1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ComputeDependence.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/DependenceFlags.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/IgnoreExpr.h" 26 #include "clang/AST/Mangle.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cstring> 40 #include <optional> 41 using namespace clang; 42 43 const Expr *Expr::getBestDynamicClassTypeExpr() const { 44 const Expr *E = this; 45 while (true) { 46 E = E->IgnoreParenBaseCasts(); 47 48 // Follow the RHS of a comma operator. 49 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 50 if (BO->getOpcode() == BO_Comma) { 51 E = BO->getRHS(); 52 continue; 53 } 54 } 55 56 // Step into initializer for materialized temporaries. 57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 58 E = MTE->getSubExpr(); 59 continue; 60 } 61 62 break; 63 } 64 65 return E; 66 } 67 68 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 69 const Expr *E = getBestDynamicClassTypeExpr(); 70 QualType DerivedType = E->getType(); 71 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 72 DerivedType = PTy->getPointeeType(); 73 74 if (DerivedType->isDependentType()) 75 return nullptr; 76 77 const RecordType *Ty = DerivedType->castAs<RecordType>(); 78 Decl *D = Ty->getDecl(); 79 return cast<CXXRecordDecl>(D); 80 } 81 82 const Expr *Expr::skipRValueSubobjectAdjustments( 83 SmallVectorImpl<const Expr *> &CommaLHSs, 84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 85 const Expr *E = this; 86 while (true) { 87 E = E->IgnoreParens(); 88 89 if (const auto *CE = dyn_cast<CastExpr>(E)) { 90 if ((CE->getCastKind() == CK_DerivedToBase || 91 CE->getCastKind() == CK_UncheckedDerivedToBase) && 92 E->getType()->isRecordType()) { 93 E = CE->getSubExpr(); 94 const auto *Derived = 95 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 96 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 97 continue; 98 } 99 100 if (CE->getCastKind() == CK_NoOp) { 101 E = CE->getSubExpr(); 102 continue; 103 } 104 } else if (const auto *ME = dyn_cast<MemberExpr>(E)) { 105 if (!ME->isArrow()) { 106 assert(ME->getBase()->getType()->getAsRecordDecl()); 107 if (const auto *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 109 E = ME->getBase(); 110 Adjustments.push_back(SubobjectAdjustment(Field)); 111 continue; 112 } 113 } 114 } 115 } else if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 116 if (BO->getOpcode() == BO_PtrMemD) { 117 assert(BO->getRHS()->isPRValue()); 118 E = BO->getLHS(); 119 const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>(); 120 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 121 continue; 122 } 123 if (BO->getOpcode() == BO_Comma) { 124 CommaLHSs.push_back(BO->getLHS()); 125 E = BO->getRHS(); 126 continue; 127 } 128 } 129 130 // Nothing changed. 131 break; 132 } 133 return E; 134 } 135 136 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 137 const Expr *E = IgnoreParens(); 138 139 // If this value has _Bool type, it is obvious 0/1. 140 if (E->getType()->isBooleanType()) return true; 141 // If this is a non-scalar-integer type, we don't care enough to try. 142 if (!E->getType()->isIntegralOrEnumerationType()) return false; 143 144 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 145 switch (UO->getOpcode()) { 146 case UO_Plus: 147 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 148 case UO_LNot: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 // Only look through implicit casts. If the user writes 156 // '(int) (a && b)' treat it as an arbitrary int. 157 // FIXME: Should we look through any cast expression in !Semantic mode? 158 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 159 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 160 161 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 162 switch (BO->getOpcode()) { 163 default: return false; 164 case BO_LT: // Relational operators. 165 case BO_GT: 166 case BO_LE: 167 case BO_GE: 168 case BO_EQ: // Equality operators. 169 case BO_NE: 170 case BO_LAnd: // AND operator. 171 case BO_LOr: // Logical OR operator. 172 return true; 173 174 case BO_And: // Bitwise AND operator. 175 case BO_Xor: // Bitwise XOR operator. 176 case BO_Or: // Bitwise OR operator. 177 // Handle things like (x==2)|(y==12). 178 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 179 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 180 181 case BO_Comma: 182 case BO_Assign: 183 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 184 } 185 } 186 187 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 188 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 189 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 190 191 if (isa<ObjCBoolLiteralExpr>(E)) 192 return true; 193 194 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 195 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 196 197 if (const FieldDecl *FD = E->getSourceBitField()) 198 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 199 !FD->getBitWidth()->isValueDependent() && FD->getBitWidthValue() == 1) 200 return true; 201 202 return false; 203 } 204 205 bool Expr::isFlexibleArrayMemberLike( 206 ASTContext &Ctx, 207 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, 208 bool IgnoreTemplateOrMacroSubstitution) const { 209 const Expr *E = IgnoreParens(); 210 const Decl *D = nullptr; 211 212 if (const auto *ME = dyn_cast<MemberExpr>(E)) 213 D = ME->getMemberDecl(); 214 else if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 215 D = DRE->getDecl(); 216 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) 217 D = IRE->getDecl(); 218 219 return Decl::isFlexibleArrayMemberLike(Ctx, D, E->getType(), 220 StrictFlexArraysLevel, 221 IgnoreTemplateOrMacroSubstitution); 222 } 223 224 const ValueDecl * 225 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { 226 Expr::EvalResult Eval; 227 228 if (EvaluateAsConstantExpr(Eval, Context)) { 229 APValue &Value = Eval.Val; 230 231 if (Value.isMemberPointer()) 232 return Value.getMemberPointerDecl(); 233 234 if (Value.isLValue() && Value.getLValueOffset().isZero()) 235 return Value.getLValueBase().dyn_cast<const ValueDecl *>(); 236 } 237 238 return nullptr; 239 } 240 241 // Amusing macro metaprogramming hack: check whether a class provides 242 // a more specific implementation of getExprLoc(). 243 // 244 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 245 namespace { 246 /// This implementation is used when a class provides a custom 247 /// implementation of getExprLoc. 248 template <class E, class T> 249 SourceLocation getExprLocImpl(const Expr *expr, 250 SourceLocation (T::*v)() const) { 251 return static_cast<const E*>(expr)->getExprLoc(); 252 } 253 254 /// This implementation is used when a class doesn't provide 255 /// a custom implementation of getExprLoc. Overload resolution 256 /// should pick it over the implementation above because it's 257 /// more specialized according to function template partial ordering. 258 template <class E> 259 SourceLocation getExprLocImpl(const Expr *expr, 260 SourceLocation (Expr::*v)() const) { 261 return static_cast<const E *>(expr)->getBeginLoc(); 262 } 263 } 264 265 QualType Expr::getEnumCoercedType(const ASTContext &Ctx) const { 266 if (isa<EnumType>(getType())) 267 return getType(); 268 if (const auto *ECD = getEnumConstantDecl()) { 269 const auto *ED = cast<EnumDecl>(ECD->getDeclContext()); 270 if (ED->isCompleteDefinition()) 271 return Ctx.getTypeDeclType(ED); 272 } 273 return getType(); 274 } 275 276 SourceLocation Expr::getExprLoc() const { 277 switch (getStmtClass()) { 278 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 279 #define ABSTRACT_STMT(type) 280 #define STMT(type, base) \ 281 case Stmt::type##Class: break; 282 #define EXPR(type, base) \ 283 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 284 #include "clang/AST/StmtNodes.inc" 285 } 286 llvm_unreachable("unknown expression kind"); 287 } 288 289 //===----------------------------------------------------------------------===// 290 // Primary Expressions. 291 //===----------------------------------------------------------------------===// 292 293 static void AssertResultStorageKind(ConstantResultStorageKind Kind) { 294 assert((Kind == ConstantResultStorageKind::APValue || 295 Kind == ConstantResultStorageKind::Int64 || 296 Kind == ConstantResultStorageKind::None) && 297 "Invalid StorageKind Value"); 298 (void)Kind; 299 } 300 301 ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) { 302 switch (Value.getKind()) { 303 case APValue::None: 304 case APValue::Indeterminate: 305 return ConstantResultStorageKind::None; 306 case APValue::Int: 307 if (!Value.getInt().needsCleanup()) 308 return ConstantResultStorageKind::Int64; 309 [[fallthrough]]; 310 default: 311 return ConstantResultStorageKind::APValue; 312 } 313 } 314 315 ConstantResultStorageKind 316 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 317 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 318 return ConstantResultStorageKind::Int64; 319 return ConstantResultStorageKind::APValue; 320 } 321 322 ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind, 323 bool IsImmediateInvocation) 324 : FullExpr(ConstantExprClass, SubExpr) { 325 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind); 326 ConstantExprBits.APValueKind = APValue::None; 327 ConstantExprBits.IsUnsigned = false; 328 ConstantExprBits.BitWidth = 0; 329 ConstantExprBits.HasCleanup = false; 330 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 331 332 if (StorageKind == ConstantResultStorageKind::APValue) 333 ::new (getTrailingObjects<APValue>()) APValue(); 334 } 335 336 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 337 ConstantResultStorageKind StorageKind, 338 bool IsImmediateInvocation) { 339 assert(!isa<ConstantExpr>(E)); 340 AssertResultStorageKind(StorageKind); 341 342 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 343 StorageKind == ConstantResultStorageKind::APValue, 344 StorageKind == ConstantResultStorageKind::Int64); 345 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 346 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 347 } 348 349 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 350 const APValue &Result) { 351 ConstantResultStorageKind StorageKind = getStorageKind(Result); 352 ConstantExpr *Self = Create(Context, E, StorageKind); 353 Self->SetResult(Result, Context); 354 return Self; 355 } 356 357 ConstantExpr::ConstantExpr(EmptyShell Empty, 358 ConstantResultStorageKind StorageKind) 359 : FullExpr(ConstantExprClass, Empty) { 360 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind); 361 362 if (StorageKind == ConstantResultStorageKind::APValue) 363 ::new (getTrailingObjects<APValue>()) APValue(); 364 } 365 366 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 367 ConstantResultStorageKind StorageKind) { 368 AssertResultStorageKind(StorageKind); 369 370 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 371 StorageKind == ConstantResultStorageKind::APValue, 372 StorageKind == ConstantResultStorageKind::Int64); 373 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 374 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 375 } 376 377 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 378 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 379 "Invalid storage for this value kind"); 380 ConstantExprBits.APValueKind = Value.getKind(); 381 switch (getResultStorageKind()) { 382 case ConstantResultStorageKind::None: 383 return; 384 case ConstantResultStorageKind::Int64: 385 Int64Result() = *Value.getInt().getRawData(); 386 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 387 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 388 return; 389 case ConstantResultStorageKind::APValue: 390 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 391 ConstantExprBits.HasCleanup = true; 392 Context.addDestruction(&APValueResult()); 393 } 394 APValueResult() = std::move(Value); 395 return; 396 } 397 llvm_unreachable("Invalid ResultKind Bits"); 398 } 399 400 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 401 switch (getResultStorageKind()) { 402 case ConstantResultStorageKind::APValue: 403 return APValueResult().getInt(); 404 case ConstantResultStorageKind::Int64: 405 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 406 ConstantExprBits.IsUnsigned); 407 default: 408 llvm_unreachable("invalid Accessor"); 409 } 410 } 411 412 APValue ConstantExpr::getAPValueResult() const { 413 414 switch (getResultStorageKind()) { 415 case ConstantResultStorageKind::APValue: 416 return APValueResult(); 417 case ConstantResultStorageKind::Int64: 418 return APValue( 419 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 420 ConstantExprBits.IsUnsigned)); 421 case ConstantResultStorageKind::None: 422 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 423 return APValue::IndeterminateValue(); 424 return APValue(); 425 } 426 llvm_unreachable("invalid ResultKind"); 427 } 428 429 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 430 bool RefersToEnclosingVariableOrCapture, QualType T, 431 ExprValueKind VK, SourceLocation L, 432 const DeclarationNameLoc &LocInfo, 433 NonOdrUseReason NOUR) 434 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 435 DeclRefExprBits.HasQualifier = false; 436 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 437 DeclRefExprBits.HasFoundDecl = false; 438 DeclRefExprBits.HadMultipleCandidates = false; 439 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 440 RefersToEnclosingVariableOrCapture; 441 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; 442 DeclRefExprBits.NonOdrUseReason = NOUR; 443 DeclRefExprBits.IsImmediateEscalating = false; 444 DeclRefExprBits.Loc = L; 445 setDependence(computeDependence(this, Ctx)); 446 } 447 448 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 449 NestedNameSpecifierLoc QualifierLoc, 450 SourceLocation TemplateKWLoc, ValueDecl *D, 451 bool RefersToEnclosingVariableOrCapture, 452 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 453 const TemplateArgumentListInfo *TemplateArgs, 454 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 455 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 456 DNLoc(NameInfo.getInfo()) { 457 DeclRefExprBits.Loc = NameInfo.getLoc(); 458 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 459 if (QualifierLoc) 460 new (getTrailingObjects<NestedNameSpecifierLoc>()) 461 NestedNameSpecifierLoc(QualifierLoc); 462 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 463 if (FoundD) 464 *getTrailingObjects<NamedDecl *>() = FoundD; 465 DeclRefExprBits.HasTemplateKWAndArgsInfo 466 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 467 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 468 RefersToEnclosingVariableOrCapture; 469 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; 470 DeclRefExprBits.NonOdrUseReason = NOUR; 471 if (TemplateArgs) { 472 auto Deps = TemplateArgumentDependence::None; 473 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 474 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 475 Deps); 476 assert(!(Deps & TemplateArgumentDependence::Dependent) && 477 "built a DeclRefExpr with dependent template args"); 478 } else if (TemplateKWLoc.isValid()) { 479 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 480 TemplateKWLoc); 481 } 482 DeclRefExprBits.IsImmediateEscalating = false; 483 DeclRefExprBits.HadMultipleCandidates = 0; 484 setDependence(computeDependence(this, Ctx)); 485 } 486 487 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 488 NestedNameSpecifierLoc QualifierLoc, 489 SourceLocation TemplateKWLoc, ValueDecl *D, 490 bool RefersToEnclosingVariableOrCapture, 491 SourceLocation NameLoc, QualType T, 492 ExprValueKind VK, NamedDecl *FoundD, 493 const TemplateArgumentListInfo *TemplateArgs, 494 NonOdrUseReason NOUR) { 495 return Create(Context, QualifierLoc, TemplateKWLoc, D, 496 RefersToEnclosingVariableOrCapture, 497 DeclarationNameInfo(D->getDeclName(), NameLoc), 498 T, VK, FoundD, TemplateArgs, NOUR); 499 } 500 501 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 502 NestedNameSpecifierLoc QualifierLoc, 503 SourceLocation TemplateKWLoc, ValueDecl *D, 504 bool RefersToEnclosingVariableOrCapture, 505 const DeclarationNameInfo &NameInfo, 506 QualType T, ExprValueKind VK, 507 NamedDecl *FoundD, 508 const TemplateArgumentListInfo *TemplateArgs, 509 NonOdrUseReason NOUR) { 510 // Filter out cases where the found Decl is the same as the value refenenced. 511 if (D == FoundD) 512 FoundD = nullptr; 513 514 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 515 std::size_t Size = 516 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 517 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 518 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 519 HasTemplateKWAndArgsInfo ? 1 : 0, 520 TemplateArgs ? TemplateArgs->size() : 0); 521 522 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 523 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 524 RefersToEnclosingVariableOrCapture, NameInfo, 525 FoundD, TemplateArgs, T, VK, NOUR); 526 } 527 528 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 529 bool HasQualifier, 530 bool HasFoundDecl, 531 bool HasTemplateKWAndArgsInfo, 532 unsigned NumTemplateArgs) { 533 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 534 std::size_t Size = 535 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 536 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 537 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 538 NumTemplateArgs); 539 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 540 return new (Mem) DeclRefExpr(EmptyShell()); 541 } 542 543 void DeclRefExpr::setDecl(ValueDecl *NewD) { 544 D = NewD; 545 if (getType()->isUndeducedType()) 546 setType(NewD->getType()); 547 setDependence(computeDependence(this, NewD->getASTContext())); 548 } 549 550 SourceLocation DeclRefExpr::getBeginLoc() const { 551 if (hasQualifier()) 552 return getQualifierLoc().getBeginLoc(); 553 return getNameInfo().getBeginLoc(); 554 } 555 SourceLocation DeclRefExpr::getEndLoc() const { 556 if (hasExplicitTemplateArgs()) 557 return getRAngleLoc(); 558 return getNameInfo().getEndLoc(); 559 } 560 561 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, 562 SourceLocation LParen, 563 SourceLocation RParen, 564 QualType ResultTy, 565 TypeSourceInfo *TSI) 566 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), 567 OpLoc(OpLoc), LParen(LParen), RParen(RParen) { 568 setTypeSourceInfo(TSI); 569 setDependence(computeDependence(this)); 570 } 571 572 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, 573 QualType ResultTy) 574 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} 575 576 SYCLUniqueStableNameExpr * 577 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, 578 SourceLocation LParen, SourceLocation RParen, 579 TypeSourceInfo *TSI) { 580 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 581 return new (Ctx) 582 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); 583 } 584 585 SYCLUniqueStableNameExpr * 586 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { 587 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 588 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); 589 } 590 591 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { 592 return SYCLUniqueStableNameExpr::ComputeName(Context, 593 getTypeSourceInfo()->getType()); 594 } 595 596 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, 597 QualType Ty) { 598 auto MangleCallback = [](ASTContext &Ctx, 599 const NamedDecl *ND) -> std::optional<unsigned> { 600 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) 601 return RD->getDeviceLambdaManglingNumber(); 602 return std::nullopt; 603 }; 604 605 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 606 Context, Context.getDiagnostics(), MangleCallback)}; 607 608 std::string Buffer; 609 Buffer.reserve(128); 610 llvm::raw_string_ostream Out(Buffer); 611 Ctx->mangleCanonicalTypeName(Ty, Out); 612 613 return Buffer; 614 } 615 616 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, 617 PredefinedIdentKind IK, bool IsTransparent, 618 StringLiteral *SL) 619 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 620 PredefinedExprBits.Kind = llvm::to_underlying(IK); 621 assert((getIdentKind() == IK) && 622 "IdentKind do not fit in PredefinedExprBitfields!"); 623 bool HasFunctionName = SL != nullptr; 624 PredefinedExprBits.HasFunctionName = HasFunctionName; 625 PredefinedExprBits.IsTransparent = IsTransparent; 626 PredefinedExprBits.Loc = L; 627 if (HasFunctionName) 628 setFunctionName(SL); 629 setDependence(computeDependence(this)); 630 } 631 632 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 633 : Expr(PredefinedExprClass, Empty) { 634 PredefinedExprBits.HasFunctionName = HasFunctionName; 635 } 636 637 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 638 QualType FNTy, PredefinedIdentKind IK, 639 bool IsTransparent, StringLiteral *SL) { 640 bool HasFunctionName = SL != nullptr; 641 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 642 alignof(PredefinedExpr)); 643 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL); 644 } 645 646 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 647 bool HasFunctionName) { 648 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 649 alignof(PredefinedExpr)); 650 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 651 } 652 653 StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) { 654 switch (IK) { 655 case PredefinedIdentKind::Func: 656 return "__func__"; 657 case PredefinedIdentKind::Function: 658 return "__FUNCTION__"; 659 case PredefinedIdentKind::FuncDName: 660 return "__FUNCDNAME__"; 661 case PredefinedIdentKind::LFunction: 662 return "L__FUNCTION__"; 663 case PredefinedIdentKind::PrettyFunction: 664 return "__PRETTY_FUNCTION__"; 665 case PredefinedIdentKind::FuncSig: 666 return "__FUNCSIG__"; 667 case PredefinedIdentKind::LFuncSig: 668 return "L__FUNCSIG__"; 669 case PredefinedIdentKind::PrettyFunctionNoVirtual: 670 break; 671 } 672 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 673 } 674 675 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 676 // expr" policy instead. 677 std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK, 678 const Decl *CurrentDecl, 679 bool ForceElaboratedPrinting) { 680 ASTContext &Context = CurrentDecl->getASTContext(); 681 682 if (IK == PredefinedIdentKind::FuncDName) { 683 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 684 std::unique_ptr<MangleContext> MC; 685 MC.reset(Context.createMangleContext()); 686 687 if (MC->shouldMangleDeclName(ND)) { 688 SmallString<256> Buffer; 689 llvm::raw_svector_ostream Out(Buffer); 690 GlobalDecl GD; 691 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 692 GD = GlobalDecl(CD, Ctor_Base); 693 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 694 GD = GlobalDecl(DD, Dtor_Base); 695 else if (ND->hasAttr<CUDAGlobalAttr>()) 696 GD = GlobalDecl(cast<FunctionDecl>(ND)); 697 else 698 GD = GlobalDecl(ND); 699 MC->mangleName(GD, Out); 700 701 if (!Buffer.empty() && Buffer.front() == '\01') 702 return std::string(Buffer.substr(1)); 703 return std::string(Buffer); 704 } 705 return std::string(ND->getIdentifier()->getName()); 706 } 707 return ""; 708 } 709 if (isa<BlockDecl>(CurrentDecl)) { 710 // For blocks we only emit something if it is enclosed in a function 711 // For top-level block we'd like to include the name of variable, but we 712 // don't have it at this point. 713 auto DC = CurrentDecl->getDeclContext(); 714 if (DC->isFileContext()) 715 return ""; 716 717 SmallString<256> Buffer; 718 llvm::raw_svector_ostream Out(Buffer); 719 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 720 // For nested blocks, propagate up to the parent. 721 Out << ComputeName(IK, DCBlock); 722 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 723 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 724 return std::string(Out.str()); 725 } 726 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 727 const auto &LO = Context.getLangOpts(); 728 bool IsFuncOrFunctionInNonMSVCCompatEnv = 729 ((IK == PredefinedIdentKind::Func || 730 IK == PredefinedIdentKind ::Function) && 731 !LO.MSVCCompat); 732 bool IsLFunctionInMSVCCommpatEnv = 733 IK == PredefinedIdentKind::LFunction && LO.MSVCCompat; 734 bool IsFuncOrFunctionOrLFunctionOrFuncDName = 735 IK != PredefinedIdentKind::PrettyFunction && 736 IK != PredefinedIdentKind::PrettyFunctionNoVirtual && 737 IK != PredefinedIdentKind::FuncSig && 738 IK != PredefinedIdentKind::LFuncSig; 739 if ((ForceElaboratedPrinting && 740 (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) || 741 (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName)) 742 return FD->getNameAsString(); 743 744 SmallString<256> Name; 745 llvm::raw_svector_ostream Out(Name); 746 747 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 748 if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual) 749 Out << "virtual "; 750 if (MD->isStatic()) 751 Out << "static "; 752 } 753 754 class PrettyCallbacks final : public PrintingCallbacks { 755 public: 756 PrettyCallbacks(const LangOptions &LO) : LO(LO) {} 757 std::string remapPath(StringRef Path) const override { 758 SmallString<128> p(Path); 759 LO.remapPathPrefix(p); 760 return std::string(p); 761 } 762 763 private: 764 const LangOptions &LO; 765 }; 766 PrintingPolicy Policy(Context.getLangOpts()); 767 PrettyCallbacks PrettyCB(Context.getLangOpts()); 768 Policy.Callbacks = &PrettyCB; 769 if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting) 770 Policy.SuppressTagKeyword = !LO.MSVCCompat; 771 std::string Proto; 772 llvm::raw_string_ostream POut(Proto); 773 774 const FunctionDecl *Decl = FD; 775 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 776 Decl = Pattern; 777 778 // Bail out if the type of the function has not been set yet. 779 // This can notably happen in the trailing return type of a lambda 780 // expression. 781 const Type *Ty = Decl->getType().getTypePtrOrNull(); 782 if (!Ty) 783 return ""; 784 785 const FunctionType *AFT = Ty->getAs<FunctionType>(); 786 const FunctionProtoType *FT = nullptr; 787 if (FD->hasWrittenPrototype()) 788 FT = dyn_cast<FunctionProtoType>(AFT); 789 790 if (IK == PredefinedIdentKind::FuncSig || 791 IK == PredefinedIdentKind::LFuncSig) { 792 switch (AFT->getCallConv()) { 793 case CC_C: POut << "__cdecl "; break; 794 case CC_X86StdCall: POut << "__stdcall "; break; 795 case CC_X86FastCall: POut << "__fastcall "; break; 796 case CC_X86ThisCall: POut << "__thiscall "; break; 797 case CC_X86VectorCall: POut << "__vectorcall "; break; 798 case CC_X86RegCall: POut << "__regcall "; break; 799 // Only bother printing the conventions that MSVC knows about. 800 default: break; 801 } 802 } 803 804 FD->printQualifiedName(POut, Policy); 805 806 if (IK == PredefinedIdentKind::Function) { 807 Out << Proto; 808 return std::string(Name); 809 } 810 811 POut << "("; 812 if (FT) { 813 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 814 if (i) POut << ", "; 815 POut << Decl->getParamDecl(i)->getType().stream(Policy); 816 } 817 818 if (FT->isVariadic()) { 819 if (FD->getNumParams()) POut << ", "; 820 POut << "..."; 821 } else if ((IK == PredefinedIdentKind::FuncSig || 822 IK == PredefinedIdentKind::LFuncSig || 823 !Context.getLangOpts().CPlusPlus) && 824 !Decl->getNumParams()) { 825 POut << "void"; 826 } 827 } 828 POut << ")"; 829 830 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 831 assert(FT && "We must have a written prototype in this case."); 832 if (FT->isConst()) 833 POut << " const"; 834 if (FT->isVolatile()) 835 POut << " volatile"; 836 RefQualifierKind Ref = MD->getRefQualifier(); 837 if (Ref == RQ_LValue) 838 POut << " &"; 839 else if (Ref == RQ_RValue) 840 POut << " &&"; 841 } 842 843 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 844 SpecsTy Specs; 845 const DeclContext *Ctx = FD->getDeclContext(); 846 while (isa_and_nonnull<NamedDecl>(Ctx)) { 847 const ClassTemplateSpecializationDecl *Spec 848 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 849 if (Spec && !Spec->isExplicitSpecialization()) 850 Specs.push_back(Spec); 851 Ctx = Ctx->getParent(); 852 } 853 854 std::string TemplateParams; 855 llvm::raw_string_ostream TOut(TemplateParams); 856 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) { 857 const TemplateParameterList *Params = 858 D->getSpecializedTemplate()->getTemplateParameters(); 859 const TemplateArgumentList &Args = D->getTemplateArgs(); 860 assert(Params->size() == Args.size()); 861 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 862 StringRef Param = Params->getParam(i)->getName(); 863 if (Param.empty()) continue; 864 TOut << Param << " = "; 865 Args.get(i).print(Policy, TOut, 866 TemplateParameterList::shouldIncludeTypeForArgument( 867 Policy, Params, i)); 868 TOut << ", "; 869 } 870 } 871 872 FunctionTemplateSpecializationInfo *FSI 873 = FD->getTemplateSpecializationInfo(); 874 if (FSI && !FSI->isExplicitSpecialization()) { 875 const TemplateParameterList* Params 876 = FSI->getTemplate()->getTemplateParameters(); 877 const TemplateArgumentList* Args = FSI->TemplateArguments; 878 assert(Params->size() == Args->size()); 879 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 880 StringRef Param = Params->getParam(i)->getName(); 881 if (Param.empty()) continue; 882 TOut << Param << " = "; 883 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 884 TOut << ", "; 885 } 886 } 887 888 if (!TemplateParams.empty()) { 889 // remove the trailing comma and space 890 TemplateParams.resize(TemplateParams.size() - 2); 891 POut << " [" << TemplateParams << "]"; 892 } 893 894 // Print "auto" for all deduced return types. This includes C++1y return 895 // type deduction and lambdas. For trailing return types resolve the 896 // decltype expression. Otherwise print the real type when this is 897 // not a constructor or destructor. 898 if (isLambdaMethod(FD)) 899 Proto = "auto " + Proto; 900 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 901 FT->getReturnType() 902 ->getAs<DecltypeType>() 903 ->getUnderlyingType() 904 .getAsStringInternal(Proto, Policy); 905 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 906 AFT->getReturnType().getAsStringInternal(Proto, Policy); 907 908 Out << Proto; 909 910 return std::string(Name); 911 } 912 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 913 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 914 // Skip to its enclosing function or method, but not its enclosing 915 // CapturedDecl. 916 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 917 const Decl *D = Decl::castFromDeclContext(DC); 918 return ComputeName(IK, D); 919 } 920 llvm_unreachable("CapturedDecl not inside a function or method"); 921 } 922 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 923 SmallString<256> Name; 924 llvm::raw_svector_ostream Out(Name); 925 Out << (MD->isInstanceMethod() ? '-' : '+'); 926 Out << '['; 927 928 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 929 // a null check to avoid a crash. 930 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 931 Out << *ID; 932 933 if (const ObjCCategoryImplDecl *CID = 934 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 935 Out << '(' << *CID << ')'; 936 937 Out << ' '; 938 MD->getSelector().print(Out); 939 Out << ']'; 940 941 return std::string(Name); 942 } 943 if (isa<TranslationUnitDecl>(CurrentDecl) && 944 IK == PredefinedIdentKind::PrettyFunction) { 945 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 946 return "top level"; 947 } 948 return ""; 949 } 950 951 void APNumericStorage::setIntValue(const ASTContext &C, 952 const llvm::APInt &Val) { 953 if (hasAllocation()) 954 C.Deallocate(pVal); 955 956 BitWidth = Val.getBitWidth(); 957 unsigned NumWords = Val.getNumWords(); 958 const uint64_t* Words = Val.getRawData(); 959 if (NumWords > 1) { 960 pVal = new (C) uint64_t[NumWords]; 961 std::copy(Words, Words + NumWords, pVal); 962 } else if (NumWords == 1) 963 VAL = Words[0]; 964 else 965 VAL = 0; 966 } 967 968 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 969 QualType type, SourceLocation l) 970 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { 971 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 972 assert(V.getBitWidth() == C.getIntWidth(type) && 973 "Integer type is not the correct size for constant."); 974 setValue(C, V); 975 setDependence(ExprDependence::None); 976 } 977 978 IntegerLiteral * 979 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 980 QualType type, SourceLocation l) { 981 return new (C) IntegerLiteral(C, V, type, l); 982 } 983 984 IntegerLiteral * 985 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 986 return new (C) IntegerLiteral(Empty); 987 } 988 989 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 990 QualType type, SourceLocation l, 991 unsigned Scale) 992 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), 993 Scale(Scale) { 994 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 995 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 996 "Fixed point type is not the correct size for constant."); 997 setValue(C, V); 998 setDependence(ExprDependence::None); 999 } 1000 1001 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 1002 const llvm::APInt &V, 1003 QualType type, 1004 SourceLocation l, 1005 unsigned Scale) { 1006 return new (C) FixedPointLiteral(C, V, type, l, Scale); 1007 } 1008 1009 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 1010 EmptyShell Empty) { 1011 return new (C) FixedPointLiteral(Empty); 1012 } 1013 1014 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 1015 // Currently the longest decimal number that can be printed is the max for an 1016 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 1017 // which is 43 characters. 1018 SmallString<64> S; 1019 FixedPointValueToString( 1020 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 1021 return std::string(S); 1022 } 1023 1024 void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind, 1025 raw_ostream &OS) { 1026 switch (Kind) { 1027 case CharacterLiteralKind::Ascii: 1028 break; // no prefix. 1029 case CharacterLiteralKind::Wide: 1030 OS << 'L'; 1031 break; 1032 case CharacterLiteralKind::UTF8: 1033 OS << "u8"; 1034 break; 1035 case CharacterLiteralKind::UTF16: 1036 OS << 'u'; 1037 break; 1038 case CharacterLiteralKind::UTF32: 1039 OS << 'U'; 1040 break; 1041 } 1042 1043 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val); 1044 if (!Escaped.empty()) { 1045 OS << "'" << Escaped << "'"; 1046 } else { 1047 // A character literal might be sign-extended, which 1048 // would result in an invalid \U escape sequence. 1049 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 1050 // are not correctly handled. 1051 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii) 1052 Val &= 0xFFu; 1053 if (Val < 256 && isPrintable((unsigned char)Val)) 1054 OS << "'" << (char)Val << "'"; 1055 else if (Val < 256) 1056 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 1057 else if (Val <= 0xFFFF) 1058 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 1059 else 1060 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 1061 } 1062 } 1063 1064 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 1065 bool isexact, QualType Type, SourceLocation L) 1066 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { 1067 setSemantics(V.getSemantics()); 1068 FloatingLiteralBits.IsExact = isexact; 1069 setValue(C, V); 1070 setDependence(ExprDependence::None); 1071 } 1072 1073 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 1074 : Expr(FloatingLiteralClass, Empty) { 1075 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 1076 FloatingLiteralBits.IsExact = false; 1077 } 1078 1079 FloatingLiteral * 1080 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 1081 bool isexact, QualType Type, SourceLocation L) { 1082 return new (C) FloatingLiteral(C, V, isexact, Type, L); 1083 } 1084 1085 FloatingLiteral * 1086 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1087 return new (C) FloatingLiteral(C, Empty); 1088 } 1089 1090 /// getValueAsApproximateDouble - This returns the value as an inaccurate 1091 /// double. Note that this may cause loss of precision, but is useful for 1092 /// debugging dumps, etc. 1093 double FloatingLiteral::getValueAsApproximateDouble() const { 1094 llvm::APFloat V = getValue(); 1095 bool ignored; 1096 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1097 &ignored); 1098 return V.convertToDouble(); 1099 } 1100 1101 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1102 StringLiteralKind SK) { 1103 unsigned CharByteWidth = 0; 1104 switch (SK) { 1105 case StringLiteralKind::Ordinary: 1106 case StringLiteralKind::UTF8: 1107 CharByteWidth = Target.getCharWidth(); 1108 break; 1109 case StringLiteralKind::Wide: 1110 CharByteWidth = Target.getWCharWidth(); 1111 break; 1112 case StringLiteralKind::UTF16: 1113 CharByteWidth = Target.getChar16Width(); 1114 break; 1115 case StringLiteralKind::UTF32: 1116 CharByteWidth = Target.getChar32Width(); 1117 break; 1118 case StringLiteralKind::Unevaluated: 1119 return sizeof(char); // Host; 1120 } 1121 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1122 CharByteWidth /= 8; 1123 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1124 "The only supported character byte widths are 1,2 and 4!"); 1125 return CharByteWidth; 1126 } 1127 1128 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1129 StringLiteralKind Kind, bool Pascal, QualType Ty, 1130 const SourceLocation *Loc, 1131 unsigned NumConcatenated) 1132 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1133 1134 unsigned Length = Str.size(); 1135 1136 StringLiteralBits.Kind = llvm::to_underlying(Kind); 1137 StringLiteralBits.NumConcatenated = NumConcatenated; 1138 1139 if (Kind != StringLiteralKind::Unevaluated) { 1140 assert(Ctx.getAsConstantArrayType(Ty) && 1141 "StringLiteral must be of constant array type!"); 1142 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1143 unsigned ByteLength = Str.size(); 1144 assert((ByteLength % CharByteWidth == 0) && 1145 "The size of the data must be a multiple of CharByteWidth!"); 1146 1147 // Avoid the expensive division. The compiler should be able to figure it 1148 // out by itself. However as of clang 7, even with the appropriate 1149 // llvm_unreachable added just here, it is not able to do so. 1150 switch (CharByteWidth) { 1151 case 1: 1152 Length = ByteLength; 1153 break; 1154 case 2: 1155 Length = ByteLength / 2; 1156 break; 1157 case 4: 1158 Length = ByteLength / 4; 1159 break; 1160 default: 1161 llvm_unreachable("Unsupported character width!"); 1162 } 1163 1164 StringLiteralBits.CharByteWidth = CharByteWidth; 1165 StringLiteralBits.IsPascal = Pascal; 1166 } else { 1167 assert(!Pascal && "Can't make an unevaluated Pascal string"); 1168 StringLiteralBits.CharByteWidth = 1; 1169 StringLiteralBits.IsPascal = false; 1170 } 1171 1172 *getTrailingObjects<unsigned>() = Length; 1173 1174 // Initialize the trailing array of SourceLocation. 1175 // This is safe since SourceLocation is POD-like. 1176 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1177 NumConcatenated * sizeof(SourceLocation)); 1178 1179 // Initialize the trailing array of char holding the string data. 1180 std::memcpy(getTrailingObjects<char>(), Str.data(), Str.size()); 1181 1182 setDependence(ExprDependence::None); 1183 } 1184 1185 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1186 unsigned Length, unsigned CharByteWidth) 1187 : Expr(StringLiteralClass, Empty) { 1188 StringLiteralBits.CharByteWidth = CharByteWidth; 1189 StringLiteralBits.NumConcatenated = NumConcatenated; 1190 *getTrailingObjects<unsigned>() = Length; 1191 } 1192 1193 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1194 StringLiteralKind Kind, bool Pascal, 1195 QualType Ty, const SourceLocation *Loc, 1196 unsigned NumConcatenated) { 1197 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1198 1, NumConcatenated, Str.size()), 1199 alignof(StringLiteral)); 1200 return new (Mem) 1201 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1202 } 1203 1204 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1205 unsigned NumConcatenated, 1206 unsigned Length, 1207 unsigned CharByteWidth) { 1208 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1209 1, NumConcatenated, Length * CharByteWidth), 1210 alignof(StringLiteral)); 1211 return new (Mem) 1212 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1213 } 1214 1215 void StringLiteral::outputString(raw_ostream &OS) const { 1216 switch (getKind()) { 1217 case StringLiteralKind::Unevaluated: 1218 case StringLiteralKind::Ordinary: 1219 break; // no prefix. 1220 case StringLiteralKind::Wide: 1221 OS << 'L'; 1222 break; 1223 case StringLiteralKind::UTF8: 1224 OS << "u8"; 1225 break; 1226 case StringLiteralKind::UTF16: 1227 OS << 'u'; 1228 break; 1229 case StringLiteralKind::UTF32: 1230 OS << 'U'; 1231 break; 1232 } 1233 OS << '"'; 1234 static const char Hex[] = "0123456789ABCDEF"; 1235 1236 unsigned LastSlashX = getLength(); 1237 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1238 uint32_t Char = getCodeUnit(I); 1239 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char); 1240 if (Escaped.empty()) { 1241 // FIXME: Convert UTF-8 back to codepoints before rendering. 1242 1243 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1244 // Leave invalid surrogates alone; we'll use \x for those. 1245 if (getKind() == StringLiteralKind::UTF16 && I != N - 1 && 1246 Char >= 0xd800 && Char <= 0xdbff) { 1247 uint32_t Trail = getCodeUnit(I + 1); 1248 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1249 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1250 ++I; 1251 } 1252 } 1253 1254 if (Char > 0xff) { 1255 // If this is a wide string, output characters over 0xff using \x 1256 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1257 // codepoint: use \x escapes for invalid codepoints. 1258 if (getKind() == StringLiteralKind::Wide || 1259 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1260 // FIXME: Is this the best way to print wchar_t? 1261 OS << "\\x"; 1262 int Shift = 28; 1263 while ((Char >> Shift) == 0) 1264 Shift -= 4; 1265 for (/**/; Shift >= 0; Shift -= 4) 1266 OS << Hex[(Char >> Shift) & 15]; 1267 LastSlashX = I; 1268 continue; 1269 } 1270 1271 if (Char > 0xffff) 1272 OS << "\\U00" 1273 << Hex[(Char >> 20) & 15] 1274 << Hex[(Char >> 16) & 15]; 1275 else 1276 OS << "\\u"; 1277 OS << Hex[(Char >> 12) & 15] 1278 << Hex[(Char >> 8) & 15] 1279 << Hex[(Char >> 4) & 15] 1280 << Hex[(Char >> 0) & 15]; 1281 continue; 1282 } 1283 1284 // If we used \x... for the previous character, and this character is a 1285 // hexadecimal digit, prevent it being slurped as part of the \x. 1286 if (LastSlashX + 1 == I) { 1287 switch (Char) { 1288 case '0': case '1': case '2': case '3': case '4': 1289 case '5': case '6': case '7': case '8': case '9': 1290 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1291 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1292 OS << "\"\""; 1293 } 1294 } 1295 1296 assert(Char <= 0xff && 1297 "Characters above 0xff should already have been handled."); 1298 1299 if (isPrintable(Char)) 1300 OS << (char)Char; 1301 else // Output anything hard as an octal escape. 1302 OS << '\\' 1303 << (char)('0' + ((Char >> 6) & 7)) 1304 << (char)('0' + ((Char >> 3) & 7)) 1305 << (char)('0' + ((Char >> 0) & 7)); 1306 } else { 1307 // Handle some common non-printable cases to make dumps prettier. 1308 OS << Escaped; 1309 } 1310 } 1311 OS << '"'; 1312 } 1313 1314 /// getLocationOfByte - Return a source location that points to the specified 1315 /// byte of this string literal. 1316 /// 1317 /// Strings are amazingly complex. They can be formed from multiple tokens and 1318 /// can have escape sequences in them in addition to the usual trigraph and 1319 /// escaped newline business. This routine handles this complexity. 1320 /// 1321 /// The *StartToken sets the first token to be searched in this function and 1322 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1323 /// returning, it updates the *StartToken to the TokNo of the token being found 1324 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1325 /// string. 1326 /// Using these two parameters can reduce the time complexity from O(n^2) to 1327 /// O(n) if one wants to get the location of byte for all the tokens in a 1328 /// string. 1329 /// 1330 SourceLocation 1331 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1332 const LangOptions &Features, 1333 const TargetInfo &Target, unsigned *StartToken, 1334 unsigned *StartTokenByteOffset) const { 1335 assert((getKind() == StringLiteralKind::Ordinary || 1336 getKind() == StringLiteralKind::UTF8 || 1337 getKind() == StringLiteralKind::Unevaluated) && 1338 "Only narrow string literals are currently supported"); 1339 1340 // Loop over all of the tokens in this string until we find the one that 1341 // contains the byte we're looking for. 1342 unsigned TokNo = 0; 1343 unsigned StringOffset = 0; 1344 if (StartToken) 1345 TokNo = *StartToken; 1346 if (StartTokenByteOffset) { 1347 StringOffset = *StartTokenByteOffset; 1348 ByteNo -= StringOffset; 1349 } 1350 while (true) { 1351 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1352 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1353 1354 // Get the spelling of the string so that we can get the data that makes up 1355 // the string literal, not the identifier for the macro it is potentially 1356 // expanded through. 1357 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1358 1359 // Re-lex the token to get its length and original spelling. 1360 std::pair<FileID, unsigned> LocInfo = 1361 SM.getDecomposedLoc(StrTokSpellingLoc); 1362 bool Invalid = false; 1363 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1364 if (Invalid) { 1365 if (StartTokenByteOffset != nullptr) 1366 *StartTokenByteOffset = StringOffset; 1367 if (StartToken != nullptr) 1368 *StartToken = TokNo; 1369 return StrTokSpellingLoc; 1370 } 1371 1372 const char *StrData = Buffer.data()+LocInfo.second; 1373 1374 // Create a lexer starting at the beginning of this token. 1375 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1376 Buffer.begin(), StrData, Buffer.end()); 1377 Token TheTok; 1378 TheLexer.LexFromRawLexer(TheTok); 1379 1380 // Use the StringLiteralParser to compute the length of the string in bytes. 1381 StringLiteralParser SLP(TheTok, SM, Features, Target); 1382 unsigned TokNumBytes = SLP.GetStringLength(); 1383 1384 // If the byte is in this token, return the location of the byte. 1385 if (ByteNo < TokNumBytes || 1386 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1387 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1388 1389 // Now that we know the offset of the token in the spelling, use the 1390 // preprocessor to get the offset in the original source. 1391 if (StartTokenByteOffset != nullptr) 1392 *StartTokenByteOffset = StringOffset; 1393 if (StartToken != nullptr) 1394 *StartToken = TokNo; 1395 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1396 } 1397 1398 // Move to the next string token. 1399 StringOffset += TokNumBytes; 1400 ++TokNo; 1401 ByteNo -= TokNumBytes; 1402 } 1403 } 1404 1405 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1406 /// corresponds to, e.g. "sizeof" or "[pre]++". 1407 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1408 switch (Op) { 1409 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1410 #include "clang/AST/OperationKinds.def" 1411 } 1412 llvm_unreachable("Unknown unary operator"); 1413 } 1414 1415 UnaryOperatorKind 1416 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1417 switch (OO) { 1418 default: llvm_unreachable("No unary operator for overloaded function"); 1419 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1420 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1421 case OO_Amp: return UO_AddrOf; 1422 case OO_Star: return UO_Deref; 1423 case OO_Plus: return UO_Plus; 1424 case OO_Minus: return UO_Minus; 1425 case OO_Tilde: return UO_Not; 1426 case OO_Exclaim: return UO_LNot; 1427 case OO_Coawait: return UO_Coawait; 1428 } 1429 } 1430 1431 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1432 switch (Opc) { 1433 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1434 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1435 case UO_AddrOf: return OO_Amp; 1436 case UO_Deref: return OO_Star; 1437 case UO_Plus: return OO_Plus; 1438 case UO_Minus: return OO_Minus; 1439 case UO_Not: return OO_Tilde; 1440 case UO_LNot: return OO_Exclaim; 1441 case UO_Coawait: return OO_Coawait; 1442 default: return OO_None; 1443 } 1444 } 1445 1446 1447 //===----------------------------------------------------------------------===// 1448 // Postfix Operators. 1449 //===----------------------------------------------------------------------===// 1450 1451 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1452 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1453 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1454 unsigned MinNumArgs, ADLCallKind UsesADL) 1455 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1456 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1457 unsigned NumPreArgs = PreArgs.size(); 1458 CallExprBits.NumPreArgs = NumPreArgs; 1459 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1460 1461 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1462 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1463 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1464 "OffsetToTrailingObjects overflow!"); 1465 1466 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1467 1468 setCallee(Fn); 1469 for (unsigned I = 0; I != NumPreArgs; ++I) 1470 setPreArg(I, PreArgs[I]); 1471 for (unsigned I = 0; I != Args.size(); ++I) 1472 setArg(I, Args[I]); 1473 for (unsigned I = Args.size(); I != NumArgs; ++I) 1474 setArg(I, nullptr); 1475 1476 this->computeDependence(); 1477 1478 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1479 CallExprBits.IsCoroElideSafe = false; 1480 if (hasStoredFPFeatures()) 1481 setStoredFPFeatures(FPFeatures); 1482 } 1483 1484 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1485 bool HasFPFeatures, EmptyShell Empty) 1486 : Expr(SC, Empty), NumArgs(NumArgs) { 1487 CallExprBits.NumPreArgs = NumPreArgs; 1488 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1489 1490 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1491 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1492 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1493 "OffsetToTrailingObjects overflow!"); 1494 CallExprBits.HasFPFeatures = HasFPFeatures; 1495 CallExprBits.IsCoroElideSafe = false; 1496 } 1497 1498 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1499 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1500 SourceLocation RParenLoc, 1501 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1502 ADLCallKind UsesADL) { 1503 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1504 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1505 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1506 void *Mem = 1507 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1508 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1509 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1510 } 1511 1512 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1513 ExprValueKind VK, SourceLocation RParenLoc, 1514 ADLCallKind UsesADL) { 1515 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1516 "Misaligned memory in CallExpr::CreateTemporary!"); 1517 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1518 VK, RParenLoc, FPOptionsOverride(), 1519 /*MinNumArgs=*/0, UsesADL); 1520 } 1521 1522 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1523 bool HasFPFeatures, EmptyShell Empty) { 1524 unsigned SizeOfTrailingObjects = 1525 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1526 void *Mem = 1527 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1528 return new (Mem) 1529 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1530 } 1531 1532 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1533 switch (SC) { 1534 case CallExprClass: 1535 return sizeof(CallExpr); 1536 case CXXOperatorCallExprClass: 1537 return sizeof(CXXOperatorCallExpr); 1538 case CXXMemberCallExprClass: 1539 return sizeof(CXXMemberCallExpr); 1540 case UserDefinedLiteralClass: 1541 return sizeof(UserDefinedLiteral); 1542 case CUDAKernelCallExprClass: 1543 return sizeof(CUDAKernelCallExpr); 1544 default: 1545 llvm_unreachable("unexpected class deriving from CallExpr!"); 1546 } 1547 } 1548 1549 Decl *Expr::getReferencedDeclOfCallee() { 1550 Expr *CEE = IgnoreParenImpCasts(); 1551 1552 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) 1553 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1554 1555 // If we're calling a dereference, look at the pointer instead. 1556 while (true) { 1557 if (auto *BO = dyn_cast<BinaryOperator>(CEE)) { 1558 if (BO->isPtrMemOp()) { 1559 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1560 continue; 1561 } 1562 } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) { 1563 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1564 UO->getOpcode() == UO_Plus) { 1565 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1566 continue; 1567 } 1568 } 1569 break; 1570 } 1571 1572 if (auto *DRE = dyn_cast<DeclRefExpr>(CEE)) 1573 return DRE->getDecl(); 1574 if (auto *ME = dyn_cast<MemberExpr>(CEE)) 1575 return ME->getMemberDecl(); 1576 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1577 return BE->getBlockDecl(); 1578 1579 return nullptr; 1580 } 1581 1582 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1583 unsigned CallExpr::getBuiltinCallee() const { 1584 const auto *FDecl = getDirectCallee(); 1585 return FDecl ? FDecl->getBuiltinID() : 0; 1586 } 1587 1588 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1589 if (unsigned BI = getBuiltinCallee()) 1590 return Ctx.BuiltinInfo.isUnevaluated(BI); 1591 return false; 1592 } 1593 1594 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1595 const Expr *Callee = getCallee(); 1596 QualType CalleeType = Callee->getType(); 1597 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1598 CalleeType = FnTypePtr->getPointeeType(); 1599 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1600 CalleeType = BPT->getPointeeType(); 1601 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1602 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1603 return Ctx.VoidTy; 1604 1605 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1606 return Ctx.DependentTy; 1607 1608 // This should never be overloaded and so should never return null. 1609 CalleeType = Expr::findBoundMemberType(Callee); 1610 assert(!CalleeType.isNull()); 1611 } else if (CalleeType->isRecordType()) { 1612 // If the Callee is a record type, then it is a not-yet-resolved 1613 // dependent call to the call operator of that type. 1614 return Ctx.DependentTy; 1615 } else if (CalleeType->isDependentType() || 1616 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1617 return Ctx.DependentTy; 1618 } 1619 1620 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1621 return FnType->getReturnType(); 1622 } 1623 1624 std::pair<const NamedDecl *, const Attr *> 1625 CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1626 // If the callee is marked nodiscard, return that attribute 1627 if (const Decl *D = getCalleeDecl()) 1628 if (const auto *A = D->getAttr<WarnUnusedResultAttr>()) 1629 return {nullptr, A}; 1630 1631 // If the return type is a struct, union, or enum that is marked nodiscard, 1632 // then return the return type attribute. 1633 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1634 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1635 return {TD, A}; 1636 1637 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; 1638 TD = TD->desugar()->getAs<TypedefType>()) 1639 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) 1640 return {TD->getDecl(), A}; 1641 return {nullptr, nullptr}; 1642 } 1643 1644 SourceLocation CallExpr::getBeginLoc() const { 1645 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this)) 1646 return OCE->getBeginLoc(); 1647 1648 if (const auto *Method = 1649 dyn_cast_if_present<const CXXMethodDecl>(getCalleeDecl()); 1650 Method && Method->isExplicitObjectMemberFunction()) { 1651 assert(getNumArgs() > 0 && getArg(0)); 1652 return getArg(0)->getBeginLoc(); 1653 } 1654 1655 SourceLocation begin = getCallee()->getBeginLoc(); 1656 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1657 begin = getArg(0)->getBeginLoc(); 1658 return begin; 1659 } 1660 1661 SourceLocation CallExpr::getEndLoc() const { 1662 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this)) 1663 return OCE->getEndLoc(); 1664 1665 SourceLocation end = getRParenLoc(); 1666 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1667 end = getArg(getNumArgs() - 1)->getEndLoc(); 1668 return end; 1669 } 1670 1671 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1672 SourceLocation OperatorLoc, 1673 TypeSourceInfo *tsi, 1674 ArrayRef<OffsetOfNode> comps, 1675 ArrayRef<Expr*> exprs, 1676 SourceLocation RParenLoc) { 1677 void *Mem = C.Allocate( 1678 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1679 1680 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1681 RParenLoc); 1682 } 1683 1684 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1685 unsigned numComps, unsigned numExprs) { 1686 void *Mem = 1687 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1688 return new (Mem) OffsetOfExpr(numComps, numExprs); 1689 } 1690 1691 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1692 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1693 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1694 SourceLocation RParenLoc) 1695 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), 1696 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1697 NumComps(comps.size()), NumExprs(exprs.size()) { 1698 for (unsigned i = 0; i != comps.size(); ++i) 1699 setComponent(i, comps[i]); 1700 for (unsigned i = 0; i != exprs.size(); ++i) 1701 setIndexExpr(i, exprs[i]); 1702 1703 setDependence(computeDependence(this)); 1704 } 1705 1706 IdentifierInfo *OffsetOfNode::getFieldName() const { 1707 assert(getKind() == Field || getKind() == Identifier); 1708 if (getKind() == Field) 1709 return getField()->getIdentifier(); 1710 1711 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1712 } 1713 1714 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1715 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1716 SourceLocation op, SourceLocation rp) 1717 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), 1718 OpLoc(op), RParenLoc(rp) { 1719 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1720 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1721 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1722 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1723 UnaryExprOrTypeTraitExprBits.IsType = false; 1724 Argument.Ex = E; 1725 setDependence(computeDependence(this)); 1726 } 1727 1728 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1729 NestedNameSpecifierLoc QualifierLoc, 1730 SourceLocation TemplateKWLoc, ValueDecl *MemberDecl, 1731 DeclAccessPair FoundDecl, 1732 const DeclarationNameInfo &NameInfo, 1733 const TemplateArgumentListInfo *TemplateArgs, QualType T, 1734 ExprValueKind VK, ExprObjectKind OK, 1735 NonOdrUseReason NOUR) 1736 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1737 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1738 assert(!NameInfo.getName() || 1739 MemberDecl->getDeclName() == NameInfo.getName()); 1740 MemberExprBits.IsArrow = IsArrow; 1741 MemberExprBits.HasQualifier = QualifierLoc.hasQualifier(); 1742 MemberExprBits.HasFoundDecl = 1743 FoundDecl.getDecl() != MemberDecl || 1744 FoundDecl.getAccess() != MemberDecl->getAccess(); 1745 MemberExprBits.HasTemplateKWAndArgsInfo = 1746 TemplateArgs || TemplateKWLoc.isValid(); 1747 MemberExprBits.HadMultipleCandidates = false; 1748 MemberExprBits.NonOdrUseReason = NOUR; 1749 MemberExprBits.OperatorLoc = OperatorLoc; 1750 1751 if (hasQualifier()) 1752 new (getTrailingObjects<NestedNameSpecifierLoc>()) 1753 NestedNameSpecifierLoc(QualifierLoc); 1754 if (hasFoundDecl()) 1755 *getTrailingObjects<DeclAccessPair>() = FoundDecl; 1756 if (TemplateArgs) { 1757 auto Deps = TemplateArgumentDependence::None; 1758 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1759 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 1760 Deps); 1761 } else if (TemplateKWLoc.isValid()) { 1762 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1763 TemplateKWLoc); 1764 } 1765 setDependence(computeDependence(this)); 1766 } 1767 1768 MemberExpr *MemberExpr::Create( 1769 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1770 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1771 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1772 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1773 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1774 bool HasQualifier = QualifierLoc.hasQualifier(); 1775 bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl || 1776 FoundDecl.getAccess() != MemberDecl->getAccess(); 1777 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1778 std::size_t Size = 1779 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair, 1780 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 1781 HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo, 1782 TemplateArgs ? TemplateArgs->size() : 0); 1783 1784 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1785 return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc, 1786 TemplateKWLoc, MemberDecl, FoundDecl, NameInfo, 1787 TemplateArgs, T, VK, OK, NOUR); 1788 } 1789 1790 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1791 bool HasQualifier, bool HasFoundDecl, 1792 bool HasTemplateKWAndArgsInfo, 1793 unsigned NumTemplateArgs) { 1794 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1795 "template args but no template arg info?"); 1796 std::size_t Size = 1797 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair, 1798 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 1799 HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo, 1800 NumTemplateArgs); 1801 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1802 return new (Mem) MemberExpr(EmptyShell()); 1803 } 1804 1805 void MemberExpr::setMemberDecl(ValueDecl *NewD) { 1806 MemberDecl = NewD; 1807 if (getType()->isUndeducedType()) 1808 setType(NewD->getType()); 1809 setDependence(computeDependence(this)); 1810 } 1811 1812 SourceLocation MemberExpr::getBeginLoc() const { 1813 if (isImplicitAccess()) { 1814 if (hasQualifier()) 1815 return getQualifierLoc().getBeginLoc(); 1816 return MemberLoc; 1817 } 1818 1819 // FIXME: We don't want this to happen. Rather, we should be able to 1820 // detect all kinds of implicit accesses more cleanly. 1821 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1822 if (BaseStartLoc.isValid()) 1823 return BaseStartLoc; 1824 return MemberLoc; 1825 } 1826 SourceLocation MemberExpr::getEndLoc() const { 1827 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1828 if (hasExplicitTemplateArgs()) 1829 EndLoc = getRAngleLoc(); 1830 else if (EndLoc.isInvalid()) 1831 EndLoc = getBase()->getEndLoc(); 1832 return EndLoc; 1833 } 1834 1835 bool CastExpr::CastConsistency() const { 1836 switch (getCastKind()) { 1837 case CK_DerivedToBase: 1838 case CK_UncheckedDerivedToBase: 1839 case CK_DerivedToBaseMemberPointer: 1840 case CK_BaseToDerived: 1841 case CK_BaseToDerivedMemberPointer: 1842 assert(!path_empty() && "Cast kind should have a base path!"); 1843 break; 1844 1845 case CK_CPointerToObjCPointerCast: 1846 assert(getType()->isObjCObjectPointerType()); 1847 assert(getSubExpr()->getType()->isPointerType()); 1848 goto CheckNoBasePath; 1849 1850 case CK_BlockPointerToObjCPointerCast: 1851 assert(getType()->isObjCObjectPointerType()); 1852 assert(getSubExpr()->getType()->isBlockPointerType()); 1853 goto CheckNoBasePath; 1854 1855 case CK_ReinterpretMemberPointer: 1856 assert(getType()->isMemberPointerType()); 1857 assert(getSubExpr()->getType()->isMemberPointerType()); 1858 goto CheckNoBasePath; 1859 1860 case CK_BitCast: 1861 // Arbitrary casts to C pointer types count as bitcasts. 1862 // Otherwise, we should only have block and ObjC pointer casts 1863 // here if they stay within the type kind. 1864 if (!getType()->isPointerType()) { 1865 assert(getType()->isObjCObjectPointerType() == 1866 getSubExpr()->getType()->isObjCObjectPointerType()); 1867 assert(getType()->isBlockPointerType() == 1868 getSubExpr()->getType()->isBlockPointerType()); 1869 } 1870 goto CheckNoBasePath; 1871 1872 case CK_AnyPointerToBlockPointerCast: 1873 assert(getType()->isBlockPointerType()); 1874 assert(getSubExpr()->getType()->isAnyPointerType() && 1875 !getSubExpr()->getType()->isBlockPointerType()); 1876 goto CheckNoBasePath; 1877 1878 case CK_CopyAndAutoreleaseBlockObject: 1879 assert(getType()->isBlockPointerType()); 1880 assert(getSubExpr()->getType()->isBlockPointerType()); 1881 goto CheckNoBasePath; 1882 1883 case CK_FunctionToPointerDecay: 1884 assert(getType()->isPointerType()); 1885 assert(getSubExpr()->getType()->isFunctionType()); 1886 goto CheckNoBasePath; 1887 1888 case CK_AddressSpaceConversion: { 1889 auto Ty = getType(); 1890 auto SETy = getSubExpr()->getType(); 1891 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1892 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1893 Ty = Ty->getPointeeType(); 1894 SETy = SETy->getPointeeType(); 1895 } 1896 assert((Ty->isDependentType() || SETy->isDependentType()) || 1897 (!Ty.isNull() && !SETy.isNull() && 1898 Ty.getAddressSpace() != SETy.getAddressSpace())); 1899 goto CheckNoBasePath; 1900 } 1901 // These should not have an inheritance path. 1902 case CK_Dynamic: 1903 case CK_ToUnion: 1904 case CK_ArrayToPointerDecay: 1905 case CK_NullToMemberPointer: 1906 case CK_NullToPointer: 1907 case CK_ConstructorConversion: 1908 case CK_IntegralToPointer: 1909 case CK_PointerToIntegral: 1910 case CK_ToVoid: 1911 case CK_VectorSplat: 1912 case CK_IntegralCast: 1913 case CK_BooleanToSignedIntegral: 1914 case CK_IntegralToFloating: 1915 case CK_FloatingToIntegral: 1916 case CK_FloatingCast: 1917 case CK_ObjCObjectLValueCast: 1918 case CK_FloatingRealToComplex: 1919 case CK_FloatingComplexToReal: 1920 case CK_FloatingComplexCast: 1921 case CK_FloatingComplexToIntegralComplex: 1922 case CK_IntegralRealToComplex: 1923 case CK_IntegralComplexToReal: 1924 case CK_IntegralComplexCast: 1925 case CK_IntegralComplexToFloatingComplex: 1926 case CK_ARCProduceObject: 1927 case CK_ARCConsumeObject: 1928 case CK_ARCReclaimReturnedObject: 1929 case CK_ARCExtendBlockObject: 1930 case CK_ZeroToOCLOpaqueType: 1931 case CK_IntToOCLSampler: 1932 case CK_FloatingToFixedPoint: 1933 case CK_FixedPointToFloating: 1934 case CK_FixedPointCast: 1935 case CK_FixedPointToIntegral: 1936 case CK_IntegralToFixedPoint: 1937 case CK_MatrixCast: 1938 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1939 goto CheckNoBasePath; 1940 1941 case CK_Dependent: 1942 case CK_LValueToRValue: 1943 case CK_NoOp: 1944 case CK_AtomicToNonAtomic: 1945 case CK_NonAtomicToAtomic: 1946 case CK_PointerToBoolean: 1947 case CK_IntegralToBoolean: 1948 case CK_FloatingToBoolean: 1949 case CK_MemberPointerToBoolean: 1950 case CK_FloatingComplexToBoolean: 1951 case CK_IntegralComplexToBoolean: 1952 case CK_LValueBitCast: // -> bool& 1953 case CK_LValueToRValueBitCast: 1954 case CK_UserDefinedConversion: // operator bool() 1955 case CK_BuiltinFnToFnPtr: 1956 case CK_FixedPointToBoolean: 1957 case CK_HLSLArrayRValue: 1958 case CK_HLSLVectorTruncation: 1959 CheckNoBasePath: 1960 assert(path_empty() && "Cast kind should not have a base path!"); 1961 break; 1962 } 1963 return true; 1964 } 1965 1966 const char *CastExpr::getCastKindName(CastKind CK) { 1967 switch (CK) { 1968 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1969 #include "clang/AST/OperationKinds.def" 1970 } 1971 llvm_unreachable("Unhandled cast kind!"); 1972 } 1973 1974 namespace { 1975 // Skip over implicit nodes produced as part of semantic analysis. 1976 // Designed for use with IgnoreExprNodes. 1977 static Expr *ignoreImplicitSemaNodes(Expr *E) { 1978 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1979 return Materialize->getSubExpr(); 1980 1981 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1982 return Binder->getSubExpr(); 1983 1984 if (auto *Full = dyn_cast<FullExpr>(E)) 1985 return Full->getSubExpr(); 1986 1987 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E); 1988 CPLIE && CPLIE->getInitExprs().size() == 1) 1989 return CPLIE->getInitExprs()[0]; 1990 1991 return E; 1992 } 1993 } // namespace 1994 1995 Expr *CastExpr::getSubExprAsWritten() { 1996 const Expr *SubExpr = nullptr; 1997 1998 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1999 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 2000 2001 // Conversions by constructor and conversion functions have a 2002 // subexpression describing the call; strip it off. 2003 if (E->getCastKind() == CK_ConstructorConversion) { 2004 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0), 2005 ignoreImplicitSemaNodes); 2006 } else if (E->getCastKind() == CK_UserDefinedConversion) { 2007 assert((isa<CallExpr, BlockExpr>(SubExpr)) && 2008 "Unexpected SubExpr for CK_UserDefinedConversion."); 2009 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 2010 SubExpr = MCE->getImplicitObjectArgument(); 2011 } 2012 } 2013 2014 return const_cast<Expr *>(SubExpr); 2015 } 2016 2017 NamedDecl *CastExpr::getConversionFunction() const { 2018 const Expr *SubExpr = nullptr; 2019 2020 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 2021 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 2022 2023 if (E->getCastKind() == CK_ConstructorConversion) 2024 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 2025 2026 if (E->getCastKind() == CK_UserDefinedConversion) { 2027 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 2028 return MCE->getMethodDecl(); 2029 } 2030 } 2031 2032 return nullptr; 2033 } 2034 2035 CXXBaseSpecifier **CastExpr::path_buffer() { 2036 switch (getStmtClass()) { 2037 #define ABSTRACT_STMT(x) 2038 #define CASTEXPR(Type, Base) \ 2039 case Stmt::Type##Class: \ 2040 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 2041 #define STMT(Type, Base) 2042 #include "clang/AST/StmtNodes.inc" 2043 default: 2044 llvm_unreachable("non-cast expressions not possible here"); 2045 } 2046 } 2047 2048 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 2049 QualType opType) { 2050 auto RD = unionType->castAs<RecordType>()->getDecl(); 2051 return getTargetFieldForToUnionCast(RD, opType); 2052 } 2053 2054 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 2055 QualType OpType) { 2056 auto &Ctx = RD->getASTContext(); 2057 RecordDecl::field_iterator Field, FieldEnd; 2058 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 2059 Field != FieldEnd; ++Field) { 2060 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 2061 !Field->isUnnamedBitField()) { 2062 return *Field; 2063 } 2064 } 2065 return nullptr; 2066 } 2067 2068 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 2069 assert(hasStoredFPFeatures()); 2070 switch (getStmtClass()) { 2071 case ImplicitCastExprClass: 2072 return static_cast<ImplicitCastExpr *>(this) 2073 ->getTrailingObjects<FPOptionsOverride>(); 2074 case CStyleCastExprClass: 2075 return static_cast<CStyleCastExpr *>(this) 2076 ->getTrailingObjects<FPOptionsOverride>(); 2077 case CXXFunctionalCastExprClass: 2078 return static_cast<CXXFunctionalCastExpr *>(this) 2079 ->getTrailingObjects<FPOptionsOverride>(); 2080 case CXXStaticCastExprClass: 2081 return static_cast<CXXStaticCastExpr *>(this) 2082 ->getTrailingObjects<FPOptionsOverride>(); 2083 default: 2084 llvm_unreachable("Cast does not have FPFeatures"); 2085 } 2086 } 2087 2088 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 2089 CastKind Kind, Expr *Operand, 2090 const CXXCastPath *BasePath, 2091 ExprValueKind VK, 2092 FPOptionsOverride FPO) { 2093 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2094 void *Buffer = 2095 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2096 PathSize, FPO.requiresTrailingStorage())); 2097 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 2098 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 2099 assert((Kind != CK_LValueToRValue || 2100 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 2101 "invalid type for lvalue-to-rvalue conversion"); 2102 ImplicitCastExpr *E = 2103 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 2104 if (PathSize) 2105 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2106 E->getTrailingObjects<CXXBaseSpecifier *>()); 2107 return E; 2108 } 2109 2110 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2111 unsigned PathSize, 2112 bool HasFPFeatures) { 2113 void *Buffer = 2114 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2115 PathSize, HasFPFeatures)); 2116 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2117 } 2118 2119 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2120 ExprValueKind VK, CastKind K, Expr *Op, 2121 const CXXCastPath *BasePath, 2122 FPOptionsOverride FPO, 2123 TypeSourceInfo *WrittenTy, 2124 SourceLocation L, SourceLocation R) { 2125 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2126 void *Buffer = 2127 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2128 PathSize, FPO.requiresTrailingStorage())); 2129 CStyleCastExpr *E = 2130 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 2131 if (PathSize) 2132 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2133 E->getTrailingObjects<CXXBaseSpecifier *>()); 2134 return E; 2135 } 2136 2137 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2138 unsigned PathSize, 2139 bool HasFPFeatures) { 2140 void *Buffer = 2141 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2142 PathSize, HasFPFeatures)); 2143 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2144 } 2145 2146 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2147 /// corresponds to, e.g. "<<=". 2148 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2149 switch (Op) { 2150 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2151 #include "clang/AST/OperationKinds.def" 2152 } 2153 llvm_unreachable("Invalid OpCode!"); 2154 } 2155 2156 BinaryOperatorKind 2157 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2158 switch (OO) { 2159 default: llvm_unreachable("Not an overloadable binary operator"); 2160 case OO_Plus: return BO_Add; 2161 case OO_Minus: return BO_Sub; 2162 case OO_Star: return BO_Mul; 2163 case OO_Slash: return BO_Div; 2164 case OO_Percent: return BO_Rem; 2165 case OO_Caret: return BO_Xor; 2166 case OO_Amp: return BO_And; 2167 case OO_Pipe: return BO_Or; 2168 case OO_Equal: return BO_Assign; 2169 case OO_Spaceship: return BO_Cmp; 2170 case OO_Less: return BO_LT; 2171 case OO_Greater: return BO_GT; 2172 case OO_PlusEqual: return BO_AddAssign; 2173 case OO_MinusEqual: return BO_SubAssign; 2174 case OO_StarEqual: return BO_MulAssign; 2175 case OO_SlashEqual: return BO_DivAssign; 2176 case OO_PercentEqual: return BO_RemAssign; 2177 case OO_CaretEqual: return BO_XorAssign; 2178 case OO_AmpEqual: return BO_AndAssign; 2179 case OO_PipeEqual: return BO_OrAssign; 2180 case OO_LessLess: return BO_Shl; 2181 case OO_GreaterGreater: return BO_Shr; 2182 case OO_LessLessEqual: return BO_ShlAssign; 2183 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2184 case OO_EqualEqual: return BO_EQ; 2185 case OO_ExclaimEqual: return BO_NE; 2186 case OO_LessEqual: return BO_LE; 2187 case OO_GreaterEqual: return BO_GE; 2188 case OO_AmpAmp: return BO_LAnd; 2189 case OO_PipePipe: return BO_LOr; 2190 case OO_Comma: return BO_Comma; 2191 case OO_ArrowStar: return BO_PtrMemI; 2192 } 2193 } 2194 2195 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2196 static const OverloadedOperatorKind OverOps[] = { 2197 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2198 OO_Star, OO_Slash, OO_Percent, 2199 OO_Plus, OO_Minus, 2200 OO_LessLess, OO_GreaterGreater, 2201 OO_Spaceship, 2202 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2203 OO_EqualEqual, OO_ExclaimEqual, 2204 OO_Amp, 2205 OO_Caret, 2206 OO_Pipe, 2207 OO_AmpAmp, 2208 OO_PipePipe, 2209 OO_Equal, OO_StarEqual, 2210 OO_SlashEqual, OO_PercentEqual, 2211 OO_PlusEqual, OO_MinusEqual, 2212 OO_LessLessEqual, OO_GreaterGreaterEqual, 2213 OO_AmpEqual, OO_CaretEqual, 2214 OO_PipeEqual, 2215 OO_Comma 2216 }; 2217 return OverOps[Opc]; 2218 } 2219 2220 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2221 Opcode Opc, 2222 const Expr *LHS, 2223 const Expr *RHS) { 2224 if (Opc != BO_Add) 2225 return false; 2226 2227 // Check that we have one pointer and one integer operand. 2228 const Expr *PExp; 2229 if (LHS->getType()->isPointerType()) { 2230 if (!RHS->getType()->isIntegerType()) 2231 return false; 2232 PExp = LHS; 2233 } else if (RHS->getType()->isPointerType()) { 2234 if (!LHS->getType()->isIntegerType()) 2235 return false; 2236 PExp = RHS; 2237 } else { 2238 return false; 2239 } 2240 2241 // Check that the pointer is a nullptr. 2242 if (!PExp->IgnoreParenCasts() 2243 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2244 return false; 2245 2246 // Check that the pointee type is char-sized. 2247 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2248 if (!PTy || !PTy->getPointeeType()->isCharType()) 2249 return false; 2250 2251 return true; 2252 } 2253 2254 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind, 2255 QualType ResultTy, SourceLocation BLoc, 2256 SourceLocation RParenLoc, 2257 DeclContext *ParentContext) 2258 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), 2259 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2260 SourceLocExprBits.Kind = llvm::to_underlying(Kind); 2261 // In dependent contexts, function names may change. 2262 setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext() 2263 ? ExprDependence::Value 2264 : ExprDependence::None); 2265 } 2266 2267 StringRef SourceLocExpr::getBuiltinStr() const { 2268 switch (getIdentKind()) { 2269 case SourceLocIdentKind::File: 2270 return "__builtin_FILE"; 2271 case SourceLocIdentKind::FileName: 2272 return "__builtin_FILE_NAME"; 2273 case SourceLocIdentKind::Function: 2274 return "__builtin_FUNCTION"; 2275 case SourceLocIdentKind::FuncSig: 2276 return "__builtin_FUNCSIG"; 2277 case SourceLocIdentKind::Line: 2278 return "__builtin_LINE"; 2279 case SourceLocIdentKind::Column: 2280 return "__builtin_COLUMN"; 2281 case SourceLocIdentKind::SourceLocStruct: 2282 return "__builtin_source_location"; 2283 } 2284 llvm_unreachable("unexpected IdentKind!"); 2285 } 2286 2287 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2288 const Expr *DefaultExpr) const { 2289 SourceLocation Loc; 2290 const DeclContext *Context; 2291 2292 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) { 2293 Loc = DIE->getUsedLocation(); 2294 Context = DIE->getUsedContext(); 2295 } else if (const auto *DAE = 2296 dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) { 2297 Loc = DAE->getUsedLocation(); 2298 Context = DAE->getUsedContext(); 2299 } else { 2300 Loc = getLocation(); 2301 Context = getParentContext(); 2302 } 2303 2304 // If we are currently parsing a lambda declarator, we might not have a fully 2305 // formed call operator declaration yet, and we could not form a function name 2306 // for it. Because we do not have access to Sema/function scopes here, we 2307 // detect this case by relying on the fact such method doesn't yet have a 2308 // type. 2309 if (const auto *D = dyn_cast<CXXMethodDecl>(Context); 2310 D && D->getFunctionTypeLoc().isNull() && isLambdaCallOperator(D)) 2311 Context = D->getParent()->getParent(); 2312 2313 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2314 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2315 2316 auto MakeStringLiteral = [&](StringRef Tmp) { 2317 using LValuePathEntry = APValue::LValuePathEntry; 2318 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2319 // Decay the string to a pointer to the first character. 2320 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2321 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2322 }; 2323 2324 switch (getIdentKind()) { 2325 case SourceLocIdentKind::FileName: { 2326 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the 2327 // the last part of __builtin_FILE(). 2328 SmallString<256> FileName; 2329 clang::Preprocessor::processPathToFileName( 2330 FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo()); 2331 return MakeStringLiteral(FileName); 2332 } 2333 case SourceLocIdentKind::File: { 2334 SmallString<256> Path(PLoc.getFilename()); 2335 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2336 Ctx.getTargetInfo()); 2337 return MakeStringLiteral(Path); 2338 } 2339 case SourceLocIdentKind::Function: 2340 case SourceLocIdentKind::FuncSig: { 2341 const auto *CurDecl = dyn_cast<Decl>(Context); 2342 const auto Kind = getIdentKind() == SourceLocIdentKind::Function 2343 ? PredefinedIdentKind::Function 2344 : PredefinedIdentKind::FuncSig; 2345 return MakeStringLiteral( 2346 CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string("")); 2347 } 2348 case SourceLocIdentKind::Line: 2349 return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy)); 2350 case SourceLocIdentKind::Column: 2351 return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy)); 2352 case SourceLocIdentKind::SourceLocStruct: { 2353 // Fill in a std::source_location::__impl structure, by creating an 2354 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to 2355 // that. 2356 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); 2357 assert(ImplDecl); 2358 2359 // Construct an APValue for the __impl struct, and get or create a Decl 2360 // corresponding to that. Note that we've already verified that the shape of 2361 // the ImplDecl type is as expected. 2362 2363 APValue Value(APValue::UninitStruct(), 0, 4); 2364 for (const FieldDecl *F : ImplDecl->fields()) { 2365 StringRef Name = F->getName(); 2366 if (Name == "_M_file_name") { 2367 SmallString<256> Path(PLoc.getFilename()); 2368 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2369 Ctx.getTargetInfo()); 2370 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path); 2371 } else if (Name == "_M_function_name") { 2372 // Note: this emits the PrettyFunction name -- different than what 2373 // __builtin_FUNCTION() above returns! 2374 const auto *CurDecl = dyn_cast<Decl>(Context); 2375 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral( 2376 CurDecl && !isa<TranslationUnitDecl>(CurDecl) 2377 ? StringRef(PredefinedExpr::ComputeName( 2378 PredefinedIdentKind::PrettyFunction, CurDecl)) 2379 : ""); 2380 } else if (Name == "_M_line") { 2381 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType()); 2382 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2383 } else if (Name == "_M_column") { 2384 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType()); 2385 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2386 } 2387 } 2388 2389 UnnamedGlobalConstantDecl *GV = 2390 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value); 2391 2392 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, 2393 false); 2394 } 2395 } 2396 llvm_unreachable("unhandled case"); 2397 } 2398 2399 EmbedExpr::EmbedExpr(const ASTContext &Ctx, SourceLocation Loc, 2400 EmbedDataStorage *Data, unsigned Begin, 2401 unsigned NumOfElements) 2402 : Expr(EmbedExprClass, Ctx.IntTy, VK_PRValue, OK_Ordinary), 2403 EmbedKeywordLoc(Loc), Ctx(&Ctx), Data(Data), Begin(Begin), 2404 NumOfElements(NumOfElements) { 2405 setDependence(ExprDependence::None); 2406 FakeChildNode = IntegerLiteral::Create( 2407 Ctx, llvm::APInt::getZero(Ctx.getTypeSize(getType())), getType(), Loc); 2408 } 2409 2410 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2411 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2412 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), 2413 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2414 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2415 sawArrayRangeDesignator(false); 2416 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2417 2418 setDependence(computeDependence(this)); 2419 } 2420 2421 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2422 if (NumInits > InitExprs.size()) 2423 InitExprs.reserve(C, NumInits); 2424 } 2425 2426 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2427 InitExprs.resize(C, NumInits, nullptr); 2428 } 2429 2430 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2431 if (Init >= InitExprs.size()) { 2432 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2433 setInit(Init, expr); 2434 return nullptr; 2435 } 2436 2437 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2438 setInit(Init, expr); 2439 return Result; 2440 } 2441 2442 void InitListExpr::setArrayFiller(Expr *filler) { 2443 assert(!hasArrayFiller() && "Filler already set!"); 2444 ArrayFillerOrUnionFieldInit = filler; 2445 // Fill out any "holes" in the array due to designated initializers. 2446 Expr **inits = getInits(); 2447 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2448 if (inits[i] == nullptr) 2449 inits[i] = filler; 2450 } 2451 2452 bool InitListExpr::isStringLiteralInit() const { 2453 if (getNumInits() != 1) 2454 return false; 2455 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2456 if (!AT || !AT->getElementType()->isIntegerType()) 2457 return false; 2458 // It is possible for getInit() to return null. 2459 const Expr *Init = getInit(0); 2460 if (!Init) 2461 return false; 2462 Init = Init->IgnoreParenImpCasts(); 2463 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2464 } 2465 2466 bool InitListExpr::isTransparent() const { 2467 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2468 2469 // A glvalue InitListExpr is always just sugar. 2470 if (isGLValue()) { 2471 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2472 return true; 2473 } 2474 2475 // Otherwise, we're sugar if and only if we have exactly one initializer that 2476 // is of the same type. 2477 if (getNumInits() != 1 || !getInit(0)) 2478 return false; 2479 2480 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2481 // transparent struct copy. 2482 if (!getInit(0)->isPRValue() && getType()->isRecordType()) 2483 return false; 2484 2485 return getType().getCanonicalType() == 2486 getInit(0)->getType().getCanonicalType(); 2487 } 2488 2489 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2490 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2491 2492 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2493 return false; 2494 } 2495 2496 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2497 return Lit && Lit->getValue() == 0; 2498 } 2499 2500 SourceLocation InitListExpr::getBeginLoc() const { 2501 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2502 return SyntacticForm->getBeginLoc(); 2503 SourceLocation Beg = LBraceLoc; 2504 if (Beg.isInvalid()) { 2505 // Find the first non-null initializer. 2506 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2507 E = InitExprs.end(); 2508 I != E; ++I) { 2509 if (Stmt *S = *I) { 2510 Beg = S->getBeginLoc(); 2511 break; 2512 } 2513 } 2514 } 2515 return Beg; 2516 } 2517 2518 SourceLocation InitListExpr::getEndLoc() const { 2519 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2520 return SyntacticForm->getEndLoc(); 2521 SourceLocation End = RBraceLoc; 2522 if (End.isInvalid()) { 2523 // Find the first non-null initializer from the end. 2524 for (Stmt *S : llvm::reverse(InitExprs)) { 2525 if (S) { 2526 End = S->getEndLoc(); 2527 break; 2528 } 2529 } 2530 } 2531 return End; 2532 } 2533 2534 /// getFunctionType - Return the underlying function type for this block. 2535 /// 2536 const FunctionProtoType *BlockExpr::getFunctionType() const { 2537 // The block pointer is never sugared, but the function type might be. 2538 return cast<BlockPointerType>(getType()) 2539 ->getPointeeType()->castAs<FunctionProtoType>(); 2540 } 2541 2542 SourceLocation BlockExpr::getCaretLocation() const { 2543 return TheBlock->getCaretLocation(); 2544 } 2545 const Stmt *BlockExpr::getBody() const { 2546 return TheBlock->getBody(); 2547 } 2548 Stmt *BlockExpr::getBody() { 2549 return TheBlock->getBody(); 2550 } 2551 2552 2553 //===----------------------------------------------------------------------===// 2554 // Generic Expression Routines 2555 //===----------------------------------------------------------------------===// 2556 2557 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2558 // In C++11, discarded-value expressions of a certain form are special, 2559 // according to [expr]p10: 2560 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2561 // expression is a glvalue of volatile-qualified type and it has 2562 // one of the following forms: 2563 if (!isGLValue() || !getType().isVolatileQualified()) 2564 return false; 2565 2566 const Expr *E = IgnoreParens(); 2567 2568 // - id-expression (5.1.1), 2569 if (isa<DeclRefExpr>(E)) 2570 return true; 2571 2572 // - subscripting (5.2.1), 2573 if (isa<ArraySubscriptExpr>(E)) 2574 return true; 2575 2576 // - class member access (5.2.5), 2577 if (isa<MemberExpr>(E)) 2578 return true; 2579 2580 // - indirection (5.3.1), 2581 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2582 if (UO->getOpcode() == UO_Deref) 2583 return true; 2584 2585 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2586 // - pointer-to-member operation (5.5), 2587 if (BO->isPtrMemOp()) 2588 return true; 2589 2590 // - comma expression (5.18) where the right operand is one of the above. 2591 if (BO->getOpcode() == BO_Comma) 2592 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2593 } 2594 2595 // - conditional expression (5.16) where both the second and the third 2596 // operands are one of the above, or 2597 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2598 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2599 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2600 // The related edge case of "*x ?: *x". 2601 if (auto *BCO = 2602 dyn_cast<BinaryConditionalOperator>(E)) { 2603 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2604 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2605 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2606 } 2607 2608 // Objective-C++ extensions to the rule. 2609 if (isa<ObjCIvarRefExpr>(E)) 2610 return true; 2611 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) { 2612 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm())) 2613 return true; 2614 } 2615 2616 return false; 2617 } 2618 2619 /// isUnusedResultAWarning - Return true if this immediate expression should 2620 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2621 /// with location to warn on and the source range[s] to report with the 2622 /// warning. 2623 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2624 SourceRange &R1, SourceRange &R2, 2625 ASTContext &Ctx) const { 2626 // Don't warn if the expr is type dependent. The type could end up 2627 // instantiating to void. 2628 if (isTypeDependent()) 2629 return false; 2630 2631 switch (getStmtClass()) { 2632 default: 2633 if (getType()->isVoidType()) 2634 return false; 2635 WarnE = this; 2636 Loc = getExprLoc(); 2637 R1 = getSourceRange(); 2638 return true; 2639 case ParenExprClass: 2640 return cast<ParenExpr>(this)->getSubExpr()-> 2641 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2642 case GenericSelectionExprClass: 2643 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2644 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2645 case CoawaitExprClass: 2646 case CoyieldExprClass: 2647 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2648 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2649 case ChooseExprClass: 2650 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2651 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2652 case UnaryOperatorClass: { 2653 const UnaryOperator *UO = cast<UnaryOperator>(this); 2654 2655 switch (UO->getOpcode()) { 2656 case UO_Plus: 2657 case UO_Minus: 2658 case UO_AddrOf: 2659 case UO_Not: 2660 case UO_LNot: 2661 case UO_Deref: 2662 break; 2663 case UO_Coawait: 2664 // This is just the 'operator co_await' call inside the guts of a 2665 // dependent co_await call. 2666 case UO_PostInc: 2667 case UO_PostDec: 2668 case UO_PreInc: 2669 case UO_PreDec: // ++/-- 2670 return false; // Not a warning. 2671 case UO_Real: 2672 case UO_Imag: 2673 // accessing a piece of a volatile complex is a side-effect. 2674 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2675 .isVolatileQualified()) 2676 return false; 2677 break; 2678 case UO_Extension: 2679 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2680 } 2681 WarnE = this; 2682 Loc = UO->getOperatorLoc(); 2683 R1 = UO->getSubExpr()->getSourceRange(); 2684 return true; 2685 } 2686 case BinaryOperatorClass: { 2687 const BinaryOperator *BO = cast<BinaryOperator>(this); 2688 switch (BO->getOpcode()) { 2689 default: 2690 break; 2691 // Consider the RHS of comma for side effects. LHS was checked by 2692 // Sema::CheckCommaOperands. 2693 case BO_Comma: 2694 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2695 // lvalue-ness) of an assignment written in a macro. 2696 if (IntegerLiteral *IE = 2697 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2698 if (IE->getValue() == 0) 2699 return false; 2700 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2701 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2702 case BO_LAnd: 2703 case BO_LOr: 2704 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2705 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2706 return false; 2707 break; 2708 } 2709 if (BO->isAssignmentOp()) 2710 return false; 2711 WarnE = this; 2712 Loc = BO->getOperatorLoc(); 2713 R1 = BO->getLHS()->getSourceRange(); 2714 R2 = BO->getRHS()->getSourceRange(); 2715 return true; 2716 } 2717 case CompoundAssignOperatorClass: 2718 case VAArgExprClass: 2719 case AtomicExprClass: 2720 return false; 2721 2722 case ConditionalOperatorClass: { 2723 // If only one of the LHS or RHS is a warning, the operator might 2724 // be being used for control flow. Only warn if both the LHS and 2725 // RHS are warnings. 2726 const auto *Exp = cast<ConditionalOperator>(this); 2727 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2728 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2729 } 2730 case BinaryConditionalOperatorClass: { 2731 const auto *Exp = cast<BinaryConditionalOperator>(this); 2732 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2733 } 2734 2735 case MemberExprClass: 2736 WarnE = this; 2737 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2738 R1 = SourceRange(Loc, Loc); 2739 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2740 return true; 2741 2742 case ArraySubscriptExprClass: 2743 WarnE = this; 2744 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2745 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2746 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2747 return true; 2748 2749 case CXXOperatorCallExprClass: { 2750 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2751 // overloads as there is no reasonable way to define these such that they 2752 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2753 // warning: operators == and != are commonly typo'ed, and so warning on them 2754 // provides additional value as well. If this list is updated, 2755 // DiagnoseUnusedComparison should be as well. 2756 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2757 switch (Op->getOperator()) { 2758 default: 2759 break; 2760 case OO_EqualEqual: 2761 case OO_ExclaimEqual: 2762 case OO_Less: 2763 case OO_Greater: 2764 case OO_GreaterEqual: 2765 case OO_LessEqual: 2766 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2767 Op->getCallReturnType(Ctx)->isVoidType()) 2768 break; 2769 WarnE = this; 2770 Loc = Op->getOperatorLoc(); 2771 R1 = Op->getSourceRange(); 2772 return true; 2773 } 2774 2775 // Fallthrough for generic call handling. 2776 [[fallthrough]]; 2777 } 2778 case CallExprClass: 2779 case CXXMemberCallExprClass: 2780 case UserDefinedLiteralClass: { 2781 // If this is a direct call, get the callee. 2782 const CallExpr *CE = cast<CallExpr>(this); 2783 if (const Decl *FD = CE->getCalleeDecl()) { 2784 // If the callee has attribute pure, const, or warn_unused_result, warn 2785 // about it. void foo() { strlen("bar"); } should warn. 2786 // 2787 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2788 // updated to match for QoI. 2789 if (CE->hasUnusedResultAttr(Ctx) || 2790 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2791 WarnE = this; 2792 Loc = CE->getCallee()->getBeginLoc(); 2793 R1 = CE->getCallee()->getSourceRange(); 2794 2795 if (unsigned NumArgs = CE->getNumArgs()) 2796 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2797 CE->getArg(NumArgs - 1)->getEndLoc()); 2798 return true; 2799 } 2800 } 2801 return false; 2802 } 2803 2804 // If we don't know precisely what we're looking at, let's not warn. 2805 case UnresolvedLookupExprClass: 2806 case CXXUnresolvedConstructExprClass: 2807 case RecoveryExprClass: 2808 return false; 2809 2810 case CXXTemporaryObjectExprClass: 2811 case CXXConstructExprClass: { 2812 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2813 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2814 if (Type->hasAttr<WarnUnusedAttr>() || 2815 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2816 WarnE = this; 2817 Loc = getBeginLoc(); 2818 R1 = getSourceRange(); 2819 return true; 2820 } 2821 } 2822 2823 const auto *CE = cast<CXXConstructExpr>(this); 2824 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2825 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2826 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2827 WarnE = this; 2828 Loc = getBeginLoc(); 2829 R1 = getSourceRange(); 2830 2831 if (unsigned NumArgs = CE->getNumArgs()) 2832 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2833 CE->getArg(NumArgs - 1)->getEndLoc()); 2834 return true; 2835 } 2836 } 2837 2838 return false; 2839 } 2840 2841 case ObjCMessageExprClass: { 2842 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2843 if (Ctx.getLangOpts().ObjCAutoRefCount && 2844 ME->isInstanceMessage() && 2845 !ME->getType()->isVoidType() && 2846 ME->getMethodFamily() == OMF_init) { 2847 WarnE = this; 2848 Loc = getExprLoc(); 2849 R1 = ME->getSourceRange(); 2850 return true; 2851 } 2852 2853 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2854 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2855 WarnE = this; 2856 Loc = getExprLoc(); 2857 return true; 2858 } 2859 2860 return false; 2861 } 2862 2863 case ObjCPropertyRefExprClass: 2864 case ObjCSubscriptRefExprClass: 2865 WarnE = this; 2866 Loc = getExprLoc(); 2867 R1 = getSourceRange(); 2868 return true; 2869 2870 case PseudoObjectExprClass: { 2871 const auto *POE = cast<PseudoObjectExpr>(this); 2872 2873 // For some syntactic forms, we should always warn. 2874 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( 2875 POE->getSyntacticForm())) { 2876 WarnE = this; 2877 Loc = getExprLoc(); 2878 R1 = getSourceRange(); 2879 return true; 2880 } 2881 2882 // For others, we should never warn. 2883 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm())) 2884 if (BO->isAssignmentOp()) 2885 return false; 2886 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm())) 2887 if (UO->isIncrementDecrementOp()) 2888 return false; 2889 2890 // Otherwise, warn if the result expression would warn. 2891 const Expr *Result = POE->getResultExpr(); 2892 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2893 } 2894 2895 case StmtExprClass: { 2896 // Statement exprs don't logically have side effects themselves, but are 2897 // sometimes used in macros in ways that give them a type that is unused. 2898 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2899 // however, if the result of the stmt expr is dead, we don't want to emit a 2900 // warning. 2901 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2902 if (!CS->body_empty()) { 2903 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2904 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2905 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2906 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2907 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2908 } 2909 2910 if (getType()->isVoidType()) 2911 return false; 2912 WarnE = this; 2913 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2914 R1 = getSourceRange(); 2915 return true; 2916 } 2917 case CXXFunctionalCastExprClass: 2918 case CStyleCastExprClass: { 2919 // Ignore an explicit cast to void, except in C++98 if the operand is a 2920 // volatile glvalue for which we would trigger an implicit read in any 2921 // other language mode. (Such an implicit read always happens as part of 2922 // the lvalue conversion in C, and happens in C++ for expressions of all 2923 // forms where it seems likely the user intended to trigger a volatile 2924 // load.) 2925 const CastExpr *CE = cast<CastExpr>(this); 2926 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2927 if (CE->getCastKind() == CK_ToVoid) { 2928 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2929 SubE->isReadIfDiscardedInCPlusPlus11()) { 2930 // Suppress the "unused value" warning for idiomatic usage of 2931 // '(void)var;' used to suppress "unused variable" warnings. 2932 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2933 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2934 if (!VD->isExternallyVisible()) 2935 return false; 2936 2937 // The lvalue-to-rvalue conversion would have no effect for an array. 2938 // It's implausible that the programmer expected this to result in a 2939 // volatile array load, so don't warn. 2940 if (SubE->getType()->isArrayType()) 2941 return false; 2942 2943 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2944 } 2945 return false; 2946 } 2947 2948 // If this is a cast to a constructor conversion, check the operand. 2949 // Otherwise, the result of the cast is unused. 2950 if (CE->getCastKind() == CK_ConstructorConversion) 2951 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2952 if (CE->getCastKind() == CK_Dependent) 2953 return false; 2954 2955 WarnE = this; 2956 if (const CXXFunctionalCastExpr *CXXCE = 2957 dyn_cast<CXXFunctionalCastExpr>(this)) { 2958 Loc = CXXCE->getBeginLoc(); 2959 R1 = CXXCE->getSubExpr()->getSourceRange(); 2960 } else { 2961 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2962 Loc = CStyleCE->getLParenLoc(); 2963 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2964 } 2965 return true; 2966 } 2967 case ImplicitCastExprClass: { 2968 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2969 2970 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2971 if (ICE->getCastKind() == CK_LValueToRValue && 2972 ICE->getSubExpr()->getType().isVolatileQualified()) 2973 return false; 2974 2975 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2976 } 2977 case CXXDefaultArgExprClass: 2978 return (cast<CXXDefaultArgExpr>(this) 2979 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2980 case CXXDefaultInitExprClass: 2981 return (cast<CXXDefaultInitExpr>(this) 2982 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2983 2984 case CXXNewExprClass: 2985 // FIXME: In theory, there might be new expressions that don't have side 2986 // effects (e.g. a placement new with an uninitialized POD). 2987 case CXXDeleteExprClass: 2988 return false; 2989 case MaterializeTemporaryExprClass: 2990 return cast<MaterializeTemporaryExpr>(this) 2991 ->getSubExpr() 2992 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2993 case CXXBindTemporaryExprClass: 2994 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2995 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2996 case ExprWithCleanupsClass: 2997 return cast<ExprWithCleanups>(this)->getSubExpr() 2998 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2999 case OpaqueValueExprClass: 3000 return cast<OpaqueValueExpr>(this)->getSourceExpr()->isUnusedResultAWarning( 3001 WarnE, Loc, R1, R2, Ctx); 3002 } 3003 } 3004 3005 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 3006 /// returns true, if it is; false otherwise. 3007 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 3008 const Expr *E = IgnoreParens(); 3009 switch (E->getStmtClass()) { 3010 default: 3011 return false; 3012 case ObjCIvarRefExprClass: 3013 return true; 3014 case Expr::UnaryOperatorClass: 3015 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 3016 case ImplicitCastExprClass: 3017 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 3018 case MaterializeTemporaryExprClass: 3019 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 3020 Ctx); 3021 case CStyleCastExprClass: 3022 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 3023 case DeclRefExprClass: { 3024 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 3025 3026 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 3027 if (VD->hasGlobalStorage()) 3028 return true; 3029 QualType T = VD->getType(); 3030 // dereferencing to a pointer is always a gc'able candidate, 3031 // unless it is __weak. 3032 return T->isPointerType() && 3033 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 3034 } 3035 return false; 3036 } 3037 case MemberExprClass: { 3038 const MemberExpr *M = cast<MemberExpr>(E); 3039 return M->getBase()->isOBJCGCCandidate(Ctx); 3040 } 3041 case ArraySubscriptExprClass: 3042 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 3043 } 3044 } 3045 3046 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 3047 if (isTypeDependent()) 3048 return false; 3049 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 3050 } 3051 3052 QualType Expr::findBoundMemberType(const Expr *expr) { 3053 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 3054 3055 // Bound member expressions are always one of these possibilities: 3056 // x->m x.m x->*y x.*y 3057 // (possibly parenthesized) 3058 3059 expr = expr->IgnoreParens(); 3060 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 3061 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 3062 return mem->getMemberDecl()->getType(); 3063 } 3064 3065 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 3066 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 3067 ->getPointeeType(); 3068 assert(type->isFunctionType()); 3069 return type; 3070 } 3071 3072 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 3073 return QualType(); 3074 } 3075 3076 Expr *Expr::IgnoreImpCasts() { 3077 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 3078 } 3079 3080 Expr *Expr::IgnoreCasts() { 3081 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 3082 } 3083 3084 Expr *Expr::IgnoreImplicit() { 3085 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 3086 } 3087 3088 Expr *Expr::IgnoreImplicitAsWritten() { 3089 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 3090 } 3091 3092 Expr *Expr::IgnoreParens() { 3093 return IgnoreExprNodes(this, IgnoreParensSingleStep); 3094 } 3095 3096 Expr *Expr::IgnoreParenImpCasts() { 3097 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3098 IgnoreImplicitCastsExtraSingleStep); 3099 } 3100 3101 Expr *Expr::IgnoreParenCasts() { 3102 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 3103 } 3104 3105 Expr *Expr::IgnoreConversionOperatorSingleStep() { 3106 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 3107 if (isa_and_nonnull<CXXConversionDecl>(MCE->getMethodDecl())) 3108 return MCE->getImplicitObjectArgument(); 3109 } 3110 return this; 3111 } 3112 3113 Expr *Expr::IgnoreParenLValueCasts() { 3114 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3115 IgnoreLValueCastsSingleStep); 3116 } 3117 3118 Expr *Expr::IgnoreParenBaseCasts() { 3119 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3120 IgnoreBaseCastsSingleStep); 3121 } 3122 3123 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 3124 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 3125 if (auto *CE = dyn_cast<CastExpr>(E)) { 3126 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 3127 // ptr<->int casts of the same width. We also ignore all identity casts. 3128 Expr *SubExpr = CE->getSubExpr(); 3129 bool IsIdentityCast = 3130 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 3131 bool IsSameWidthCast = (E->getType()->isPointerType() || 3132 E->getType()->isIntegralType(Ctx)) && 3133 (SubExpr->getType()->isPointerType() || 3134 SubExpr->getType()->isIntegralType(Ctx)) && 3135 (Ctx.getTypeSize(E->getType()) == 3136 Ctx.getTypeSize(SubExpr->getType())); 3137 3138 if (IsIdentityCast || IsSameWidthCast) 3139 return SubExpr; 3140 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 3141 return NTTP->getReplacement(); 3142 3143 return E; 3144 }; 3145 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3146 IgnoreNoopCastsSingleStep); 3147 } 3148 3149 Expr *Expr::IgnoreUnlessSpelledInSource() { 3150 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 3151 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 3152 auto *SE = Cast->getSubExpr(); 3153 if (SE->getSourceRange() == E->getSourceRange()) 3154 return SE; 3155 } 3156 3157 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 3158 auto NumArgs = C->getNumArgs(); 3159 if (NumArgs == 1 || 3160 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 3161 Expr *A = C->getArg(0); 3162 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 3163 return A; 3164 } 3165 } 3166 return E; 3167 }; 3168 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 3169 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 3170 Expr *ExprNode = C->getImplicitObjectArgument(); 3171 if (ExprNode->getSourceRange() == E->getSourceRange()) { 3172 return ExprNode; 3173 } 3174 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 3175 if (PE->getSourceRange() == C->getSourceRange()) { 3176 return cast<Expr>(PE); 3177 } 3178 } 3179 ExprNode = ExprNode->IgnoreParenImpCasts(); 3180 if (ExprNode->getSourceRange() == E->getSourceRange()) 3181 return ExprNode; 3182 } 3183 return E; 3184 }; 3185 return IgnoreExprNodes( 3186 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 3187 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 3188 IgnoreImplicitMemberCallSingleStep); 3189 } 3190 3191 bool Expr::isDefaultArgument() const { 3192 const Expr *E = this; 3193 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3194 E = M->getSubExpr(); 3195 3196 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3197 E = ICE->getSubExprAsWritten(); 3198 3199 return isa<CXXDefaultArgExpr>(E); 3200 } 3201 3202 /// Skip over any no-op casts and any temporary-binding 3203 /// expressions. 3204 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3205 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3206 E = M->getSubExpr(); 3207 3208 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3209 if (ICE->getCastKind() == CK_NoOp) 3210 E = ICE->getSubExpr(); 3211 else 3212 break; 3213 } 3214 3215 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3216 E = BE->getSubExpr(); 3217 3218 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3219 if (ICE->getCastKind() == CK_NoOp) 3220 E = ICE->getSubExpr(); 3221 else 3222 break; 3223 } 3224 3225 return E->IgnoreParens(); 3226 } 3227 3228 /// isTemporaryObject - Determines if this expression produces a 3229 /// temporary of the given class type. 3230 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3231 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3232 return false; 3233 3234 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3235 3236 // Temporaries are by definition pr-values of class type. 3237 if (!E->Classify(C).isPRValue()) { 3238 // In this context, property reference is a message call and is pr-value. 3239 if (!isa<ObjCPropertyRefExpr>(E)) 3240 return false; 3241 } 3242 3243 // Black-list a few cases which yield pr-values of class type that don't 3244 // refer to temporaries of that type: 3245 3246 // - implicit derived-to-base conversions 3247 if (isa<ImplicitCastExpr>(E)) { 3248 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3249 case CK_DerivedToBase: 3250 case CK_UncheckedDerivedToBase: 3251 return false; 3252 default: 3253 break; 3254 } 3255 } 3256 3257 // - member expressions (all) 3258 if (isa<MemberExpr>(E)) 3259 return false; 3260 3261 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3262 if (BO->isPtrMemOp()) 3263 return false; 3264 3265 // - opaque values (all) 3266 if (isa<OpaqueValueExpr>(E)) 3267 return false; 3268 3269 return true; 3270 } 3271 3272 bool Expr::isImplicitCXXThis() const { 3273 const Expr *E = this; 3274 3275 // Strip away parentheses and casts we don't care about. 3276 while (true) { 3277 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3278 E = Paren->getSubExpr(); 3279 continue; 3280 } 3281 3282 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3283 if (ICE->getCastKind() == CK_NoOp || 3284 ICE->getCastKind() == CK_LValueToRValue || 3285 ICE->getCastKind() == CK_DerivedToBase || 3286 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3287 E = ICE->getSubExpr(); 3288 continue; 3289 } 3290 } 3291 3292 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3293 if (UnOp->getOpcode() == UO_Extension) { 3294 E = UnOp->getSubExpr(); 3295 continue; 3296 } 3297 } 3298 3299 if (const MaterializeTemporaryExpr *M 3300 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3301 E = M->getSubExpr(); 3302 continue; 3303 } 3304 3305 break; 3306 } 3307 3308 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3309 return This->isImplicit(); 3310 3311 return false; 3312 } 3313 3314 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3315 /// in Exprs is type-dependent. 3316 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3317 for (unsigned I = 0; I < Exprs.size(); ++I) 3318 if (Exprs[I]->isTypeDependent()) 3319 return true; 3320 3321 return false; 3322 } 3323 3324 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3325 const Expr **Culprit) const { 3326 assert(!isValueDependent() && 3327 "Expression evaluator can't be called on a dependent expression."); 3328 3329 // This function is attempting whether an expression is an initializer 3330 // which can be evaluated at compile-time. It very closely parallels 3331 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3332 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3333 // to isEvaluatable most of the time. 3334 // 3335 // If we ever capture reference-binding directly in the AST, we can 3336 // kill the second parameter. 3337 3338 if (IsForRef) { 3339 if (auto *EWC = dyn_cast<ExprWithCleanups>(this)) 3340 return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit); 3341 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this)) 3342 return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3343 EvalResult Result; 3344 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3345 return true; 3346 if (Culprit) 3347 *Culprit = this; 3348 return false; 3349 } 3350 3351 switch (getStmtClass()) { 3352 default: break; 3353 case Stmt::ExprWithCleanupsClass: 3354 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3355 Ctx, IsForRef, Culprit); 3356 case StringLiteralClass: 3357 case ObjCEncodeExprClass: 3358 return true; 3359 case CXXTemporaryObjectExprClass: 3360 case CXXConstructExprClass: { 3361 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3362 3363 if (CE->getConstructor()->isTrivial() && 3364 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3365 // Trivial default constructor 3366 if (!CE->getNumArgs()) return true; 3367 3368 // Trivial copy constructor 3369 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3370 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3371 } 3372 3373 break; 3374 } 3375 case ConstantExprClass: { 3376 // FIXME: We should be able to return "true" here, but it can lead to extra 3377 // error messages. E.g. in Sema/array-init.c. 3378 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3379 return Exp->isConstantInitializer(Ctx, false, Culprit); 3380 } 3381 case CompoundLiteralExprClass: { 3382 // This handles gcc's extension that allows global initializers like 3383 // "struct x {int x;} x = (struct x) {};". 3384 // FIXME: This accepts other cases it shouldn't! 3385 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3386 return Exp->isConstantInitializer(Ctx, false, Culprit); 3387 } 3388 case DesignatedInitUpdateExprClass: { 3389 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3390 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3391 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3392 } 3393 case InitListExprClass: { 3394 // C++ [dcl.init.aggr]p2: 3395 // The elements of an aggregate are: 3396 // - for an array, the array elements in increasing subscript order, or 3397 // - for a class, the direct base classes in declaration order, followed 3398 // by the direct non-static data members (11.4) that are not members of 3399 // an anonymous union, in declaration order. 3400 const InitListExpr *ILE = cast<InitListExpr>(this); 3401 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3402 if (ILE->getType()->isArrayType()) { 3403 unsigned numInits = ILE->getNumInits(); 3404 for (unsigned i = 0; i < numInits; i++) { 3405 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3406 return false; 3407 } 3408 return true; 3409 } 3410 3411 if (ILE->getType()->isRecordType()) { 3412 unsigned ElementNo = 0; 3413 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3414 3415 // In C++17, bases were added to the list of members used by aggregate 3416 // initialization. 3417 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3418 for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) { 3419 if (ElementNo < ILE->getNumInits()) { 3420 const Expr *Elt = ILE->getInit(ElementNo++); 3421 if (!Elt->isConstantInitializer(Ctx, false, Culprit)) 3422 return false; 3423 } 3424 } 3425 } 3426 3427 for (const auto *Field : RD->fields()) { 3428 // If this is a union, skip all the fields that aren't being initialized. 3429 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3430 continue; 3431 3432 // Don't emit anonymous bitfields, they just affect layout. 3433 if (Field->isUnnamedBitField()) 3434 continue; 3435 3436 if (ElementNo < ILE->getNumInits()) { 3437 const Expr *Elt = ILE->getInit(ElementNo++); 3438 if (Field->isBitField()) { 3439 // Bitfields have to evaluate to an integer. 3440 EvalResult Result; 3441 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3442 if (Culprit) 3443 *Culprit = Elt; 3444 return false; 3445 } 3446 } else { 3447 bool RefType = Field->getType()->isReferenceType(); 3448 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3449 return false; 3450 } 3451 } 3452 } 3453 return true; 3454 } 3455 3456 break; 3457 } 3458 case ImplicitValueInitExprClass: 3459 case NoInitExprClass: 3460 return true; 3461 case ParenExprClass: 3462 return cast<ParenExpr>(this)->getSubExpr() 3463 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3464 case GenericSelectionExprClass: 3465 return cast<GenericSelectionExpr>(this)->getResultExpr() 3466 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3467 case ChooseExprClass: 3468 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3469 if (Culprit) 3470 *Culprit = this; 3471 return false; 3472 } 3473 return cast<ChooseExpr>(this)->getChosenSubExpr() 3474 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3475 case UnaryOperatorClass: { 3476 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3477 if (Exp->getOpcode() == UO_Extension) 3478 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3479 break; 3480 } 3481 case PackIndexingExprClass: { 3482 return cast<PackIndexingExpr>(this) 3483 ->getSelectedExpr() 3484 ->isConstantInitializer(Ctx, false, Culprit); 3485 } 3486 case CXXFunctionalCastExprClass: 3487 case CXXStaticCastExprClass: 3488 case ImplicitCastExprClass: 3489 case CStyleCastExprClass: 3490 case ObjCBridgedCastExprClass: 3491 case CXXDynamicCastExprClass: 3492 case CXXReinterpretCastExprClass: 3493 case CXXAddrspaceCastExprClass: 3494 case CXXConstCastExprClass: { 3495 const CastExpr *CE = cast<CastExpr>(this); 3496 3497 // Handle misc casts we want to ignore. 3498 if (CE->getCastKind() == CK_NoOp || 3499 CE->getCastKind() == CK_LValueToRValue || 3500 CE->getCastKind() == CK_ToUnion || 3501 CE->getCastKind() == CK_ConstructorConversion || 3502 CE->getCastKind() == CK_NonAtomicToAtomic || 3503 CE->getCastKind() == CK_AtomicToNonAtomic || 3504 CE->getCastKind() == CK_NullToPointer || 3505 CE->getCastKind() == CK_IntToOCLSampler) 3506 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3507 3508 break; 3509 } 3510 case MaterializeTemporaryExprClass: 3511 return cast<MaterializeTemporaryExpr>(this) 3512 ->getSubExpr() 3513 ->isConstantInitializer(Ctx, false, Culprit); 3514 3515 case SubstNonTypeTemplateParmExprClass: 3516 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3517 ->isConstantInitializer(Ctx, false, Culprit); 3518 case CXXDefaultArgExprClass: 3519 return cast<CXXDefaultArgExpr>(this)->getExpr() 3520 ->isConstantInitializer(Ctx, false, Culprit); 3521 case CXXDefaultInitExprClass: 3522 return cast<CXXDefaultInitExpr>(this)->getExpr() 3523 ->isConstantInitializer(Ctx, false, Culprit); 3524 } 3525 // Allow certain forms of UB in constant initializers: signed integer 3526 // overflow and floating-point division by zero. We'll give a warning on 3527 // these, but they're common enough that we have to accept them. 3528 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3529 return true; 3530 if (Culprit) 3531 *Culprit = this; 3532 return false; 3533 } 3534 3535 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3536 unsigned BuiltinID = getBuiltinCallee(); 3537 if (BuiltinID != Builtin::BI__assume && 3538 BuiltinID != Builtin::BI__builtin_assume) 3539 return false; 3540 3541 const Expr* Arg = getArg(0); 3542 bool ArgVal; 3543 return !Arg->isValueDependent() && 3544 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3545 } 3546 3547 bool CallExpr::isCallToStdMove() const { 3548 return getBuiltinCallee() == Builtin::BImove; 3549 } 3550 3551 namespace { 3552 /// Look for any side effects within a Stmt. 3553 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3554 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3555 const bool IncludePossibleEffects; 3556 bool HasSideEffects; 3557 3558 public: 3559 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3560 : Inherited(Context), 3561 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3562 3563 bool hasSideEffects() const { return HasSideEffects; } 3564 3565 void VisitDecl(const Decl *D) { 3566 if (!D) 3567 return; 3568 3569 // We assume the caller checks subexpressions (eg, the initializer, VLA 3570 // bounds) for side-effects on our behalf. 3571 if (auto *VD = dyn_cast<VarDecl>(D)) { 3572 // Registering a destructor is a side-effect. 3573 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3574 VD->needsDestruction(Context)) 3575 HasSideEffects = true; 3576 } 3577 } 3578 3579 void VisitDeclStmt(const DeclStmt *DS) { 3580 for (auto *D : DS->decls()) 3581 VisitDecl(D); 3582 Inherited::VisitDeclStmt(DS); 3583 } 3584 3585 void VisitExpr(const Expr *E) { 3586 if (!HasSideEffects && 3587 E->HasSideEffects(Context, IncludePossibleEffects)) 3588 HasSideEffects = true; 3589 } 3590 }; 3591 } 3592 3593 bool Expr::HasSideEffects(const ASTContext &Ctx, 3594 bool IncludePossibleEffects) const { 3595 // In circumstances where we care about definite side effects instead of 3596 // potential side effects, we want to ignore expressions that are part of a 3597 // macro expansion as a potential side effect. 3598 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3599 return false; 3600 3601 switch (getStmtClass()) { 3602 case NoStmtClass: 3603 #define ABSTRACT_STMT(Type) 3604 #define STMT(Type, Base) case Type##Class: 3605 #define EXPR(Type, Base) 3606 #include "clang/AST/StmtNodes.inc" 3607 llvm_unreachable("unexpected Expr kind"); 3608 3609 case DependentScopeDeclRefExprClass: 3610 case CXXUnresolvedConstructExprClass: 3611 case CXXDependentScopeMemberExprClass: 3612 case UnresolvedLookupExprClass: 3613 case UnresolvedMemberExprClass: 3614 case PackExpansionExprClass: 3615 case SubstNonTypeTemplateParmPackExprClass: 3616 case FunctionParmPackExprClass: 3617 case TypoExprClass: 3618 case RecoveryExprClass: 3619 case CXXFoldExprClass: 3620 // Make a conservative assumption for dependent nodes. 3621 return IncludePossibleEffects; 3622 3623 case DeclRefExprClass: 3624 case ObjCIvarRefExprClass: 3625 case PredefinedExprClass: 3626 case IntegerLiteralClass: 3627 case FixedPointLiteralClass: 3628 case FloatingLiteralClass: 3629 case ImaginaryLiteralClass: 3630 case StringLiteralClass: 3631 case CharacterLiteralClass: 3632 case OffsetOfExprClass: 3633 case ImplicitValueInitExprClass: 3634 case UnaryExprOrTypeTraitExprClass: 3635 case AddrLabelExprClass: 3636 case GNUNullExprClass: 3637 case ArrayInitIndexExprClass: 3638 case NoInitExprClass: 3639 case CXXBoolLiteralExprClass: 3640 case CXXNullPtrLiteralExprClass: 3641 case CXXThisExprClass: 3642 case CXXScalarValueInitExprClass: 3643 case TypeTraitExprClass: 3644 case ArrayTypeTraitExprClass: 3645 case ExpressionTraitExprClass: 3646 case CXXNoexceptExprClass: 3647 case SizeOfPackExprClass: 3648 case ObjCStringLiteralClass: 3649 case ObjCEncodeExprClass: 3650 case ObjCBoolLiteralExprClass: 3651 case ObjCAvailabilityCheckExprClass: 3652 case CXXUuidofExprClass: 3653 case OpaqueValueExprClass: 3654 case SourceLocExprClass: 3655 case EmbedExprClass: 3656 case ConceptSpecializationExprClass: 3657 case RequiresExprClass: 3658 case SYCLUniqueStableNameExprClass: 3659 case PackIndexingExprClass: 3660 case HLSLOutArgExprClass: 3661 case OpenACCAsteriskSizeExprClass: 3662 case ResolvedUnexpandedPackExprClass: 3663 // These never have a side-effect. 3664 return false; 3665 3666 case ConstantExprClass: 3667 // FIXME: Move this into the "return false;" block above. 3668 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3669 Ctx, IncludePossibleEffects); 3670 3671 case CallExprClass: 3672 case CXXOperatorCallExprClass: 3673 case CXXMemberCallExprClass: 3674 case CUDAKernelCallExprClass: 3675 case UserDefinedLiteralClass: { 3676 // We don't know a call definitely has side effects, except for calls 3677 // to pure/const functions that definitely don't. 3678 // If the call itself is considered side-effect free, check the operands. 3679 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3680 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3681 if (IsPure || !IncludePossibleEffects) 3682 break; 3683 return true; 3684 } 3685 3686 case BlockExprClass: 3687 case CXXBindTemporaryExprClass: 3688 if (!IncludePossibleEffects) 3689 break; 3690 return true; 3691 3692 case MSPropertyRefExprClass: 3693 case MSPropertySubscriptExprClass: 3694 case CompoundAssignOperatorClass: 3695 case VAArgExprClass: 3696 case AtomicExprClass: 3697 case CXXThrowExprClass: 3698 case CXXNewExprClass: 3699 case CXXDeleteExprClass: 3700 case CoawaitExprClass: 3701 case DependentCoawaitExprClass: 3702 case CoyieldExprClass: 3703 // These always have a side-effect. 3704 return true; 3705 3706 case StmtExprClass: { 3707 // StmtExprs have a side-effect if any substatement does. 3708 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3709 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3710 return Finder.hasSideEffects(); 3711 } 3712 3713 case ExprWithCleanupsClass: 3714 if (IncludePossibleEffects) 3715 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3716 return true; 3717 break; 3718 3719 case ParenExprClass: 3720 case ArraySubscriptExprClass: 3721 case MatrixSubscriptExprClass: 3722 case ArraySectionExprClass: 3723 case OMPArrayShapingExprClass: 3724 case OMPIteratorExprClass: 3725 case MemberExprClass: 3726 case ConditionalOperatorClass: 3727 case BinaryConditionalOperatorClass: 3728 case CompoundLiteralExprClass: 3729 case ExtVectorElementExprClass: 3730 case DesignatedInitExprClass: 3731 case DesignatedInitUpdateExprClass: 3732 case ArrayInitLoopExprClass: 3733 case ParenListExprClass: 3734 case CXXPseudoDestructorExprClass: 3735 case CXXRewrittenBinaryOperatorClass: 3736 case CXXStdInitializerListExprClass: 3737 case SubstNonTypeTemplateParmExprClass: 3738 case MaterializeTemporaryExprClass: 3739 case ShuffleVectorExprClass: 3740 case ConvertVectorExprClass: 3741 case AsTypeExprClass: 3742 case CXXParenListInitExprClass: 3743 // These have a side-effect if any subexpression does. 3744 break; 3745 3746 case UnaryOperatorClass: 3747 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3748 return true; 3749 break; 3750 3751 case BinaryOperatorClass: 3752 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3753 return true; 3754 break; 3755 3756 case InitListExprClass: 3757 // FIXME: The children for an InitListExpr doesn't include the array filler. 3758 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3759 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3760 return true; 3761 break; 3762 3763 case GenericSelectionExprClass: 3764 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3765 HasSideEffects(Ctx, IncludePossibleEffects); 3766 3767 case ChooseExprClass: 3768 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3769 Ctx, IncludePossibleEffects); 3770 3771 case CXXDefaultArgExprClass: 3772 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3773 Ctx, IncludePossibleEffects); 3774 3775 case CXXDefaultInitExprClass: { 3776 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3777 if (const Expr *E = FD->getInClassInitializer()) 3778 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3779 // If we've not yet parsed the initializer, assume it has side-effects. 3780 return true; 3781 } 3782 3783 case CXXDynamicCastExprClass: { 3784 // A dynamic_cast expression has side-effects if it can throw. 3785 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3786 if (DCE->getTypeAsWritten()->isReferenceType() && 3787 DCE->getCastKind() == CK_Dynamic) 3788 return true; 3789 } 3790 [[fallthrough]]; 3791 case ImplicitCastExprClass: 3792 case CStyleCastExprClass: 3793 case CXXStaticCastExprClass: 3794 case CXXReinterpretCastExprClass: 3795 case CXXConstCastExprClass: 3796 case CXXAddrspaceCastExprClass: 3797 case CXXFunctionalCastExprClass: 3798 case BuiltinBitCastExprClass: { 3799 // While volatile reads are side-effecting in both C and C++, we treat them 3800 // as having possible (not definite) side-effects. This allows idiomatic 3801 // code to behave without warning, such as sizeof(*v) for a volatile- 3802 // qualified pointer. 3803 if (!IncludePossibleEffects) 3804 break; 3805 3806 const CastExpr *CE = cast<CastExpr>(this); 3807 if (CE->getCastKind() == CK_LValueToRValue && 3808 CE->getSubExpr()->getType().isVolatileQualified()) 3809 return true; 3810 break; 3811 } 3812 3813 case CXXTypeidExprClass: { 3814 const auto *TE = cast<CXXTypeidExpr>(this); 3815 if (!TE->isPotentiallyEvaluated()) 3816 return false; 3817 3818 // If this type id expression can throw because of a null pointer, that is a 3819 // side-effect independent of if the operand has a side-effect 3820 if (IncludePossibleEffects && TE->hasNullCheck()) 3821 return true; 3822 3823 break; 3824 } 3825 3826 case CXXConstructExprClass: 3827 case CXXTemporaryObjectExprClass: { 3828 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3829 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3830 return true; 3831 // A trivial constructor does not add any side-effects of its own. Just look 3832 // at its arguments. 3833 break; 3834 } 3835 3836 case CXXInheritedCtorInitExprClass: { 3837 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3838 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3839 return true; 3840 break; 3841 } 3842 3843 case LambdaExprClass: { 3844 const LambdaExpr *LE = cast<LambdaExpr>(this); 3845 for (Expr *E : LE->capture_inits()) 3846 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3847 return true; 3848 return false; 3849 } 3850 3851 case PseudoObjectExprClass: { 3852 // Only look for side-effects in the semantic form, and look past 3853 // OpaqueValueExpr bindings in that form. 3854 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3855 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3856 E = PO->semantics_end(); 3857 I != E; ++I) { 3858 const Expr *Subexpr = *I; 3859 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3860 Subexpr = OVE->getSourceExpr(); 3861 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3862 return true; 3863 } 3864 return false; 3865 } 3866 3867 case ObjCBoxedExprClass: 3868 case ObjCArrayLiteralClass: 3869 case ObjCDictionaryLiteralClass: 3870 case ObjCSelectorExprClass: 3871 case ObjCProtocolExprClass: 3872 case ObjCIsaExprClass: 3873 case ObjCIndirectCopyRestoreExprClass: 3874 case ObjCSubscriptRefExprClass: 3875 case ObjCBridgedCastExprClass: 3876 case ObjCMessageExprClass: 3877 case ObjCPropertyRefExprClass: 3878 // FIXME: Classify these cases better. 3879 if (IncludePossibleEffects) 3880 return true; 3881 break; 3882 } 3883 3884 // Recurse to children. 3885 for (const Stmt *SubStmt : children()) 3886 if (SubStmt && 3887 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3888 return true; 3889 3890 return false; 3891 } 3892 3893 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3894 if (auto Call = dyn_cast<CallExpr>(this)) 3895 return Call->getFPFeaturesInEffect(LO); 3896 if (auto UO = dyn_cast<UnaryOperator>(this)) 3897 return UO->getFPFeaturesInEffect(LO); 3898 if (auto BO = dyn_cast<BinaryOperator>(this)) 3899 return BO->getFPFeaturesInEffect(LO); 3900 if (auto Cast = dyn_cast<CastExpr>(this)) 3901 return Cast->getFPFeaturesInEffect(LO); 3902 return FPOptions::defaultWithoutTrailingStorage(LO); 3903 } 3904 3905 namespace { 3906 /// Look for a call to a non-trivial function within an expression. 3907 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3908 { 3909 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3910 3911 bool NonTrivial; 3912 3913 public: 3914 explicit NonTrivialCallFinder(const ASTContext &Context) 3915 : Inherited(Context), NonTrivial(false) { } 3916 3917 bool hasNonTrivialCall() const { return NonTrivial; } 3918 3919 void VisitCallExpr(const CallExpr *E) { 3920 if (const CXXMethodDecl *Method 3921 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3922 if (Method->isTrivial()) { 3923 // Recurse to children of the call. 3924 Inherited::VisitStmt(E); 3925 return; 3926 } 3927 } 3928 3929 NonTrivial = true; 3930 } 3931 3932 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3933 if (E->getConstructor()->isTrivial()) { 3934 // Recurse to children of the call. 3935 Inherited::VisitStmt(E); 3936 return; 3937 } 3938 3939 NonTrivial = true; 3940 } 3941 3942 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3943 // Destructor of the temporary might be null if destructor declaration 3944 // is not valid. 3945 if (const CXXDestructorDecl *DtorDecl = 3946 E->getTemporary()->getDestructor()) { 3947 if (DtorDecl->isTrivial()) { 3948 Inherited::VisitStmt(E); 3949 return; 3950 } 3951 } 3952 3953 NonTrivial = true; 3954 } 3955 }; 3956 } 3957 3958 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3959 NonTrivialCallFinder Finder(Ctx); 3960 Finder.Visit(this); 3961 return Finder.hasNonTrivialCall(); 3962 } 3963 3964 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3965 /// pointer constant or not, as well as the specific kind of constant detected. 3966 /// Null pointer constants can be integer constant expressions with the 3967 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3968 /// (a GNU extension). 3969 Expr::NullPointerConstantKind 3970 Expr::isNullPointerConstant(ASTContext &Ctx, 3971 NullPointerConstantValueDependence NPC) const { 3972 if (isValueDependent() && 3973 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3974 // Error-dependent expr should never be a null pointer. 3975 if (containsErrors()) 3976 return NPCK_NotNull; 3977 switch (NPC) { 3978 case NPC_NeverValueDependent: 3979 llvm_unreachable("Unexpected value dependent expression!"); 3980 case NPC_ValueDependentIsNull: 3981 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3982 return NPCK_ZeroExpression; 3983 else 3984 return NPCK_NotNull; 3985 3986 case NPC_ValueDependentIsNotNull: 3987 return NPCK_NotNull; 3988 } 3989 } 3990 3991 // Strip off a cast to void*, if it exists. Except in C++. 3992 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3993 if (!Ctx.getLangOpts().CPlusPlus) { 3994 // Check that it is a cast to void*. 3995 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3996 QualType Pointee = PT->getPointeeType(); 3997 Qualifiers Qs = Pointee.getQualifiers(); 3998 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3999 // has non-default address space it is not treated as nullptr. 4000 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 4001 // since it cannot be assigned to a pointer to constant address space. 4002 if (Ctx.getLangOpts().OpenCL && 4003 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) 4004 Qs.removeAddressSpace(); 4005 4006 if (Pointee->isVoidType() && Qs.empty() && // to void* 4007 CE->getSubExpr()->getType()->isIntegerType()) // from int 4008 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 4009 } 4010 } 4011 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 4012 // Ignore the ImplicitCastExpr type entirely. 4013 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 4014 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 4015 // Accept ((void*)0) as a null pointer constant, as many other 4016 // implementations do. 4017 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 4018 } else if (const GenericSelectionExpr *GE = 4019 dyn_cast<GenericSelectionExpr>(this)) { 4020 if (GE->isResultDependent()) 4021 return NPCK_NotNull; 4022 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 4023 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 4024 if (CE->isConditionDependent()) 4025 return NPCK_NotNull; 4026 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 4027 } else if (const CXXDefaultArgExpr *DefaultArg 4028 = dyn_cast<CXXDefaultArgExpr>(this)) { 4029 // See through default argument expressions. 4030 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 4031 } else if (const CXXDefaultInitExpr *DefaultInit 4032 = dyn_cast<CXXDefaultInitExpr>(this)) { 4033 // See through default initializer expressions. 4034 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 4035 } else if (isa<GNUNullExpr>(this)) { 4036 // The GNU __null extension is always a null pointer constant. 4037 return NPCK_GNUNull; 4038 } else if (const MaterializeTemporaryExpr *M 4039 = dyn_cast<MaterializeTemporaryExpr>(this)) { 4040 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 4041 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 4042 if (const Expr *Source = OVE->getSourceExpr()) 4043 return Source->isNullPointerConstant(Ctx, NPC); 4044 } 4045 4046 // If the expression has no type information, it cannot be a null pointer 4047 // constant. 4048 if (getType().isNull()) 4049 return NPCK_NotNull; 4050 4051 // C++11/C23 nullptr_t is always a null pointer constant. 4052 if (getType()->isNullPtrType()) 4053 return NPCK_CXX11_nullptr; 4054 4055 if (const RecordType *UT = getType()->getAsUnionType()) 4056 if (!Ctx.getLangOpts().CPlusPlus11 && 4057 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4058 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 4059 const Expr *InitExpr = CLE->getInitializer(); 4060 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 4061 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 4062 } 4063 // This expression must be an integer type. 4064 if (!getType()->isIntegerType() || 4065 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 4066 return NPCK_NotNull; 4067 4068 if (Ctx.getLangOpts().CPlusPlus11) { 4069 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 4070 // value zero or a prvalue of type std::nullptr_t. 4071 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 4072 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 4073 if (Lit && !Lit->getValue()) 4074 return NPCK_ZeroLiteral; 4075 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 4076 return NPCK_NotNull; 4077 } else { 4078 // If we have an integer constant expression, we need to *evaluate* it and 4079 // test for the value 0. 4080 if (!isIntegerConstantExpr(Ctx)) 4081 return NPCK_NotNull; 4082 } 4083 4084 if (EvaluateKnownConstInt(Ctx) != 0) 4085 return NPCK_NotNull; 4086 4087 if (isa<IntegerLiteral>(this)) 4088 return NPCK_ZeroLiteral; 4089 return NPCK_ZeroExpression; 4090 } 4091 4092 /// If this expression is an l-value for an Objective C 4093 /// property, find the underlying property reference expression. 4094 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 4095 const Expr *E = this; 4096 while (true) { 4097 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && 4098 "expression is not a property reference"); 4099 E = E->IgnoreParenCasts(); 4100 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 4101 if (BO->getOpcode() == BO_Comma) { 4102 E = BO->getRHS(); 4103 continue; 4104 } 4105 } 4106 4107 break; 4108 } 4109 4110 return cast<ObjCPropertyRefExpr>(E); 4111 } 4112 4113 bool Expr::isObjCSelfExpr() const { 4114 const Expr *E = IgnoreParenImpCasts(); 4115 4116 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 4117 if (!DRE) 4118 return false; 4119 4120 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 4121 if (!Param) 4122 return false; 4123 4124 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 4125 if (!M) 4126 return false; 4127 4128 return M->getSelfDecl() == Param; 4129 } 4130 4131 FieldDecl *Expr::getSourceBitField() { 4132 Expr *E = this->IgnoreParens(); 4133 4134 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4135 if (ICE->getCastKind() == CK_LValueToRValue || 4136 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) 4137 E = ICE->getSubExpr()->IgnoreParens(); 4138 else 4139 break; 4140 } 4141 4142 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 4143 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 4144 if (Field->isBitField()) 4145 return Field; 4146 4147 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 4148 FieldDecl *Ivar = IvarRef->getDecl(); 4149 if (Ivar->isBitField()) 4150 return Ivar; 4151 } 4152 4153 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 4154 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 4155 if (Field->isBitField()) 4156 return Field; 4157 4158 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 4159 if (Expr *E = BD->getBinding()) 4160 return E->getSourceBitField(); 4161 } 4162 4163 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 4164 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 4165 return BinOp->getLHS()->getSourceBitField(); 4166 4167 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 4168 return BinOp->getRHS()->getSourceBitField(); 4169 } 4170 4171 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 4172 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 4173 return UnOp->getSubExpr()->getSourceBitField(); 4174 4175 return nullptr; 4176 } 4177 4178 EnumConstantDecl *Expr::getEnumConstantDecl() { 4179 Expr *E = this->IgnoreParenImpCasts(); 4180 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 4181 return dyn_cast<EnumConstantDecl>(DRE->getDecl()); 4182 return nullptr; 4183 } 4184 4185 bool Expr::refersToVectorElement() const { 4186 // FIXME: Why do we not just look at the ObjectKind here? 4187 const Expr *E = this->IgnoreParens(); 4188 4189 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4190 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) 4191 E = ICE->getSubExpr()->IgnoreParens(); 4192 else 4193 break; 4194 } 4195 4196 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 4197 return ASE->getBase()->getType()->isVectorType(); 4198 4199 if (isa<ExtVectorElementExpr>(E)) 4200 return true; 4201 4202 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 4203 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 4204 if (auto *E = BD->getBinding()) 4205 return E->refersToVectorElement(); 4206 4207 return false; 4208 } 4209 4210 bool Expr::refersToGlobalRegisterVar() const { 4211 const Expr *E = this->IgnoreParenImpCasts(); 4212 4213 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 4214 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 4215 if (VD->getStorageClass() == SC_Register && 4216 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 4217 return true; 4218 4219 return false; 4220 } 4221 4222 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 4223 E1 = E1->IgnoreParens(); 4224 E2 = E2->IgnoreParens(); 4225 4226 if (E1->getStmtClass() != E2->getStmtClass()) 4227 return false; 4228 4229 switch (E1->getStmtClass()) { 4230 default: 4231 return false; 4232 case CXXThisExprClass: 4233 return true; 4234 case DeclRefExprClass: { 4235 // DeclRefExpr without an ImplicitCastExpr can happen for integral 4236 // template parameters. 4237 const auto *DRE1 = cast<DeclRefExpr>(E1); 4238 const auto *DRE2 = cast<DeclRefExpr>(E2); 4239 return DRE1->isPRValue() && DRE2->isPRValue() && 4240 DRE1->getDecl() == DRE2->getDecl(); 4241 } 4242 case ImplicitCastExprClass: { 4243 // Peel off implicit casts. 4244 while (true) { 4245 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4246 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4247 if (!ICE1 || !ICE2) 4248 return false; 4249 if (ICE1->getCastKind() != ICE2->getCastKind()) 4250 return false; 4251 E1 = ICE1->getSubExpr()->IgnoreParens(); 4252 E2 = ICE2->getSubExpr()->IgnoreParens(); 4253 // The final cast must be one of these types. 4254 if (ICE1->getCastKind() == CK_LValueToRValue || 4255 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4256 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4257 break; 4258 } 4259 } 4260 4261 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4262 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4263 if (DRE1 && DRE2) 4264 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4265 4266 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4267 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4268 if (Ivar1 && Ivar2) { 4269 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4270 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4271 } 4272 4273 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4274 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4275 if (Array1 && Array2) { 4276 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4277 return false; 4278 4279 auto Idx1 = Array1->getIdx(); 4280 auto Idx2 = Array2->getIdx(); 4281 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4282 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4283 if (Integer1 && Integer2) { 4284 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4285 Integer2->getValue())) 4286 return false; 4287 } else { 4288 if (!isSameComparisonOperand(Idx1, Idx2)) 4289 return false; 4290 } 4291 4292 return true; 4293 } 4294 4295 // Walk the MemberExpr chain. 4296 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4297 const auto *ME1 = cast<MemberExpr>(E1); 4298 const auto *ME2 = cast<MemberExpr>(E2); 4299 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4300 return false; 4301 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4302 if (D->isStaticDataMember()) 4303 return true; 4304 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4305 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4306 } 4307 4308 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4309 return true; 4310 4311 // A static member variable can end the MemberExpr chain with either 4312 // a MemberExpr or a DeclRefExpr. 4313 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4314 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4315 return DRE->getDecl(); 4316 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4317 return ME->getMemberDecl(); 4318 return nullptr; 4319 }; 4320 4321 const ValueDecl *VD1 = getAnyDecl(E1); 4322 const ValueDecl *VD2 = getAnyDecl(E2); 4323 return declaresSameEntity(VD1, VD2); 4324 } 4325 } 4326 } 4327 4328 /// isArrow - Return true if the base expression is a pointer to vector, 4329 /// return false if the base expression is a vector. 4330 bool ExtVectorElementExpr::isArrow() const { 4331 return getBase()->getType()->isPointerType(); 4332 } 4333 4334 unsigned ExtVectorElementExpr::getNumElements() const { 4335 if (const VectorType *VT = getType()->getAs<VectorType>()) 4336 return VT->getNumElements(); 4337 return 1; 4338 } 4339 4340 /// containsDuplicateElements - Return true if any element access is repeated. 4341 bool ExtVectorElementExpr::containsDuplicateElements() const { 4342 // FIXME: Refactor this code to an accessor on the AST node which returns the 4343 // "type" of component access, and share with code below and in Sema. 4344 StringRef Comp = Accessor->getName(); 4345 4346 // Halving swizzles do not contain duplicate elements. 4347 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4348 return false; 4349 4350 // Advance past s-char prefix on hex swizzles. 4351 if (Comp[0] == 's' || Comp[0] == 'S') 4352 Comp = Comp.substr(1); 4353 4354 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4355 if (Comp.substr(i + 1).contains(Comp[i])) 4356 return true; 4357 4358 return false; 4359 } 4360 4361 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4362 void ExtVectorElementExpr::getEncodedElementAccess( 4363 SmallVectorImpl<uint32_t> &Elts) const { 4364 StringRef Comp = Accessor->getName(); 4365 bool isNumericAccessor = false; 4366 if (Comp[0] == 's' || Comp[0] == 'S') { 4367 Comp = Comp.substr(1); 4368 isNumericAccessor = true; 4369 } 4370 4371 bool isHi = Comp == "hi"; 4372 bool isLo = Comp == "lo"; 4373 bool isEven = Comp == "even"; 4374 bool isOdd = Comp == "odd"; 4375 4376 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4377 uint64_t Index; 4378 4379 if (isHi) 4380 Index = e + i; 4381 else if (isLo) 4382 Index = i; 4383 else if (isEven) 4384 Index = 2 * i; 4385 else if (isOdd) 4386 Index = 2 * i + 1; 4387 else 4388 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4389 4390 Elts.push_back(Index); 4391 } 4392 } 4393 4394 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4395 QualType Type, SourceLocation BLoc, 4396 SourceLocation RP) 4397 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), 4398 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4399 SubExprs = new (C) Stmt*[args.size()]; 4400 for (unsigned i = 0; i != args.size(); i++) 4401 SubExprs[i] = args[i]; 4402 4403 setDependence(computeDependence(this)); 4404 } 4405 4406 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4407 if (SubExprs) C.Deallocate(SubExprs); 4408 4409 this->NumExprs = Exprs.size(); 4410 SubExprs = new (C) Stmt*[NumExprs]; 4411 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4412 } 4413 4414 GenericSelectionExpr::GenericSelectionExpr( 4415 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4416 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4417 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4418 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4419 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4420 AssocExprs[ResultIndex]->getValueKind(), 4421 AssocExprs[ResultIndex]->getObjectKind()), 4422 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4423 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4424 assert(AssocTypes.size() == AssocExprs.size() && 4425 "Must have the same number of association expressions" 4426 " and TypeSourceInfo!"); 4427 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4428 4429 GenericSelectionExprBits.GenericLoc = GenericLoc; 4430 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = 4431 ControllingExpr; 4432 std::copy(AssocExprs.begin(), AssocExprs.end(), 4433 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4434 std::copy(AssocTypes.begin(), AssocTypes.end(), 4435 getTrailingObjects<TypeSourceInfo *>() + 4436 getIndexOfStartOfAssociatedTypes()); 4437 4438 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4439 } 4440 4441 GenericSelectionExpr::GenericSelectionExpr( 4442 const ASTContext &, SourceLocation GenericLoc, 4443 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4444 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4445 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, 4446 unsigned ResultIndex) 4447 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4448 AssocExprs[ResultIndex]->getValueKind(), 4449 AssocExprs[ResultIndex]->getObjectKind()), 4450 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4451 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4452 assert(AssocTypes.size() == AssocExprs.size() && 4453 "Must have the same number of association expressions" 4454 " and TypeSourceInfo!"); 4455 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4456 4457 GenericSelectionExprBits.GenericLoc = GenericLoc; 4458 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = 4459 ControllingType; 4460 std::copy(AssocExprs.begin(), AssocExprs.end(), 4461 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4462 std::copy(AssocTypes.begin(), AssocTypes.end(), 4463 getTrailingObjects<TypeSourceInfo *>() + 4464 getIndexOfStartOfAssociatedTypes()); 4465 4466 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4467 } 4468 4469 GenericSelectionExpr::GenericSelectionExpr( 4470 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4471 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4472 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4473 bool ContainsUnexpandedParameterPack) 4474 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4475 OK_Ordinary), 4476 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4477 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4478 assert(AssocTypes.size() == AssocExprs.size() && 4479 "Must have the same number of association expressions" 4480 " and TypeSourceInfo!"); 4481 4482 GenericSelectionExprBits.GenericLoc = GenericLoc; 4483 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = 4484 ControllingExpr; 4485 std::copy(AssocExprs.begin(), AssocExprs.end(), 4486 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4487 std::copy(AssocTypes.begin(), AssocTypes.end(), 4488 getTrailingObjects<TypeSourceInfo *>() + 4489 getIndexOfStartOfAssociatedTypes()); 4490 4491 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4492 } 4493 4494 GenericSelectionExpr::GenericSelectionExpr( 4495 const ASTContext &Context, SourceLocation GenericLoc, 4496 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4497 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4498 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) 4499 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4500 OK_Ordinary), 4501 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4502 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4503 assert(AssocTypes.size() == AssocExprs.size() && 4504 "Must have the same number of association expressions" 4505 " and TypeSourceInfo!"); 4506 4507 GenericSelectionExprBits.GenericLoc = GenericLoc; 4508 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = 4509 ControllingType; 4510 std::copy(AssocExprs.begin(), AssocExprs.end(), 4511 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4512 std::copy(AssocTypes.begin(), AssocTypes.end(), 4513 getTrailingObjects<TypeSourceInfo *>() + 4514 getIndexOfStartOfAssociatedTypes()); 4515 4516 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4517 } 4518 4519 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4520 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4521 4522 GenericSelectionExpr *GenericSelectionExpr::Create( 4523 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4524 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4525 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4526 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4527 unsigned NumAssocs = AssocExprs.size(); 4528 void *Mem = Context.Allocate( 4529 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4530 alignof(GenericSelectionExpr)); 4531 return new (Mem) GenericSelectionExpr( 4532 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4533 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4534 } 4535 4536 GenericSelectionExpr *GenericSelectionExpr::Create( 4537 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4538 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4539 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4540 bool ContainsUnexpandedParameterPack) { 4541 unsigned NumAssocs = AssocExprs.size(); 4542 void *Mem = Context.Allocate( 4543 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4544 alignof(GenericSelectionExpr)); 4545 return new (Mem) GenericSelectionExpr( 4546 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4547 RParenLoc, ContainsUnexpandedParameterPack); 4548 } 4549 4550 GenericSelectionExpr *GenericSelectionExpr::Create( 4551 const ASTContext &Context, SourceLocation GenericLoc, 4552 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4553 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4554 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, 4555 unsigned ResultIndex) { 4556 unsigned NumAssocs = AssocExprs.size(); 4557 void *Mem = Context.Allocate( 4558 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4559 alignof(GenericSelectionExpr)); 4560 return new (Mem) GenericSelectionExpr( 4561 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, 4562 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4563 } 4564 4565 GenericSelectionExpr *GenericSelectionExpr::Create( 4566 const ASTContext &Context, SourceLocation GenericLoc, 4567 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4568 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4569 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) { 4570 unsigned NumAssocs = AssocExprs.size(); 4571 void *Mem = Context.Allocate( 4572 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4573 alignof(GenericSelectionExpr)); 4574 return new (Mem) GenericSelectionExpr( 4575 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, 4576 RParenLoc, ContainsUnexpandedParameterPack); 4577 } 4578 4579 GenericSelectionExpr * 4580 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4581 unsigned NumAssocs) { 4582 void *Mem = Context.Allocate( 4583 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4584 alignof(GenericSelectionExpr)); 4585 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4586 } 4587 4588 //===----------------------------------------------------------------------===// 4589 // DesignatedInitExpr 4590 //===----------------------------------------------------------------------===// 4591 4592 const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4593 assert(isFieldDesignator() && "Only valid on a field designator"); 4594 if (FieldInfo.NameOrField & 0x01) 4595 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01); 4596 return getFieldDecl()->getIdentifier(); 4597 } 4598 4599 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4600 llvm::ArrayRef<Designator> Designators, 4601 SourceLocation EqualOrColonLoc, 4602 bool GNUSyntax, 4603 ArrayRef<Expr *> IndexExprs, Expr *Init) 4604 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4605 Init->getObjectKind()), 4606 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4607 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4608 this->Designators = new (C) Designator[NumDesignators]; 4609 4610 // Record the initializer itself. 4611 child_iterator Child = child_begin(); 4612 *Child++ = Init; 4613 4614 // Copy the designators and their subexpressions, computing 4615 // value-dependence along the way. 4616 unsigned IndexIdx = 0; 4617 for (unsigned I = 0; I != NumDesignators; ++I) { 4618 this->Designators[I] = Designators[I]; 4619 if (this->Designators[I].isArrayDesignator()) { 4620 // Copy the index expressions into permanent storage. 4621 *Child++ = IndexExprs[IndexIdx++]; 4622 } else if (this->Designators[I].isArrayRangeDesignator()) { 4623 // Copy the start/end expressions into permanent storage. 4624 *Child++ = IndexExprs[IndexIdx++]; 4625 *Child++ = IndexExprs[IndexIdx++]; 4626 } 4627 } 4628 4629 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4630 setDependence(computeDependence(this)); 4631 } 4632 4633 DesignatedInitExpr * 4634 DesignatedInitExpr::Create(const ASTContext &C, 4635 llvm::ArrayRef<Designator> Designators, 4636 ArrayRef<Expr*> IndexExprs, 4637 SourceLocation ColonOrEqualLoc, 4638 bool UsesColonSyntax, Expr *Init) { 4639 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4640 alignof(DesignatedInitExpr)); 4641 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4642 ColonOrEqualLoc, UsesColonSyntax, 4643 IndexExprs, Init); 4644 } 4645 4646 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4647 unsigned NumIndexExprs) { 4648 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4649 alignof(DesignatedInitExpr)); 4650 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4651 } 4652 4653 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4654 const Designator *Desigs, 4655 unsigned NumDesigs) { 4656 Designators = new (C) Designator[NumDesigs]; 4657 NumDesignators = NumDesigs; 4658 for (unsigned I = 0; I != NumDesigs; ++I) 4659 Designators[I] = Desigs[I]; 4660 } 4661 4662 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4663 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4664 if (size() == 1) 4665 return DIE->getDesignator(0)->getSourceRange(); 4666 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4667 DIE->getDesignator(size() - 1)->getEndLoc()); 4668 } 4669 4670 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4671 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4672 Designator &First = *DIE->getDesignator(0); 4673 if (First.isFieldDesignator()) { 4674 // Skip past implicit designators for anonymous structs/unions, since 4675 // these do not have valid source locations. 4676 for (unsigned int i = 0; i < DIE->size(); i++) { 4677 Designator &Des = *DIE->getDesignator(i); 4678 SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc(); 4679 if (!retval.isValid()) 4680 continue; 4681 return retval; 4682 } 4683 } 4684 return First.getLBracketLoc(); 4685 } 4686 4687 SourceLocation DesignatedInitExpr::getEndLoc() const { 4688 return getInit()->getEndLoc(); 4689 } 4690 4691 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4692 assert(D.isArrayDesignator() && "Requires array designator"); 4693 return getSubExpr(D.getArrayIndex() + 1); 4694 } 4695 4696 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4697 assert(D.isArrayRangeDesignator() && "Requires array range designator"); 4698 return getSubExpr(D.getArrayIndex() + 1); 4699 } 4700 4701 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4702 assert(D.isArrayRangeDesignator() && "Requires array range designator"); 4703 return getSubExpr(D.getArrayIndex() + 2); 4704 } 4705 4706 /// Replaces the designator at index @p Idx with the series 4707 /// of designators in [First, Last). 4708 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4709 const Designator *First, 4710 const Designator *Last) { 4711 unsigned NumNewDesignators = Last - First; 4712 if (NumNewDesignators == 0) { 4713 std::copy_backward(Designators + Idx + 1, 4714 Designators + NumDesignators, 4715 Designators + Idx); 4716 --NumNewDesignators; 4717 return; 4718 } 4719 if (NumNewDesignators == 1) { 4720 Designators[Idx] = *First; 4721 return; 4722 } 4723 4724 Designator *NewDesignators 4725 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4726 std::copy(Designators, Designators + Idx, NewDesignators); 4727 std::copy(First, Last, NewDesignators + Idx); 4728 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4729 NewDesignators + Idx + NumNewDesignators); 4730 Designators = NewDesignators; 4731 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4732 } 4733 4734 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4735 SourceLocation lBraceLoc, 4736 Expr *baseExpr, 4737 SourceLocation rBraceLoc) 4738 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, 4739 OK_Ordinary) { 4740 BaseAndUpdaterExprs[0] = baseExpr; 4741 4742 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, {}, rBraceLoc); 4743 ILE->setType(baseExpr->getType()); 4744 BaseAndUpdaterExprs[1] = ILE; 4745 4746 // FIXME: this is wrong, set it correctly. 4747 setDependence(ExprDependence::None); 4748 } 4749 4750 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4751 return getBase()->getBeginLoc(); 4752 } 4753 4754 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4755 return getBase()->getEndLoc(); 4756 } 4757 4758 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4759 SourceLocation RParenLoc) 4760 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), 4761 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4762 ParenListExprBits.NumExprs = Exprs.size(); 4763 4764 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4765 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4766 setDependence(computeDependence(this)); 4767 } 4768 4769 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4770 : Expr(ParenListExprClass, Empty) { 4771 ParenListExprBits.NumExprs = NumExprs; 4772 } 4773 4774 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4775 SourceLocation LParenLoc, 4776 ArrayRef<Expr *> Exprs, 4777 SourceLocation RParenLoc) { 4778 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4779 alignof(ParenListExpr)); 4780 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4781 } 4782 4783 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4784 unsigned NumExprs) { 4785 void *Mem = 4786 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4787 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4788 } 4789 4790 /// Certain overflow-dependent code patterns can have their integer overflow 4791 /// sanitization disabled. Check for the common pattern `if (a + b < a)` and 4792 /// return the resulting BinaryOperator responsible for the addition so we can 4793 /// elide overflow checks during codegen. 4794 static std::optional<BinaryOperator *> 4795 getOverflowPatternBinOp(const BinaryOperator *E) { 4796 Expr *Addition, *ComparedTo; 4797 if (E->getOpcode() == BO_LT) { 4798 Addition = E->getLHS(); 4799 ComparedTo = E->getRHS(); 4800 } else if (E->getOpcode() == BO_GT) { 4801 Addition = E->getRHS(); 4802 ComparedTo = E->getLHS(); 4803 } else { 4804 return {}; 4805 } 4806 4807 const Expr *AddLHS = nullptr, *AddRHS = nullptr; 4808 BinaryOperator *BO = dyn_cast<BinaryOperator>(Addition); 4809 4810 if (BO && BO->getOpcode() == clang::BO_Add) { 4811 // now store addends for lookup on other side of '>' 4812 AddLHS = BO->getLHS(); 4813 AddRHS = BO->getRHS(); 4814 } 4815 4816 if (!AddLHS || !AddRHS) 4817 return {}; 4818 4819 const Decl *LHSDecl, *RHSDecl, *OtherDecl; 4820 4821 LHSDecl = AddLHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); 4822 RHSDecl = AddRHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); 4823 OtherDecl = ComparedTo->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); 4824 4825 if (!OtherDecl) 4826 return {}; 4827 4828 if (!LHSDecl && !RHSDecl) 4829 return {}; 4830 4831 if ((LHSDecl && LHSDecl == OtherDecl && LHSDecl != RHSDecl) || 4832 (RHSDecl && RHSDecl == OtherDecl && RHSDecl != LHSDecl)) 4833 return BO; 4834 return {}; 4835 } 4836 4837 /// Compute and set the OverflowPatternExclusion bit based on whether the 4838 /// BinaryOperator expression matches an overflow pattern being ignored by 4839 /// -fsanitize-undefined-ignore-overflow-pattern=add-signed-overflow-test or 4840 /// -fsanitize-undefined-ignore-overflow-pattern=add-unsigned-overflow-test 4841 static void computeOverflowPatternExclusion(const ASTContext &Ctx, 4842 const BinaryOperator *E) { 4843 std::optional<BinaryOperator *> Result = getOverflowPatternBinOp(E); 4844 if (!Result.has_value()) 4845 return; 4846 QualType AdditionResultType = Result.value()->getType(); 4847 4848 if ((AdditionResultType->isSignedIntegerType() && 4849 Ctx.getLangOpts().isOverflowPatternExcluded( 4850 LangOptions::OverflowPatternExclusionKind::AddSignedOverflowTest)) || 4851 (AdditionResultType->isUnsignedIntegerType() && 4852 Ctx.getLangOpts().isOverflowPatternExcluded( 4853 LangOptions::OverflowPatternExclusionKind::AddUnsignedOverflowTest))) 4854 Result.value()->setExcludedOverflowPattern(true); 4855 } 4856 4857 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4858 Opcode opc, QualType ResTy, ExprValueKind VK, 4859 ExprObjectKind OK, SourceLocation opLoc, 4860 FPOptionsOverride FPFeatures) 4861 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4862 BinaryOperatorBits.Opc = opc; 4863 assert(!isCompoundAssignmentOp() && 4864 "Use CompoundAssignOperator for compound assignments"); 4865 BinaryOperatorBits.OpLoc = opLoc; 4866 BinaryOperatorBits.ExcludedOverflowPattern = false; 4867 SubExprs[LHS] = lhs; 4868 SubExprs[RHS] = rhs; 4869 computeOverflowPatternExclusion(Ctx, this); 4870 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4871 if (hasStoredFPFeatures()) 4872 setStoredFPFeatures(FPFeatures); 4873 setDependence(computeDependence(this)); 4874 } 4875 4876 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4877 Opcode opc, QualType ResTy, ExprValueKind VK, 4878 ExprObjectKind OK, SourceLocation opLoc, 4879 FPOptionsOverride FPFeatures, bool dead2) 4880 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4881 BinaryOperatorBits.Opc = opc; 4882 BinaryOperatorBits.ExcludedOverflowPattern = false; 4883 assert(isCompoundAssignmentOp() && 4884 "Use CompoundAssignOperator for compound assignments"); 4885 BinaryOperatorBits.OpLoc = opLoc; 4886 SubExprs[LHS] = lhs; 4887 SubExprs[RHS] = rhs; 4888 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4889 if (hasStoredFPFeatures()) 4890 setStoredFPFeatures(FPFeatures); 4891 setDependence(computeDependence(this)); 4892 } 4893 4894 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4895 bool HasFPFeatures) { 4896 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4897 void *Mem = 4898 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4899 return new (Mem) BinaryOperator(EmptyShell()); 4900 } 4901 4902 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4903 Expr *rhs, Opcode opc, QualType ResTy, 4904 ExprValueKind VK, ExprObjectKind OK, 4905 SourceLocation opLoc, 4906 FPOptionsOverride FPFeatures) { 4907 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4908 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4909 void *Mem = 4910 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4911 return new (Mem) 4912 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4913 } 4914 4915 CompoundAssignOperator * 4916 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4917 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4918 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4919 alignof(CompoundAssignOperator)); 4920 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4921 } 4922 4923 CompoundAssignOperator * 4924 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4925 Opcode opc, QualType ResTy, ExprValueKind VK, 4926 ExprObjectKind OK, SourceLocation opLoc, 4927 FPOptionsOverride FPFeatures, 4928 QualType CompLHSType, QualType CompResultType) { 4929 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4930 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4931 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4932 alignof(CompoundAssignOperator)); 4933 return new (Mem) 4934 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4935 CompLHSType, CompResultType); 4936 } 4937 4938 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4939 bool hasFPFeatures) { 4940 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4941 alignof(UnaryOperator)); 4942 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4943 } 4944 4945 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4946 QualType type, ExprValueKind VK, ExprObjectKind OK, 4947 SourceLocation l, bool CanOverflow, 4948 FPOptionsOverride FPFeatures) 4949 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4950 UnaryOperatorBits.Opc = opc; 4951 UnaryOperatorBits.CanOverflow = CanOverflow; 4952 UnaryOperatorBits.Loc = l; 4953 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4954 if (hasStoredFPFeatures()) 4955 setStoredFPFeatures(FPFeatures); 4956 setDependence(computeDependence(this, Ctx)); 4957 } 4958 4959 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4960 Opcode opc, QualType type, 4961 ExprValueKind VK, ExprObjectKind OK, 4962 SourceLocation l, bool CanOverflow, 4963 FPOptionsOverride FPFeatures) { 4964 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4965 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4966 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4967 return new (Mem) 4968 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4969 } 4970 4971 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4972 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4973 e = ewc->getSubExpr(); 4974 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4975 e = m->getSubExpr(); 4976 e = cast<CXXConstructExpr>(e)->getArg(0); 4977 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4978 e = ice->getSubExpr(); 4979 return cast<OpaqueValueExpr>(e); 4980 } 4981 4982 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4983 EmptyShell sh, 4984 unsigned numSemanticExprs) { 4985 void *buffer = 4986 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4987 alignof(PseudoObjectExpr)); 4988 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4989 } 4990 4991 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4992 : Expr(PseudoObjectExprClass, shell) { 4993 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4994 } 4995 4996 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4997 ArrayRef<Expr*> semantics, 4998 unsigned resultIndex) { 4999 assert(syntax && "no syntactic expression!"); 5000 assert(semantics.size() && "no semantic expressions!"); 5001 5002 QualType type; 5003 ExprValueKind VK; 5004 if (resultIndex == NoResult) { 5005 type = C.VoidTy; 5006 VK = VK_PRValue; 5007 } else { 5008 assert(resultIndex < semantics.size()); 5009 type = semantics[resultIndex]->getType(); 5010 VK = semantics[resultIndex]->getValueKind(); 5011 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 5012 } 5013 5014 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 5015 alignof(PseudoObjectExpr)); 5016 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 5017 resultIndex); 5018 } 5019 5020 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 5021 Expr *syntax, ArrayRef<Expr *> semantics, 5022 unsigned resultIndex) 5023 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 5024 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 5025 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 5026 5027 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 5028 Expr *E = (i == 0 ? syntax : semantics[i-1]); 5029 getSubExprsBuffer()[i] = E; 5030 5031 if (isa<OpaqueValueExpr>(E)) 5032 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 5033 "opaque-value semantic expressions for pseudo-object " 5034 "operations must have sources"); 5035 } 5036 5037 setDependence(computeDependence(this)); 5038 } 5039 5040 //===----------------------------------------------------------------------===// 5041 // Child Iterators for iterating over subexpressions/substatements 5042 //===----------------------------------------------------------------------===// 5043 5044 // UnaryExprOrTypeTraitExpr 5045 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 5046 const_child_range CCR = 5047 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 5048 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 5049 } 5050 5051 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 5052 // If this is of a type and the type is a VLA type (and not a typedef), the 5053 // size expression of the VLA needs to be treated as an executable expression. 5054 // Why isn't this weirdness documented better in StmtIterator? 5055 if (isArgumentType()) { 5056 if (const VariableArrayType *T = 5057 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 5058 return const_child_range(const_child_iterator(T), const_child_iterator()); 5059 return const_child_range(const_child_iterator(), const_child_iterator()); 5060 } 5061 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 5062 } 5063 5064 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 5065 AtomicOp op, SourceLocation RP) 5066 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), 5067 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 5068 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 5069 for (unsigned i = 0; i != args.size(); i++) 5070 SubExprs[i] = args[i]; 5071 setDependence(computeDependence(this)); 5072 } 5073 5074 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 5075 switch (Op) { 5076 case AO__c11_atomic_init: 5077 case AO__opencl_atomic_init: 5078 case AO__c11_atomic_load: 5079 case AO__atomic_load_n: 5080 case AO__atomic_test_and_set: 5081 case AO__atomic_clear: 5082 return 2; 5083 5084 case AO__scoped_atomic_load_n: 5085 case AO__opencl_atomic_load: 5086 case AO__hip_atomic_load: 5087 case AO__c11_atomic_store: 5088 case AO__c11_atomic_exchange: 5089 case AO__atomic_load: 5090 case AO__atomic_store: 5091 case AO__atomic_store_n: 5092 case AO__atomic_exchange_n: 5093 case AO__c11_atomic_fetch_add: 5094 case AO__c11_atomic_fetch_sub: 5095 case AO__c11_atomic_fetch_and: 5096 case AO__c11_atomic_fetch_or: 5097 case AO__c11_atomic_fetch_xor: 5098 case AO__c11_atomic_fetch_nand: 5099 case AO__c11_atomic_fetch_max: 5100 case AO__c11_atomic_fetch_min: 5101 case AO__atomic_fetch_add: 5102 case AO__atomic_fetch_sub: 5103 case AO__atomic_fetch_and: 5104 case AO__atomic_fetch_or: 5105 case AO__atomic_fetch_xor: 5106 case AO__atomic_fetch_nand: 5107 case AO__atomic_add_fetch: 5108 case AO__atomic_sub_fetch: 5109 case AO__atomic_and_fetch: 5110 case AO__atomic_or_fetch: 5111 case AO__atomic_xor_fetch: 5112 case AO__atomic_nand_fetch: 5113 case AO__atomic_min_fetch: 5114 case AO__atomic_max_fetch: 5115 case AO__atomic_fetch_min: 5116 case AO__atomic_fetch_max: 5117 return 3; 5118 5119 case AO__scoped_atomic_load: 5120 case AO__scoped_atomic_store: 5121 case AO__scoped_atomic_store_n: 5122 case AO__scoped_atomic_fetch_add: 5123 case AO__scoped_atomic_fetch_sub: 5124 case AO__scoped_atomic_fetch_and: 5125 case AO__scoped_atomic_fetch_or: 5126 case AO__scoped_atomic_fetch_xor: 5127 case AO__scoped_atomic_fetch_nand: 5128 case AO__scoped_atomic_add_fetch: 5129 case AO__scoped_atomic_sub_fetch: 5130 case AO__scoped_atomic_and_fetch: 5131 case AO__scoped_atomic_or_fetch: 5132 case AO__scoped_atomic_xor_fetch: 5133 case AO__scoped_atomic_nand_fetch: 5134 case AO__scoped_atomic_min_fetch: 5135 case AO__scoped_atomic_max_fetch: 5136 case AO__scoped_atomic_fetch_min: 5137 case AO__scoped_atomic_fetch_max: 5138 case AO__scoped_atomic_exchange_n: 5139 case AO__hip_atomic_exchange: 5140 case AO__hip_atomic_fetch_add: 5141 case AO__hip_atomic_fetch_sub: 5142 case AO__hip_atomic_fetch_and: 5143 case AO__hip_atomic_fetch_or: 5144 case AO__hip_atomic_fetch_xor: 5145 case AO__hip_atomic_fetch_min: 5146 case AO__hip_atomic_fetch_max: 5147 case AO__opencl_atomic_store: 5148 case AO__hip_atomic_store: 5149 case AO__opencl_atomic_exchange: 5150 case AO__opencl_atomic_fetch_add: 5151 case AO__opencl_atomic_fetch_sub: 5152 case AO__opencl_atomic_fetch_and: 5153 case AO__opencl_atomic_fetch_or: 5154 case AO__opencl_atomic_fetch_xor: 5155 case AO__opencl_atomic_fetch_min: 5156 case AO__opencl_atomic_fetch_max: 5157 case AO__atomic_exchange: 5158 return 4; 5159 5160 case AO__scoped_atomic_exchange: 5161 case AO__c11_atomic_compare_exchange_strong: 5162 case AO__c11_atomic_compare_exchange_weak: 5163 return 5; 5164 case AO__hip_atomic_compare_exchange_strong: 5165 case AO__opencl_atomic_compare_exchange_strong: 5166 case AO__opencl_atomic_compare_exchange_weak: 5167 case AO__hip_atomic_compare_exchange_weak: 5168 case AO__atomic_compare_exchange: 5169 case AO__atomic_compare_exchange_n: 5170 return 6; 5171 5172 case AO__scoped_atomic_compare_exchange: 5173 case AO__scoped_atomic_compare_exchange_n: 5174 return 7; 5175 } 5176 llvm_unreachable("unknown atomic op"); 5177 } 5178 5179 QualType AtomicExpr::getValueType() const { 5180 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 5181 if (auto AT = T->getAs<AtomicType>()) 5182 return AT->getValueType(); 5183 return T; 5184 } 5185 5186 QualType ArraySectionExpr::getBaseOriginalType(const Expr *Base) { 5187 unsigned ArraySectionCount = 0; 5188 while (auto *OASE = dyn_cast<ArraySectionExpr>(Base->IgnoreParens())) { 5189 Base = OASE->getBase(); 5190 ++ArraySectionCount; 5191 } 5192 while (auto *ASE = 5193 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 5194 Base = ASE->getBase(); 5195 ++ArraySectionCount; 5196 } 5197 Base = Base->IgnoreParenImpCasts(); 5198 auto OriginalTy = Base->getType(); 5199 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 5200 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 5201 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 5202 5203 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 5204 if (OriginalTy->isAnyPointerType()) 5205 OriginalTy = OriginalTy->getPointeeType(); 5206 else if (OriginalTy->isArrayType()) 5207 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 5208 else 5209 return {}; 5210 } 5211 return OriginalTy; 5212 } 5213 5214 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 5215 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 5216 : Expr(RecoveryExprClass, T.getNonReferenceType(), 5217 T->isDependentType() ? VK_LValue : getValueKindForType(T), 5218 OK_Ordinary), 5219 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 5220 assert(!T.isNull()); 5221 assert(!llvm::is_contained(SubExprs, nullptr)); 5222 5223 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 5224 setDependence(computeDependence(this)); 5225 } 5226 5227 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 5228 SourceLocation BeginLoc, 5229 SourceLocation EndLoc, 5230 ArrayRef<Expr *> SubExprs) { 5231 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 5232 alignof(RecoveryExpr)); 5233 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 5234 } 5235 5236 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 5237 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 5238 alignof(RecoveryExpr)); 5239 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 5240 } 5241 5242 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 5243 assert( 5244 NumDims == Dims.size() && 5245 "Preallocated number of dimensions is different from the provided one."); 5246 llvm::copy(Dims, getTrailingObjects<Expr *>()); 5247 } 5248 5249 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 5250 assert( 5251 NumDims == BR.size() && 5252 "Preallocated number of dimensions is different from the provided one."); 5253 llvm::copy(BR, getTrailingObjects<SourceRange>()); 5254 } 5255 5256 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 5257 SourceLocation L, SourceLocation R, 5258 ArrayRef<Expr *> Dims) 5259 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 5260 RPLoc(R), NumDims(Dims.size()) { 5261 setBase(Op); 5262 setDimensions(Dims); 5263 setDependence(computeDependence(this)); 5264 } 5265 5266 OMPArrayShapingExpr * 5267 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 5268 SourceLocation L, SourceLocation R, 5269 ArrayRef<Expr *> Dims, 5270 ArrayRef<SourceRange> BracketRanges) { 5271 assert(Dims.size() == BracketRanges.size() && 5272 "Different number of dimensions and brackets ranges."); 5273 void *Mem = Context.Allocate( 5274 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 5275 alignof(OMPArrayShapingExpr)); 5276 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 5277 E->setBracketsRanges(BracketRanges); 5278 return E; 5279 } 5280 5281 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 5282 unsigned NumDims) { 5283 void *Mem = Context.Allocate( 5284 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 5285 alignof(OMPArrayShapingExpr)); 5286 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 5287 } 5288 5289 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 5290 assert(I < NumIterators && 5291 "Idx is greater or equal the number of iterators definitions."); 5292 getTrailingObjects<Decl *>()[I] = D; 5293 } 5294 5295 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 5296 assert(I < NumIterators && 5297 "Idx is greater or equal the number of iterators definitions."); 5298 getTrailingObjects< 5299 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5300 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 5301 } 5302 5303 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 5304 SourceLocation ColonLoc, Expr *End, 5305 SourceLocation SecondColonLoc, 5306 Expr *Step) { 5307 assert(I < NumIterators && 5308 "Idx is greater or equal the number of iterators definitions."); 5309 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5310 static_cast<int>(RangeExprOffset::Begin)] = 5311 Begin; 5312 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5313 static_cast<int>(RangeExprOffset::End)] = End; 5314 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5315 static_cast<int>(RangeExprOffset::Step)] = Step; 5316 getTrailingObjects< 5317 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5318 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 5319 ColonLoc; 5320 getTrailingObjects< 5321 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5322 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 5323 SecondColonLoc; 5324 } 5325 5326 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 5327 return getTrailingObjects<Decl *>()[I]; 5328 } 5329 5330 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 5331 IteratorRange Res; 5332 Res.Begin = 5333 getTrailingObjects<Expr *>()[I * static_cast<int>( 5334 RangeExprOffset::Total) + 5335 static_cast<int>(RangeExprOffset::Begin)]; 5336 Res.End = 5337 getTrailingObjects<Expr *>()[I * static_cast<int>( 5338 RangeExprOffset::Total) + 5339 static_cast<int>(RangeExprOffset::End)]; 5340 Res.Step = 5341 getTrailingObjects<Expr *>()[I * static_cast<int>( 5342 RangeExprOffset::Total) + 5343 static_cast<int>(RangeExprOffset::Step)]; 5344 return Res; 5345 } 5346 5347 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 5348 return getTrailingObjects< 5349 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5350 static_cast<int>(RangeLocOffset::AssignLoc)]; 5351 } 5352 5353 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 5354 return getTrailingObjects< 5355 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5356 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 5357 } 5358 5359 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 5360 return getTrailingObjects< 5361 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5362 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 5363 } 5364 5365 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 5366 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 5367 } 5368 5369 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 5370 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5371 } 5372 5373 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 5374 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5375 } 5376 5377 OMPIteratorExpr::OMPIteratorExpr( 5378 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 5379 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5380 ArrayRef<OMPIteratorHelperData> Helpers) 5381 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 5382 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 5383 NumIterators(Data.size()) { 5384 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 5385 const IteratorDefinition &D = Data[I]; 5386 setIteratorDeclaration(I, D.IteratorDecl); 5387 setAssignmentLoc(I, D.AssignmentLoc); 5388 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 5389 D.SecondColonLoc, D.Range.Step); 5390 setHelper(I, Helpers[I]); 5391 } 5392 setDependence(computeDependence(this)); 5393 } 5394 5395 OMPIteratorExpr * 5396 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 5397 SourceLocation IteratorKwLoc, SourceLocation L, 5398 SourceLocation R, 5399 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5400 ArrayRef<OMPIteratorHelperData> Helpers) { 5401 assert(Data.size() == Helpers.size() && 5402 "Data and helpers must have the same size."); 5403 void *Mem = Context.Allocate( 5404 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5405 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 5406 Data.size() * static_cast<int>(RangeLocOffset::Total), 5407 Helpers.size()), 5408 alignof(OMPIteratorExpr)); 5409 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 5410 } 5411 5412 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 5413 unsigned NumIterators) { 5414 void *Mem = Context.Allocate( 5415 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5416 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 5417 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 5418 alignof(OMPIteratorExpr)); 5419 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 5420 } 5421 5422 HLSLOutArgExpr *HLSLOutArgExpr::Create(const ASTContext &C, QualType Ty, 5423 OpaqueValueExpr *Base, 5424 OpaqueValueExpr *OpV, Expr *WB, 5425 bool IsInOut) { 5426 return new (C) HLSLOutArgExpr(Ty, Base, OpV, WB, IsInOut); 5427 } 5428 5429 HLSLOutArgExpr *HLSLOutArgExpr::CreateEmpty(const ASTContext &C) { 5430 return new (C) HLSLOutArgExpr(EmptyShell()); 5431 } 5432 5433 OpenACCAsteriskSizeExpr *OpenACCAsteriskSizeExpr::Create(const ASTContext &C, 5434 SourceLocation Loc) { 5435 return new (C) OpenACCAsteriskSizeExpr(Loc, C.IntTy); 5436 } 5437 5438 OpenACCAsteriskSizeExpr * 5439 OpenACCAsteriskSizeExpr::CreateEmpty(const ASTContext &C) { 5440 return new (C) OpenACCAsteriskSizeExpr({}, C.IntTy); 5441 } 5442