTVal && CFVal) {
7037 const int64_t TrueVal = CTVal->getSExtValue();
7038 const int64_t FalseVal = CFVal->getSExtValue();
7039 bool Swap = false;
7040
7041 // If both TVal and FVal are constants, see if FVal is the
7042 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
7043 // instead of a CSEL in that case.
7044 if (TrueVal == ~FalseVal) {
7045 Opcode = AArch64ISD::CSINV;
7046 } else if (FalseVal > std::numeric_limits<int64_t>::min() &&
7047 TrueVal == -FalseVal) {
7048 Opcode = AArch64ISD::CSNEG;
7049 } else if (TVal.getValueType() == MVT::i32) {
7050 // If our operands are only 32-bit wide, make sure we use 32-bit
7051 // arithmetic for the check whether we can use CSINC. This ensures that
7052 // the addition in the check will wrap around properly in case there is
7053 // an overflow (which would not be the case if we do the check with
7054 // 64-bit arithmetic).
7055 const uint32_t TrueVal32 = CTVal->getZExtValue();
7056 const uint32_t FalseVal32 = CFVal->getZExtValue();
7057
7058 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
7059 Opcode = AArch64ISD::CSINC;
7060
7061 if (TrueVal32 > FalseVal32) {
7062 Swap = true;
7063 }
7064 }
7065 // 64-bit check whether we can use CSINC.
7066 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
7067 Opcode = AArch64ISD::CSINC;
7068
7069 if (TrueVal > FalseVal) {
7070 Swap = true;
7071 }
7072 }
7073
7074 // Swap TVal and FVal if necessary.
7075 if (Swap) {
7076 std::swap(TVal, FVal);
7077 std::swap(CTVal, CFVal);
7078 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
7079 }
7080
7081 if (Opcode != AArch64ISD::CSEL) {
7082 // Drop FVal since we can get its value by simply inverting/negating
7083 // TVal.
7084 FVal = TVal;
7085 }
7086 }
7087
7088 // Avoid materializing a constant when possible by reusing a known value in
7089 // a register. However, don't perform this optimization if the known value
7090 // is one, zero or negative one in the case of a CSEL. We can always
7091 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
7092 // FVal, respectively.
7093 ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
7094 if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
7095 !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
7096 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
7097 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
7098 // "a != C ? x : a" to avoid materializing C.
7099 if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
7100 TVal = LHS;
7101 else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
7102 FVal = LHS;
7103 } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
7104 assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
7105 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
7106 // avoid materializing C.
7107 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
7108 if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
7109 Opcode = AArch64ISD::CSINV;
7110 TVal = LHS;
7111 FVal = DAG.getConstant(0, dl, FVal.getValueType());
7112 }
7113 }
7114
7115 SDValue CCVal;
7116 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
7117 EVT VT = TVal.getValueType();
7118 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
7119 }
7120
7121 // Now we know we're dealing with FP values.
7122 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
7123 LHS.getValueType() == MVT::f64);
7124 assert(LHS.getValueType() == RHS.getValueType());
7125 EVT VT = TVal.getValueType();
7126 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
7127
7128 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
7129 // clean. Some of them require two CSELs to implement.
7130 AArch64CC::CondCode CC1, CC2;
7131 changeFPCCToAArch64CC(CC, CC1, CC2);
7132
7133 if (DAG.getTarget().Options.UnsafeFPMath) {
7134 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
7135 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
7136 ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
7137 if (RHSVal && RHSVal->isZero()) {
7138 ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
7139 ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
7140
7141 if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
7142 CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
7143 TVal = LHS;
7144 else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
7145 CFVal && CFVal->isZero() &&
7146 FVal.getValueType() == LHS.getValueType())
7147 FVal = LHS;
7148 }
7149 }
7150
7151 // Emit first, and possibly only, CSEL.
7152 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
7153 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
7154
7155 // If we need a second CSEL, emit it, using the output of the first as the
7156 // RHS. We're effectively OR'ing the two CC's together.
7157 if (CC2 != AArch64CC::AL) {
7158 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
7159 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
7160 }
7161
7162 // Otherwise, return the output of the first CSEL.
7163 return CS1;
7164 }
7165
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const7166 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
7167 SelectionDAG &DAG) const {
7168 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7169 SDValue LHS = Op.getOperand(0);
7170 SDValue RHS = Op.getOperand(1);
7171 SDValue TVal = Op.getOperand(2);
7172 SDValue FVal = Op.getOperand(3);
7173 SDLoc DL(Op);
7174 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
7175 }
7176
LowerSELECT(SDValue Op,SelectionDAG & DAG) const7177 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
7178 SelectionDAG &DAG) const {
7179 SDValue CCVal = Op->getOperand(0);
7180 SDValue TVal = Op->getOperand(1);
7181 SDValue FVal = Op->getOperand(2);
7182 SDLoc DL(Op);
7183
7184 EVT Ty = Op.getValueType();
7185 if (Ty.isScalableVector()) {
7186 SDValue TruncCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, CCVal);
7187 MVT PredVT = MVT::getVectorVT(MVT::i1, Ty.getVectorElementCount());
7188 SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, TruncCC);
7189 return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal);
7190 }
7191
7192 if (useSVEForFixedLengthVectorVT(Ty)) {
7193 // FIXME: Ideally this would be the same as above using i1 types, however
7194 // for the moment we can't deal with fixed i1 vector types properly, so
7195 // instead extend the predicate to a result type sized integer vector.
7196 MVT SplatValVT = MVT::getIntegerVT(Ty.getScalarSizeInBits());
7197 MVT PredVT = MVT::getVectorVT(SplatValVT, Ty.getVectorElementCount());
7198 SDValue SplatVal = DAG.getSExtOrTrunc(CCVal, DL, SplatValVT);
7199 SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, SplatVal);
7200 return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal);
7201 }
7202
7203 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
7204 // instruction.
7205 if (ISD::isOverflowIntrOpRes(CCVal)) {
7206 // Only lower legal XALUO ops.
7207 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
7208 return SDValue();
7209
7210 AArch64CC::CondCode OFCC;
7211 SDValue Value, Overflow;
7212 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
7213 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
7214
7215 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
7216 CCVal, Overflow);
7217 }
7218
7219 // Lower it the same way as we would lower a SELECT_CC node.
7220 ISD::CondCode CC;
7221 SDValue LHS, RHS;
7222 if (CCVal.getOpcode() == ISD::SETCC) {
7223 LHS = CCVal.getOperand(0);
7224 RHS = CCVal.getOperand(1);
7225 CC = cast<CondCodeSDNode>(CCVal.getOperand(2))->get();
7226 } else {
7227 LHS = CCVal;
7228 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
7229 CC = ISD::SETNE;
7230 }
7231 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
7232 }
7233
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const7234 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
7235 SelectionDAG &DAG) const {
7236 // Jump table entries as PC relative offsets. No additional tweaking
7237 // is necessary here. Just get the address of the jump table.
7238 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7239
7240 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
7241 !Subtarget->isTargetMachO()) {
7242 return getAddrLarge(JT, DAG);
7243 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
7244 return getAddrTiny(JT, DAG);
7245 }
7246 return getAddr(JT, DAG);
7247 }
7248
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const7249 SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
7250 SelectionDAG &DAG) const {
7251 // Jump table entries as PC relative offsets. No additional tweaking
7252 // is necessary here. Just get the address of the jump table.
7253 SDLoc DL(Op);
7254 SDValue JT = Op.getOperand(1);
7255 SDValue Entry = Op.getOperand(2);
7256 int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();
7257
7258 auto *AFI = DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
7259 AFI->setJumpTableEntryInfo(JTI, 4, nullptr);
7260
7261 SDNode *Dest =
7262 DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
7263 Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
7264 return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0),
7265 SDValue(Dest, 0));
7266 }
7267
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const7268 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
7269 SelectionDAG &DAG) const {
7270 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7271
7272 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
7273 // Use the GOT for the large code model on iOS.
7274 if (Subtarget->isTargetMachO()) {
7275 return getGOT(CP, DAG);
7276 }
7277 return getAddrLarge(CP, DAG);
7278 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
7279 return getAddrTiny(CP, DAG);
7280 } else {
7281 return getAddr(CP, DAG);
7282 }
7283 }
7284
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const7285 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
7286 SelectionDAG &DAG) const {
7287 BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
7288 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
7289 !Subtarget->isTargetMachO()) {
7290 return getAddrLarge(BA, DAG);
7291 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
7292 return getAddrTiny(BA, DAG);
7293 }
7294 return getAddr(BA, DAG);
7295 }
7296
LowerDarwin_VASTART(SDValue Op,SelectionDAG & DAG) const7297 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
7298 SelectionDAG &DAG) const {
7299 AArch64FunctionInfo *FuncInfo =
7300 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
7301
7302 SDLoc DL(Op);
7303 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
7304 getPointerTy(DAG.getDataLayout()));
7305 FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout()));
7306 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7307 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7308 MachinePointerInfo(SV));
7309 }
7310
LowerWin64_VASTART(SDValue Op,SelectionDAG & DAG) const7311 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
7312 SelectionDAG &DAG) const {
7313 AArch64FunctionInfo *FuncInfo =
7314 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
7315
7316 SDLoc DL(Op);
7317 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
7318 ? FuncInfo->getVarArgsGPRIndex()
7319 : FuncInfo->getVarArgsStackIndex(),
7320 getPointerTy(DAG.getDataLayout()));
7321 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7322 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7323 MachinePointerInfo(SV));
7324 }
7325
LowerAAPCS_VASTART(SDValue Op,SelectionDAG & DAG) const7326 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
7327 SelectionDAG &DAG) const {
7328 // The layout of the va_list struct is specified in the AArch64 Procedure Call
7329 // Standard, section B.3.
7330 MachineFunction &MF = DAG.getMachineFunction();
7331 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
7332 unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8;
7333 auto PtrMemVT = getPointerMemTy(DAG.getDataLayout());
7334 auto PtrVT = getPointerTy(DAG.getDataLayout());
7335 SDLoc DL(Op);
7336
7337 SDValue Chain = Op.getOperand(0);
7338 SDValue VAList = Op.getOperand(1);
7339 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7340 SmallVector<SDValue, 4> MemOps;
7341
7342 // void *__stack at offset 0
7343 unsigned Offset = 0;
7344 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
7345 Stack = DAG.getZExtOrTrunc(Stack, DL, PtrMemVT);
7346 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
7347 MachinePointerInfo(SV), Align(PtrSize)));
7348
7349 // void *__gr_top at offset 8 (4 on ILP32)
7350 Offset += PtrSize;
7351 int GPRSize = FuncInfo->getVarArgsGPRSize();
7352 if (GPRSize > 0) {
7353 SDValue GRTop, GRTopAddr;
7354
7355 GRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
7356 DAG.getConstant(Offset, DL, PtrVT));
7357
7358 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
7359 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
7360 DAG.getConstant(GPRSize, DL, PtrVT));
7361 GRTop = DAG.getZExtOrTrunc(GRTop, DL, PtrMemVT);
7362
7363 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
7364 MachinePointerInfo(SV, Offset),
7365 Align(PtrSize)));
7366 }
7367
7368 // void *__vr_top at offset 16 (8 on ILP32)
7369 Offset += PtrSize;
7370 int FPRSize = FuncInfo->getVarArgsFPRSize();
7371 if (FPRSize > 0) {
7372 SDValue VRTop, VRTopAddr;
7373 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
7374 DAG.getConstant(Offset, DL, PtrVT));
7375
7376 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
7377 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
7378 DAG.getConstant(FPRSize, DL, PtrVT));
7379 VRTop = DAG.getZExtOrTrunc(VRTop, DL, PtrMemVT);
7380
7381 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
7382 MachinePointerInfo(SV, Offset),
7383 Align(PtrSize)));
7384 }
7385
7386 // int __gr_offs at offset 24 (12 on ILP32)
7387 Offset += PtrSize;
7388 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
7389 DAG.getConstant(Offset, DL, PtrVT));
7390 MemOps.push_back(
7391 DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32),
7392 GROffsAddr, MachinePointerInfo(SV, Offset), Align(4)));
7393
7394 // int __vr_offs at offset 28 (16 on ILP32)
7395 Offset += 4;
7396 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
7397 DAG.getConstant(Offset, DL, PtrVT));
7398 MemOps.push_back(
7399 DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32),
7400 VROffsAddr, MachinePointerInfo(SV, Offset), Align(4)));
7401
7402 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
7403 }
7404
LowerVASTART(SDValue Op,SelectionDAG & DAG) const7405 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
7406 SelectionDAG &DAG) const {
7407 MachineFunction &MF = DAG.getMachineFunction();
7408
7409 if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
7410 return LowerWin64_VASTART(Op, DAG);
7411 else if (Subtarget->isTargetDarwin())
7412 return LowerDarwin_VASTART(Op, DAG);
7413 else
7414 return LowerAAPCS_VASTART(Op, DAG);
7415 }
7416
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const7417 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
7418 SelectionDAG &DAG) const {
7419 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
7420 // pointer.
7421 SDLoc DL(Op);
7422 unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8;
7423 unsigned VaListSize =
7424 (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
7425 ? PtrSize
7426 : Subtarget->isTargetILP32() ? 20 : 32;
7427 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7428 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7429
7430 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2),
7431 DAG.getConstant(VaListSize, DL, MVT::i32),
7432 Align(PtrSize), false, false, false,
7433 MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
7434 }
7435
LowerVAARG(SDValue Op,SelectionDAG & DAG) const7436 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7437 assert(Subtarget->isTargetDarwin() &&
7438 "automatic va_arg instruction only works on Darwin");
7439
7440 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7441 EVT VT = Op.getValueType();
7442 SDLoc DL(Op);
7443 SDValue Chain = Op.getOperand(0);
7444 SDValue Addr = Op.getOperand(1);
7445 MaybeAlign Align(Op.getConstantOperandVal(3));
7446 unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8;
7447 auto PtrVT = getPointerTy(DAG.getDataLayout());
7448 auto PtrMemVT = getPointerMemTy(DAG.getDataLayout());
7449 SDValue VAList =
7450 DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V));
7451 Chain = VAList.getValue(1);
7452 VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT);
7453
7454 if (VT.isScalableVector())
7455 report_fatal_error("Passing SVE types to variadic functions is "
7456 "currently not supported");
7457
7458 if (Align && *Align > MinSlotSize) {
7459 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
7460 DAG.getConstant(Align->value() - 1, DL, PtrVT));
7461 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
7462 DAG.getConstant(-(int64_t)Align->value(), DL, PtrVT));
7463 }
7464
7465 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7466 unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
7467
7468 // Scalar integer and FP values smaller than 64 bits are implicitly extended
7469 // up to 64 bits. At the very least, we have to increase the striding of the
7470 // vaargs list to match this, and for FP values we need to introduce
7471 // FP_ROUND nodes as well.
7472 if (VT.isInteger() && !VT.isVector())
7473 ArgSize = std::max(ArgSize, MinSlotSize);
7474 bool NeedFPTrunc = false;
7475 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
7476 ArgSize = 8;
7477 NeedFPTrunc = true;
7478 }
7479
7480 // Increment the pointer, VAList, to the next vaarg
7481 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
7482 DAG.getConstant(ArgSize, DL, PtrVT));
7483 VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT);
7484
7485 // Store the incremented VAList to the legalized pointer
7486 SDValue APStore =
7487 DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
7488
7489 // Load the actual argument out of the pointer VAList
7490 if (NeedFPTrunc) {
7491 // Load the value as an f64.
7492 SDValue WideFP =
7493 DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
7494 // Round the value down to an f32.
7495 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
7496 DAG.getIntPtrConstant(1, DL));
7497 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
7498 // Merge the rounded value with the chain output of the load.
7499 return DAG.getMergeValues(Ops, DL);
7500 }
7501
7502 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
7503 }
7504
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const7505 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
7506 SelectionDAG &DAG) const {
7507 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7508 MFI.setFrameAddressIsTaken(true);
7509
7510 EVT VT = Op.getValueType();
7511 SDLoc DL(Op);
7512 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7513 SDValue FrameAddr =
7514 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64);
7515 while (Depth--)
7516 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
7517 MachinePointerInfo());
7518
7519 if (Subtarget->isTargetILP32())
7520 FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr,
7521 DAG.getValueType(VT));
7522
7523 return FrameAddr;
7524 }
7525
LowerSPONENTRY(SDValue Op,SelectionDAG & DAG) const7526 SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
7527 SelectionDAG &DAG) const {
7528 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7529
7530 EVT VT = getPointerTy(DAG.getDataLayout());
7531 SDLoc DL(Op);
7532 int FI = MFI.CreateFixedObject(4, 0, false);
7533 return DAG.getFrameIndex(FI, VT);
7534 }
7535
7536 #define GET_REGISTER_MATCHER
7537 #include "AArch64GenAsmMatcher.inc"
7538
7539 // FIXME? Maybe this could be a TableGen attribute on some registers and
7540 // this table could be generated automatically from RegInfo.
7541 Register AArch64TargetLowering::
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const7542 getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const {
7543 Register Reg = MatchRegisterName(RegName);
7544 if (AArch64::X1 <= Reg && Reg <= AArch64::X28) {
7545 const MCRegisterInfo *MRI = Subtarget->getRegisterInfo();
7546 unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false);
7547 if (!Subtarget->isXRegisterReserved(DwarfRegNum))
7548 Reg = 0;
7549 }
7550 if (Reg)
7551 return Reg;
7552 report_fatal_error(Twine("Invalid register name \""
7553 + StringRef(RegName) + "\"."));
7554 }
7555
LowerADDROFRETURNADDR(SDValue Op,SelectionDAG & DAG) const7556 SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
7557 SelectionDAG &DAG) const {
7558 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
7559
7560 EVT VT = Op.getValueType();
7561 SDLoc DL(Op);
7562
7563 SDValue FrameAddr =
7564 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
7565 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
7566
7567 return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
7568 }
7569
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const7570 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
7571 SelectionDAG &DAG) const {
7572 MachineFunction &MF = DAG.getMachineFunction();
7573 MachineFrameInfo &MFI = MF.getFrameInfo();
7574 MFI.setReturnAddressIsTaken(true);
7575
7576 EVT VT = Op.getValueType();
7577 SDLoc DL(Op);
7578 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7579 SDValue ReturnAddress;
7580 if (Depth) {
7581 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7582 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
7583 ReturnAddress = DAG.getLoad(
7584 VT, DL, DAG.getEntryNode(),
7585 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), MachinePointerInfo());
7586 } else {
7587 // Return LR, which contains the return address. Mark it an implicit
7588 // live-in.
7589 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
7590 ReturnAddress = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
7591 }
7592
7593 // The XPACLRI instruction assembles to a hint-space instruction before
7594 // Armv8.3-A therefore this instruction can be safely used for any pre
7595 // Armv8.3-A architectures. On Armv8.3-A and onwards XPACI is available so use
7596 // that instead.
7597 SDNode *St;
7598 if (Subtarget->hasPAuth()) {
7599 St = DAG.getMachineNode(AArch64::XPACI, DL, VT, ReturnAddress);
7600 } else {
7601 // XPACLRI operates on LR therefore we must move the operand accordingly.
7602 SDValue Chain =
7603 DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::LR, ReturnAddress);
7604 St = DAG.getMachineNode(AArch64::XPACLRI, DL, VT, Chain);
7605 }
7606 return SDValue(St, 0);
7607 }
7608
7609 /// LowerShiftParts - Lower SHL_PARTS/SRA_PARTS/SRL_PARTS, which returns two
7610 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftParts(SDValue Op,SelectionDAG & DAG) const7611 SDValue AArch64TargetLowering::LowerShiftParts(SDValue Op,
7612 SelectionDAG &DAG) const {
7613 SDValue Lo, Hi;
7614 expandShiftParts(Op.getNode(), Lo, Hi, DAG);
7615 return DAG.getMergeValues({Lo, Hi}, SDLoc(Op));
7616 }
7617
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const7618 bool AArch64TargetLowering::isOffsetFoldingLegal(
7619 const GlobalAddressSDNode *GA) const {
7620 // Offsets are folded in the DAG combine rather than here so that we can
7621 // intelligently choose an offset based on the uses.
7622 return false;
7623 }
7624
isFPImmLegal(const APFloat & Imm,EVT VT,bool OptForSize) const7625 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
7626 bool OptForSize) const {
7627 bool IsLegal = false;
7628 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
7629 // 16-bit case when target has full fp16 support.
7630 // FIXME: We should be able to handle f128 as well with a clever lowering.
7631 const APInt ImmInt = Imm.bitcastToAPInt();
7632 if (VT == MVT::f64)
7633 IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero();
7634 else if (VT == MVT::f32)
7635 IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero();
7636 else if (VT == MVT::f16 && Subtarget->hasFullFP16())
7637 IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero();
7638 // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
7639 // generate that fmov.
7640
7641 // If we can not materialize in immediate field for fmov, check if the
7642 // value can be encoded as the immediate operand of a logical instruction.
7643 // The immediate value will be created with either MOVZ, MOVN, or ORR.
7644 if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) {
7645 // The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
7646 // however the mov+fmov sequence is always better because of the reduced
7647 // cache pressure. The timings are still the same if you consider
7648 // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
7649 // movw+movk is fused). So we limit up to 2 instrdduction at most.
7650 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
7651 AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(),
7652 Insn);
7653 unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2));
7654 IsLegal = Insn.size() <= Limit;
7655 }
7656
7657 LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString()
7658 << " imm value: "; Imm.dump(););
7659 return IsLegal;
7660 }
7661
7662 //===----------------------------------------------------------------------===//
7663 // AArch64 Optimization Hooks
7664 //===----------------------------------------------------------------------===//
7665
getEstimate(const AArch64Subtarget * ST,unsigned Opcode,SDValue Operand,SelectionDAG & DAG,int & ExtraSteps)7666 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
7667 SDValue Operand, SelectionDAG &DAG,
7668 int &ExtraSteps) {
7669 EVT VT = Operand.getValueType();
7670 if (ST->hasNEON() &&
7671 (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
7672 VT == MVT::f32 || VT == MVT::v1f32 ||
7673 VT == MVT::v2f32 || VT == MVT::v4f32)) {
7674 if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
7675 // For the reciprocal estimates, convergence is quadratic, so the number
7676 // of digits is doubled after each iteration. In ARMv8, the accuracy of
7677 // the initial estimate is 2^-8. Thus the number of extra steps to refine
7678 // the result for float (23 mantissa bits) is 2 and for double (52
7679 // mantissa bits) is 3.
7680 ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
7681
7682 return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
7683 }
7684
7685 return SDValue();
7686 }
7687
7688 SDValue
getSqrtInputTest(SDValue Op,SelectionDAG & DAG,const DenormalMode & Mode) const7689 AArch64TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
7690 const DenormalMode &Mode) const {
7691 SDLoc DL(Op);
7692 EVT VT = Op.getValueType();
7693 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7694 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7695 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7696 }
7697
7698 SDValue
getSqrtResultForDenormInput(SDValue Op,SelectionDAG & DAG) const7699 AArch64TargetLowering::getSqrtResultForDenormInput(SDValue Op,
7700 SelectionDAG &DAG) const {
7701 return Op;
7702 }
7703
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps,bool & UseOneConst,bool Reciprocal) const7704 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
7705 SelectionDAG &DAG, int Enabled,
7706 int &ExtraSteps,
7707 bool &UseOneConst,
7708 bool Reciprocal) const {
7709 if (Enabled == ReciprocalEstimate::Enabled ||
7710 (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
7711 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
7712 DAG, ExtraSteps)) {
7713 SDLoc DL(Operand);
7714 EVT VT = Operand.getValueType();
7715
7716 SDNodeFlags Flags;
7717 Flags.setAllowReassociation(true);
7718
7719 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
7720 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
7721 for (int i = ExtraSteps; i > 0; --i) {
7722 SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
7723 Flags);
7724 Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
7725 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
7726 }
7727 if (!Reciprocal)
7728 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
7729
7730 ExtraSteps = 0;
7731 return Estimate;
7732 }
7733
7734 return SDValue();
7735 }
7736
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps) const7737 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
7738 SelectionDAG &DAG, int Enabled,
7739 int &ExtraSteps) const {
7740 if (Enabled == ReciprocalEstimate::Enabled)
7741 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
7742 DAG, ExtraSteps)) {
7743 SDLoc DL(Operand);
7744 EVT VT = Operand.getValueType();
7745
7746 SDNodeFlags Flags;
7747 Flags.setAllowReassociation(true);
7748
7749 // Newton reciprocal iteration: E * (2 - X * E)
7750 // AArch64 reciprocal iteration instruction: (2 - M * N)
7751 for (int i = ExtraSteps; i > 0; --i) {
7752 SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
7753 Estimate, Flags);
7754 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
7755 }
7756
7757 ExtraSteps = 0;
7758 return Estimate;
7759 }
7760
7761 return SDValue();
7762 }
7763
7764 //===----------------------------------------------------------------------===//
7765 // AArch64 Inline Assembly Support
7766 //===----------------------------------------------------------------------===//
7767
7768 // Table of Constraints
7769 // TODO: This is the current set of constraints supported by ARM for the
7770 // compiler, not all of them may make sense.
7771 //
7772 // r - A general register
7773 // w - An FP/SIMD register of some size in the range v0-v31
7774 // x - An FP/SIMD register of some size in the range v0-v15
7775 // I - Constant that can be used with an ADD instruction
7776 // J - Constant that can be used with a SUB instruction
7777 // K - Constant that can be used with a 32-bit logical instruction
7778 // L - Constant that can be used with a 64-bit logical instruction
7779 // M - Constant that can be used as a 32-bit MOV immediate
7780 // N - Constant that can be used as a 64-bit MOV immediate
7781 // Q - A memory reference with base register and no offset
7782 // S - A symbolic address
7783 // Y - Floating point constant zero
7784 // Z - Integer constant zero
7785 //
7786 // Note that general register operands will be output using their 64-bit x
7787 // register name, whatever the size of the variable, unless the asm operand
7788 // is prefixed by the %w modifier. Floating-point and SIMD register operands
7789 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
7790 // %q modifier.
LowerXConstraint(EVT ConstraintVT) const7791 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
7792 // At this point, we have to lower this constraint to something else, so we
7793 // lower it to an "r" or "w". However, by doing this we will force the result
7794 // to be in register, while the X constraint is much more permissive.
7795 //
7796 // Although we are correct (we are free to emit anything, without
7797 // constraints), we might break use cases that would expect us to be more
7798 // efficient and emit something else.
7799 if (!Subtarget->hasFPARMv8())
7800 return "r";
7801
7802 if (ConstraintVT.isFloatingPoint())
7803 return "w";
7804
7805 if (ConstraintVT.isVector() &&
7806 (ConstraintVT.getSizeInBits() == 64 ||
7807 ConstraintVT.getSizeInBits() == 128))
7808 return "w";
7809
7810 return "r";
7811 }
7812
7813 enum PredicateConstraint {
7814 Upl,
7815 Upa,
7816 Invalid
7817 };
7818
parsePredicateConstraint(StringRef Constraint)7819 static PredicateConstraint parsePredicateConstraint(StringRef Constraint) {
7820 PredicateConstraint P = PredicateConstraint::Invalid;
7821 if (Constraint == "Upa")
7822 P = PredicateConstraint::Upa;
7823 if (Constraint == "Upl")
7824 P = PredicateConstraint::Upl;
7825 return P;
7826 }
7827
7828 /// getConstraintType - Given a constraint letter, return the type of
7829 /// constraint it is for this target.
7830 AArch64TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const7831 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
7832 if (Constraint.size() == 1) {
7833 switch (Constraint[0]) {
7834 default:
7835 break;
7836 case 'x':
7837 case 'w':
7838 case 'y':
7839 return C_RegisterClass;
7840 // An address with a single base register. Due to the way we
7841 // currently handle addresses it is the same as 'r'.
7842 case 'Q':
7843 return C_Memory;
7844 case 'I':
7845 case 'J':
7846 case 'K':
7847 case 'L':
7848 case 'M':
7849 case 'N':
7850 case 'Y':
7851 case 'Z':
7852 return C_Immediate;
7853 case 'z':
7854 case 'S': // A symbolic address
7855 return C_Other;
7856 }
7857 } else if (parsePredicateConstraint(Constraint) !=
7858 PredicateConstraint::Invalid)
7859 return C_RegisterClass;
7860 return TargetLowering::getConstraintType(Constraint);
7861 }
7862
7863 /// Examine constraint type and operand type and determine a weight value.
7864 /// This object must already have been set up with the operand type
7865 /// and the current alternative constraint selected.
7866 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const7867 AArch64TargetLowering::getSingleConstraintMatchWeight(
7868 AsmOperandInfo &info, const char *constraint) const {
7869 ConstraintWeight weight = CW_Invalid;
7870 Value *CallOperandVal = info.CallOperandVal;
7871 // If we don't have a value, we can't do a match,
7872 // but allow it at the lowest weight.
7873 if (!CallOperandVal)
7874 return CW_Default;
7875 Type *type = CallOperandVal->getType();
7876 // Look at the constraint type.
7877 switch (*constraint) {
7878 default:
7879 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7880 break;
7881 case 'x':
7882 case 'w':
7883 case 'y':
7884 if (type->isFloatingPointTy() || type->isVectorTy())
7885 weight = CW_Register;
7886 break;
7887 case 'z':
7888 weight = CW_Constant;
7889 break;
7890 case 'U':
7891 if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid)
7892 weight = CW_Register;
7893 break;
7894 }
7895 return weight;
7896 }
7897
7898 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const7899 AArch64TargetLowering::getRegForInlineAsmConstraint(
7900 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
7901 if (Constraint.size() == 1) {
7902 switch (Constraint[0]) {
7903 case 'r':
7904 if (VT.isScalableVector())
7905 return std::make_pair(0U, nullptr);
7906 if (VT.getFixedSizeInBits() == 64)
7907 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
7908 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
7909 case 'w': {
7910 if (!Subtarget->hasFPARMv8())
7911 break;
7912 if (VT.isScalableVector()) {
7913 if (VT.getVectorElementType() != MVT::i1)
7914 return std::make_pair(0U, &AArch64::ZPRRegClass);
7915 return std::make_pair(0U, nullptr);
7916 }
7917 uint64_t VTSize = VT.getFixedSizeInBits();
7918 if (VTSize == 16)
7919 return std::make_pair(0U, &AArch64::FPR16RegClass);
7920 if (VTSize == 32)
7921 return std::make_pair(0U, &AArch64::FPR32RegClass);
7922 if (VTSize == 64)
7923 return std::make_pair(0U, &AArch64::FPR64RegClass);
7924 if (VTSize == 128)
7925 return std::make_pair(0U, &AArch64::FPR128RegClass);
7926 break;
7927 }
7928 // The instructions that this constraint is designed for can
7929 // only take 128-bit registers so just use that regclass.
7930 case 'x':
7931 if (!Subtarget->hasFPARMv8())
7932 break;
7933 if (VT.isScalableVector())
7934 return std::make_pair(0U, &AArch64::ZPR_4bRegClass);
7935 if (VT.getSizeInBits() == 128)
7936 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
7937 break;
7938 case 'y':
7939 if (!Subtarget->hasFPARMv8())
7940 break;
7941 if (VT.isScalableVector())
7942 return std::make_pair(0U, &AArch64::ZPR_3bRegClass);
7943 break;
7944 }
7945 } else {
7946 PredicateConstraint PC = parsePredicateConstraint(Constraint);
7947 if (PC != PredicateConstraint::Invalid) {
7948 if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1)
7949 return std::make_pair(0U, nullptr);
7950 bool restricted = (PC == PredicateConstraint::Upl);
7951 return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass)
7952 : std::make_pair(0U, &AArch64::PPRRegClass);
7953 }
7954 }
7955 if (StringRef("{cc}").equals_lower(Constraint))
7956 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
7957
7958 // Use the default implementation in TargetLowering to convert the register
7959 // constraint into a member of a register class.
7960 std::pair<unsigned, const TargetRegisterClass *> Res;
7961 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
7962
7963 // Not found as a standard register?
7964 if (!Res.second) {
7965 unsigned Size = Constraint.size();
7966 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
7967 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
7968 int RegNo;
7969 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
7970 if (!Failed && RegNo >= 0 && RegNo <= 31) {
7971 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
7972 // By default we'll emit v0-v31 for this unless there's a modifier where
7973 // we'll emit the correct register as well.
7974 if (VT != MVT::Other && VT.getSizeInBits() == 64) {
7975 Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
7976 Res.second = &AArch64::FPR64RegClass;
7977 } else {
7978 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
7979 Res.second = &AArch64::FPR128RegClass;
7980 }
7981 }
7982 }
7983 }
7984
7985 if (Res.second && !Subtarget->hasFPARMv8() &&
7986 !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
7987 !AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
7988 return std::make_pair(0U, nullptr);
7989
7990 return Res;
7991 }
7992
7993 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7994 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const7995 void AArch64TargetLowering::LowerAsmOperandForConstraint(
7996 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
7997 SelectionDAG &DAG) const {
7998 SDValue Result;
7999
8000 // Currently only support length 1 constraints.
8001 if (Constraint.length() != 1)
8002 return;
8003
8004 char ConstraintLetter = Constraint[0];
8005 switch (ConstraintLetter) {
8006 default:
8007 break;
8008
8009 // This set of constraints deal with valid constants for various instructions.
8010 // Validate and return a target constant for them if we can.
8011 case 'z': {
8012 // 'z' maps to xzr or wzr so it needs an input of 0.
8013 if (!isNullConstant(Op))
8014 return;
8015
8016 if (Op.getValueType() == MVT::i64)
8017 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
8018 else
8019 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
8020 break;
8021 }
8022 case 'S': {
8023 // An absolute symbolic address or label reference.
8024 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8025 Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
8026 GA->getValueType(0));
8027 } else if (const BlockAddressSDNode *BA =
8028 dyn_cast<BlockAddressSDNode>(Op)) {
8029 Result =
8030 DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
8031 } else if (const ExternalSymbolSDNode *ES =
8032 dyn_cast<ExternalSymbolSDNode>(Op)) {
8033 Result =
8034 DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
8035 } else
8036 return;
8037 break;
8038 }
8039
8040 case 'I':
8041 case 'J':
8042 case 'K':
8043 case 'L':
8044 case 'M':
8045 case 'N':
8046 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8047 if (!C)
8048 return;
8049
8050 // Grab the value and do some validation.
8051 uint64_t CVal = C->getZExtValue();
8052 switch (ConstraintLetter) {
8053 // The I constraint applies only to simple ADD or SUB immediate operands:
8054 // i.e. 0 to 4095 with optional shift by 12
8055 // The J constraint applies only to ADD or SUB immediates that would be
8056 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
8057 // instruction [or vice versa], in other words -1 to -4095 with optional
8058 // left shift by 12.
8059 case 'I':
8060 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
8061 break;
8062 return;
8063 case 'J': {
8064 uint64_t NVal = -C->getSExtValue();
8065 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
8066 CVal = C->getSExtValue();
8067 break;
8068 }
8069 return;
8070 }
8071 // The K and L constraints apply *only* to logical immediates, including
8072 // what used to be the MOVI alias for ORR (though the MOVI alias has now
8073 // been removed and MOV should be used). So these constraints have to
8074 // distinguish between bit patterns that are valid 32-bit or 64-bit
8075 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
8076 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
8077 // versa.
8078 case 'K':
8079 if (AArch64_AM::isLogicalImmediate(CVal, 32))
8080 break;
8081 return;
8082 case 'L':
8083 if (AArch64_AM::isLogicalImmediate(CVal, 64))
8084 break;
8085 return;
8086 // The M and N constraints are a superset of K and L respectively, for use
8087 // with the MOV (immediate) alias. As well as the logical immediates they
8088 // also match 32 or 64-bit immediates that can be loaded either using a
8089 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
8090 // (M) or 64-bit 0x1234000000000000 (N) etc.
8091 // As a note some of this code is liberally stolen from the asm parser.
8092 case 'M': {
8093 if (!isUInt<32>(CVal))
8094 return;
8095 if (AArch64_AM::isLogicalImmediate(CVal, 32))
8096 break;
8097 if ((CVal & 0xFFFF) == CVal)
8098 break;
8099 if ((CVal & 0xFFFF0000ULL) == CVal)
8100 break;
8101 uint64_t NCVal = ~(uint32_t)CVal;
8102 if ((NCVal & 0xFFFFULL) == NCVal)
8103 break;
8104 if ((NCVal & 0xFFFF0000ULL) == NCVal)
8105 break;
8106 return;
8107 }
8108 case 'N': {
8109 if (AArch64_AM::isLogicalImmediate(CVal, 64))
8110 break;
8111 if ((CVal & 0xFFFFULL) == CVal)
8112 break;
8113 if ((CVal & 0xFFFF0000ULL) == CVal)
8114 break;
8115 if ((CVal & 0xFFFF00000000ULL) == CVal)
8116 break;
8117 if ((CVal & 0xFFFF000000000000ULL) == CVal)
8118 break;
8119 uint64_t NCVal = ~CVal;
8120 if ((NCVal & 0xFFFFULL) == NCVal)
8121 break;
8122 if ((NCVal & 0xFFFF0000ULL) == NCVal)
8123 break;
8124 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
8125 break;
8126 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
8127 break;
8128 return;
8129 }
8130 default:
8131 return;
8132 }
8133
8134 // All assembler immediates are 64-bit integers.
8135 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
8136 break;
8137 }
8138
8139 if (Result.getNode()) {
8140 Ops.push_back(Result);
8141 return;
8142 }
8143
8144 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8145 }
8146
8147 //===----------------------------------------------------------------------===//
8148 // AArch64 Advanced SIMD Support
8149 //===----------------------------------------------------------------------===//
8150
8151 /// WidenVector - Given a value in the V64 register class, produce the
8152 /// equivalent value in the V128 register class.
WidenVector(SDValue V64Reg,SelectionDAG & DAG)8153 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
8154 EVT VT = V64Reg.getValueType();
8155 unsigned NarrowSize = VT.getVectorNumElements();
8156 MVT EltTy = VT.getVectorElementType().getSimpleVT();
8157 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
8158 SDLoc DL(V64Reg);
8159
8160 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
8161 V64Reg, DAG.getConstant(0, DL, MVT::i64));
8162 }
8163
8164 /// getExtFactor - Determine the adjustment factor for the position when
8165 /// generating an "extract from vector registers" instruction.
getExtFactor(SDValue & V)8166 static unsigned getExtFactor(SDValue &V) {
8167 EVT EltType = V.getValueType().getVectorElementType();
8168 return EltType.getSizeInBits() / 8;
8169 }
8170
8171 /// NarrowVector - Given a value in the V128 register class, produce the
8172 /// equivalent value in the V64 register class.
NarrowVector(SDValue V128Reg,SelectionDAG & DAG)8173 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
8174 EVT VT = V128Reg.getValueType();
8175 unsigned WideSize = VT.getVectorNumElements();
8176 MVT EltTy = VT.getVectorElementType().getSimpleVT();
8177 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
8178 SDLoc DL(V128Reg);
8179
8180 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
8181 }
8182
8183 // Gather data to see if the operation can be modelled as a
8184 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const8185 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
8186 SelectionDAG &DAG) const {
8187 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
8188 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
8189 SDLoc dl(Op);
8190 EVT VT = Op.getValueType();
8191 assert(!VT.isScalableVector() &&
8192 "Scalable vectors cannot be used with ISD::BUILD_VECTOR");
8193 unsigned NumElts = VT.getVectorNumElements();
8194
8195 struct ShuffleSourceInfo {
8196 SDValue Vec;
8197 unsigned MinElt;
8198 unsigned MaxElt;
8199
8200 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
8201 // be compatible with the shuffle we intend to construct. As a result
8202 // ShuffleVec will be some sliding window into the original Vec.
8203 SDValue ShuffleVec;
8204
8205 // Code should guarantee that element i in Vec starts at element "WindowBase
8206 // + i * WindowScale in ShuffleVec".
8207 int WindowBase;
8208 int WindowScale;
8209
8210 ShuffleSourceInfo(SDValue Vec)
8211 : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
8212 ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
8213
8214 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
8215 };
8216
8217 // First gather all vectors used as an immediate source for this BUILD_VECTOR
8218 // node.
8219 SmallVector<ShuffleSourceInfo, 2> Sources;
8220 for (unsigned i = 0; i < NumElts; ++i) {
8221 SDValue V = Op.getOperand(i);
8222 if (V.isUndef())
8223 continue;
8224 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8225 !isa<ConstantSDNode>(V.getOperand(1))) {
8226 LLVM_DEBUG(
8227 dbgs() << "Reshuffle failed: "
8228 "a shuffle can only come from building a vector from "
8229 "various elements of other vectors, provided their "
8230 "indices are constant\n");
8231 return SDValue();
8232 }
8233
8234 // Add this element source to the list if it's not already there.
8235 SDValue SourceVec = V.getOperand(0);
8236 auto Source = find(Sources, SourceVec);
8237 if (Source == Sources.end())
8238 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
8239
8240 // Update the minimum and maximum lane number seen.
8241 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
8242 Source->MinElt = std::min(Source->MinElt, EltNo);
8243 Source->MaxElt = std::max(Source->MaxElt, EltNo);
8244 }
8245
8246 if (Sources.size() > 2) {
8247 LLVM_DEBUG(
8248 dbgs() << "Reshuffle failed: currently only do something sane when at "
8249 "most two source vectors are involved\n");
8250 return SDValue();
8251 }
8252
8253 // Find out the smallest element size among result and two sources, and use
8254 // it as element size to build the shuffle_vector.
8255 EVT SmallestEltTy = VT.getVectorElementType();
8256 for (auto &Source : Sources) {
8257 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
8258 if (SrcEltTy.bitsLT(SmallestEltTy)) {
8259 SmallestEltTy = SrcEltTy;
8260 }
8261 }
8262 unsigned ResMultiplier =
8263 VT.getScalarSizeInBits() / SmallestEltTy.getFixedSizeInBits();
8264 uint64_t VTSize = VT.getFixedSizeInBits();
8265 NumElts = VTSize / SmallestEltTy.getFixedSizeInBits();
8266 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
8267
8268 // If the source vector is too wide or too narrow, we may nevertheless be able
8269 // to construct a compatible shuffle either by concatenating it with UNDEF or
8270 // extracting a suitable range of elements.
8271 for (auto &Src : Sources) {
8272 EVT SrcVT = Src.ShuffleVec.getValueType();
8273
8274 uint64_t SrcVTSize = SrcVT.getFixedSizeInBits();
8275 if (SrcVTSize == VTSize)
8276 continue;
8277
8278 // This stage of the search produces a source with the same element type as
8279 // the original, but with a total width matching the BUILD_VECTOR output.
8280 EVT EltVT = SrcVT.getVectorElementType();
8281 unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
8282 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
8283
8284 if (SrcVTSize < VTSize) {
8285 assert(2 * SrcVTSize == VTSize);
8286 // We can pad out the smaller vector for free, so if it's part of a
8287 // shuffle...
8288 Src.ShuffleVec =
8289 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
8290 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
8291 continue;
8292 }
8293
8294 if (SrcVTSize != 2 * VTSize) {
8295 LLVM_DEBUG(
8296 dbgs() << "Reshuffle failed: result vector too small to extract\n");
8297 return SDValue();
8298 }
8299
8300 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
8301 LLVM_DEBUG(
8302 dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
8303 return SDValue();
8304 }
8305
8306 if (Src.MinElt >= NumSrcElts) {
8307 // The extraction can just take the second half
8308 Src.ShuffleVec =
8309 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8310 DAG.getConstant(NumSrcElts, dl, MVT::i64));
8311 Src.WindowBase = -NumSrcElts;
8312 } else if (Src.MaxElt < NumSrcElts) {
8313 // The extraction can just take the first half
8314 Src.ShuffleVec =
8315 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8316 DAG.getConstant(0, dl, MVT::i64));
8317 } else {
8318 // An actual VEXT is needed
8319 SDValue VEXTSrc1 =
8320 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8321 DAG.getConstant(0, dl, MVT::i64));
8322 SDValue VEXTSrc2 =
8323 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8324 DAG.getConstant(NumSrcElts, dl, MVT::i64));
8325 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
8326
8327 if (!SrcVT.is64BitVector()) {
8328 LLVM_DEBUG(
8329 dbgs() << "Reshuffle failed: don't know how to lower AArch64ISD::EXT "
8330 "for SVE vectors.");
8331 return SDValue();
8332 }
8333
8334 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
8335 VEXTSrc2,
8336 DAG.getConstant(Imm, dl, MVT::i32));
8337 Src.WindowBase = -Src.MinElt;
8338 }
8339 }
8340
8341 // Another possible incompatibility occurs from the vector element types. We
8342 // can fix this by bitcasting the source vectors to the same type we intend
8343 // for the shuffle.
8344 for (auto &Src : Sources) {
8345 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
8346 if (SrcEltTy == SmallestEltTy)
8347 continue;
8348 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
8349 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
8350 Src.WindowScale =
8351 SrcEltTy.getFixedSizeInBits() / SmallestEltTy.getFixedSizeInBits();
8352 Src.WindowBase *= Src.WindowScale;
8353 }
8354
8355 // Final sanity check before we try to actually produce a shuffle.
8356 LLVM_DEBUG(for (auto Src
8357 : Sources)
8358 assert(Src.ShuffleVec.getValueType() == ShuffleVT););
8359
8360 // The stars all align, our next step is to produce the mask for the shuffle.
8361 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
8362 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
8363 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
8364 SDValue Entry = Op.getOperand(i);
8365 if (Entry.isUndef())
8366 continue;
8367
8368 auto Src = find(Sources, Entry.getOperand(0));
8369 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
8370
8371 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
8372 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
8373 // segment.
8374 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
8375 int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
8376 VT.getScalarSizeInBits());
8377 int LanesDefined = BitsDefined / BitsPerShuffleLane;
8378
8379 // This source is expected to fill ResMultiplier lanes of the final shuffle,
8380 // starting at the appropriate offset.
8381 int *LaneMask = &Mask[i * ResMultiplier];
8382
8383 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
8384 ExtractBase += NumElts * (Src - Sources.begin());
8385 for (int j = 0; j < LanesDefined; ++j)
8386 LaneMask[j] = ExtractBase + j;
8387 }
8388
8389 // Final check before we try to produce nonsense...
8390 if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
8391 LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
8392 return SDValue();
8393 }
8394
8395 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
8396 for (unsigned i = 0; i < Sources.size(); ++i)
8397 ShuffleOps[i] = Sources[i].ShuffleVec;
8398
8399 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
8400 ShuffleOps[1], Mask);
8401 SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
8402
8403 LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
8404 dbgs() << "Reshuffle, creating node: "; V.dump(););
8405
8406 return V;
8407 }
8408
8409 // check if an EXT instruction can handle the shuffle mask when the
8410 // vector sources of the shuffle are the same.
isSingletonEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)8411 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
8412 unsigned NumElts = VT.getVectorNumElements();
8413
8414 // Assume that the first shuffle index is not UNDEF. Fail if it is.
8415 if (M[0] < 0)
8416 return false;
8417
8418 Imm = M[0];
8419
8420 // If this is a VEXT shuffle, the immediate value is the index of the first
8421 // element. The other shuffle indices must be the successive elements after
8422 // the first one.
8423 unsigned ExpectedElt = Imm;
8424 for (unsigned i = 1; i < NumElts; ++i) {
8425 // Increment the expected index. If it wraps around, just follow it
8426 // back to index zero and keep going.
8427 ++ExpectedElt;
8428 if (ExpectedElt == NumElts)
8429 ExpectedElt = 0;
8430
8431 if (M[i] < 0)
8432 continue; // ignore UNDEF indices
8433 if (ExpectedElt != static_cast<unsigned>(M[i]))
8434 return false;
8435 }
8436
8437 return true;
8438 }
8439
8440 /// Check if a vector shuffle corresponds to a DUP instructions with a larger
8441 /// element width than the vector lane type. If that is the case the function
8442 /// returns true and writes the value of the DUP instruction lane operand into
8443 /// DupLaneOp
isWideDUPMask(ArrayRef<int> M,EVT VT,unsigned BlockSize,unsigned & DupLaneOp)8444 static bool isWideDUPMask(ArrayRef<int> M, EVT VT, unsigned BlockSize,
8445 unsigned &DupLaneOp) {
8446 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
8447 "Only possible block sizes for wide DUP are: 16, 32, 64");
8448
8449 if (BlockSize <= VT.getScalarSizeInBits())
8450 return false;
8451 if (BlockSize % VT.getScalarSizeInBits() != 0)
8452 return false;
8453 if (VT.getSizeInBits() % BlockSize != 0)
8454 return false;
8455
8456 size_t SingleVecNumElements = VT.getVectorNumElements();
8457 size_t NumEltsPerBlock = BlockSize / VT.getScalarSizeInBits();
8458 size_t NumBlocks = VT.getSizeInBits() / BlockSize;
8459
8460 // We are looking for masks like
8461 // [0, 1, 0, 1] or [2, 3, 2, 3] or [4, 5, 6, 7, 4, 5, 6, 7] where any element
8462 // might be replaced by 'undefined'. BlockIndices will eventually contain
8463 // lane indices of the duplicated block (i.e. [0, 1], [2, 3] and [4, 5, 6, 7]
8464 // for the above examples)
8465 SmallVector<int, 8> BlockElts(NumEltsPerBlock, -1);
8466 for (size_t BlockIndex = 0; BlockIndex < NumBlocks; BlockIndex++)
8467 for (size_t I = 0; I < NumEltsPerBlock; I++) {
8468 int Elt = M[BlockIndex * NumEltsPerBlock + I];
8469 if (Elt < 0)
8470 continue;
8471 // For now we don't support shuffles that use the second operand
8472 if ((unsigned)Elt >= SingleVecNumElements)
8473 return false;
8474 if (BlockElts[I] < 0)
8475 BlockElts[I] = Elt;
8476 else if (BlockElts[I] != Elt)
8477 return false;
8478 }
8479
8480 // We found a candidate block (possibly with some undefs). It must be a
8481 // sequence of consecutive integers starting with a value divisible by
8482 // NumEltsPerBlock with some values possibly replaced by undef-s.
8483
8484 // Find first non-undef element
8485 auto FirstRealEltIter = find_if(BlockElts, [](int Elt) { return Elt >= 0; });
8486 assert(FirstRealEltIter != BlockElts.end() &&
8487 "Shuffle with all-undefs must have been caught by previous cases, "
8488 "e.g. isSplat()");
8489 if (FirstRealEltIter == BlockElts.end()) {
8490 DupLaneOp = 0;
8491 return true;
8492 }
8493
8494 // Index of FirstRealElt in BlockElts
8495 size_t FirstRealIndex = FirstRealEltIter - BlockElts.begin();
8496
8497 if ((unsigned)*FirstRealEltIter < FirstRealIndex)
8498 return false;
8499 // BlockElts[0] must have the following value if it isn't undef:
8500 size_t Elt0 = *FirstRealEltIter - FirstRealIndex;
8501
8502 // Check the first element
8503 if (Elt0 % NumEltsPerBlock != 0)
8504 return false;
8505 // Check that the sequence indeed consists of consecutive integers (modulo
8506 // undefs)
8507 for (size_t I = 0; I < NumEltsPerBlock; I++)
8508 if (BlockElts[I] >= 0 && (unsigned)BlockElts[I] != Elt0 + I)
8509 return false;
8510
8511 DupLaneOp = Elt0 / NumEltsPerBlock;
8512 return true;
8513 }
8514
8515 // check if an EXT instruction can handle the shuffle mask when the
8516 // vector sources of the shuffle are different.
isEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseEXT,unsigned & Imm)8517 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
8518 unsigned &Imm) {
8519 // Look for the first non-undef element.
8520 const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
8521
8522 // Benefit form APInt to handle overflow when calculating expected element.
8523 unsigned NumElts = VT.getVectorNumElements();
8524 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
8525 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
8526 // The following shuffle indices must be the successive elements after the
8527 // first real element.
8528 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
8529 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
8530 if (FirstWrongElt != M.end())
8531 return false;
8532
8533 // The index of an EXT is the first element if it is not UNDEF.
8534 // Watch out for the beginning UNDEFs. The EXT index should be the expected
8535 // value of the first element. E.g.
8536 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
8537 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
8538 // ExpectedElt is the last mask index plus 1.
8539 Imm = ExpectedElt.getZExtValue();
8540
8541 // There are two difference cases requiring to reverse input vectors.
8542 // For example, for vector <4 x i32> we have the following cases,
8543 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
8544 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
8545 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
8546 // to reverse two input vectors.
8547 if (Imm < NumElts)
8548 ReverseEXT = true;
8549 else
8550 Imm -= NumElts;
8551
8552 return true;
8553 }
8554
8555 /// isREVMask - Check if a vector shuffle corresponds to a REV
8556 /// instruction with the specified blocksize. (The order of the elements
8557 /// within each block of the vector is reversed.)
isREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)8558 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
8559 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
8560 "Only possible block sizes for REV are: 16, 32, 64");
8561
8562 unsigned EltSz = VT.getScalarSizeInBits();
8563 if (EltSz == 64)
8564 return false;
8565
8566 unsigned NumElts = VT.getVectorNumElements();
8567 unsigned BlockElts = M[0] + 1;
8568 // If the first shuffle index is UNDEF, be optimistic.
8569 if (M[0] < 0)
8570 BlockElts = BlockSize / EltSz;
8571
8572 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
8573 return false;
8574
8575 for (unsigned i = 0; i < NumElts; ++i) {
8576 if (M[i] < 0)
8577 continue; // ignore UNDEF indices
8578 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
8579 return false;
8580 }
8581
8582 return true;
8583 }
8584
isZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)8585 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
8586 unsigned NumElts = VT.getVectorNumElements();
8587 if (NumElts % 2 != 0)
8588 return false;
8589 WhichResult = (M[0] == 0 ? 0 : 1);
8590 unsigned Idx = WhichResult * NumElts / 2;
8591 for (unsigned i = 0; i != NumElts; i += 2) {
8592 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
8593 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
8594 return false;
8595 Idx += 1;
8596 }
8597
8598 return true;
8599 }
8600
isUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)8601 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
8602 unsigned NumElts = VT.getVectorNumElements();
8603 WhichResult = (M[0] == 0 ? 0 : 1);
8604 for (unsigned i = 0; i != NumElts; ++i) {
8605 if (M[i] < 0)
8606 continue; // ignore UNDEF indices
8607 if ((unsigned)M[i] != 2 * i + WhichResult)
8608 return false;
8609 }
8610
8611 return true;
8612 }
8613
isTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)8614 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
8615 unsigned NumElts = VT.getVectorNumElements();
8616 if (NumElts % 2 != 0)
8617 return false;
8618 WhichResult = (M[0] == 0 ? 0 : 1);
8619 for (unsigned i = 0; i < NumElts; i += 2) {
8620 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
8621 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
8622 return false;
8623 }
8624 return true;
8625 }
8626
8627 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
8628 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
8629 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)8630 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
8631 unsigned NumElts = VT.getVectorNumElements();
8632 if (NumElts % 2 != 0)
8633 return false;
8634 WhichResult = (M[0] == 0 ? 0 : 1);
8635 unsigned Idx = WhichResult * NumElts / 2;
8636 for (unsigned i = 0; i != NumElts; i += 2) {
8637 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
8638 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
8639 return false;
8640 Idx += 1;
8641 }
8642
8643 return true;
8644 }
8645
8646 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
8647 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
8648 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)8649 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
8650 unsigned Half = VT.getVectorNumElements() / 2;
8651 WhichResult = (M[0] == 0 ? 0 : 1);
8652 for (unsigned j = 0; j != 2; ++j) {
8653 unsigned Idx = WhichResult;
8654 for (unsigned i = 0; i != Half; ++i) {
8655 int MIdx = M[i + j * Half];
8656 if (MIdx >= 0 && (unsigned)MIdx != Idx)
8657 return false;
8658 Idx += 2;
8659 }
8660 }
8661
8662 return true;
8663 }
8664
8665 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
8666 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
8667 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)8668 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
8669 unsigned NumElts = VT.getVectorNumElements();
8670 if (NumElts % 2 != 0)
8671 return false;
8672 WhichResult = (M[0] == 0 ? 0 : 1);
8673 for (unsigned i = 0; i < NumElts; i += 2) {
8674 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
8675 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
8676 return false;
8677 }
8678 return true;
8679 }
8680
isINSMask(ArrayRef<int> M,int NumInputElements,bool & DstIsLeft,int & Anomaly)8681 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
8682 bool &DstIsLeft, int &Anomaly) {
8683 if (M.size() != static_cast<size_t>(NumInputElements))
8684 return false;
8685
8686 int NumLHSMatch = 0, NumRHSMatch = 0;
8687 int LastLHSMismatch = -1, LastRHSMismatch = -1;
8688
8689 for (int i = 0; i < NumInputElements; ++i) {
8690 if (M[i] == -1) {
8691 ++NumLHSMatch;
8692 ++NumRHSMatch;
8693 continue;
8694 }
8695
8696 if (M[i] == i)
8697 ++NumLHSMatch;
8698 else
8699 LastLHSMismatch = i;
8700
8701 if (M[i] == i + NumInputElements)
8702 ++NumRHSMatch;
8703 else
8704 LastRHSMismatch = i;
8705 }
8706
8707 if (NumLHSMatch == NumInputElements - 1) {
8708 DstIsLeft = true;
8709 Anomaly = LastLHSMismatch;
8710 return true;
8711 } else if (NumRHSMatch == NumInputElements - 1) {
8712 DstIsLeft = false;
8713 Anomaly = LastRHSMismatch;
8714 return true;
8715 }
8716
8717 return false;
8718 }
8719
isConcatMask(ArrayRef<int> Mask,EVT VT,bool SplitLHS)8720 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
8721 if (VT.getSizeInBits() != 128)
8722 return false;
8723
8724 unsigned NumElts = VT.getVectorNumElements();
8725
8726 for (int I = 0, E = NumElts / 2; I != E; I++) {
8727 if (Mask[I] != I)
8728 return false;
8729 }
8730
8731 int Offset = NumElts / 2;
8732 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
8733 if (Mask[I] != I + SplitLHS * Offset)
8734 return false;
8735 }
8736
8737 return true;
8738 }
8739
tryFormConcatFromShuffle(SDValue Op,SelectionDAG & DAG)8740 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
8741 SDLoc DL(Op);
8742 EVT VT = Op.getValueType();
8743 SDValue V0 = Op.getOperand(0);
8744 SDValue V1 = Op.getOperand(1);
8745 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
8746
8747 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
8748 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
8749 return SDValue();
8750
8751 bool SplitV0 = V0.getValueSizeInBits() == 128;
8752
8753 if (!isConcatMask(Mask, VT, SplitV0))
8754 return SDValue();
8755
8756 EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8757 if (SplitV0) {
8758 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
8759 DAG.getConstant(0, DL, MVT::i64));
8760 }
8761 if (V1.getValueSizeInBits() == 128) {
8762 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
8763 DAG.getConstant(0, DL, MVT::i64));
8764 }
8765 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
8766 }
8767
8768 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8769 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)8770 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8771 SDValue RHS, SelectionDAG &DAG,
8772 const SDLoc &dl) {
8773 unsigned OpNum = (PFEntry >> 26) & 0x0F;
8774 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
8775 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
8776
8777 enum {
8778 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8779 OP_VREV,
8780 OP_VDUP0,
8781 OP_VDUP1,
8782 OP_VDUP2,
8783 OP_VDUP3,
8784 OP_VEXT1,
8785 OP_VEXT2,
8786 OP_VEXT3,
8787 OP_VUZPL, // VUZP, left result
8788 OP_VUZPR, // VUZP, right result
8789 OP_VZIPL, // VZIP, left result
8790 OP_VZIPR, // VZIP, right result
8791 OP_VTRNL, // VTRN, left result
8792 OP_VTRNR // VTRN, right result
8793 };
8794
8795 if (OpNum == OP_COPY) {
8796 if (LHSID == (1 * 9 + 2) * 9 + 3)
8797 return LHS;
8798 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
8799 return RHS;
8800 }
8801
8802 SDValue OpLHS, OpRHS;
8803 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8804 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8805 EVT VT = OpLHS.getValueType();
8806
8807 switch (OpNum) {
8808 default:
8809 llvm_unreachable("Unknown shuffle opcode!");
8810 case OP_VREV:
8811 // VREV divides the vector in half and swaps within the half.
8812 if (VT.getVectorElementType() == MVT::i32 ||
8813 VT.getVectorElementType() == MVT::f32)
8814 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
8815 // vrev <4 x i16> -> REV32
8816 if (VT.getVectorElementType() == MVT::i16 ||
8817 VT.getVectorElementType() == MVT::f16 ||
8818 VT.getVectorElementType() == MVT::bf16)
8819 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
8820 // vrev <4 x i8> -> REV16
8821 assert(VT.getVectorElementType() == MVT::i8);
8822 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
8823 case OP_VDUP0:
8824 case OP_VDUP1:
8825 case OP_VDUP2:
8826 case OP_VDUP3: {
8827 EVT EltTy = VT.getVectorElementType();
8828 unsigned Opcode;
8829 if (EltTy == MVT::i8)
8830 Opcode = AArch64ISD::DUPLANE8;
8831 else if (EltTy == MVT::i16 || EltTy == MVT::f16 || EltTy == MVT::bf16)
8832 Opcode = AArch64ISD::DUPLANE16;
8833 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
8834 Opcode = AArch64ISD::DUPLANE32;
8835 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
8836 Opcode = AArch64ISD::DUPLANE64;
8837 else
8838 llvm_unreachable("Invalid vector element type?");
8839
8840 if (VT.getSizeInBits() == 64)
8841 OpLHS = WidenVector(OpLHS, DAG);
8842 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
8843 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
8844 }
8845 case OP_VEXT1:
8846 case OP_VEXT2:
8847 case OP_VEXT3: {
8848 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
8849 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
8850 DAG.getConstant(Imm, dl, MVT::i32));
8851 }
8852 case OP_VUZPL:
8853 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
8854 OpRHS);
8855 case OP_VUZPR:
8856 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
8857 OpRHS);
8858 case OP_VZIPL:
8859 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
8860 OpRHS);
8861 case OP_VZIPR:
8862 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
8863 OpRHS);
8864 case OP_VTRNL:
8865 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
8866 OpRHS);
8867 case OP_VTRNR:
8868 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
8869 OpRHS);
8870 }
8871 }
8872
GenerateTBL(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)8873 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
8874 SelectionDAG &DAG) {
8875 // Check to see if we can use the TBL instruction.
8876 SDValue V1 = Op.getOperand(0);
8877 SDValue V2 = Op.getOperand(1);
8878 SDLoc DL(Op);
8879
8880 EVT EltVT = Op.getValueType().getVectorElementType();
8881 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
8882
8883 SmallVector<SDValue, 8> TBLMask;
8884 for (int Val : ShuffleMask) {
8885 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
8886 unsigned Offset = Byte + Val * BytesPerElt;
8887 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
8888 }
8889 }
8890
8891 MVT IndexVT = MVT::v8i8;
8892 unsigned IndexLen = 8;
8893 if (Op.getValueSizeInBits() == 128) {
8894 IndexVT = MVT::v16i8;
8895 IndexLen = 16;
8896 }
8897
8898 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
8899 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
8900
8901 SDValue Shuffle;
8902 if (V2.getNode()->isUndef()) {
8903 if (IndexLen == 8)
8904 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
8905 Shuffle = DAG.getNode(
8906 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
8907 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
8908 DAG.getBuildVector(IndexVT, DL,
8909 makeArrayRef(TBLMask.data(), IndexLen)));
8910 } else {
8911 if (IndexLen == 8) {
8912 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
8913 Shuffle = DAG.getNode(
8914 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
8915 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
8916 DAG.getBuildVector(IndexVT, DL,
8917 makeArrayRef(TBLMask.data(), IndexLen)));
8918 } else {
8919 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
8920 // cannot currently represent the register constraints on the input
8921 // table registers.
8922 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
8923 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
8924 // IndexLen));
8925 Shuffle = DAG.getNode(
8926 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
8927 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
8928 V2Cst, DAG.getBuildVector(IndexVT, DL,
8929 makeArrayRef(TBLMask.data(), IndexLen)));
8930 }
8931 }
8932 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
8933 }
8934
getDUPLANEOp(EVT EltType)8935 static unsigned getDUPLANEOp(EVT EltType) {
8936 if (EltType == MVT::i8)
8937 return AArch64ISD::DUPLANE8;
8938 if (EltType == MVT::i16 || EltType == MVT::f16 || EltType == MVT::bf16)
8939 return AArch64ISD::DUPLANE16;
8940 if (EltType == MVT::i32 || EltType == MVT::f32)
8941 return AArch64ISD::DUPLANE32;
8942 if (EltType == MVT::i64 || EltType == MVT::f64)
8943 return AArch64ISD::DUPLANE64;
8944
8945 llvm_unreachable("Invalid vector element type?");
8946 }
8947
constructDup(SDValue V,int Lane,SDLoc dl,EVT VT,unsigned Opcode,SelectionDAG & DAG)8948 static SDValue constructDup(SDValue V, int Lane, SDLoc dl, EVT VT,
8949 unsigned Opcode, SelectionDAG &DAG) {
8950 // Try to eliminate a bitcasted extract subvector before a DUPLANE.
8951 auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) {
8952 // Match: dup (bitcast (extract_subv X, C)), LaneC
8953 if (BitCast.getOpcode() != ISD::BITCAST ||
8954 BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR)
8955 return false;
8956
8957 // The extract index must align in the destination type. That may not
8958 // happen if the bitcast is from narrow to wide type.
8959 SDValue Extract = BitCast.getOperand(0);
8960 unsigned ExtIdx = Extract.getConstantOperandVal(1);
8961 unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits();
8962 unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth;
8963 unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits();
8964 if (ExtIdxInBits % CastedEltBitWidth != 0)
8965 return false;
8966
8967 // Update the lane value by offsetting with the scaled extract index.
8968 LaneC += ExtIdxInBits / CastedEltBitWidth;
8969
8970 // Determine the casted vector type of the wide vector input.
8971 // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC'
8972 // Examples:
8973 // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3
8974 // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5
8975 unsigned SrcVecNumElts =
8976 Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth;
8977 CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(),
8978 SrcVecNumElts);
8979 return true;
8980 };
8981 MVT CastVT;
8982 if (getScaledOffsetDup(V, Lane, CastVT)) {
8983 V = DAG.getBitcast(CastVT, V.getOperand(0).getOperand(0));
8984 } else if (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
8985 // The lane is incremented by the index of the extract.
8986 // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3
8987 Lane += V.getConstantOperandVal(1);
8988 V = V.getOperand(0);
8989 } else if (V.getOpcode() == ISD::CONCAT_VECTORS) {
8990 // The lane is decremented if we are splatting from the 2nd operand.
8991 // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1
8992 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
8993 Lane -= Idx * VT.getVectorNumElements() / 2;
8994 V = WidenVector(V.getOperand(Idx), DAG);
8995 } else if (VT.getSizeInBits() == 64) {
8996 // Widen the operand to 128-bit register with undef.
8997 V = WidenVector(V, DAG);
8998 }
8999 return DAG.getNode(Opcode, dl, VT, V, DAG.getConstant(Lane, dl, MVT::i64));
9000 }
9001
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const9002 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9003 SelectionDAG &DAG) const {
9004 SDLoc dl(Op);
9005 EVT VT = Op.getValueType();
9006
9007 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
9008
9009 // Convert shuffles that are directly supported on NEON to target-specific
9010 // DAG nodes, instead of keeping them as shuffles and matching them again
9011 // during code selection. This is more efficient and avoids the possibility
9012 // of inconsistencies between legalization and selection.
9013 ArrayRef<int> ShuffleMask = SVN->getMask();
9014
9015 SDValue V1 = Op.getOperand(0);
9016 SDValue V2 = Op.getOperand(1);
9017
9018 assert(V1.getValueType() == VT && "Unexpected VECTOR_SHUFFLE type!");
9019 assert(ShuffleMask.size() == VT.getVectorNumElements() &&
9020 "Unexpected VECTOR_SHUFFLE mask size!");
9021
9022 if (SVN->isSplat()) {
9023 int Lane = SVN->getSplatIndex();
9024 // If this is undef splat, generate it via "just" vdup, if possible.
9025 if (Lane == -1)
9026 Lane = 0;
9027
9028 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
9029 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
9030 V1.getOperand(0));
9031 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
9032 // constant. If so, we can just reference the lane's definition directly.
9033 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
9034 !isa<ConstantSDNode>(V1.getOperand(Lane)))
9035 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
9036
9037 // Otherwise, duplicate from the lane of the input vector.
9038 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
9039 return constructDup(V1, Lane, dl, VT, Opcode, DAG);
9040 }
9041
9042 // Check if the mask matches a DUP for a wider element
9043 for (unsigned LaneSize : {64U, 32U, 16U}) {
9044 unsigned Lane = 0;
9045 if (isWideDUPMask(ShuffleMask, VT, LaneSize, Lane)) {
9046 unsigned Opcode = LaneSize == 64 ? AArch64ISD::DUPLANE64
9047 : LaneSize == 32 ? AArch64ISD::DUPLANE32
9048 : AArch64ISD::DUPLANE16;
9049 // Cast V1 to an integer vector with required lane size
9050 MVT NewEltTy = MVT::getIntegerVT(LaneSize);
9051 unsigned NewEltCount = VT.getSizeInBits() / LaneSize;
9052 MVT NewVecTy = MVT::getVectorVT(NewEltTy, NewEltCount);
9053 V1 = DAG.getBitcast(NewVecTy, V1);
9054 // Constuct the DUP instruction
9055 V1 = constructDup(V1, Lane, dl, NewVecTy, Opcode, DAG);
9056 // Cast back to the original type
9057 return DAG.getBitcast(VT, V1);
9058 }
9059 }
9060
9061 if (isREVMask(ShuffleMask, VT, 64))
9062 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
9063 if (isREVMask(ShuffleMask, VT, 32))
9064 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
9065 if (isREVMask(ShuffleMask, VT, 16))
9066 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
9067
9068 if (((VT.getVectorNumElements() == 8 && VT.getScalarSizeInBits() == 16) ||
9069 (VT.getVectorNumElements() == 16 && VT.getScalarSizeInBits() == 8)) &&
9070 ShuffleVectorInst::isReverseMask(ShuffleMask)) {
9071 SDValue Rev = DAG.getNode(AArch64ISD::REV64, dl, VT, V1);
9072 return DAG.getNode(AArch64ISD::EXT, dl, VT, Rev, Rev,
9073 DAG.getConstant(8, dl, MVT::i32));
9074 }
9075
9076 bool ReverseEXT = false;
9077 unsigned Imm;
9078 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
9079 if (ReverseEXT)
9080 std::swap(V1, V2);
9081 Imm *= getExtFactor(V1);
9082 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
9083 DAG.getConstant(Imm, dl, MVT::i32));
9084 } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
9085 Imm *= getExtFactor(V1);
9086 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
9087 DAG.getConstant(Imm, dl, MVT::i32));
9088 }
9089
9090 unsigned WhichResult;
9091 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
9092 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
9093 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
9094 }
9095 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
9096 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
9097 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
9098 }
9099 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
9100 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
9101 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
9102 }
9103
9104 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
9105 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
9106 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
9107 }
9108 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
9109 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
9110 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
9111 }
9112 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
9113 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
9114 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
9115 }
9116
9117 if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
9118 return Concat;
9119
9120 bool DstIsLeft;
9121 int Anomaly;
9122 int NumInputElements = V1.getValueType().getVectorNumElements();
9123 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
9124 SDValue DstVec = DstIsLeft ? V1 : V2;
9125 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
9126
9127 SDValue SrcVec = V1;
9128 int SrcLane = ShuffleMask[Anomaly];
9129 if (SrcLane >= NumInputElements) {
9130 SrcVec = V2;
9131 SrcLane -= VT.getVectorNumElements();
9132 }
9133 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
9134
9135 EVT ScalarVT = VT.getVectorElementType();
9136
9137 if (ScalarVT.getFixedSizeInBits() < 32 && ScalarVT.isInteger())
9138 ScalarVT = MVT::i32;
9139
9140 return DAG.getNode(
9141 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
9142 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
9143 DstLaneV);
9144 }
9145
9146 // If the shuffle is not directly supported and it has 4 elements, use
9147 // the PerfectShuffle-generated table to synthesize it from other shuffles.
9148 unsigned NumElts = VT.getVectorNumElements();
9149 if (NumElts == 4) {
9150 unsigned PFIndexes[4];
9151 for (unsigned i = 0; i != 4; ++i) {
9152 if (ShuffleMask[i] < 0)
9153 PFIndexes[i] = 8;
9154 else
9155 PFIndexes[i] = ShuffleMask[i];
9156 }
9157
9158 // Compute the index in the perfect shuffle table.
9159 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
9160 PFIndexes[2] * 9 + PFIndexes[3];
9161 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9162 unsigned Cost = (PFEntry >> 30);
9163
9164 if (Cost <= 4)
9165 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9166 }
9167
9168 return GenerateTBL(Op, ShuffleMask, DAG);
9169 }
9170
LowerSPLAT_VECTOR(SDValue Op,SelectionDAG & DAG) const9171 SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op,
9172 SelectionDAG &DAG) const {
9173 SDLoc dl(Op);
9174 EVT VT = Op.getValueType();
9175 EVT ElemVT = VT.getScalarType();
9176 SDValue SplatVal = Op.getOperand(0);
9177
9178 if (useSVEForFixedLengthVectorVT(VT))
9179 return LowerToScalableOp(Op, DAG);
9180
9181 // Extend input splat value where needed to fit into a GPR (32b or 64b only)
9182 // FPRs don't have this restriction.
9183 switch (ElemVT.getSimpleVT().SimpleTy) {
9184 case MVT::i1: {
9185 // The only legal i1 vectors are SVE vectors, so we can use SVE-specific
9186 // lowering code.
9187 if (auto *ConstVal = dyn_cast<ConstantSDNode>(SplatVal)) {
9188 if (ConstVal->isOne())
9189 return getPTrue(DAG, dl, VT, AArch64SVEPredPattern::all);
9190 // TODO: Add special case for constant false
9191 }
9192 // The general case of i1. There isn't any natural way to do this,
9193 // so we use some trickery with whilelo.
9194 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64);
9195 SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i64, SplatVal,
9196 DAG.getValueType(MVT::i1));
9197 SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl,
9198 MVT::i64);
9199 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, ID,
9200 DAG.getConstant(0, dl, MVT::i64), SplatVal);
9201 }
9202 case MVT::i8:
9203 case MVT::i16:
9204 case MVT::i32:
9205 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i32);
9206 break;
9207 case MVT::i64:
9208 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64);
9209 break;
9210 case MVT::f16:
9211 case MVT::bf16:
9212 case MVT::f32:
9213 case MVT::f64:
9214 // Fine as is
9215 break;
9216 default:
9217 report_fatal_error("Unsupported SPLAT_VECTOR input operand type");
9218 }
9219
9220 return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal);
9221 }
9222
LowerDUPQLane(SDValue Op,SelectionDAG & DAG) const9223 SDValue AArch64TargetLowering::LowerDUPQLane(SDValue Op,
9224 SelectionDAG &DAG) const {
9225 SDLoc DL(Op);
9226
9227 EVT VT = Op.getValueType();
9228 if (!isTypeLegal(VT) || !VT.isScalableVector())
9229 return SDValue();
9230
9231 // Current lowering only supports the SVE-ACLE types.
9232 if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock)
9233 return SDValue();
9234
9235 // The DUPQ operation is indepedent of element type so normalise to i64s.
9236 SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::nxv2i64, Op.getOperand(1));
9237 SDValue Idx128 = Op.getOperand(2);
9238
9239 // DUPQ can be used when idx is in range.
9240 auto *CIdx = dyn_cast<ConstantSDNode>(Idx128);
9241 if (CIdx && (CIdx->getZExtValue() <= 3)) {
9242 SDValue CI = DAG.getTargetConstant(CIdx->getZExtValue(), DL, MVT::i64);
9243 SDNode *DUPQ =
9244 DAG.getMachineNode(AArch64::DUP_ZZI_Q, DL, MVT::nxv2i64, V, CI);
9245 return DAG.getNode(ISD::BITCAST, DL, VT, SDValue(DUPQ, 0));
9246 }
9247
9248 // The ACLE says this must produce the same result as:
9249 // svtbl(data, svadd_x(svptrue_b64(),
9250 // svand_x(svptrue_b64(), svindex_u64(0, 1), 1),
9251 // index * 2))
9252 SDValue One = DAG.getConstant(1, DL, MVT::i64);
9253 SDValue SplatOne = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, One);
9254
9255 // create the vector 0,1,0,1,...
9256 SDValue SV = DAG.getNode(ISD::STEP_VECTOR, DL, MVT::nxv2i64, One);
9257 SV = DAG.getNode(ISD::AND, DL, MVT::nxv2i64, SV, SplatOne);
9258
9259 // create the vector idx64,idx64+1,idx64,idx64+1,...
9260 SDValue Idx64 = DAG.getNode(ISD::ADD, DL, MVT::i64, Idx128, Idx128);
9261 SDValue SplatIdx64 = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Idx64);
9262 SDValue ShuffleMask = DAG.getNode(ISD::ADD, DL, MVT::nxv2i64, SV, SplatIdx64);
9263
9264 // create the vector Val[idx64],Val[idx64+1],Val[idx64],Val[idx64+1],...
9265 SDValue TBL = DAG.getNode(AArch64ISD::TBL, DL, MVT::nxv2i64, V, ShuffleMask);
9266 return DAG.getNode(ISD::BITCAST, DL, VT, TBL);
9267 }
9268
9269
resolveBuildVector(BuildVectorSDNode * BVN,APInt & CnstBits,APInt & UndefBits)9270 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
9271 APInt &UndefBits) {
9272 EVT VT = BVN->getValueType(0);
9273 APInt SplatBits, SplatUndef;
9274 unsigned SplatBitSize;
9275 bool HasAnyUndefs;
9276 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9277 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
9278
9279 for (unsigned i = 0; i < NumSplats; ++i) {
9280 CnstBits <<= SplatBitSize;
9281 UndefBits <<= SplatBitSize;
9282 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
9283 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
9284 }
9285
9286 return true;
9287 }
9288
9289 return false;
9290 }
9291
9292 // Try 64-bit splatted SIMD immediate.
tryAdvSIMDModImm64(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)9293 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
9294 const APInt &Bits) {
9295 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
9296 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
9297 EVT VT = Op.getValueType();
9298 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
9299
9300 if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
9301 Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
9302
9303 SDLoc dl(Op);
9304 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
9305 DAG.getConstant(Value, dl, MVT::i32));
9306 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
9307 }
9308 }
9309
9310 return SDValue();
9311 }
9312
9313 // Try 32-bit splatted SIMD immediate.
tryAdvSIMDModImm32(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits,const SDValue * LHS=nullptr)9314 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
9315 const APInt &Bits,
9316 const SDValue *LHS = nullptr) {
9317 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
9318 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
9319 EVT VT = Op.getValueType();
9320 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
9321 bool isAdvSIMDModImm = false;
9322 uint64_t Shift;
9323
9324 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
9325 Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
9326 Shift = 0;
9327 }
9328 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
9329 Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
9330 Shift = 8;
9331 }
9332 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
9333 Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
9334 Shift = 16;
9335 }
9336 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
9337 Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
9338 Shift = 24;
9339 }
9340
9341 if (isAdvSIMDModImm) {
9342 SDLoc dl(Op);
9343 SDValue Mov;
9344
9345 if (LHS)
9346 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
9347 DAG.getConstant(Value, dl, MVT::i32),
9348 DAG.getConstant(Shift, dl, MVT::i32));
9349 else
9350 Mov = DAG.getNode(NewOp, dl, MovTy,
9351 DAG.getConstant(Value, dl, MVT::i32),
9352 DAG.getConstant(Shift, dl, MVT::i32));
9353
9354 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
9355 }
9356 }
9357
9358 return SDValue();
9359 }
9360
9361 // Try 16-bit splatted SIMD immediate.
tryAdvSIMDModImm16(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits,const SDValue * LHS=nullptr)9362 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
9363 const APInt &Bits,
9364 const SDValue *LHS = nullptr) {
9365 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
9366 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
9367 EVT VT = Op.getValueType();
9368 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
9369 bool isAdvSIMDModImm = false;
9370 uint64_t Shift;
9371
9372 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
9373 Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
9374 Shift = 0;
9375 }
9376 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
9377 Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
9378 Shift = 8;
9379 }
9380
9381 if (isAdvSIMDModImm) {
9382 SDLoc dl(Op);
9383 SDValue Mov;
9384
9385 if (LHS)
9386 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
9387 DAG.getConstant(Value, dl, MVT::i32),
9388 DAG.getConstant(Shift, dl, MVT::i32));
9389 else
9390 Mov = DAG.getNode(NewOp, dl, MovTy,
9391 DAG.getConstant(Value, dl, MVT::i32),
9392 DAG.getConstant(Shift, dl, MVT::i32));
9393
9394 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
9395 }
9396 }
9397
9398 return SDValue();
9399 }
9400
9401 // Try 32-bit splatted SIMD immediate with shifted ones.
tryAdvSIMDModImm321s(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)9402 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
9403 SelectionDAG &DAG, const APInt &Bits) {
9404 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
9405 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
9406 EVT VT = Op.getValueType();
9407 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
9408 bool isAdvSIMDModImm = false;
9409 uint64_t Shift;
9410
9411 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
9412 Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
9413 Shift = 264;
9414 }
9415 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
9416 Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
9417 Shift = 272;
9418 }
9419
9420 if (isAdvSIMDModImm) {
9421 SDLoc dl(Op);
9422 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
9423 DAG.getConstant(Value, dl, MVT::i32),
9424 DAG.getConstant(Shift, dl, MVT::i32));
9425 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
9426 }
9427 }
9428
9429 return SDValue();
9430 }
9431
9432 // Try 8-bit splatted SIMD immediate.
tryAdvSIMDModImm8(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)9433 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
9434 const APInt &Bits) {
9435 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
9436 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
9437 EVT VT = Op.getValueType();
9438 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
9439
9440 if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
9441 Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
9442
9443 SDLoc dl(Op);
9444 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
9445 DAG.getConstant(Value, dl, MVT::i32));
9446 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
9447 }
9448 }
9449
9450 return SDValue();
9451 }
9452
9453 // Try FP splatted SIMD immediate.
tryAdvSIMDModImmFP(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)9454 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
9455 const APInt &Bits) {
9456 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
9457 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
9458 EVT VT = Op.getValueType();
9459 bool isWide = (VT.getSizeInBits() == 128);
9460 MVT MovTy;
9461 bool isAdvSIMDModImm = false;
9462
9463 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
9464 Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
9465 MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
9466 }
9467 else if (isWide &&
9468 (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
9469 Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
9470 MovTy = MVT::v2f64;
9471 }
9472
9473 if (isAdvSIMDModImm) {
9474 SDLoc dl(Op);
9475 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
9476 DAG.getConstant(Value, dl, MVT::i32));
9477 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
9478 }
9479 }
9480
9481 return SDValue();
9482 }
9483
9484 // Specialized code to quickly find if PotentialBVec is a BuildVector that
9485 // consists of only the same constant int value, returned in reference arg
9486 // ConstVal
isAllConstantBuildVector(const SDValue & PotentialBVec,uint64_t & ConstVal)9487 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
9488 uint64_t &ConstVal) {
9489 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
9490 if (!Bvec)
9491 return false;
9492 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
9493 if (!FirstElt)
9494 return false;
9495 EVT VT = Bvec->getValueType(0);
9496 unsigned NumElts = VT.getVectorNumElements();
9497 for (unsigned i = 1; i < NumElts; ++i)
9498 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
9499 return false;
9500 ConstVal = FirstElt->getZExtValue();
9501 return true;
9502 }
9503
getIntrinsicID(const SDNode * N)9504 static unsigned getIntrinsicID(const SDNode *N) {
9505 unsigned Opcode = N->getOpcode();
9506 switch (Opcode) {
9507 default:
9508 return Intrinsic::not_intrinsic;
9509 case ISD::INTRINSIC_WO_CHAIN: {
9510 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9511 if (IID < Intrinsic::num_intrinsics)
9512 return IID;
9513 return Intrinsic::not_intrinsic;
9514 }
9515 }
9516 }
9517
9518 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
9519 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
9520 // BUILD_VECTORs with constant element C1, C2 is a constant, and:
9521 // - for the SLI case: C1 == ~(Ones(ElemSizeInBits) << C2)
9522 // - for the SRI case: C1 == ~(Ones(ElemSizeInBits) >> C2)
9523 // The (or (lsl Y, C2), (and X, BvecC1)) case is also handled.
tryLowerToSLI(SDNode * N,SelectionDAG & DAG)9524 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
9525 EVT VT = N->getValueType(0);
9526
9527 if (!VT.isVector())
9528 return SDValue();
9529
9530 SDLoc DL(N);
9531
9532 SDValue And;
9533 SDValue Shift;
9534
9535 SDValue FirstOp = N->getOperand(0);
9536 unsigned FirstOpc = FirstOp.getOpcode();
9537 SDValue SecondOp = N->getOperand(1);
9538 unsigned SecondOpc = SecondOp.getOpcode();
9539
9540 // Is one of the operands an AND or a BICi? The AND may have been optimised to
9541 // a BICi in order to use an immediate instead of a register.
9542 // Is the other operand an shl or lshr? This will have been turned into:
9543 // AArch64ISD::VSHL vector, #shift or AArch64ISD::VLSHR vector, #shift.
9544 if ((FirstOpc == ISD::AND || FirstOpc == AArch64ISD::BICi) &&
9545 (SecondOpc == AArch64ISD::VSHL || SecondOpc == AArch64ISD::VLSHR)) {
9546 And = FirstOp;
9547 Shift = SecondOp;
9548
9549 } else if ((SecondOpc == ISD::AND || SecondOpc == AArch64ISD::BICi) &&
9550 (FirstOpc == AArch64ISD::VSHL || FirstOpc == AArch64ISD::VLSHR)) {
9551 And = SecondOp;
9552 Shift = FirstOp;
9553 } else
9554 return SDValue();
9555
9556 bool IsAnd = And.getOpcode() == ISD::AND;
9557 bool IsShiftRight = Shift.getOpcode() == AArch64ISD::VLSHR;
9558
9559 // Is the shift amount constant?
9560 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
9561 if (!C2node)
9562 return SDValue();
9563
9564 uint64_t C1;
9565 if (IsAnd) {
9566 // Is the and mask vector all constant?
9567 if (!isAllConstantBuildVector(And.getOperand(1), C1))
9568 return SDValue();
9569 } else {
9570 // Reconstruct the corresponding AND immediate from the two BICi immediates.
9571 ConstantSDNode *C1nodeImm = dyn_cast<ConstantSDNode>(And.getOperand(1));
9572 ConstantSDNode *C1nodeShift = dyn_cast<ConstantSDNode>(And.getOperand(2));
9573 assert(C1nodeImm && C1nodeShift);
9574 C1 = ~(C1nodeImm->getZExtValue() << C1nodeShift->getZExtValue());
9575 }
9576
9577 // Is C1 == ~(Ones(ElemSizeInBits) << C2) or
9578 // C1 == ~(Ones(ElemSizeInBits) >> C2), taking into account
9579 // how much one can shift elements of a particular size?
9580 uint64_t C2 = C2node->getZExtValue();
9581 unsigned ElemSizeInBits = VT.getScalarSizeInBits();
9582 if (C2 > ElemSizeInBits)
9583 return SDValue();
9584
9585 APInt C1AsAPInt(ElemSizeInBits, C1);
9586 APInt RequiredC1 = IsShiftRight ? APInt::getHighBitsSet(ElemSizeInBits, C2)
9587 : APInt::getLowBitsSet(ElemSizeInBits, C2);
9588 if (C1AsAPInt != RequiredC1)
9589 return SDValue();
9590
9591 SDValue X = And.getOperand(0);
9592 SDValue Y = Shift.getOperand(0);
9593
9594 unsigned Inst = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI;
9595 SDValue ResultSLI = DAG.getNode(Inst, DL, VT, X, Y, Shift.getOperand(1));
9596
9597 LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
9598 LLVM_DEBUG(N->dump(&DAG));
9599 LLVM_DEBUG(dbgs() << "into: \n");
9600 LLVM_DEBUG(ResultSLI->dump(&DAG));
9601
9602 ++NumShiftInserts;
9603 return ResultSLI;
9604 }
9605
LowerVectorOR(SDValue Op,SelectionDAG & DAG) const9606 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
9607 SelectionDAG &DAG) const {
9608 if (useSVEForFixedLengthVectorVT(Op.getValueType()))
9609 return LowerToScalableOp(Op, DAG);
9610
9611 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
9612 if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
9613 return Res;
9614
9615 EVT VT = Op.getValueType();
9616
9617 SDValue LHS = Op.getOperand(0);
9618 BuildVectorSDNode *BVN =
9619 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
9620 if (!BVN) {
9621 // OR commutes, so try swapping the operands.
9622 LHS = Op.getOperand(1);
9623 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
9624 }
9625 if (!BVN)
9626 return Op;
9627
9628 APInt DefBits(VT.getSizeInBits(), 0);
9629 APInt UndefBits(VT.getSizeInBits(), 0);
9630 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
9631 SDValue NewOp;
9632
9633 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
9634 DefBits, &LHS)) ||
9635 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
9636 DefBits, &LHS)))
9637 return NewOp;
9638
9639 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
9640 UndefBits, &LHS)) ||
9641 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
9642 UndefBits, &LHS)))
9643 return NewOp;
9644 }
9645
9646 // We can always fall back to a non-immediate OR.
9647 return Op;
9648 }
9649
9650 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
9651 // be truncated to fit element width.
NormalizeBuildVector(SDValue Op,SelectionDAG & DAG)9652 static SDValue NormalizeBuildVector(SDValue Op,
9653 SelectionDAG &DAG) {
9654 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
9655 SDLoc dl(Op);
9656 EVT VT = Op.getValueType();
9657 EVT EltTy= VT.getVectorElementType();
9658
9659 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
9660 return Op;
9661
9662 SmallVector<SDValue, 16> Ops;
9663 for (SDValue Lane : Op->ops()) {
9664 // For integer vectors, type legalization would have promoted the
9665 // operands already. Otherwise, if Op is a floating-point splat
9666 // (with operands cast to integers), then the only possibilities
9667 // are constants and UNDEFs.
9668 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
9669 APInt LowBits(EltTy.getSizeInBits(),
9670 CstLane->getZExtValue());
9671 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
9672 } else if (Lane.getNode()->isUndef()) {
9673 Lane = DAG.getUNDEF(MVT::i32);
9674 } else {
9675 assert(Lane.getValueType() == MVT::i32 &&
9676 "Unexpected BUILD_VECTOR operand type");
9677 }
9678 Ops.push_back(Lane);
9679 }
9680 return DAG.getBuildVector(VT, dl, Ops);
9681 }
9682
ConstantBuildVector(SDValue Op,SelectionDAG & DAG)9683 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
9684 EVT VT = Op.getValueType();
9685
9686 APInt DefBits(VT.getSizeInBits(), 0);
9687 APInt UndefBits(VT.getSizeInBits(), 0);
9688 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
9689 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
9690 SDValue NewOp;
9691 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
9692 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
9693 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
9694 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
9695 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
9696 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
9697 return NewOp;
9698
9699 DefBits = ~DefBits;
9700 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
9701 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
9702 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
9703 return NewOp;
9704
9705 DefBits = UndefBits;
9706 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
9707 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
9708 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
9709 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
9710 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
9711 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
9712 return NewOp;
9713
9714 DefBits = ~UndefBits;
9715 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
9716 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
9717 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
9718 return NewOp;
9719 }
9720
9721 return SDValue();
9722 }
9723
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const9724 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
9725 SelectionDAG &DAG) const {
9726 EVT VT = Op.getValueType();
9727
9728 // Try to build a simple constant vector.
9729 Op = NormalizeBuildVector(Op, DAG);
9730 if (VT.isInteger()) {
9731 // Certain vector constants, used to express things like logical NOT and
9732 // arithmetic NEG, are passed through unmodified. This allows special
9733 // patterns for these operations to match, which will lower these constants
9734 // to whatever is proven necessary.
9735 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
9736 if (BVN->isConstant())
9737 if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
9738 unsigned BitSize = VT.getVectorElementType().getSizeInBits();
9739 APInt Val(BitSize,
9740 Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
9741 if (Val.isNullValue() || Val.isAllOnesValue())
9742 return Op;
9743 }
9744 }
9745
9746 if (SDValue V = ConstantBuildVector(Op, DAG))
9747 return V;
9748
9749 // Scan through the operands to find some interesting properties we can
9750 // exploit:
9751 // 1) If only one value is used, we can use a DUP, or
9752 // 2) if only the low element is not undef, we can just insert that, or
9753 // 3) if only one constant value is used (w/ some non-constant lanes),
9754 // we can splat the constant value into the whole vector then fill
9755 // in the non-constant lanes.
9756 // 4) FIXME: If different constant values are used, but we can intelligently
9757 // select the values we'll be overwriting for the non-constant
9758 // lanes such that we can directly materialize the vector
9759 // some other way (MOVI, e.g.), we can be sneaky.
9760 // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
9761 SDLoc dl(Op);
9762 unsigned NumElts = VT.getVectorNumElements();
9763 bool isOnlyLowElement = true;
9764 bool usesOnlyOneValue = true;
9765 bool usesOnlyOneConstantValue = true;
9766 bool isConstant = true;
9767 bool AllLanesExtractElt = true;
9768 unsigned NumConstantLanes = 0;
9769 unsigned NumDifferentLanes = 0;
9770 unsigned NumUndefLanes = 0;
9771 SDValue Value;
9772 SDValue ConstantValue;
9773 for (unsigned i = 0; i < NumElts; ++i) {
9774 SDValue V = Op.getOperand(i);
9775 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9776 AllLanesExtractElt = false;
9777 if (V.isUndef()) {
9778 ++NumUndefLanes;
9779 continue;
9780 }
9781 if (i > 0)
9782 isOnlyLowElement = false;
9783 if (!isIntOrFPConstant(V))
9784 isConstant = false;
9785
9786 if (isIntOrFPConstant(V)) {
9787 ++NumConstantLanes;
9788 if (!ConstantValue.getNode())
9789 ConstantValue = V;
9790 else if (ConstantValue != V)
9791 usesOnlyOneConstantValue = false;
9792 }
9793
9794 if (!Value.getNode())
9795 Value = V;
9796 else if (V != Value) {
9797 usesOnlyOneValue = false;
9798 ++NumDifferentLanes;
9799 }
9800 }
9801
9802 if (!Value.getNode()) {
9803 LLVM_DEBUG(
9804 dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
9805 return DAG.getUNDEF(VT);
9806 }
9807
9808 // Convert BUILD_VECTOR where all elements but the lowest are undef into
9809 // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
9810 // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
9811 if (isOnlyLowElement && !(NumElts == 1 && isIntOrFPConstant(Value))) {
9812 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
9813 "SCALAR_TO_VECTOR node\n");
9814 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
9815 }
9816
9817 if (AllLanesExtractElt) {
9818 SDNode *Vector = nullptr;
9819 bool Even = false;
9820 bool Odd = false;
9821 // Check whether the extract elements match the Even pattern <0,2,4,...> or
9822 // the Odd pattern <1,3,5,...>.
9823 for (unsigned i = 0; i < NumElts; ++i) {
9824 SDValue V = Op.getOperand(i);
9825 const SDNode *N = V.getNode();
9826 if (!isa<ConstantSDNode>(N->getOperand(1)))
9827 break;
9828 SDValue N0 = N->getOperand(0);
9829
9830 // All elements are extracted from the same vector.
9831 if (!Vector) {
9832 Vector = N0.getNode();
9833 // Check that the type of EXTRACT_VECTOR_ELT matches the type of
9834 // BUILD_VECTOR.
9835 if (VT.getVectorElementType() !=
9836 N0.getValueType().getVectorElementType())
9837 break;
9838 } else if (Vector != N0.getNode()) {
9839 Odd = false;
9840 Even = false;
9841 break;
9842 }
9843
9844 // Extracted values are either at Even indices <0,2,4,...> or at Odd
9845 // indices <1,3,5,...>.
9846 uint64_t Val = N->getConstantOperandVal(1);
9847 if (Val == 2 * i) {
9848 Even = true;
9849 continue;
9850 }
9851 if (Val - 1 == 2 * i) {
9852 Odd = true;
9853 continue;
9854 }
9855
9856 // Something does not match: abort.
9857 Odd = false;
9858 Even = false;
9859 break;
9860 }
9861 if (Even || Odd) {
9862 SDValue LHS =
9863 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
9864 DAG.getConstant(0, dl, MVT::i64));
9865 SDValue RHS =
9866 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
9867 DAG.getConstant(NumElts, dl, MVT::i64));
9868
9869 if (Even && !Odd)
9870 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
9871 RHS);
9872 if (Odd && !Even)
9873 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
9874 RHS);
9875 }
9876 }
9877
9878 // Use DUP for non-constant splats. For f32 constant splats, reduce to
9879 // i32 and try again.
9880 if (usesOnlyOneValue) {
9881 if (!isConstant) {
9882 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9883 Value.getValueType() != VT) {
9884 LLVM_DEBUG(
9885 dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
9886 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
9887 }
9888
9889 // This is actually a DUPLANExx operation, which keeps everything vectory.
9890
9891 SDValue Lane = Value.getOperand(1);
9892 Value = Value.getOperand(0);
9893 if (Value.getValueSizeInBits() == 64) {
9894 LLVM_DEBUG(
9895 dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
9896 "widening it\n");
9897 Value = WidenVector(Value, DAG);
9898 }
9899
9900 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
9901 return DAG.getNode(Opcode, dl, VT, Value, Lane);
9902 }
9903
9904 if (VT.getVectorElementType().isFloatingPoint()) {
9905 SmallVector<SDValue, 8> Ops;
9906 EVT EltTy = VT.getVectorElementType();
9907 assert ((EltTy == MVT::f16 || EltTy == MVT::bf16 || EltTy == MVT::f32 ||
9908 EltTy == MVT::f64) && "Unsupported floating-point vector type");
9909 LLVM_DEBUG(
9910 dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
9911 "BITCASTS, and try again\n");
9912 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
9913 for (unsigned i = 0; i < NumElts; ++i)
9914 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
9915 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
9916 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
9917 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
9918 Val.dump(););
9919 Val = LowerBUILD_VECTOR(Val, DAG);
9920 if (Val.getNode())
9921 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
9922 }
9923 }
9924
9925 // If we need to insert a small number of different non-constant elements and
9926 // the vector width is sufficiently large, prefer using DUP with the common
9927 // value and INSERT_VECTOR_ELT for the different lanes. If DUP is preferred,
9928 // skip the constant lane handling below.
9929 bool PreferDUPAndInsert =
9930 !isConstant && NumDifferentLanes >= 1 &&
9931 NumDifferentLanes < ((NumElts - NumUndefLanes) / 2) &&
9932 NumDifferentLanes >= NumConstantLanes;
9933
9934 // If there was only one constant value used and for more than one lane,
9935 // start by splatting that value, then replace the non-constant lanes. This
9936 // is better than the default, which will perform a separate initialization
9937 // for each lane.
9938 if (!PreferDUPAndInsert && NumConstantLanes > 0 && usesOnlyOneConstantValue) {
9939 // Firstly, try to materialize the splat constant.
9940 SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
9941 Val = ConstantBuildVector(Vec, DAG);
9942 if (!Val) {
9943 // Otherwise, materialize the constant and splat it.
9944 Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
9945 DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
9946 }
9947
9948 // Now insert the non-constant lanes.
9949 for (unsigned i = 0; i < NumElts; ++i) {
9950 SDValue V = Op.getOperand(i);
9951 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
9952 if (!isIntOrFPConstant(V))
9953 // Note that type legalization likely mucked about with the VT of the
9954 // source operand, so we may have to convert it here before inserting.
9955 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
9956 }
9957 return Val;
9958 }
9959
9960 // This will generate a load from the constant pool.
9961 if (isConstant) {
9962 LLVM_DEBUG(
9963 dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
9964 "expansion\n");
9965 return SDValue();
9966 }
9967
9968 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
9969 if (NumElts >= 4) {
9970 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
9971 return shuffle;
9972 }
9973
9974 if (PreferDUPAndInsert) {
9975 // First, build a constant vector with the common element.
9976 SmallVector<SDValue, 8> Ops(NumElts, Value);
9977 SDValue NewVector = LowerBUILD_VECTOR(DAG.getBuildVector(VT, dl, Ops), DAG);
9978 // Next, insert the elements that do not match the common value.
9979 for (unsigned I = 0; I < NumElts; ++I)
9980 if (Op.getOperand(I) != Value)
9981 NewVector =
9982 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, NewVector,
9983 Op.getOperand(I), DAG.getConstant(I, dl, MVT::i64));
9984
9985 return NewVector;
9986 }
9987
9988 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
9989 // know the default expansion would otherwise fall back on something even
9990 // worse. For a vector with one or two non-undef values, that's
9991 // scalar_to_vector for the elements followed by a shuffle (provided the
9992 // shuffle is valid for the target) and materialization element by element
9993 // on the stack followed by a load for everything else.
9994 if (!isConstant && !usesOnlyOneValue) {
9995 LLVM_DEBUG(
9996 dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
9997 "of INSERT_VECTOR_ELT\n");
9998
9999 SDValue Vec = DAG.getUNDEF(VT);
10000 SDValue Op0 = Op.getOperand(0);
10001 unsigned i = 0;
10002
10003 // Use SCALAR_TO_VECTOR for lane zero to
10004 // a) Avoid a RMW dependency on the full vector register, and
10005 // b) Allow the register coalescer to fold away the copy if the
10006 // value is already in an S or D register, and we're forced to emit an
10007 // INSERT_SUBREG that we can't fold anywhere.
10008 //
10009 // We also allow types like i8 and i16 which are illegal scalar but legal
10010 // vector element types. After type-legalization the inserted value is
10011 // extended (i32) and it is safe to cast them to the vector type by ignoring
10012 // the upper bits of the lowest lane (e.g. v8i8, v4i16).
10013 if (!Op0.isUndef()) {
10014 LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
10015 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
10016 ++i;
10017 }
10018 LLVM_DEBUG(if (i < NumElts) dbgs()
10019 << "Creating nodes for the other vector elements:\n";);
10020 for (; i < NumElts; ++i) {
10021 SDValue V = Op.getOperand(i);
10022 if (V.isUndef())
10023 continue;
10024 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
10025 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
10026 }
10027 return Vec;
10028 }
10029
10030 LLVM_DEBUG(
10031 dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
10032 "better alternative\n");
10033 return SDValue();
10034 }
10035
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const10036 SDValue AArch64TargetLowering::LowerCONCAT_VECTORS(SDValue Op,
10037 SelectionDAG &DAG) const {
10038 assert(Op.getValueType().isScalableVector() &&
10039 isTypeLegal(Op.getValueType()) &&
10040 "Expected legal scalable vector type!");
10041
10042 if (isTypeLegal(Op.getOperand(0).getValueType()) && Op.getNumOperands() == 2)
10043 return Op;
10044
10045 return SDValue();
10046 }
10047
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const10048 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10049 SelectionDAG &DAG) const {
10050 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
10051
10052 if (useSVEForFixedLengthVectorVT(Op.getValueType()))
10053 return LowerFixedLengthInsertVectorElt(Op, DAG);
10054
10055 // Check for non-constant or out of range lane.
10056 EVT VT = Op.getOperand(0).getValueType();
10057 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10058 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
10059 return SDValue();
10060
10061
10062 // Insertion/extraction are legal for V128 types.
10063 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10064 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
10065 VT == MVT::v8f16 || VT == MVT::v8bf16)
10066 return Op;
10067
10068 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
10069 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 &&
10070 VT != MVT::v4bf16)
10071 return SDValue();
10072
10073 // For V64 types, we perform insertion by expanding the value
10074 // to a V128 type and perform the insertion on that.
10075 SDLoc DL(Op);
10076 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
10077 EVT WideTy = WideVec.getValueType();
10078
10079 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
10080 Op.getOperand(1), Op.getOperand(2));
10081 // Re-narrow the resultant vector.
10082 return NarrowVector(Node, DAG);
10083 }
10084
10085 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const10086 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
10087 SelectionDAG &DAG) const {
10088 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
10089 EVT VT = Op.getOperand(0).getValueType();
10090
10091 if (VT.getScalarType() == MVT::i1) {
10092 // We can't directly extract from an SVE predicate; extend it first.
10093 // (This isn't the only possible lowering, but it's straightforward.)
10094 EVT VectorVT = getPromotedVTForPredicate(VT);
10095 SDLoc DL(Op);
10096 SDValue Extend =
10097 DAG.getNode(ISD::ANY_EXTEND, DL, VectorVT, Op.getOperand(0));
10098 MVT ExtractTy = VectorVT == MVT::nxv2i64 ? MVT::i64 : MVT::i32;
10099 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractTy,
10100 Extend, Op.getOperand(1));
10101 return DAG.getAnyExtOrTrunc(Extract, DL, Op.getValueType());
10102 }
10103
10104 if (useSVEForFixedLengthVectorVT(VT))
10105 return LowerFixedLengthExtractVectorElt(Op, DAG);
10106
10107 // Check for non-constant or out of range lane.
10108 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10109 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
10110 return SDValue();
10111
10112 // Insertion/extraction are legal for V128 types.
10113 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10114 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
10115 VT == MVT::v8f16 || VT == MVT::v8bf16)
10116 return Op;
10117
10118 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
10119 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 &&
10120 VT != MVT::v4bf16)
10121 return SDValue();
10122
10123 // For V64 types, we perform extraction by expanding the value
10124 // to a V128 type and perform the extraction on that.
10125 SDLoc DL(Op);
10126 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
10127 EVT WideTy = WideVec.getValueType();
10128
10129 EVT ExtrTy = WideTy.getVectorElementType();
10130 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
10131 ExtrTy = MVT::i32;
10132
10133 // For extractions, we just return the result directly.
10134 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
10135 Op.getOperand(1));
10136 }
10137
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const10138 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
10139 SelectionDAG &DAG) const {
10140 assert(Op.getValueType().isFixedLengthVector() &&
10141 "Only cases that extract a fixed length vector are supported!");
10142
10143 EVT InVT = Op.getOperand(0).getValueType();
10144 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10145 unsigned Size = Op.getValueSizeInBits();
10146
10147 if (InVT.isScalableVector()) {
10148 // This will be matched by custom code during ISelDAGToDAG.
10149 if (Idx == 0 && isPackedVectorType(InVT, DAG))
10150 return Op;
10151
10152 return SDValue();
10153 }
10154
10155 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
10156 if (Idx == 0 && InVT.getSizeInBits() <= 128)
10157 return Op;
10158
10159 // If this is extracting the upper 64-bits of a 128-bit vector, we match
10160 // that directly.
10161 if (Size == 64 && Idx * InVT.getScalarSizeInBits() == 64 &&
10162 InVT.getSizeInBits() == 128)
10163 return Op;
10164
10165 return SDValue();
10166 }
10167
LowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const10168 SDValue AArch64TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
10169 SelectionDAG &DAG) const {
10170 assert(Op.getValueType().isScalableVector() &&
10171 "Only expect to lower inserts into scalable vectors!");
10172
10173 EVT InVT = Op.getOperand(1).getValueType();
10174 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10175
10176 if (InVT.isScalableVector()) {
10177 SDLoc DL(Op);
10178 EVT VT = Op.getValueType();
10179
10180 if (!isTypeLegal(VT) || !VT.isInteger())
10181 return SDValue();
10182
10183 SDValue Vec0 = Op.getOperand(0);
10184 SDValue Vec1 = Op.getOperand(1);
10185
10186 // Ensure the subvector is half the size of the main vector.
10187 if (VT.getVectorElementCount() != (InVT.getVectorElementCount() * 2))
10188 return SDValue();
10189
10190 // Extend elements of smaller vector...
10191 EVT WideVT = InVT.widenIntegerVectorElementType(*(DAG.getContext()));
10192 SDValue ExtVec = DAG.getNode(ISD::ANY_EXTEND, DL, WideVT, Vec1);
10193
10194 if (Idx == 0) {
10195 SDValue HiVec0 = DAG.getNode(AArch64ISD::UUNPKHI, DL, WideVT, Vec0);
10196 return DAG.getNode(AArch64ISD::UZP1, DL, VT, ExtVec, HiVec0);
10197 } else if (Idx == InVT.getVectorMinNumElements()) {
10198 SDValue LoVec0 = DAG.getNode(AArch64ISD::UUNPKLO, DL, WideVT, Vec0);
10199 return DAG.getNode(AArch64ISD::UZP1, DL, VT, LoVec0, ExtVec);
10200 }
10201
10202 return SDValue();
10203 }
10204
10205 // This will be matched by custom code during ISelDAGToDAG.
10206 if (Idx == 0 && isPackedVectorType(InVT, DAG) && Op.getOperand(0).isUndef())
10207 return Op;
10208
10209 return SDValue();
10210 }
10211
LowerDIV(SDValue Op,SelectionDAG & DAG) const10212 SDValue AArch64TargetLowering::LowerDIV(SDValue Op, SelectionDAG &DAG) const {
10213 EVT VT = Op.getValueType();
10214
10215 if (useSVEForFixedLengthVectorVT(VT, /*OverrideNEON=*/true))
10216 return LowerFixedLengthVectorIntDivideToSVE(Op, DAG);
10217
10218 assert(VT.isScalableVector() && "Expected a scalable vector.");
10219
10220 bool Signed = Op.getOpcode() == ISD::SDIV;
10221 unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED;
10222
10223 if (VT == MVT::nxv4i32 || VT == MVT::nxv2i64)
10224 return LowerToPredicatedOp(Op, DAG, PredOpcode);
10225
10226 // SVE doesn't have i8 and i16 DIV operations; widen them to 32-bit
10227 // operations, and truncate the result.
10228 EVT WidenedVT;
10229 if (VT == MVT::nxv16i8)
10230 WidenedVT = MVT::nxv8i16;
10231 else if (VT == MVT::nxv8i16)
10232 WidenedVT = MVT::nxv4i32;
10233 else
10234 llvm_unreachable("Unexpected Custom DIV operation");
10235
10236 SDLoc dl(Op);
10237 unsigned UnpkLo = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO;
10238 unsigned UnpkHi = Signed ? AArch64ISD::SUNPKHI : AArch64ISD::UUNPKHI;
10239 SDValue Op0Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(0));
10240 SDValue Op1Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(1));
10241 SDValue Op0Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(0));
10242 SDValue Op1Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(1));
10243 SDValue ResultLo = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Lo, Op1Lo);
10244 SDValue ResultHi = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Hi, Op1Hi);
10245 return DAG.getNode(AArch64ISD::UZP1, dl, VT, ResultLo, ResultHi);
10246 }
10247
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const10248 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
10249 // Currently no fixed length shuffles that require SVE are legal.
10250 if (useSVEForFixedLengthVectorVT(VT))
10251 return false;
10252
10253 if (VT.getVectorNumElements() == 4 &&
10254 (VT.is128BitVector() || VT.is64BitVector())) {
10255 unsigned PFIndexes[4];
10256 for (unsigned i = 0; i != 4; ++i) {
10257 if (M[i] < 0)
10258 PFIndexes[i] = 8;
10259 else
10260 PFIndexes[i] = M[i];
10261 }
10262
10263 // Compute the index in the perfect shuffle table.
10264 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
10265 PFIndexes[2] * 9 + PFIndexes[3];
10266 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10267 unsigned Cost = (PFEntry >> 30);
10268
10269 if (Cost <= 4)
10270 return true;
10271 }
10272
10273 bool DummyBool;
10274 int DummyInt;
10275 unsigned DummyUnsigned;
10276
10277 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
10278 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
10279 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
10280 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
10281 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
10282 isZIPMask(M, VT, DummyUnsigned) ||
10283 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
10284 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
10285 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
10286 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
10287 isConcatMask(M, VT, VT.getSizeInBits() == 128));
10288 }
10289
10290 /// getVShiftImm - Check if this is a valid build_vector for the immediate
10291 /// operand of a vector shift operation, where all the elements of the
10292 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)10293 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
10294 // Ignore bit_converts.
10295 while (Op.getOpcode() == ISD::BITCAST)
10296 Op = Op.getOperand(0);
10297 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
10298 APInt SplatBits, SplatUndef;
10299 unsigned SplatBitSize;
10300 bool HasAnyUndefs;
10301 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
10302 HasAnyUndefs, ElementBits) ||
10303 SplatBitSize > ElementBits)
10304 return false;
10305 Cnt = SplatBits.getSExtValue();
10306 return true;
10307 }
10308
10309 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
10310 /// operand of a vector shift left operation. That value must be in the range:
10311 /// 0 <= Value < ElementBits for a left shift; or
10312 /// 0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)10313 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
10314 assert(VT.isVector() && "vector shift count is not a vector type");
10315 int64_t ElementBits = VT.getScalarSizeInBits();
10316 if (!getVShiftImm(Op, ElementBits, Cnt))
10317 return false;
10318 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
10319 }
10320
10321 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
10322 /// operand of a vector shift right operation. The value must be in the range:
10323 /// 1 <= Value <= ElementBits for a right shift; or
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,int64_t & Cnt)10324 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
10325 assert(VT.isVector() && "vector shift count is not a vector type");
10326 int64_t ElementBits = VT.getScalarSizeInBits();
10327 if (!getVShiftImm(Op, ElementBits, Cnt))
10328 return false;
10329 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
10330 }
10331
LowerTRUNCATE(SDValue Op,SelectionDAG & DAG) const10332 SDValue AArch64TargetLowering::LowerTRUNCATE(SDValue Op,
10333 SelectionDAG &DAG) const {
10334 EVT VT = Op.getValueType();
10335
10336 if (VT.getScalarType() == MVT::i1) {
10337 // Lower i1 truncate to `(x & 1) != 0`.
10338 SDLoc dl(Op);
10339 EVT OpVT = Op.getOperand(0).getValueType();
10340 SDValue Zero = DAG.getConstant(0, dl, OpVT);
10341 SDValue One = DAG.getConstant(1, dl, OpVT);
10342 SDValue And = DAG.getNode(ISD::AND, dl, OpVT, Op.getOperand(0), One);
10343 return DAG.getSetCC(dl, VT, And, Zero, ISD::SETNE);
10344 }
10345
10346 if (!VT.isVector() || VT.isScalableVector())
10347 return SDValue();
10348
10349 if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType()))
10350 return LowerFixedLengthVectorTruncateToSVE(Op, DAG);
10351
10352 return SDValue();
10353 }
10354
LowerVectorSRA_SRL_SHL(SDValue Op,SelectionDAG & DAG) const10355 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
10356 SelectionDAG &DAG) const {
10357 EVT VT = Op.getValueType();
10358 SDLoc DL(Op);
10359 int64_t Cnt;
10360
10361 if (!Op.getOperand(1).getValueType().isVector())
10362 return Op;
10363 unsigned EltSize = VT.getScalarSizeInBits();
10364
10365 switch (Op.getOpcode()) {
10366 default:
10367 llvm_unreachable("unexpected shift opcode");
10368
10369 case ISD::SHL:
10370 if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT))
10371 return LowerToPredicatedOp(Op, DAG, AArch64ISD::SHL_PRED);
10372
10373 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
10374 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
10375 DAG.getConstant(Cnt, DL, MVT::i32));
10376 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10377 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
10378 MVT::i32),
10379 Op.getOperand(0), Op.getOperand(1));
10380 case ISD::SRA:
10381 case ISD::SRL:
10382 if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT)) {
10383 unsigned Opc = Op.getOpcode() == ISD::SRA ? AArch64ISD::SRA_PRED
10384 : AArch64ISD::SRL_PRED;
10385 return LowerToPredicatedOp(Op, DAG, Opc);
10386 }
10387
10388 // Right shift immediate
10389 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
10390 unsigned Opc =
10391 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
10392 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
10393 DAG.getConstant(Cnt, DL, MVT::i32));
10394 }
10395
10396 // Right shift register. Note, there is not a shift right register
10397 // instruction, but the shift left register instruction takes a signed
10398 // value, where negative numbers specify a right shift.
10399 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
10400 : Intrinsic::aarch64_neon_ushl;
10401 // negate the shift amount
10402 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
10403 SDValue NegShiftLeft =
10404 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10405 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
10406 NegShift);
10407 return NegShiftLeft;
10408 }
10409
10410 return SDValue();
10411 }
10412
EmitVectorComparison(SDValue LHS,SDValue RHS,AArch64CC::CondCode CC,bool NoNans,EVT VT,const SDLoc & dl,SelectionDAG & DAG)10413 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
10414 AArch64CC::CondCode CC, bool NoNans, EVT VT,
10415 const SDLoc &dl, SelectionDAG &DAG) {
10416 EVT SrcVT = LHS.getValueType();
10417 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
10418 "function only supposed to emit natural comparisons");
10419
10420 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
10421 APInt CnstBits(VT.getSizeInBits(), 0);
10422 APInt UndefBits(VT.getSizeInBits(), 0);
10423 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
10424 bool IsZero = IsCnst && (CnstBits == 0);
10425
10426 if (SrcVT.getVectorElementType().isFloatingPoint()) {
10427 switch (CC) {
10428 default:
10429 return SDValue();
10430 case AArch64CC::NE: {
10431 SDValue Fcmeq;
10432 if (IsZero)
10433 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
10434 else
10435 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
10436 return DAG.getNOT(dl, Fcmeq, VT);
10437 }
10438 case AArch64CC::EQ:
10439 if (IsZero)
10440 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
10441 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
10442 case AArch64CC::GE:
10443 if (IsZero)
10444 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
10445 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
10446 case AArch64CC::GT:
10447 if (IsZero)
10448 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
10449 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
10450 case AArch64CC::LS:
10451 if (IsZero)
10452 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
10453 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
10454 case AArch64CC::LT:
10455 if (!NoNans)
10456 return SDValue();
10457 // If we ignore NaNs then we can use to the MI implementation.
10458 LLVM_FALLTHROUGH;
10459 case AArch64CC::MI:
10460 if (IsZero)
10461 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
10462 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
10463 }
10464 }
10465
10466 switch (CC) {
10467 default:
10468 return SDValue();
10469 case AArch64CC::NE: {
10470 SDValue Cmeq;
10471 if (IsZero)
10472 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
10473 else
10474 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
10475 return DAG.getNOT(dl, Cmeq, VT);
10476 }
10477 case AArch64CC::EQ:
10478 if (IsZero)
10479 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
10480 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
10481 case AArch64CC::GE:
10482 if (IsZero)
10483 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
10484 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
10485 case AArch64CC::GT:
10486 if (IsZero)
10487 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
10488 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
10489 case AArch64CC::LE:
10490 if (IsZero)
10491 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
10492 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
10493 case AArch64CC::LS:
10494 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
10495 case AArch64CC::LO:
10496 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
10497 case AArch64CC::LT:
10498 if (IsZero)
10499 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
10500 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
10501 case AArch64CC::HI:
10502 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
10503 case AArch64CC::HS:
10504 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
10505 }
10506 }
10507
LowerVSETCC(SDValue Op,SelectionDAG & DAG) const10508 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
10509 SelectionDAG &DAG) const {
10510 if (Op.getValueType().isScalableVector())
10511 return LowerToPredicatedOp(Op, DAG, AArch64ISD::SETCC_MERGE_ZERO);
10512
10513 if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType()))
10514 return LowerFixedLengthVectorSetccToSVE(Op, DAG);
10515
10516 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10517 SDValue LHS = Op.getOperand(0);
10518 SDValue RHS = Op.getOperand(1);
10519 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
10520 SDLoc dl(Op);
10521
10522 if (LHS.getValueType().getVectorElementType().isInteger()) {
10523 assert(LHS.getValueType() == RHS.getValueType());
10524 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
10525 SDValue Cmp =
10526 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
10527 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
10528 }
10529
10530 const bool FullFP16 =
10531 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
10532
10533 // Make v4f16 (only) fcmp operations utilise vector instructions
10534 // v8f16 support will be a litle more complicated
10535 if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) {
10536 if (LHS.getValueType().getVectorNumElements() == 4) {
10537 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
10538 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
10539 SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
10540 DAG.ReplaceAllUsesWith(Op, NewSetcc);
10541 CmpVT = MVT::v4i32;
10542 } else
10543 return SDValue();
10544 }
10545
10546 assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||
10547 LHS.getValueType().getVectorElementType() != MVT::f128);
10548
10549 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
10550 // clean. Some of them require two branches to implement.
10551 AArch64CC::CondCode CC1, CC2;
10552 bool ShouldInvert;
10553 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
10554
10555 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
10556 SDValue Cmp =
10557 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
10558 if (!Cmp.getNode())
10559 return SDValue();
10560
10561 if (CC2 != AArch64CC::AL) {
10562 SDValue Cmp2 =
10563 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
10564 if (!Cmp2.getNode())
10565 return SDValue();
10566
10567 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
10568 }
10569
10570 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
10571
10572 if (ShouldInvert)
10573 Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
10574
10575 return Cmp;
10576 }
10577
getReductionSDNode(unsigned Op,SDLoc DL,SDValue ScalarOp,SelectionDAG & DAG)10578 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
10579 SelectionDAG &DAG) {
10580 SDValue VecOp = ScalarOp.getOperand(0);
10581 auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
10582 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
10583 DAG.getConstant(0, DL, MVT::i64));
10584 }
10585
LowerVECREDUCE(SDValue Op,SelectionDAG & DAG) const10586 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
10587 SelectionDAG &DAG) const {
10588 SDValue Src = Op.getOperand(0);
10589
10590 // Try to lower fixed length reductions to SVE.
10591 EVT SrcVT = Src.getValueType();
10592 bool OverrideNEON = Op.getOpcode() == ISD::VECREDUCE_AND ||
10593 Op.getOpcode() == ISD::VECREDUCE_OR ||
10594 Op.getOpcode() == ISD::VECREDUCE_XOR ||
10595 Op.getOpcode() == ISD::VECREDUCE_FADD ||
10596 (Op.getOpcode() != ISD::VECREDUCE_ADD &&
10597 SrcVT.getVectorElementType() == MVT::i64);
10598 if (SrcVT.isScalableVector() ||
10599 useSVEForFixedLengthVectorVT(SrcVT, OverrideNEON)) {
10600
10601 if (SrcVT.getVectorElementType() == MVT::i1)
10602 return LowerPredReductionToSVE(Op, DAG);
10603
10604 switch (Op.getOpcode()) {
10605 case ISD::VECREDUCE_ADD:
10606 return LowerReductionToSVE(AArch64ISD::UADDV_PRED, Op, DAG);
10607 case ISD::VECREDUCE_AND:
10608 return LowerReductionToSVE(AArch64ISD::ANDV_PRED, Op, DAG);
10609 case ISD::VECREDUCE_OR:
10610 return LowerReductionToSVE(AArch64ISD::ORV_PRED, Op, DAG);
10611 case ISD::VECREDUCE_SMAX:
10612 return LowerReductionToSVE(AArch64ISD::SMAXV_PRED, Op, DAG);
10613 case ISD::VECREDUCE_SMIN:
10614 return LowerReductionToSVE(AArch64ISD::SMINV_PRED, Op, DAG);
10615 case ISD::VECREDUCE_UMAX:
10616 return LowerReductionToSVE(AArch64ISD::UMAXV_PRED, Op, DAG);
10617 case ISD::VECREDUCE_UMIN:
10618 return LowerReductionToSVE(AArch64ISD::UMINV_PRED, Op, DAG);
10619 case ISD::VECREDUCE_XOR:
10620 return LowerReductionToSVE(AArch64ISD::EORV_PRED, Op, DAG);
10621 case ISD::VECREDUCE_FADD:
10622 return LowerReductionToSVE(AArch64ISD::FADDV_PRED, Op, DAG);
10623 case ISD::VECREDUCE_FMAX:
10624 return LowerReductionToSVE(AArch64ISD::FMAXNMV_PRED, Op, DAG);
10625 case ISD::VECREDUCE_FMIN:
10626 return LowerReductionToSVE(AArch64ISD::FMINNMV_PRED, Op, DAG);
10627 default:
10628 llvm_unreachable("Unhandled fixed length reduction");
10629 }
10630 }
10631
10632 // Lower NEON reductions.
10633 SDLoc dl(Op);
10634 switch (Op.getOpcode()) {
10635 case ISD::VECREDUCE_ADD:
10636 return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
10637 case ISD::VECREDUCE_SMAX:
10638 return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
10639 case ISD::VECREDUCE_SMIN:
10640 return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
10641 case ISD::VECREDUCE_UMAX:
10642 return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
10643 case ISD::VECREDUCE_UMIN:
10644 return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
10645 case ISD::VECREDUCE_FMAX: {
10646 return DAG.getNode(
10647 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
10648 DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
10649 Src);
10650 }
10651 case ISD::VECREDUCE_FMIN: {
10652 return DAG.getNode(
10653 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
10654 DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
10655 Src);
10656 }
10657 default:
10658 llvm_unreachable("Unhandled reduction");
10659 }
10660 }
10661
LowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const10662 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
10663 SelectionDAG &DAG) const {
10664 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
10665 if (!Subtarget.hasLSE() && !Subtarget.outlineAtomics())
10666 return SDValue();
10667
10668 // LSE has an atomic load-add instruction, but not a load-sub.
10669 SDLoc dl(Op);
10670 MVT VT = Op.getSimpleValueType();
10671 SDValue RHS = Op.getOperand(2);
10672 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
10673 RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
10674 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
10675 Op.getOperand(0), Op.getOperand(1), RHS,
10676 AN->getMemOperand());
10677 }
10678
LowerATOMIC_LOAD_AND(SDValue Op,SelectionDAG & DAG) const10679 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
10680 SelectionDAG &DAG) const {
10681 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
10682 if (!Subtarget.hasLSE() && !Subtarget.outlineAtomics())
10683 return SDValue();
10684
10685 // LSE has an atomic load-clear instruction, but not a load-and.
10686 SDLoc dl(Op);
10687 MVT VT = Op.getSimpleValueType();
10688 SDValue RHS = Op.getOperand(2);
10689 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
10690 RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
10691 return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
10692 Op.getOperand(0), Op.getOperand(1), RHS,
10693 AN->getMemOperand());
10694 }
10695
LowerWindowsDYNAMIC_STACKALLOC(SDValue Op,SDValue Chain,SDValue & Size,SelectionDAG & DAG) const10696 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
10697 SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
10698 SDLoc dl(Op);
10699 EVT PtrVT = getPointerTy(DAG.getDataLayout());
10700 SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
10701
10702 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
10703 const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
10704 if (Subtarget->hasCustomCallingConv())
10705 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
10706
10707 Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
10708 DAG.getConstant(4, dl, MVT::i64));
10709 Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
10710 Chain =
10711 DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
10712 Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
10713 DAG.getRegisterMask(Mask), Chain.getValue(1));
10714 // To match the actual intent better, we should read the output from X15 here
10715 // again (instead of potentially spilling it to the stack), but rereading Size
10716 // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
10717 // here.
10718
10719 Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
10720 DAG.getConstant(4, dl, MVT::i64));
10721 return Chain;
10722 }
10723
10724 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const10725 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10726 SelectionDAG &DAG) const {
10727 assert(Subtarget->isTargetWindows() &&
10728 "Only Windows alloca probing supported");
10729 SDLoc dl(Op);
10730 // Get the inputs.
10731 SDNode *Node = Op.getNode();
10732 SDValue Chain = Op.getOperand(0);
10733 SDValue Size = Op.getOperand(1);
10734 MaybeAlign Align =
10735 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
10736 EVT VT = Node->getValueType(0);
10737
10738 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
10739 "no-stack-arg-probe")) {
10740 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
10741 Chain = SP.getValue(1);
10742 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
10743 if (Align)
10744 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
10745 DAG.getConstant(-(uint64_t)Align->value(), dl, VT));
10746 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
10747 SDValue Ops[2] = {SP, Chain};
10748 return DAG.getMergeValues(Ops, dl);
10749 }
10750
10751 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
10752
10753 Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
10754
10755 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
10756 Chain = SP.getValue(1);
10757 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
10758 if (Align)
10759 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
10760 DAG.getConstant(-(uint64_t)Align->value(), dl, VT));
10761 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
10762
10763 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
10764 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
10765
10766 SDValue Ops[2] = {SP, Chain};
10767 return DAG.getMergeValues(Ops, dl);
10768 }
10769
LowerVSCALE(SDValue Op,SelectionDAG & DAG) const10770 SDValue AArch64TargetLowering::LowerVSCALE(SDValue Op,
10771 SelectionDAG &DAG) const {
10772 EVT VT = Op.getValueType();
10773 assert(VT != MVT::i64 && "Expected illegal VSCALE node");
10774
10775 SDLoc DL(Op);
10776 APInt MulImm = cast<ConstantSDNode>(Op.getOperand(0))->getAPIntValue();
10777 return DAG.getZExtOrTrunc(DAG.getVScale(DL, MVT::i64, MulImm.sextOrSelf(64)),
10778 DL, VT);
10779 }
10780
10781 /// Set the IntrinsicInfo for the `aarch64_sve_st<N>` intrinsics.
10782 template <unsigned NumVecs>
10783 static bool
setInfoSVEStN(const AArch64TargetLowering & TLI,const DataLayout & DL,AArch64TargetLowering::IntrinsicInfo & Info,const CallInst & CI)10784 setInfoSVEStN(const AArch64TargetLowering &TLI, const DataLayout &DL,
10785 AArch64TargetLowering::IntrinsicInfo &Info, const CallInst &CI) {
10786 Info.opc = ISD::INTRINSIC_VOID;
10787 // Retrieve EC from first vector argument.
10788 const EVT VT = TLI.getMemValueType(DL, CI.getArgOperand(0)->getType());
10789 ElementCount EC = VT.getVectorElementCount();
10790 #ifndef NDEBUG
10791 // Check the assumption that all input vectors are the same type.
10792 for (unsigned I = 0; I < NumVecs; ++I)
10793 assert(VT == TLI.getMemValueType(DL, CI.getArgOperand(I)->getType()) &&
10794 "Invalid type.");
10795 #endif
10796 // memVT is `NumVecs * VT`.
10797 Info.memVT = EVT::getVectorVT(CI.getType()->getContext(), VT.getScalarType(),
10798 EC * NumVecs);
10799 Info.ptrVal = CI.getArgOperand(CI.getNumArgOperands() - 1);
10800 Info.offset = 0;
10801 Info.align.reset();
10802 Info.flags = MachineMemOperand::MOStore;
10803 return true;
10804 }
10805
10806 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
10807 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
10808 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const10809 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
10810 const CallInst &I,
10811 MachineFunction &MF,
10812 unsigned Intrinsic) const {
10813 auto &DL = I.getModule()->getDataLayout();
10814 switch (Intrinsic) {
10815 case Intrinsic::aarch64_sve_st2:
10816 return setInfoSVEStN<2>(*this, DL, Info, I);
10817 case Intrinsic::aarch64_sve_st3:
10818 return setInfoSVEStN<3>(*this, DL, Info, I);
10819 case Intrinsic::aarch64_sve_st4:
10820 return setInfoSVEStN<4>(*this, DL, Info, I);
10821 case Intrinsic::aarch64_neon_ld2:
10822 case Intrinsic::aarch64_neon_ld3:
10823 case Intrinsic::aarch64_neon_ld4:
10824 case Intrinsic::aarch64_neon_ld1x2:
10825 case Intrinsic::aarch64_neon_ld1x3:
10826 case Intrinsic::aarch64_neon_ld1x4:
10827 case Intrinsic::aarch64_neon_ld2lane:
10828 case Intrinsic::aarch64_neon_ld3lane:
10829 case Intrinsic::aarch64_neon_ld4lane:
10830 case Intrinsic::aarch64_neon_ld2r:
10831 case Intrinsic::aarch64_neon_ld3r:
10832 case Intrinsic::aarch64_neon_ld4r: {
10833 Info.opc = ISD::INTRINSIC_W_CHAIN;
10834 // Conservatively set memVT to the entire set of vectors loaded.
10835 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
10836 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10837 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
10838 Info.offset = 0;
10839 Info.align.reset();
10840 // volatile loads with NEON intrinsics not supported
10841 Info.flags = MachineMemOperand::MOLoad;
10842 return true;
10843 }
10844 case Intrinsic::aarch64_neon_st2:
10845 case Intrinsic::aarch64_neon_st3:
10846 case Intrinsic::aarch64_neon_st4:
10847 case Intrinsic::aarch64_neon_st1x2:
10848 case Intrinsic::aarch64_neon_st1x3:
10849 case Intrinsic::aarch64_neon_st1x4:
10850 case Intrinsic::aarch64_neon_st2lane:
10851 case Intrinsic::aarch64_neon_st3lane:
10852 case Intrinsic::aarch64_neon_st4lane: {
10853 Info.opc = ISD::INTRINSIC_VOID;
10854 // Conservatively set memVT to the entire set of vectors stored.
10855 unsigned NumElts = 0;
10856 for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
10857 Type *ArgTy = I.getArgOperand(ArgI)->getType();
10858 if (!ArgTy->isVectorTy())
10859 break;
10860 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
10861 }
10862 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10863 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
10864 Info.offset = 0;
10865 Info.align.reset();
10866 // volatile stores with NEON intrinsics not supported
10867 Info.flags = MachineMemOperand::MOStore;
10868 return true;
10869 }
10870 case Intrinsic::aarch64_ldaxr:
10871 case Intrinsic::aarch64_ldxr: {
10872 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
10873 Info.opc = ISD::INTRINSIC_W_CHAIN;
10874 Info.memVT = MVT::getVT(PtrTy->getElementType());
10875 Info.ptrVal = I.getArgOperand(0);
10876 Info.offset = 0;
10877 Info.align = DL.getABITypeAlign(PtrTy->getElementType());
10878 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
10879 return true;
10880 }
10881 case Intrinsic::aarch64_stlxr:
10882 case Intrinsic::aarch64_stxr: {
10883 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
10884 Info.opc = ISD::INTRINSIC_W_CHAIN;
10885 Info.memVT = MVT::getVT(PtrTy->getElementType());
10886 Info.ptrVal = I.getArgOperand(1);
10887 Info.offset = 0;
10888 Info.align = DL.getABITypeAlign(PtrTy->getElementType());
10889 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
10890 return true;
10891 }
10892 case Intrinsic::aarch64_ldaxp:
10893 case Intrinsic::aarch64_ldxp:
10894 Info.opc = ISD::INTRINSIC_W_CHAIN;
10895 Info.memVT = MVT::i128;
10896 Info.ptrVal = I.getArgOperand(0);
10897 Info.offset = 0;
10898 Info.align = Align(16);
10899 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
10900 return true;
10901 case Intrinsic::aarch64_stlxp:
10902 case Intrinsic::aarch64_stxp:
10903 Info.opc = ISD::INTRINSIC_W_CHAIN;
10904 Info.memVT = MVT::i128;
10905 Info.ptrVal = I.getArgOperand(2);
10906 Info.offset = 0;
10907 Info.align = Align(16);
10908 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
10909 return true;
10910 case Intrinsic::aarch64_sve_ldnt1: {
10911 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
10912 Info.opc = ISD::INTRINSIC_W_CHAIN;
10913 Info.memVT = MVT::getVT(I.getType());
10914 Info.ptrVal = I.getArgOperand(1);
10915 Info.offset = 0;
10916 Info.align = DL.getABITypeAlign(PtrTy->getElementType());
10917 Info.flags = MachineMemOperand::MOLoad;
10918 if (Intrinsic == Intrinsic::aarch64_sve_ldnt1)
10919 Info.flags |= MachineMemOperand::MONonTemporal;
10920 return true;
10921 }
10922 case Intrinsic::aarch64_sve_stnt1: {
10923 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(2)->getType());
10924 Info.opc = ISD::INTRINSIC_W_CHAIN;
10925 Info.memVT = MVT::getVT(I.getOperand(0)->getType());
10926 Info.ptrVal = I.getArgOperand(2);
10927 Info.offset = 0;
10928 Info.align = DL.getABITypeAlign(PtrTy->getElementType());
10929 Info.flags = MachineMemOperand::MOStore;
10930 if (Intrinsic == Intrinsic::aarch64_sve_stnt1)
10931 Info.flags |= MachineMemOperand::MONonTemporal;
10932 return true;
10933 }
10934 default:
10935 break;
10936 }
10937
10938 return false;
10939 }
10940
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT) const10941 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
10942 ISD::LoadExtType ExtTy,
10943 EVT NewVT) const {
10944 // TODO: This may be worth removing. Check regression tests for diffs.
10945 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
10946 return false;
10947
10948 // If we're reducing the load width in order to avoid having to use an extra
10949 // instruction to do extension then it's probably a good idea.
10950 if (ExtTy != ISD::NON_EXTLOAD)
10951 return true;
10952 // Don't reduce load width if it would prevent us from combining a shift into
10953 // the offset.
10954 MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
10955 assert(Mem);
10956 const SDValue &Base = Mem->getBasePtr();
10957 if (Base.getOpcode() == ISD::ADD &&
10958 Base.getOperand(1).getOpcode() == ISD::SHL &&
10959 Base.getOperand(1).hasOneUse() &&
10960 Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
10961 // The shift can be combined if it matches the size of the value being
10962 // loaded (and so reducing the width would make it not match).
10963 uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
10964 uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
10965 if (ShiftAmount == Log2_32(LoadBytes))
10966 return false;
10967 }
10968 // We have no reason to disallow reducing the load width, so allow it.
10969 return true;
10970 }
10971
10972 // Truncations from 64-bit GPR to 32-bit GPR is free.
isTruncateFree(Type * Ty1,Type * Ty2) const10973 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10974 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10975 return false;
10976 uint64_t NumBits1 = Ty1->getPrimitiveSizeInBits().getFixedSize();
10977 uint64_t NumBits2 = Ty2->getPrimitiveSizeInBits().getFixedSize();
10978 return NumBits1 > NumBits2;
10979 }
isTruncateFree(EVT VT1,EVT VT2) const10980 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10981 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
10982 return false;
10983 uint64_t NumBits1 = VT1.getFixedSizeInBits();
10984 uint64_t NumBits2 = VT2.getFixedSizeInBits();
10985 return NumBits1 > NumBits2;
10986 }
10987
10988 /// Check if it is profitable to hoist instruction in then/else to if.
10989 /// Not profitable if I and it's user can form a FMA instruction
10990 /// because we prefer FMSUB/FMADD.
isProfitableToHoist(Instruction * I) const10991 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
10992 if (I->getOpcode() != Instruction::FMul)
10993 return true;
10994
10995 if (!I->hasOneUse())
10996 return true;
10997
10998 Instruction *User = I->user_back();
10999
11000 if (User &&
11001 !(User->getOpcode() == Instruction::FSub ||
11002 User->getOpcode() == Instruction::FAdd))
11003 return true;
11004
11005 const TargetOptions &Options = getTargetMachine().Options;
11006 const Function *F = I->getFunction();
11007 const DataLayout &DL = F->getParent()->getDataLayout();
11008 Type *Ty = User->getOperand(0)->getType();
11009
11010 return !(isFMAFasterThanFMulAndFAdd(*F, Ty) &&
11011 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
11012 (Options.AllowFPOpFusion == FPOpFusion::Fast ||
11013 Options.UnsafeFPMath));
11014 }
11015
11016 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
11017 // 64-bit GPR.
isZExtFree(Type * Ty1,Type * Ty2) const11018 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11019 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11020 return false;
11021 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11022 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11023 return NumBits1 == 32 && NumBits2 == 64;
11024 }
isZExtFree(EVT VT1,EVT VT2) const11025 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11026 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
11027 return false;
11028 unsigned NumBits1 = VT1.getSizeInBits();
11029 unsigned NumBits2 = VT2.getSizeInBits();
11030 return NumBits1 == 32 && NumBits2 == 64;
11031 }
11032
isZExtFree(SDValue Val,EVT VT2) const11033 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11034 EVT VT1 = Val.getValueType();
11035 if (isZExtFree(VT1, VT2)) {
11036 return true;
11037 }
11038
11039 if (Val.getOpcode() != ISD::LOAD)
11040 return false;
11041
11042 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
11043 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
11044 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
11045 VT1.getSizeInBits() <= 32);
11046 }
11047
isExtFreeImpl(const Instruction * Ext) const11048 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
11049 if (isa<FPExtInst>(Ext))
11050 return false;
11051
11052 // Vector types are not free.
11053 if (Ext->getType()->isVectorTy())
11054 return false;
11055
11056 for (const Use &U : Ext->uses()) {
11057 // The extension is free if we can fold it with a left shift in an
11058 // addressing mode or an arithmetic operation: add, sub, and cmp.
11059
11060 // Is there a shift?
11061 const Instruction *Instr = cast<Instruction>(U.getUser());
11062
11063 // Is this a constant shift?
11064 switch (Instr->getOpcode()) {
11065 case Instruction::Shl:
11066 if (!isa<ConstantInt>(Instr->getOperand(1)))
11067 return false;
11068 break;
11069 case Instruction::GetElementPtr: {
11070 gep_type_iterator GTI = gep_type_begin(Instr);
11071 auto &DL = Ext->getModule()->getDataLayout();
11072 std::advance(GTI, U.getOperandNo()-1);
11073 Type *IdxTy = GTI.getIndexedType();
11074 // This extension will end up with a shift because of the scaling factor.
11075 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
11076 // Get the shift amount based on the scaling factor:
11077 // log2(sizeof(IdxTy)) - log2(8).
11078 uint64_t ShiftAmt =
11079 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3;
11080 // Is the constant foldable in the shift of the addressing mode?
11081 // I.e., shift amount is between 1 and 4 inclusive.
11082 if (ShiftAmt == 0 || ShiftAmt > 4)
11083 return false;
11084 break;
11085 }
11086 case Instruction::Trunc:
11087 // Check if this is a noop.
11088 // trunc(sext ty1 to ty2) to ty1.
11089 if (Instr->getType() == Ext->getOperand(0)->getType())
11090 continue;
11091 LLVM_FALLTHROUGH;
11092 default:
11093 return false;
11094 }
11095
11096 // At this point we can use the bfm family, so this extension is free
11097 // for that use.
11098 }
11099 return true;
11100 }
11101
11102 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower
11103 /// or upper half of the vector elements.
areExtractShuffleVectors(Value * Op1,Value * Op2)11104 static bool areExtractShuffleVectors(Value *Op1, Value *Op2) {
11105 auto areTypesHalfed = [](Value *FullV, Value *HalfV) {
11106 auto *FullTy = FullV->getType();
11107 auto *HalfTy = HalfV->getType();
11108 return FullTy->getPrimitiveSizeInBits().getFixedSize() ==
11109 2 * HalfTy->getPrimitiveSizeInBits().getFixedSize();
11110 };
11111
11112 auto extractHalf = [](Value *FullV, Value *HalfV) {
11113 auto *FullVT = cast<FixedVectorType>(FullV->getType());
11114 auto *HalfVT = cast<FixedVectorType>(HalfV->getType());
11115 return FullVT->getNumElements() == 2 * HalfVT->getNumElements();
11116 };
11117
11118 ArrayRef<int> M1, M2;
11119 Value *S1Op1, *S2Op1;
11120 if (!match(Op1, m_Shuffle(m_Value(S1Op1), m_Undef(), m_Mask(M1))) ||
11121 !match(Op2, m_Shuffle(m_Value(S2Op1), m_Undef(), m_Mask(M2))))
11122 return false;
11123
11124 // Check that the operands are half as wide as the result and we extract
11125 // half of the elements of the input vectors.
11126 if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) ||
11127 !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2))
11128 return false;
11129
11130 // Check the mask extracts either the lower or upper half of vector
11131 // elements.
11132 int M1Start = -1;
11133 int M2Start = -1;
11134 int NumElements = cast<FixedVectorType>(Op1->getType())->getNumElements() * 2;
11135 if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) ||
11136 !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) ||
11137 M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2)))
11138 return false;
11139
11140 return true;
11141 }
11142
11143 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
11144 /// of the vector elements.
areExtractExts(Value * Ext1,Value * Ext2)11145 static bool areExtractExts(Value *Ext1, Value *Ext2) {
11146 auto areExtDoubled = [](Instruction *Ext) {
11147 return Ext->getType()->getScalarSizeInBits() ==
11148 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
11149 };
11150
11151 if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
11152 !match(Ext2, m_ZExtOrSExt(m_Value())) ||
11153 !areExtDoubled(cast<Instruction>(Ext1)) ||
11154 !areExtDoubled(cast<Instruction>(Ext2)))
11155 return false;
11156
11157 return true;
11158 }
11159
11160 /// Check if Op could be used with vmull_high_p64 intrinsic.
isOperandOfVmullHighP64(Value * Op)11161 static bool isOperandOfVmullHighP64(Value *Op) {
11162 Value *VectorOperand = nullptr;
11163 ConstantInt *ElementIndex = nullptr;
11164 return match(Op, m_ExtractElt(m_Value(VectorOperand),
11165 m_ConstantInt(ElementIndex))) &&
11166 ElementIndex->getValue() == 1 &&
11167 isa<FixedVectorType>(VectorOperand->getType()) &&
11168 cast<FixedVectorType>(VectorOperand->getType())->getNumElements() == 2;
11169 }
11170
11171 /// Check if Op1 and Op2 could be used with vmull_high_p64 intrinsic.
areOperandsOfVmullHighP64(Value * Op1,Value * Op2)11172 static bool areOperandsOfVmullHighP64(Value *Op1, Value *Op2) {
11173 return isOperandOfVmullHighP64(Op1) && isOperandOfVmullHighP64(Op2);
11174 }
11175
11176 /// Check if sinking \p I's operands to I's basic block is profitable, because
11177 /// the operands can be folded into a target instruction, e.g.
11178 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops) const11179 bool AArch64TargetLowering::shouldSinkOperands(
11180 Instruction *I, SmallVectorImpl<Use *> &Ops) const {
11181 if (!I->getType()->isVectorTy())
11182 return false;
11183
11184 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
11185 switch (II->getIntrinsicID()) {
11186 case Intrinsic::aarch64_neon_umull:
11187 if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1)))
11188 return false;
11189 Ops.push_back(&II->getOperandUse(0));
11190 Ops.push_back(&II->getOperandUse(1));
11191 return true;
11192
11193 case Intrinsic::aarch64_neon_pmull64:
11194 if (!areOperandsOfVmullHighP64(II->getArgOperand(0),
11195 II->getArgOperand(1)))
11196 return false;
11197 Ops.push_back(&II->getArgOperandUse(0));
11198 Ops.push_back(&II->getArgOperandUse(1));
11199 return true;
11200
11201 default:
11202 return false;
11203 }
11204 }
11205
11206 switch (I->getOpcode()) {
11207 case Instruction::Sub:
11208 case Instruction::Add: {
11209 if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
11210 return false;
11211
11212 // If the exts' operands extract either the lower or upper elements, we
11213 // can sink them too.
11214 auto Ext1 = cast<Instruction>(I->getOperand(0));
11215 auto Ext2 = cast<Instruction>(I->getOperand(1));
11216 if (areExtractShuffleVectors(Ext1, Ext2)) {
11217 Ops.push_back(&Ext1->getOperandUse(0));
11218 Ops.push_back(&Ext2->getOperandUse(0));
11219 }
11220
11221 Ops.push_back(&I->getOperandUse(0));
11222 Ops.push_back(&I->getOperandUse(1));
11223
11224 return true;
11225 }
11226 case Instruction::Mul: {
11227 bool IsProfitable = false;
11228 for (auto &Op : I->operands()) {
11229 // Make sure we are not already sinking this operand
11230 if (any_of(Ops, [&](Use *U) { return U->get() == Op; }))
11231 continue;
11232
11233 ShuffleVectorInst *Shuffle = dyn_cast<ShuffleVectorInst>(Op);
11234 if (!Shuffle || !Shuffle->isZeroEltSplat())
11235 continue;
11236
11237 Value *ShuffleOperand = Shuffle->getOperand(0);
11238 InsertElementInst *Insert = dyn_cast<InsertElementInst>(ShuffleOperand);
11239 if (!Insert)
11240 continue;
11241
11242 Instruction *OperandInstr = dyn_cast<Instruction>(Insert->getOperand(1));
11243 if (!OperandInstr)
11244 continue;
11245
11246 ConstantInt *ElementConstant =
11247 dyn_cast<ConstantInt>(Insert->getOperand(2));
11248 // Check that the insertelement is inserting into element 0
11249 if (!ElementConstant || ElementConstant->getZExtValue() != 0)
11250 continue;
11251
11252 unsigned Opcode = OperandInstr->getOpcode();
11253 if (Opcode != Instruction::SExt && Opcode != Instruction::ZExt)
11254 continue;
11255
11256 Ops.push_back(&Shuffle->getOperandUse(0));
11257 Ops.push_back(&Op);
11258 IsProfitable = true;
11259 }
11260
11261 return IsProfitable;
11262 }
11263 default:
11264 return false;
11265 }
11266 return false;
11267 }
11268
hasPairedLoad(EVT LoadedType,Align & RequiredAligment) const11269 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
11270 Align &RequiredAligment) const {
11271 if (!LoadedType.isSimple() ||
11272 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
11273 return false;
11274 // Cyclone supports unaligned accesses.
11275 RequiredAligment = Align(1);
11276 unsigned NumBits = LoadedType.getSizeInBits();
11277 return NumBits == 32 || NumBits == 64;
11278 }
11279
11280 /// A helper function for determining the number of interleaved accesses we
11281 /// will generate when lowering accesses of the given type.
11282 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const11283 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
11284 const DataLayout &DL) const {
11285 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
11286 }
11287
11288 MachineMemOperand::Flags
getTargetMMOFlags(const Instruction & I) const11289 AArch64TargetLowering::getTargetMMOFlags(const Instruction &I) const {
11290 if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
11291 I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
11292 return MOStridedAccess;
11293 return MachineMemOperand::MONone;
11294 }
11295
isLegalInterleavedAccessType(VectorType * VecTy,const DataLayout & DL) const11296 bool AArch64TargetLowering::isLegalInterleavedAccessType(
11297 VectorType *VecTy, const DataLayout &DL) const {
11298
11299 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
11300 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
11301
11302 // Ensure the number of vector elements is greater than 1.
11303 if (cast<FixedVectorType>(VecTy)->getNumElements() < 2)
11304 return false;
11305
11306 // Ensure the element type is legal.
11307 if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
11308 return false;
11309
11310 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
11311 // 128 will be split into multiple interleaved accesses.
11312 return VecSize == 64 || VecSize % 128 == 0;
11313 }
11314
11315 /// Lower an interleaved load into a ldN intrinsic.
11316 ///
11317 /// E.g. Lower an interleaved load (Factor = 2):
11318 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
11319 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
11320 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
11321 ///
11322 /// Into:
11323 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
11324 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
11325 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const11326 bool AArch64TargetLowering::lowerInterleavedLoad(
11327 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
11328 ArrayRef<unsigned> Indices, unsigned Factor) const {
11329 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
11330 "Invalid interleave factor");
11331 assert(!Shuffles.empty() && "Empty shufflevector input");
11332 assert(Shuffles.size() == Indices.size() &&
11333 "Unmatched number of shufflevectors and indices");
11334
11335 const DataLayout &DL = LI->getModule()->getDataLayout();
11336
11337 VectorType *VTy = Shuffles[0]->getType();
11338
11339 // Skip if we do not have NEON and skip illegal vector types. We can
11340 // "legalize" wide vector types into multiple interleaved accesses as long as
11341 // the vector types are divisible by 128.
11342 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VTy, DL))
11343 return false;
11344
11345 unsigned NumLoads = getNumInterleavedAccesses(VTy, DL);
11346
11347 auto *FVTy = cast<FixedVectorType>(VTy);
11348
11349 // A pointer vector can not be the return type of the ldN intrinsics. Need to
11350 // load integer vectors first and then convert to pointer vectors.
11351 Type *EltTy = FVTy->getElementType();
11352 if (EltTy->isPointerTy())
11353 FVTy =
11354 FixedVectorType::get(DL.getIntPtrType(EltTy), FVTy->getNumElements());
11355
11356 IRBuilder<> Builder(LI);
11357
11358 // The base address of the load.
11359 Value *BaseAddr = LI->getPointerOperand();
11360
11361 if (NumLoads > 1) {
11362 // If we're going to generate more than one load, reset the sub-vector type
11363 // to something legal.
11364 FVTy = FixedVectorType::get(FVTy->getElementType(),
11365 FVTy->getNumElements() / NumLoads);
11366
11367 // We will compute the pointer operand of each load from the original base
11368 // address using GEPs. Cast the base address to a pointer to the scalar
11369 // element type.
11370 BaseAddr = Builder.CreateBitCast(
11371 BaseAddr,
11372 FVTy->getElementType()->getPointerTo(LI->getPointerAddressSpace()));
11373 }
11374
11375 Type *PtrTy = FVTy->getPointerTo(LI->getPointerAddressSpace());
11376 Type *Tys[2] = {FVTy, PtrTy};
11377 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
11378 Intrinsic::aarch64_neon_ld3,
11379 Intrinsic::aarch64_neon_ld4};
11380 Function *LdNFunc =
11381 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
11382
11383 // Holds sub-vectors extracted from the load intrinsic return values. The
11384 // sub-vectors are associated with the shufflevector instructions they will
11385 // replace.
11386 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
11387
11388 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
11389
11390 // If we're generating more than one load, compute the base address of
11391 // subsequent loads as an offset from the previous.
11392 if (LoadCount > 0)
11393 BaseAddr = Builder.CreateConstGEP1_32(FVTy->getElementType(), BaseAddr,
11394 FVTy->getNumElements() * Factor);
11395
11396 CallInst *LdN = Builder.CreateCall(
11397 LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
11398
11399 // Extract and store the sub-vectors returned by the load intrinsic.
11400 for (unsigned i = 0; i < Shuffles.size(); i++) {
11401 ShuffleVectorInst *SVI = Shuffles[i];
11402 unsigned Index = Indices[i];
11403
11404 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
11405
11406 // Convert the integer vector to pointer vector if the element is pointer.
11407 if (EltTy->isPointerTy())
11408 SubVec = Builder.CreateIntToPtr(
11409 SubVec, FixedVectorType::get(SVI->getType()->getElementType(),
11410 FVTy->getNumElements()));
11411 SubVecs[SVI].push_back(SubVec);
11412 }
11413 }
11414
11415 // Replace uses of the shufflevector instructions with the sub-vectors
11416 // returned by the load intrinsic. If a shufflevector instruction is
11417 // associated with more than one sub-vector, those sub-vectors will be
11418 // concatenated into a single wide vector.
11419 for (ShuffleVectorInst *SVI : Shuffles) {
11420 auto &SubVec = SubVecs[SVI];
11421 auto *WideVec =
11422 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
11423 SVI->replaceAllUsesWith(WideVec);
11424 }
11425
11426 return true;
11427 }
11428
11429 /// Lower an interleaved store into a stN intrinsic.
11430 ///
11431 /// E.g. Lower an interleaved store (Factor = 3):
11432 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
11433 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
11434 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
11435 ///
11436 /// Into:
11437 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
11438 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
11439 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
11440 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
11441 ///
11442 /// Note that the new shufflevectors will be removed and we'll only generate one
11443 /// st3 instruction in CodeGen.
11444 ///
11445 /// Example for a more general valid mask (Factor 3). Lower:
11446 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
11447 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
11448 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
11449 ///
11450 /// Into:
11451 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
11452 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
11453 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
11454 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const11455 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
11456 ShuffleVectorInst *SVI,
11457 unsigned Factor) const {
11458 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
11459 "Invalid interleave factor");
11460
11461 auto *VecTy = cast<FixedVectorType>(SVI->getType());
11462 assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");
11463
11464 unsigned LaneLen = VecTy->getNumElements() / Factor;
11465 Type *EltTy = VecTy->getElementType();
11466 auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);
11467
11468 const DataLayout &DL = SI->getModule()->getDataLayout();
11469
11470 // Skip if we do not have NEON and skip illegal vector types. We can
11471 // "legalize" wide vector types into multiple interleaved accesses as long as
11472 // the vector types are divisible by 128.
11473 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
11474 return false;
11475
11476 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
11477
11478 Value *Op0 = SVI->getOperand(0);
11479 Value *Op1 = SVI->getOperand(1);
11480 IRBuilder<> Builder(SI);
11481
11482 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
11483 // vectors to integer vectors.
11484 if (EltTy->isPointerTy()) {
11485 Type *IntTy = DL.getIntPtrType(EltTy);
11486 unsigned NumOpElts =
11487 cast<FixedVectorType>(Op0->getType())->getNumElements();
11488
11489 // Convert to the corresponding integer vector.
11490 auto *IntVecTy = FixedVectorType::get(IntTy, NumOpElts);
11491 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
11492 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
11493
11494 SubVecTy = FixedVectorType::get(IntTy, LaneLen);
11495 }
11496
11497 // The base address of the store.
11498 Value *BaseAddr = SI->getPointerOperand();
11499
11500 if (NumStores > 1) {
11501 // If we're going to generate more than one store, reset the lane length
11502 // and sub-vector type to something legal.
11503 LaneLen /= NumStores;
11504 SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);
11505
11506 // We will compute the pointer operand of each store from the original base
11507 // address using GEPs. Cast the base address to a pointer to the scalar
11508 // element type.
11509 BaseAddr = Builder.CreateBitCast(
11510 BaseAddr,
11511 SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace()));
11512 }
11513
11514 auto Mask = SVI->getShuffleMask();
11515
11516 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
11517 Type *Tys[2] = {SubVecTy, PtrTy};
11518 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
11519 Intrinsic::aarch64_neon_st3,
11520 Intrinsic::aarch64_neon_st4};
11521 Function *StNFunc =
11522 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
11523
11524 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
11525
11526 SmallVector<Value *, 5> Ops;
11527
11528 // Split the shufflevector operands into sub vectors for the new stN call.
11529 for (unsigned i = 0; i < Factor; i++) {
11530 unsigned IdxI = StoreCount * LaneLen * Factor + i;
11531 if (Mask[IdxI] >= 0) {
11532 Ops.push_back(Builder.CreateShuffleVector(
11533 Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)));
11534 } else {
11535 unsigned StartMask = 0;
11536 for (unsigned j = 1; j < LaneLen; j++) {
11537 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
11538 if (Mask[IdxJ * Factor + IdxI] >= 0) {
11539 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
11540 break;
11541 }
11542 }
11543 // Note: Filling undef gaps with random elements is ok, since
11544 // those elements were being written anyway (with undefs).
11545 // In the case of all undefs we're defaulting to using elems from 0
11546 // Note: StartMask cannot be negative, it's checked in
11547 // isReInterleaveMask
11548 Ops.push_back(Builder.CreateShuffleVector(
11549 Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)));
11550 }
11551 }
11552
11553 // If we generating more than one store, we compute the base address of
11554 // subsequent stores as an offset from the previous.
11555 if (StoreCount > 0)
11556 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
11557 BaseAddr, LaneLen * Factor);
11558
11559 Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
11560 Builder.CreateCall(StNFunc, Ops);
11561 }
11562 return true;
11563 }
11564
11565 // Lower an SVE structured load intrinsic returning a tuple type to target
11566 // specific intrinsic taking the same input but returning a multi-result value
11567 // of the split tuple type.
11568 //
11569 // E.g. Lowering an LD3:
11570 //
11571 // call <vscale x 12 x i32> @llvm.aarch64.sve.ld3.nxv12i32(
11572 // <vscale x 4 x i1> %pred,
11573 // <vscale x 4 x i32>* %addr)
11574 //
11575 // Output DAG:
11576 //
11577 // t0: ch = EntryToken
11578 // t2: nxv4i1,ch = CopyFromReg t0, Register:nxv4i1 %0
11579 // t4: i64,ch = CopyFromReg t0, Register:i64 %1
11580 // t5: nxv4i32,nxv4i32,nxv4i32,ch = AArch64ISD::SVE_LD3 t0, t2, t4
11581 // t6: nxv12i32 = concat_vectors t5, t5:1, t5:2
11582 //
11583 // This is called pre-legalization to avoid widening/splitting issues with
11584 // non-power-of-2 tuple types used for LD3, such as nxv12i32.
LowerSVEStructLoad(unsigned Intrinsic,ArrayRef<SDValue> LoadOps,EVT VT,SelectionDAG & DAG,const SDLoc & DL) const11585 SDValue AArch64TargetLowering::LowerSVEStructLoad(unsigned Intrinsic,
11586 ArrayRef<SDValue> LoadOps,
11587 EVT VT, SelectionDAG &DAG,
11588 const SDLoc &DL) const {
11589 assert(VT.isScalableVector() && "Can only lower scalable vectors");
11590
11591 unsigned N, Opcode;
11592 static std::map<unsigned, std::pair<unsigned, unsigned>> IntrinsicMap = {
11593 {Intrinsic::aarch64_sve_ld2, {2, AArch64ISD::SVE_LD2_MERGE_ZERO}},
11594 {Intrinsic::aarch64_sve_ld3, {3, AArch64ISD::SVE_LD3_MERGE_ZERO}},
11595 {Intrinsic::aarch64_sve_ld4, {4, AArch64ISD::SVE_LD4_MERGE_ZERO}}};
11596
11597 std::tie(N, Opcode) = IntrinsicMap[Intrinsic];
11598 assert(VT.getVectorElementCount().getKnownMinValue() % N == 0 &&
11599 "invalid tuple vector type!");
11600
11601 EVT SplitVT =
11602 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
11603 VT.getVectorElementCount().divideCoefficientBy(N));
11604 assert(isTypeLegal(SplitVT));
11605
11606 SmallVector<EVT, 5> VTs(N, SplitVT);
11607 VTs.push_back(MVT::Other); // Chain
11608 SDVTList NodeTys = DAG.getVTList(VTs);
11609
11610 SDValue PseudoLoad = DAG.getNode(Opcode, DL, NodeTys, LoadOps);
11611 SmallVector<SDValue, 4> PseudoLoadOps;
11612 for (unsigned I = 0; I < N; ++I)
11613 PseudoLoadOps.push_back(SDValue(PseudoLoad.getNode(), I));
11614 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, PseudoLoadOps);
11615 }
11616
getOptimalMemOpType(const MemOp & Op,const AttributeList & FuncAttributes) const11617 EVT AArch64TargetLowering::getOptimalMemOpType(
11618 const MemOp &Op, const AttributeList &FuncAttributes) const {
11619 bool CanImplicitFloat =
11620 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
11621 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
11622 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
11623 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
11624 // taken one instruction to materialize the v2i64 zero and one store (with
11625 // restrictive addressing mode). Just do i64 stores.
11626 bool IsSmallMemset = Op.isMemset() && Op.size() < 32;
11627 auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) {
11628 if (Op.isAligned(AlignCheck))
11629 return true;
11630 bool Fast;
11631 return allowsMisalignedMemoryAccesses(VT, 0, Align(1),
11632 MachineMemOperand::MONone, &Fast) &&
11633 Fast;
11634 };
11635
11636 if (CanUseNEON && Op.isMemset() && !IsSmallMemset &&
11637 AlignmentIsAcceptable(MVT::v2i64, Align(16)))
11638 return MVT::v2i64;
11639 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16)))
11640 return MVT::f128;
11641 if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8)))
11642 return MVT::i64;
11643 if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4)))
11644 return MVT::i32;
11645 return MVT::Other;
11646 }
11647
getOptimalMemOpLLT(const MemOp & Op,const AttributeList & FuncAttributes) const11648 LLT AArch64TargetLowering::getOptimalMemOpLLT(
11649 const MemOp &Op, const AttributeList &FuncAttributes) const {
11650 bool CanImplicitFloat =
11651 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
11652 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
11653 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
11654 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
11655 // taken one instruction to materialize the v2i64 zero and one store (with
11656 // restrictive addressing mode). Just do i64 stores.
11657 bool IsSmallMemset = Op.isMemset() && Op.size() < 32;
11658 auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) {
11659 if (Op.isAligned(AlignCheck))
11660 return true;
11661 bool Fast;
11662 return allowsMisalignedMemoryAccesses(VT, 0, Align(1),
11663 MachineMemOperand::MONone, &Fast) &&
11664 Fast;
11665 };
11666
11667 if (CanUseNEON && Op.isMemset() && !IsSmallMemset &&
11668 AlignmentIsAcceptable(MVT::v2i64, Align(16)))
11669 return LLT::vector(2, 64);
11670 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16)))
11671 return LLT::scalar(128);
11672 if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8)))
11673 return LLT::scalar(64);
11674 if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4)))
11675 return LLT::scalar(32);
11676 return LLT();
11677 }
11678
11679 // 12-bit optionally shifted immediates are legal for adds.
isLegalAddImmediate(int64_t Immed) const11680 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
11681 if (Immed == std::numeric_limits<int64_t>::min()) {
11682 LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
11683 << ": avoid UB for INT64_MIN\n");
11684 return false;
11685 }
11686 // Same encoding for add/sub, just flip the sign.
11687 Immed = std::abs(Immed);
11688 bool IsLegal = ((Immed >> 12) == 0 ||
11689 ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
11690 LLVM_DEBUG(dbgs() << "Is " << Immed
11691 << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
11692 return IsLegal;
11693 }
11694
11695 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
11696 // immediates is the same as for an add or a sub.
isLegalICmpImmediate(int64_t Immed) const11697 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
11698 return isLegalAddImmediate(Immed);
11699 }
11700
11701 /// isLegalAddressingMode - Return true if the addressing mode represented
11702 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const11703 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
11704 const AddrMode &AM, Type *Ty,
11705 unsigned AS, Instruction *I) const {
11706 // AArch64 has five basic addressing modes:
11707 // reg
11708 // reg + 9-bit signed offset
11709 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
11710 // reg1 + reg2
11711 // reg + SIZE_IN_BYTES * reg
11712
11713 // No global is ever allowed as a base.
11714 if (AM.BaseGV)
11715 return false;
11716
11717 // No reg+reg+imm addressing.
11718 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
11719 return false;
11720
11721 // FIXME: Update this method to support scalable addressing modes.
11722 if (isa<ScalableVectorType>(Ty))
11723 return AM.HasBaseReg && !AM.BaseOffs && !AM.Scale;
11724
11725 // check reg + imm case:
11726 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
11727 uint64_t NumBytes = 0;
11728 if (Ty->isSized()) {
11729 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
11730 NumBytes = NumBits / 8;
11731 if (!isPowerOf2_64(NumBits))
11732 NumBytes = 0;
11733 }
11734
11735 if (!AM.Scale) {
11736 int64_t Offset = AM.BaseOffs;
11737
11738 // 9-bit signed offset
11739 if (isInt<9>(Offset))
11740 return true;
11741
11742 // 12-bit unsigned offset
11743 unsigned shift = Log2_64(NumBytes);
11744 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
11745 // Must be a multiple of NumBytes (NumBytes is a power of 2)
11746 (Offset >> shift) << shift == Offset)
11747 return true;
11748 return false;
11749 }
11750
11751 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
11752
11753 return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
11754 }
11755
shouldConsiderGEPOffsetSplit() const11756 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
11757 // Consider splitting large offset of struct or array.
11758 return true;
11759 }
11760
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const11761 InstructionCost AArch64TargetLowering::getScalingFactorCost(
11762 const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const {
11763 // Scaling factors are not free at all.
11764 // Operands | Rt Latency
11765 // -------------------------------------------
11766 // Rt, [Xn, Xm] | 4
11767 // -------------------------------------------
11768 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
11769 // Rt, [Xn, Wm, <extend> #imm] |
11770 if (isLegalAddressingMode(DL, AM, Ty, AS))
11771 // Scale represents reg2 * scale, thus account for 1 if
11772 // it is not equal to 0 or 1.
11773 return AM.Scale != 0 && AM.Scale != 1;
11774 return -1;
11775 }
11776
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const11777 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(
11778 const MachineFunction &MF, EVT VT) const {
11779 VT = VT.getScalarType();
11780
11781 if (!VT.isSimple())
11782 return false;
11783
11784 switch (VT.getSimpleVT().SimpleTy) {
11785 case MVT::f16:
11786 return Subtarget->hasFullFP16();
11787 case MVT::f32:
11788 case MVT::f64:
11789 return true;
11790 default:
11791 break;
11792 }
11793
11794 return false;
11795 }
11796
isFMAFasterThanFMulAndFAdd(const Function & F,Type * Ty) const11797 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
11798 Type *Ty) const {
11799 switch (Ty->getScalarType()->getTypeID()) {
11800 case Type::FloatTyID:
11801 case Type::DoubleTyID:
11802 return true;
11803 default:
11804 return false;
11805 }
11806 }
11807
generateFMAsInMachineCombiner(EVT VT,CodeGenOpt::Level OptLevel) const11808 bool AArch64TargetLowering::generateFMAsInMachineCombiner(
11809 EVT VT, CodeGenOpt::Level OptLevel) const {
11810 return (OptLevel >= CodeGenOpt::Aggressive) && !VT.isScalableVector();
11811 }
11812
11813 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const11814 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
11815 // LR is a callee-save register, but we must treat it as clobbered by any call
11816 // site. Hence we include LR in the scratch registers, which are in turn added
11817 // as implicit-defs for stackmaps and patchpoints.
11818 static const MCPhysReg ScratchRegs[] = {
11819 AArch64::X16, AArch64::X17, AArch64::LR, 0
11820 };
11821 return ScratchRegs;
11822 }
11823
11824 bool
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const11825 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
11826 CombineLevel Level) const {
11827 N = N->getOperand(0).getNode();
11828 EVT VT = N->getValueType(0);
11829 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
11830 // it with shift to let it be lowered to UBFX.
11831 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
11832 isa<ConstantSDNode>(N->getOperand(1))) {
11833 uint64_t TruncMask = N->getConstantOperandVal(1);
11834 if (isMask_64(TruncMask) &&
11835 N->getOperand(0).getOpcode() == ISD::SRL &&
11836 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
11837 return false;
11838 }
11839 return true;
11840 }
11841
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const11842 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11843 Type *Ty) const {
11844 assert(Ty->isIntegerTy());
11845
11846 unsigned BitSize = Ty->getPrimitiveSizeInBits();
11847 if (BitSize == 0)
11848 return false;
11849
11850 int64_t Val = Imm.getSExtValue();
11851 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
11852 return true;
11853
11854 if ((int64_t)Val < 0)
11855 Val = ~Val;
11856 if (BitSize == 32)
11857 Val &= (1LL << 32) - 1;
11858
11859 unsigned LZ = countLeadingZeros((uint64_t)Val);
11860 unsigned Shift = (63 - LZ) / 16;
11861 // MOVZ is free so return true for one or fewer MOVK.
11862 return Shift < 3;
11863 }
11864
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const11865 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
11866 unsigned Index) const {
11867 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
11868 return false;
11869
11870 return (Index == 0 || Index == ResVT.getVectorNumElements());
11871 }
11872
11873 /// Turn vector tests of the signbit in the form of:
11874 /// xor (sra X, elt_size(X)-1), -1
11875 /// into:
11876 /// cmge X, X, #0
foldVectorXorShiftIntoCmp(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)11877 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
11878 const AArch64Subtarget *Subtarget) {
11879 EVT VT = N->getValueType(0);
11880 if (!Subtarget->hasNEON() || !VT.isVector())
11881 return SDValue();
11882
11883 // There must be a shift right algebraic before the xor, and the xor must be a
11884 // 'not' operation.
11885 SDValue Shift = N->getOperand(0);
11886 SDValue Ones = N->getOperand(1);
11887 if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
11888 !ISD::isBuildVectorAllOnes(Ones.getNode()))
11889 return SDValue();
11890
11891 // The shift should be smearing the sign bit across each vector element.
11892 auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
11893 EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
11894 if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
11895 return SDValue();
11896
11897 return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
11898 }
11899
11900 // Turn a v8i8/v16i8 extended vecreduce into a udot/sdot and vecreduce
11901 // vecreduce.add(ext(A)) to vecreduce.add(DOT(zero, A, one))
11902 // vecreduce.add(mul(ext(A), ext(B))) to vecreduce.add(DOT(zero, A, B))
performVecReduceAddCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * ST)11903 static SDValue performVecReduceAddCombine(SDNode *N, SelectionDAG &DAG,
11904 const AArch64Subtarget *ST) {
11905 SDValue Op0 = N->getOperand(0);
11906 if (!ST->hasDotProd() || N->getValueType(0) != MVT::i32 ||
11907 Op0.getValueType().getVectorElementType() != MVT::i32)
11908 return SDValue();
11909
11910 unsigned ExtOpcode = Op0.getOpcode();
11911 SDValue A = Op0;
11912 SDValue B;
11913 if (ExtOpcode == ISD::MUL) {
11914 A = Op0.getOperand(0);
11915 B = Op0.getOperand(1);
11916 if (A.getOpcode() != B.getOpcode() ||
11917 A.getOperand(0).getValueType() != B.getOperand(0).getValueType())
11918 return SDValue();
11919 ExtOpcode = A.getOpcode();
11920 }
11921 if (ExtOpcode != ISD::ZERO_EXTEND && ExtOpcode != ISD::SIGN_EXTEND)
11922 return SDValue();
11923
11924 EVT Op0VT = A.getOperand(0).getValueType();
11925 if (Op0VT != MVT::v8i8 && Op0VT != MVT::v16i8)
11926 return SDValue();
11927
11928 SDLoc DL(Op0);
11929 // For non-mla reductions B can be set to 1. For MLA we take the operand of
11930 // the extend B.
11931 if (!B)
11932 B = DAG.getConstant(1, DL, Op0VT);
11933 else
11934 B = B.getOperand(0);
11935
11936 SDValue Zeros =
11937 DAG.getConstant(0, DL, Op0VT == MVT::v8i8 ? MVT::v2i32 : MVT::v4i32);
11938 auto DotOpcode =
11939 (ExtOpcode == ISD::ZERO_EXTEND) ? AArch64ISD::UDOT : AArch64ISD::SDOT;
11940 SDValue Dot = DAG.getNode(DotOpcode, DL, Zeros.getValueType(), Zeros,
11941 A.getOperand(0), B);
11942 return DAG.getNode(ISD::VECREDUCE_ADD, DL, N->getValueType(0), Dot);
11943 }
11944
11945 // Given a ABS node, detect the following pattern:
11946 // (ABS (SUB (EXTEND a), (EXTEND b))).
11947 // Generates UABD/SABD instruction.
performABSCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)11948 static SDValue performABSCombine(SDNode *N, SelectionDAG &DAG,
11949 TargetLowering::DAGCombinerInfo &DCI,
11950 const AArch64Subtarget *Subtarget) {
11951 SDValue AbsOp1 = N->getOperand(0);
11952 SDValue Op0, Op1;
11953
11954 if (AbsOp1.getOpcode() != ISD::SUB)
11955 return SDValue();
11956
11957 Op0 = AbsOp1.getOperand(0);
11958 Op1 = AbsOp1.getOperand(1);
11959
11960 unsigned Opc0 = Op0.getOpcode();
11961 // Check if the operands of the sub are (zero|sign)-extended.
11962 if (Opc0 != Op1.getOpcode() ||
11963 (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND))
11964 return SDValue();
11965
11966 EVT VectorT1 = Op0.getOperand(0).getValueType();
11967 EVT VectorT2 = Op1.getOperand(0).getValueType();
11968 // Check if vectors are of same type and valid size.
11969 uint64_t Size = VectorT1.getFixedSizeInBits();
11970 if (VectorT1 != VectorT2 || (Size != 64 && Size != 128))
11971 return SDValue();
11972
11973 // Check if vector element types are valid.
11974 EVT VT1 = VectorT1.getVectorElementType();
11975 if (VT1 != MVT::i8 && VT1 != MVT::i16 && VT1 != MVT::i32)
11976 return SDValue();
11977
11978 Op0 = Op0.getOperand(0);
11979 Op1 = Op1.getOperand(0);
11980 unsigned ABDOpcode =
11981 (Opc0 == ISD::SIGN_EXTEND) ? AArch64ISD::SABD : AArch64ISD::UABD;
11982 SDValue ABD =
11983 DAG.getNode(ABDOpcode, SDLoc(N), Op0->getValueType(0), Op0, Op1);
11984 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), ABD);
11985 }
11986
performXorCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)11987 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
11988 TargetLowering::DAGCombinerInfo &DCI,
11989 const AArch64Subtarget *Subtarget) {
11990 if (DCI.isBeforeLegalizeOps())
11991 return SDValue();
11992
11993 return foldVectorXorShiftIntoCmp(N, DAG, Subtarget);
11994 }
11995
11996 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const11997 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11998 SelectionDAG &DAG,
11999 SmallVectorImpl<SDNode *> &Created) const {
12000 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
12001 if (isIntDivCheap(N->getValueType(0), Attr))
12002 return SDValue(N,0); // Lower SDIV as SDIV
12003
12004 // fold (sdiv X, pow2)
12005 EVT VT = N->getValueType(0);
12006 if ((VT != MVT::i32 && VT != MVT::i64) ||
12007 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
12008 return SDValue();
12009
12010 SDLoc DL(N);
12011 SDValue N0 = N->getOperand(0);
12012 unsigned Lg2 = Divisor.countTrailingZeros();
12013 SDValue Zero = DAG.getConstant(0, DL, VT);
12014 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
12015
12016 // Add (N0 < 0) ? Pow2 - 1 : 0;
12017 SDValue CCVal;
12018 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
12019 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
12020 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
12021
12022 Created.push_back(Cmp.getNode());
12023 Created.push_back(Add.getNode());
12024 Created.push_back(CSel.getNode());
12025
12026 // Divide by pow2.
12027 SDValue SRA =
12028 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
12029
12030 // If we're dividing by a positive value, we're done. Otherwise, we must
12031 // negate the result.
12032 if (Divisor.isNonNegative())
12033 return SRA;
12034
12035 Created.push_back(SRA.getNode());
12036 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
12037 }
12038
IsSVECntIntrinsic(SDValue S)12039 static bool IsSVECntIntrinsic(SDValue S) {
12040 switch(getIntrinsicID(S.getNode())) {
12041 default:
12042 break;
12043 case Intrinsic::aarch64_sve_cntb:
12044 case Intrinsic::aarch64_sve_cnth:
12045 case Intrinsic::aarch64_sve_cntw:
12046 case Intrinsic::aarch64_sve_cntd:
12047 return true;
12048 }
12049 return false;
12050 }
12051
12052 /// Calculates what the pre-extend type is, based on the extension
12053 /// operation node provided by \p Extend.
12054 ///
12055 /// In the case that \p Extend is a SIGN_EXTEND or a ZERO_EXTEND, the
12056 /// pre-extend type is pulled directly from the operand, while other extend
12057 /// operations need a bit more inspection to get this information.
12058 ///
12059 /// \param Extend The SDNode from the DAG that represents the extend operation
12060 /// \param DAG The SelectionDAG hosting the \p Extend node
12061 ///
12062 /// \returns The type representing the \p Extend source type, or \p MVT::Other
12063 /// if no valid type can be determined
calculatePreExtendType(SDValue Extend,SelectionDAG & DAG)12064 static EVT calculatePreExtendType(SDValue Extend, SelectionDAG &DAG) {
12065 switch (Extend.getOpcode()) {
12066 case ISD::SIGN_EXTEND:
12067 case ISD::ZERO_EXTEND:
12068 return Extend.getOperand(0).getValueType();
12069 case ISD::AssertSext:
12070 case ISD::AssertZext:
12071 case ISD::SIGN_EXTEND_INREG: {
12072 VTSDNode *TypeNode = dyn_cast<VTSDNode>(Extend.getOperand(1));
12073 if (!TypeNode)
12074 return MVT::Other;
12075 return TypeNode->getVT();
12076 }
12077 case ISD::AND: {
12078 ConstantSDNode *Constant =
12079 dyn_cast<ConstantSDNode>(Extend.getOperand(1).getNode());
12080 if (!Constant)
12081 return MVT::Other;
12082
12083 uint32_t Mask = Constant->getZExtValue();
12084
12085 if (Mask == UCHAR_MAX)
12086 return MVT::i8;
12087 else if (Mask == USHRT_MAX)
12088 return MVT::i16;
12089 else if (Mask == UINT_MAX)
12090 return MVT::i32;
12091
12092 return MVT::Other;
12093 }
12094 default:
12095 return MVT::Other;
12096 }
12097
12098 llvm_unreachable("Code path unhandled in calculatePreExtendType!");
12099 }
12100
12101 /// Combines a dup(sext/zext) node pattern into sext/zext(dup)
12102 /// making use of the vector SExt/ZExt rather than the scalar SExt/ZExt
performCommonVectorExtendCombine(SDValue VectorShuffle,SelectionDAG & DAG)12103 static SDValue performCommonVectorExtendCombine(SDValue VectorShuffle,
12104 SelectionDAG &DAG) {
12105
12106 ShuffleVectorSDNode *ShuffleNode =
12107 dyn_cast<ShuffleVectorSDNode>(VectorShuffle.getNode());
12108 if (!ShuffleNode)
12109 return SDValue();
12110
12111 // Ensuring the mask is zero before continuing
12112 if (!ShuffleNode->isSplat() || ShuffleNode->getSplatIndex() != 0)
12113 return SDValue();
12114
12115 SDValue InsertVectorElt = VectorShuffle.getOperand(0);
12116
12117 if (InsertVectorElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
12118 return SDValue();
12119
12120 SDValue InsertLane = InsertVectorElt.getOperand(2);
12121 ConstantSDNode *Constant = dyn_cast<ConstantSDNode>(InsertLane.getNode());
12122 // Ensures the insert is inserting into lane 0
12123 if (!Constant || Constant->getZExtValue() != 0)
12124 return SDValue();
12125
12126 SDValue Extend = InsertVectorElt.getOperand(1);
12127 unsigned ExtendOpcode = Extend.getOpcode();
12128
12129 bool IsSExt = ExtendOpcode == ISD::SIGN_EXTEND ||
12130 ExtendOpcode == ISD::SIGN_EXTEND_INREG ||
12131 ExtendOpcode == ISD::AssertSext;
12132 if (!IsSExt && ExtendOpcode != ISD::ZERO_EXTEND &&
12133 ExtendOpcode != ISD::AssertZext && ExtendOpcode != ISD::AND)
12134 return SDValue();
12135
12136 EVT TargetType = VectorShuffle.getValueType();
12137 EVT PreExtendType = calculatePreExtendType(Extend, DAG);
12138
12139 if ((TargetType != MVT::v8i16 && TargetType != MVT::v4i32 &&
12140 TargetType != MVT::v2i64) ||
12141 (PreExtendType == MVT::Other))
12142 return SDValue();
12143
12144 // Restrict valid pre-extend data type
12145 if (PreExtendType != MVT::i8 && PreExtendType != MVT::i16 &&
12146 PreExtendType != MVT::i32)
12147 return SDValue();
12148
12149 EVT PreExtendVT = TargetType.changeVectorElementType(PreExtendType);
12150
12151 if (PreExtendVT.getVectorElementCount() != TargetType.getVectorElementCount())
12152 return SDValue();
12153
12154 if (TargetType.getScalarSizeInBits() != PreExtendVT.getScalarSizeInBits() * 2)
12155 return SDValue();
12156
12157 SDLoc DL(VectorShuffle);
12158
12159 SDValue InsertVectorNode = DAG.getNode(
12160 InsertVectorElt.getOpcode(), DL, PreExtendVT, DAG.getUNDEF(PreExtendVT),
12161 DAG.getAnyExtOrTrunc(Extend.getOperand(0), DL, PreExtendType),
12162 DAG.getConstant(0, DL, MVT::i64));
12163
12164 std::vector<int> ShuffleMask(TargetType.getVectorElementCount().getValue());
12165
12166 SDValue VectorShuffleNode =
12167 DAG.getVectorShuffle(PreExtendVT, DL, InsertVectorNode,
12168 DAG.getUNDEF(PreExtendVT), ShuffleMask);
12169
12170 SDValue ExtendNode = DAG.getNode(IsSExt ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
12171 DL, TargetType, VectorShuffleNode);
12172
12173 return ExtendNode;
12174 }
12175
12176 /// Combines a mul(dup(sext/zext)) node pattern into mul(sext/zext(dup))
12177 /// making use of the vector SExt/ZExt rather than the scalar SExt/ZExt
performMulVectorExtendCombine(SDNode * Mul,SelectionDAG & DAG)12178 static SDValue performMulVectorExtendCombine(SDNode *Mul, SelectionDAG &DAG) {
12179 // If the value type isn't a vector, none of the operands are going to be dups
12180 if (!Mul->getValueType(0).isVector())
12181 return SDValue();
12182
12183 SDValue Op0 = performCommonVectorExtendCombine(Mul->getOperand(0), DAG);
12184 SDValue Op1 = performCommonVectorExtendCombine(Mul->getOperand(1), DAG);
12185
12186 // Neither operands have been changed, don't make any further changes
12187 if (!Op0 && !Op1)
12188 return SDValue();
12189
12190 SDLoc DL(Mul);
12191 return DAG.getNode(Mul->getOpcode(), DL, Mul->getValueType(0),
12192 Op0 ? Op0 : Mul->getOperand(0),
12193 Op1 ? Op1 : Mul->getOperand(1));
12194 }
12195
performMulCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)12196 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
12197 TargetLowering::DAGCombinerInfo &DCI,
12198 const AArch64Subtarget *Subtarget) {
12199
12200 if (SDValue Ext = performMulVectorExtendCombine(N, DAG))
12201 return Ext;
12202
12203 if (DCI.isBeforeLegalizeOps())
12204 return SDValue();
12205
12206 // The below optimizations require a constant RHS.
12207 if (!isa<ConstantSDNode>(N->getOperand(1)))
12208 return SDValue();
12209
12210 SDValue N0 = N->getOperand(0);
12211 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
12212 const APInt &ConstValue = C->getAPIntValue();
12213
12214 // Allow the scaling to be folded into the `cnt` instruction by preventing
12215 // the scaling to be obscured here. This makes it easier to pattern match.
12216 if (IsSVECntIntrinsic(N0) ||
12217 (N0->getOpcode() == ISD::TRUNCATE &&
12218 (IsSVECntIntrinsic(N0->getOperand(0)))))
12219 if (ConstValue.sge(1) && ConstValue.sle(16))
12220 return SDValue();
12221
12222 // Multiplication of a power of two plus/minus one can be done more
12223 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
12224 // future CPUs have a cheaper MADD instruction, this may need to be
12225 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
12226 // 64-bit is 5 cycles, so this is always a win.
12227 // More aggressively, some multiplications N0 * C can be lowered to
12228 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
12229 // e.g. 6=3*2=(2+1)*2.
12230 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
12231 // which equals to (1+2)*16-(1+2).
12232 // TrailingZeroes is used to test if the mul can be lowered to
12233 // shift+add+shift.
12234 unsigned TrailingZeroes = ConstValue.countTrailingZeros();
12235 if (TrailingZeroes) {
12236 // Conservatively do not lower to shift+add+shift if the mul might be
12237 // folded into smul or umul.
12238 if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
12239 isZeroExtended(N0.getNode(), DAG)))
12240 return SDValue();
12241 // Conservatively do not lower to shift+add+shift if the mul might be
12242 // folded into madd or msub.
12243 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
12244 N->use_begin()->getOpcode() == ISD::SUB))
12245 return SDValue();
12246 }
12247 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
12248 // and shift+add+shift.
12249 APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
12250
12251 unsigned ShiftAmt, AddSubOpc;
12252 // Is the shifted value the LHS operand of the add/sub?
12253 bool ShiftValUseIsN0 = true;
12254 // Do we need to negate the result?
12255 bool NegateResult = false;
12256
12257 if (ConstValue.isNonNegative()) {
12258 // (mul x, 2^N + 1) => (add (shl x, N), x)
12259 // (mul x, 2^N - 1) => (sub (shl x, N), x)
12260 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
12261 APInt SCVMinus1 = ShiftedConstValue - 1;
12262 APInt CVPlus1 = ConstValue + 1;
12263 if (SCVMinus1.isPowerOf2()) {
12264 ShiftAmt = SCVMinus1.logBase2();
12265 AddSubOpc = ISD::ADD;
12266 } else if (CVPlus1.isPowerOf2()) {
12267 ShiftAmt = CVPlus1.logBase2();
12268 AddSubOpc = ISD::SUB;
12269 } else
12270 return SDValue();
12271 } else {
12272 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
12273 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
12274 APInt CVNegPlus1 = -ConstValue + 1;
12275 APInt CVNegMinus1 = -ConstValue - 1;
12276 if (CVNegPlus1.isPowerOf2()) {
12277 ShiftAmt = CVNegPlus1.logBase2();
12278 AddSubOpc = ISD::SUB;
12279 ShiftValUseIsN0 = false;
12280 } else if (CVNegMinus1.isPowerOf2()) {
12281 ShiftAmt = CVNegMinus1.logBase2();
12282 AddSubOpc = ISD::ADD;
12283 NegateResult = true;
12284 } else
12285 return SDValue();
12286 }
12287
12288 SDLoc DL(N);
12289 EVT VT = N->getValueType(0);
12290 SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
12291 DAG.getConstant(ShiftAmt, DL, MVT::i64));
12292
12293 SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
12294 SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
12295 SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
12296 assert(!(NegateResult && TrailingZeroes) &&
12297 "NegateResult and TrailingZeroes cannot both be true for now.");
12298 // Negate the result.
12299 if (NegateResult)
12300 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
12301 // Shift the result.
12302 if (TrailingZeroes)
12303 return DAG.getNode(ISD::SHL, DL, VT, Res,
12304 DAG.getConstant(TrailingZeroes, DL, MVT::i64));
12305 return Res;
12306 }
12307
performVectorCompareAndMaskUnaryOpCombine(SDNode * N,SelectionDAG & DAG)12308 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
12309 SelectionDAG &DAG) {
12310 // Take advantage of vector comparisons producing 0 or -1 in each lane to
12311 // optimize away operation when it's from a constant.
12312 //
12313 // The general transformation is:
12314 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
12315 // AND(VECTOR_CMP(x,y), constant2)
12316 // constant2 = UNARYOP(constant)
12317
12318 // Early exit if this isn't a vector operation, the operand of the
12319 // unary operation isn't a bitwise AND, or if the sizes of the operations
12320 // aren't the same.
12321 EVT VT = N->getValueType(0);
12322 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
12323 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
12324 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
12325 return SDValue();
12326
12327 // Now check that the other operand of the AND is a constant. We could
12328 // make the transformation for non-constant splats as well, but it's unclear
12329 // that would be a benefit as it would not eliminate any operations, just
12330 // perform one more step in scalar code before moving to the vector unit.
12331 if (BuildVectorSDNode *BV =
12332 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
12333 // Bail out if the vector isn't a constant.
12334 if (!BV->isConstant())
12335 return SDValue();
12336
12337 // Everything checks out. Build up the new and improved node.
12338 SDLoc DL(N);
12339 EVT IntVT = BV->getValueType(0);
12340 // Create a new constant of the appropriate type for the transformed
12341 // DAG.
12342 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
12343 // The AND node needs bitcasts to/from an integer vector type around it.
12344 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
12345 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
12346 N->getOperand(0)->getOperand(0), MaskConst);
12347 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
12348 return Res;
12349 }
12350
12351 return SDValue();
12352 }
12353
performIntToFpCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)12354 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
12355 const AArch64Subtarget *Subtarget) {
12356 // First try to optimize away the conversion when it's conditionally from
12357 // a constant. Vectors only.
12358 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
12359 return Res;
12360
12361 EVT VT = N->getValueType(0);
12362 if (VT != MVT::f32 && VT != MVT::f64)
12363 return SDValue();
12364
12365 // Only optimize when the source and destination types have the same width.
12366 if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
12367 return SDValue();
12368
12369 // If the result of an integer load is only used by an integer-to-float
12370 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
12371 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
12372 SDValue N0 = N->getOperand(0);
12373 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
12374 // Do not change the width of a volatile load.
12375 !cast<LoadSDNode>(N0)->isVolatile()) {
12376 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
12377 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
12378 LN0->getPointerInfo(), LN0->getAlignment(),
12379 LN0->getMemOperand()->getFlags());
12380
12381 // Make sure successors of the original load stay after it by updating them
12382 // to use the new Chain.
12383 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
12384
12385 unsigned Opcode =
12386 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
12387 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
12388 }
12389
12390 return SDValue();
12391 }
12392
12393 /// Fold a floating-point multiply by power of two into floating-point to
12394 /// fixed-point conversion.
performFpToIntCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)12395 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
12396 TargetLowering::DAGCombinerInfo &DCI,
12397 const AArch64Subtarget *Subtarget) {
12398 if (!Subtarget->hasNEON())
12399 return SDValue();
12400
12401 if (!N->getValueType(0).isSimple())
12402 return SDValue();
12403
12404 SDValue Op = N->getOperand(0);
12405 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
12406 Op.getOpcode() != ISD::FMUL)
12407 return SDValue();
12408
12409 SDValue ConstVec = Op->getOperand(1);
12410 if (!isa<BuildVectorSDNode>(ConstVec))
12411 return SDValue();
12412
12413 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
12414 uint32_t FloatBits = FloatTy.getSizeInBits();
12415 if (FloatBits != 32 && FloatBits != 64)
12416 return SDValue();
12417
12418 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
12419 uint32_t IntBits = IntTy.getSizeInBits();
12420 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
12421 return SDValue();
12422
12423 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
12424 if (IntBits > FloatBits)
12425 return SDValue();
12426
12427 BitVector UndefElements;
12428 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12429 int32_t Bits = IntBits == 64 ? 64 : 32;
12430 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
12431 if (C == -1 || C == 0 || C > Bits)
12432 return SDValue();
12433
12434 MVT ResTy;
12435 unsigned NumLanes = Op.getValueType().getVectorNumElements();
12436 switch (NumLanes) {
12437 default:
12438 return SDValue();
12439 case 2:
12440 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
12441 break;
12442 case 4:
12443 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
12444 break;
12445 }
12446
12447 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
12448 return SDValue();
12449
12450 assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
12451 "Illegal vector type after legalization");
12452
12453 SDLoc DL(N);
12454 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
12455 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
12456 : Intrinsic::aarch64_neon_vcvtfp2fxu;
12457 SDValue FixConv =
12458 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
12459 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
12460 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
12461 // We can handle smaller integers by generating an extra trunc.
12462 if (IntBits < FloatBits)
12463 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
12464
12465 return FixConv;
12466 }
12467
12468 /// Fold a floating-point divide by power of two into fixed-point to
12469 /// floating-point conversion.
performFDivCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)12470 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
12471 TargetLowering::DAGCombinerInfo &DCI,
12472 const AArch64Subtarget *Subtarget) {
12473 if (!Subtarget->hasNEON())
12474 return SDValue();
12475
12476 SDValue Op = N->getOperand(0);
12477 unsigned Opc = Op->getOpcode();
12478 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
12479 !Op.getOperand(0).getValueType().isSimple() ||
12480 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
12481 return SDValue();
12482
12483 SDValue ConstVec = N->getOperand(1);
12484 if (!isa<BuildVectorSDNode>(ConstVec))
12485 return SDValue();
12486
12487 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
12488 int32_t IntBits = IntTy.getSizeInBits();
12489 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
12490 return SDValue();
12491
12492 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
12493 int32_t FloatBits = FloatTy.getSizeInBits();
12494 if (FloatBits != 32 && FloatBits != 64)
12495 return SDValue();
12496
12497 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
12498 if (IntBits > FloatBits)
12499 return SDValue();
12500
12501 BitVector UndefElements;
12502 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12503 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
12504 if (C == -1 || C == 0 || C > FloatBits)
12505 return SDValue();
12506
12507 MVT ResTy;
12508 unsigned NumLanes = Op.getValueType().getVectorNumElements();
12509 switch (NumLanes) {
12510 default:
12511 return SDValue();
12512 case 2:
12513 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
12514 break;
12515 case 4:
12516 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
12517 break;
12518 }
12519
12520 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
12521 return SDValue();
12522
12523 SDLoc DL(N);
12524 SDValue ConvInput = Op.getOperand(0);
12525 bool IsSigned = Opc == ISD::SINT_TO_FP;
12526 if (IntBits < FloatBits)
12527 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
12528 ResTy, ConvInput);
12529
12530 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
12531 : Intrinsic::aarch64_neon_vcvtfxu2fp;
12532 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
12533 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
12534 DAG.getConstant(C, DL, MVT::i32));
12535 }
12536
12537 /// An EXTR instruction is made up of two shifts, ORed together. This helper
12538 /// searches for and classifies those shifts.
findEXTRHalf(SDValue N,SDValue & Src,uint32_t & ShiftAmount,bool & FromHi)12539 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
12540 bool &FromHi) {
12541 if (N.getOpcode() == ISD::SHL)
12542 FromHi = false;
12543 else if (N.getOpcode() == ISD::SRL)
12544 FromHi = true;
12545 else
12546 return false;
12547
12548 if (!isa<ConstantSDNode>(N.getOperand(1)))
12549 return false;
12550
12551 ShiftAmount = N->getConstantOperandVal(1);
12552 Src = N->getOperand(0);
12553 return true;
12554 }
12555
12556 /// EXTR instruction extracts a contiguous chunk of bits from two existing
12557 /// registers viewed as a high/low pair. This function looks for the pattern:
12558 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
12559 /// with an EXTR. Can't quite be done in TableGen because the two immediates
12560 /// aren't independent.
tryCombineToEXTR(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)12561 static SDValue tryCombineToEXTR(SDNode *N,
12562 TargetLowering::DAGCombinerInfo &DCI) {
12563 SelectionDAG &DAG = DCI.DAG;
12564 SDLoc DL(N);
12565 EVT VT = N->getValueType(0);
12566
12567 assert(N->getOpcode() == ISD::OR && "Unexpected root");
12568
12569 if (VT != MVT::i32 && VT != MVT::i64)
12570 return SDValue();
12571
12572 SDValue LHS;
12573 uint32_t ShiftLHS = 0;
12574 bool LHSFromHi = false;
12575 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
12576 return SDValue();
12577
12578 SDValue RHS;
12579 uint32_t ShiftRHS = 0;
12580 bool RHSFromHi = false;
12581 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
12582 return SDValue();
12583
12584 // If they're both trying to come from the high part of the register, they're
12585 // not really an EXTR.
12586 if (LHSFromHi == RHSFromHi)
12587 return SDValue();
12588
12589 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
12590 return SDValue();
12591
12592 if (LHSFromHi) {
12593 std::swap(LHS, RHS);
12594 std::swap(ShiftLHS, ShiftRHS);
12595 }
12596
12597 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
12598 DAG.getConstant(ShiftRHS, DL, MVT::i64));
12599 }
12600
tryCombineToBSL(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)12601 static SDValue tryCombineToBSL(SDNode *N,
12602 TargetLowering::DAGCombinerInfo &DCI) {
12603 EVT VT = N->getValueType(0);
12604 SelectionDAG &DAG = DCI.DAG;
12605 SDLoc DL(N);
12606
12607 if (!VT.isVector())
12608 return SDValue();
12609
12610 // The combining code currently only works for NEON vectors. In particular,
12611 // it does not work for SVE when dealing with vectors wider than 128 bits.
12612 if (!VT.is64BitVector() && !VT.is128BitVector())
12613 return SDValue();
12614
12615 SDValue N0 = N->getOperand(0);
12616 if (N0.getOpcode() != ISD::AND)
12617 return SDValue();
12618
12619 SDValue N1 = N->getOperand(1);
12620 if (N1.getOpcode() != ISD::AND)
12621 return SDValue();
12622
12623 // InstCombine does (not (neg a)) => (add a -1).
12624 // Try: (or (and (neg a) b) (and (add a -1) c)) => (bsl (neg a) b c)
12625 // Loop over all combinations of AND operands.
12626 for (int i = 1; i >= 0; --i) {
12627 for (int j = 1; j >= 0; --j) {
12628 SDValue O0 = N0->getOperand(i);
12629 SDValue O1 = N1->getOperand(j);
12630 SDValue Sub, Add, SubSibling, AddSibling;
12631
12632 // Find a SUB and an ADD operand, one from each AND.
12633 if (O0.getOpcode() == ISD::SUB && O1.getOpcode() == ISD::ADD) {
12634 Sub = O0;
12635 Add = O1;
12636 SubSibling = N0->getOperand(1 - i);
12637 AddSibling = N1->getOperand(1 - j);
12638 } else if (O0.getOpcode() == ISD::ADD && O1.getOpcode() == ISD::SUB) {
12639 Add = O0;
12640 Sub = O1;
12641 AddSibling = N0->getOperand(1 - i);
12642 SubSibling = N1->getOperand(1 - j);
12643 } else
12644 continue;
12645
12646 if (!ISD::isBuildVectorAllZeros(Sub.getOperand(0).getNode()))
12647 continue;
12648
12649 // Constant ones is always righthand operand of the Add.
12650 if (!ISD::isBuildVectorAllOnes(Add.getOperand(1).getNode()))
12651 continue;
12652
12653 if (Sub.getOperand(1) != Add.getOperand(0))
12654 continue;
12655
12656 return DAG.getNode(AArch64ISD::BSP, DL, VT, Sub, SubSibling, AddSibling);
12657 }
12658 }
12659
12660 // (or (and a b) (and (not a) c)) => (bsl a b c)
12661 // We only have to look for constant vectors here since the general, variable
12662 // case can be handled in TableGen.
12663 unsigned Bits = VT.getScalarSizeInBits();
12664 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
12665 for (int i = 1; i >= 0; --i)
12666 for (int j = 1; j >= 0; --j) {
12667 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
12668 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
12669 if (!BVN0 || !BVN1)
12670 continue;
12671
12672 bool FoundMatch = true;
12673 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
12674 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
12675 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
12676 if (!CN0 || !CN1 ||
12677 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
12678 FoundMatch = false;
12679 break;
12680 }
12681 }
12682
12683 if (FoundMatch)
12684 return DAG.getNode(AArch64ISD::BSP, DL, VT, SDValue(BVN0, 0),
12685 N0->getOperand(1 - i), N1->getOperand(1 - j));
12686 }
12687
12688 return SDValue();
12689 }
12690
performORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)12691 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
12692 const AArch64Subtarget *Subtarget) {
12693 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
12694 SelectionDAG &DAG = DCI.DAG;
12695 EVT VT = N->getValueType(0);
12696
12697 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12698 return SDValue();
12699
12700 if (SDValue Res = tryCombineToEXTR(N, DCI))
12701 return Res;
12702
12703 if (SDValue Res = tryCombineToBSL(N, DCI))
12704 return Res;
12705
12706 return SDValue();
12707 }
12708
isConstantSplatVectorMaskForType(SDNode * N,EVT MemVT)12709 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) {
12710 if (!MemVT.getVectorElementType().isSimple())
12711 return false;
12712
12713 uint64_t MaskForTy = 0ull;
12714 switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) {
12715 case MVT::i8:
12716 MaskForTy = 0xffull;
12717 break;
12718 case MVT::i16:
12719 MaskForTy = 0xffffull;
12720 break;
12721 case MVT::i32:
12722 MaskForTy = 0xffffffffull;
12723 break;
12724 default:
12725 return false;
12726 break;
12727 }
12728
12729 if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR)
12730 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0)))
12731 return Op0->getAPIntValue().getLimitedValue() == MaskForTy;
12732
12733 return false;
12734 }
12735
performSVEAndCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)12736 static SDValue performSVEAndCombine(SDNode *N,
12737 TargetLowering::DAGCombinerInfo &DCI) {
12738 if (DCI.isBeforeLegalizeOps())
12739 return SDValue();
12740
12741 SelectionDAG &DAG = DCI.DAG;
12742 SDValue Src = N->getOperand(0);
12743 unsigned Opc = Src->getOpcode();
12744
12745 // Zero/any extend of an unsigned unpack
12746 if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) {
12747 SDValue UnpkOp = Src->getOperand(0);
12748 SDValue Dup = N->getOperand(1);
12749
12750 if (Dup.getOpcode() != AArch64ISD::DUP)
12751 return SDValue();
12752
12753 SDLoc DL(N);
12754 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Dup->getOperand(0));
12755 uint64_t ExtVal = C->getZExtValue();
12756
12757 // If the mask is fully covered by the unpack, we don't need to push
12758 // a new AND onto the operand
12759 EVT EltTy = UnpkOp->getValueType(0).getVectorElementType();
12760 if ((ExtVal == 0xFF && EltTy == MVT::i8) ||
12761 (ExtVal == 0xFFFF && EltTy == MVT::i16) ||
12762 (ExtVal == 0xFFFFFFFF && EltTy == MVT::i32))
12763 return Src;
12764
12765 // Truncate to prevent a DUP with an over wide constant
12766 APInt Mask = C->getAPIntValue().trunc(EltTy.getSizeInBits());
12767
12768 // Otherwise, make sure we propagate the AND to the operand
12769 // of the unpack
12770 Dup = DAG.getNode(AArch64ISD::DUP, DL,
12771 UnpkOp->getValueType(0),
12772 DAG.getConstant(Mask.zextOrTrunc(32), DL, MVT::i32));
12773
12774 SDValue And = DAG.getNode(ISD::AND, DL,
12775 UnpkOp->getValueType(0), UnpkOp, Dup);
12776
12777 return DAG.getNode(Opc, DL, N->getValueType(0), And);
12778 }
12779
12780 if (!EnableCombineMGatherIntrinsics)
12781 return SDValue();
12782
12783 SDValue Mask = N->getOperand(1);
12784
12785 if (!Src.hasOneUse())
12786 return SDValue();
12787
12788 EVT MemVT;
12789
12790 // SVE load instructions perform an implicit zero-extend, which makes them
12791 // perfect candidates for combining.
12792 switch (Opc) {
12793 case AArch64ISD::LD1_MERGE_ZERO:
12794 case AArch64ISD::LDNF1_MERGE_ZERO:
12795 case AArch64ISD::LDFF1_MERGE_ZERO:
12796 MemVT = cast<VTSDNode>(Src->getOperand(3))->getVT();
12797 break;
12798 case AArch64ISD::GLD1_MERGE_ZERO:
12799 case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
12800 case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
12801 case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
12802 case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
12803 case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
12804 case AArch64ISD::GLD1_IMM_MERGE_ZERO:
12805 case AArch64ISD::GLDFF1_MERGE_ZERO:
12806 case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO:
12807 case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO:
12808 case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO:
12809 case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO:
12810 case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO:
12811 case AArch64ISD::GLDFF1_IMM_MERGE_ZERO:
12812 case AArch64ISD::GLDNT1_MERGE_ZERO:
12813 MemVT = cast<VTSDNode>(Src->getOperand(4))->getVT();
12814 break;
12815 default:
12816 return SDValue();
12817 }
12818
12819 if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT))
12820 return Src;
12821
12822 return SDValue();
12823 }
12824
performANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)12825 static SDValue performANDCombine(SDNode *N,
12826 TargetLowering::DAGCombinerInfo &DCI) {
12827 SelectionDAG &DAG = DCI.DAG;
12828 SDValue LHS = N->getOperand(0);
12829 EVT VT = N->getValueType(0);
12830 if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT))
12831 return SDValue();
12832
12833 if (VT.isScalableVector())
12834 return performSVEAndCombine(N, DCI);
12835
12836 // The combining code below works only for NEON vectors. In particular, it
12837 // does not work for SVE when dealing with vectors wider than 128 bits.
12838 if (!(VT.is64BitVector() || VT.is128BitVector()))
12839 return SDValue();
12840
12841 BuildVectorSDNode *BVN =
12842 dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode());
12843 if (!BVN)
12844 return SDValue();
12845
12846 // AND does not accept an immediate, so check if we can use a BIC immediate
12847 // instruction instead. We do this here instead of using a (and x, (mvni imm))
12848 // pattern in isel, because some immediates may be lowered to the preferred
12849 // (and x, (movi imm)) form, even though an mvni representation also exists.
12850 APInt DefBits(VT.getSizeInBits(), 0);
12851 APInt UndefBits(VT.getSizeInBits(), 0);
12852 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
12853 SDValue NewOp;
12854
12855 DefBits = ~DefBits;
12856 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
12857 DefBits, &LHS)) ||
12858 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
12859 DefBits, &LHS)))
12860 return NewOp;
12861
12862 UndefBits = ~UndefBits;
12863 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
12864 UndefBits, &LHS)) ||
12865 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
12866 UndefBits, &LHS)))
12867 return NewOp;
12868 }
12869
12870 return SDValue();
12871 }
12872
performSRLCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)12873 static SDValue performSRLCombine(SDNode *N,
12874 TargetLowering::DAGCombinerInfo &DCI) {
12875 SelectionDAG &DAG = DCI.DAG;
12876 EVT VT = N->getValueType(0);
12877 if (VT != MVT::i32 && VT != MVT::i64)
12878 return SDValue();
12879
12880 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
12881 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
12882 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
12883 SDValue N0 = N->getOperand(0);
12884 if (N0.getOpcode() == ISD::BSWAP) {
12885 SDLoc DL(N);
12886 SDValue N1 = N->getOperand(1);
12887 SDValue N00 = N0.getOperand(0);
12888 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
12889 uint64_t ShiftAmt = C->getZExtValue();
12890 if (VT == MVT::i32 && ShiftAmt == 16 &&
12891 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
12892 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
12893 if (VT == MVT::i64 && ShiftAmt == 32 &&
12894 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
12895 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
12896 }
12897 }
12898 return SDValue();
12899 }
12900
12901 // Attempt to form urhadd(OpA, OpB) from
12902 // truncate(vlshr(sub(zext(OpB), xor(zext(OpA), Ones(ElemSizeInBits))), 1))
12903 // or uhadd(OpA, OpB) from truncate(vlshr(add(zext(OpA), zext(OpB)), 1)).
12904 // The original form of the first expression is
12905 // truncate(srl(add(zext(OpB), add(zext(OpA), 1)), 1)) and the
12906 // (OpA + OpB + 1) subexpression will have been changed to (OpB - (~OpA)).
12907 // Before this function is called the srl will have been lowered to
12908 // AArch64ISD::VLSHR.
12909 // This pass can also recognize signed variants of the patterns that use sign
12910 // extension instead of zero extension and form a srhadd(OpA, OpB) or a
12911 // shadd(OpA, OpB) from them.
12912 static SDValue
performVectorTruncateCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)12913 performVectorTruncateCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
12914 SelectionDAG &DAG) {
12915 EVT VT = N->getValueType(0);
12916
12917 // Since we are looking for a right shift by a constant value of 1 and we are
12918 // operating on types at least 16 bits in length (sign/zero extended OpA and
12919 // OpB, which are at least 8 bits), it follows that the truncate will always
12920 // discard the shifted-in bit and therefore the right shift will be logical
12921 // regardless of the signedness of OpA and OpB.
12922 SDValue Shift = N->getOperand(0);
12923 if (Shift.getOpcode() != AArch64ISD::VLSHR)
12924 return SDValue();
12925
12926 // Is the right shift using an immediate value of 1?
12927 uint64_t ShiftAmount = Shift.getConstantOperandVal(1);
12928 if (ShiftAmount != 1)
12929 return SDValue();
12930
12931 SDValue ExtendOpA, ExtendOpB;
12932 SDValue ShiftOp0 = Shift.getOperand(0);
12933 unsigned ShiftOp0Opc = ShiftOp0.getOpcode();
12934 if (ShiftOp0Opc == ISD::SUB) {
12935
12936 SDValue Xor = ShiftOp0.getOperand(1);
12937 if (Xor.getOpcode() != ISD::XOR)
12938 return SDValue();
12939
12940 // Is the XOR using a constant amount of all ones in the right hand side?
12941 uint64_t C;
12942 if (!isAllConstantBuildVector(Xor.getOperand(1), C))
12943 return SDValue();
12944
12945 unsigned ElemSizeInBits = VT.getScalarSizeInBits();
12946 APInt CAsAPInt(ElemSizeInBits, C);
12947 if (CAsAPInt != APInt::getAllOnesValue(ElemSizeInBits))
12948 return SDValue();
12949
12950 ExtendOpA = Xor.getOperand(0);
12951 ExtendOpB = ShiftOp0.getOperand(0);
12952 } else if (ShiftOp0Opc == ISD::ADD) {
12953 ExtendOpA = ShiftOp0.getOperand(0);
12954 ExtendOpB = ShiftOp0.getOperand(1);
12955 } else
12956 return SDValue();
12957
12958 unsigned ExtendOpAOpc = ExtendOpA.getOpcode();
12959 unsigned ExtendOpBOpc = ExtendOpB.getOpcode();
12960 if (!(ExtendOpAOpc == ExtendOpBOpc &&
12961 (ExtendOpAOpc == ISD::ZERO_EXTEND || ExtendOpAOpc == ISD::SIGN_EXTEND)))
12962 return SDValue();
12963
12964 // Is the result of the right shift being truncated to the same value type as
12965 // the original operands, OpA and OpB?
12966 SDValue OpA = ExtendOpA.getOperand(0);
12967 SDValue OpB = ExtendOpB.getOperand(0);
12968 EVT OpAVT = OpA.getValueType();
12969 assert(ExtendOpA.getValueType() == ExtendOpB.getValueType());
12970 if (!(VT == OpAVT && OpAVT == OpB.getValueType()))
12971 return SDValue();
12972
12973 SDLoc DL(N);
12974 bool IsSignExtend = ExtendOpAOpc == ISD::SIGN_EXTEND;
12975 bool IsRHADD = ShiftOp0Opc == ISD::SUB;
12976 unsigned HADDOpc = IsSignExtend
12977 ? (IsRHADD ? AArch64ISD::SRHADD : AArch64ISD::SHADD)
12978 : (IsRHADD ? AArch64ISD::URHADD : AArch64ISD::UHADD);
12979 SDValue ResultHADD = DAG.getNode(HADDOpc, DL, VT, OpA, OpB);
12980
12981 return ResultHADD;
12982 }
12983
hasPairwiseAdd(unsigned Opcode,EVT VT,bool FullFP16)12984 static bool hasPairwiseAdd(unsigned Opcode, EVT VT, bool FullFP16) {
12985 switch (Opcode) {
12986 case ISD::FADD:
12987 return (FullFP16 && VT == MVT::f16) || VT == MVT::f32 || VT == MVT::f64;
12988 case ISD::ADD:
12989 return VT == MVT::i64;
12990 default:
12991 return false;
12992 }
12993 }
12994
performExtractVectorEltCombine(SDNode * N,SelectionDAG & DAG)12995 static SDValue performExtractVectorEltCombine(SDNode *N, SelectionDAG &DAG) {
12996 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
12997 ConstantSDNode *ConstantN1 = dyn_cast<ConstantSDNode>(N1);
12998
12999 EVT VT = N->getValueType(0);
13000 const bool FullFP16 =
13001 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
13002
13003 // Rewrite for pairwise fadd pattern
13004 // (f32 (extract_vector_elt
13005 // (fadd (vXf32 Other)
13006 // (vector_shuffle (vXf32 Other) undef <1,X,...> )) 0))
13007 // ->
13008 // (f32 (fadd (extract_vector_elt (vXf32 Other) 0)
13009 // (extract_vector_elt (vXf32 Other) 1))
13010 if (ConstantN1 && ConstantN1->getZExtValue() == 0 &&
13011 hasPairwiseAdd(N0->getOpcode(), VT, FullFP16)) {
13012 SDLoc DL(N0);
13013 SDValue N00 = N0->getOperand(0);
13014 SDValue N01 = N0->getOperand(1);
13015
13016 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(N01);
13017 SDValue Other = N00;
13018
13019 // And handle the commutative case.
13020 if (!Shuffle) {
13021 Shuffle = dyn_cast<ShuffleVectorSDNode>(N00);
13022 Other = N01;
13023 }
13024
13025 if (Shuffle && Shuffle->getMaskElt(0) == 1 &&
13026 Other == Shuffle->getOperand(0)) {
13027 return DAG.getNode(N0->getOpcode(), DL, VT,
13028 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other,
13029 DAG.getConstant(0, DL, MVT::i64)),
13030 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other,
13031 DAG.getConstant(1, DL, MVT::i64)));
13032 }
13033 }
13034
13035 return SDValue();
13036 }
13037
performConcatVectorsCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)13038 static SDValue performConcatVectorsCombine(SDNode *N,
13039 TargetLowering::DAGCombinerInfo &DCI,
13040 SelectionDAG &DAG) {
13041 SDLoc dl(N);
13042 EVT VT = N->getValueType(0);
13043 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
13044 unsigned N0Opc = N0->getOpcode(), N1Opc = N1->getOpcode();
13045
13046 // Optimize concat_vectors of truncated vectors, where the intermediate
13047 // type is illegal, to avoid said illegality, e.g.,
13048 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
13049 // (v2i16 (truncate (v2i64)))))
13050 // ->
13051 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
13052 // (v4i32 (bitcast (v2i64))),
13053 // <0, 2, 4, 6>)))
13054 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
13055 // on both input and result type, so we might generate worse code.
13056 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
13057 if (N->getNumOperands() == 2 && N0Opc == ISD::TRUNCATE &&
13058 N1Opc == ISD::TRUNCATE) {
13059 SDValue N00 = N0->getOperand(0);
13060 SDValue N10 = N1->getOperand(0);
13061 EVT N00VT = N00.getValueType();
13062
13063 if (N00VT == N10.getValueType() &&
13064 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
13065 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
13066 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
13067 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
13068 for (size_t i = 0; i < Mask.size(); ++i)
13069 Mask[i] = i * 2;
13070 return DAG.getNode(ISD::TRUNCATE, dl, VT,
13071 DAG.getVectorShuffle(
13072 MidVT, dl,
13073 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
13074 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
13075 }
13076 }
13077
13078 // Wait 'til after everything is legalized to try this. That way we have
13079 // legal vector types and such.
13080 if (DCI.isBeforeLegalizeOps())
13081 return SDValue();
13082
13083 // Optimise concat_vectors of two [us]rhadds or [us]hadds that use extracted
13084 // subvectors from the same original vectors. Combine these into a single
13085 // [us]rhadd or [us]hadd that operates on the two original vectors. Example:
13086 // (v16i8 (concat_vectors (v8i8 (urhadd (extract_subvector (v16i8 OpA, <0>),
13087 // extract_subvector (v16i8 OpB,
13088 // <0>))),
13089 // (v8i8 (urhadd (extract_subvector (v16i8 OpA, <8>),
13090 // extract_subvector (v16i8 OpB,
13091 // <8>)))))
13092 // ->
13093 // (v16i8(urhadd(v16i8 OpA, v16i8 OpB)))
13094 if (N->getNumOperands() == 2 && N0Opc == N1Opc &&
13095 (N0Opc == AArch64ISD::URHADD || N0Opc == AArch64ISD::SRHADD ||
13096 N0Opc == AArch64ISD::UHADD || N0Opc == AArch64ISD::SHADD)) {
13097 SDValue N00 = N0->getOperand(0);
13098 SDValue N01 = N0->getOperand(1);
13099 SDValue N10 = N1->getOperand(0);
13100 SDValue N11 = N1->getOperand(1);
13101
13102 EVT N00VT = N00.getValueType();
13103 EVT N10VT = N10.getValueType();
13104
13105 if (N00->getOpcode() == ISD::EXTRACT_SUBVECTOR &&
13106 N01->getOpcode() == ISD::EXTRACT_SUBVECTOR &&
13107 N10->getOpcode() == ISD::EXTRACT_SUBVECTOR &&
13108 N11->getOpcode() == ISD::EXTRACT_SUBVECTOR && N00VT == N10VT) {
13109 SDValue N00Source = N00->getOperand(0);
13110 SDValue N01Source = N01->getOperand(0);
13111 SDValue N10Source = N10->getOperand(0);
13112 SDValue N11Source = N11->getOperand(0);
13113
13114 if (N00Source == N10Source && N01Source == N11Source &&
13115 N00Source.getValueType() == VT && N01Source.getValueType() == VT) {
13116 assert(N0.getValueType() == N1.getValueType());
13117
13118 uint64_t N00Index = N00.getConstantOperandVal(1);
13119 uint64_t N01Index = N01.getConstantOperandVal(1);
13120 uint64_t N10Index = N10.getConstantOperandVal(1);
13121 uint64_t N11Index = N11.getConstantOperandVal(1);
13122
13123 if (N00Index == N01Index && N10Index == N11Index && N00Index == 0 &&
13124 N10Index == N00VT.getVectorNumElements())
13125 return DAG.getNode(N0Opc, dl, VT, N00Source, N01Source);
13126 }
13127 }
13128 }
13129
13130 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
13131 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
13132 // canonicalise to that.
13133 if (N0 == N1 && VT.getVectorNumElements() == 2) {
13134 assert(VT.getScalarSizeInBits() == 64);
13135 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
13136 DAG.getConstant(0, dl, MVT::i64));
13137 }
13138
13139 // Canonicalise concat_vectors so that the right-hand vector has as few
13140 // bit-casts as possible before its real operation. The primary matching
13141 // destination for these operations will be the narrowing "2" instructions,
13142 // which depend on the operation being performed on this right-hand vector.
13143 // For example,
13144 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
13145 // becomes
13146 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
13147
13148 if (N1Opc != ISD::BITCAST)
13149 return SDValue();
13150 SDValue RHS = N1->getOperand(0);
13151 MVT RHSTy = RHS.getValueType().getSimpleVT();
13152 // If the RHS is not a vector, this is not the pattern we're looking for.
13153 if (!RHSTy.isVector())
13154 return SDValue();
13155
13156 LLVM_DEBUG(
13157 dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
13158
13159 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
13160 RHSTy.getVectorNumElements() * 2);
13161 return DAG.getNode(ISD::BITCAST, dl, VT,
13162 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
13163 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
13164 RHS));
13165 }
13166
tryCombineFixedPointConvert(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)13167 static SDValue tryCombineFixedPointConvert(SDNode *N,
13168 TargetLowering::DAGCombinerInfo &DCI,
13169 SelectionDAG &DAG) {
13170 // Wait until after everything is legalized to try this. That way we have
13171 // legal vector types and such.
13172 if (DCI.isBeforeLegalizeOps())
13173 return SDValue();
13174 // Transform a scalar conversion of a value from a lane extract into a
13175 // lane extract of a vector conversion. E.g., from foo1 to foo2:
13176 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
13177 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
13178 //
13179 // The second form interacts better with instruction selection and the
13180 // register allocator to avoid cross-class register copies that aren't
13181 // coalescable due to a lane reference.
13182
13183 // Check the operand and see if it originates from a lane extract.
13184 SDValue Op1 = N->getOperand(1);
13185 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13186 // Yep, no additional predication needed. Perform the transform.
13187 SDValue IID = N->getOperand(0);
13188 SDValue Shift = N->getOperand(2);
13189 SDValue Vec = Op1.getOperand(0);
13190 SDValue Lane = Op1.getOperand(1);
13191 EVT ResTy = N->getValueType(0);
13192 EVT VecResTy;
13193 SDLoc DL(N);
13194
13195 // The vector width should be 128 bits by the time we get here, even
13196 // if it started as 64 bits (the extract_vector handling will have
13197 // done so).
13198 assert(Vec.getValueSizeInBits() == 128 &&
13199 "unexpected vector size on extract_vector_elt!");
13200 if (Vec.getValueType() == MVT::v4i32)
13201 VecResTy = MVT::v4f32;
13202 else if (Vec.getValueType() == MVT::v2i64)
13203 VecResTy = MVT::v2f64;
13204 else
13205 llvm_unreachable("unexpected vector type!");
13206
13207 SDValue Convert =
13208 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
13209 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
13210 }
13211 return SDValue();
13212 }
13213
13214 // AArch64 high-vector "long" operations are formed by performing the non-high
13215 // version on an extract_subvector of each operand which gets the high half:
13216 //
13217 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
13218 //
13219 // However, there are cases which don't have an extract_high explicitly, but
13220 // have another operation that can be made compatible with one for free. For
13221 // example:
13222 //
13223 // (dupv64 scalar) --> (extract_high (dup128 scalar))
13224 //
13225 // This routine does the actual conversion of such DUPs, once outer routines
13226 // have determined that everything else is in order.
13227 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
13228 // similarly here.
tryExtendDUPToExtractHigh(SDValue N,SelectionDAG & DAG)13229 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
13230 switch (N.getOpcode()) {
13231 case AArch64ISD::DUP:
13232 case AArch64ISD::DUPLANE8:
13233 case AArch64ISD::DUPLANE16:
13234 case AArch64ISD::DUPLANE32:
13235 case AArch64ISD::DUPLANE64:
13236 case AArch64ISD::MOVI:
13237 case AArch64ISD::MOVIshift:
13238 case AArch64ISD::MOVIedit:
13239 case AArch64ISD::MOVImsl:
13240 case AArch64ISD::MVNIshift:
13241 case AArch64ISD::MVNImsl:
13242 break;
13243 default:
13244 // FMOV could be supported, but isn't very useful, as it would only occur
13245 // if you passed a bitcast' floating point immediate to an eligible long
13246 // integer op (addl, smull, ...).
13247 return SDValue();
13248 }
13249
13250 MVT NarrowTy = N.getSimpleValueType();
13251 if (!NarrowTy.is64BitVector())
13252 return SDValue();
13253
13254 MVT ElementTy = NarrowTy.getVectorElementType();
13255 unsigned NumElems = NarrowTy.getVectorNumElements();
13256 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
13257
13258 SDLoc dl(N);
13259 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
13260 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
13261 DAG.getConstant(NumElems, dl, MVT::i64));
13262 }
13263
isEssentiallyExtractHighSubvector(SDValue N)13264 static bool isEssentiallyExtractHighSubvector(SDValue N) {
13265 if (N.getOpcode() == ISD::BITCAST)
13266 N = N.getOperand(0);
13267 if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR)
13268 return false;
13269 return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() ==
13270 N.getOperand(0).getValueType().getVectorNumElements() / 2;
13271 }
13272
13273 /// Helper structure to keep track of ISD::SET_CC operands.
13274 struct GenericSetCCInfo {
13275 const SDValue *Opnd0;
13276 const SDValue *Opnd1;
13277 ISD::CondCode CC;
13278 };
13279
13280 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
13281 struct AArch64SetCCInfo {
13282 const SDValue *Cmp;
13283 AArch64CC::CondCode CC;
13284 };
13285
13286 /// Helper structure to keep track of SetCC information.
13287 union SetCCInfo {
13288 GenericSetCCInfo Generic;
13289 AArch64SetCCInfo AArch64;
13290 };
13291
13292 /// Helper structure to be able to read SetCC information. If set to
13293 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
13294 /// GenericSetCCInfo.
13295 struct SetCCInfoAndKind {
13296 SetCCInfo Info;
13297 bool IsAArch64;
13298 };
13299
13300 /// Check whether or not \p Op is a SET_CC operation, either a generic or
13301 /// an
13302 /// AArch64 lowered one.
13303 /// \p SetCCInfo is filled accordingly.
13304 /// \post SetCCInfo is meanginfull only when this function returns true.
13305 /// \return True when Op is a kind of SET_CC operation.
isSetCC(SDValue Op,SetCCInfoAndKind & SetCCInfo)13306 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
13307 // If this is a setcc, this is straight forward.
13308 if (Op.getOpcode() == ISD::SETCC) {
13309 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
13310 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
13311 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
13312 SetCCInfo.IsAArch64 = false;
13313 return true;
13314 }
13315 // Otherwise, check if this is a matching csel instruction.
13316 // In other words:
13317 // - csel 1, 0, cc
13318 // - csel 0, 1, !cc
13319 if (Op.getOpcode() != AArch64ISD::CSEL)
13320 return false;
13321 // Set the information about the operands.
13322 // TODO: we want the operands of the Cmp not the csel
13323 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
13324 SetCCInfo.IsAArch64 = true;
13325 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
13326 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
13327
13328 // Check that the operands matches the constraints:
13329 // (1) Both operands must be constants.
13330 // (2) One must be 1 and the other must be 0.
13331 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
13332 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
13333
13334 // Check (1).
13335 if (!TValue || !FValue)
13336 return false;
13337
13338 // Check (2).
13339 if (!TValue->isOne()) {
13340 // Update the comparison when we are interested in !cc.
13341 std::swap(TValue, FValue);
13342 SetCCInfo.Info.AArch64.CC =
13343 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
13344 }
13345 return TValue->isOne() && FValue->isNullValue();
13346 }
13347
13348 // Returns true if Op is setcc or zext of setcc.
isSetCCOrZExtSetCC(const SDValue & Op,SetCCInfoAndKind & Info)13349 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
13350 if (isSetCC(Op, Info))
13351 return true;
13352 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
13353 isSetCC(Op->getOperand(0), Info));
13354 }
13355
13356 // The folding we want to perform is:
13357 // (add x, [zext] (setcc cc ...) )
13358 // -->
13359 // (csel x, (add x, 1), !cc ...)
13360 //
13361 // The latter will get matched to a CSINC instruction.
performSetccAddFolding(SDNode * Op,SelectionDAG & DAG)13362 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
13363 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
13364 SDValue LHS = Op->getOperand(0);
13365 SDValue RHS = Op->getOperand(1);
13366 SetCCInfoAndKind InfoAndKind;
13367
13368 // If both operands are a SET_CC, then we don't want to perform this
13369 // folding and create another csel as this results in more instructions
13370 // (and higher register usage).
13371 if (isSetCCOrZExtSetCC(LHS, InfoAndKind) &&
13372 isSetCCOrZExtSetCC(RHS, InfoAndKind))
13373 return SDValue();
13374
13375 // If neither operand is a SET_CC, give up.
13376 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
13377 std::swap(LHS, RHS);
13378 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
13379 return SDValue();
13380 }
13381
13382 // FIXME: This could be generatized to work for FP comparisons.
13383 EVT CmpVT = InfoAndKind.IsAArch64
13384 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
13385 : InfoAndKind.Info.Generic.Opnd0->getValueType();
13386 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
13387 return SDValue();
13388
13389 SDValue CCVal;
13390 SDValue Cmp;
13391 SDLoc dl(Op);
13392 if (InfoAndKind.IsAArch64) {
13393 CCVal = DAG.getConstant(
13394 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
13395 MVT::i32);
13396 Cmp = *InfoAndKind.Info.AArch64.Cmp;
13397 } else
13398 Cmp = getAArch64Cmp(
13399 *InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1,
13400 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG,
13401 dl);
13402
13403 EVT VT = Op->getValueType(0);
13404 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
13405 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
13406 }
13407
13408 // ADD(UADDV a, UADDV b) --> UADDV(ADD a, b)
performUADDVCombine(SDNode * N,SelectionDAG & DAG)13409 static SDValue performUADDVCombine(SDNode *N, SelectionDAG &DAG) {
13410 EVT VT = N->getValueType(0);
13411 // Only scalar integer and vector types.
13412 if (N->getOpcode() != ISD::ADD || !VT.isScalarInteger())
13413 return SDValue();
13414
13415 SDValue LHS = N->getOperand(0);
13416 SDValue RHS = N->getOperand(1);
13417 if (LHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13418 RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || LHS.getValueType() != VT)
13419 return SDValue();
13420
13421 auto *LHSN1 = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
13422 auto *RHSN1 = dyn_cast<ConstantSDNode>(RHS->getOperand(1));
13423 if (!LHSN1 || LHSN1 != RHSN1 || !RHSN1->isNullValue())
13424 return SDValue();
13425
13426 SDValue Op1 = LHS->getOperand(0);
13427 SDValue Op2 = RHS->getOperand(0);
13428 EVT OpVT1 = Op1.getValueType();
13429 EVT OpVT2 = Op2.getValueType();
13430 if (Op1.getOpcode() != AArch64ISD::UADDV || OpVT1 != OpVT2 ||
13431 Op2.getOpcode() != AArch64ISD::UADDV ||
13432 OpVT1.getVectorElementType() != VT)
13433 return SDValue();
13434
13435 SDValue Val1 = Op1.getOperand(0);
13436 SDValue Val2 = Op2.getOperand(0);
13437 EVT ValVT = Val1->getValueType(0);
13438 SDLoc DL(N);
13439 SDValue AddVal = DAG.getNode(ISD::ADD, DL, ValVT, Val1, Val2);
13440 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
13441 DAG.getNode(AArch64ISD::UADDV, DL, ValVT, AddVal),
13442 DAG.getConstant(0, DL, MVT::i64));
13443 }
13444
13445 // ADD(UDOT(zero, x, y), A) --> UDOT(A, x, y)
performAddDotCombine(SDNode * N,SelectionDAG & DAG)13446 static SDValue performAddDotCombine(SDNode *N, SelectionDAG &DAG) {
13447 EVT VT = N->getValueType(0);
13448 if (N->getOpcode() != ISD::ADD)
13449 return SDValue();
13450
13451 SDValue Dot = N->getOperand(0);
13452 SDValue A = N->getOperand(1);
13453 // Handle commutivity
13454 auto isZeroDot = [](SDValue Dot) {
13455 return (Dot.getOpcode() == AArch64ISD::UDOT ||
13456 Dot.getOpcode() == AArch64ISD::SDOT) &&
13457 isZerosVector(Dot.getOperand(0).getNode());
13458 };
13459 if (!isZeroDot(Dot))
13460 std::swap(Dot, A);
13461 if (!isZeroDot(Dot))
13462 return SDValue();
13463
13464 return DAG.getNode(Dot.getOpcode(), SDLoc(N), VT, A, Dot.getOperand(1),
13465 Dot.getOperand(2));
13466 }
13467
13468 // The basic add/sub long vector instructions have variants with "2" on the end
13469 // which act on the high-half of their inputs. They are normally matched by
13470 // patterns like:
13471 //
13472 // (add (zeroext (extract_high LHS)),
13473 // (zeroext (extract_high RHS)))
13474 // -> uaddl2 vD, vN, vM
13475 //
13476 // However, if one of the extracts is something like a duplicate, this
13477 // instruction can still be used profitably. This function puts the DAG into a
13478 // more appropriate form for those patterns to trigger.
performAddSubLongCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)13479 static SDValue performAddSubLongCombine(SDNode *N,
13480 TargetLowering::DAGCombinerInfo &DCI,
13481 SelectionDAG &DAG) {
13482 if (DCI.isBeforeLegalizeOps())
13483 return SDValue();
13484
13485 MVT VT = N->getSimpleValueType(0);
13486 if (!VT.is128BitVector()) {
13487 if (N->getOpcode() == ISD::ADD)
13488 return performSetccAddFolding(N, DAG);
13489 return SDValue();
13490 }
13491
13492 // Make sure both branches are extended in the same way.
13493 SDValue LHS = N->getOperand(0);
13494 SDValue RHS = N->getOperand(1);
13495 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
13496 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
13497 LHS.getOpcode() != RHS.getOpcode())
13498 return SDValue();
13499
13500 unsigned ExtType = LHS.getOpcode();
13501
13502 // It's not worth doing if at least one of the inputs isn't already an
13503 // extract, but we don't know which it'll be so we have to try both.
13504 if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) {
13505 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
13506 if (!RHS.getNode())
13507 return SDValue();
13508
13509 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
13510 } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) {
13511 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
13512 if (!LHS.getNode())
13513 return SDValue();
13514
13515 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
13516 }
13517
13518 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
13519 }
13520
performAddSubCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)13521 static SDValue performAddSubCombine(SDNode *N,
13522 TargetLowering::DAGCombinerInfo &DCI,
13523 SelectionDAG &DAG) {
13524 // Try to change sum of two reductions.
13525 if (SDValue Val = performUADDVCombine(N, DAG))
13526 return Val;
13527 if (SDValue Val = performAddDotCombine(N, DAG))
13528 return Val;
13529
13530 return performAddSubLongCombine(N, DCI, DAG);
13531 }
13532
13533 // Massage DAGs which we can use the high-half "long" operations on into
13534 // something isel will recognize better. E.g.
13535 //
13536 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
13537 // (aarch64_neon_umull (extract_high (v2i64 vec)))
13538 // (extract_high (v2i64 (dup128 scalar)))))
13539 //
tryCombineLongOpWithDup(unsigned IID,SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)13540 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
13541 TargetLowering::DAGCombinerInfo &DCI,
13542 SelectionDAG &DAG) {
13543 if (DCI.isBeforeLegalizeOps())
13544 return SDValue();
13545
13546 SDValue LHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 0 : 1);
13547 SDValue RHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 1 : 2);
13548 assert(LHS.getValueType().is64BitVector() &&
13549 RHS.getValueType().is64BitVector() &&
13550 "unexpected shape for long operation");
13551
13552 // Either node could be a DUP, but it's not worth doing both of them (you'd
13553 // just as well use the non-high version) so look for a corresponding extract
13554 // operation on the other "wing".
13555 if (isEssentiallyExtractHighSubvector(LHS)) {
13556 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
13557 if (!RHS.getNode())
13558 return SDValue();
13559 } else if (isEssentiallyExtractHighSubvector(RHS)) {
13560 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
13561 if (!LHS.getNode())
13562 return SDValue();
13563 }
13564
13565 if (IID == Intrinsic::not_intrinsic)
13566 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), LHS, RHS);
13567
13568 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
13569 N->getOperand(0), LHS, RHS);
13570 }
13571
tryCombineShiftImm(unsigned IID,SDNode * N,SelectionDAG & DAG)13572 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
13573 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
13574 unsigned ElemBits = ElemTy.getSizeInBits();
13575
13576 int64_t ShiftAmount;
13577 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
13578 APInt SplatValue, SplatUndef;
13579 unsigned SplatBitSize;
13580 bool HasAnyUndefs;
13581 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
13582 HasAnyUndefs, ElemBits) ||
13583 SplatBitSize != ElemBits)
13584 return SDValue();
13585
13586 ShiftAmount = SplatValue.getSExtValue();
13587 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
13588 ShiftAmount = CVN->getSExtValue();
13589 } else
13590 return SDValue();
13591
13592 unsigned Opcode;
13593 bool IsRightShift;
13594 switch (IID) {
13595 default:
13596 llvm_unreachable("Unknown shift intrinsic");
13597 case Intrinsic::aarch64_neon_sqshl:
13598 Opcode = AArch64ISD::SQSHL_I;
13599 IsRightShift = false;
13600 break;
13601 case Intrinsic::aarch64_neon_uqshl:
13602 Opcode = AArch64ISD::UQSHL_I;
13603 IsRightShift = false;
13604 break;
13605 case Intrinsic::aarch64_neon_srshl:
13606 Opcode = AArch64ISD::SRSHR_I;
13607 IsRightShift = true;
13608 break;
13609 case Intrinsic::aarch64_neon_urshl:
13610 Opcode = AArch64ISD::URSHR_I;
13611 IsRightShift = true;
13612 break;
13613 case Intrinsic::aarch64_neon_sqshlu:
13614 Opcode = AArch64ISD::SQSHLU_I;
13615 IsRightShift = false;
13616 break;
13617 case Intrinsic::aarch64_neon_sshl:
13618 case Intrinsic::aarch64_neon_ushl:
13619 // For positive shift amounts we can use SHL, as ushl/sshl perform a regular
13620 // left shift for positive shift amounts. Below, we only replace the current
13621 // node with VSHL, if this condition is met.
13622 Opcode = AArch64ISD::VSHL;
13623 IsRightShift = false;
13624 break;
13625 }
13626
13627 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
13628 SDLoc dl(N);
13629 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
13630 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
13631 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
13632 SDLoc dl(N);
13633 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
13634 DAG.getConstant(ShiftAmount, dl, MVT::i32));
13635 }
13636
13637 return SDValue();
13638 }
13639
13640 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
13641 // the intrinsics must be legal and take an i32, this means there's almost
13642 // certainly going to be a zext in the DAG which we can eliminate.
tryCombineCRC32(unsigned Mask,SDNode * N,SelectionDAG & DAG)13643 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
13644 SDValue AndN = N->getOperand(2);
13645 if (AndN.getOpcode() != ISD::AND)
13646 return SDValue();
13647
13648 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
13649 if (!CMask || CMask->getZExtValue() != Mask)
13650 return SDValue();
13651
13652 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
13653 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
13654 }
13655
combineAcrossLanesIntrinsic(unsigned Opc,SDNode * N,SelectionDAG & DAG)13656 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
13657 SelectionDAG &DAG) {
13658 SDLoc dl(N);
13659 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
13660 DAG.getNode(Opc, dl,
13661 N->getOperand(1).getSimpleValueType(),
13662 N->getOperand(1)),
13663 DAG.getConstant(0, dl, MVT::i64));
13664 }
13665
LowerSVEIntrinsicIndex(SDNode * N,SelectionDAG & DAG)13666 static SDValue LowerSVEIntrinsicIndex(SDNode *N, SelectionDAG &DAG) {
13667 SDLoc DL(N);
13668 SDValue Op1 = N->getOperand(1);
13669 SDValue Op2 = N->getOperand(2);
13670 EVT ScalarTy = Op2.getValueType();
13671 if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
13672 ScalarTy = MVT::i32;
13673
13674 // Lower index_vector(base, step) to mul(step step_vector(1)) + splat(base).
13675 SDValue One = DAG.getConstant(1, DL, ScalarTy);
13676 SDValue StepVector =
13677 DAG.getNode(ISD::STEP_VECTOR, DL, N->getValueType(0), One);
13678 SDValue Step = DAG.getNode(ISD::SPLAT_VECTOR, DL, N->getValueType(0), Op2);
13679 SDValue Mul = DAG.getNode(ISD::MUL, DL, N->getValueType(0), StepVector, Step);
13680 SDValue Base = DAG.getNode(ISD::SPLAT_VECTOR, DL, N->getValueType(0), Op1);
13681 return DAG.getNode(ISD::ADD, DL, N->getValueType(0), Mul, Base);
13682 }
13683
LowerSVEIntrinsicDUP(SDNode * N,SelectionDAG & DAG)13684 static SDValue LowerSVEIntrinsicDUP(SDNode *N, SelectionDAG &DAG) {
13685 SDLoc dl(N);
13686 SDValue Scalar = N->getOperand(3);
13687 EVT ScalarTy = Scalar.getValueType();
13688
13689 if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
13690 Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar);
13691
13692 SDValue Passthru = N->getOperand(1);
13693 SDValue Pred = N->getOperand(2);
13694 return DAG.getNode(AArch64ISD::DUP_MERGE_PASSTHRU, dl, N->getValueType(0),
13695 Pred, Scalar, Passthru);
13696 }
13697
LowerSVEIntrinsicEXT(SDNode * N,SelectionDAG & DAG)13698 static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) {
13699 SDLoc dl(N);
13700 LLVMContext &Ctx = *DAG.getContext();
13701 EVT VT = N->getValueType(0);
13702
13703 assert(VT.isScalableVector() && "Expected a scalable vector.");
13704
13705 // Current lowering only supports the SVE-ACLE types.
13706 if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock)
13707 return SDValue();
13708
13709 unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8;
13710 unsigned ByteSize = VT.getSizeInBits().getKnownMinSize() / 8;
13711 EVT ByteVT =
13712 EVT::getVectorVT(Ctx, MVT::i8, ElementCount::getScalable(ByteSize));
13713
13714 // Convert everything to the domain of EXT (i.e bytes).
13715 SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1));
13716 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2));
13717 SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3),
13718 DAG.getConstant(ElemSize, dl, MVT::i32));
13719
13720 SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2);
13721 return DAG.getNode(ISD::BITCAST, dl, VT, EXT);
13722 }
13723
tryConvertSVEWideCompare(SDNode * N,ISD::CondCode CC,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)13724 static SDValue tryConvertSVEWideCompare(SDNode *N, ISD::CondCode CC,
13725 TargetLowering::DAGCombinerInfo &DCI,
13726 SelectionDAG &DAG) {
13727 if (DCI.isBeforeLegalize())
13728 return SDValue();
13729
13730 SDValue Comparator = N->getOperand(3);
13731 if (Comparator.getOpcode() == AArch64ISD::DUP ||
13732 Comparator.getOpcode() == ISD::SPLAT_VECTOR) {
13733 unsigned IID = getIntrinsicID(N);
13734 EVT VT = N->getValueType(0);
13735 EVT CmpVT = N->getOperand(2).getValueType();
13736 SDValue Pred = N->getOperand(1);
13737 SDValue Imm;
13738 SDLoc DL(N);
13739
13740 switch (IID) {
13741 default:
13742 llvm_unreachable("Called with wrong intrinsic!");
13743 break;
13744
13745 // Signed comparisons
13746 case Intrinsic::aarch64_sve_cmpeq_wide:
13747 case Intrinsic::aarch64_sve_cmpne_wide:
13748 case Intrinsic::aarch64_sve_cmpge_wide:
13749 case Intrinsic::aarch64_sve_cmpgt_wide:
13750 case Intrinsic::aarch64_sve_cmplt_wide:
13751 case Intrinsic::aarch64_sve_cmple_wide: {
13752 if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
13753 int64_t ImmVal = CN->getSExtValue();
13754 if (ImmVal >= -16 && ImmVal <= 15)
13755 Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
13756 else
13757 return SDValue();
13758 }
13759 break;
13760 }
13761 // Unsigned comparisons
13762 case Intrinsic::aarch64_sve_cmphs_wide:
13763 case Intrinsic::aarch64_sve_cmphi_wide:
13764 case Intrinsic::aarch64_sve_cmplo_wide:
13765 case Intrinsic::aarch64_sve_cmpls_wide: {
13766 if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
13767 uint64_t ImmVal = CN->getZExtValue();
13768 if (ImmVal <= 127)
13769 Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
13770 else
13771 return SDValue();
13772 }
13773 break;
13774 }
13775 }
13776
13777 if (!Imm)
13778 return SDValue();
13779
13780 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm);
13781 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, VT, Pred,
13782 N->getOperand(2), Splat, DAG.getCondCode(CC));
13783 }
13784
13785 return SDValue();
13786 }
13787
getPTest(SelectionDAG & DAG,EVT VT,SDValue Pg,SDValue Op,AArch64CC::CondCode Cond)13788 static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op,
13789 AArch64CC::CondCode Cond) {
13790 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13791
13792 SDLoc DL(Op);
13793 assert(Op.getValueType().isScalableVector() &&
13794 TLI.isTypeLegal(Op.getValueType()) &&
13795 "Expected legal scalable vector type!");
13796
13797 // Ensure target specific opcodes are using legal type.
13798 EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
13799 SDValue TVal = DAG.getConstant(1, DL, OutVT);
13800 SDValue FVal = DAG.getConstant(0, DL, OutVT);
13801
13802 // Set condition code (CC) flags.
13803 SDValue Test = DAG.getNode(AArch64ISD::PTEST, DL, MVT::Other, Pg, Op);
13804
13805 // Convert CC to integer based on requested condition.
13806 // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare.
13807 SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32);
13808 SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test);
13809 return DAG.getZExtOrTrunc(Res, DL, VT);
13810 }
13811
combineSVEReductionInt(SDNode * N,unsigned Opc,SelectionDAG & DAG)13812 static SDValue combineSVEReductionInt(SDNode *N, unsigned Opc,
13813 SelectionDAG &DAG) {
13814 SDLoc DL(N);
13815
13816 SDValue Pred = N->getOperand(1);
13817 SDValue VecToReduce = N->getOperand(2);
13818
13819 // NOTE: The integer reduction's result type is not always linked to the
13820 // operand's element type so we construct it from the intrinsic's result type.
13821 EVT ReduceVT = getPackedSVEVectorVT(N->getValueType(0));
13822 SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce);
13823
13824 // SVE reductions set the whole vector register with the first element
13825 // containing the reduction result, which we'll now extract.
13826 SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
13827 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce,
13828 Zero);
13829 }
13830
combineSVEReductionFP(SDNode * N,unsigned Opc,SelectionDAG & DAG)13831 static SDValue combineSVEReductionFP(SDNode *N, unsigned Opc,
13832 SelectionDAG &DAG) {
13833 SDLoc DL(N);
13834
13835 SDValue Pred = N->getOperand(1);
13836 SDValue VecToReduce = N->getOperand(2);
13837
13838 EVT ReduceVT = VecToReduce.getValueType();
13839 SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce);
13840
13841 // SVE reductions set the whole vector register with the first element
13842 // containing the reduction result, which we'll now extract.
13843 SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
13844 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce,
13845 Zero);
13846 }
13847
combineSVEReductionOrderedFP(SDNode * N,unsigned Opc,SelectionDAG & DAG)13848 static SDValue combineSVEReductionOrderedFP(SDNode *N, unsigned Opc,
13849 SelectionDAG &DAG) {
13850 SDLoc DL(N);
13851
13852 SDValue Pred = N->getOperand(1);
13853 SDValue InitVal = N->getOperand(2);
13854 SDValue VecToReduce = N->getOperand(3);
13855 EVT ReduceVT = VecToReduce.getValueType();
13856
13857 // Ordered reductions use the first lane of the result vector as the
13858 // reduction's initial value.
13859 SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
13860 InitVal = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ReduceVT,
13861 DAG.getUNDEF(ReduceVT), InitVal, Zero);
13862
13863 SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, InitVal, VecToReduce);
13864
13865 // SVE reductions set the whole vector register with the first element
13866 // containing the reduction result, which we'll now extract.
13867 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce,
13868 Zero);
13869 }
13870
isAllActivePredicate(SDValue N)13871 static bool isAllActivePredicate(SDValue N) {
13872 unsigned NumElts = N.getValueType().getVectorMinNumElements();
13873
13874 // Look through cast.
13875 while (N.getOpcode() == AArch64ISD::REINTERPRET_CAST) {
13876 N = N.getOperand(0);
13877 // When reinterpreting from a type with fewer elements the "new" elements
13878 // are not active, so bail if they're likely to be used.
13879 if (N.getValueType().getVectorMinNumElements() < NumElts)
13880 return false;
13881 }
13882
13883 // "ptrue p.<ty>, all" can be considered all active when <ty> is the same size
13884 // or smaller than the implicit element type represented by N.
13885 // NOTE: A larger element count implies a smaller element type.
13886 if (N.getOpcode() == AArch64ISD::PTRUE &&
13887 N.getConstantOperandVal(0) == AArch64SVEPredPattern::all)
13888 return N.getValueType().getVectorMinNumElements() >= NumElts;
13889
13890 return false;
13891 }
13892
13893 // If a merged operation has no inactive lanes we can relax it to a predicated
13894 // or unpredicated operation, which potentially allows better isel (perhaps
13895 // using immediate forms) or relaxing register reuse requirements.
convertMergedOpToPredOp(SDNode * N,unsigned Opc,SelectionDAG & DAG,bool UnpredOp=false)13896 static SDValue convertMergedOpToPredOp(SDNode *N, unsigned Opc,
13897 SelectionDAG &DAG,
13898 bool UnpredOp = false) {
13899 assert(N->getOpcode() == ISD::INTRINSIC_WO_CHAIN && "Expected intrinsic!");
13900 assert(N->getNumOperands() == 4 && "Expected 3 operand intrinsic!");
13901 SDValue Pg = N->getOperand(1);
13902
13903 // ISD way to specify an all active predicate.
13904 if (isAllActivePredicate(Pg)) {
13905 if (UnpredOp)
13906 return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), N->getOperand(2),
13907 N->getOperand(3));
13908 else
13909 return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), Pg,
13910 N->getOperand(2), N->getOperand(3));
13911 }
13912
13913 // FUTURE: SplatVector(true)
13914 return SDValue();
13915 }
13916
performIntrinsicCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)13917 static SDValue performIntrinsicCombine(SDNode *N,
13918 TargetLowering::DAGCombinerInfo &DCI,
13919 const AArch64Subtarget *Subtarget) {
13920 SelectionDAG &DAG = DCI.DAG;
13921 unsigned IID = getIntrinsicID(N);
13922 switch (IID) {
13923 default:
13924 break;
13925 case Intrinsic::aarch64_neon_vcvtfxs2fp:
13926 case Intrinsic::aarch64_neon_vcvtfxu2fp:
13927 return tryCombineFixedPointConvert(N, DCI, DAG);
13928 case Intrinsic::aarch64_neon_saddv:
13929 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
13930 case Intrinsic::aarch64_neon_uaddv:
13931 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
13932 case Intrinsic::aarch64_neon_sminv:
13933 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
13934 case Intrinsic::aarch64_neon_uminv:
13935 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
13936 case Intrinsic::aarch64_neon_smaxv:
13937 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
13938 case Intrinsic::aarch64_neon_umaxv:
13939 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
13940 case Intrinsic::aarch64_neon_fmax:
13941 return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
13942 N->getOperand(1), N->getOperand(2));
13943 case Intrinsic::aarch64_neon_fmin:
13944 return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
13945 N->getOperand(1), N->getOperand(2));
13946 case Intrinsic::aarch64_neon_fmaxnm:
13947 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
13948 N->getOperand(1), N->getOperand(2));
13949 case Intrinsic::aarch64_neon_fminnm:
13950 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
13951 N->getOperand(1), N->getOperand(2));
13952 case Intrinsic::aarch64_neon_smull:
13953 case Intrinsic::aarch64_neon_umull:
13954 case Intrinsic::aarch64_neon_pmull:
13955 case Intrinsic::aarch64_neon_sqdmull:
13956 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
13957 case Intrinsic::aarch64_neon_sqshl:
13958 case Intrinsic::aarch64_neon_uqshl:
13959 case Intrinsic::aarch64_neon_sqshlu:
13960 case Intrinsic::aarch64_neon_srshl:
13961 case Intrinsic::aarch64_neon_urshl:
13962 case Intrinsic::aarch64_neon_sshl:
13963 case Intrinsic::aarch64_neon_ushl:
13964 return tryCombineShiftImm(IID, N, DAG);
13965 case Intrinsic::aarch64_crc32b:
13966 case Intrinsic::aarch64_crc32cb:
13967 return tryCombineCRC32(0xff, N, DAG);
13968 case Intrinsic::aarch64_crc32h:
13969 case Intrinsic::aarch64_crc32ch:
13970 return tryCombineCRC32(0xffff, N, DAG);
13971 case Intrinsic::aarch64_sve_saddv:
13972 // There is no i64 version of SADDV because the sign is irrelevant.
13973 if (N->getOperand(2)->getValueType(0).getVectorElementType() == MVT::i64)
13974 return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG);
13975 else
13976 return combineSVEReductionInt(N, AArch64ISD::SADDV_PRED, DAG);
13977 case Intrinsic::aarch64_sve_uaddv:
13978 return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG);
13979 case Intrinsic::aarch64_sve_smaxv:
13980 return combineSVEReductionInt(N, AArch64ISD::SMAXV_PRED, DAG);
13981 case Intrinsic::aarch64_sve_umaxv:
13982 return combineSVEReductionInt(N, AArch64ISD::UMAXV_PRED, DAG);
13983 case Intrinsic::aarch64_sve_sminv:
13984 return combineSVEReductionInt(N, AArch64ISD::SMINV_PRED, DAG);
13985 case Intrinsic::aarch64_sve_uminv:
13986 return combineSVEReductionInt(N, AArch64ISD::UMINV_PRED, DAG);
13987 case Intrinsic::aarch64_sve_orv:
13988 return combineSVEReductionInt(N, AArch64ISD::ORV_PRED, DAG);
13989 case Intrinsic::aarch64_sve_eorv:
13990 return combineSVEReductionInt(N, AArch64ISD::EORV_PRED, DAG);
13991 case Intrinsic::aarch64_sve_andv:
13992 return combineSVEReductionInt(N, AArch64ISD::ANDV_PRED, DAG);
13993 case Intrinsic::aarch64_sve_index:
13994 return LowerSVEIntrinsicIndex(N, DAG);
13995 case Intrinsic::aarch64_sve_dup:
13996 return LowerSVEIntrinsicDUP(N, DAG);
13997 case Intrinsic::aarch64_sve_dup_x:
13998 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), N->getValueType(0),
13999 N->getOperand(1));
14000 case Intrinsic::aarch64_sve_ext:
14001 return LowerSVEIntrinsicEXT(N, DAG);
14002 case Intrinsic::aarch64_sve_mul:
14003 return convertMergedOpToPredOp(N, AArch64ISD::MUL_PRED, DAG);
14004 case Intrinsic::aarch64_sve_smulh:
14005 return convertMergedOpToPredOp(N, AArch64ISD::MULHS_PRED, DAG);
14006 case Intrinsic::aarch64_sve_umulh:
14007 return convertMergedOpToPredOp(N, AArch64ISD::MULHU_PRED, DAG);
14008 case Intrinsic::aarch64_sve_smin:
14009 return convertMergedOpToPredOp(N, AArch64ISD::SMIN_PRED, DAG);
14010 case Intrinsic::aarch64_sve_umin:
14011 return convertMergedOpToPredOp(N, AArch64ISD::UMIN_PRED, DAG);
14012 case Intrinsic::aarch64_sve_smax:
14013 return convertMergedOpToPredOp(N, AArch64ISD::SMAX_PRED, DAG);
14014 case Intrinsic::aarch64_sve_umax:
14015 return convertMergedOpToPredOp(N, AArch64ISD::UMAX_PRED, DAG);
14016 case Intrinsic::aarch64_sve_lsl:
14017 return convertMergedOpToPredOp(N, AArch64ISD::SHL_PRED, DAG);
14018 case Intrinsic::aarch64_sve_lsr:
14019 return convertMergedOpToPredOp(N, AArch64ISD::SRL_PRED, DAG);
14020 case Intrinsic::aarch64_sve_asr:
14021 return convertMergedOpToPredOp(N, AArch64ISD::SRA_PRED, DAG);
14022 case Intrinsic::aarch64_sve_fadd:
14023 return convertMergedOpToPredOp(N, AArch64ISD::FADD_PRED, DAG);
14024 case Intrinsic::aarch64_sve_fsub:
14025 return convertMergedOpToPredOp(N, AArch64ISD::FSUB_PRED, DAG);
14026 case Intrinsic::aarch64_sve_fmul:
14027 return convertMergedOpToPredOp(N, AArch64ISD::FMUL_PRED, DAG);
14028 case Intrinsic::aarch64_sve_add:
14029 return convertMergedOpToPredOp(N, ISD::ADD, DAG, true);
14030 case Intrinsic::aarch64_sve_sub:
14031 return convertMergedOpToPredOp(N, ISD::SUB, DAG, true);
14032 case Intrinsic::aarch64_sve_and:
14033 return convertMergedOpToPredOp(N, ISD::AND, DAG, true);
14034 case Intrinsic::aarch64_sve_bic:
14035 return convertMergedOpToPredOp(N, AArch64ISD::BIC, DAG, true);
14036 case Intrinsic::aarch64_sve_eor:
14037 return convertMergedOpToPredOp(N, ISD::XOR, DAG, true);
14038 case Intrinsic::aarch64_sve_orr:
14039 return convertMergedOpToPredOp(N, ISD::OR, DAG, true);
14040 case Intrinsic::aarch64_sve_sqadd:
14041 return convertMergedOpToPredOp(N, ISD::SADDSAT, DAG, true);
14042 case Intrinsic::aarch64_sve_sqsub:
14043 return convertMergedOpToPredOp(N, ISD::SSUBSAT, DAG, true);
14044 case Intrinsic::aarch64_sve_uqadd:
14045 return convertMergedOpToPredOp(N, ISD::UADDSAT, DAG, true);
14046 case Intrinsic::aarch64_sve_uqsub:
14047 return convertMergedOpToPredOp(N, ISD::USUBSAT, DAG, true);
14048 case Intrinsic::aarch64_sve_sqadd_x:
14049 return DAG.getNode(ISD::SADDSAT, SDLoc(N), N->getValueType(0),
14050 N->getOperand(1), N->getOperand(2));
14051 case Intrinsic::aarch64_sve_sqsub_x:
14052 return DAG.getNode(ISD::SSUBSAT, SDLoc(N), N->getValueType(0),
14053 N->getOperand(1), N->getOperand(2));
14054 case Intrinsic::aarch64_sve_uqadd_x:
14055 return DAG.getNode(ISD::UADDSAT, SDLoc(N), N->getValueType(0),
14056 N->getOperand(1), N->getOperand(2));
14057 case Intrinsic::aarch64_sve_uqsub_x:
14058 return DAG.getNode(ISD::USUBSAT, SDLoc(N), N->getValueType(0),
14059 N->getOperand(1), N->getOperand(2));
14060 case Intrinsic::aarch64_sve_cmphs:
14061 if (!N->getOperand(2).getValueType().isFloatingPoint())
14062 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
14063 N->getValueType(0), N->getOperand(1), N->getOperand(2),
14064 N->getOperand(3), DAG.getCondCode(ISD::SETUGE));
14065 break;
14066 case Intrinsic::aarch64_sve_cmphi:
14067 if (!N->getOperand(2).getValueType().isFloatingPoint())
14068 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
14069 N->getValueType(0), N->getOperand(1), N->getOperand(2),
14070 N->getOperand(3), DAG.getCondCode(ISD::SETUGT));
14071 break;
14072 case Intrinsic::aarch64_sve_cmpge:
14073 if (!N->getOperand(2).getValueType().isFloatingPoint())
14074 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
14075 N->getValueType(0), N->getOperand(1), N->getOperand(2),
14076 N->getOperand(3), DAG.getCondCode(ISD::SETGE));
14077 break;
14078 case Intrinsic::aarch64_sve_cmpgt:
14079 if (!N->getOperand(2).getValueType().isFloatingPoint())
14080 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
14081 N->getValueType(0), N->getOperand(1), N->getOperand(2),
14082 N->getOperand(3), DAG.getCondCode(ISD::SETGT));
14083 break;
14084 case Intrinsic::aarch64_sve_cmpeq:
14085 if (!N->getOperand(2).getValueType().isFloatingPoint())
14086 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
14087 N->getValueType(0), N->getOperand(1), N->getOperand(2),
14088 N->getOperand(3), DAG.getCondCode(ISD::SETEQ));
14089 break;
14090 case Intrinsic::aarch64_sve_cmpne:
14091 if (!N->getOperand(2).getValueType().isFloatingPoint())
14092 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
14093 N->getValueType(0), N->getOperand(1), N->getOperand(2),
14094 N->getOperand(3), DAG.getCondCode(ISD::SETNE));
14095 break;
14096 case Intrinsic::aarch64_sve_fadda:
14097 return combineSVEReductionOrderedFP(N, AArch64ISD::FADDA_PRED, DAG);
14098 case Intrinsic::aarch64_sve_faddv:
14099 return combineSVEReductionFP(N, AArch64ISD::FADDV_PRED, DAG);
14100 case Intrinsic::aarch64_sve_fmaxnmv:
14101 return combineSVEReductionFP(N, AArch64ISD::FMAXNMV_PRED, DAG);
14102 case Intrinsic::aarch64_sve_fmaxv:
14103 return combineSVEReductionFP(N, AArch64ISD::FMAXV_PRED, DAG);
14104 case Intrinsic::aarch64_sve_fminnmv:
14105 return combineSVEReductionFP(N, AArch64ISD::FMINNMV_PRED, DAG);
14106 case Intrinsic::aarch64_sve_fminv:
14107 return combineSVEReductionFP(N, AArch64ISD::FMINV_PRED, DAG);
14108 case Intrinsic::aarch64_sve_sel:
14109 return DAG.getNode(ISD::VSELECT, SDLoc(N), N->getValueType(0),
14110 N->getOperand(1), N->getOperand(2), N->getOperand(3));
14111 case Intrinsic::aarch64_sve_cmpeq_wide:
14112 return tryConvertSVEWideCompare(N, ISD::SETEQ, DCI, DAG);
14113 case Intrinsic::aarch64_sve_cmpne_wide:
14114 return tryConvertSVEWideCompare(N, ISD::SETNE, DCI, DAG);
14115 case Intrinsic::aarch64_sve_cmpge_wide:
14116 return tryConvertSVEWideCompare(N, ISD::SETGE, DCI, DAG);
14117 case Intrinsic::aarch64_sve_cmpgt_wide:
14118 return tryConvertSVEWideCompare(N, ISD::SETGT, DCI, DAG);
14119 case Intrinsic::aarch64_sve_cmplt_wide:
14120 return tryConvertSVEWideCompare(N, ISD::SETLT, DCI, DAG);
14121 case Intrinsic::aarch64_sve_cmple_wide:
14122 return tryConvertSVEWideCompare(N, ISD::SETLE, DCI, DAG);
14123 case Intrinsic::aarch64_sve_cmphs_wide:
14124 return tryConvertSVEWideCompare(N, ISD::SETUGE, DCI, DAG);
14125 case Intrinsic::aarch64_sve_cmphi_wide:
14126 return tryConvertSVEWideCompare(N, ISD::SETUGT, DCI, DAG);
14127 case Intrinsic::aarch64_sve_cmplo_wide:
14128 return tryConvertSVEWideCompare(N, ISD::SETULT, DCI, DAG);
14129 case Intrinsic::aarch64_sve_cmpls_wide:
14130 return tryConvertSVEWideCompare(N, ISD::SETULE, DCI, DAG);
14131 case Intrinsic::aarch64_sve_ptest_any:
14132 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
14133 AArch64CC::ANY_ACTIVE);
14134 case Intrinsic::aarch64_sve_ptest_first:
14135 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
14136 AArch64CC::FIRST_ACTIVE);
14137 case Intrinsic::aarch64_sve_ptest_last:
14138 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
14139 AArch64CC::LAST_ACTIVE);
14140 }
14141 return SDValue();
14142 }
14143
performExtendCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)14144 static SDValue performExtendCombine(SDNode *N,
14145 TargetLowering::DAGCombinerInfo &DCI,
14146 SelectionDAG &DAG) {
14147 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
14148 // we can convert that DUP into another extract_high (of a bigger DUP), which
14149 // helps the backend to decide that an sabdl2 would be useful, saving a real
14150 // extract_high operation.
14151 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
14152 (N->getOperand(0).getOpcode() == AArch64ISD::UABD ||
14153 N->getOperand(0).getOpcode() == AArch64ISD::SABD)) {
14154 SDNode *ABDNode = N->getOperand(0).getNode();
14155 SDValue NewABD =
14156 tryCombineLongOpWithDup(Intrinsic::not_intrinsic, ABDNode, DCI, DAG);
14157 if (!NewABD.getNode())
14158 return SDValue();
14159
14160 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), NewABD);
14161 }
14162 return SDValue();
14163 }
14164
splitStoreSplat(SelectionDAG & DAG,StoreSDNode & St,SDValue SplatVal,unsigned NumVecElts)14165 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
14166 SDValue SplatVal, unsigned NumVecElts) {
14167 assert(!St.isTruncatingStore() && "cannot split truncating vector store");
14168 unsigned OrigAlignment = St.getAlignment();
14169 unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
14170
14171 // Create scalar stores. This is at least as good as the code sequence for a
14172 // split unaligned store which is a dup.s, ext.b, and two stores.
14173 // Most of the time the three stores should be replaced by store pair
14174 // instructions (stp).
14175 SDLoc DL(&St);
14176 SDValue BasePtr = St.getBasePtr();
14177 uint64_t BaseOffset = 0;
14178
14179 const MachinePointerInfo &PtrInfo = St.getPointerInfo();
14180 SDValue NewST1 =
14181 DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
14182 OrigAlignment, St.getMemOperand()->getFlags());
14183
14184 // As this in ISel, we will not merge this add which may degrade results.
14185 if (BasePtr->getOpcode() == ISD::ADD &&
14186 isa<ConstantSDNode>(BasePtr->getOperand(1))) {
14187 BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
14188 BasePtr = BasePtr->getOperand(0);
14189 }
14190
14191 unsigned Offset = EltOffset;
14192 while (--NumVecElts) {
14193 unsigned Alignment = MinAlign(OrigAlignment, Offset);
14194 SDValue OffsetPtr =
14195 DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
14196 DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
14197 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
14198 PtrInfo.getWithOffset(Offset), Alignment,
14199 St.getMemOperand()->getFlags());
14200 Offset += EltOffset;
14201 }
14202 return NewST1;
14203 }
14204
14205 // Returns an SVE type that ContentTy can be trivially sign or zero extended
14206 // into.
getSVEContainerType(EVT ContentTy)14207 static MVT getSVEContainerType(EVT ContentTy) {
14208 assert(ContentTy.isSimple() && "No SVE containers for extended types");
14209
14210 switch (ContentTy.getSimpleVT().SimpleTy) {
14211 default:
14212 llvm_unreachable("No known SVE container for this MVT type");
14213 case MVT::nxv2i8:
14214 case MVT::nxv2i16:
14215 case MVT::nxv2i32:
14216 case MVT::nxv2i64:
14217 case MVT::nxv2f32:
14218 case MVT::nxv2f64:
14219 return MVT::nxv2i64;
14220 case MVT::nxv4i8:
14221 case MVT::nxv4i16:
14222 case MVT::nxv4i32:
14223 case MVT::nxv4f32:
14224 return MVT::nxv4i32;
14225 case MVT::nxv8i8:
14226 case MVT::nxv8i16:
14227 case MVT::nxv8f16:
14228 case MVT::nxv8bf16:
14229 return MVT::nxv8i16;
14230 case MVT::nxv16i8:
14231 return MVT::nxv16i8;
14232 }
14233 }
14234
performLD1Combine(SDNode * N,SelectionDAG & DAG,unsigned Opc)14235 static SDValue performLD1Combine(SDNode *N, SelectionDAG &DAG, unsigned Opc) {
14236 SDLoc DL(N);
14237 EVT VT = N->getValueType(0);
14238
14239 if (VT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
14240 return SDValue();
14241
14242 EVT ContainerVT = VT;
14243 if (ContainerVT.isInteger())
14244 ContainerVT = getSVEContainerType(ContainerVT);
14245
14246 SDVTList VTs = DAG.getVTList(ContainerVT, MVT::Other);
14247 SDValue Ops[] = { N->getOperand(0), // Chain
14248 N->getOperand(2), // Pg
14249 N->getOperand(3), // Base
14250 DAG.getValueType(VT) };
14251
14252 SDValue Load = DAG.getNode(Opc, DL, VTs, Ops);
14253 SDValue LoadChain = SDValue(Load.getNode(), 1);
14254
14255 if (ContainerVT.isInteger() && (VT != ContainerVT))
14256 Load = DAG.getNode(ISD::TRUNCATE, DL, VT, Load.getValue(0));
14257
14258 return DAG.getMergeValues({ Load, LoadChain }, DL);
14259 }
14260
performLDNT1Combine(SDNode * N,SelectionDAG & DAG)14261 static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) {
14262 SDLoc DL(N);
14263 EVT VT = N->getValueType(0);
14264 EVT PtrTy = N->getOperand(3).getValueType();
14265
14266 if (VT == MVT::nxv8bf16 &&
14267 !static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasBF16())
14268 return SDValue();
14269
14270 EVT LoadVT = VT;
14271 if (VT.isFloatingPoint())
14272 LoadVT = VT.changeTypeToInteger();
14273
14274 auto *MINode = cast<MemIntrinsicSDNode>(N);
14275 SDValue PassThru = DAG.getConstant(0, DL, LoadVT);
14276 SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(),
14277 MINode->getOperand(3), DAG.getUNDEF(PtrTy),
14278 MINode->getOperand(2), PassThru,
14279 MINode->getMemoryVT(), MINode->getMemOperand(),
14280 ISD::UNINDEXED, ISD::NON_EXTLOAD, false);
14281
14282 if (VT.isFloatingPoint()) {
14283 SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) };
14284 return DAG.getMergeValues(Ops, DL);
14285 }
14286
14287 return L;
14288 }
14289
14290 template <unsigned Opcode>
performLD1ReplicateCombine(SDNode * N,SelectionDAG & DAG)14291 static SDValue performLD1ReplicateCombine(SDNode *N, SelectionDAG &DAG) {
14292 static_assert(Opcode == AArch64ISD::LD1RQ_MERGE_ZERO ||
14293 Opcode == AArch64ISD::LD1RO_MERGE_ZERO,
14294 "Unsupported opcode.");
14295 SDLoc DL(N);
14296 EVT VT = N->getValueType(0);
14297 if (VT == MVT::nxv8bf16 &&
14298 !static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasBF16())
14299 return SDValue();
14300
14301 EVT LoadVT = VT;
14302 if (VT.isFloatingPoint())
14303 LoadVT = VT.changeTypeToInteger();
14304
14305 SDValue Ops[] = {N->getOperand(0), N->getOperand(2), N->getOperand(3)};
14306 SDValue Load = DAG.getNode(Opcode, DL, {LoadVT, MVT::Other}, Ops);
14307 SDValue LoadChain = SDValue(Load.getNode(), 1);
14308
14309 if (VT.isFloatingPoint())
14310 Load = DAG.getNode(ISD::BITCAST, DL, VT, Load.getValue(0));
14311
14312 return DAG.getMergeValues({Load, LoadChain}, DL);
14313 }
14314
performST1Combine(SDNode * N,SelectionDAG & DAG)14315 static SDValue performST1Combine(SDNode *N, SelectionDAG &DAG) {
14316 SDLoc DL(N);
14317 SDValue Data = N->getOperand(2);
14318 EVT DataVT = Data.getValueType();
14319 EVT HwSrcVt = getSVEContainerType(DataVT);
14320 SDValue InputVT = DAG.getValueType(DataVT);
14321
14322 if (DataVT == MVT::nxv8bf16 &&
14323 !static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasBF16())
14324 return SDValue();
14325
14326 if (DataVT.isFloatingPoint())
14327 InputVT = DAG.getValueType(HwSrcVt);
14328
14329 SDValue SrcNew;
14330 if (Data.getValueType().isFloatingPoint())
14331 SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Data);
14332 else
14333 SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Data);
14334
14335 SDValue Ops[] = { N->getOperand(0), // Chain
14336 SrcNew,
14337 N->getOperand(4), // Base
14338 N->getOperand(3), // Pg
14339 InputVT
14340 };
14341
14342 return DAG.getNode(AArch64ISD::ST1_PRED, DL, N->getValueType(0), Ops);
14343 }
14344
performSTNT1Combine(SDNode * N,SelectionDAG & DAG)14345 static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) {
14346 SDLoc DL(N);
14347
14348 SDValue Data = N->getOperand(2);
14349 EVT DataVT = Data.getValueType();
14350 EVT PtrTy = N->getOperand(4).getValueType();
14351
14352 if (DataVT == MVT::nxv8bf16 &&
14353 !static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasBF16())
14354 return SDValue();
14355
14356 if (DataVT.isFloatingPoint())
14357 Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data);
14358
14359 auto *MINode = cast<MemIntrinsicSDNode>(N);
14360 return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4),
14361 DAG.getUNDEF(PtrTy), MINode->getOperand(3),
14362 MINode->getMemoryVT(), MINode->getMemOperand(),
14363 ISD::UNINDEXED, false, false);
14364 }
14365
14366 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
14367 /// load store optimizer pass will merge them to store pair stores. This should
14368 /// be better than a movi to create the vector zero followed by a vector store
14369 /// if the zero constant is not re-used, since one instructions and one register
14370 /// live range will be removed.
14371 ///
14372 /// For example, the final generated code should be:
14373 ///
14374 /// stp xzr, xzr, [x0]
14375 ///
14376 /// instead of:
14377 ///
14378 /// movi v0.2d, #0
14379 /// str q0, [x0]
14380 ///
replaceZeroVectorStore(SelectionDAG & DAG,StoreSDNode & St)14381 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
14382 SDValue StVal = St.getValue();
14383 EVT VT = StVal.getValueType();
14384
14385 // Avoid scalarizing zero splat stores for scalable vectors.
14386 if (VT.isScalableVector())
14387 return SDValue();
14388
14389 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
14390 // 2, 3 or 4 i32 elements.
14391 int NumVecElts = VT.getVectorNumElements();
14392 if (!(((NumVecElts == 2 || NumVecElts == 3) &&
14393 VT.getVectorElementType().getSizeInBits() == 64) ||
14394 ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
14395 VT.getVectorElementType().getSizeInBits() == 32)))
14396 return SDValue();
14397
14398 if (StVal.getOpcode() != ISD::BUILD_VECTOR)
14399 return SDValue();
14400
14401 // If the zero constant has more than one use then the vector store could be
14402 // better since the constant mov will be amortized and stp q instructions
14403 // should be able to be formed.
14404 if (!StVal.hasOneUse())
14405 return SDValue();
14406
14407 // If the store is truncating then it's going down to i16 or smaller, which
14408 // means it can be implemented in a single store anyway.
14409 if (St.isTruncatingStore())
14410 return SDValue();
14411
14412 // If the immediate offset of the address operand is too large for the stp
14413 // instruction, then bail out.
14414 if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
14415 int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
14416 if (Offset < -512 || Offset > 504)
14417 return SDValue();
14418 }
14419
14420 for (int I = 0; I < NumVecElts; ++I) {
14421 SDValue EltVal = StVal.getOperand(I);
14422 if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
14423 return SDValue();
14424 }
14425
14426 // Use a CopyFromReg WZR/XZR here to prevent
14427 // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
14428 SDLoc DL(&St);
14429 unsigned ZeroReg;
14430 EVT ZeroVT;
14431 if (VT.getVectorElementType().getSizeInBits() == 32) {
14432 ZeroReg = AArch64::WZR;
14433 ZeroVT = MVT::i32;
14434 } else {
14435 ZeroReg = AArch64::XZR;
14436 ZeroVT = MVT::i64;
14437 }
14438 SDValue SplatVal =
14439 DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
14440 return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
14441 }
14442
14443 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
14444 /// value. The load store optimizer pass will merge them to store pair stores.
14445 /// This has better performance than a splat of the scalar followed by a split
14446 /// vector store. Even if the stores are not merged it is four stores vs a dup,
14447 /// followed by an ext.b and two stores.
replaceSplatVectorStore(SelectionDAG & DAG,StoreSDNode & St)14448 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
14449 SDValue StVal = St.getValue();
14450 EVT VT = StVal.getValueType();
14451
14452 // Don't replace floating point stores, they possibly won't be transformed to
14453 // stp because of the store pair suppress pass.
14454 if (VT.isFloatingPoint())
14455 return SDValue();
14456
14457 // We can express a splat as store pair(s) for 2 or 4 elements.
14458 unsigned NumVecElts = VT.getVectorNumElements();
14459 if (NumVecElts != 4 && NumVecElts != 2)
14460 return SDValue();
14461
14462 // If the store is truncating then it's going down to i16 or smaller, which
14463 // means it can be implemented in a single store anyway.
14464 if (St.isTruncatingStore())
14465 return SDValue();
14466
14467 // Check that this is a splat.
14468 // Make sure that each of the relevant vector element locations are inserted
14469 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
14470 std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
14471 SDValue SplatVal;
14472 for (unsigned I = 0; I < NumVecElts; ++I) {
14473 // Check for insert vector elements.
14474 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
14475 return SDValue();
14476
14477 // Check that same value is inserted at each vector element.
14478 if (I == 0)
14479 SplatVal = StVal.getOperand(1);
14480 else if (StVal.getOperand(1) != SplatVal)
14481 return SDValue();
14482
14483 // Check insert element index.
14484 ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
14485 if (!CIndex)
14486 return SDValue();
14487 uint64_t IndexVal = CIndex->getZExtValue();
14488 if (IndexVal >= NumVecElts)
14489 return SDValue();
14490 IndexNotInserted.reset(IndexVal);
14491
14492 StVal = StVal.getOperand(0);
14493 }
14494 // Check that all vector element locations were inserted to.
14495 if (IndexNotInserted.any())
14496 return SDValue();
14497
14498 return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
14499 }
14500
splitStores(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)14501 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
14502 SelectionDAG &DAG,
14503 const AArch64Subtarget *Subtarget) {
14504
14505 StoreSDNode *S = cast<StoreSDNode>(N);
14506 if (S->isVolatile() || S->isIndexed())
14507 return SDValue();
14508
14509 SDValue StVal = S->getValue();
14510 EVT VT = StVal.getValueType();
14511
14512 if (!VT.isFixedLengthVector())
14513 return SDValue();
14514
14515 // If we get a splat of zeros, convert this vector store to a store of
14516 // scalars. They will be merged into store pairs of xzr thereby removing one
14517 // instruction and one register.
14518 if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
14519 return ReplacedZeroSplat;
14520
14521 // FIXME: The logic for deciding if an unaligned store should be split should
14522 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
14523 // a call to that function here.
14524
14525 if (!Subtarget->isMisaligned128StoreSlow())
14526 return SDValue();
14527
14528 // Don't split at -Oz.
14529 if (DAG.getMachineFunction().getFunction().hasMinSize())
14530 return SDValue();
14531
14532 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
14533 // those up regresses performance on micro-benchmarks and olden/bh.
14534 if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
14535 return SDValue();
14536
14537 // Split unaligned 16B stores. They are terrible for performance.
14538 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
14539 // extensions can use this to mark that it does not want splitting to happen
14540 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
14541 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
14542 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
14543 S->getAlignment() <= 2)
14544 return SDValue();
14545
14546 // If we get a splat of a scalar convert this vector store to a store of
14547 // scalars. They will be merged into store pairs thereby removing two
14548 // instructions.
14549 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
14550 return ReplacedSplat;
14551
14552 SDLoc DL(S);
14553
14554 // Split VT into two.
14555 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
14556 unsigned NumElts = HalfVT.getVectorNumElements();
14557 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
14558 DAG.getConstant(0, DL, MVT::i64));
14559 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
14560 DAG.getConstant(NumElts, DL, MVT::i64));
14561 SDValue BasePtr = S->getBasePtr();
14562 SDValue NewST1 =
14563 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
14564 S->getAlignment(), S->getMemOperand()->getFlags());
14565 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
14566 DAG.getConstant(8, DL, MVT::i64));
14567 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
14568 S->getPointerInfo(), S->getAlignment(),
14569 S->getMemOperand()->getFlags());
14570 }
14571
performUzpCombine(SDNode * N,SelectionDAG & DAG)14572 static SDValue performUzpCombine(SDNode *N, SelectionDAG &DAG) {
14573 SDLoc DL(N);
14574 SDValue Op0 = N->getOperand(0);
14575 SDValue Op1 = N->getOperand(1);
14576 EVT ResVT = N->getValueType(0);
14577
14578 // uzp1(unpklo(uzp1(x, y)), z) => uzp1(x, z)
14579 if (Op0.getOpcode() == AArch64ISD::UUNPKLO) {
14580 if (Op0.getOperand(0).getOpcode() == AArch64ISD::UZP1) {
14581 SDValue X = Op0.getOperand(0).getOperand(0);
14582 return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, X, Op1);
14583 }
14584 }
14585
14586 // uzp1(x, unpkhi(uzp1(y, z))) => uzp1(x, z)
14587 if (Op1.getOpcode() == AArch64ISD::UUNPKHI) {
14588 if (Op1.getOperand(0).getOpcode() == AArch64ISD::UZP1) {
14589 SDValue Z = Op1.getOperand(0).getOperand(1);
14590 return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Op0, Z);
14591 }
14592 }
14593
14594 return SDValue();
14595 }
14596
performGLD1Combine(SDNode * N,SelectionDAG & DAG)14597 static SDValue performGLD1Combine(SDNode *N, SelectionDAG &DAG) {
14598 unsigned Opc = N->getOpcode();
14599
14600 assert(((Opc >= AArch64ISD::GLD1_MERGE_ZERO && // unsigned gather loads
14601 Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) ||
14602 (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && // signed gather loads
14603 Opc <= AArch64ISD::GLD1S_IMM_MERGE_ZERO)) &&
14604 "Invalid opcode.");
14605
14606 const bool Scaled = Opc == AArch64ISD::GLD1_SCALED_MERGE_ZERO ||
14607 Opc == AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
14608 const bool Signed = Opc == AArch64ISD::GLD1S_MERGE_ZERO ||
14609 Opc == AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
14610 const bool Extended = Opc == AArch64ISD::GLD1_SXTW_MERGE_ZERO ||
14611 Opc == AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO ||
14612 Opc == AArch64ISD::GLD1_UXTW_MERGE_ZERO ||
14613 Opc == AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO;
14614
14615 SDLoc DL(N);
14616 SDValue Chain = N->getOperand(0);
14617 SDValue Pg = N->getOperand(1);
14618 SDValue Base = N->getOperand(2);
14619 SDValue Offset = N->getOperand(3);
14620 SDValue Ty = N->getOperand(4);
14621
14622 EVT ResVT = N->getValueType(0);
14623
14624 const auto OffsetOpc = Offset.getOpcode();
14625 const bool OffsetIsZExt =
14626 OffsetOpc == AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU;
14627 const bool OffsetIsSExt =
14628 OffsetOpc == AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU;
14629
14630 // Fold sign/zero extensions of vector offsets into GLD1 nodes where possible.
14631 if (!Extended && (OffsetIsSExt || OffsetIsZExt)) {
14632 SDValue ExtPg = Offset.getOperand(0);
14633 VTSDNode *ExtFrom = cast<VTSDNode>(Offset.getOperand(2).getNode());
14634 EVT ExtFromEVT = ExtFrom->getVT().getVectorElementType();
14635
14636 // If the predicate for the sign- or zero-extended offset is the
14637 // same as the predicate used for this load and the sign-/zero-extension
14638 // was from a 32-bits...
14639 if (ExtPg == Pg && ExtFromEVT == MVT::i32) {
14640 SDValue UnextendedOffset = Offset.getOperand(1);
14641
14642 unsigned NewOpc = getGatherVecOpcode(Scaled, OffsetIsSExt, true);
14643 if (Signed)
14644 NewOpc = getSignExtendedGatherOpcode(NewOpc);
14645
14646 return DAG.getNode(NewOpc, DL, {ResVT, MVT::Other},
14647 {Chain, Pg, Base, UnextendedOffset, Ty});
14648 }
14649 }
14650
14651 return SDValue();
14652 }
14653
14654 /// Optimize a vector shift instruction and its operand if shifted out
14655 /// bits are not used.
performVectorShiftCombine(SDNode * N,const AArch64TargetLowering & TLI,TargetLowering::DAGCombinerInfo & DCI)14656 static SDValue performVectorShiftCombine(SDNode *N,
14657 const AArch64TargetLowering &TLI,
14658 TargetLowering::DAGCombinerInfo &DCI) {
14659 assert(N->getOpcode() == AArch64ISD::VASHR ||
14660 N->getOpcode() == AArch64ISD::VLSHR);
14661
14662 SDValue Op = N->getOperand(0);
14663 unsigned OpScalarSize = Op.getScalarValueSizeInBits();
14664
14665 unsigned ShiftImm = N->getConstantOperandVal(1);
14666 assert(OpScalarSize > ShiftImm && "Invalid shift imm");
14667
14668 APInt ShiftedOutBits = APInt::getLowBitsSet(OpScalarSize, ShiftImm);
14669 APInt DemandedMask = ~ShiftedOutBits;
14670
14671 if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
14672 return SDValue(N, 0);
14673
14674 return SDValue();
14675 }
14676
14677 /// Target-specific DAG combine function for post-increment LD1 (lane) and
14678 /// post-increment LD1R.
performPostLD1Combine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,bool IsLaneOp)14679 static SDValue performPostLD1Combine(SDNode *N,
14680 TargetLowering::DAGCombinerInfo &DCI,
14681 bool IsLaneOp) {
14682 if (DCI.isBeforeLegalizeOps())
14683 return SDValue();
14684
14685 SelectionDAG &DAG = DCI.DAG;
14686 EVT VT = N->getValueType(0);
14687
14688 if (VT.isScalableVector())
14689 return SDValue();
14690
14691 unsigned LoadIdx = IsLaneOp ? 1 : 0;
14692 SDNode *LD = N->getOperand(LoadIdx).getNode();
14693 // If it is not LOAD, can not do such combine.
14694 if (LD->getOpcode() != ISD::LOAD)
14695 return SDValue();
14696
14697 // The vector lane must be a constant in the LD1LANE opcode.
14698 SDValue Lane;
14699 if (IsLaneOp) {
14700 Lane = N->getOperand(2);
14701 auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
14702 if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
14703 return SDValue();
14704 }
14705
14706 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
14707 EVT MemVT = LoadSDN->getMemoryVT();
14708 // Check if memory operand is the same type as the vector element.
14709 if (MemVT != VT.getVectorElementType())
14710 return SDValue();
14711
14712 // Check if there are other uses. If so, do not combine as it will introduce
14713 // an extra load.
14714 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
14715 ++UI) {
14716 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
14717 continue;
14718 if (*UI != N)
14719 return SDValue();
14720 }
14721
14722 SDValue Addr = LD->getOperand(1);
14723 SDValue Vector = N->getOperand(0);
14724 // Search for a use of the address operand that is an increment.
14725 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
14726 Addr.getNode()->use_end(); UI != UE; ++UI) {
14727 SDNode *User = *UI;
14728 if (User->getOpcode() != ISD::ADD
14729 || UI.getUse().getResNo() != Addr.getResNo())
14730 continue;
14731
14732 // If the increment is a constant, it must match the memory ref size.
14733 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
14734 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
14735 uint32_t IncVal = CInc->getZExtValue();
14736 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
14737 if (IncVal != NumBytes)
14738 continue;
14739 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
14740 }
14741
14742 // To avoid cycle construction make sure that neither the load nor the add
14743 // are predecessors to each other or the Vector.
14744 SmallPtrSet<const SDNode *, 32> Visited;
14745 SmallVector<const SDNode *, 16> Worklist;
14746 Visited.insert(Addr.getNode());
14747 Worklist.push_back(User);
14748 Worklist.push_back(LD);
14749 Worklist.push_back(Vector.getNode());
14750 if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
14751 SDNode::hasPredecessorHelper(User, Visited, Worklist))
14752 continue;
14753
14754 SmallVector<SDValue, 8> Ops;
14755 Ops.push_back(LD->getOperand(0)); // Chain
14756 if (IsLaneOp) {
14757 Ops.push_back(Vector); // The vector to be inserted
14758 Ops.push_back(Lane); // The lane to be inserted in the vector
14759 }
14760 Ops.push_back(Addr);
14761 Ops.push_back(Inc);
14762
14763 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
14764 SDVTList SDTys = DAG.getVTList(Tys);
14765 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
14766 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
14767 MemVT,
14768 LoadSDN->getMemOperand());
14769
14770 // Update the uses.
14771 SDValue NewResults[] = {
14772 SDValue(LD, 0), // The result of load
14773 SDValue(UpdN.getNode(), 2) // Chain
14774 };
14775 DCI.CombineTo(LD, NewResults);
14776 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
14777 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
14778
14779 break;
14780 }
14781 return SDValue();
14782 }
14783
14784 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
14785 /// address translation.
performTBISimplification(SDValue Addr,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)14786 static bool performTBISimplification(SDValue Addr,
14787 TargetLowering::DAGCombinerInfo &DCI,
14788 SelectionDAG &DAG) {
14789 APInt DemandedMask = APInt::getLowBitsSet(64, 56);
14790 KnownBits Known;
14791 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14792 !DCI.isBeforeLegalizeOps());
14793 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14794 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
14795 DCI.CommitTargetLoweringOpt(TLO);
14796 return true;
14797 }
14798 return false;
14799 }
14800
performSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)14801 static SDValue performSTORECombine(SDNode *N,
14802 TargetLowering::DAGCombinerInfo &DCI,
14803 SelectionDAG &DAG,
14804 const AArch64Subtarget *Subtarget) {
14805 if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
14806 return Split;
14807
14808 if (Subtarget->supportsAddressTopByteIgnored() &&
14809 performTBISimplification(N->getOperand(2), DCI, DAG))
14810 return SDValue(N, 0);
14811
14812 return SDValue();
14813 }
14814
14815 /// Target-specific DAG combine function for NEON load/store intrinsics
14816 /// to merge base address updates.
performNEONPostLDSTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)14817 static SDValue performNEONPostLDSTCombine(SDNode *N,
14818 TargetLowering::DAGCombinerInfo &DCI,
14819 SelectionDAG &DAG) {
14820 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14821 return SDValue();
14822
14823 unsigned AddrOpIdx = N->getNumOperands() - 1;
14824 SDValue Addr = N->getOperand(AddrOpIdx);
14825
14826 // Search for a use of the address operand that is an increment.
14827 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
14828 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
14829 SDNode *User = *UI;
14830 if (User->getOpcode() != ISD::ADD ||
14831 UI.getUse().getResNo() != Addr.getResNo())
14832 continue;
14833
14834 // Check that the add is independent of the load/store. Otherwise, folding
14835 // it would create a cycle.
14836 SmallPtrSet<const SDNode *, 32> Visited;
14837 SmallVector<const SDNode *, 16> Worklist;
14838 Visited.insert(Addr.getNode());
14839 Worklist.push_back(N);
14840 Worklist.push_back(User);
14841 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
14842 SDNode::hasPredecessorHelper(User, Visited, Worklist))
14843 continue;
14844
14845 // Find the new opcode for the updating load/store.
14846 bool IsStore = false;
14847 bool IsLaneOp = false;
14848 bool IsDupOp = false;
14849 unsigned NewOpc = 0;
14850 unsigned NumVecs = 0;
14851 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
14852 switch (IntNo) {
14853 default: llvm_unreachable("unexpected intrinsic for Neon base update");
14854 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
14855 NumVecs = 2; break;
14856 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
14857 NumVecs = 3; break;
14858 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
14859 NumVecs = 4; break;
14860 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
14861 NumVecs = 2; IsStore = true; break;
14862 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
14863 NumVecs = 3; IsStore = true; break;
14864 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
14865 NumVecs = 4; IsStore = true; break;
14866 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
14867 NumVecs = 2; break;
14868 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
14869 NumVecs = 3; break;
14870 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
14871 NumVecs = 4; break;
14872 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
14873 NumVecs = 2; IsStore = true; break;
14874 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
14875 NumVecs = 3; IsStore = true; break;
14876 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
14877 NumVecs = 4; IsStore = true; break;
14878 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
14879 NumVecs = 2; IsDupOp = true; break;
14880 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
14881 NumVecs = 3; IsDupOp = true; break;
14882 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
14883 NumVecs = 4; IsDupOp = true; break;
14884 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
14885 NumVecs = 2; IsLaneOp = true; break;
14886 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
14887 NumVecs = 3; IsLaneOp = true; break;
14888 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
14889 NumVecs = 4; IsLaneOp = true; break;
14890 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
14891 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
14892 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
14893 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
14894 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
14895 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
14896 }
14897
14898 EVT VecTy;
14899 if (IsStore)
14900 VecTy = N->getOperand(2).getValueType();
14901 else
14902 VecTy = N->getValueType(0);
14903
14904 // If the increment is a constant, it must match the memory ref size.
14905 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
14906 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
14907 uint32_t IncVal = CInc->getZExtValue();
14908 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
14909 if (IsLaneOp || IsDupOp)
14910 NumBytes /= VecTy.getVectorNumElements();
14911 if (IncVal != NumBytes)
14912 continue;
14913 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
14914 }
14915 SmallVector<SDValue, 8> Ops;
14916 Ops.push_back(N->getOperand(0)); // Incoming chain
14917 // Load lane and store have vector list as input.
14918 if (IsLaneOp || IsStore)
14919 for (unsigned i = 2; i < AddrOpIdx; ++i)
14920 Ops.push_back(N->getOperand(i));
14921 Ops.push_back(Addr); // Base register
14922 Ops.push_back(Inc);
14923
14924 // Return Types.
14925 EVT Tys[6];
14926 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
14927 unsigned n;
14928 for (n = 0; n < NumResultVecs; ++n)
14929 Tys[n] = VecTy;
14930 Tys[n++] = MVT::i64; // Type of write back register
14931 Tys[n] = MVT::Other; // Type of the chain
14932 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
14933
14934 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
14935 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
14936 MemInt->getMemoryVT(),
14937 MemInt->getMemOperand());
14938
14939 // Update the uses.
14940 std::vector<SDValue> NewResults;
14941 for (unsigned i = 0; i < NumResultVecs; ++i) {
14942 NewResults.push_back(SDValue(UpdN.getNode(), i));
14943 }
14944 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
14945 DCI.CombineTo(N, NewResults);
14946 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
14947
14948 break;
14949 }
14950 return SDValue();
14951 }
14952
14953 // Checks to see if the value is the prescribed width and returns information
14954 // about its extension mode.
14955 static
checkValueWidth(SDValue V,unsigned width,ISD::LoadExtType & ExtType)14956 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
14957 ExtType = ISD::NON_EXTLOAD;
14958 switch(V.getNode()->getOpcode()) {
14959 default:
14960 return false;
14961 case ISD::LOAD: {
14962 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
14963 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
14964 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
14965 ExtType = LoadNode->getExtensionType();
14966 return true;
14967 }
14968 return false;
14969 }
14970 case ISD::AssertSext: {
14971 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
14972 if ((TypeNode->getVT() == MVT::i8 && width == 8)
14973 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
14974 ExtType = ISD::SEXTLOAD;
14975 return true;
14976 }
14977 return false;
14978 }
14979 case ISD::AssertZext: {
14980 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
14981 if ((TypeNode->getVT() == MVT::i8 && width == 8)
14982 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
14983 ExtType = ISD::ZEXTLOAD;
14984 return true;
14985 }
14986 return false;
14987 }
14988 case ISD::Constant:
14989 case ISD::TargetConstant: {
14990 return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
14991 1LL << (width - 1);
14992 }
14993 }
14994
14995 return true;
14996 }
14997
14998 // This function does a whole lot of voodoo to determine if the tests are
14999 // equivalent without and with a mask. Essentially what happens is that given a
15000 // DAG resembling:
15001 //
15002 // +-------------+ +-------------+ +-------------+ +-------------+
15003 // | Input | | AddConstant | | CompConstant| | CC |
15004 // +-------------+ +-------------+ +-------------+ +-------------+
15005 // | | | |
15006 // V V | +----------+
15007 // +-------------+ +----+ | |
15008 // | ADD | |0xff| | |
15009 // +-------------+ +----+ | |
15010 // | | | |
15011 // V V | |
15012 // +-------------+ | |
15013 // | AND | | |
15014 // +-------------+ | |
15015 // | | |
15016 // +-----+ | |
15017 // | | |
15018 // V V V
15019 // +-------------+
15020 // | CMP |
15021 // +-------------+
15022 //
15023 // The AND node may be safely removed for some combinations of inputs. In
15024 // particular we need to take into account the extension type of the Input,
15025 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
15026 // width of the input (this can work for any width inputs, the above graph is
15027 // specific to 8 bits.
15028 //
15029 // The specific equations were worked out by generating output tables for each
15030 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
15031 // problem was simplified by working with 4 bit inputs, which means we only
15032 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
15033 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
15034 // patterns present in both extensions (0,7). For every distinct set of
15035 // AddConstant and CompConstants bit patterns we can consider the masked and
15036 // unmasked versions to be equivalent if the result of this function is true for
15037 // all 16 distinct bit patterns of for the current extension type of Input (w0).
15038 //
15039 // sub w8, w0, w1
15040 // and w10, w8, #0x0f
15041 // cmp w8, w2
15042 // cset w9, AArch64CC
15043 // cmp w10, w2
15044 // cset w11, AArch64CC
15045 // cmp w9, w11
15046 // cset w0, eq
15047 // ret
15048 //
15049 // Since the above function shows when the outputs are equivalent it defines
15050 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
15051 // would be expensive to run during compiles. The equations below were written
15052 // in a test harness that confirmed they gave equivalent outputs to the above
15053 // for all inputs function, so they can be used determine if the removal is
15054 // legal instead.
15055 //
15056 // isEquivalentMaskless() is the code for testing if the AND can be removed
15057 // factored out of the DAG recognition as the DAG can take several forms.
15058
isEquivalentMaskless(unsigned CC,unsigned width,ISD::LoadExtType ExtType,int AddConstant,int CompConstant)15059 static bool isEquivalentMaskless(unsigned CC, unsigned width,
15060 ISD::LoadExtType ExtType, int AddConstant,
15061 int CompConstant) {
15062 // By being careful about our equations and only writing the in term
15063 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
15064 // make them generally applicable to all bit widths.
15065 int MaxUInt = (1 << width);
15066
15067 // For the purposes of these comparisons sign extending the type is
15068 // equivalent to zero extending the add and displacing it by half the integer
15069 // width. Provided we are careful and make sure our equations are valid over
15070 // the whole range we can just adjust the input and avoid writing equations
15071 // for sign extended inputs.
15072 if (ExtType == ISD::SEXTLOAD)
15073 AddConstant -= (1 << (width-1));
15074
15075 switch(CC) {
15076 case AArch64CC::LE:
15077 case AArch64CC::GT:
15078 if ((AddConstant == 0) ||
15079 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
15080 (AddConstant >= 0 && CompConstant < 0) ||
15081 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
15082 return true;
15083 break;
15084 case AArch64CC::LT:
15085 case AArch64CC::GE:
15086 if ((AddConstant == 0) ||
15087 (AddConstant >= 0 && CompConstant <= 0) ||
15088 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
15089 return true;
15090 break;
15091 case AArch64CC::HI:
15092 case AArch64CC::LS:
15093 if ((AddConstant >= 0 && CompConstant < 0) ||
15094 (AddConstant <= 0 && CompConstant >= -1 &&
15095 CompConstant < AddConstant + MaxUInt))
15096 return true;
15097 break;
15098 case AArch64CC::PL:
15099 case AArch64CC::MI:
15100 if ((AddConstant == 0) ||
15101 (AddConstant > 0 && CompConstant <= 0) ||
15102 (AddConstant < 0 && CompConstant <= AddConstant))
15103 return true;
15104 break;
15105 case AArch64CC::LO:
15106 case AArch64CC::HS:
15107 if ((AddConstant >= 0 && CompConstant <= 0) ||
15108 (AddConstant <= 0 && CompConstant >= 0 &&
15109 CompConstant <= AddConstant + MaxUInt))
15110 return true;
15111 break;
15112 case AArch64CC::EQ:
15113 case AArch64CC::NE:
15114 if ((AddConstant > 0 && CompConstant < 0) ||
15115 (AddConstant < 0 && CompConstant >= 0 &&
15116 CompConstant < AddConstant + MaxUInt) ||
15117 (AddConstant >= 0 && CompConstant >= 0 &&
15118 CompConstant >= AddConstant) ||
15119 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
15120 return true;
15121 break;
15122 case AArch64CC::VS:
15123 case AArch64CC::VC:
15124 case AArch64CC::AL:
15125 case AArch64CC::NV:
15126 return true;
15127 case AArch64CC::Invalid:
15128 break;
15129 }
15130
15131 return false;
15132 }
15133
15134 static
performCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,unsigned CCIndex,unsigned CmpIndex)15135 SDValue performCONDCombine(SDNode *N,
15136 TargetLowering::DAGCombinerInfo &DCI,
15137 SelectionDAG &DAG, unsigned CCIndex,
15138 unsigned CmpIndex) {
15139 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
15140 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
15141 unsigned CondOpcode = SubsNode->getOpcode();
15142
15143 if (CondOpcode != AArch64ISD::SUBS)
15144 return SDValue();
15145
15146 // There is a SUBS feeding this condition. Is it fed by a mask we can
15147 // use?
15148
15149 SDNode *AndNode = SubsNode->getOperand(0).getNode();
15150 unsigned MaskBits = 0;
15151
15152 if (AndNode->getOpcode() != ISD::AND)
15153 return SDValue();
15154
15155 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
15156 uint32_t CNV = CN->getZExtValue();
15157 if (CNV == 255)
15158 MaskBits = 8;
15159 else if (CNV == 65535)
15160 MaskBits = 16;
15161 }
15162
15163 if (!MaskBits)
15164 return SDValue();
15165
15166 SDValue AddValue = AndNode->getOperand(0);
15167
15168 if (AddValue.getOpcode() != ISD::ADD)
15169 return SDValue();
15170
15171 // The basic dag structure is correct, grab the inputs and validate them.
15172
15173 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
15174 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
15175 SDValue SubsInputValue = SubsNode->getOperand(1);
15176
15177 // The mask is present and the provenance of all the values is a smaller type,
15178 // lets see if the mask is superfluous.
15179
15180 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
15181 !isa<ConstantSDNode>(SubsInputValue.getNode()))
15182 return SDValue();
15183
15184 ISD::LoadExtType ExtType;
15185
15186 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
15187 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
15188 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
15189 return SDValue();
15190
15191 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
15192 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
15193 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
15194 return SDValue();
15195
15196 // The AND is not necessary, remove it.
15197
15198 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
15199 SubsNode->getValueType(1));
15200 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
15201
15202 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
15203 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
15204
15205 return SDValue(N, 0);
15206 }
15207
15208 // Optimize compare with zero and branch.
performBRCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)15209 static SDValue performBRCONDCombine(SDNode *N,
15210 TargetLowering::DAGCombinerInfo &DCI,
15211 SelectionDAG &DAG) {
15212 MachineFunction &MF = DAG.getMachineFunction();
15213 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
15214 // will not be produced, as they are conditional branch instructions that do
15215 // not set flags.
15216 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
15217 return SDValue();
15218
15219 if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
15220 N = NV.getNode();
15221 SDValue Chain = N->getOperand(0);
15222 SDValue Dest = N->getOperand(1);
15223 SDValue CCVal = N->getOperand(2);
15224 SDValue Cmp = N->getOperand(3);
15225
15226 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
15227 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
15228 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
15229 return SDValue();
15230
15231 unsigned CmpOpc = Cmp.getOpcode();
15232 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
15233 return SDValue();
15234
15235 // Only attempt folding if there is only one use of the flag and no use of the
15236 // value.
15237 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
15238 return SDValue();
15239
15240 SDValue LHS = Cmp.getOperand(0);
15241 SDValue RHS = Cmp.getOperand(1);
15242
15243 assert(LHS.getValueType() == RHS.getValueType() &&
15244 "Expected the value type to be the same for both operands!");
15245 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
15246 return SDValue();
15247
15248 if (isNullConstant(LHS))
15249 std::swap(LHS, RHS);
15250
15251 if (!isNullConstant(RHS))
15252 return SDValue();
15253
15254 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
15255 LHS.getOpcode() == ISD::SRL)
15256 return SDValue();
15257
15258 // Fold the compare into the branch instruction.
15259 SDValue BR;
15260 if (CC == AArch64CC::EQ)
15261 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
15262 else
15263 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
15264
15265 // Do not add new nodes to DAG combiner worklist.
15266 DCI.CombineTo(N, BR, false);
15267
15268 return SDValue();
15269 }
15270
15271 // Optimize CSEL instructions
performCSELCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)15272 static SDValue performCSELCombine(SDNode *N,
15273 TargetLowering::DAGCombinerInfo &DCI,
15274 SelectionDAG &DAG) {
15275 // CSEL x, x, cc -> x
15276 if (N->getOperand(0) == N->getOperand(1))
15277 return N->getOperand(0);
15278
15279 return performCONDCombine(N, DCI, DAG, 2, 3);
15280 }
15281
15282 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
15283 // as well as whether the test should be inverted. This code is required to
15284 // catch these cases (as opposed to standard dag combines) because
15285 // AArch64ISD::TBZ is matched during legalization.
getTestBitOperand(SDValue Op,unsigned & Bit,bool & Invert,SelectionDAG & DAG)15286 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
15287 SelectionDAG &DAG) {
15288
15289 if (!Op->hasOneUse())
15290 return Op;
15291
15292 // We don't handle undef/constant-fold cases below, as they should have
15293 // already been taken care of (e.g. and of 0, test of undefined shifted bits,
15294 // etc.)
15295
15296 // (tbz (trunc x), b) -> (tbz x, b)
15297 // This case is just here to enable more of the below cases to be caught.
15298 if (Op->getOpcode() == ISD::TRUNCATE &&
15299 Bit < Op->getValueType(0).getSizeInBits()) {
15300 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
15301 }
15302
15303 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
15304 if (Op->getOpcode() == ISD::ANY_EXTEND &&
15305 Bit < Op->getOperand(0).getValueSizeInBits()) {
15306 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
15307 }
15308
15309 if (Op->getNumOperands() != 2)
15310 return Op;
15311
15312 auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
15313 if (!C)
15314 return Op;
15315
15316 switch (Op->getOpcode()) {
15317 default:
15318 return Op;
15319
15320 // (tbz (and x, m), b) -> (tbz x, b)
15321 case ISD::AND:
15322 if ((C->getZExtValue() >> Bit) & 1)
15323 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
15324 return Op;
15325
15326 // (tbz (shl x, c), b) -> (tbz x, b-c)
15327 case ISD::SHL:
15328 if (C->getZExtValue() <= Bit &&
15329 (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
15330 Bit = Bit - C->getZExtValue();
15331 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
15332 }
15333 return Op;
15334
15335 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
15336 case ISD::SRA:
15337 Bit = Bit + C->getZExtValue();
15338 if (Bit >= Op->getValueType(0).getSizeInBits())
15339 Bit = Op->getValueType(0).getSizeInBits() - 1;
15340 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
15341
15342 // (tbz (srl x, c), b) -> (tbz x, b+c)
15343 case ISD::SRL:
15344 if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
15345 Bit = Bit + C->getZExtValue();
15346 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
15347 }
15348 return Op;
15349
15350 // (tbz (xor x, -1), b) -> (tbnz x, b)
15351 case ISD::XOR:
15352 if ((C->getZExtValue() >> Bit) & 1)
15353 Invert = !Invert;
15354 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
15355 }
15356 }
15357
15358 // Optimize test single bit zero/non-zero and branch.
performTBZCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)15359 static SDValue performTBZCombine(SDNode *N,
15360 TargetLowering::DAGCombinerInfo &DCI,
15361 SelectionDAG &DAG) {
15362 unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
15363 bool Invert = false;
15364 SDValue TestSrc = N->getOperand(1);
15365 SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
15366
15367 if (TestSrc == NewTestSrc)
15368 return SDValue();
15369
15370 unsigned NewOpc = N->getOpcode();
15371 if (Invert) {
15372 if (NewOpc == AArch64ISD::TBZ)
15373 NewOpc = AArch64ISD::TBNZ;
15374 else {
15375 assert(NewOpc == AArch64ISD::TBNZ);
15376 NewOpc = AArch64ISD::TBZ;
15377 }
15378 }
15379
15380 SDLoc DL(N);
15381 return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
15382 DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
15383 }
15384
15385 // vselect (v1i1 setcc) ->
15386 // vselect (v1iXX setcc) (XX is the size of the compared operand type)
15387 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
15388 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
15389 // such VSELECT.
performVSelectCombine(SDNode * N,SelectionDAG & DAG)15390 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
15391 SDValue N0 = N->getOperand(0);
15392 EVT CCVT = N0.getValueType();
15393
15394 // Check for sign pattern (VSELECT setgt, iN lhs, -1, 1, -1) and transform
15395 // into (OR (ASR lhs, N-1), 1), which requires less instructions for the
15396 // supported types.
15397 SDValue SetCC = N->getOperand(0);
15398 if (SetCC.getOpcode() == ISD::SETCC &&
15399 SetCC.getOperand(2) == DAG.getCondCode(ISD::SETGT)) {
15400 SDValue CmpLHS = SetCC.getOperand(0);
15401 EVT VT = CmpLHS.getValueType();
15402 SDNode *CmpRHS = SetCC.getOperand(1).getNode();
15403 SDNode *SplatLHS = N->getOperand(1).getNode();
15404 SDNode *SplatRHS = N->getOperand(2).getNode();
15405 APInt SplatLHSVal;
15406 if (CmpLHS.getValueType() == N->getOperand(1).getValueType() &&
15407 VT.isSimple() &&
15408 is_contained(
15409 makeArrayRef({MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16,
15410 MVT::v2i32, MVT::v4i32, MVT::v2i64}),
15411 VT.getSimpleVT().SimpleTy) &&
15412 ISD::isConstantSplatVector(SplatLHS, SplatLHSVal) &&
15413 SplatLHSVal.isOneValue() && ISD::isConstantSplatVectorAllOnes(CmpRHS) &&
15414 ISD::isConstantSplatVectorAllOnes(SplatRHS)) {
15415 unsigned NumElts = VT.getVectorNumElements();
15416 SmallVector<SDValue, 8> Ops(
15417 NumElts, DAG.getConstant(VT.getScalarSizeInBits() - 1, SDLoc(N),
15418 VT.getScalarType()));
15419 SDValue Val = DAG.getBuildVector(VT, SDLoc(N), Ops);
15420
15421 auto Shift = DAG.getNode(ISD::SRA, SDLoc(N), VT, CmpLHS, Val);
15422 auto Or = DAG.getNode(ISD::OR, SDLoc(N), VT, Shift, N->getOperand(1));
15423 return Or;
15424 }
15425 }
15426
15427 if (N0.getOpcode() != ISD::SETCC ||
15428 CCVT.getVectorElementCount() != ElementCount::getFixed(1) ||
15429 CCVT.getVectorElementType() != MVT::i1)
15430 return SDValue();
15431
15432 EVT ResVT = N->getValueType(0);
15433 EVT CmpVT = N0.getOperand(0).getValueType();
15434 // Only combine when the result type is of the same size as the compared
15435 // operands.
15436 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
15437 return SDValue();
15438
15439 SDValue IfTrue = N->getOperand(1);
15440 SDValue IfFalse = N->getOperand(2);
15441 SetCC = DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
15442 N0.getOperand(0), N0.getOperand(1),
15443 cast<CondCodeSDNode>(N0.getOperand(2))->get());
15444 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
15445 IfTrue, IfFalse);
15446 }
15447
15448 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
15449 /// the compare-mask instructions rather than going via NZCV, even if LHS and
15450 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
15451 /// with a vector one followed by a DUP shuffle on the result.
performSelectCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)15452 static SDValue performSelectCombine(SDNode *N,
15453 TargetLowering::DAGCombinerInfo &DCI) {
15454 SelectionDAG &DAG = DCI.DAG;
15455 SDValue N0 = N->getOperand(0);
15456 EVT ResVT = N->getValueType(0);
15457
15458 if (N0.getOpcode() != ISD::SETCC)
15459 return SDValue();
15460
15461 if (ResVT.isScalableVector())
15462 return SDValue();
15463
15464 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
15465 // scalar SetCCResultType. We also don't expect vectors, because we assume
15466 // that selects fed by vector SETCCs are canonicalized to VSELECT.
15467 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
15468 "Scalar-SETCC feeding SELECT has unexpected result type!");
15469
15470 // If NumMaskElts == 0, the comparison is larger than select result. The
15471 // largest real NEON comparison is 64-bits per lane, which means the result is
15472 // at most 32-bits and an illegal vector. Just bail out for now.
15473 EVT SrcVT = N0.getOperand(0).getValueType();
15474
15475 // Don't try to do this optimization when the setcc itself has i1 operands.
15476 // There are no legal vectors of i1, so this would be pointless.
15477 if (SrcVT == MVT::i1)
15478 return SDValue();
15479
15480 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
15481 if (!ResVT.isVector() || NumMaskElts == 0)
15482 return SDValue();
15483
15484 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
15485 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
15486
15487 // Also bail out if the vector CCVT isn't the same size as ResVT.
15488 // This can happen if the SETCC operand size doesn't divide the ResVT size
15489 // (e.g., f64 vs v3f32).
15490 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
15491 return SDValue();
15492
15493 // Make sure we didn't create illegal types, if we're not supposed to.
15494 assert(DCI.isBeforeLegalize() ||
15495 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
15496
15497 // First perform a vector comparison, where lane 0 is the one we're interested
15498 // in.
15499 SDLoc DL(N0);
15500 SDValue LHS =
15501 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
15502 SDValue RHS =
15503 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
15504 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
15505
15506 // Now duplicate the comparison mask we want across all other lanes.
15507 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
15508 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
15509 Mask = DAG.getNode(ISD::BITCAST, DL,
15510 ResVT.changeVectorElementTypeToInteger(), Mask);
15511
15512 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
15513 }
15514
15515 /// Get rid of unnecessary NVCASTs (that don't change the type).
performNVCASTCombine(SDNode * N)15516 static SDValue performNVCASTCombine(SDNode *N) {
15517 if (N->getValueType(0) == N->getOperand(0).getValueType())
15518 return N->getOperand(0);
15519
15520 return SDValue();
15521 }
15522
15523 // If all users of the globaladdr are of the form (globaladdr + constant), find
15524 // the smallest constant, fold it into the globaladdr's offset and rewrite the
15525 // globaladdr as (globaladdr + constant) - constant.
performGlobalAddressCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget,const TargetMachine & TM)15526 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
15527 const AArch64Subtarget *Subtarget,
15528 const TargetMachine &TM) {
15529 auto *GN = cast<GlobalAddressSDNode>(N);
15530 if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
15531 AArch64II::MO_NO_FLAG)
15532 return SDValue();
15533
15534 uint64_t MinOffset = -1ull;
15535 for (SDNode *N : GN->uses()) {
15536 if (N->getOpcode() != ISD::ADD)
15537 return SDValue();
15538 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
15539 if (!C)
15540 C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15541 if (!C)
15542 return SDValue();
15543 MinOffset = std::min(MinOffset, C->getZExtValue());
15544 }
15545 uint64_t Offset = MinOffset + GN->getOffset();
15546
15547 // Require that the new offset is larger than the existing one. Otherwise, we
15548 // can end up oscillating between two possible DAGs, for example,
15549 // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
15550 if (Offset <= uint64_t(GN->getOffset()))
15551 return SDValue();
15552
15553 // Check whether folding this offset is legal. It must not go out of bounds of
15554 // the referenced object to avoid violating the code model, and must be
15555 // smaller than 2^21 because this is the largest offset expressible in all
15556 // object formats.
15557 //
15558 // This check also prevents us from folding negative offsets, which will end
15559 // up being treated in the same way as large positive ones. They could also
15560 // cause code model violations, and aren't really common enough to matter.
15561 if (Offset >= (1 << 21))
15562 return SDValue();
15563
15564 const GlobalValue *GV = GN->getGlobal();
15565 Type *T = GV->getValueType();
15566 if (!T->isSized() ||
15567 Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
15568 return SDValue();
15569
15570 SDLoc DL(GN);
15571 SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
15572 return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
15573 DAG.getConstant(MinOffset, DL, MVT::i64));
15574 }
15575
15576 // Turns the vector of indices into a vector of byte offstes by scaling Offset
15577 // by (BitWidth / 8).
getScaledOffsetForBitWidth(SelectionDAG & DAG,SDValue Offset,SDLoc DL,unsigned BitWidth)15578 static SDValue getScaledOffsetForBitWidth(SelectionDAG &DAG, SDValue Offset,
15579 SDLoc DL, unsigned BitWidth) {
15580 assert(Offset.getValueType().isScalableVector() &&
15581 "This method is only for scalable vectors of offsets");
15582
15583 SDValue Shift = DAG.getConstant(Log2_32(BitWidth / 8), DL, MVT::i64);
15584 SDValue SplatShift = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Shift);
15585
15586 return DAG.getNode(ISD::SHL, DL, MVT::nxv2i64, Offset, SplatShift);
15587 }
15588
15589 /// Check if the value of \p OffsetInBytes can be used as an immediate for
15590 /// the gather load/prefetch and scatter store instructions with vector base and
15591 /// immediate offset addressing mode:
15592 ///
15593 /// [<Zn>.[S|D]{, #<imm>}]
15594 ///
15595 /// where <imm> = sizeof(<T>) * k, for k = 0, 1, ..., 31.
15596
isValidImmForSVEVecImmAddrMode(unsigned OffsetInBytes,unsigned ScalarSizeInBytes)15597 inline static bool isValidImmForSVEVecImmAddrMode(unsigned OffsetInBytes,
15598 unsigned ScalarSizeInBytes) {
15599 // The immediate is not a multiple of the scalar size.
15600 if (OffsetInBytes % ScalarSizeInBytes)
15601 return false;
15602
15603 // The immediate is out of range.
15604 if (OffsetInBytes / ScalarSizeInBytes > 31)
15605 return false;
15606
15607 return true;
15608 }
15609
15610 /// Check if the value of \p Offset represents a valid immediate for the SVE
15611 /// gather load/prefetch and scatter store instructiona with vector base and
15612 /// immediate offset addressing mode:
15613 ///
15614 /// [<Zn>.[S|D]{, #<imm>}]
15615 ///
15616 /// where <imm> = sizeof(<T>) * k, for k = 0, 1, ..., 31.
isValidImmForSVEVecImmAddrMode(SDValue Offset,unsigned ScalarSizeInBytes)15617 static bool isValidImmForSVEVecImmAddrMode(SDValue Offset,
15618 unsigned ScalarSizeInBytes) {
15619 ConstantSDNode *OffsetConst = dyn_cast<ConstantSDNode>(Offset.getNode());
15620 return OffsetConst && isValidImmForSVEVecImmAddrMode(
15621 OffsetConst->getZExtValue(), ScalarSizeInBytes);
15622 }
15623
performScatterStoreCombine(SDNode * N,SelectionDAG & DAG,unsigned Opcode,bool OnlyPackedOffsets=true)15624 static SDValue performScatterStoreCombine(SDNode *N, SelectionDAG &DAG,
15625 unsigned Opcode,
15626 bool OnlyPackedOffsets = true) {
15627 const SDValue Src = N->getOperand(2);
15628 const EVT SrcVT = Src->getValueType(0);
15629 assert(SrcVT.isScalableVector() &&
15630 "Scatter stores are only possible for SVE vectors");
15631
15632 SDLoc DL(N);
15633 MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT();
15634
15635 // Make sure that source data will fit into an SVE register
15636 if (SrcVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
15637 return SDValue();
15638
15639 // For FPs, ACLE only supports _packed_ single and double precision types.
15640 if (SrcElVT.isFloatingPoint())
15641 if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64))
15642 return SDValue();
15643
15644 // Depending on the addressing mode, this is either a pointer or a vector of
15645 // pointers (that fits into one register)
15646 SDValue Base = N->getOperand(4);
15647 // Depending on the addressing mode, this is either a single offset or a
15648 // vector of offsets (that fits into one register)
15649 SDValue Offset = N->getOperand(5);
15650
15651 // For "scalar + vector of indices", just scale the indices. This only
15652 // applies to non-temporal scatters because there's no instruction that takes
15653 // indicies.
15654 if (Opcode == AArch64ISD::SSTNT1_INDEX_PRED) {
15655 Offset =
15656 getScaledOffsetForBitWidth(DAG, Offset, DL, SrcElVT.getSizeInBits());
15657 Opcode = AArch64ISD::SSTNT1_PRED;
15658 }
15659
15660 // In the case of non-temporal gather loads there's only one SVE instruction
15661 // per data-size: "scalar + vector", i.e.
15662 // * stnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0]
15663 // Since we do have intrinsics that allow the arguments to be in a different
15664 // order, we may need to swap them to match the spec.
15665 if (Opcode == AArch64ISD::SSTNT1_PRED && Offset.getValueType().isVector())
15666 std::swap(Base, Offset);
15667
15668 // SST1_IMM requires that the offset is an immediate that is:
15669 // * a multiple of #SizeInBytes,
15670 // * in the range [0, 31 x #SizeInBytes],
15671 // where #SizeInBytes is the size in bytes of the stored items. For
15672 // immediates outside that range and non-immediate scalar offsets use SST1 or
15673 // SST1_UXTW instead.
15674 if (Opcode == AArch64ISD::SST1_IMM_PRED) {
15675 if (!isValidImmForSVEVecImmAddrMode(Offset,
15676 SrcVT.getScalarSizeInBits() / 8)) {
15677 if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy)
15678 Opcode = AArch64ISD::SST1_UXTW_PRED;
15679 else
15680 Opcode = AArch64ISD::SST1_PRED;
15681
15682 std::swap(Base, Offset);
15683 }
15684 }
15685
15686 auto &TLI = DAG.getTargetLoweringInfo();
15687 if (!TLI.isTypeLegal(Base.getValueType()))
15688 return SDValue();
15689
15690 // Some scatter store variants allow unpacked offsets, but only as nxv2i32
15691 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
15692 // nxv2i64. Legalize accordingly.
15693 if (!OnlyPackedOffsets &&
15694 Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
15695 Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);
15696
15697 if (!TLI.isTypeLegal(Offset.getValueType()))
15698 return SDValue();
15699
15700 // Source value type that is representable in hardware
15701 EVT HwSrcVt = getSVEContainerType(SrcVT);
15702
15703 // Keep the original type of the input data to store - this is needed to be
15704 // able to select the correct instruction, e.g. ST1B, ST1H, ST1W and ST1D. For
15705 // FP values we want the integer equivalent, so just use HwSrcVt.
15706 SDValue InputVT = DAG.getValueType(SrcVT);
15707 if (SrcVT.isFloatingPoint())
15708 InputVT = DAG.getValueType(HwSrcVt);
15709
15710 SDVTList VTs = DAG.getVTList(MVT::Other);
15711 SDValue SrcNew;
15712
15713 if (Src.getValueType().isFloatingPoint())
15714 SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src);
15715 else
15716 SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src);
15717
15718 SDValue Ops[] = {N->getOperand(0), // Chain
15719 SrcNew,
15720 N->getOperand(3), // Pg
15721 Base,
15722 Offset,
15723 InputVT};
15724
15725 return DAG.getNode(Opcode, DL, VTs, Ops);
15726 }
15727
performGatherLoadCombine(SDNode * N,SelectionDAG & DAG,unsigned Opcode,bool OnlyPackedOffsets=true)15728 static SDValue performGatherLoadCombine(SDNode *N, SelectionDAG &DAG,
15729 unsigned Opcode,
15730 bool OnlyPackedOffsets = true) {
15731 const EVT RetVT = N->getValueType(0);
15732 assert(RetVT.isScalableVector() &&
15733 "Gather loads are only possible for SVE vectors");
15734
15735 SDLoc DL(N);
15736
15737 // Make sure that the loaded data will fit into an SVE register
15738 if (RetVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
15739 return SDValue();
15740
15741 // Depending on the addressing mode, this is either a pointer or a vector of
15742 // pointers (that fits into one register)
15743 SDValue Base = N->getOperand(3);
15744 // Depending on the addressing mode, this is either a single offset or a
15745 // vector of offsets (that fits into one register)
15746 SDValue Offset = N->getOperand(4);
15747
15748 // For "scalar + vector of indices", just scale the indices. This only
15749 // applies to non-temporal gathers because there's no instruction that takes
15750 // indicies.
15751 if (Opcode == AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) {
15752 Offset = getScaledOffsetForBitWidth(DAG, Offset, DL,
15753 RetVT.getScalarSizeInBits());
15754 Opcode = AArch64ISD::GLDNT1_MERGE_ZERO;
15755 }
15756
15757 // In the case of non-temporal gather loads there's only one SVE instruction
15758 // per data-size: "scalar + vector", i.e.
15759 // * ldnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0]
15760 // Since we do have intrinsics that allow the arguments to be in a different
15761 // order, we may need to swap them to match the spec.
15762 if (Opcode == AArch64ISD::GLDNT1_MERGE_ZERO &&
15763 Offset.getValueType().isVector())
15764 std::swap(Base, Offset);
15765
15766 // GLD{FF}1_IMM requires that the offset is an immediate that is:
15767 // * a multiple of #SizeInBytes,
15768 // * in the range [0, 31 x #SizeInBytes],
15769 // where #SizeInBytes is the size in bytes of the loaded items. For
15770 // immediates outside that range and non-immediate scalar offsets use
15771 // GLD1_MERGE_ZERO or GLD1_UXTW_MERGE_ZERO instead.
15772 if (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO ||
15773 Opcode == AArch64ISD::GLDFF1_IMM_MERGE_ZERO) {
15774 if (!isValidImmForSVEVecImmAddrMode(Offset,
15775 RetVT.getScalarSizeInBits() / 8)) {
15776 if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy)
15777 Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO)
15778 ? AArch64ISD::GLD1_UXTW_MERGE_ZERO
15779 : AArch64ISD::GLDFF1_UXTW_MERGE_ZERO;
15780 else
15781 Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO)
15782 ? AArch64ISD::GLD1_MERGE_ZERO
15783 : AArch64ISD::GLDFF1_MERGE_ZERO;
15784
15785 std::swap(Base, Offset);
15786 }
15787 }
15788
15789 auto &TLI = DAG.getTargetLoweringInfo();
15790 if (!TLI.isTypeLegal(Base.getValueType()))
15791 return SDValue();
15792
15793 // Some gather load variants allow unpacked offsets, but only as nxv2i32
15794 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
15795 // nxv2i64. Legalize accordingly.
15796 if (!OnlyPackedOffsets &&
15797 Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
15798 Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);
15799
15800 // Return value type that is representable in hardware
15801 EVT HwRetVt = getSVEContainerType(RetVT);
15802
15803 // Keep the original output value type around - this is needed to be able to
15804 // select the correct instruction, e.g. LD1B, LD1H, LD1W and LD1D. For FP
15805 // values we want the integer equivalent, so just use HwRetVT.
15806 SDValue OutVT = DAG.getValueType(RetVT);
15807 if (RetVT.isFloatingPoint())
15808 OutVT = DAG.getValueType(HwRetVt);
15809
15810 SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other);
15811 SDValue Ops[] = {N->getOperand(0), // Chain
15812 N->getOperand(2), // Pg
15813 Base, Offset, OutVT};
15814
15815 SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops);
15816 SDValue LoadChain = SDValue(Load.getNode(), 1);
15817
15818 if (RetVT.isInteger() && (RetVT != HwRetVt))
15819 Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0));
15820
15821 // If the original return value was FP, bitcast accordingly. Doing it here
15822 // means that we can avoid adding TableGen patterns for FPs.
15823 if (RetVT.isFloatingPoint())
15824 Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0));
15825
15826 return DAG.getMergeValues({Load, LoadChain}, DL);
15827 }
15828
15829 static SDValue
performSignExtendInRegCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)15830 performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
15831 SelectionDAG &DAG) {
15832 SDLoc DL(N);
15833 SDValue Src = N->getOperand(0);
15834 unsigned Opc = Src->getOpcode();
15835
15836 // Sign extend of an unsigned unpack -> signed unpack
15837 if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) {
15838
15839 unsigned SOpc = Opc == AArch64ISD::UUNPKHI ? AArch64ISD::SUNPKHI
15840 : AArch64ISD::SUNPKLO;
15841
15842 // Push the sign extend to the operand of the unpack
15843 // This is necessary where, for example, the operand of the unpack
15844 // is another unpack:
15845 // 4i32 sign_extend_inreg (4i32 uunpklo(8i16 uunpklo (16i8 opnd)), from 4i8)
15846 // ->
15847 // 4i32 sunpklo (8i16 sign_extend_inreg(8i16 uunpklo (16i8 opnd), from 8i8)
15848 // ->
15849 // 4i32 sunpklo(8i16 sunpklo(16i8 opnd))
15850 SDValue ExtOp = Src->getOperand(0);
15851 auto VT = cast<VTSDNode>(N->getOperand(1))->getVT();
15852 EVT EltTy = VT.getVectorElementType();
15853 (void)EltTy;
15854
15855 assert((EltTy == MVT::i8 || EltTy == MVT::i16 || EltTy == MVT::i32) &&
15856 "Sign extending from an invalid type");
15857
15858 EVT ExtVT = VT.getDoubleNumVectorElementsVT(*DAG.getContext());
15859
15860 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ExtOp.getValueType(),
15861 ExtOp, DAG.getValueType(ExtVT));
15862
15863 return DAG.getNode(SOpc, DL, N->getValueType(0), Ext);
15864 }
15865
15866 if (DCI.isBeforeLegalizeOps())
15867 return SDValue();
15868
15869 if (!EnableCombineMGatherIntrinsics)
15870 return SDValue();
15871
15872 // SVE load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates
15873 // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes.
15874 unsigned NewOpc;
15875 unsigned MemVTOpNum = 4;
15876 switch (Opc) {
15877 case AArch64ISD::LD1_MERGE_ZERO:
15878 NewOpc = AArch64ISD::LD1S_MERGE_ZERO;
15879 MemVTOpNum = 3;
15880 break;
15881 case AArch64ISD::LDNF1_MERGE_ZERO:
15882 NewOpc = AArch64ISD::LDNF1S_MERGE_ZERO;
15883 MemVTOpNum = 3;
15884 break;
15885 case AArch64ISD::LDFF1_MERGE_ZERO:
15886 NewOpc = AArch64ISD::LDFF1S_MERGE_ZERO;
15887 MemVTOpNum = 3;
15888 break;
15889 case AArch64ISD::GLD1_MERGE_ZERO:
15890 NewOpc = AArch64ISD::GLD1S_MERGE_ZERO;
15891 break;
15892 case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
15893 NewOpc = AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
15894 break;
15895 case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
15896 NewOpc = AArch64ISD::GLD1S_SXTW_MERGE_ZERO;
15897 break;
15898 case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
15899 NewOpc = AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO;
15900 break;
15901 case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
15902 NewOpc = AArch64ISD::GLD1S_UXTW_MERGE_ZERO;
15903 break;
15904 case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
15905 NewOpc = AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO;
15906 break;
15907 case AArch64ISD::GLD1_IMM_MERGE_ZERO:
15908 NewOpc = AArch64ISD::GLD1S_IMM_MERGE_ZERO;
15909 break;
15910 case AArch64ISD::GLDFF1_MERGE_ZERO:
15911 NewOpc = AArch64ISD::GLDFF1S_MERGE_ZERO;
15912 break;
15913 case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO:
15914 NewOpc = AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO;
15915 break;
15916 case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO:
15917 NewOpc = AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO;
15918 break;
15919 case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO:
15920 NewOpc = AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO;
15921 break;
15922 case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO:
15923 NewOpc = AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO;
15924 break;
15925 case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO:
15926 NewOpc = AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO;
15927 break;
15928 case AArch64ISD::GLDFF1_IMM_MERGE_ZERO:
15929 NewOpc = AArch64ISD::GLDFF1S_IMM_MERGE_ZERO;
15930 break;
15931 case AArch64ISD::GLDNT1_MERGE_ZERO:
15932 NewOpc = AArch64ISD::GLDNT1S_MERGE_ZERO;
15933 break;
15934 default:
15935 return SDValue();
15936 }
15937
15938 EVT SignExtSrcVT = cast<VTSDNode>(N->getOperand(1))->getVT();
15939 EVT SrcMemVT = cast<VTSDNode>(Src->getOperand(MemVTOpNum))->getVT();
15940
15941 if ((SignExtSrcVT != SrcMemVT) || !Src.hasOneUse())
15942 return SDValue();
15943
15944 EVT DstVT = N->getValueType(0);
15945 SDVTList VTs = DAG.getVTList(DstVT, MVT::Other);
15946
15947 SmallVector<SDValue, 5> Ops;
15948 for (unsigned I = 0; I < Src->getNumOperands(); ++I)
15949 Ops.push_back(Src->getOperand(I));
15950
15951 SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops);
15952 DCI.CombineTo(N, ExtLoad);
15953 DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1));
15954
15955 // Return N so it doesn't get rechecked
15956 return SDValue(N, 0);
15957 }
15958
15959 /// Legalize the gather prefetch (scalar + vector addressing mode) when the
15960 /// offset vector is an unpacked 32-bit scalable vector. The other cases (Offset
15961 /// != nxv2i32) do not need legalization.
legalizeSVEGatherPrefetchOffsVec(SDNode * N,SelectionDAG & DAG)15962 static SDValue legalizeSVEGatherPrefetchOffsVec(SDNode *N, SelectionDAG &DAG) {
15963 const unsigned OffsetPos = 4;
15964 SDValue Offset = N->getOperand(OffsetPos);
15965
15966 // Not an unpacked vector, bail out.
15967 if (Offset.getValueType().getSimpleVT().SimpleTy != MVT::nxv2i32)
15968 return SDValue();
15969
15970 // Extend the unpacked offset vector to 64-bit lanes.
15971 SDLoc DL(N);
15972 Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset);
15973 SmallVector<SDValue, 5> Ops(N->op_begin(), N->op_end());
15974 // Replace the offset operand with the 64-bit one.
15975 Ops[OffsetPos] = Offset;
15976
15977 return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops);
15978 }
15979
15980 /// Combines a node carrying the intrinsic
15981 /// `aarch64_sve_prf<T>_gather_scalar_offset` into a node that uses
15982 /// `aarch64_sve_prfb_gather_uxtw_index` when the scalar offset passed to
15983 /// `aarch64_sve_prf<T>_gather_scalar_offset` is not a valid immediate for the
15984 /// sve gather prefetch instruction with vector plus immediate addressing mode.
combineSVEPrefetchVecBaseImmOff(SDNode * N,SelectionDAG & DAG,unsigned ScalarSizeInBytes)15985 static SDValue combineSVEPrefetchVecBaseImmOff(SDNode *N, SelectionDAG &DAG,
15986 unsigned ScalarSizeInBytes) {
15987 const unsigned ImmPos = 4, OffsetPos = 3;
15988 // No need to combine the node if the immediate is valid...
15989 if (isValidImmForSVEVecImmAddrMode(N->getOperand(ImmPos), ScalarSizeInBytes))
15990 return SDValue();
15991
15992 // ...otherwise swap the offset base with the offset...
15993 SmallVector<SDValue, 5> Ops(N->op_begin(), N->op_end());
15994 std::swap(Ops[ImmPos], Ops[OffsetPos]);
15995 // ...and remap the intrinsic `aarch64_sve_prf<T>_gather_scalar_offset` to
15996 // `aarch64_sve_prfb_gather_uxtw_index`.
15997 SDLoc DL(N);
15998 Ops[1] = DAG.getConstant(Intrinsic::aarch64_sve_prfb_gather_uxtw_index, DL,
15999 MVT::i64);
16000
16001 return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops);
16002 }
16003
16004 // Return true if the vector operation can guarantee only the first lane of its
16005 // result contains data, with all bits in other lanes set to zero.
isLanes1toNKnownZero(SDValue Op)16006 static bool isLanes1toNKnownZero(SDValue Op) {
16007 switch (Op.getOpcode()) {
16008 default:
16009 return false;
16010 case AArch64ISD::ANDV_PRED:
16011 case AArch64ISD::EORV_PRED:
16012 case AArch64ISD::FADDA_PRED:
16013 case AArch64ISD::FADDV_PRED:
16014 case AArch64ISD::FMAXNMV_PRED:
16015 case AArch64ISD::FMAXV_PRED:
16016 case AArch64ISD::FMINNMV_PRED:
16017 case AArch64ISD::FMINV_PRED:
16018 case AArch64ISD::ORV_PRED:
16019 case AArch64ISD::SADDV_PRED:
16020 case AArch64ISD::SMAXV_PRED:
16021 case AArch64ISD::SMINV_PRED:
16022 case AArch64ISD::UADDV_PRED:
16023 case AArch64ISD::UMAXV_PRED:
16024 case AArch64ISD::UMINV_PRED:
16025 return true;
16026 }
16027 }
16028
removeRedundantInsertVectorElt(SDNode * N)16029 static SDValue removeRedundantInsertVectorElt(SDNode *N) {
16030 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && "Unexpected node!");
16031 SDValue InsertVec = N->getOperand(0);
16032 SDValue InsertElt = N->getOperand(1);
16033 SDValue InsertIdx = N->getOperand(2);
16034
16035 // We only care about inserts into the first element...
16036 if (!isNullConstant(InsertIdx))
16037 return SDValue();
16038 // ...of a zero'd vector...
16039 if (!ISD::isConstantSplatVectorAllZeros(InsertVec.getNode()))
16040 return SDValue();
16041 // ...where the inserted data was previously extracted...
16042 if (InsertElt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16043 return SDValue();
16044
16045 SDValue ExtractVec = InsertElt.getOperand(0);
16046 SDValue ExtractIdx = InsertElt.getOperand(1);
16047
16048 // ...from the first element of a vector.
16049 if (!isNullConstant(ExtractIdx))
16050 return SDValue();
16051
16052 // If we get here we are effectively trying to zero lanes 1-N of a vector.
16053
16054 // Ensure there's no type conversion going on.
16055 if (N->getValueType(0) != ExtractVec.getValueType())
16056 return SDValue();
16057
16058 if (!isLanes1toNKnownZero(ExtractVec))
16059 return SDValue();
16060
16061 // The explicit zeroing is redundant.
16062 return ExtractVec;
16063 }
16064
16065 static SDValue
performInsertVectorEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)16066 performInsertVectorEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
16067 if (SDValue Res = removeRedundantInsertVectorElt(N))
16068 return Res;
16069
16070 return performPostLD1Combine(N, DCI, true);
16071 }
16072
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const16073 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
16074 DAGCombinerInfo &DCI) const {
16075 SelectionDAG &DAG = DCI.DAG;
16076 switch (N->getOpcode()) {
16077 default:
16078 LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
16079 break;
16080 case ISD::ABS:
16081 return performABSCombine(N, DAG, DCI, Subtarget);
16082 case ISD::ADD:
16083 case ISD::SUB:
16084 return performAddSubCombine(N, DCI, DAG);
16085 case ISD::XOR:
16086 return performXorCombine(N, DAG, DCI, Subtarget);
16087 case ISD::MUL:
16088 return performMulCombine(N, DAG, DCI, Subtarget);
16089 case ISD::SINT_TO_FP:
16090 case ISD::UINT_TO_FP:
16091 return performIntToFpCombine(N, DAG, Subtarget);
16092 case ISD::FP_TO_SINT:
16093 case ISD::FP_TO_UINT:
16094 return performFpToIntCombine(N, DAG, DCI, Subtarget);
16095 case ISD::FDIV:
16096 return performFDivCombine(N, DAG, DCI, Subtarget);
16097 case ISD::OR:
16098 return performORCombine(N, DCI, Subtarget);
16099 case ISD::AND:
16100 return performANDCombine(N, DCI);
16101 case ISD::SRL:
16102 return performSRLCombine(N, DCI);
16103 case ISD::INTRINSIC_WO_CHAIN:
16104 return performIntrinsicCombine(N, DCI, Subtarget);
16105 case ISD::ANY_EXTEND:
16106 case ISD::ZERO_EXTEND:
16107 case ISD::SIGN_EXTEND:
16108 return performExtendCombine(N, DCI, DAG);
16109 case ISD::SIGN_EXTEND_INREG:
16110 return performSignExtendInRegCombine(N, DCI, DAG);
16111 case ISD::TRUNCATE:
16112 return performVectorTruncateCombine(N, DCI, DAG);
16113 case ISD::CONCAT_VECTORS:
16114 return performConcatVectorsCombine(N, DCI, DAG);
16115 case ISD::SELECT:
16116 return performSelectCombine(N, DCI);
16117 case ISD::VSELECT:
16118 return performVSelectCombine(N, DCI.DAG);
16119 case ISD::LOAD:
16120 if (performTBISimplification(N->getOperand(1), DCI, DAG))
16121 return SDValue(N, 0);
16122 break;
16123 case ISD::STORE:
16124 return performSTORECombine(N, DCI, DAG, Subtarget);
16125 case AArch64ISD::BRCOND:
16126 return performBRCONDCombine(N, DCI, DAG);
16127 case AArch64ISD::TBNZ:
16128 case AArch64ISD::TBZ:
16129 return performTBZCombine(N, DCI, DAG);
16130 case AArch64ISD::CSEL:
16131 return performCSELCombine(N, DCI, DAG);
16132 case AArch64ISD::DUP:
16133 return performPostLD1Combine(N, DCI, false);
16134 case AArch64ISD::NVCAST:
16135 return performNVCASTCombine(N);
16136 case AArch64ISD::UZP1:
16137 return performUzpCombine(N, DAG);
16138 case AArch64ISD::GLD1_MERGE_ZERO:
16139 case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
16140 case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
16141 case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
16142 case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
16143 case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
16144 case AArch64ISD::GLD1_IMM_MERGE_ZERO:
16145 case AArch64ISD::GLD1S_MERGE_ZERO:
16146 case AArch64ISD::GLD1S_SCALED_MERGE_ZERO:
16147 case AArch64ISD::GLD1S_UXTW_MERGE_ZERO:
16148 case AArch64ISD::GLD1S_SXTW_MERGE_ZERO:
16149 case AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO:
16150 case AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO:
16151 case AArch64ISD::GLD1S_IMM_MERGE_ZERO:
16152 return performGLD1Combine(N, DAG);
16153 case AArch64ISD::VASHR:
16154 case AArch64ISD::VLSHR:
16155 return performVectorShiftCombine(N, *this, DCI);
16156 case ISD::INSERT_VECTOR_ELT:
16157 return performInsertVectorEltCombine(N, DCI);
16158 case ISD::EXTRACT_VECTOR_ELT:
16159 return performExtractVectorEltCombine(N, DAG);
16160 case ISD::VECREDUCE_ADD:
16161 return performVecReduceAddCombine(N, DCI.DAG, Subtarget);
16162 case ISD::INTRINSIC_VOID:
16163 case ISD::INTRINSIC_W_CHAIN:
16164 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
16165 case Intrinsic::aarch64_sve_prfb_gather_scalar_offset:
16166 return combineSVEPrefetchVecBaseImmOff(N, DAG, 1 /*=ScalarSizeInBytes*/);
16167 case Intrinsic::aarch64_sve_prfh_gather_scalar_offset:
16168 return combineSVEPrefetchVecBaseImmOff(N, DAG, 2 /*=ScalarSizeInBytes*/);
16169 case Intrinsic::aarch64_sve_prfw_gather_scalar_offset:
16170 return combineSVEPrefetchVecBaseImmOff(N, DAG, 4 /*=ScalarSizeInBytes*/);
16171 case Intrinsic::aarch64_sve_prfd_gather_scalar_offset:
16172 return combineSVEPrefetchVecBaseImmOff(N, DAG, 8 /*=ScalarSizeInBytes*/);
16173 case Intrinsic::aarch64_sve_prfb_gather_uxtw_index:
16174 case Intrinsic::aarch64_sve_prfb_gather_sxtw_index:
16175 case Intrinsic::aarch64_sve_prfh_gather_uxtw_index:
16176 case Intrinsic::aarch64_sve_prfh_gather_sxtw_index:
16177 case Intrinsic::aarch64_sve_prfw_gather_uxtw_index:
16178 case Intrinsic::aarch64_sve_prfw_gather_sxtw_index:
16179 case Intrinsic::aarch64_sve_prfd_gather_uxtw_index:
16180 case Intrinsic::aarch64_sve_prfd_gather_sxtw_index:
16181 return legalizeSVEGatherPrefetchOffsVec(N, DAG);
16182 case Intrinsic::aarch64_neon_ld2:
16183 case Intrinsic::aarch64_neon_ld3:
16184 case Intrinsic::aarch64_neon_ld4:
16185 case Intrinsic::aarch64_neon_ld1x2:
16186 case Intrinsic::aarch64_neon_ld1x3:
16187 case Intrinsic::aarch64_neon_ld1x4:
16188 case Intrinsic::aarch64_neon_ld2lane:
16189 case Intrinsic::aarch64_neon_ld3lane:
16190 case Intrinsic::aarch64_neon_ld4lane:
16191 case Intrinsic::aarch64_neon_ld2r:
16192 case Intrinsic::aarch64_neon_ld3r:
16193 case Intrinsic::aarch64_neon_ld4r:
16194 case Intrinsic::aarch64_neon_st2:
16195 case Intrinsic::aarch64_neon_st3:
16196 case Intrinsic::aarch64_neon_st4:
16197 case Intrinsic::aarch64_neon_st1x2:
16198 case Intrinsic::aarch64_neon_st1x3:
16199 case Intrinsic::aarch64_neon_st1x4:
16200 case Intrinsic::aarch64_neon_st2lane:
16201 case Intrinsic::aarch64_neon_st3lane:
16202 case Intrinsic::aarch64_neon_st4lane:
16203 return performNEONPostLDSTCombine(N, DCI, DAG);
16204 case Intrinsic::aarch64_sve_ldnt1:
16205 return performLDNT1Combine(N, DAG);
16206 case Intrinsic::aarch64_sve_ld1rq:
16207 return performLD1ReplicateCombine<AArch64ISD::LD1RQ_MERGE_ZERO>(N, DAG);
16208 case Intrinsic::aarch64_sve_ld1ro:
16209 return performLD1ReplicateCombine<AArch64ISD::LD1RO_MERGE_ZERO>(N, DAG);
16210 case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset:
16211 return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO);
16212 case Intrinsic::aarch64_sve_ldnt1_gather:
16213 return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO);
16214 case Intrinsic::aarch64_sve_ldnt1_gather_index:
16215 return performGatherLoadCombine(N, DAG,
16216 AArch64ISD::GLDNT1_INDEX_MERGE_ZERO);
16217 case Intrinsic::aarch64_sve_ldnt1_gather_uxtw:
16218 return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO);
16219 case Intrinsic::aarch64_sve_ld1:
16220 return performLD1Combine(N, DAG, AArch64ISD::LD1_MERGE_ZERO);
16221 case Intrinsic::aarch64_sve_ldnf1:
16222 return performLD1Combine(N, DAG, AArch64ISD::LDNF1_MERGE_ZERO);
16223 case Intrinsic::aarch64_sve_ldff1:
16224 return performLD1Combine(N, DAG, AArch64ISD::LDFF1_MERGE_ZERO);
16225 case Intrinsic::aarch64_sve_st1:
16226 return performST1Combine(N, DAG);
16227 case Intrinsic::aarch64_sve_stnt1:
16228 return performSTNT1Combine(N, DAG);
16229 case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset:
16230 return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED);
16231 case Intrinsic::aarch64_sve_stnt1_scatter_uxtw:
16232 return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED);
16233 case Intrinsic::aarch64_sve_stnt1_scatter:
16234 return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED);
16235 case Intrinsic::aarch64_sve_stnt1_scatter_index:
16236 return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_INDEX_PRED);
16237 case Intrinsic::aarch64_sve_ld1_gather:
16238 return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_MERGE_ZERO);
16239 case Intrinsic::aarch64_sve_ld1_gather_index:
16240 return performGatherLoadCombine(N, DAG,
16241 AArch64ISD::GLD1_SCALED_MERGE_ZERO);
16242 case Intrinsic::aarch64_sve_ld1_gather_sxtw:
16243 return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SXTW_MERGE_ZERO,
16244 /*OnlyPackedOffsets=*/false);
16245 case Intrinsic::aarch64_sve_ld1_gather_uxtw:
16246 return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_UXTW_MERGE_ZERO,
16247 /*OnlyPackedOffsets=*/false);
16248 case Intrinsic::aarch64_sve_ld1_gather_sxtw_index:
16249 return performGatherLoadCombine(N, DAG,
16250 AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO,
16251 /*OnlyPackedOffsets=*/false);
16252 case Intrinsic::aarch64_sve_ld1_gather_uxtw_index:
16253 return performGatherLoadCombine(N, DAG,
16254 AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO,
16255 /*OnlyPackedOffsets=*/false);
16256 case Intrinsic::aarch64_sve_ld1_gather_scalar_offset:
16257 return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_IMM_MERGE_ZERO);
16258 case Intrinsic::aarch64_sve_ldff1_gather:
16259 return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_MERGE_ZERO);
16260 case Intrinsic::aarch64_sve_ldff1_gather_index:
16261 return performGatherLoadCombine(N, DAG,
16262 AArch64ISD::GLDFF1_SCALED_MERGE_ZERO);
16263 case Intrinsic::aarch64_sve_ldff1_gather_sxtw:
16264 return performGatherLoadCombine(N, DAG,
16265 AArch64ISD::GLDFF1_SXTW_MERGE_ZERO,
16266 /*OnlyPackedOffsets=*/false);
16267 case Intrinsic::aarch64_sve_ldff1_gather_uxtw:
16268 return performGatherLoadCombine(N, DAG,
16269 AArch64ISD::GLDFF1_UXTW_MERGE_ZERO,
16270 /*OnlyPackedOffsets=*/false);
16271 case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index:
16272 return performGatherLoadCombine(N, DAG,
16273 AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO,
16274 /*OnlyPackedOffsets=*/false);
16275 case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index:
16276 return performGatherLoadCombine(N, DAG,
16277 AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO,
16278 /*OnlyPackedOffsets=*/false);
16279 case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset:
16280 return performGatherLoadCombine(N, DAG,
16281 AArch64ISD::GLDFF1_IMM_MERGE_ZERO);
16282 case Intrinsic::aarch64_sve_st1_scatter:
16283 return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_PRED);
16284 case Intrinsic::aarch64_sve_st1_scatter_index:
16285 return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SCALED_PRED);
16286 case Intrinsic::aarch64_sve_st1_scatter_sxtw:
16287 return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SXTW_PRED,
16288 /*OnlyPackedOffsets=*/false);
16289 case Intrinsic::aarch64_sve_st1_scatter_uxtw:
16290 return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_UXTW_PRED,
16291 /*OnlyPackedOffsets=*/false);
16292 case Intrinsic::aarch64_sve_st1_scatter_sxtw_index:
16293 return performScatterStoreCombine(N, DAG,
16294 AArch64ISD::SST1_SXTW_SCALED_PRED,
16295 /*OnlyPackedOffsets=*/false);
16296 case Intrinsic::aarch64_sve_st1_scatter_uxtw_index:
16297 return performScatterStoreCombine(N, DAG,
16298 AArch64ISD::SST1_UXTW_SCALED_PRED,
16299 /*OnlyPackedOffsets=*/false);
16300 case Intrinsic::aarch64_sve_st1_scatter_scalar_offset:
16301 return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_IMM_PRED);
16302 case Intrinsic::aarch64_sve_tuple_get: {
16303 SDLoc DL(N);
16304 SDValue Chain = N->getOperand(0);
16305 SDValue Src1 = N->getOperand(2);
16306 SDValue Idx = N->getOperand(3);
16307
16308 uint64_t IdxConst = cast<ConstantSDNode>(Idx)->getZExtValue();
16309 EVT ResVT = N->getValueType(0);
16310 uint64_t NumLanes = ResVT.getVectorElementCount().getKnownMinValue();
16311 SDValue ExtIdx = DAG.getVectorIdxConstant(IdxConst * NumLanes, DL);
16312 SDValue Val =
16313 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResVT, Src1, ExtIdx);
16314 return DAG.getMergeValues({Val, Chain}, DL);
16315 }
16316 case Intrinsic::aarch64_sve_tuple_set: {
16317 SDLoc DL(N);
16318 SDValue Chain = N->getOperand(0);
16319 SDValue Tuple = N->getOperand(2);
16320 SDValue Idx = N->getOperand(3);
16321 SDValue Vec = N->getOperand(4);
16322
16323 EVT TupleVT = Tuple.getValueType();
16324 uint64_t TupleLanes = TupleVT.getVectorElementCount().getKnownMinValue();
16325
16326 uint64_t IdxConst = cast<ConstantSDNode>(Idx)->getZExtValue();
16327 uint64_t NumLanes =
16328 Vec.getValueType().getVectorElementCount().getKnownMinValue();
16329
16330 if ((TupleLanes % NumLanes) != 0)
16331 report_fatal_error("invalid tuple vector!");
16332
16333 uint64_t NumVecs = TupleLanes / NumLanes;
16334
16335 SmallVector<SDValue, 4> Opnds;
16336 for (unsigned I = 0; I < NumVecs; ++I) {
16337 if (I == IdxConst)
16338 Opnds.push_back(Vec);
16339 else {
16340 SDValue ExtIdx = DAG.getVectorIdxConstant(I * NumLanes, DL);
16341 Opnds.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
16342 Vec.getValueType(), Tuple, ExtIdx));
16343 }
16344 }
16345 SDValue Concat =
16346 DAG.getNode(ISD::CONCAT_VECTORS, DL, Tuple.getValueType(), Opnds);
16347 return DAG.getMergeValues({Concat, Chain}, DL);
16348 }
16349 case Intrinsic::aarch64_sve_tuple_create2:
16350 case Intrinsic::aarch64_sve_tuple_create3:
16351 case Intrinsic::aarch64_sve_tuple_create4: {
16352 SDLoc DL(N);
16353 SDValue Chain = N->getOperand(0);
16354
16355 SmallVector<SDValue, 4> Opnds;
16356 for (unsigned I = 2; I < N->getNumOperands(); ++I)
16357 Opnds.push_back(N->getOperand(I));
16358
16359 EVT VT = Opnds[0].getValueType();
16360 EVT EltVT = VT.getVectorElementType();
16361 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
16362 VT.getVectorElementCount() *
16363 (N->getNumOperands() - 2));
16364 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, DestVT, Opnds);
16365 return DAG.getMergeValues({Concat, Chain}, DL);
16366 }
16367 case Intrinsic::aarch64_sve_ld2:
16368 case Intrinsic::aarch64_sve_ld3:
16369 case Intrinsic::aarch64_sve_ld4: {
16370 SDLoc DL(N);
16371 SDValue Chain = N->getOperand(0);
16372 SDValue Mask = N->getOperand(2);
16373 SDValue BasePtr = N->getOperand(3);
16374 SDValue LoadOps[] = {Chain, Mask, BasePtr};
16375 unsigned IntrinsicID =
16376 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
16377 SDValue Result =
16378 LowerSVEStructLoad(IntrinsicID, LoadOps, N->getValueType(0), DAG, DL);
16379 return DAG.getMergeValues({Result, Chain}, DL);
16380 }
16381 case Intrinsic::aarch64_rndr:
16382 case Intrinsic::aarch64_rndrrs: {
16383 unsigned IntrinsicID =
16384 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
16385 auto Register =
16386 (IntrinsicID == Intrinsic::aarch64_rndr ? AArch64SysReg::RNDR
16387 : AArch64SysReg::RNDRRS);
16388 SDLoc DL(N);
16389 SDValue A = DAG.getNode(
16390 AArch64ISD::MRS, DL, DAG.getVTList(MVT::i64, MVT::Glue, MVT::Other),
16391 N->getOperand(0), DAG.getConstant(Register, DL, MVT::i64));
16392 SDValue B = DAG.getNode(
16393 AArch64ISD::CSINC, DL, MVT::i32, DAG.getConstant(0, DL, MVT::i32),
16394 DAG.getConstant(0, DL, MVT::i32),
16395 DAG.getConstant(AArch64CC::NE, DL, MVT::i32), A.getValue(1));
16396 return DAG.getMergeValues(
16397 {A, DAG.getZExtOrTrunc(B, DL, MVT::i1), A.getValue(2)}, DL);
16398 }
16399 default:
16400 break;
16401 }
16402 break;
16403 case ISD::GlobalAddress:
16404 return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
16405 }
16406 return SDValue();
16407 }
16408
16409 // Check if the return value is used as only a return value, as otherwise
16410 // we can't perform a tail-call. In particular, we need to check for
16411 // target ISD nodes that are returns and any other "odd" constructs
16412 // that the generic analysis code won't necessarily catch.
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const16413 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
16414 SDValue &Chain) const {
16415 if (N->getNumValues() != 1)
16416 return false;
16417 if (!N->hasNUsesOfValue(1, 0))
16418 return false;
16419
16420 SDValue TCChain = Chain;
16421 SDNode *Copy = *N->use_begin();
16422 if (Copy->getOpcode() == ISD::CopyToReg) {
16423 // If the copy has a glue operand, we conservatively assume it isn't safe to
16424 // perform a tail call.
16425 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
16426 MVT::Glue)
16427 return false;
16428 TCChain = Copy->getOperand(0);
16429 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
16430 return false;
16431
16432 bool HasRet = false;
16433 for (SDNode *Node : Copy->uses()) {
16434 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
16435 return false;
16436 HasRet = true;
16437 }
16438
16439 if (!HasRet)
16440 return false;
16441
16442 Chain = TCChain;
16443 return true;
16444 }
16445
16446 // Return whether the an instruction can potentially be optimized to a tail
16447 // call. This will cause the optimizers to attempt to move, or duplicate,
16448 // return instructions to help enable tail call optimizations for this
16449 // instruction.
mayBeEmittedAsTailCall(const CallInst * CI) const16450 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16451 return CI->isTailCall();
16452 }
16453
getIndexedAddressParts(SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,bool & IsInc,SelectionDAG & DAG) const16454 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
16455 SDValue &Offset,
16456 ISD::MemIndexedMode &AM,
16457 bool &IsInc,
16458 SelectionDAG &DAG) const {
16459 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
16460 return false;
16461
16462 Base = Op->getOperand(0);
16463 // All of the indexed addressing mode instructions take a signed
16464 // 9 bit immediate offset.
16465 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
16466 int64_t RHSC = RHS->getSExtValue();
16467 if (Op->getOpcode() == ISD::SUB)
16468 RHSC = -(uint64_t)RHSC;
16469 if (!isInt<9>(RHSC))
16470 return false;
16471 IsInc = (Op->getOpcode() == ISD::ADD);
16472 Offset = Op->getOperand(1);
16473 return true;
16474 }
16475 return false;
16476 }
16477
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const16478 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
16479 SDValue &Offset,
16480 ISD::MemIndexedMode &AM,
16481 SelectionDAG &DAG) const {
16482 EVT VT;
16483 SDValue Ptr;
16484 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
16485 VT = LD->getMemoryVT();
16486 Ptr = LD->getBasePtr();
16487 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
16488 VT = ST->getMemoryVT();
16489 Ptr = ST->getBasePtr();
16490 } else
16491 return false;
16492
16493 bool IsInc;
16494 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
16495 return false;
16496 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
16497 return true;
16498 }
16499
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const16500 bool AArch64TargetLowering::getPostIndexedAddressParts(
16501 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
16502 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
16503 EVT VT;
16504 SDValue Ptr;
16505 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
16506 VT = LD->getMemoryVT();
16507 Ptr = LD->getBasePtr();
16508 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
16509 VT = ST->getMemoryVT();
16510 Ptr = ST->getBasePtr();
16511 } else
16512 return false;
16513
16514 bool IsInc;
16515 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
16516 return false;
16517 // Post-indexing updates the base, so it's not a valid transform
16518 // if that's not the same as the load's pointer.
16519 if (Ptr != Base)
16520 return false;
16521 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
16522 return true;
16523 }
16524
ReplaceBITCASTResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)16525 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
16526 SelectionDAG &DAG) {
16527 SDLoc DL(N);
16528 SDValue Op = N->getOperand(0);
16529
16530 if (N->getValueType(0) != MVT::i16 ||
16531 (Op.getValueType() != MVT::f16 && Op.getValueType() != MVT::bf16))
16532 return;
16533
16534 Op = SDValue(
16535 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
16536 DAG.getUNDEF(MVT::i32), Op,
16537 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
16538 0);
16539 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
16540 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
16541 }
16542
ReplaceReductionResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned InterOp,unsigned AcrossOp)16543 static void ReplaceReductionResults(SDNode *N,
16544 SmallVectorImpl<SDValue> &Results,
16545 SelectionDAG &DAG, unsigned InterOp,
16546 unsigned AcrossOp) {
16547 EVT LoVT, HiVT;
16548 SDValue Lo, Hi;
16549 SDLoc dl(N);
16550 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
16551 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
16552 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
16553 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
16554 Results.push_back(SplitVal);
16555 }
16556
splitInt128(SDValue N,SelectionDAG & DAG)16557 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
16558 SDLoc DL(N);
16559 SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
16560 SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
16561 DAG.getNode(ISD::SRL, DL, MVT::i128, N,
16562 DAG.getConstant(64, DL, MVT::i64)));
16563 return std::make_pair(Lo, Hi);
16564 }
16565
ReplaceExtractSubVectorResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const16566 void AArch64TargetLowering::ReplaceExtractSubVectorResults(
16567 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
16568 SDValue In = N->getOperand(0);
16569 EVT InVT = In.getValueType();
16570
16571 // Common code will handle these just fine.
16572 if (!InVT.isScalableVector() || !InVT.isInteger())
16573 return;
16574
16575 SDLoc DL(N);
16576 EVT VT = N->getValueType(0);
16577
16578 // The following checks bail if this is not a halving operation.
16579
16580 ElementCount ResEC = VT.getVectorElementCount();
16581
16582 if (InVT.getVectorElementCount() != (ResEC * 2))
16583 return;
16584
16585 auto *CIndex = dyn_cast<ConstantSDNode>(N->getOperand(1));
16586 if (!CIndex)
16587 return;
16588
16589 unsigned Index = CIndex->getZExtValue();
16590 if ((Index != 0) && (Index != ResEC.getKnownMinValue()))
16591 return;
16592
16593 unsigned Opcode = (Index == 0) ? AArch64ISD::UUNPKLO : AArch64ISD::UUNPKHI;
16594 EVT ExtendedHalfVT = VT.widenIntegerVectorElementType(*DAG.getContext());
16595
16596 SDValue Half = DAG.getNode(Opcode, DL, ExtendedHalfVT, N->getOperand(0));
16597 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Half));
16598 }
16599
16600 // Create an even/odd pair of X registers holding integer value V.
createGPRPairNode(SelectionDAG & DAG,SDValue V)16601 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
16602 SDLoc dl(V.getNode());
16603 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
16604 SDValue VHi = DAG.getAnyExtOrTrunc(
16605 DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
16606 dl, MVT::i64);
16607 if (DAG.getDataLayout().isBigEndian())
16608 std::swap (VLo, VHi);
16609 SDValue RegClass =
16610 DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
16611 SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
16612 SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
16613 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
16614 return SDValue(
16615 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
16616 }
16617
ReplaceCMP_SWAP_128Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)16618 static void ReplaceCMP_SWAP_128Results(SDNode *N,
16619 SmallVectorImpl<SDValue> &Results,
16620 SelectionDAG &DAG,
16621 const AArch64Subtarget *Subtarget) {
16622 assert(N->getValueType(0) == MVT::i128 &&
16623 "AtomicCmpSwap on types less than 128 should be legal");
16624
16625 if (Subtarget->hasLSE() || Subtarget->outlineAtomics()) {
16626 // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
16627 // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
16628 SDValue Ops[] = {
16629 createGPRPairNode(DAG, N->getOperand(2)), // Compare value
16630 createGPRPairNode(DAG, N->getOperand(3)), // Store value
16631 N->getOperand(1), // Ptr
16632 N->getOperand(0), // Chain in
16633 };
16634
16635 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
16636
16637 unsigned Opcode;
16638 switch (MemOp->getOrdering()) {
16639 case AtomicOrdering::Monotonic:
16640 Opcode = AArch64::CASPX;
16641 break;
16642 case AtomicOrdering::Acquire:
16643 Opcode = AArch64::CASPAX;
16644 break;
16645 case AtomicOrdering::Release:
16646 Opcode = AArch64::CASPLX;
16647 break;
16648 case AtomicOrdering::AcquireRelease:
16649 case AtomicOrdering::SequentiallyConsistent:
16650 Opcode = AArch64::CASPALX;
16651 break;
16652 default:
16653 llvm_unreachable("Unexpected ordering!");
16654 }
16655
16656 MachineSDNode *CmpSwap = DAG.getMachineNode(
16657 Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
16658 DAG.setNodeMemRefs(CmpSwap, {MemOp});
16659
16660 unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
16661 if (DAG.getDataLayout().isBigEndian())
16662 std::swap(SubReg1, SubReg2);
16663 SDValue Lo = DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
16664 SDValue(CmpSwap, 0));
16665 SDValue Hi = DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
16666 SDValue(CmpSwap, 0));
16667 Results.push_back(
16668 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Lo, Hi));
16669 Results.push_back(SDValue(CmpSwap, 1)); // Chain out
16670 return;
16671 }
16672
16673 auto Desired = splitInt128(N->getOperand(2), DAG);
16674 auto New = splitInt128(N->getOperand(3), DAG);
16675 SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
16676 New.first, New.second, N->getOperand(0)};
16677 SDNode *CmpSwap = DAG.getMachineNode(
16678 AArch64::CMP_SWAP_128, SDLoc(N),
16679 DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
16680
16681 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
16682 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
16683
16684 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128,
16685 SDValue(CmpSwap, 0), SDValue(CmpSwap, 1)));
16686 Results.push_back(SDValue(CmpSwap, 3));
16687 }
16688
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const16689 void AArch64TargetLowering::ReplaceNodeResults(
16690 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
16691 switch (N->getOpcode()) {
16692 default:
16693 llvm_unreachable("Don't know how to custom expand this");
16694 case ISD::BITCAST:
16695 ReplaceBITCASTResults(N, Results, DAG);
16696 return;
16697 case ISD::VECREDUCE_ADD:
16698 case ISD::VECREDUCE_SMAX:
16699 case ISD::VECREDUCE_SMIN:
16700 case ISD::VECREDUCE_UMAX:
16701 case ISD::VECREDUCE_UMIN:
16702 Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
16703 return;
16704
16705 case ISD::CTPOP:
16706 if (SDValue Result = LowerCTPOP(SDValue(N, 0), DAG))
16707 Results.push_back(Result);
16708 return;
16709 case AArch64ISD::SADDV:
16710 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
16711 return;
16712 case AArch64ISD::UADDV:
16713 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
16714 return;
16715 case AArch64ISD::SMINV:
16716 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
16717 return;
16718 case AArch64ISD::UMINV:
16719 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
16720 return;
16721 case AArch64ISD::SMAXV:
16722 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
16723 return;
16724 case AArch64ISD::UMAXV:
16725 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
16726 return;
16727 case ISD::FP_TO_UINT:
16728 case ISD::FP_TO_SINT:
16729 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
16730 // Let normal code take care of it by not adding anything to Results.
16731 return;
16732 case ISD::ATOMIC_CMP_SWAP:
16733 ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
16734 return;
16735 case ISD::LOAD: {
16736 assert(SDValue(N, 0).getValueType() == MVT::i128 &&
16737 "unexpected load's value type");
16738 LoadSDNode *LoadNode = cast<LoadSDNode>(N);
16739 if (!LoadNode->isVolatile() || LoadNode->getMemoryVT() != MVT::i128) {
16740 // Non-volatile loads are optimized later in AArch64's load/store
16741 // optimizer.
16742 return;
16743 }
16744
16745 SDValue Result = DAG.getMemIntrinsicNode(
16746 AArch64ISD::LDP, SDLoc(N),
16747 DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}),
16748 {LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(),
16749 LoadNode->getMemOperand());
16750
16751 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128,
16752 Result.getValue(0), Result.getValue(1));
16753 Results.append({Pair, Result.getValue(2) /* Chain */});
16754 return;
16755 }
16756 case ISD::EXTRACT_SUBVECTOR:
16757 ReplaceExtractSubVectorResults(N, Results, DAG);
16758 return;
16759 case ISD::INTRINSIC_WO_CHAIN: {
16760 EVT VT = N->getValueType(0);
16761 assert((VT == MVT::i8 || VT == MVT::i16) &&
16762 "custom lowering for unexpected type");
16763
16764 ConstantSDNode *CN = cast<ConstantSDNode>(N->getOperand(0));
16765 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
16766 switch (IntID) {
16767 default:
16768 return;
16769 case Intrinsic::aarch64_sve_clasta_n: {
16770 SDLoc DL(N);
16771 auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
16772 auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32,
16773 N->getOperand(1), Op2, N->getOperand(3));
16774 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
16775 return;
16776 }
16777 case Intrinsic::aarch64_sve_clastb_n: {
16778 SDLoc DL(N);
16779 auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
16780 auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32,
16781 N->getOperand(1), Op2, N->getOperand(3));
16782 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
16783 return;
16784 }
16785 case Intrinsic::aarch64_sve_lasta: {
16786 SDLoc DL(N);
16787 auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32,
16788 N->getOperand(1), N->getOperand(2));
16789 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
16790 return;
16791 }
16792 case Intrinsic::aarch64_sve_lastb: {
16793 SDLoc DL(N);
16794 auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32,
16795 N->getOperand(1), N->getOperand(2));
16796 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
16797 return;
16798 }
16799 }
16800 }
16801 }
16802 }
16803
useLoadStackGuardNode() const16804 bool AArch64TargetLowering::useLoadStackGuardNode() const {
16805 if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
16806 return TargetLowering::useLoadStackGuardNode();
16807 return true;
16808 }
16809
combineRepeatedFPDivisors() const16810 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
16811 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
16812 // reciprocal if there are three or more FDIVs.
16813 return 3;
16814 }
16815
16816 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const16817 AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
16818 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
16819 // v4i16, v2i32 instead of to promote.
16820 if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
16821 VT == MVT::v1f32)
16822 return TypeWidenVector;
16823
16824 return TargetLoweringBase::getPreferredVectorAction(VT);
16825 }
16826
16827 // Loads and stores less than 128-bits are already atomic; ones above that
16828 // are doomed anyway, so defer to the default libcall and blame the OS when
16829 // things go wrong.
shouldExpandAtomicStoreInIR(StoreInst * SI) const16830 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
16831 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
16832 return Size == 128;
16833 }
16834
16835 // Loads and stores less than 128-bits are already atomic; ones above that
16836 // are doomed anyway, so defer to the default libcall and blame the OS when
16837 // things go wrong.
16838 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const16839 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
16840 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
16841 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
16842 }
16843
16844 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
16845 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const16846 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
16847 if (AI->isFloatingPointOperation())
16848 return AtomicExpansionKind::CmpXChg;
16849
16850 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
16851 if (Size > 128) return AtomicExpansionKind::None;
16852
16853 // Nand is not supported in LSE.
16854 // Leave 128 bits to LLSC or CmpXChg.
16855 if (AI->getOperation() != AtomicRMWInst::Nand && Size < 128) {
16856 if (Subtarget->hasLSE())
16857 return AtomicExpansionKind::None;
16858 if (Subtarget->outlineAtomics()) {
16859 // [U]Min/[U]Max RWM atomics are used in __sync_fetch_ libcalls so far.
16860 // Don't outline them unless
16861 // (1) high level <atomic> support approved:
16862 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0493r1.pdf
16863 // (2) low level libgcc and compiler-rt support implemented by:
16864 // min/max outline atomics helpers
16865 if (AI->getOperation() != AtomicRMWInst::Min &&
16866 AI->getOperation() != AtomicRMWInst::Max &&
16867 AI->getOperation() != AtomicRMWInst::UMin &&
16868 AI->getOperation() != AtomicRMWInst::UMax) {
16869 return AtomicExpansionKind::None;
16870 }
16871 }
16872 }
16873
16874 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16875 // implement atomicrmw without spilling. If the target address is also on the
16876 // stack and close enough to the spill slot, this can lead to a situation
16877 // where the monitor always gets cleared and the atomic operation can never
16878 // succeed. So at -O0 lower this operation to a CAS loop.
16879 if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
16880 return AtomicExpansionKind::CmpXChg;
16881
16882 return AtomicExpansionKind::LLSC;
16883 }
16884
16885 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const16886 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
16887 AtomicCmpXchgInst *AI) const {
16888 // If subtarget has LSE, leave cmpxchg intact for codegen.
16889 if (Subtarget->hasLSE() || Subtarget->outlineAtomics())
16890 return AtomicExpansionKind::None;
16891 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16892 // implement cmpxchg without spilling. If the address being exchanged is also
16893 // on the stack and close enough to the spill slot, this can lead to a
16894 // situation where the monitor always gets cleared and the atomic operation
16895 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16896 if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
16897 return AtomicExpansionKind::None;
16898 return AtomicExpansionKind::LLSC;
16899 }
16900
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const16901 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
16902 AtomicOrdering Ord) const {
16903 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16904 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
16905 bool IsAcquire = isAcquireOrStronger(Ord);
16906
16907 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
16908 // intrinsic must return {i64, i64} and we have to recombine them into a
16909 // single i128 here.
16910 if (ValTy->getPrimitiveSizeInBits() == 128) {
16911 Intrinsic::ID Int =
16912 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
16913 Function *Ldxr = Intrinsic::getDeclaration(M, Int);
16914
16915 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
16916 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
16917
16918 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
16919 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
16920 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
16921 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
16922 return Builder.CreateOr(
16923 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
16924 }
16925
16926 Type *Tys[] = { Addr->getType() };
16927 Intrinsic::ID Int =
16928 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
16929 Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
16930
16931 Type *EltTy = cast<PointerType>(Addr->getType())->getElementType();
16932
16933 const DataLayout &DL = M->getDataLayout();
16934 IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy));
16935 Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy);
16936
16937 return Builder.CreateBitCast(Trunc, EltTy);
16938 }
16939
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const16940 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16941 IRBuilder<> &Builder) const {
16942 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16943 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
16944 }
16945
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const16946 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
16947 Value *Val, Value *Addr,
16948 AtomicOrdering Ord) const {
16949 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16950 bool IsRelease = isReleaseOrStronger(Ord);
16951
16952 // Since the intrinsics must have legal type, the i128 intrinsics take two
16953 // parameters: "i64, i64". We must marshal Val into the appropriate form
16954 // before the call.
16955 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
16956 Intrinsic::ID Int =
16957 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
16958 Function *Stxr = Intrinsic::getDeclaration(M, Int);
16959 Type *Int64Ty = Type::getInt64Ty(M->getContext());
16960
16961 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
16962 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
16963 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
16964 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
16965 }
16966
16967 Intrinsic::ID Int =
16968 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
16969 Type *Tys[] = { Addr->getType() };
16970 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
16971
16972 const DataLayout &DL = M->getDataLayout();
16973 IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType()));
16974 Val = Builder.CreateBitCast(Val, IntValTy);
16975
16976 return Builder.CreateCall(Stxr,
16977 {Builder.CreateZExtOrBitCast(
16978 Val, Stxr->getFunctionType()->getParamType(0)),
16979 Addr});
16980 }
16981
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const16982 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
16983 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
16984 if (Ty->isArrayTy())
16985 return true;
16986
16987 const TypeSize &TySize = Ty->getPrimitiveSizeInBits();
16988 if (TySize.isScalable() && TySize.getKnownMinSize() > 128)
16989 return true;
16990
16991 return false;
16992 }
16993
shouldNormalizeToSelectSequence(LLVMContext &,EVT) const16994 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
16995 EVT) const {
16996 return false;
16997 }
16998
UseTlsOffset(IRBuilder<> & IRB,unsigned Offset)16999 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
17000 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
17001 Function *ThreadPointerFunc =
17002 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
17003 return IRB.CreatePointerCast(
17004 IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc),
17005 Offset),
17006 IRB.getInt8PtrTy()->getPointerTo(0));
17007 }
17008
getIRStackGuard(IRBuilder<> & IRB) const17009 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
17010 // Android provides a fixed TLS slot for the stack cookie. See the definition
17011 // of TLS_SLOT_STACK_GUARD in
17012 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
17013 if (Subtarget->isTargetAndroid())
17014 return UseTlsOffset(IRB, 0x28);
17015
17016 // Fuchsia is similar.
17017 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
17018 if (Subtarget->isTargetFuchsia())
17019 return UseTlsOffset(IRB, -0x10);
17020
17021 return TargetLowering::getIRStackGuard(IRB);
17022 }
17023
insertSSPDeclarations(Module & M) const17024 void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
17025 // MSVC CRT provides functionalities for stack protection.
17026 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
17027 // MSVC CRT has a global variable holding security cookie.
17028 M.getOrInsertGlobal("__security_cookie",
17029 Type::getInt8PtrTy(M.getContext()));
17030
17031 // MSVC CRT has a function to validate security cookie.
17032 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
17033 "__security_check_cookie", Type::getVoidTy(M.getContext()),
17034 Type::getInt8PtrTy(M.getContext()));
17035 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
17036 F->setCallingConv(CallingConv::Win64);
17037 F->addAttribute(1, Attribute::AttrKind::InReg);
17038 }
17039 return;
17040 }
17041 TargetLowering::insertSSPDeclarations(M);
17042 }
17043
getSDagStackGuard(const Module & M) const17044 Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
17045 // MSVC CRT has a global variable holding security cookie.
17046 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
17047 return M.getGlobalVariable("__security_cookie");
17048 return TargetLowering::getSDagStackGuard(M);
17049 }
17050
getSSPStackGuardCheck(const Module & M) const17051 Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
17052 // MSVC CRT has a function to validate security cookie.
17053 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
17054 return M.getFunction("__security_check_cookie");
17055 return TargetLowering::getSSPStackGuardCheck(M);
17056 }
17057
getSafeStackPointerLocation(IRBuilder<> & IRB) const17058 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
17059 // Android provides a fixed TLS slot for the SafeStack pointer. See the
17060 // definition of TLS_SLOT_SAFESTACK in
17061 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
17062 if (Subtarget->isTargetAndroid())
17063 return UseTlsOffset(IRB, 0x48);
17064
17065 // Fuchsia is similar.
17066 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
17067 if (Subtarget->isTargetFuchsia())
17068 return UseTlsOffset(IRB, -0x8);
17069
17070 return TargetLowering::getSafeStackPointerLocation(IRB);
17071 }
17072
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI) const17073 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
17074 const Instruction &AndI) const {
17075 // Only sink 'and' mask to cmp use block if it is masking a single bit, since
17076 // this is likely to be fold the and/cmp/br into a single tbz instruction. It
17077 // may be beneficial to sink in other cases, but we would have to check that
17078 // the cmp would not get folded into the br to form a cbz for these to be
17079 // beneficial.
17080 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
17081 if (!Mask)
17082 return false;
17083 return Mask->getValue().isPowerOf2();
17084 }
17085
17086 bool AArch64TargetLowering::
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X,ConstantSDNode * XC,ConstantSDNode * CC,SDValue Y,unsigned OldShiftOpcode,unsigned NewShiftOpcode,SelectionDAG & DAG) const17087 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
17088 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
17089 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
17090 SelectionDAG &DAG) const {
17091 // Does baseline recommend not to perform the fold by default?
17092 if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
17093 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG))
17094 return false;
17095 // Else, if this is a vector shift, prefer 'shl'.
17096 return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL;
17097 }
17098
shouldExpandShift(SelectionDAG & DAG,SDNode * N) const17099 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG,
17100 SDNode *N) const {
17101 if (DAG.getMachineFunction().getFunction().hasMinSize() &&
17102 !Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin())
17103 return false;
17104 return true;
17105 }
17106
initializeSplitCSR(MachineBasicBlock * Entry) const17107 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
17108 // Update IsSplitCSR in AArch64unctionInfo.
17109 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
17110 AFI->setIsSplitCSR(true);
17111 }
17112
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const17113 void AArch64TargetLowering::insertCopiesSplitCSR(
17114 MachineBasicBlock *Entry,
17115 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
17116 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
17117 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
17118 if (!IStart)
17119 return;
17120
17121 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
17122 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
17123 MachineBasicBlock::iterator MBBI = Entry->begin();
17124 for (const MCPhysReg *I = IStart; *I; ++I) {
17125 const TargetRegisterClass *RC = nullptr;
17126 if (AArch64::GPR64RegClass.contains(*I))
17127 RC = &AArch64::GPR64RegClass;
17128 else if (AArch64::FPR64RegClass.contains(*I))
17129 RC = &AArch64::FPR64RegClass;
17130 else
17131 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
17132
17133 Register NewVR = MRI->createVirtualRegister(RC);
17134 // Create copy from CSR to a virtual register.
17135 // FIXME: this currently does not emit CFI pseudo-instructions, it works
17136 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
17137 // nounwind. If we want to generalize this later, we may need to emit
17138 // CFI pseudo-instructions.
17139 assert(Entry->getParent()->getFunction().hasFnAttribute(
17140 Attribute::NoUnwind) &&
17141 "Function should be nounwind in insertCopiesSplitCSR!");
17142 Entry->addLiveIn(*I);
17143 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
17144 .addReg(*I);
17145
17146 // Insert the copy-back instructions right before the terminator.
17147 for (auto *Exit : Exits)
17148 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
17149 TII->get(TargetOpcode::COPY), *I)
17150 .addReg(NewVR);
17151 }
17152 }
17153
isIntDivCheap(EVT VT,AttributeList Attr) const17154 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
17155 // Integer division on AArch64 is expensive. However, when aggressively
17156 // optimizing for code size, we prefer to use a div instruction, as it is
17157 // usually smaller than the alternative sequence.
17158 // The exception to this is vector division. Since AArch64 doesn't have vector
17159 // integer division, leaving the division as-is is a loss even in terms of
17160 // size, because it will have to be scalarized, while the alternative code
17161 // sequence can be performed in vector form.
17162 bool OptSize = Attr.hasFnAttribute(Attribute::MinSize);
17163 return OptSize && !VT.isVector();
17164 }
17165
preferIncOfAddToSubOfNot(EVT VT) const17166 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
17167 // We want inc-of-add for scalars and sub-of-not for vectors.
17168 return VT.isScalarInteger();
17169 }
17170
enableAggressiveFMAFusion(EVT VT) const17171 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
17172 return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
17173 }
17174
17175 unsigned
getVaListSizeInBits(const DataLayout & DL) const17176 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
17177 if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
17178 return getPointerTy(DL).getSizeInBits();
17179
17180 return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
17181 }
17182
finalizeLowering(MachineFunction & MF) const17183 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
17184 MF.getFrameInfo().computeMaxCallFrameSize(MF);
17185 TargetLoweringBase::finalizeLowering(MF);
17186 }
17187
17188 // Unlike X86, we let frame lowering assign offsets to all catch objects.
needsFixedCatchObjects() const17189 bool AArch64TargetLowering::needsFixedCatchObjects() const {
17190 return false;
17191 }
17192
shouldLocalize(const MachineInstr & MI,const TargetTransformInfo * TTI) const17193 bool AArch64TargetLowering::shouldLocalize(
17194 const MachineInstr &MI, const TargetTransformInfo *TTI) const {
17195 switch (MI.getOpcode()) {
17196 case TargetOpcode::G_GLOBAL_VALUE: {
17197 // On Darwin, TLS global vars get selected into function calls, which
17198 // we don't want localized, as they can get moved into the middle of a
17199 // another call sequence.
17200 const GlobalValue &GV = *MI.getOperand(1).getGlobal();
17201 if (GV.isThreadLocal() && Subtarget->isTargetMachO())
17202 return false;
17203 break;
17204 }
17205 // If we legalized G_GLOBAL_VALUE into ADRP + G_ADD_LOW, mark both as being
17206 // localizable.
17207 case AArch64::ADRP:
17208 case AArch64::G_ADD_LOW:
17209 return true;
17210 default:
17211 break;
17212 }
17213 return TargetLoweringBase::shouldLocalize(MI, TTI);
17214 }
17215
fallBackToDAGISel(const Instruction & Inst) const17216 bool AArch64TargetLowering::fallBackToDAGISel(const Instruction &Inst) const {
17217 if (isa<ScalableVectorType>(Inst.getType()))
17218 return true;
17219
17220 for (unsigned i = 0; i < Inst.getNumOperands(); ++i)
17221 if (isa<ScalableVectorType>(Inst.getOperand(i)->getType()))
17222 return true;
17223
17224 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) {
17225 if (isa<ScalableVectorType>(AI->getAllocatedType()))
17226 return true;
17227 }
17228
17229 return false;
17230 }
17231
17232 // Return the largest legal scalable vector type that matches VT's element type.
getContainerForFixedLengthVector(SelectionDAG & DAG,EVT VT)17233 static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT) {
17234 assert(VT.isFixedLengthVector() &&
17235 DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
17236 "Expected legal fixed length vector!");
17237 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
17238 default:
17239 llvm_unreachable("unexpected element type for SVE container");
17240 case MVT::i8:
17241 return EVT(MVT::nxv16i8);
17242 case MVT::i16:
17243 return EVT(MVT::nxv8i16);
17244 case MVT::i32:
17245 return EVT(MVT::nxv4i32);
17246 case MVT::i64:
17247 return EVT(MVT::nxv2i64);
17248 case MVT::f16:
17249 return EVT(MVT::nxv8f16);
17250 case MVT::f32:
17251 return EVT(MVT::nxv4f32);
17252 case MVT::f64:
17253 return EVT(MVT::nxv2f64);
17254 }
17255 }
17256
17257 // Return a PTRUE with active lanes corresponding to the extent of VT.
getPredicateForFixedLengthVector(SelectionDAG & DAG,SDLoc & DL,EVT VT)17258 static SDValue getPredicateForFixedLengthVector(SelectionDAG &DAG, SDLoc &DL,
17259 EVT VT) {
17260 assert(VT.isFixedLengthVector() &&
17261 DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
17262 "Expected legal fixed length vector!");
17263
17264 int PgPattern;
17265 switch (VT.getVectorNumElements()) {
17266 default:
17267 llvm_unreachable("unexpected element count for SVE predicate");
17268 case 1:
17269 PgPattern = AArch64SVEPredPattern::vl1;
17270 break;
17271 case 2:
17272 PgPattern = AArch64SVEPredPattern::vl2;
17273 break;
17274 case 4:
17275 PgPattern = AArch64SVEPredPattern::vl4;
17276 break;
17277 case 8:
17278 PgPattern = AArch64SVEPredPattern::vl8;
17279 break;
17280 case 16:
17281 PgPattern = AArch64SVEPredPattern::vl16;
17282 break;
17283 case 32:
17284 PgPattern = AArch64SVEPredPattern::vl32;
17285 break;
17286 case 64:
17287 PgPattern = AArch64SVEPredPattern::vl64;
17288 break;
17289 case 128:
17290 PgPattern = AArch64SVEPredPattern::vl128;
17291 break;
17292 case 256:
17293 PgPattern = AArch64SVEPredPattern::vl256;
17294 break;
17295 }
17296
17297 // TODO: For vectors that are exactly getMaxSVEVectorSizeInBits big, we can
17298 // use AArch64SVEPredPattern::all, which can enable the use of unpredicated
17299 // variants of instructions when available.
17300
17301 MVT MaskVT;
17302 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
17303 default:
17304 llvm_unreachable("unexpected element type for SVE predicate");
17305 case MVT::i8:
17306 MaskVT = MVT::nxv16i1;
17307 break;
17308 case MVT::i16:
17309 case MVT::f16:
17310 MaskVT = MVT::nxv8i1;
17311 break;
17312 case MVT::i32:
17313 case MVT::f32:
17314 MaskVT = MVT::nxv4i1;
17315 break;
17316 case MVT::i64:
17317 case MVT::f64:
17318 MaskVT = MVT::nxv2i1;
17319 break;
17320 }
17321
17322 return DAG.getNode(AArch64ISD::PTRUE, DL, MaskVT,
17323 DAG.getTargetConstant(PgPattern, DL, MVT::i64));
17324 }
17325
getPredicateForScalableVector(SelectionDAG & DAG,SDLoc & DL,EVT VT)17326 static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL,
17327 EVT VT) {
17328 assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
17329 "Expected legal scalable vector!");
17330 auto PredTy = VT.changeVectorElementType(MVT::i1);
17331 return getPTrue(DAG, DL, PredTy, AArch64SVEPredPattern::all);
17332 }
17333
getPredicateForVector(SelectionDAG & DAG,SDLoc & DL,EVT VT)17334 static SDValue getPredicateForVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) {
17335 if (VT.isFixedLengthVector())
17336 return getPredicateForFixedLengthVector(DAG, DL, VT);
17337
17338 return getPredicateForScalableVector(DAG, DL, VT);
17339 }
17340
17341 // Grow V to consume an entire SVE register.
convertToScalableVector(SelectionDAG & DAG,EVT VT,SDValue V)17342 static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) {
17343 assert(VT.isScalableVector() &&
17344 "Expected to convert into a scalable vector!");
17345 assert(V.getValueType().isFixedLengthVector() &&
17346 "Expected a fixed length vector operand!");
17347 SDLoc DL(V);
17348 SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
17349 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
17350 }
17351
17352 // Shrink V so it's just big enough to maintain a VT's worth of data.
convertFromScalableVector(SelectionDAG & DAG,EVT VT,SDValue V)17353 static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) {
17354 assert(VT.isFixedLengthVector() &&
17355 "Expected to convert into a fixed length vector!");
17356 assert(V.getValueType().isScalableVector() &&
17357 "Expected a scalable vector operand!");
17358 SDLoc DL(V);
17359 SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
17360 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
17361 }
17362
17363 // Convert all fixed length vector loads larger than NEON to masked_loads.
LowerFixedLengthVectorLoadToSVE(SDValue Op,SelectionDAG & DAG) const17364 SDValue AArch64TargetLowering::LowerFixedLengthVectorLoadToSVE(
17365 SDValue Op, SelectionDAG &DAG) const {
17366 auto Load = cast<LoadSDNode>(Op);
17367
17368 SDLoc DL(Op);
17369 EVT VT = Op.getValueType();
17370 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
17371
17372 auto NewLoad = DAG.getMaskedLoad(
17373 ContainerVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(),
17374 getPredicateForFixedLengthVector(DAG, DL, VT), DAG.getUNDEF(ContainerVT),
17375 Load->getMemoryVT(), Load->getMemOperand(), Load->getAddressingMode(),
17376 Load->getExtensionType());
17377
17378 auto Result = convertFromScalableVector(DAG, VT, NewLoad);
17379 SDValue MergedValues[2] = {Result, Load->getChain()};
17380 return DAG.getMergeValues(MergedValues, DL);
17381 }
17382
convertFixedMaskToScalableVector(SDValue Mask,SelectionDAG & DAG)17383 static SDValue convertFixedMaskToScalableVector(SDValue Mask,
17384 SelectionDAG &DAG) {
17385 SDLoc DL(Mask);
17386 EVT InVT = Mask.getValueType();
17387 EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
17388
17389 auto Op1 = convertToScalableVector(DAG, ContainerVT, Mask);
17390 auto Op2 = DAG.getConstant(0, DL, ContainerVT);
17391 auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT);
17392
17393 EVT CmpVT = Pg.getValueType();
17394 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, CmpVT,
17395 {Pg, Op1, Op2, DAG.getCondCode(ISD::SETNE)});
17396 }
17397
17398 // Convert all fixed length vector loads larger than NEON to masked_loads.
LowerFixedLengthVectorMLoadToSVE(SDValue Op,SelectionDAG & DAG) const17399 SDValue AArch64TargetLowering::LowerFixedLengthVectorMLoadToSVE(
17400 SDValue Op, SelectionDAG &DAG) const {
17401 auto Load = cast<MaskedLoadSDNode>(Op);
17402
17403 if (Load->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD)
17404 return SDValue();
17405
17406 SDLoc DL(Op);
17407 EVT VT = Op.getValueType();
17408 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
17409
17410 SDValue Mask = convertFixedMaskToScalableVector(Load->getMask(), DAG);
17411
17412 SDValue PassThru;
17413 bool IsPassThruZeroOrUndef = false;
17414
17415 if (Load->getPassThru()->isUndef()) {
17416 PassThru = DAG.getUNDEF(ContainerVT);
17417 IsPassThruZeroOrUndef = true;
17418 } else {
17419 if (ContainerVT.isInteger())
17420 PassThru = DAG.getConstant(0, DL, ContainerVT);
17421 else
17422 PassThru = DAG.getConstantFP(0, DL, ContainerVT);
17423 if (isZerosVector(Load->getPassThru().getNode()))
17424 IsPassThruZeroOrUndef = true;
17425 }
17426
17427 auto NewLoad = DAG.getMaskedLoad(
17428 ContainerVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(),
17429 Mask, PassThru, Load->getMemoryVT(), Load->getMemOperand(),
17430 Load->getAddressingMode(), Load->getExtensionType());
17431
17432 if (!IsPassThruZeroOrUndef) {
17433 SDValue OldPassThru =
17434 convertToScalableVector(DAG, ContainerVT, Load->getPassThru());
17435 NewLoad = DAG.getSelect(DL, ContainerVT, Mask, NewLoad, OldPassThru);
17436 }
17437
17438 auto Result = convertFromScalableVector(DAG, VT, NewLoad);
17439 SDValue MergedValues[2] = {Result, Load->getChain()};
17440 return DAG.getMergeValues(MergedValues, DL);
17441 }
17442
17443 // Convert all fixed length vector stores larger than NEON to masked_stores.
LowerFixedLengthVectorStoreToSVE(SDValue Op,SelectionDAG & DAG) const17444 SDValue AArch64TargetLowering::LowerFixedLengthVectorStoreToSVE(
17445 SDValue Op, SelectionDAG &DAG) const {
17446 auto Store = cast<StoreSDNode>(Op);
17447
17448 SDLoc DL(Op);
17449 EVT VT = Store->getValue().getValueType();
17450 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
17451
17452 auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue());
17453 return DAG.getMaskedStore(
17454 Store->getChain(), DL, NewValue, Store->getBasePtr(), Store->getOffset(),
17455 getPredicateForFixedLengthVector(DAG, DL, VT), Store->getMemoryVT(),
17456 Store->getMemOperand(), Store->getAddressingMode(),
17457 Store->isTruncatingStore());
17458 }
17459
LowerFixedLengthVectorMStoreToSVE(SDValue Op,SelectionDAG & DAG) const17460 SDValue AArch64TargetLowering::LowerFixedLengthVectorMStoreToSVE(
17461 SDValue Op, SelectionDAG &DAG) const {
17462 auto Store = cast<MaskedStoreSDNode>(Op);
17463
17464 if (Store->isTruncatingStore())
17465 return SDValue();
17466
17467 SDLoc DL(Op);
17468 EVT VT = Store->getValue().getValueType();
17469 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
17470
17471 auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue());
17472 SDValue Mask = convertFixedMaskToScalableVector(Store->getMask(), DAG);
17473
17474 return DAG.getMaskedStore(
17475 Store->getChain(), DL, NewValue, Store->getBasePtr(), Store->getOffset(),
17476 Mask, Store->getMemoryVT(), Store->getMemOperand(),
17477 Store->getAddressingMode(), Store->isTruncatingStore());
17478 }
17479
LowerFixedLengthVectorIntDivideToSVE(SDValue Op,SelectionDAG & DAG) const17480 SDValue AArch64TargetLowering::LowerFixedLengthVectorIntDivideToSVE(
17481 SDValue Op, SelectionDAG &DAG) const {
17482 SDLoc dl(Op);
17483 EVT VT = Op.getValueType();
17484 EVT EltVT = VT.getVectorElementType();
17485
17486 bool Signed = Op.getOpcode() == ISD::SDIV;
17487 unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED;
17488
17489 // Scalable vector i32/i64 DIV is supported.
17490 if (EltVT == MVT::i32 || EltVT == MVT::i64)
17491 return LowerToPredicatedOp(Op, DAG, PredOpcode, /*OverrideNEON=*/true);
17492
17493 // Scalable vector i8/i16 DIV is not supported. Promote it to i32.
17494 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
17495 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
17496 EVT FixedWidenedVT = HalfVT.widenIntegerVectorElementType(*DAG.getContext());
17497 EVT ScalableWidenedVT = getContainerForFixedLengthVector(DAG, FixedWidenedVT);
17498
17499 // If this is not a full vector, extend, div, and truncate it.
17500 EVT WidenedVT = VT.widenIntegerVectorElementType(*DAG.getContext());
17501 if (DAG.getTargetLoweringInfo().isTypeLegal(WidenedVT)) {
17502 unsigned ExtendOpcode = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
17503 SDValue Op0 = DAG.getNode(ExtendOpcode, dl, WidenedVT, Op.getOperand(0));
17504 SDValue Op1 = DAG.getNode(ExtendOpcode, dl, WidenedVT, Op.getOperand(1));
17505 SDValue Div = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0, Op1);
17506 return DAG.getNode(ISD::TRUNCATE, dl, VT, Div);
17507 }
17508
17509 // Convert the operands to scalable vectors.
17510 SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0));
17511 SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(1));
17512
17513 // Extend the scalable operands.
17514 unsigned UnpkLo = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO;
17515 unsigned UnpkHi = Signed ? AArch64ISD::SUNPKHI : AArch64ISD::UUNPKHI;
17516 SDValue Op0Lo = DAG.getNode(UnpkLo, dl, ScalableWidenedVT, Op0);
17517 SDValue Op1Lo = DAG.getNode(UnpkLo, dl, ScalableWidenedVT, Op1);
17518 SDValue Op0Hi = DAG.getNode(UnpkHi, dl, ScalableWidenedVT, Op0);
17519 SDValue Op1Hi = DAG.getNode(UnpkHi, dl, ScalableWidenedVT, Op1);
17520
17521 // Convert back to fixed vectors so the DIV can be further lowered.
17522 Op0Lo = convertFromScalableVector(DAG, FixedWidenedVT, Op0Lo);
17523 Op1Lo = convertFromScalableVector(DAG, FixedWidenedVT, Op1Lo);
17524 Op0Hi = convertFromScalableVector(DAG, FixedWidenedVT, Op0Hi);
17525 Op1Hi = convertFromScalableVector(DAG, FixedWidenedVT, Op1Hi);
17526 SDValue ResultLo = DAG.getNode(Op.getOpcode(), dl, FixedWidenedVT,
17527 Op0Lo, Op1Lo);
17528 SDValue ResultHi = DAG.getNode(Op.getOpcode(), dl, FixedWidenedVT,
17529 Op0Hi, Op1Hi);
17530
17531 // Convert again to scalable vectors to truncate.
17532 ResultLo = convertToScalableVector(DAG, ScalableWidenedVT, ResultLo);
17533 ResultHi = convertToScalableVector(DAG, ScalableWidenedVT, ResultHi);
17534 SDValue ScalableResult = DAG.getNode(AArch64ISD::UZP1, dl, ContainerVT,
17535 ResultLo, ResultHi);
17536
17537 return convertFromScalableVector(DAG, VT, ScalableResult);
17538 }
17539
LowerFixedLengthVectorIntExtendToSVE(SDValue Op,SelectionDAG & DAG) const17540 SDValue AArch64TargetLowering::LowerFixedLengthVectorIntExtendToSVE(
17541 SDValue Op, SelectionDAG &DAG) const {
17542 EVT VT = Op.getValueType();
17543 assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
17544
17545 SDLoc DL(Op);
17546 SDValue Val = Op.getOperand(0);
17547 EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType());
17548 Val = convertToScalableVector(DAG, ContainerVT, Val);
17549
17550 bool Signed = Op.getOpcode() == ISD::SIGN_EXTEND;
17551 unsigned ExtendOpc = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO;
17552
17553 // Repeatedly unpack Val until the result is of the desired element type.
17554 switch (ContainerVT.getSimpleVT().SimpleTy) {
17555 default:
17556 llvm_unreachable("unimplemented container type");
17557 case MVT::nxv16i8:
17558 Val = DAG.getNode(ExtendOpc, DL, MVT::nxv8i16, Val);
17559 if (VT.getVectorElementType() == MVT::i16)
17560 break;
17561 LLVM_FALLTHROUGH;
17562 case MVT::nxv8i16:
17563 Val = DAG.getNode(ExtendOpc, DL, MVT::nxv4i32, Val);
17564 if (VT.getVectorElementType() == MVT::i32)
17565 break;
17566 LLVM_FALLTHROUGH;
17567 case MVT::nxv4i32:
17568 Val = DAG.getNode(ExtendOpc, DL, MVT::nxv2i64, Val);
17569 assert(VT.getVectorElementType() == MVT::i64 && "Unexpected element type!");
17570 break;
17571 }
17572
17573 return convertFromScalableVector(DAG, VT, Val);
17574 }
17575
LowerFixedLengthVectorTruncateToSVE(SDValue Op,SelectionDAG & DAG) const17576 SDValue AArch64TargetLowering::LowerFixedLengthVectorTruncateToSVE(
17577 SDValue Op, SelectionDAG &DAG) const {
17578 EVT VT = Op.getValueType();
17579 assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
17580
17581 SDLoc DL(Op);
17582 SDValue Val = Op.getOperand(0);
17583 EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType());
17584 Val = convertToScalableVector(DAG, ContainerVT, Val);
17585
17586 // Repeatedly truncate Val until the result is of the desired element type.
17587 switch (ContainerVT.getSimpleVT().SimpleTy) {
17588 default:
17589 llvm_unreachable("unimplemented container type");
17590 case MVT::nxv2i64:
17591 Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv4i32, Val);
17592 Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv4i32, Val, Val);
17593 if (VT.getVectorElementType() == MVT::i32)
17594 break;
17595 LLVM_FALLTHROUGH;
17596 case MVT::nxv4i32:
17597 Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv8i16, Val);
17598 Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv8i16, Val, Val);
17599 if (VT.getVectorElementType() == MVT::i16)
17600 break;
17601 LLVM_FALLTHROUGH;
17602 case MVT::nxv8i16:
17603 Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i8, Val);
17604 Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv16i8, Val, Val);
17605 assert(VT.getVectorElementType() == MVT::i8 && "Unexpected element type!");
17606 break;
17607 }
17608
17609 return convertFromScalableVector(DAG, VT, Val);
17610 }
17611
LowerFixedLengthExtractVectorElt(SDValue Op,SelectionDAG & DAG) const17612 SDValue AArch64TargetLowering::LowerFixedLengthExtractVectorElt(
17613 SDValue Op, SelectionDAG &DAG) const {
17614 EVT VT = Op.getValueType();
17615 EVT InVT = Op.getOperand(0).getValueType();
17616 assert(InVT.isFixedLengthVector() && "Expected fixed length vector type!");
17617
17618 SDLoc DL(Op);
17619 EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
17620 SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(0));
17621
17622 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Op.getOperand(1));
17623 }
17624
LowerFixedLengthInsertVectorElt(SDValue Op,SelectionDAG & DAG) const17625 SDValue AArch64TargetLowering::LowerFixedLengthInsertVectorElt(
17626 SDValue Op, SelectionDAG &DAG) const {
17627 EVT VT = Op.getValueType();
17628 assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
17629
17630 SDLoc DL(Op);
17631 EVT InVT = Op.getOperand(0).getValueType();
17632 EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
17633 SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(0));
17634
17635 auto ScalableRes = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT, Op0,
17636 Op.getOperand(1), Op.getOperand(2));
17637
17638 return convertFromScalableVector(DAG, VT, ScalableRes);
17639 }
17640
17641 // Convert vector operation 'Op' to an equivalent predicated operation whereby
17642 // the original operation's type is used to construct a suitable predicate.
17643 // NOTE: The results for inactive lanes are undefined.
LowerToPredicatedOp(SDValue Op,SelectionDAG & DAG,unsigned NewOp,bool OverrideNEON) const17644 SDValue AArch64TargetLowering::LowerToPredicatedOp(SDValue Op,
17645 SelectionDAG &DAG,
17646 unsigned NewOp,
17647 bool OverrideNEON) const {
17648 EVT VT = Op.getValueType();
17649 SDLoc DL(Op);
17650 auto Pg = getPredicateForVector(DAG, DL, VT);
17651
17652 if (useSVEForFixedLengthVectorVT(VT, OverrideNEON)) {
17653 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
17654
17655 // Create list of operands by converting existing ones to scalable types.
17656 SmallVector<SDValue, 4> Operands = {Pg};
17657 for (const SDValue &V : Op->op_values()) {
17658 if (isa<CondCodeSDNode>(V)) {
17659 Operands.push_back(V);
17660 continue;
17661 }
17662
17663 if (const VTSDNode *VTNode = dyn_cast<VTSDNode>(V)) {
17664 EVT VTArg = VTNode->getVT().getVectorElementType();
17665 EVT NewVTArg = ContainerVT.changeVectorElementType(VTArg);
17666 Operands.push_back(DAG.getValueType(NewVTArg));
17667 continue;
17668 }
17669
17670 assert(useSVEForFixedLengthVectorVT(V.getValueType(), OverrideNEON) &&
17671 "Only fixed length vectors are supported!");
17672 Operands.push_back(convertToScalableVector(DAG, ContainerVT, V));
17673 }
17674
17675 if (isMergePassthruOpcode(NewOp))
17676 Operands.push_back(DAG.getUNDEF(ContainerVT));
17677
17678 auto ScalableRes = DAG.getNode(NewOp, DL, ContainerVT, Operands);
17679 return convertFromScalableVector(DAG, VT, ScalableRes);
17680 }
17681
17682 assert(VT.isScalableVector() && "Only expect to lower scalable vector op!");
17683
17684 SmallVector<SDValue, 4> Operands = {Pg};
17685 for (const SDValue &V : Op->op_values()) {
17686 assert((!V.getValueType().isVector() ||
17687 V.getValueType().isScalableVector()) &&
17688 "Only scalable vectors are supported!");
17689 Operands.push_back(V);
17690 }
17691
17692 if (isMergePassthruOpcode(NewOp))
17693 Operands.push_back(DAG.getUNDEF(VT));
17694
17695 return DAG.getNode(NewOp, DL, VT, Operands);
17696 }
17697
17698 // If a fixed length vector operation has no side effects when applied to
17699 // undefined elements, we can safely use scalable vectors to perform the same
17700 // operation without needing to worry about predication.
LowerToScalableOp(SDValue Op,SelectionDAG & DAG) const17701 SDValue AArch64TargetLowering::LowerToScalableOp(SDValue Op,
17702 SelectionDAG &DAG) const {
17703 EVT VT = Op.getValueType();
17704 assert(useSVEForFixedLengthVectorVT(VT) &&
17705 "Only expected to lower fixed length vector operation!");
17706 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
17707
17708 // Create list of operands by converting existing ones to scalable types.
17709 SmallVector<SDValue, 4> Ops;
17710 for (const SDValue &V : Op->op_values()) {
17711 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
17712
17713 // Pass through non-vector operands.
17714 if (!V.getValueType().isVector()) {
17715 Ops.push_back(V);
17716 continue;
17717 }
17718
17719 // "cast" fixed length vector to a scalable vector.
17720 assert(useSVEForFixedLengthVectorVT(V.getValueType()) &&
17721 "Only fixed length vectors are supported!");
17722 Ops.push_back(convertToScalableVector(DAG, ContainerVT, V));
17723 }
17724
17725 auto ScalableRes = DAG.getNode(Op.getOpcode(), SDLoc(Op), ContainerVT, Ops);
17726 return convertFromScalableVector(DAG, VT, ScalableRes);
17727 }
17728
LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp,SelectionDAG & DAG) const17729 SDValue AArch64TargetLowering::LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp,
17730 SelectionDAG &DAG) const {
17731 SDLoc DL(ScalarOp);
17732 SDValue AccOp = ScalarOp.getOperand(0);
17733 SDValue VecOp = ScalarOp.getOperand(1);
17734 EVT SrcVT = VecOp.getValueType();
17735 EVT ResVT = SrcVT.getVectorElementType();
17736
17737 EVT ContainerVT = SrcVT;
17738 if (SrcVT.isFixedLengthVector()) {
17739 ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT);
17740 VecOp = convertToScalableVector(DAG, ContainerVT, VecOp);
17741 }
17742
17743 SDValue Pg = getPredicateForVector(DAG, DL, SrcVT);
17744 SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
17745
17746 // Convert operands to Scalable.
17747 AccOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT,
17748 DAG.getUNDEF(ContainerVT), AccOp, Zero);
17749
17750 // Perform reduction.
17751 SDValue Rdx = DAG.getNode(AArch64ISD::FADDA_PRED, DL, ContainerVT,
17752 Pg, AccOp, VecOp);
17753
17754 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Rdx, Zero);
17755 }
17756
LowerPredReductionToSVE(SDValue ReduceOp,SelectionDAG & DAG) const17757 SDValue AArch64TargetLowering::LowerPredReductionToSVE(SDValue ReduceOp,
17758 SelectionDAG &DAG) const {
17759 SDLoc DL(ReduceOp);
17760 SDValue Op = ReduceOp.getOperand(0);
17761 EVT OpVT = Op.getValueType();
17762 EVT VT = ReduceOp.getValueType();
17763
17764 if (!OpVT.isScalableVector() || OpVT.getVectorElementType() != MVT::i1)
17765 return SDValue();
17766
17767 SDValue Pg = getPredicateForVector(DAG, DL, OpVT);
17768
17769 switch (ReduceOp.getOpcode()) {
17770 default:
17771 return SDValue();
17772 case ISD::VECREDUCE_OR:
17773 return getPTest(DAG, VT, Pg, Op, AArch64CC::ANY_ACTIVE);
17774 case ISD::VECREDUCE_AND: {
17775 Op = DAG.getNode(ISD::XOR, DL, OpVT, Op, Pg);
17776 return getPTest(DAG, VT, Pg, Op, AArch64CC::NONE_ACTIVE);
17777 }
17778 case ISD::VECREDUCE_XOR: {
17779 SDValue ID =
17780 DAG.getTargetConstant(Intrinsic::aarch64_sve_cntp, DL, MVT::i64);
17781 SDValue Cntp =
17782 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i64, ID, Pg, Op);
17783 return DAG.getAnyExtOrTrunc(Cntp, DL, VT);
17784 }
17785 }
17786
17787 return SDValue();
17788 }
17789
LowerReductionToSVE(unsigned Opcode,SDValue ScalarOp,SelectionDAG & DAG) const17790 SDValue AArch64TargetLowering::LowerReductionToSVE(unsigned Opcode,
17791 SDValue ScalarOp,
17792 SelectionDAG &DAG) const {
17793 SDLoc DL(ScalarOp);
17794 SDValue VecOp = ScalarOp.getOperand(0);
17795 EVT SrcVT = VecOp.getValueType();
17796
17797 if (useSVEForFixedLengthVectorVT(SrcVT, true)) {
17798 EVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT);
17799 VecOp = convertToScalableVector(DAG, ContainerVT, VecOp);
17800 }
17801
17802 // UADDV always returns an i64 result.
17803 EVT ResVT = (Opcode == AArch64ISD::UADDV_PRED) ? MVT::i64 :
17804 SrcVT.getVectorElementType();
17805 EVT RdxVT = SrcVT;
17806 if (SrcVT.isFixedLengthVector() || Opcode == AArch64ISD::UADDV_PRED)
17807 RdxVT = getPackedSVEVectorVT(ResVT);
17808
17809 SDValue Pg = getPredicateForVector(DAG, DL, SrcVT);
17810 SDValue Rdx = DAG.getNode(Opcode, DL, RdxVT, Pg, VecOp);
17811 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT,
17812 Rdx, DAG.getConstant(0, DL, MVT::i64));
17813
17814 // The VEC_REDUCE nodes expect an element size result.
17815 if (ResVT != ScalarOp.getValueType())
17816 Res = DAG.getAnyExtOrTrunc(Res, DL, ScalarOp.getValueType());
17817
17818 return Res;
17819 }
17820
17821 SDValue
LowerFixedLengthVectorSelectToSVE(SDValue Op,SelectionDAG & DAG) const17822 AArch64TargetLowering::LowerFixedLengthVectorSelectToSVE(SDValue Op,
17823 SelectionDAG &DAG) const {
17824 EVT VT = Op.getValueType();
17825 SDLoc DL(Op);
17826
17827 EVT InVT = Op.getOperand(1).getValueType();
17828 EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
17829 SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(1));
17830 SDValue Op2 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(2));
17831
17832 // Convert the mask to a predicated (NOTE: We don't need to worry about
17833 // inactive lanes since VSELECT is safe when given undefined elements).
17834 EVT MaskVT = Op.getOperand(0).getValueType();
17835 EVT MaskContainerVT = getContainerForFixedLengthVector(DAG, MaskVT);
17836 auto Mask = convertToScalableVector(DAG, MaskContainerVT, Op.getOperand(0));
17837 Mask = DAG.getNode(ISD::TRUNCATE, DL,
17838 MaskContainerVT.changeVectorElementType(MVT::i1), Mask);
17839
17840 auto ScalableRes = DAG.getNode(ISD::VSELECT, DL, ContainerVT,
17841 Mask, Op1, Op2);
17842
17843 return convertFromScalableVector(DAG, VT, ScalableRes);
17844 }
17845
LowerFixedLengthVectorSetccToSVE(SDValue Op,SelectionDAG & DAG) const17846 SDValue AArch64TargetLowering::LowerFixedLengthVectorSetccToSVE(
17847 SDValue Op, SelectionDAG &DAG) const {
17848 SDLoc DL(Op);
17849 EVT InVT = Op.getOperand(0).getValueType();
17850 EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
17851
17852 assert(useSVEForFixedLengthVectorVT(InVT) &&
17853 "Only expected to lower fixed length vector operation!");
17854 assert(Op.getValueType() == InVT.changeTypeToInteger() &&
17855 "Expected integer result of the same bit length as the inputs!");
17856
17857 auto Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0));
17858 auto Op2 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(1));
17859 auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT);
17860
17861 EVT CmpVT = Pg.getValueType();
17862 auto Cmp = DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, CmpVT,
17863 {Pg, Op1, Op2, Op.getOperand(2)});
17864
17865 EVT PromoteVT = ContainerVT.changeTypeToInteger();
17866 auto Promote = DAG.getBoolExtOrTrunc(Cmp, DL, PromoteVT, InVT);
17867 return convertFromScalableVector(DAG, Op.getValueType(), Promote);
17868 }
17869
17870 SDValue
LowerFixedLengthBitcastToSVE(SDValue Op,SelectionDAG & DAG) const17871 AArch64TargetLowering::LowerFixedLengthBitcastToSVE(SDValue Op,
17872 SelectionDAG &DAG) const {
17873 SDLoc DL(Op);
17874 auto SrcOp = Op.getOperand(0);
17875 EVT VT = Op.getValueType();
17876 EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT);
17877 EVT ContainerSrcVT =
17878 getContainerForFixedLengthVector(DAG, SrcOp.getValueType());
17879
17880 SrcOp = convertToScalableVector(DAG, ContainerSrcVT, SrcOp);
17881 Op = DAG.getNode(ISD::BITCAST, DL, ContainerDstVT, SrcOp);
17882 return convertFromScalableVector(DAG, VT, Op);
17883 }
17884
getSVESafeBitCast(EVT VT,SDValue Op,SelectionDAG & DAG) const17885 SDValue AArch64TargetLowering::getSVESafeBitCast(EVT VT, SDValue Op,
17886 SelectionDAG &DAG) const {
17887 SDLoc DL(Op);
17888 EVT InVT = Op.getValueType();
17889 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17890 (void)TLI;
17891
17892 assert(VT.isScalableVector() && TLI.isTypeLegal(VT) &&
17893 InVT.isScalableVector() && TLI.isTypeLegal(InVT) &&
17894 "Only expect to cast between legal scalable vector types!");
17895 assert((VT.getVectorElementType() == MVT::i1) ==
17896 (InVT.getVectorElementType() == MVT::i1) &&
17897 "Cannot cast between data and predicate scalable vector types!");
17898
17899 if (InVT == VT)
17900 return Op;
17901
17902 if (VT.getVectorElementType() == MVT::i1)
17903 return DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Op);
17904
17905 EVT PackedVT = getPackedSVEVectorVT(VT.getVectorElementType());
17906 EVT PackedInVT = getPackedSVEVectorVT(InVT.getVectorElementType());
17907 assert((VT == PackedVT || InVT == PackedInVT) &&
17908 "Cannot cast between unpacked scalable vector types!");
17909
17910 // Pack input if required.
17911 if (InVT != PackedInVT)
17912 Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, PackedInVT, Op);
17913
17914 Op = DAG.getNode(ISD::BITCAST, DL, PackedVT, Op);
17915
17916 // Unpack result if required.
17917 if (VT != PackedVT)
17918 Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Op);
17919
17920 return Op;
17921 }
17922
isAllActivePredicate(SDValue N) const17923 bool AArch64TargetLowering::isAllActivePredicate(SDValue N) const {
17924 return ::isAllActivePredicate(N);
17925 }
17926
SimplifyDemandedBitsForTargetNode(SDValue Op,const APInt & OriginalDemandedBits,const APInt & OriginalDemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth) const17927 bool AArch64TargetLowering::SimplifyDemandedBitsForTargetNode(
17928 SDValue Op, const APInt &OriginalDemandedBits,
17929 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
17930 unsigned Depth) const {
17931
17932 unsigned Opc = Op.getOpcode();
17933 switch (Opc) {
17934 case AArch64ISD::VSHL: {
17935 // Match (VSHL (VLSHR Val X) X)
17936 SDValue ShiftL = Op;
17937 SDValue ShiftR = Op->getOperand(0);
17938 if (ShiftR->getOpcode() != AArch64ISD::VLSHR)
17939 return false;
17940
17941 if (!ShiftL.hasOneUse() || !ShiftR.hasOneUse())
17942 return false;
17943
17944 unsigned ShiftLBits = ShiftL->getConstantOperandVal(1);
17945 unsigned ShiftRBits = ShiftR->getConstantOperandVal(1);
17946
17947 // Other cases can be handled as well, but this is not
17948 // implemented.
17949 if (ShiftRBits != ShiftLBits)
17950 return false;
17951
17952 unsigned ScalarSize = Op.getScalarValueSizeInBits();
17953 assert(ScalarSize > ShiftLBits && "Invalid shift imm");
17954
17955 APInt ZeroBits = APInt::getLowBitsSet(ScalarSize, ShiftLBits);
17956 APInt UnusedBits = ~OriginalDemandedBits;
17957
17958 if ((ZeroBits & UnusedBits) != ZeroBits)
17959 return false;
17960
17961 // All bits that are zeroed by (VSHL (VLSHR Val X) X) are not
17962 // used - simplify to just Val.
17963 return TLO.CombineTo(Op, ShiftR->getOperand(0));
17964 }
17965 }
17966
17967 return TargetLowering::SimplifyDemandedBitsForTargetNode(
17968 Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
17969 }
17970