1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87
88 using namespace llvm;
89
90 static cl::opt<bool> PrintSummaryGUIDs(
91 "print-summary-global-ids", cl::init(false), cl::Hidden,
92 cl::desc(
93 "Print the global id for each value when reading the module summary"));
94
95 namespace {
96
97 enum {
98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100
101 } // end anonymous namespace
102
error(const Twine & Message)103 static Error error(const Twine &Message) {
104 return make_error<StringError>(
105 Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107
hasInvalidBitcodeHeader(BitstreamCursor & Stream)108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109 if (!Stream.canSkipToPos(4))
110 return createStringError(std::errc::illegal_byte_sequence,
111 "file too small to contain bitcode header");
112 for (unsigned C : {'B', 'C'})
113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114 if (Res.get() != C)
115 return createStringError(std::errc::illegal_byte_sequence,
116 "file doesn't start with bitcode header");
117 } else
118 return Res.takeError();
119 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121 if (Res.get() != C)
122 return createStringError(std::errc::illegal_byte_sequence,
123 "file doesn't start with bitcode header");
124 } else
125 return Res.takeError();
126 return Error::success();
127 }
128
initStream(MemoryBufferRef Buffer)129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132
133 if (Buffer.getBufferSize() & 3)
134 return error("Invalid bitcode signature");
135
136 // If we have a wrapper header, parse it and ignore the non-bc file contents.
137 // The magic number is 0x0B17C0DE stored in little endian.
138 if (isBitcodeWrapper(BufPtr, BufEnd))
139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140 return error("Invalid bitcode wrapper header");
141
142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143 if (Error Err = hasInvalidBitcodeHeader(Stream))
144 return std::move(Err);
145
146 return std::move(Stream);
147 }
148
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
convertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152 StrTy &Result) {
153 if (Idx > Record.size())
154 return true;
155
156 Result.append(Record.begin() + Idx, Record.end());
157 return false;
158 }
159
160 // Strip all the TBAA attachment for the module.
stripTBAA(Module * M)161 static void stripTBAA(Module *M) {
162 for (auto &F : *M) {
163 if (F.isMaterializable())
164 continue;
165 for (auto &I : instructions(F))
166 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167 }
168 }
169
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
readIdentificationBlock(BitstreamCursor & Stream)172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174 return std::move(Err);
175
176 // Read all the records.
177 SmallVector<uint64_t, 64> Record;
178
179 std::string ProducerIdentification;
180
181 while (true) {
182 BitstreamEntry Entry;
183 if (Expected<BitstreamEntry> Res = Stream.advance())
184 Entry = Res.get();
185 else
186 return Res.takeError();
187
188 switch (Entry.Kind) {
189 default:
190 case BitstreamEntry::Error:
191 return error("Malformed block");
192 case BitstreamEntry::EndBlock:
193 return ProducerIdentification;
194 case BitstreamEntry::Record:
195 // The interesting case.
196 break;
197 }
198
199 // Read a record.
200 Record.clear();
201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202 if (!MaybeBitCode)
203 return MaybeBitCode.takeError();
204 switch (MaybeBitCode.get()) {
205 default: // Default behavior: reject
206 return error("Invalid value");
207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208 convertToString(Record, 0, ProducerIdentification);
209 break;
210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211 unsigned epoch = (unsigned)Record[0];
212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213 return error(
214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216 }
217 }
218 }
219 }
220 }
221
readIdentificationCode(BitstreamCursor & Stream)222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223 // We expect a number of well-defined blocks, though we don't necessarily
224 // need to understand them all.
225 while (true) {
226 if (Stream.AtEndOfStream())
227 return "";
228
229 BitstreamEntry Entry;
230 if (Expected<BitstreamEntry> Res = Stream.advance())
231 Entry = std::move(Res.get());
232 else
233 return Res.takeError();
234
235 switch (Entry.Kind) {
236 case BitstreamEntry::EndBlock:
237 case BitstreamEntry::Error:
238 return error("Malformed block");
239
240 case BitstreamEntry::SubBlock:
241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242 return readIdentificationBlock(Stream);
243
244 // Ignore other sub-blocks.
245 if (Error Err = Stream.SkipBlock())
246 return std::move(Err);
247 continue;
248 case BitstreamEntry::Record:
249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250 continue;
251 else
252 return Skipped.takeError();
253 }
254 }
255 }
256
hasObjCCategoryInModule(BitstreamCursor & Stream)257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259 return std::move(Err);
260
261 SmallVector<uint64_t, 64> Record;
262 // Read all the records for this module.
263
264 while (true) {
265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266 if (!MaybeEntry)
267 return MaybeEntry.takeError();
268 BitstreamEntry Entry = MaybeEntry.get();
269
270 switch (Entry.Kind) {
271 case BitstreamEntry::SubBlock: // Handled for us already.
272 case BitstreamEntry::Error:
273 return error("Malformed block");
274 case BitstreamEntry::EndBlock:
275 return false;
276 case BitstreamEntry::Record:
277 // The interesting case.
278 break;
279 }
280
281 // Read a record.
282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283 if (!MaybeRecord)
284 return MaybeRecord.takeError();
285 switch (MaybeRecord.get()) {
286 default:
287 break; // Default behavior, ignore unknown content.
288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289 std::string S;
290 if (convertToString(Record, 0, S))
291 return error("Invalid record");
292 // Check for the i386 and other (x86_64, ARM) conventions
293 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294 S.find("__OBJC,__category") != std::string::npos)
295 return true;
296 break;
297 }
298 }
299 Record.clear();
300 }
301 llvm_unreachable("Exit infinite loop");
302 }
303
hasObjCCategory(BitstreamCursor & Stream)304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305 // We expect a number of well-defined blocks, though we don't necessarily
306 // need to understand them all.
307 while (true) {
308 BitstreamEntry Entry;
309 if (Expected<BitstreamEntry> Res = Stream.advance())
310 Entry = std::move(Res.get());
311 else
312 return Res.takeError();
313
314 switch (Entry.Kind) {
315 case BitstreamEntry::Error:
316 return error("Malformed block");
317 case BitstreamEntry::EndBlock:
318 return false;
319
320 case BitstreamEntry::SubBlock:
321 if (Entry.ID == bitc::MODULE_BLOCK_ID)
322 return hasObjCCategoryInModule(Stream);
323
324 // Ignore other sub-blocks.
325 if (Error Err = Stream.SkipBlock())
326 return std::move(Err);
327 continue;
328
329 case BitstreamEntry::Record:
330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331 continue;
332 else
333 return Skipped.takeError();
334 }
335 }
336 }
337
readModuleTriple(BitstreamCursor & Stream)338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340 return std::move(Err);
341
342 SmallVector<uint64_t, 64> Record;
343
344 std::string Triple;
345
346 // Read all the records for this module.
347 while (true) {
348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349 if (!MaybeEntry)
350 return MaybeEntry.takeError();
351 BitstreamEntry Entry = MaybeEntry.get();
352
353 switch (Entry.Kind) {
354 case BitstreamEntry::SubBlock: // Handled for us already.
355 case BitstreamEntry::Error:
356 return error("Malformed block");
357 case BitstreamEntry::EndBlock:
358 return Triple;
359 case BitstreamEntry::Record:
360 // The interesting case.
361 break;
362 }
363
364 // Read a record.
365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366 if (!MaybeRecord)
367 return MaybeRecord.takeError();
368 switch (MaybeRecord.get()) {
369 default: break; // Default behavior, ignore unknown content.
370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
371 std::string S;
372 if (convertToString(Record, 0, S))
373 return error("Invalid record");
374 Triple = S;
375 break;
376 }
377 }
378 Record.clear();
379 }
380 llvm_unreachable("Exit infinite loop");
381 }
382
readTriple(BitstreamCursor & Stream)383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384 // We expect a number of well-defined blocks, though we don't necessarily
385 // need to understand them all.
386 while (true) {
387 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388 if (!MaybeEntry)
389 return MaybeEntry.takeError();
390 BitstreamEntry Entry = MaybeEntry.get();
391
392 switch (Entry.Kind) {
393 case BitstreamEntry::Error:
394 return error("Malformed block");
395 case BitstreamEntry::EndBlock:
396 return "";
397
398 case BitstreamEntry::SubBlock:
399 if (Entry.ID == bitc::MODULE_BLOCK_ID)
400 return readModuleTriple(Stream);
401
402 // Ignore other sub-blocks.
403 if (Error Err = Stream.SkipBlock())
404 return std::move(Err);
405 continue;
406
407 case BitstreamEntry::Record:
408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409 continue;
410 else
411 return Skipped.takeError();
412 }
413 }
414 }
415
416 namespace {
417
418 class BitcodeReaderBase {
419 protected:
BitcodeReaderBase(BitstreamCursor Stream,StringRef Strtab)420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421 : Stream(std::move(Stream)), Strtab(Strtab) {
422 this->Stream.setBlockInfo(&BlockInfo);
423 }
424
425 BitstreamBlockInfo BlockInfo;
426 BitstreamCursor Stream;
427 StringRef Strtab;
428
429 /// In version 2 of the bitcode we store names of global values and comdats in
430 /// a string table rather than in the VST.
431 bool UseStrtab = false;
432
433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434
435 /// If this module uses a string table, pop the reference to the string table
436 /// and return the referenced string and the rest of the record. Otherwise
437 /// just return the record itself.
438 std::pair<StringRef, ArrayRef<uint64_t>>
439 readNameFromStrtab(ArrayRef<uint64_t> Record);
440
441 bool readBlockInfo();
442
443 // Contains an arbitrary and optional string identifying the bitcode producer
444 std::string ProducerIdentification;
445
446 Error error(const Twine &Message);
447 };
448
449 } // end anonymous namespace
450
error(const Twine & Message)451 Error BitcodeReaderBase::error(const Twine &Message) {
452 std::string FullMsg = Message.str();
453 if (!ProducerIdentification.empty())
454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455 LLVM_VERSION_STRING "')";
456 return ::error(FullMsg);
457 }
458
459 Expected<unsigned>
parseVersionRecord(ArrayRef<uint64_t> Record)460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461 if (Record.empty())
462 return error("Invalid record");
463 unsigned ModuleVersion = Record[0];
464 if (ModuleVersion > 2)
465 return error("Invalid value");
466 UseStrtab = ModuleVersion >= 2;
467 return ModuleVersion;
468 }
469
470 std::pair<StringRef, ArrayRef<uint64_t>>
readNameFromStrtab(ArrayRef<uint64_t> Record)471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472 if (!UseStrtab)
473 return {"", Record};
474 // Invalid reference. Let the caller complain about the record being empty.
475 if (Record[0] + Record[1] > Strtab.size())
476 return {"", {}};
477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479
480 namespace {
481
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483 LLVMContext &Context;
484 Module *TheModule = nullptr;
485 // Next offset to start scanning for lazy parsing of function bodies.
486 uint64_t NextUnreadBit = 0;
487 // Last function offset found in the VST.
488 uint64_t LastFunctionBlockBit = 0;
489 bool SeenValueSymbolTable = false;
490 uint64_t VSTOffset = 0;
491
492 std::vector<std::string> SectionTable;
493 std::vector<std::string> GCTable;
494
495 std::vector<Type*> TypeList;
496 DenseMap<Function *, FunctionType *> FunctionTypes;
497 BitcodeReaderValueList ValueList;
498 Optional<MetadataLoader> MDLoader;
499 std::vector<Comdat *> ComdatList;
500 SmallVector<Instruction *, 64> InstructionList;
501
502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507
508 /// The set of attributes by index. Index zero in the file is for null, and
509 /// is thus not represented here. As such all indices are off by one.
510 std::vector<AttributeList> MAttributes;
511
512 /// The set of attribute groups.
513 std::map<unsigned, AttributeList> MAttributeGroups;
514
515 /// While parsing a function body, this is a list of the basic blocks for the
516 /// function.
517 std::vector<BasicBlock*> FunctionBBs;
518
519 // When reading the module header, this list is populated with functions that
520 // have bodies later in the file.
521 std::vector<Function*> FunctionsWithBodies;
522
523 // When intrinsic functions are encountered which require upgrading they are
524 // stored here with their replacement function.
525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526 UpdatedIntrinsicMap UpgradedIntrinsics;
527 // Intrinsics which were remangled because of types rename
528 UpdatedIntrinsicMap RemangledIntrinsics;
529
530 // Several operations happen after the module header has been read, but
531 // before function bodies are processed. This keeps track of whether
532 // we've done this yet.
533 bool SeenFirstFunctionBody = false;
534
535 /// When function bodies are initially scanned, this map contains info about
536 /// where to find deferred function body in the stream.
537 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538
539 /// When Metadata block is initially scanned when parsing the module, we may
540 /// choose to defer parsing of the metadata. This vector contains info about
541 /// which Metadata blocks are deferred.
542 std::vector<uint64_t> DeferredMetadataInfo;
543
544 /// These are basic blocks forward-referenced by block addresses. They are
545 /// inserted lazily into functions when they're loaded. The basic block ID is
546 /// its index into the vector.
547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548 std::deque<Function *> BasicBlockFwdRefQueue;
549
550 /// Indicates that we are using a new encoding for instruction operands where
551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552 /// instruction number, for a more compact encoding. Some instruction
553 /// operands are not relative to the instruction ID: basic block numbers, and
554 /// types. Once the old style function blocks have been phased out, we would
555 /// not need this flag.
556 bool UseRelativeIDs = false;
557
558 /// True if all functions will be materialized, negating the need to process
559 /// (e.g.) blockaddress forward references.
560 bool WillMaterializeAllForwardRefs = false;
561
562 bool StripDebugInfo = false;
563 TBAAVerifier TBAAVerifyHelper;
564
565 std::vector<std::string> BundleTags;
566 SmallVector<SyncScope::ID, 8> SSIDs;
567
568 public:
569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570 StringRef ProducerIdentification, LLVMContext &Context);
571
572 Error materializeForwardReferencedFunctions();
573
574 Error materialize(GlobalValue *GV) override;
575 Error materializeModule() override;
576 std::vector<StructType *> getIdentifiedStructTypes() const override;
577
578 /// Main interface to parsing a bitcode buffer.
579 /// \returns true if an error occurred.
580 Error parseBitcodeInto(
581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
__anon8c0d27130502(StringRef) 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583
584 static uint64_t decodeSignRotatedValue(uint64_t V);
585
586 /// Materialize any deferred Metadata block.
587 Error materializeMetadata() override;
588
589 void setStripDebugInfo() override;
590
591 private:
592 std::vector<StructType *> IdentifiedStructTypes;
593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594 StructType *createIdentifiedStructType(LLVMContext &Context);
595
596 /// Map all pointer types within \param Ty to the opaque pointer
597 /// type in the same address space if opaque pointers are being
598 /// used, otherwise nop. This converts a bitcode-reader internal
599 /// type into one suitable for use in a Value.
flattenPointerTypes(Type * Ty)600 Type *flattenPointerTypes(Type *Ty) {
601 return Ty;
602 }
603
604 /// Given a fully structured pointer type (i.e. not opaque), return
605 /// the flattened form of its element, suitable for use in a Value.
getPointerElementFlatType(Type * Ty)606 Type *getPointerElementFlatType(Type *Ty) {
607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608 }
609
610 /// Given a fully structured pointer type, get its element type in
611 /// both fully structured form, and flattened form suitable for use
612 /// in a Value.
getPointerElementTypes(Type * FullTy)613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614 Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615 return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616 }
617
618 /// Return the flattened type (suitable for use in a Value)
619 /// specified by the given \param ID .
getTypeByID(unsigned ID)620 Type *getTypeByID(unsigned ID) {
621 return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622 }
623
624 /// Return the fully structured (bitcode-reader internal) type
625 /// corresponding to the given \param ID .
626 Type *getFullyStructuredTypeByID(unsigned ID);
627
getFnValueByID(unsigned ID,Type * Ty,Type ** FullTy=nullptr)628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629 if (Ty && Ty->isMetadataTy())
630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631 return ValueList.getValueFwdRef(ID, Ty, FullTy);
632 }
633
getFnMetadataByID(unsigned ID)634 Metadata *getFnMetadataByID(unsigned ID) {
635 return MDLoader->getMetadataFwdRefOrLoad(ID);
636 }
637
getBasicBlock(unsigned ID) const638 BasicBlock *getBasicBlock(unsigned ID) const {
639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640 return FunctionBBs[ID];
641 }
642
getAttributes(unsigned i) const643 AttributeList getAttributes(unsigned i) const {
644 if (i-1 < MAttributes.size())
645 return MAttributes[i-1];
646 return AttributeList();
647 }
648
649 /// Read a value/type pair out of the specified record from slot 'Slot'.
650 /// Increment Slot past the number of slots used in the record. Return true on
651 /// failure.
getValueTypePair(const SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Value * & ResVal,Type ** FullTy=nullptr)652 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653 unsigned InstNum, Value *&ResVal,
654 Type **FullTy = nullptr) {
655 if (Slot == Record.size()) return true;
656 unsigned ValNo = (unsigned)Record[Slot++];
657 // Adjust the ValNo, if it was encoded relative to the InstNum.
658 if (UseRelativeIDs)
659 ValNo = InstNum - ValNo;
660 if (ValNo < InstNum) {
661 // If this is not a forward reference, just return the value we already
662 // have.
663 ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664 return ResVal == nullptr;
665 }
666 if (Slot == Record.size())
667 return true;
668
669 unsigned TypeNo = (unsigned)Record[Slot++];
670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671 if (FullTy)
672 *FullTy = getFullyStructuredTypeByID(TypeNo);
673 return ResVal == nullptr;
674 }
675
676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677 /// past the number of slots used by the value in the record. Return true if
678 /// there is an error.
popValue(const SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Type * Ty,Value * & ResVal)679 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680 unsigned InstNum, Type *Ty, Value *&ResVal) {
681 if (getValue(Record, Slot, InstNum, Ty, ResVal))
682 return true;
683 // All values currently take a single record slot.
684 ++Slot;
685 return false;
686 }
687
688 /// Like popValue, but does not increment the Slot number.
getValue(const SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty,Value * & ResVal)689 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690 unsigned InstNum, Type *Ty, Value *&ResVal) {
691 ResVal = getValue(Record, Slot, InstNum, Ty);
692 return ResVal == nullptr;
693 }
694
695 /// Version of getValue that returns ResVal directly, or 0 if there is an
696 /// error.
getValue(const SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty)697 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698 unsigned InstNum, Type *Ty) {
699 if (Slot == Record.size()) return nullptr;
700 unsigned ValNo = (unsigned)Record[Slot];
701 // Adjust the ValNo, if it was encoded relative to the InstNum.
702 if (UseRelativeIDs)
703 ValNo = InstNum - ValNo;
704 return getFnValueByID(ValNo, Ty);
705 }
706
707 /// Like getValue, but decodes signed VBRs.
getValueSigned(const SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty)708 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709 unsigned InstNum, Type *Ty) {
710 if (Slot == Record.size()) return nullptr;
711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712 // Adjust the ValNo, if it was encoded relative to the InstNum.
713 if (UseRelativeIDs)
714 ValNo = InstNum - ValNo;
715 return getFnValueByID(ValNo, Ty);
716 }
717
718 /// Upgrades old-style typeless byval or sret attributes by adding the
719 /// corresponding argument's pointee type.
720 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721
722 /// Converts alignment exponent (i.e. power of two (or zero)) to the
723 /// corresponding alignment to use. If alignment is too large, returns
724 /// a corresponding error code.
725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727 Error parseModule(
728 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
__anon8c0d27130602(StringRef) 729 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
730
731 Error parseComdatRecord(ArrayRef<uint64_t> Record);
732 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
733 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
734 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
735 ArrayRef<uint64_t> Record);
736
737 Error parseAttributeBlock();
738 Error parseAttributeGroupBlock();
739 Error parseTypeTable();
740 Error parseTypeTableBody();
741 Error parseOperandBundleTags();
742 Error parseSyncScopeNames();
743
744 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
745 unsigned NameIndex, Triple &TT);
746 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
747 ArrayRef<uint64_t> Record);
748 Error parseValueSymbolTable(uint64_t Offset = 0);
749 Error parseGlobalValueSymbolTable();
750 Error parseConstants();
751 Error rememberAndSkipFunctionBodies();
752 Error rememberAndSkipFunctionBody();
753 /// Save the positions of the Metadata blocks and skip parsing the blocks.
754 Error rememberAndSkipMetadata();
755 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
756 Error parseFunctionBody(Function *F);
757 Error globalCleanup();
758 Error resolveGlobalAndIndirectSymbolInits();
759 Error parseUseLists();
760 Error findFunctionInStream(
761 Function *F,
762 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
763
764 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 };
766
767 /// Class to manage reading and parsing function summary index bitcode
768 /// files/sections.
769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
770 /// The module index built during parsing.
771 ModuleSummaryIndex &TheIndex;
772
773 /// Indicates whether we have encountered a global value summary section
774 /// yet during parsing.
775 bool SeenGlobalValSummary = false;
776
777 /// Indicates whether we have already parsed the VST, used for error checking.
778 bool SeenValueSymbolTable = false;
779
780 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
781 /// Used to enable on-demand parsing of the VST.
782 uint64_t VSTOffset = 0;
783
784 // Map to save ValueId to ValueInfo association that was recorded in the
785 // ValueSymbolTable. It is used after the VST is parsed to convert
786 // call graph edges read from the function summary from referencing
787 // callees by their ValueId to using the ValueInfo instead, which is how
788 // they are recorded in the summary index being built.
789 // We save a GUID which refers to the same global as the ValueInfo, but
790 // ignoring the linkage, i.e. for values other than local linkage they are
791 // identical.
792 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
793 ValueIdToValueInfoMap;
794
795 /// Map populated during module path string table parsing, from the
796 /// module ID to a string reference owned by the index's module
797 /// path string table, used to correlate with combined index
798 /// summary records.
799 DenseMap<uint64_t, StringRef> ModuleIdMap;
800
801 /// Original source file name recorded in a bitcode record.
802 std::string SourceFileName;
803
804 /// The string identifier given to this module by the client, normally the
805 /// path to the bitcode file.
806 StringRef ModulePath;
807
808 /// For per-module summary indexes, the unique numerical identifier given to
809 /// this module by the client.
810 unsigned ModuleId;
811
812 public:
813 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
814 ModuleSummaryIndex &TheIndex,
815 StringRef ModulePath, unsigned ModuleId);
816
817 Error parseModule();
818
819 private:
820 void setValueGUID(uint64_t ValueID, StringRef ValueName,
821 GlobalValue::LinkageTypes Linkage,
822 StringRef SourceFileName);
823 Error parseValueSymbolTable(
824 uint64_t Offset,
825 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
826 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
827 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
828 bool IsOldProfileFormat,
829 bool HasProfile,
830 bool HasRelBF);
831 Error parseEntireSummary(unsigned ID);
832 Error parseModuleStringTable();
833 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
834 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
835 TypeIdCompatibleVtableInfo &TypeId);
836 std::vector<FunctionSummary::ParamAccess>
837 parseParamAccesses(ArrayRef<uint64_t> Record);
838
839 std::pair<ValueInfo, GlobalValue::GUID>
840 getValueInfoFromValueId(unsigned ValueId);
841
842 void addThisModule();
843 ModuleSummaryIndex::ModuleInfo *getThisModule();
844 };
845
846 } // end anonymous namespace
847
errorToErrorCodeAndEmitErrors(LLVMContext & Ctx,Error Err)848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
849 Error Err) {
850 if (Err) {
851 std::error_code EC;
852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
853 EC = EIB.convertToErrorCode();
854 Ctx.emitError(EIB.message());
855 });
856 return EC;
857 }
858 return std::error_code();
859 }
860
BitcodeReader(BitstreamCursor Stream,StringRef Strtab,StringRef ProducerIdentification,LLVMContext & Context)861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
862 StringRef ProducerIdentification,
863 LLVMContext &Context)
864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
865 ValueList(Context, Stream.SizeInBytes()) {
866 this->ProducerIdentification = std::string(ProducerIdentification);
867 }
868
materializeForwardReferencedFunctions()869 Error BitcodeReader::materializeForwardReferencedFunctions() {
870 if (WillMaterializeAllForwardRefs)
871 return Error::success();
872
873 // Prevent recursion.
874 WillMaterializeAllForwardRefs = true;
875
876 while (!BasicBlockFwdRefQueue.empty()) {
877 Function *F = BasicBlockFwdRefQueue.front();
878 BasicBlockFwdRefQueue.pop_front();
879 assert(F && "Expected valid function");
880 if (!BasicBlockFwdRefs.count(F))
881 // Already materialized.
882 continue;
883
884 // Check for a function that isn't materializable to prevent an infinite
885 // loop. When parsing a blockaddress stored in a global variable, there
886 // isn't a trivial way to check if a function will have a body without a
887 // linear search through FunctionsWithBodies, so just check it here.
888 if (!F->isMaterializable())
889 return error("Never resolved function from blockaddress");
890
891 // Try to materialize F.
892 if (Error Err = materialize(F))
893 return Err;
894 }
895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
896
897 // Reset state.
898 WillMaterializeAllForwardRefs = false;
899 return Error::success();
900 }
901
902 //===----------------------------------------------------------------------===//
903 // Helper functions to implement forward reference resolution, etc.
904 //===----------------------------------------------------------------------===//
905
hasImplicitComdat(size_t Val)906 static bool hasImplicitComdat(size_t Val) {
907 switch (Val) {
908 default:
909 return false;
910 case 1: // Old WeakAnyLinkage
911 case 4: // Old LinkOnceAnyLinkage
912 case 10: // Old WeakODRLinkage
913 case 11: // Old LinkOnceODRLinkage
914 return true;
915 }
916 }
917
getDecodedLinkage(unsigned Val)918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
919 switch (Val) {
920 default: // Map unknown/new linkages to external
921 case 0:
922 return GlobalValue::ExternalLinkage;
923 case 2:
924 return GlobalValue::AppendingLinkage;
925 case 3:
926 return GlobalValue::InternalLinkage;
927 case 5:
928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
929 case 6:
930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
931 case 7:
932 return GlobalValue::ExternalWeakLinkage;
933 case 8:
934 return GlobalValue::CommonLinkage;
935 case 9:
936 return GlobalValue::PrivateLinkage;
937 case 12:
938 return GlobalValue::AvailableExternallyLinkage;
939 case 13:
940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
941 case 14:
942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
943 case 15:
944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
945 case 1: // Old value with implicit comdat.
946 case 16:
947 return GlobalValue::WeakAnyLinkage;
948 case 10: // Old value with implicit comdat.
949 case 17:
950 return GlobalValue::WeakODRLinkage;
951 case 4: // Old value with implicit comdat.
952 case 18:
953 return GlobalValue::LinkOnceAnyLinkage;
954 case 11: // Old value with implicit comdat.
955 case 19:
956 return GlobalValue::LinkOnceODRLinkage;
957 }
958 }
959
getDecodedFFlags(uint64_t RawFlags)960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
961 FunctionSummary::FFlags Flags;
962 Flags.ReadNone = RawFlags & 0x1;
963 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
964 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
966 Flags.NoInline = (RawFlags >> 4) & 0x1;
967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
968 return Flags;
969 }
970
971 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
972 //
973 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
974 // visibility: [8, 10).
getDecodedGVSummaryFlags(uint64_t RawFlags,uint64_t Version)975 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
976 uint64_t Version) {
977 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
978 // like getDecodedLinkage() above. Any future change to the linkage enum and
979 // to getDecodedLinkage() will need to be taken into account here as above.
980 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
981 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
982 RawFlags = RawFlags >> 4;
983 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
984 // The Live flag wasn't introduced until version 3. For dead stripping
985 // to work correctly on earlier versions, we must conservatively treat all
986 // values as live.
987 bool Live = (RawFlags & 0x2) || Version < 3;
988 bool Local = (RawFlags & 0x4);
989 bool AutoHide = (RawFlags & 0x8);
990
991 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
992 Live, Local, AutoHide);
993 }
994
995 // Decode the flags for GlobalVariable in the summary
getDecodedGVarFlags(uint64_t RawFlags)996 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
997 return GlobalVarSummary::GVarFlags(
998 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
999 (RawFlags & 0x4) ? true : false,
1000 (GlobalObject::VCallVisibility)(RawFlags >> 3));
1001 }
1002
getDecodedVisibility(unsigned Val)1003 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1004 switch (Val) {
1005 default: // Map unknown visibilities to default.
1006 case 0: return GlobalValue::DefaultVisibility;
1007 case 1: return GlobalValue::HiddenVisibility;
1008 case 2: return GlobalValue::ProtectedVisibility;
1009 }
1010 }
1011
1012 static GlobalValue::DLLStorageClassTypes
getDecodedDLLStorageClass(unsigned Val)1013 getDecodedDLLStorageClass(unsigned Val) {
1014 switch (Val) {
1015 default: // Map unknown values to default.
1016 case 0: return GlobalValue::DefaultStorageClass;
1017 case 1: return GlobalValue::DLLImportStorageClass;
1018 case 2: return GlobalValue::DLLExportStorageClass;
1019 }
1020 }
1021
getDecodedDSOLocal(unsigned Val)1022 static bool getDecodedDSOLocal(unsigned Val) {
1023 switch(Val) {
1024 default: // Map unknown values to preemptable.
1025 case 0: return false;
1026 case 1: return true;
1027 }
1028 }
1029
getDecodedThreadLocalMode(unsigned Val)1030 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1031 switch (Val) {
1032 case 0: return GlobalVariable::NotThreadLocal;
1033 default: // Map unknown non-zero value to general dynamic.
1034 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1035 case 2: return GlobalVariable::LocalDynamicTLSModel;
1036 case 3: return GlobalVariable::InitialExecTLSModel;
1037 case 4: return GlobalVariable::LocalExecTLSModel;
1038 }
1039 }
1040
getDecodedUnnamedAddrType(unsigned Val)1041 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1042 switch (Val) {
1043 default: // Map unknown to UnnamedAddr::None.
1044 case 0: return GlobalVariable::UnnamedAddr::None;
1045 case 1: return GlobalVariable::UnnamedAddr::Global;
1046 case 2: return GlobalVariable::UnnamedAddr::Local;
1047 }
1048 }
1049
getDecodedCastOpcode(unsigned Val)1050 static int getDecodedCastOpcode(unsigned Val) {
1051 switch (Val) {
1052 default: return -1;
1053 case bitc::CAST_TRUNC : return Instruction::Trunc;
1054 case bitc::CAST_ZEXT : return Instruction::ZExt;
1055 case bitc::CAST_SEXT : return Instruction::SExt;
1056 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1057 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1058 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1059 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1060 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1061 case bitc::CAST_FPEXT : return Instruction::FPExt;
1062 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1063 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1064 case bitc::CAST_BITCAST : return Instruction::BitCast;
1065 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1066 }
1067 }
1068
getDecodedUnaryOpcode(unsigned Val,Type * Ty)1069 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1070 bool IsFP = Ty->isFPOrFPVectorTy();
1071 // UnOps are only valid for int/fp or vector of int/fp types
1072 if (!IsFP && !Ty->isIntOrIntVectorTy())
1073 return -1;
1074
1075 switch (Val) {
1076 default:
1077 return -1;
1078 case bitc::UNOP_FNEG:
1079 return IsFP ? Instruction::FNeg : -1;
1080 }
1081 }
1082
getDecodedBinaryOpcode(unsigned Val,Type * Ty)1083 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1084 bool IsFP = Ty->isFPOrFPVectorTy();
1085 // BinOps are only valid for int/fp or vector of int/fp types
1086 if (!IsFP && !Ty->isIntOrIntVectorTy())
1087 return -1;
1088
1089 switch (Val) {
1090 default:
1091 return -1;
1092 case bitc::BINOP_ADD:
1093 return IsFP ? Instruction::FAdd : Instruction::Add;
1094 case bitc::BINOP_SUB:
1095 return IsFP ? Instruction::FSub : Instruction::Sub;
1096 case bitc::BINOP_MUL:
1097 return IsFP ? Instruction::FMul : Instruction::Mul;
1098 case bitc::BINOP_UDIV:
1099 return IsFP ? -1 : Instruction::UDiv;
1100 case bitc::BINOP_SDIV:
1101 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1102 case bitc::BINOP_UREM:
1103 return IsFP ? -1 : Instruction::URem;
1104 case bitc::BINOP_SREM:
1105 return IsFP ? Instruction::FRem : Instruction::SRem;
1106 case bitc::BINOP_SHL:
1107 return IsFP ? -1 : Instruction::Shl;
1108 case bitc::BINOP_LSHR:
1109 return IsFP ? -1 : Instruction::LShr;
1110 case bitc::BINOP_ASHR:
1111 return IsFP ? -1 : Instruction::AShr;
1112 case bitc::BINOP_AND:
1113 return IsFP ? -1 : Instruction::And;
1114 case bitc::BINOP_OR:
1115 return IsFP ? -1 : Instruction::Or;
1116 case bitc::BINOP_XOR:
1117 return IsFP ? -1 : Instruction::Xor;
1118 }
1119 }
1120
getDecodedRMWOperation(unsigned Val)1121 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1122 switch (Val) {
1123 default: return AtomicRMWInst::BAD_BINOP;
1124 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1125 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1126 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1127 case bitc::RMW_AND: return AtomicRMWInst::And;
1128 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1129 case bitc::RMW_OR: return AtomicRMWInst::Or;
1130 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1131 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1132 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1133 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1134 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1135 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1136 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1137 }
1138 }
1139
getDecodedOrdering(unsigned Val)1140 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1141 switch (Val) {
1142 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1143 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1144 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1145 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1146 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1147 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1148 default: // Map unknown orderings to sequentially-consistent.
1149 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1150 }
1151 }
1152
getDecodedComdatSelectionKind(unsigned Val)1153 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1154 switch (Val) {
1155 default: // Map unknown selection kinds to any.
1156 case bitc::COMDAT_SELECTION_KIND_ANY:
1157 return Comdat::Any;
1158 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1159 return Comdat::ExactMatch;
1160 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1161 return Comdat::Largest;
1162 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1163 return Comdat::NoDuplicates;
1164 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1165 return Comdat::SameSize;
1166 }
1167 }
1168
getDecodedFastMathFlags(unsigned Val)1169 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1170 FastMathFlags FMF;
1171 if (0 != (Val & bitc::UnsafeAlgebra))
1172 FMF.setFast();
1173 if (0 != (Val & bitc::AllowReassoc))
1174 FMF.setAllowReassoc();
1175 if (0 != (Val & bitc::NoNaNs))
1176 FMF.setNoNaNs();
1177 if (0 != (Val & bitc::NoInfs))
1178 FMF.setNoInfs();
1179 if (0 != (Val & bitc::NoSignedZeros))
1180 FMF.setNoSignedZeros();
1181 if (0 != (Val & bitc::AllowReciprocal))
1182 FMF.setAllowReciprocal();
1183 if (0 != (Val & bitc::AllowContract))
1184 FMF.setAllowContract(true);
1185 if (0 != (Val & bitc::ApproxFunc))
1186 FMF.setApproxFunc();
1187 return FMF;
1188 }
1189
upgradeDLLImportExportLinkage(GlobalValue * GV,unsigned Val)1190 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1191 switch (Val) {
1192 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1193 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1194 }
1195 }
1196
getFullyStructuredTypeByID(unsigned ID)1197 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1198 // The type table size is always specified correctly.
1199 if (ID >= TypeList.size())
1200 return nullptr;
1201
1202 if (Type *Ty = TypeList[ID])
1203 return Ty;
1204
1205 // If we have a forward reference, the only possible case is when it is to a
1206 // named struct. Just create a placeholder for now.
1207 return TypeList[ID] = createIdentifiedStructType(Context);
1208 }
1209
createIdentifiedStructType(LLVMContext & Context,StringRef Name)1210 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1211 StringRef Name) {
1212 auto *Ret = StructType::create(Context, Name);
1213 IdentifiedStructTypes.push_back(Ret);
1214 return Ret;
1215 }
1216
createIdentifiedStructType(LLVMContext & Context)1217 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1218 auto *Ret = StructType::create(Context);
1219 IdentifiedStructTypes.push_back(Ret);
1220 return Ret;
1221 }
1222
1223 //===----------------------------------------------------------------------===//
1224 // Functions for parsing blocks from the bitcode file
1225 //===----------------------------------------------------------------------===//
1226
getRawAttributeMask(Attribute::AttrKind Val)1227 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1228 switch (Val) {
1229 case Attribute::EndAttrKinds:
1230 case Attribute::EmptyKey:
1231 case Attribute::TombstoneKey:
1232 llvm_unreachable("Synthetic enumerators which should never get here");
1233
1234 case Attribute::None: return 0;
1235 case Attribute::ZExt: return 1 << 0;
1236 case Attribute::SExt: return 1 << 1;
1237 case Attribute::NoReturn: return 1 << 2;
1238 case Attribute::InReg: return 1 << 3;
1239 case Attribute::StructRet: return 1 << 4;
1240 case Attribute::NoUnwind: return 1 << 5;
1241 case Attribute::NoAlias: return 1 << 6;
1242 case Attribute::ByVal: return 1 << 7;
1243 case Attribute::Nest: return 1 << 8;
1244 case Attribute::ReadNone: return 1 << 9;
1245 case Attribute::ReadOnly: return 1 << 10;
1246 case Attribute::NoInline: return 1 << 11;
1247 case Attribute::AlwaysInline: return 1 << 12;
1248 case Attribute::OptimizeForSize: return 1 << 13;
1249 case Attribute::StackProtect: return 1 << 14;
1250 case Attribute::StackProtectReq: return 1 << 15;
1251 case Attribute::Alignment: return 31 << 16;
1252 case Attribute::NoCapture: return 1 << 21;
1253 case Attribute::NoRedZone: return 1 << 22;
1254 case Attribute::NoImplicitFloat: return 1 << 23;
1255 case Attribute::Naked: return 1 << 24;
1256 case Attribute::InlineHint: return 1 << 25;
1257 case Attribute::StackAlignment: return 7 << 26;
1258 case Attribute::ReturnsTwice: return 1 << 29;
1259 case Attribute::UWTable: return 1 << 30;
1260 case Attribute::NonLazyBind: return 1U << 31;
1261 case Attribute::SanitizeAddress: return 1ULL << 32;
1262 case Attribute::MinSize: return 1ULL << 33;
1263 case Attribute::NoDuplicate: return 1ULL << 34;
1264 case Attribute::StackProtectStrong: return 1ULL << 35;
1265 case Attribute::SanitizeThread: return 1ULL << 36;
1266 case Attribute::SanitizeMemory: return 1ULL << 37;
1267 case Attribute::NoBuiltin: return 1ULL << 38;
1268 case Attribute::Returned: return 1ULL << 39;
1269 case Attribute::Cold: return 1ULL << 40;
1270 case Attribute::Builtin: return 1ULL << 41;
1271 case Attribute::OptimizeNone: return 1ULL << 42;
1272 case Attribute::InAlloca: return 1ULL << 43;
1273 case Attribute::NonNull: return 1ULL << 44;
1274 case Attribute::JumpTable: return 1ULL << 45;
1275 case Attribute::Convergent: return 1ULL << 46;
1276 case Attribute::SafeStack: return 1ULL << 47;
1277 case Attribute::NoRecurse: return 1ULL << 48;
1278 case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1279 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1280 case Attribute::SwiftSelf: return 1ULL << 51;
1281 case Attribute::SwiftError: return 1ULL << 52;
1282 case Attribute::WriteOnly: return 1ULL << 53;
1283 case Attribute::Speculatable: return 1ULL << 54;
1284 case Attribute::StrictFP: return 1ULL << 55;
1285 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1286 case Attribute::NoCfCheck: return 1ULL << 57;
1287 case Attribute::OptForFuzzing: return 1ULL << 58;
1288 case Attribute::ShadowCallStack: return 1ULL << 59;
1289 case Attribute::SpeculativeLoadHardening:
1290 return 1ULL << 60;
1291 case Attribute::ImmArg:
1292 return 1ULL << 61;
1293 case Attribute::WillReturn:
1294 return 1ULL << 62;
1295 case Attribute::NoFree:
1296 return 1ULL << 63;
1297 default:
1298 // Other attributes are not supported in the raw format,
1299 // as we ran out of space.
1300 return 0;
1301 }
1302 llvm_unreachable("Unsupported attribute type");
1303 }
1304
addRawAttributeValue(AttrBuilder & B,uint64_t Val)1305 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1306 if (!Val) return;
1307
1308 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1309 I = Attribute::AttrKind(I + 1)) {
1310 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1311 if (I == Attribute::Alignment)
1312 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1313 else if (I == Attribute::StackAlignment)
1314 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1315 else
1316 B.addAttribute(I);
1317 }
1318 }
1319 }
1320
1321 /// This fills an AttrBuilder object with the LLVM attributes that have
1322 /// been decoded from the given integer. This function must stay in sync with
1323 /// 'encodeLLVMAttributesForBitcode'.
decodeLLVMAttributesForBitcode(AttrBuilder & B,uint64_t EncodedAttrs)1324 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1325 uint64_t EncodedAttrs) {
1326 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1327 // the bits above 31 down by 11 bits.
1328 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1329 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1330 "Alignment must be a power of two.");
1331
1332 if (Alignment)
1333 B.addAlignmentAttr(Alignment);
1334 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1335 (EncodedAttrs & 0xffff));
1336 }
1337
parseAttributeBlock()1338 Error BitcodeReader::parseAttributeBlock() {
1339 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1340 return Err;
1341
1342 if (!MAttributes.empty())
1343 return error("Invalid multiple blocks");
1344
1345 SmallVector<uint64_t, 64> Record;
1346
1347 SmallVector<AttributeList, 8> Attrs;
1348
1349 // Read all the records.
1350 while (true) {
1351 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1352 if (!MaybeEntry)
1353 return MaybeEntry.takeError();
1354 BitstreamEntry Entry = MaybeEntry.get();
1355
1356 switch (Entry.Kind) {
1357 case BitstreamEntry::SubBlock: // Handled for us already.
1358 case BitstreamEntry::Error:
1359 return error("Malformed block");
1360 case BitstreamEntry::EndBlock:
1361 return Error::success();
1362 case BitstreamEntry::Record:
1363 // The interesting case.
1364 break;
1365 }
1366
1367 // Read a record.
1368 Record.clear();
1369 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1370 if (!MaybeRecord)
1371 return MaybeRecord.takeError();
1372 switch (MaybeRecord.get()) {
1373 default: // Default behavior: ignore.
1374 break;
1375 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1376 // Deprecated, but still needed to read old bitcode files.
1377 if (Record.size() & 1)
1378 return error("Invalid record");
1379
1380 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1381 AttrBuilder B;
1382 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1383 Attrs.push_back(AttributeList::get(Context, Record[i], B));
1384 }
1385
1386 MAttributes.push_back(AttributeList::get(Context, Attrs));
1387 Attrs.clear();
1388 break;
1389 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1390 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1391 Attrs.push_back(MAttributeGroups[Record[i]]);
1392
1393 MAttributes.push_back(AttributeList::get(Context, Attrs));
1394 Attrs.clear();
1395 break;
1396 }
1397 }
1398 }
1399
1400 // Returns Attribute::None on unrecognized codes.
getAttrFromCode(uint64_t Code)1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1402 switch (Code) {
1403 default:
1404 return Attribute::None;
1405 case bitc::ATTR_KIND_ALIGNMENT:
1406 return Attribute::Alignment;
1407 case bitc::ATTR_KIND_ALWAYS_INLINE:
1408 return Attribute::AlwaysInline;
1409 case bitc::ATTR_KIND_ARGMEMONLY:
1410 return Attribute::ArgMemOnly;
1411 case bitc::ATTR_KIND_BUILTIN:
1412 return Attribute::Builtin;
1413 case bitc::ATTR_KIND_BY_VAL:
1414 return Attribute::ByVal;
1415 case bitc::ATTR_KIND_IN_ALLOCA:
1416 return Attribute::InAlloca;
1417 case bitc::ATTR_KIND_COLD:
1418 return Attribute::Cold;
1419 case bitc::ATTR_KIND_CONVERGENT:
1420 return Attribute::Convergent;
1421 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1422 return Attribute::InaccessibleMemOnly;
1423 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1424 return Attribute::InaccessibleMemOrArgMemOnly;
1425 case bitc::ATTR_KIND_INLINE_HINT:
1426 return Attribute::InlineHint;
1427 case bitc::ATTR_KIND_IN_REG:
1428 return Attribute::InReg;
1429 case bitc::ATTR_KIND_JUMP_TABLE:
1430 return Attribute::JumpTable;
1431 case bitc::ATTR_KIND_MIN_SIZE:
1432 return Attribute::MinSize;
1433 case bitc::ATTR_KIND_NAKED:
1434 return Attribute::Naked;
1435 case bitc::ATTR_KIND_NEST:
1436 return Attribute::Nest;
1437 case bitc::ATTR_KIND_NO_ALIAS:
1438 return Attribute::NoAlias;
1439 case bitc::ATTR_KIND_NO_BUILTIN:
1440 return Attribute::NoBuiltin;
1441 case bitc::ATTR_KIND_NO_CALLBACK:
1442 return Attribute::NoCallback;
1443 case bitc::ATTR_KIND_NO_CAPTURE:
1444 return Attribute::NoCapture;
1445 case bitc::ATTR_KIND_NO_DUPLICATE:
1446 return Attribute::NoDuplicate;
1447 case bitc::ATTR_KIND_NOFREE:
1448 return Attribute::NoFree;
1449 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1450 return Attribute::NoImplicitFloat;
1451 case bitc::ATTR_KIND_NO_INLINE:
1452 return Attribute::NoInline;
1453 case bitc::ATTR_KIND_NO_RECURSE:
1454 return Attribute::NoRecurse;
1455 case bitc::ATTR_KIND_NO_MERGE:
1456 return Attribute::NoMerge;
1457 case bitc::ATTR_KIND_NON_LAZY_BIND:
1458 return Attribute::NonLazyBind;
1459 case bitc::ATTR_KIND_NON_NULL:
1460 return Attribute::NonNull;
1461 case bitc::ATTR_KIND_DEREFERENCEABLE:
1462 return Attribute::Dereferenceable;
1463 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1464 return Attribute::DereferenceableOrNull;
1465 case bitc::ATTR_KIND_ALLOC_SIZE:
1466 return Attribute::AllocSize;
1467 case bitc::ATTR_KIND_NO_RED_ZONE:
1468 return Attribute::NoRedZone;
1469 case bitc::ATTR_KIND_NO_RETURN:
1470 return Attribute::NoReturn;
1471 case bitc::ATTR_KIND_NOSYNC:
1472 return Attribute::NoSync;
1473 case bitc::ATTR_KIND_NOCF_CHECK:
1474 return Attribute::NoCfCheck;
1475 case bitc::ATTR_KIND_NO_UNWIND:
1476 return Attribute::NoUnwind;
1477 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1478 return Attribute::NullPointerIsValid;
1479 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1480 return Attribute::OptForFuzzing;
1481 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1482 return Attribute::OptimizeForSize;
1483 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1484 return Attribute::OptimizeNone;
1485 case bitc::ATTR_KIND_READ_NONE:
1486 return Attribute::ReadNone;
1487 case bitc::ATTR_KIND_READ_ONLY:
1488 return Attribute::ReadOnly;
1489 case bitc::ATTR_KIND_RETURNED:
1490 return Attribute::Returned;
1491 case bitc::ATTR_KIND_RETURNS_TWICE:
1492 return Attribute::ReturnsTwice;
1493 case bitc::ATTR_KIND_S_EXT:
1494 return Attribute::SExt;
1495 case bitc::ATTR_KIND_SPECULATABLE:
1496 return Attribute::Speculatable;
1497 case bitc::ATTR_KIND_STACK_ALIGNMENT:
1498 return Attribute::StackAlignment;
1499 case bitc::ATTR_KIND_STACK_PROTECT:
1500 return Attribute::StackProtect;
1501 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1502 return Attribute::StackProtectReq;
1503 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1504 return Attribute::StackProtectStrong;
1505 case bitc::ATTR_KIND_SAFESTACK:
1506 return Attribute::SafeStack;
1507 case bitc::ATTR_KIND_SHADOWCALLSTACK:
1508 return Attribute::ShadowCallStack;
1509 case bitc::ATTR_KIND_STRICT_FP:
1510 return Attribute::StrictFP;
1511 case bitc::ATTR_KIND_STRUCT_RET:
1512 return Attribute::StructRet;
1513 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1514 return Attribute::SanitizeAddress;
1515 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1516 return Attribute::SanitizeHWAddress;
1517 case bitc::ATTR_KIND_SANITIZE_THREAD:
1518 return Attribute::SanitizeThread;
1519 case bitc::ATTR_KIND_SANITIZE_MEMORY:
1520 return Attribute::SanitizeMemory;
1521 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1522 return Attribute::SpeculativeLoadHardening;
1523 case bitc::ATTR_KIND_SWIFT_ERROR:
1524 return Attribute::SwiftError;
1525 case bitc::ATTR_KIND_SWIFT_SELF:
1526 return Attribute::SwiftSelf;
1527 case bitc::ATTR_KIND_SWIFT_ASYNC:
1528 return Attribute::SwiftAsync;
1529 case bitc::ATTR_KIND_UW_TABLE:
1530 return Attribute::UWTable;
1531 case bitc::ATTR_KIND_VSCALE_RANGE:
1532 return Attribute::VScaleRange;
1533 case bitc::ATTR_KIND_WILLRETURN:
1534 return Attribute::WillReturn;
1535 case bitc::ATTR_KIND_WRITEONLY:
1536 return Attribute::WriteOnly;
1537 case bitc::ATTR_KIND_Z_EXT:
1538 return Attribute::ZExt;
1539 case bitc::ATTR_KIND_IMMARG:
1540 return Attribute::ImmArg;
1541 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1542 return Attribute::SanitizeMemTag;
1543 case bitc::ATTR_KIND_PREALLOCATED:
1544 return Attribute::Preallocated;
1545 case bitc::ATTR_KIND_NOUNDEF:
1546 return Attribute::NoUndef;
1547 case bitc::ATTR_KIND_BYREF:
1548 return Attribute::ByRef;
1549 case bitc::ATTR_KIND_MUSTPROGRESS:
1550 return Attribute::MustProgress;
1551 case bitc::ATTR_KIND_HOT:
1552 return Attribute::Hot;
1553 }
1554 }
1555
parseAlignmentValue(uint64_t Exponent,MaybeAlign & Alignment)1556 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1557 MaybeAlign &Alignment) {
1558 // Note: Alignment in bitcode files is incremented by 1, so that zero
1559 // can be used for default alignment.
1560 if (Exponent > Value::MaxAlignmentExponent + 1)
1561 return error("Invalid alignment value");
1562 Alignment = decodeMaybeAlign(Exponent);
1563 return Error::success();
1564 }
1565
parseAttrKind(uint64_t Code,Attribute::AttrKind * Kind)1566 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1567 *Kind = getAttrFromCode(Code);
1568 if (*Kind == Attribute::None)
1569 return error("Unknown attribute kind (" + Twine(Code) + ")");
1570 return Error::success();
1571 }
1572
parseAttributeGroupBlock()1573 Error BitcodeReader::parseAttributeGroupBlock() {
1574 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1575 return Err;
1576
1577 if (!MAttributeGroups.empty())
1578 return error("Invalid multiple blocks");
1579
1580 SmallVector<uint64_t, 64> Record;
1581
1582 // Read all the records.
1583 while (true) {
1584 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1585 if (!MaybeEntry)
1586 return MaybeEntry.takeError();
1587 BitstreamEntry Entry = MaybeEntry.get();
1588
1589 switch (Entry.Kind) {
1590 case BitstreamEntry::SubBlock: // Handled for us already.
1591 case BitstreamEntry::Error:
1592 return error("Malformed block");
1593 case BitstreamEntry::EndBlock:
1594 return Error::success();
1595 case BitstreamEntry::Record:
1596 // The interesting case.
1597 break;
1598 }
1599
1600 // Read a record.
1601 Record.clear();
1602 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1603 if (!MaybeRecord)
1604 return MaybeRecord.takeError();
1605 switch (MaybeRecord.get()) {
1606 default: // Default behavior: ignore.
1607 break;
1608 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1609 if (Record.size() < 3)
1610 return error("Invalid record");
1611
1612 uint64_t GrpID = Record[0];
1613 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1614
1615 AttrBuilder B;
1616 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1617 if (Record[i] == 0) { // Enum attribute
1618 Attribute::AttrKind Kind;
1619 if (Error Err = parseAttrKind(Record[++i], &Kind))
1620 return Err;
1621
1622 // Upgrade old-style byval attribute to one with a type, even if it's
1623 // nullptr. We will have to insert the real type when we associate
1624 // this AttributeList with a function.
1625 if (Kind == Attribute::ByVal)
1626 B.addByValAttr(nullptr);
1627 else if (Kind == Attribute::StructRet)
1628 B.addStructRetAttr(nullptr);
1629 else if (Kind == Attribute::InAlloca)
1630 B.addInAllocaAttr(nullptr);
1631
1632 B.addAttribute(Kind);
1633 } else if (Record[i] == 1) { // Integer attribute
1634 Attribute::AttrKind Kind;
1635 if (Error Err = parseAttrKind(Record[++i], &Kind))
1636 return Err;
1637 if (Kind == Attribute::Alignment)
1638 B.addAlignmentAttr(Record[++i]);
1639 else if (Kind == Attribute::StackAlignment)
1640 B.addStackAlignmentAttr(Record[++i]);
1641 else if (Kind == Attribute::Dereferenceable)
1642 B.addDereferenceableAttr(Record[++i]);
1643 else if (Kind == Attribute::DereferenceableOrNull)
1644 B.addDereferenceableOrNullAttr(Record[++i]);
1645 else if (Kind == Attribute::AllocSize)
1646 B.addAllocSizeAttrFromRawRepr(Record[++i]);
1647 else if (Kind == Attribute::VScaleRange)
1648 B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1649 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1650 bool HasValue = (Record[i++] == 4);
1651 SmallString<64> KindStr;
1652 SmallString<64> ValStr;
1653
1654 while (Record[i] != 0 && i != e)
1655 KindStr += Record[i++];
1656 assert(Record[i] == 0 && "Kind string not null terminated");
1657
1658 if (HasValue) {
1659 // Has a value associated with it.
1660 ++i; // Skip the '0' that terminates the "kind" string.
1661 while (Record[i] != 0 && i != e)
1662 ValStr += Record[i++];
1663 assert(Record[i] == 0 && "Value string not null terminated");
1664 }
1665
1666 B.addAttribute(KindStr.str(), ValStr.str());
1667 } else {
1668 assert((Record[i] == 5 || Record[i] == 6) &&
1669 "Invalid attribute group entry");
1670 bool HasType = Record[i] == 6;
1671 Attribute::AttrKind Kind;
1672 if (Error Err = parseAttrKind(Record[++i], &Kind))
1673 return Err;
1674 if (Kind == Attribute::ByVal) {
1675 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1676 } else if (Kind == Attribute::StructRet) {
1677 B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1678 } else if (Kind == Attribute::ByRef) {
1679 B.addByRefAttr(getTypeByID(Record[++i]));
1680 } else if (Kind == Attribute::Preallocated) {
1681 B.addPreallocatedAttr(getTypeByID(Record[++i]));
1682 } else if (Kind == Attribute::InAlloca) {
1683 B.addInAllocaAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1684 }
1685 }
1686 }
1687
1688 UpgradeAttributes(B);
1689 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1690 break;
1691 }
1692 }
1693 }
1694 }
1695
parseTypeTable()1696 Error BitcodeReader::parseTypeTable() {
1697 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1698 return Err;
1699
1700 return parseTypeTableBody();
1701 }
1702
parseTypeTableBody()1703 Error BitcodeReader::parseTypeTableBody() {
1704 if (!TypeList.empty())
1705 return error("Invalid multiple blocks");
1706
1707 SmallVector<uint64_t, 64> Record;
1708 unsigned NumRecords = 0;
1709
1710 SmallString<64> TypeName;
1711
1712 // Read all the records for this type table.
1713 while (true) {
1714 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1715 if (!MaybeEntry)
1716 return MaybeEntry.takeError();
1717 BitstreamEntry Entry = MaybeEntry.get();
1718
1719 switch (Entry.Kind) {
1720 case BitstreamEntry::SubBlock: // Handled for us already.
1721 case BitstreamEntry::Error:
1722 return error("Malformed block");
1723 case BitstreamEntry::EndBlock:
1724 if (NumRecords != TypeList.size())
1725 return error("Malformed block");
1726 return Error::success();
1727 case BitstreamEntry::Record:
1728 // The interesting case.
1729 break;
1730 }
1731
1732 // Read a record.
1733 Record.clear();
1734 Type *ResultTy = nullptr;
1735 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1736 if (!MaybeRecord)
1737 return MaybeRecord.takeError();
1738 switch (MaybeRecord.get()) {
1739 default:
1740 return error("Invalid value");
1741 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1742 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1743 // type list. This allows us to reserve space.
1744 if (Record.empty())
1745 return error("Invalid record");
1746 TypeList.resize(Record[0]);
1747 continue;
1748 case bitc::TYPE_CODE_VOID: // VOID
1749 ResultTy = Type::getVoidTy(Context);
1750 break;
1751 case bitc::TYPE_CODE_HALF: // HALF
1752 ResultTy = Type::getHalfTy(Context);
1753 break;
1754 case bitc::TYPE_CODE_BFLOAT: // BFLOAT
1755 ResultTy = Type::getBFloatTy(Context);
1756 break;
1757 case bitc::TYPE_CODE_FLOAT: // FLOAT
1758 ResultTy = Type::getFloatTy(Context);
1759 break;
1760 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1761 ResultTy = Type::getDoubleTy(Context);
1762 break;
1763 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1764 ResultTy = Type::getX86_FP80Ty(Context);
1765 break;
1766 case bitc::TYPE_CODE_FP128: // FP128
1767 ResultTy = Type::getFP128Ty(Context);
1768 break;
1769 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1770 ResultTy = Type::getPPC_FP128Ty(Context);
1771 break;
1772 case bitc::TYPE_CODE_LABEL: // LABEL
1773 ResultTy = Type::getLabelTy(Context);
1774 break;
1775 case bitc::TYPE_CODE_METADATA: // METADATA
1776 ResultTy = Type::getMetadataTy(Context);
1777 break;
1778 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1779 ResultTy = Type::getX86_MMXTy(Context);
1780 break;
1781 case bitc::TYPE_CODE_X86_AMX: // X86_AMX
1782 ResultTy = Type::getX86_AMXTy(Context);
1783 break;
1784 case bitc::TYPE_CODE_TOKEN: // TOKEN
1785 ResultTy = Type::getTokenTy(Context);
1786 break;
1787 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1788 if (Record.empty())
1789 return error("Invalid record");
1790
1791 uint64_t NumBits = Record[0];
1792 if (NumBits < IntegerType::MIN_INT_BITS ||
1793 NumBits > IntegerType::MAX_INT_BITS)
1794 return error("Bitwidth for integer type out of range");
1795 ResultTy = IntegerType::get(Context, NumBits);
1796 break;
1797 }
1798 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1799 // [pointee type, address space]
1800 if (Record.empty())
1801 return error("Invalid record");
1802 unsigned AddressSpace = 0;
1803 if (Record.size() == 2)
1804 AddressSpace = Record[1];
1805 ResultTy = getTypeByID(Record[0]);
1806 if (!ResultTy ||
1807 !PointerType::isValidElementType(ResultTy))
1808 return error("Invalid type");
1809 ResultTy = PointerType::get(ResultTy, AddressSpace);
1810 break;
1811 }
1812 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1813 if (Record.size() != 1)
1814 return error("Invalid record");
1815 unsigned AddressSpace = Record[0];
1816 ResultTy = PointerType::get(Context, AddressSpace);
1817 break;
1818 }
1819 case bitc::TYPE_CODE_FUNCTION_OLD: {
1820 // Deprecated, but still needed to read old bitcode files.
1821 // FUNCTION: [vararg, attrid, retty, paramty x N]
1822 if (Record.size() < 3)
1823 return error("Invalid record");
1824 SmallVector<Type*, 8> ArgTys;
1825 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1826 if (Type *T = getTypeByID(Record[i]))
1827 ArgTys.push_back(T);
1828 else
1829 break;
1830 }
1831
1832 ResultTy = getTypeByID(Record[2]);
1833 if (!ResultTy || ArgTys.size() < Record.size()-3)
1834 return error("Invalid type");
1835
1836 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1837 break;
1838 }
1839 case bitc::TYPE_CODE_FUNCTION: {
1840 // FUNCTION: [vararg, retty, paramty x N]
1841 if (Record.size() < 2)
1842 return error("Invalid record");
1843 SmallVector<Type*, 8> ArgTys;
1844 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1845 if (Type *T = getTypeByID(Record[i])) {
1846 if (!FunctionType::isValidArgumentType(T))
1847 return error("Invalid function argument type");
1848 ArgTys.push_back(T);
1849 }
1850 else
1851 break;
1852 }
1853
1854 ResultTy = getTypeByID(Record[1]);
1855 if (!ResultTy || ArgTys.size() < Record.size()-2)
1856 return error("Invalid type");
1857
1858 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1859 break;
1860 }
1861 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1862 if (Record.empty())
1863 return error("Invalid record");
1864 SmallVector<Type*, 8> EltTys;
1865 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1866 if (Type *T = getTypeByID(Record[i]))
1867 EltTys.push_back(T);
1868 else
1869 break;
1870 }
1871 if (EltTys.size() != Record.size()-1)
1872 return error("Invalid type");
1873 ResultTy = StructType::get(Context, EltTys, Record[0]);
1874 break;
1875 }
1876 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1877 if (convertToString(Record, 0, TypeName))
1878 return error("Invalid record");
1879 continue;
1880
1881 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1882 if (Record.empty())
1883 return error("Invalid record");
1884
1885 if (NumRecords >= TypeList.size())
1886 return error("Invalid TYPE table");
1887
1888 // Check to see if this was forward referenced, if so fill in the temp.
1889 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1890 if (Res) {
1891 Res->setName(TypeName);
1892 TypeList[NumRecords] = nullptr;
1893 } else // Otherwise, create a new struct.
1894 Res = createIdentifiedStructType(Context, TypeName);
1895 TypeName.clear();
1896
1897 SmallVector<Type*, 8> EltTys;
1898 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1899 if (Type *T = getTypeByID(Record[i]))
1900 EltTys.push_back(T);
1901 else
1902 break;
1903 }
1904 if (EltTys.size() != Record.size()-1)
1905 return error("Invalid record");
1906 Res->setBody(EltTys, Record[0]);
1907 ResultTy = Res;
1908 break;
1909 }
1910 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1911 if (Record.size() != 1)
1912 return error("Invalid record");
1913
1914 if (NumRecords >= TypeList.size())
1915 return error("Invalid TYPE table");
1916
1917 // Check to see if this was forward referenced, if so fill in the temp.
1918 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1919 if (Res) {
1920 Res->setName(TypeName);
1921 TypeList[NumRecords] = nullptr;
1922 } else // Otherwise, create a new struct with no body.
1923 Res = createIdentifiedStructType(Context, TypeName);
1924 TypeName.clear();
1925 ResultTy = Res;
1926 break;
1927 }
1928 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1929 if (Record.size() < 2)
1930 return error("Invalid record");
1931 ResultTy = getTypeByID(Record[1]);
1932 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1933 return error("Invalid type");
1934 ResultTy = ArrayType::get(ResultTy, Record[0]);
1935 break;
1936 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
1937 // [numelts, eltty, scalable]
1938 if (Record.size() < 2)
1939 return error("Invalid record");
1940 if (Record[0] == 0)
1941 return error("Invalid vector length");
1942 ResultTy = getTypeByID(Record[1]);
1943 if (!ResultTy || !StructType::isValidElementType(ResultTy))
1944 return error("Invalid type");
1945 bool Scalable = Record.size() > 2 ? Record[2] : false;
1946 ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1947 break;
1948 }
1949
1950 if (NumRecords >= TypeList.size())
1951 return error("Invalid TYPE table");
1952 if (TypeList[NumRecords])
1953 return error(
1954 "Invalid TYPE table: Only named structs can be forward referenced");
1955 assert(ResultTy && "Didn't read a type?");
1956 TypeList[NumRecords++] = ResultTy;
1957 }
1958 }
1959
parseOperandBundleTags()1960 Error BitcodeReader::parseOperandBundleTags() {
1961 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1962 return Err;
1963
1964 if (!BundleTags.empty())
1965 return error("Invalid multiple blocks");
1966
1967 SmallVector<uint64_t, 64> Record;
1968
1969 while (true) {
1970 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1971 if (!MaybeEntry)
1972 return MaybeEntry.takeError();
1973 BitstreamEntry Entry = MaybeEntry.get();
1974
1975 switch (Entry.Kind) {
1976 case BitstreamEntry::SubBlock: // Handled for us already.
1977 case BitstreamEntry::Error:
1978 return error("Malformed block");
1979 case BitstreamEntry::EndBlock:
1980 return Error::success();
1981 case BitstreamEntry::Record:
1982 // The interesting case.
1983 break;
1984 }
1985
1986 // Tags are implicitly mapped to integers by their order.
1987
1988 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1989 if (!MaybeRecord)
1990 return MaybeRecord.takeError();
1991 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1992 return error("Invalid record");
1993
1994 // OPERAND_BUNDLE_TAG: [strchr x N]
1995 BundleTags.emplace_back();
1996 if (convertToString(Record, 0, BundleTags.back()))
1997 return error("Invalid record");
1998 Record.clear();
1999 }
2000 }
2001
parseSyncScopeNames()2002 Error BitcodeReader::parseSyncScopeNames() {
2003 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2004 return Err;
2005
2006 if (!SSIDs.empty())
2007 return error("Invalid multiple synchronization scope names blocks");
2008
2009 SmallVector<uint64_t, 64> Record;
2010 while (true) {
2011 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2012 if (!MaybeEntry)
2013 return MaybeEntry.takeError();
2014 BitstreamEntry Entry = MaybeEntry.get();
2015
2016 switch (Entry.Kind) {
2017 case BitstreamEntry::SubBlock: // Handled for us already.
2018 case BitstreamEntry::Error:
2019 return error("Malformed block");
2020 case BitstreamEntry::EndBlock:
2021 if (SSIDs.empty())
2022 return error("Invalid empty synchronization scope names block");
2023 return Error::success();
2024 case BitstreamEntry::Record:
2025 // The interesting case.
2026 break;
2027 }
2028
2029 // Synchronization scope names are implicitly mapped to synchronization
2030 // scope IDs by their order.
2031
2032 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2033 if (!MaybeRecord)
2034 return MaybeRecord.takeError();
2035 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2036 return error("Invalid record");
2037
2038 SmallString<16> SSN;
2039 if (convertToString(Record, 0, SSN))
2040 return error("Invalid record");
2041
2042 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2043 Record.clear();
2044 }
2045 }
2046
2047 /// Associate a value with its name from the given index in the provided record.
recordValue(SmallVectorImpl<uint64_t> & Record,unsigned NameIndex,Triple & TT)2048 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2049 unsigned NameIndex, Triple &TT) {
2050 SmallString<128> ValueName;
2051 if (convertToString(Record, NameIndex, ValueName))
2052 return error("Invalid record");
2053 unsigned ValueID = Record[0];
2054 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2055 return error("Invalid record");
2056 Value *V = ValueList[ValueID];
2057
2058 StringRef NameStr(ValueName.data(), ValueName.size());
2059 if (NameStr.find_first_of(0) != StringRef::npos)
2060 return error("Invalid value name");
2061 V->setName(NameStr);
2062 auto *GO = dyn_cast<GlobalObject>(V);
2063 if (GO) {
2064 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2065 if (TT.supportsCOMDAT())
2066 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2067 else
2068 GO->setComdat(nullptr);
2069 }
2070 }
2071 return V;
2072 }
2073
2074 /// Helper to note and return the current location, and jump to the given
2075 /// offset.
jumpToValueSymbolTable(uint64_t Offset,BitstreamCursor & Stream)2076 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2077 BitstreamCursor &Stream) {
2078 // Save the current parsing location so we can jump back at the end
2079 // of the VST read.
2080 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2081 if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2082 return std::move(JumpFailed);
2083 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2084 if (!MaybeEntry)
2085 return MaybeEntry.takeError();
2086 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2087 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2088 return CurrentBit;
2089 }
2090
setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,Function * F,ArrayRef<uint64_t> Record)2091 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2092 Function *F,
2093 ArrayRef<uint64_t> Record) {
2094 // Note that we subtract 1 here because the offset is relative to one word
2095 // before the start of the identification or module block, which was
2096 // historically always the start of the regular bitcode header.
2097 uint64_t FuncWordOffset = Record[1] - 1;
2098 uint64_t FuncBitOffset = FuncWordOffset * 32;
2099 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2100 // Set the LastFunctionBlockBit to point to the last function block.
2101 // Later when parsing is resumed after function materialization,
2102 // we can simply skip that last function block.
2103 if (FuncBitOffset > LastFunctionBlockBit)
2104 LastFunctionBlockBit = FuncBitOffset;
2105 }
2106
2107 /// Read a new-style GlobalValue symbol table.
parseGlobalValueSymbolTable()2108 Error BitcodeReader::parseGlobalValueSymbolTable() {
2109 unsigned FuncBitcodeOffsetDelta =
2110 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2111
2112 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2113 return Err;
2114
2115 SmallVector<uint64_t, 64> Record;
2116 while (true) {
2117 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2118 if (!MaybeEntry)
2119 return MaybeEntry.takeError();
2120 BitstreamEntry Entry = MaybeEntry.get();
2121
2122 switch (Entry.Kind) {
2123 case BitstreamEntry::SubBlock:
2124 case BitstreamEntry::Error:
2125 return error("Malformed block");
2126 case BitstreamEntry::EndBlock:
2127 return Error::success();
2128 case BitstreamEntry::Record:
2129 break;
2130 }
2131
2132 Record.clear();
2133 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2134 if (!MaybeRecord)
2135 return MaybeRecord.takeError();
2136 switch (MaybeRecord.get()) {
2137 case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2138 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2139 cast<Function>(ValueList[Record[0]]), Record);
2140 break;
2141 }
2142 }
2143 }
2144
2145 /// Parse the value symbol table at either the current parsing location or
2146 /// at the given bit offset if provided.
parseValueSymbolTable(uint64_t Offset)2147 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2148 uint64_t CurrentBit;
2149 // Pass in the Offset to distinguish between calling for the module-level
2150 // VST (where we want to jump to the VST offset) and the function-level
2151 // VST (where we don't).
2152 if (Offset > 0) {
2153 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2154 if (!MaybeCurrentBit)
2155 return MaybeCurrentBit.takeError();
2156 CurrentBit = MaybeCurrentBit.get();
2157 // If this module uses a string table, read this as a module-level VST.
2158 if (UseStrtab) {
2159 if (Error Err = parseGlobalValueSymbolTable())
2160 return Err;
2161 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2162 return JumpFailed;
2163 return Error::success();
2164 }
2165 // Otherwise, the VST will be in a similar format to a function-level VST,
2166 // and will contain symbol names.
2167 }
2168
2169 // Compute the delta between the bitcode indices in the VST (the word offset
2170 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2171 // expected by the lazy reader. The reader's EnterSubBlock expects to have
2172 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2173 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2174 // just before entering the VST subblock because: 1) the EnterSubBlock
2175 // changes the AbbrevID width; 2) the VST block is nested within the same
2176 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2177 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2178 // jump to the FUNCTION_BLOCK using this offset later, we don't want
2179 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2180 unsigned FuncBitcodeOffsetDelta =
2181 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2182
2183 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2184 return Err;
2185
2186 SmallVector<uint64_t, 64> Record;
2187
2188 Triple TT(TheModule->getTargetTriple());
2189
2190 // Read all the records for this value table.
2191 SmallString<128> ValueName;
2192
2193 while (true) {
2194 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2195 if (!MaybeEntry)
2196 return MaybeEntry.takeError();
2197 BitstreamEntry Entry = MaybeEntry.get();
2198
2199 switch (Entry.Kind) {
2200 case BitstreamEntry::SubBlock: // Handled for us already.
2201 case BitstreamEntry::Error:
2202 return error("Malformed block");
2203 case BitstreamEntry::EndBlock:
2204 if (Offset > 0)
2205 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2206 return JumpFailed;
2207 return Error::success();
2208 case BitstreamEntry::Record:
2209 // The interesting case.
2210 break;
2211 }
2212
2213 // Read a record.
2214 Record.clear();
2215 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2216 if (!MaybeRecord)
2217 return MaybeRecord.takeError();
2218 switch (MaybeRecord.get()) {
2219 default: // Default behavior: unknown type.
2220 break;
2221 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2222 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2223 if (Error Err = ValOrErr.takeError())
2224 return Err;
2225 ValOrErr.get();
2226 break;
2227 }
2228 case bitc::VST_CODE_FNENTRY: {
2229 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2230 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2231 if (Error Err = ValOrErr.takeError())
2232 return Err;
2233 Value *V = ValOrErr.get();
2234
2235 // Ignore function offsets emitted for aliases of functions in older
2236 // versions of LLVM.
2237 if (auto *F = dyn_cast<Function>(V))
2238 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2239 break;
2240 }
2241 case bitc::VST_CODE_BBENTRY: {
2242 if (convertToString(Record, 1, ValueName))
2243 return error("Invalid record");
2244 BasicBlock *BB = getBasicBlock(Record[0]);
2245 if (!BB)
2246 return error("Invalid record");
2247
2248 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2249 ValueName.clear();
2250 break;
2251 }
2252 }
2253 }
2254 }
2255
2256 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2257 /// encoding.
decodeSignRotatedValue(uint64_t V)2258 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2259 if ((V & 1) == 0)
2260 return V >> 1;
2261 if (V != 1)
2262 return -(V >> 1);
2263 // There is no such thing as -0 with integers. "-0" really means MININT.
2264 return 1ULL << 63;
2265 }
2266
2267 /// Resolve all of the initializers for global values and aliases that we can.
resolveGlobalAndIndirectSymbolInits()2268 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2269 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2270 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2271 IndirectSymbolInitWorklist;
2272 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2273 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2274 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2275
2276 GlobalInitWorklist.swap(GlobalInits);
2277 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2278 FunctionPrefixWorklist.swap(FunctionPrefixes);
2279 FunctionPrologueWorklist.swap(FunctionPrologues);
2280 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2281
2282 while (!GlobalInitWorklist.empty()) {
2283 unsigned ValID = GlobalInitWorklist.back().second;
2284 if (ValID >= ValueList.size()) {
2285 // Not ready to resolve this yet, it requires something later in the file.
2286 GlobalInits.push_back(GlobalInitWorklist.back());
2287 } else {
2288 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2289 GlobalInitWorklist.back().first->setInitializer(C);
2290 else
2291 return error("Expected a constant");
2292 }
2293 GlobalInitWorklist.pop_back();
2294 }
2295
2296 while (!IndirectSymbolInitWorklist.empty()) {
2297 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2298 if (ValID >= ValueList.size()) {
2299 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2300 } else {
2301 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2302 if (!C)
2303 return error("Expected a constant");
2304 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2305 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2306 return error("Alias and aliasee types don't match");
2307 GIS->setIndirectSymbol(C);
2308 }
2309 IndirectSymbolInitWorklist.pop_back();
2310 }
2311
2312 while (!FunctionPrefixWorklist.empty()) {
2313 unsigned ValID = FunctionPrefixWorklist.back().second;
2314 if (ValID >= ValueList.size()) {
2315 FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2316 } else {
2317 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2318 FunctionPrefixWorklist.back().first->setPrefixData(C);
2319 else
2320 return error("Expected a constant");
2321 }
2322 FunctionPrefixWorklist.pop_back();
2323 }
2324
2325 while (!FunctionPrologueWorklist.empty()) {
2326 unsigned ValID = FunctionPrologueWorklist.back().second;
2327 if (ValID >= ValueList.size()) {
2328 FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2329 } else {
2330 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2331 FunctionPrologueWorklist.back().first->setPrologueData(C);
2332 else
2333 return error("Expected a constant");
2334 }
2335 FunctionPrologueWorklist.pop_back();
2336 }
2337
2338 while (!FunctionPersonalityFnWorklist.empty()) {
2339 unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2340 if (ValID >= ValueList.size()) {
2341 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2342 } else {
2343 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2344 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2345 else
2346 return error("Expected a constant");
2347 }
2348 FunctionPersonalityFnWorklist.pop_back();
2349 }
2350
2351 return Error::success();
2352 }
2353
readWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)2354 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2355 SmallVector<uint64_t, 8> Words(Vals.size());
2356 transform(Vals, Words.begin(),
2357 BitcodeReader::decodeSignRotatedValue);
2358
2359 return APInt(TypeBits, Words);
2360 }
2361
parseConstants()2362 Error BitcodeReader::parseConstants() {
2363 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2364 return Err;
2365
2366 SmallVector<uint64_t, 64> Record;
2367
2368 // Read all the records for this value table.
2369 Type *CurTy = Type::getInt32Ty(Context);
2370 Type *CurFullTy = Type::getInt32Ty(Context);
2371 unsigned NextCstNo = ValueList.size();
2372
2373 struct DelayedShufTy {
2374 VectorType *OpTy;
2375 VectorType *RTy;
2376 Type *CurFullTy;
2377 uint64_t Op0Idx;
2378 uint64_t Op1Idx;
2379 uint64_t Op2Idx;
2380 unsigned CstNo;
2381 };
2382 std::vector<DelayedShufTy> DelayedShuffles;
2383 while (true) {
2384 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2385 if (!MaybeEntry)
2386 return MaybeEntry.takeError();
2387 BitstreamEntry Entry = MaybeEntry.get();
2388
2389 switch (Entry.Kind) {
2390 case BitstreamEntry::SubBlock: // Handled for us already.
2391 case BitstreamEntry::Error:
2392 return error("Malformed block");
2393 case BitstreamEntry::EndBlock:
2394 // Once all the constants have been read, go through and resolve forward
2395 // references.
2396 //
2397 // We have to treat shuffles specially because they don't have three
2398 // operands anymore. We need to convert the shuffle mask into an array,
2399 // and we can't convert a forward reference.
2400 for (auto &DelayedShuffle : DelayedShuffles) {
2401 VectorType *OpTy = DelayedShuffle.OpTy;
2402 VectorType *RTy = DelayedShuffle.RTy;
2403 uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2404 uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2405 uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2406 uint64_t CstNo = DelayedShuffle.CstNo;
2407 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2408 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2409 Type *ShufTy =
2410 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2411 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2412 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2413 return error("Invalid shufflevector operands");
2414 SmallVector<int, 16> Mask;
2415 ShuffleVectorInst::getShuffleMask(Op2, Mask);
2416 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2417 ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2418 }
2419
2420 if (NextCstNo != ValueList.size())
2421 return error("Invalid constant reference");
2422
2423 ValueList.resolveConstantForwardRefs();
2424 return Error::success();
2425 case BitstreamEntry::Record:
2426 // The interesting case.
2427 break;
2428 }
2429
2430 // Read a record.
2431 Record.clear();
2432 Type *VoidType = Type::getVoidTy(Context);
2433 Value *V = nullptr;
2434 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2435 if (!MaybeBitCode)
2436 return MaybeBitCode.takeError();
2437 switch (unsigned BitCode = MaybeBitCode.get()) {
2438 default: // Default behavior: unknown constant
2439 case bitc::CST_CODE_UNDEF: // UNDEF
2440 V = UndefValue::get(CurTy);
2441 break;
2442 case bitc::CST_CODE_POISON: // POISON
2443 V = PoisonValue::get(CurTy);
2444 break;
2445 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2446 if (Record.empty())
2447 return error("Invalid record");
2448 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2449 return error("Invalid record");
2450 if (TypeList[Record[0]] == VoidType)
2451 return error("Invalid constant type");
2452 CurFullTy = TypeList[Record[0]];
2453 CurTy = flattenPointerTypes(CurFullTy);
2454 continue; // Skip the ValueList manipulation.
2455 case bitc::CST_CODE_NULL: // NULL
2456 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2457 return error("Invalid type for a constant null value");
2458 V = Constant::getNullValue(CurTy);
2459 break;
2460 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2461 if (!CurTy->isIntegerTy() || Record.empty())
2462 return error("Invalid record");
2463 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2464 break;
2465 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2466 if (!CurTy->isIntegerTy() || Record.empty())
2467 return error("Invalid record");
2468
2469 APInt VInt =
2470 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2471 V = ConstantInt::get(Context, VInt);
2472
2473 break;
2474 }
2475 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2476 if (Record.empty())
2477 return error("Invalid record");
2478 if (CurTy->isHalfTy())
2479 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2480 APInt(16, (uint16_t)Record[0])));
2481 else if (CurTy->isBFloatTy())
2482 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2483 APInt(16, (uint32_t)Record[0])));
2484 else if (CurTy->isFloatTy())
2485 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2486 APInt(32, (uint32_t)Record[0])));
2487 else if (CurTy->isDoubleTy())
2488 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2489 APInt(64, Record[0])));
2490 else if (CurTy->isX86_FP80Ty()) {
2491 // Bits are not stored the same way as a normal i80 APInt, compensate.
2492 uint64_t Rearrange[2];
2493 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2494 Rearrange[1] = Record[0] >> 48;
2495 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2496 APInt(80, Rearrange)));
2497 } else if (CurTy->isFP128Ty())
2498 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2499 APInt(128, Record)));
2500 else if (CurTy->isPPC_FP128Ty())
2501 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2502 APInt(128, Record)));
2503 else
2504 V = UndefValue::get(CurTy);
2505 break;
2506 }
2507
2508 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2509 if (Record.empty())
2510 return error("Invalid record");
2511
2512 unsigned Size = Record.size();
2513 SmallVector<Constant*, 16> Elts;
2514
2515 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2516 for (unsigned i = 0; i != Size; ++i)
2517 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2518 STy->getElementType(i)));
2519 V = ConstantStruct::get(STy, Elts);
2520 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2521 Type *EltTy = ATy->getElementType();
2522 for (unsigned i = 0; i != Size; ++i)
2523 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2524 V = ConstantArray::get(ATy, Elts);
2525 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2526 Type *EltTy = VTy->getElementType();
2527 for (unsigned i = 0; i != Size; ++i)
2528 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2529 V = ConstantVector::get(Elts);
2530 } else {
2531 V = UndefValue::get(CurTy);
2532 }
2533 break;
2534 }
2535 case bitc::CST_CODE_STRING: // STRING: [values]
2536 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2537 if (Record.empty())
2538 return error("Invalid record");
2539
2540 SmallString<16> Elts(Record.begin(), Record.end());
2541 V = ConstantDataArray::getString(Context, Elts,
2542 BitCode == bitc::CST_CODE_CSTRING);
2543 break;
2544 }
2545 case bitc::CST_CODE_DATA: {// DATA: [n x value]
2546 if (Record.empty())
2547 return error("Invalid record");
2548
2549 Type *EltTy;
2550 if (auto *Array = dyn_cast<ArrayType>(CurTy))
2551 EltTy = Array->getElementType();
2552 else
2553 EltTy = cast<VectorType>(CurTy)->getElementType();
2554 if (EltTy->isIntegerTy(8)) {
2555 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2556 if (isa<VectorType>(CurTy))
2557 V = ConstantDataVector::get(Context, Elts);
2558 else
2559 V = ConstantDataArray::get(Context, Elts);
2560 } else if (EltTy->isIntegerTy(16)) {
2561 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2562 if (isa<VectorType>(CurTy))
2563 V = ConstantDataVector::get(Context, Elts);
2564 else
2565 V = ConstantDataArray::get(Context, Elts);
2566 } else if (EltTy->isIntegerTy(32)) {
2567 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2568 if (isa<VectorType>(CurTy))
2569 V = ConstantDataVector::get(Context, Elts);
2570 else
2571 V = ConstantDataArray::get(Context, Elts);
2572 } else if (EltTy->isIntegerTy(64)) {
2573 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2574 if (isa<VectorType>(CurTy))
2575 V = ConstantDataVector::get(Context, Elts);
2576 else
2577 V = ConstantDataArray::get(Context, Elts);
2578 } else if (EltTy->isHalfTy()) {
2579 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2580 if (isa<VectorType>(CurTy))
2581 V = ConstantDataVector::getFP(EltTy, Elts);
2582 else
2583 V = ConstantDataArray::getFP(EltTy, Elts);
2584 } else if (EltTy->isBFloatTy()) {
2585 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2586 if (isa<VectorType>(CurTy))
2587 V = ConstantDataVector::getFP(EltTy, Elts);
2588 else
2589 V = ConstantDataArray::getFP(EltTy, Elts);
2590 } else if (EltTy->isFloatTy()) {
2591 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2592 if (isa<VectorType>(CurTy))
2593 V = ConstantDataVector::getFP(EltTy, Elts);
2594 else
2595 V = ConstantDataArray::getFP(EltTy, Elts);
2596 } else if (EltTy->isDoubleTy()) {
2597 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2598 if (isa<VectorType>(CurTy))
2599 V = ConstantDataVector::getFP(EltTy, Elts);
2600 else
2601 V = ConstantDataArray::getFP(EltTy, Elts);
2602 } else {
2603 return error("Invalid type for value");
2604 }
2605 break;
2606 }
2607 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
2608 if (Record.size() < 2)
2609 return error("Invalid record");
2610 int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2611 if (Opc < 0) {
2612 V = UndefValue::get(CurTy); // Unknown unop.
2613 } else {
2614 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2615 unsigned Flags = 0;
2616 V = ConstantExpr::get(Opc, LHS, Flags);
2617 }
2618 break;
2619 }
2620 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2621 if (Record.size() < 3)
2622 return error("Invalid record");
2623 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2624 if (Opc < 0) {
2625 V = UndefValue::get(CurTy); // Unknown binop.
2626 } else {
2627 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2628 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2629 unsigned Flags = 0;
2630 if (Record.size() >= 4) {
2631 if (Opc == Instruction::Add ||
2632 Opc == Instruction::Sub ||
2633 Opc == Instruction::Mul ||
2634 Opc == Instruction::Shl) {
2635 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2636 Flags |= OverflowingBinaryOperator::NoSignedWrap;
2637 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2638 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2639 } else if (Opc == Instruction::SDiv ||
2640 Opc == Instruction::UDiv ||
2641 Opc == Instruction::LShr ||
2642 Opc == Instruction::AShr) {
2643 if (Record[3] & (1 << bitc::PEO_EXACT))
2644 Flags |= SDivOperator::IsExact;
2645 }
2646 }
2647 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2648 }
2649 break;
2650 }
2651 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2652 if (Record.size() < 3)
2653 return error("Invalid record");
2654 int Opc = getDecodedCastOpcode(Record[0]);
2655 if (Opc < 0) {
2656 V = UndefValue::get(CurTy); // Unknown cast.
2657 } else {
2658 Type *OpTy = getTypeByID(Record[1]);
2659 if (!OpTy)
2660 return error("Invalid record");
2661 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2662 V = UpgradeBitCastExpr(Opc, Op, CurTy);
2663 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2664 }
2665 break;
2666 }
2667 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2668 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2669 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2670 // operands]
2671 unsigned OpNum = 0;
2672 Type *PointeeType = nullptr;
2673 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2674 Record.size() % 2)
2675 PointeeType = getTypeByID(Record[OpNum++]);
2676
2677 bool InBounds = false;
2678 Optional<unsigned> InRangeIndex;
2679 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2680 uint64_t Op = Record[OpNum++];
2681 InBounds = Op & 1;
2682 InRangeIndex = Op >> 1;
2683 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2684 InBounds = true;
2685
2686 SmallVector<Constant*, 16> Elts;
2687 Type *Elt0FullTy = nullptr;
2688 while (OpNum != Record.size()) {
2689 if (!Elt0FullTy)
2690 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2691 Type *ElTy = getTypeByID(Record[OpNum++]);
2692 if (!ElTy)
2693 return error("Invalid record");
2694 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2695 }
2696
2697 if (Elts.size() < 1)
2698 return error("Invalid gep with no operands");
2699
2700 Type *ImplicitPointeeType =
2701 getPointerElementFlatType(Elt0FullTy->getScalarType());
2702 if (!PointeeType)
2703 PointeeType = ImplicitPointeeType;
2704 else if (PointeeType != ImplicitPointeeType)
2705 return error("Explicit gep operator type does not match pointee type "
2706 "of pointer operand");
2707
2708 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2709 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2710 InBounds, InRangeIndex);
2711 break;
2712 }
2713 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2714 if (Record.size() < 3)
2715 return error("Invalid record");
2716
2717 Type *SelectorTy = Type::getInt1Ty(Context);
2718
2719 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2720 // Get the type from the ValueList before getting a forward ref.
2721 if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2722 if (Value *V = ValueList[Record[0]])
2723 if (SelectorTy != V->getType())
2724 SelectorTy = VectorType::get(SelectorTy,
2725 VTy->getElementCount());
2726
2727 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2728 SelectorTy),
2729 ValueList.getConstantFwdRef(Record[1],CurTy),
2730 ValueList.getConstantFwdRef(Record[2],CurTy));
2731 break;
2732 }
2733 case bitc::CST_CODE_CE_EXTRACTELT
2734 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2735 if (Record.size() < 3)
2736 return error("Invalid record");
2737 VectorType *OpTy =
2738 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2739 if (!OpTy)
2740 return error("Invalid record");
2741 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2742 Constant *Op1 = nullptr;
2743 if (Record.size() == 4) {
2744 Type *IdxTy = getTypeByID(Record[2]);
2745 if (!IdxTy)
2746 return error("Invalid record");
2747 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2748 } else {
2749 // Deprecated, but still needed to read old bitcode files.
2750 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2751 }
2752 if (!Op1)
2753 return error("Invalid record");
2754 V = ConstantExpr::getExtractElement(Op0, Op1);
2755 break;
2756 }
2757 case bitc::CST_CODE_CE_INSERTELT
2758 : { // CE_INSERTELT: [opval, opval, opty, opval]
2759 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2760 if (Record.size() < 3 || !OpTy)
2761 return error("Invalid record");
2762 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2763 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2764 OpTy->getElementType());
2765 Constant *Op2 = nullptr;
2766 if (Record.size() == 4) {
2767 Type *IdxTy = getTypeByID(Record[2]);
2768 if (!IdxTy)
2769 return error("Invalid record");
2770 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2771 } else {
2772 // Deprecated, but still needed to read old bitcode files.
2773 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2774 }
2775 if (!Op2)
2776 return error("Invalid record");
2777 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2778 break;
2779 }
2780 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2781 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2782 if (Record.size() < 3 || !OpTy)
2783 return error("Invalid record");
2784 DelayedShuffles.push_back(
2785 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2786 ++NextCstNo;
2787 continue;
2788 }
2789 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2790 VectorType *RTy = dyn_cast<VectorType>(CurTy);
2791 VectorType *OpTy =
2792 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2793 if (Record.size() < 4 || !RTy || !OpTy)
2794 return error("Invalid record");
2795 DelayedShuffles.push_back(
2796 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2797 ++NextCstNo;
2798 continue;
2799 }
2800 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2801 if (Record.size() < 4)
2802 return error("Invalid record");
2803 Type *OpTy = getTypeByID(Record[0]);
2804 if (!OpTy)
2805 return error("Invalid record");
2806 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2807 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2808
2809 if (OpTy->isFPOrFPVectorTy())
2810 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2811 else
2812 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2813 break;
2814 }
2815 // This maintains backward compatibility, pre-asm dialect keywords.
2816 // Deprecated, but still needed to read old bitcode files.
2817 case bitc::CST_CODE_INLINEASM_OLD: {
2818 if (Record.size() < 2)
2819 return error("Invalid record");
2820 std::string AsmStr, ConstrStr;
2821 bool HasSideEffects = Record[0] & 1;
2822 bool IsAlignStack = Record[0] >> 1;
2823 unsigned AsmStrSize = Record[1];
2824 if (2+AsmStrSize >= Record.size())
2825 return error("Invalid record");
2826 unsigned ConstStrSize = Record[2+AsmStrSize];
2827 if (3+AsmStrSize+ConstStrSize > Record.size())
2828 return error("Invalid record");
2829
2830 for (unsigned i = 0; i != AsmStrSize; ++i)
2831 AsmStr += (char)Record[2+i];
2832 for (unsigned i = 0; i != ConstStrSize; ++i)
2833 ConstrStr += (char)Record[3+AsmStrSize+i];
2834 UpgradeInlineAsmString(&AsmStr);
2835 V = InlineAsm::get(
2836 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2837 ConstrStr, HasSideEffects, IsAlignStack);
2838 break;
2839 }
2840 // This version adds support for the asm dialect keywords (e.g.,
2841 // inteldialect).
2842 case bitc::CST_CODE_INLINEASM_OLD2: {
2843 if (Record.size() < 2)
2844 return error("Invalid record");
2845 std::string AsmStr, ConstrStr;
2846 bool HasSideEffects = Record[0] & 1;
2847 bool IsAlignStack = (Record[0] >> 1) & 1;
2848 unsigned AsmDialect = Record[0] >> 2;
2849 unsigned AsmStrSize = Record[1];
2850 if (2+AsmStrSize >= Record.size())
2851 return error("Invalid record");
2852 unsigned ConstStrSize = Record[2+AsmStrSize];
2853 if (3+AsmStrSize+ConstStrSize > Record.size())
2854 return error("Invalid record");
2855
2856 for (unsigned i = 0; i != AsmStrSize; ++i)
2857 AsmStr += (char)Record[2+i];
2858 for (unsigned i = 0; i != ConstStrSize; ++i)
2859 ConstrStr += (char)Record[3+AsmStrSize+i];
2860 UpgradeInlineAsmString(&AsmStr);
2861 V = InlineAsm::get(
2862 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2863 ConstrStr, HasSideEffects, IsAlignStack,
2864 InlineAsm::AsmDialect(AsmDialect));
2865 break;
2866 }
2867 // This version adds support for the unwind keyword.
2868 case bitc::CST_CODE_INLINEASM: {
2869 if (Record.size() < 2)
2870 return error("Invalid record");
2871 std::string AsmStr, ConstrStr;
2872 bool HasSideEffects = Record[0] & 1;
2873 bool IsAlignStack = (Record[0] >> 1) & 1;
2874 unsigned AsmDialect = (Record[0] >> 2) & 1;
2875 bool CanThrow = (Record[0] >> 3) & 1;
2876 unsigned AsmStrSize = Record[1];
2877 if (2 + AsmStrSize >= Record.size())
2878 return error("Invalid record");
2879 unsigned ConstStrSize = Record[2 + AsmStrSize];
2880 if (3 + AsmStrSize + ConstStrSize > Record.size())
2881 return error("Invalid record");
2882
2883 for (unsigned i = 0; i != AsmStrSize; ++i)
2884 AsmStr += (char)Record[2 + i];
2885 for (unsigned i = 0; i != ConstStrSize; ++i)
2886 ConstrStr += (char)Record[3 + AsmStrSize + i];
2887 UpgradeInlineAsmString(&AsmStr);
2888 V = InlineAsm::get(
2889 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2890 ConstrStr, HasSideEffects, IsAlignStack,
2891 InlineAsm::AsmDialect(AsmDialect), CanThrow);
2892 break;
2893 }
2894 case bitc::CST_CODE_BLOCKADDRESS:{
2895 if (Record.size() < 3)
2896 return error("Invalid record");
2897 Type *FnTy = getTypeByID(Record[0]);
2898 if (!FnTy)
2899 return error("Invalid record");
2900 Function *Fn =
2901 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2902 if (!Fn)
2903 return error("Invalid record");
2904
2905 // If the function is already parsed we can insert the block address right
2906 // away.
2907 BasicBlock *BB;
2908 unsigned BBID = Record[2];
2909 if (!BBID)
2910 // Invalid reference to entry block.
2911 return error("Invalid ID");
2912 if (!Fn->empty()) {
2913 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2914 for (size_t I = 0, E = BBID; I != E; ++I) {
2915 if (BBI == BBE)
2916 return error("Invalid ID");
2917 ++BBI;
2918 }
2919 BB = &*BBI;
2920 } else {
2921 // Otherwise insert a placeholder and remember it so it can be inserted
2922 // when the function is parsed.
2923 auto &FwdBBs = BasicBlockFwdRefs[Fn];
2924 if (FwdBBs.empty())
2925 BasicBlockFwdRefQueue.push_back(Fn);
2926 if (FwdBBs.size() < BBID + 1)
2927 FwdBBs.resize(BBID + 1);
2928 if (!FwdBBs[BBID])
2929 FwdBBs[BBID] = BasicBlock::Create(Context);
2930 BB = FwdBBs[BBID];
2931 }
2932 V = BlockAddress::get(Fn, BB);
2933 break;
2934 }
2935 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2936 if (Record.size() < 2)
2937 return error("Invalid record");
2938 Type *GVTy = getTypeByID(Record[0]);
2939 if (!GVTy)
2940 return error("Invalid record");
2941 GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2942 ValueList.getConstantFwdRef(Record[1], GVTy));
2943 if (!GV)
2944 return error("Invalid record");
2945
2946 V = DSOLocalEquivalent::get(GV);
2947 break;
2948 }
2949 }
2950
2951 assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2952 "Incorrect fully structured type provided for Constant");
2953 ValueList.assignValue(V, NextCstNo, CurFullTy);
2954 ++NextCstNo;
2955 }
2956 }
2957
parseUseLists()2958 Error BitcodeReader::parseUseLists() {
2959 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2960 return Err;
2961
2962 // Read all the records.
2963 SmallVector<uint64_t, 64> Record;
2964
2965 while (true) {
2966 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2967 if (!MaybeEntry)
2968 return MaybeEntry.takeError();
2969 BitstreamEntry Entry = MaybeEntry.get();
2970
2971 switch (Entry.Kind) {
2972 case BitstreamEntry::SubBlock: // Handled for us already.
2973 case BitstreamEntry::Error:
2974 return error("Malformed block");
2975 case BitstreamEntry::EndBlock:
2976 return Error::success();
2977 case BitstreamEntry::Record:
2978 // The interesting case.
2979 break;
2980 }
2981
2982 // Read a use list record.
2983 Record.clear();
2984 bool IsBB = false;
2985 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2986 if (!MaybeRecord)
2987 return MaybeRecord.takeError();
2988 switch (MaybeRecord.get()) {
2989 default: // Default behavior: unknown type.
2990 break;
2991 case bitc::USELIST_CODE_BB:
2992 IsBB = true;
2993 LLVM_FALLTHROUGH;
2994 case bitc::USELIST_CODE_DEFAULT: {
2995 unsigned RecordLength = Record.size();
2996 if (RecordLength < 3)
2997 // Records should have at least an ID and two indexes.
2998 return error("Invalid record");
2999 unsigned ID = Record.pop_back_val();
3000
3001 Value *V;
3002 if (IsBB) {
3003 assert(ID < FunctionBBs.size() && "Basic block not found");
3004 V = FunctionBBs[ID];
3005 } else
3006 V = ValueList[ID];
3007 unsigned NumUses = 0;
3008 SmallDenseMap<const Use *, unsigned, 16> Order;
3009 for (const Use &U : V->materialized_uses()) {
3010 if (++NumUses > Record.size())
3011 break;
3012 Order[&U] = Record[NumUses - 1];
3013 }
3014 if (Order.size() != Record.size() || NumUses > Record.size())
3015 // Mismatches can happen if the functions are being materialized lazily
3016 // (out-of-order), or a value has been upgraded.
3017 break;
3018
3019 V->sortUseList([&](const Use &L, const Use &R) {
3020 return Order.lookup(&L) < Order.lookup(&R);
3021 });
3022 break;
3023 }
3024 }
3025 }
3026 }
3027
3028 /// When we see the block for metadata, remember where it is and then skip it.
3029 /// This lets us lazily deserialize the metadata.
rememberAndSkipMetadata()3030 Error BitcodeReader::rememberAndSkipMetadata() {
3031 // Save the current stream state.
3032 uint64_t CurBit = Stream.GetCurrentBitNo();
3033 DeferredMetadataInfo.push_back(CurBit);
3034
3035 // Skip over the block for now.
3036 if (Error Err = Stream.SkipBlock())
3037 return Err;
3038 return Error::success();
3039 }
3040
materializeMetadata()3041 Error BitcodeReader::materializeMetadata() {
3042 for (uint64_t BitPos : DeferredMetadataInfo) {
3043 // Move the bit stream to the saved position.
3044 if (Error JumpFailed = Stream.JumpToBit(BitPos))
3045 return JumpFailed;
3046 if (Error Err = MDLoader->parseModuleMetadata())
3047 return Err;
3048 }
3049
3050 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3051 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3052 // multiple times.
3053 if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3054 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3055 NamedMDNode *LinkerOpts =
3056 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3057 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3058 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3059 }
3060 }
3061
3062 DeferredMetadataInfo.clear();
3063 return Error::success();
3064 }
3065
setStripDebugInfo()3066 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3067
3068 /// When we see the block for a function body, remember where it is and then
3069 /// skip it. This lets us lazily deserialize the functions.
rememberAndSkipFunctionBody()3070 Error BitcodeReader::rememberAndSkipFunctionBody() {
3071 // Get the function we are talking about.
3072 if (FunctionsWithBodies.empty())
3073 return error("Insufficient function protos");
3074
3075 Function *Fn = FunctionsWithBodies.back();
3076 FunctionsWithBodies.pop_back();
3077
3078 // Save the current stream state.
3079 uint64_t CurBit = Stream.GetCurrentBitNo();
3080 assert(
3081 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3082 "Mismatch between VST and scanned function offsets");
3083 DeferredFunctionInfo[Fn] = CurBit;
3084
3085 // Skip over the function block for now.
3086 if (Error Err = Stream.SkipBlock())
3087 return Err;
3088 return Error::success();
3089 }
3090
globalCleanup()3091 Error BitcodeReader::globalCleanup() {
3092 // Patch the initializers for globals and aliases up.
3093 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3094 return Err;
3095 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3096 return error("Malformed global initializer set");
3097
3098 // Look for intrinsic functions which need to be upgraded at some point
3099 // and functions that need to have their function attributes upgraded.
3100 for (Function &F : *TheModule) {
3101 MDLoader->upgradeDebugIntrinsics(F);
3102 Function *NewFn;
3103 if (UpgradeIntrinsicFunction(&F, NewFn))
3104 UpgradedIntrinsics[&F] = NewFn;
3105 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3106 // Some types could be renamed during loading if several modules are
3107 // loaded in the same LLVMContext (LTO scenario). In this case we should
3108 // remangle intrinsics names as well.
3109 RemangledIntrinsics[&F] = Remangled.getValue();
3110 // Look for functions that rely on old function attribute behavior.
3111 UpgradeFunctionAttributes(F);
3112 }
3113
3114 // Look for global variables which need to be renamed.
3115 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3116 for (GlobalVariable &GV : TheModule->globals())
3117 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3118 UpgradedVariables.emplace_back(&GV, Upgraded);
3119 for (auto &Pair : UpgradedVariables) {
3120 Pair.first->eraseFromParent();
3121 TheModule->getGlobalList().push_back(Pair.second);
3122 }
3123
3124 // Force deallocation of memory for these vectors to favor the client that
3125 // want lazy deserialization.
3126 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3127 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3128 IndirectSymbolInits);
3129 return Error::success();
3130 }
3131
3132 /// Support for lazy parsing of function bodies. This is required if we
3133 /// either have an old bitcode file without a VST forward declaration record,
3134 /// or if we have an anonymous function being materialized, since anonymous
3135 /// functions do not have a name and are therefore not in the VST.
rememberAndSkipFunctionBodies()3136 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3137 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3138 return JumpFailed;
3139
3140 if (Stream.AtEndOfStream())
3141 return error("Could not find function in stream");
3142
3143 if (!SeenFirstFunctionBody)
3144 return error("Trying to materialize functions before seeing function blocks");
3145
3146 // An old bitcode file with the symbol table at the end would have
3147 // finished the parse greedily.
3148 assert(SeenValueSymbolTable);
3149
3150 SmallVector<uint64_t, 64> Record;
3151
3152 while (true) {
3153 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3154 if (!MaybeEntry)
3155 return MaybeEntry.takeError();
3156 llvm::BitstreamEntry Entry = MaybeEntry.get();
3157
3158 switch (Entry.Kind) {
3159 default:
3160 return error("Expect SubBlock");
3161 case BitstreamEntry::SubBlock:
3162 switch (Entry.ID) {
3163 default:
3164 return error("Expect function block");
3165 case bitc::FUNCTION_BLOCK_ID:
3166 if (Error Err = rememberAndSkipFunctionBody())
3167 return Err;
3168 NextUnreadBit = Stream.GetCurrentBitNo();
3169 return Error::success();
3170 }
3171 }
3172 }
3173 }
3174
readBlockInfo()3175 bool BitcodeReaderBase::readBlockInfo() {
3176 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3177 Stream.ReadBlockInfoBlock();
3178 if (!MaybeNewBlockInfo)
3179 return true; // FIXME Handle the error.
3180 Optional<BitstreamBlockInfo> NewBlockInfo =
3181 std::move(MaybeNewBlockInfo.get());
3182 if (!NewBlockInfo)
3183 return true;
3184 BlockInfo = std::move(*NewBlockInfo);
3185 return false;
3186 }
3187
parseComdatRecord(ArrayRef<uint64_t> Record)3188 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3189 // v1: [selection_kind, name]
3190 // v2: [strtab_offset, strtab_size, selection_kind]
3191 StringRef Name;
3192 std::tie(Name, Record) = readNameFromStrtab(Record);
3193
3194 if (Record.empty())
3195 return error("Invalid record");
3196 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3197 std::string OldFormatName;
3198 if (!UseStrtab) {
3199 if (Record.size() < 2)
3200 return error("Invalid record");
3201 unsigned ComdatNameSize = Record[1];
3202 OldFormatName.reserve(ComdatNameSize);
3203 for (unsigned i = 0; i != ComdatNameSize; ++i)
3204 OldFormatName += (char)Record[2 + i];
3205 Name = OldFormatName;
3206 }
3207 Comdat *C = TheModule->getOrInsertComdat(Name);
3208 C->setSelectionKind(SK);
3209 ComdatList.push_back(C);
3210 return Error::success();
3211 }
3212
inferDSOLocal(GlobalValue * GV)3213 static void inferDSOLocal(GlobalValue *GV) {
3214 // infer dso_local from linkage and visibility if it is not encoded.
3215 if (GV->hasLocalLinkage() ||
3216 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3217 GV->setDSOLocal(true);
3218 }
3219
parseGlobalVarRecord(ArrayRef<uint64_t> Record)3220 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3221 // v1: [pointer type, isconst, initid, linkage, alignment, section,
3222 // visibility, threadlocal, unnamed_addr, externally_initialized,
3223 // dllstorageclass, comdat, attributes, preemption specifier,
3224 // partition strtab offset, partition strtab size] (name in VST)
3225 // v2: [strtab_offset, strtab_size, v1]
3226 StringRef Name;
3227 std::tie(Name, Record) = readNameFromStrtab(Record);
3228
3229 if (Record.size() < 6)
3230 return error("Invalid record");
3231 Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3232 Type *Ty = flattenPointerTypes(FullTy);
3233 if (!Ty)
3234 return error("Invalid record");
3235 bool isConstant = Record[1] & 1;
3236 bool explicitType = Record[1] & 2;
3237 unsigned AddressSpace;
3238 if (explicitType) {
3239 AddressSpace = Record[1] >> 2;
3240 } else {
3241 if (!Ty->isPointerTy())
3242 return error("Invalid type for value");
3243 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3244 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3245 }
3246
3247 uint64_t RawLinkage = Record[3];
3248 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3249 MaybeAlign Alignment;
3250 if (Error Err = parseAlignmentValue(Record[4], Alignment))
3251 return Err;
3252 std::string Section;
3253 if (Record[5]) {
3254 if (Record[5] - 1 >= SectionTable.size())
3255 return error("Invalid ID");
3256 Section = SectionTable[Record[5] - 1];
3257 }
3258 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3259 // Local linkage must have default visibility.
3260 // auto-upgrade `hidden` and `protected` for old bitcode.
3261 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3262 Visibility = getDecodedVisibility(Record[6]);
3263
3264 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3265 if (Record.size() > 7)
3266 TLM = getDecodedThreadLocalMode(Record[7]);
3267
3268 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3269 if (Record.size() > 8)
3270 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3271
3272 bool ExternallyInitialized = false;
3273 if (Record.size() > 9)
3274 ExternallyInitialized = Record[9];
3275
3276 GlobalVariable *NewGV =
3277 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3278 nullptr, TLM, AddressSpace, ExternallyInitialized);
3279 NewGV->setAlignment(Alignment);
3280 if (!Section.empty())
3281 NewGV->setSection(Section);
3282 NewGV->setVisibility(Visibility);
3283 NewGV->setUnnamedAddr(UnnamedAddr);
3284
3285 if (Record.size() > 10)
3286 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3287 else
3288 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3289
3290 FullTy = PointerType::get(FullTy, AddressSpace);
3291 assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3292 "Incorrect fully specified type for GlobalVariable");
3293 ValueList.push_back(NewGV, FullTy);
3294
3295 // Remember which value to use for the global initializer.
3296 if (unsigned InitID = Record[2])
3297 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3298
3299 if (Record.size() > 11) {
3300 if (unsigned ComdatID = Record[11]) {
3301 if (ComdatID > ComdatList.size())
3302 return error("Invalid global variable comdat ID");
3303 NewGV->setComdat(ComdatList[ComdatID - 1]);
3304 }
3305 } else if (hasImplicitComdat(RawLinkage)) {
3306 NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3307 }
3308
3309 if (Record.size() > 12) {
3310 auto AS = getAttributes(Record[12]).getFnAttributes();
3311 NewGV->setAttributes(AS);
3312 }
3313
3314 if (Record.size() > 13) {
3315 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3316 }
3317 inferDSOLocal(NewGV);
3318
3319 // Check whether we have enough values to read a partition name.
3320 if (Record.size() > 15)
3321 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3322
3323 return Error::success();
3324 }
3325
parseFunctionRecord(ArrayRef<uint64_t> Record)3326 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3327 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3328 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3329 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
3330 // v2: [strtab_offset, strtab_size, v1]
3331 StringRef Name;
3332 std::tie(Name, Record) = readNameFromStrtab(Record);
3333
3334 if (Record.size() < 8)
3335 return error("Invalid record");
3336 Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3337 Type *FTy = flattenPointerTypes(FullFTy);
3338 if (!FTy)
3339 return error("Invalid record");
3340 if (isa<PointerType>(FTy))
3341 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3342
3343 if (!isa<FunctionType>(FTy))
3344 return error("Invalid type for value");
3345 auto CC = static_cast<CallingConv::ID>(Record[1]);
3346 if (CC & ~CallingConv::MaxID)
3347 return error("Invalid calling convention ID");
3348
3349 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3350 if (Record.size() > 16)
3351 AddrSpace = Record[16];
3352
3353 Function *Func =
3354 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3355 AddrSpace, Name, TheModule);
3356
3357 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3358 "Incorrect fully specified type provided for function");
3359 FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3360
3361 Func->setCallingConv(CC);
3362 bool isProto = Record[2];
3363 uint64_t RawLinkage = Record[3];
3364 Func->setLinkage(getDecodedLinkage(RawLinkage));
3365 Func->setAttributes(getAttributes(Record[4]));
3366
3367 // Upgrade any old-style byval or sret without a type by propagating the
3368 // argument's pointee type. There should be no opaque pointers where the byval
3369 // type is implicit.
3370 for (unsigned i = 0; i != Func->arg_size(); ++i) {
3371 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3372 Attribute::InAlloca}) {
3373 if (!Func->hasParamAttribute(i, Kind))
3374 continue;
3375
3376 Func->removeParamAttr(i, Kind);
3377
3378 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3379 Type *PtrEltTy = getPointerElementFlatType(PTy);
3380 Attribute NewAttr;
3381 switch (Kind) {
3382 case Attribute::ByVal:
3383 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3384 break;
3385 case Attribute::StructRet:
3386 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3387 break;
3388 case Attribute::InAlloca:
3389 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3390 break;
3391 default:
3392 llvm_unreachable("not an upgraded type attribute");
3393 }
3394
3395 Func->addParamAttr(i, NewAttr);
3396 }
3397 }
3398
3399 MaybeAlign Alignment;
3400 if (Error Err = parseAlignmentValue(Record[5], Alignment))
3401 return Err;
3402 Func->setAlignment(Alignment);
3403 if (Record[6]) {
3404 if (Record[6] - 1 >= SectionTable.size())
3405 return error("Invalid ID");
3406 Func->setSection(SectionTable[Record[6] - 1]);
3407 }
3408 // Local linkage must have default visibility.
3409 // auto-upgrade `hidden` and `protected` for old bitcode.
3410 if (!Func->hasLocalLinkage())
3411 Func->setVisibility(getDecodedVisibility(Record[7]));
3412 if (Record.size() > 8 && Record[8]) {
3413 if (Record[8] - 1 >= GCTable.size())
3414 return error("Invalid ID");
3415 Func->setGC(GCTable[Record[8] - 1]);
3416 }
3417 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3418 if (Record.size() > 9)
3419 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3420 Func->setUnnamedAddr(UnnamedAddr);
3421 if (Record.size() > 10 && Record[10] != 0)
3422 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3423
3424 if (Record.size() > 11)
3425 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3426 else
3427 upgradeDLLImportExportLinkage(Func, RawLinkage);
3428
3429 if (Record.size() > 12) {
3430 if (unsigned ComdatID = Record[12]) {
3431 if (ComdatID > ComdatList.size())
3432 return error("Invalid function comdat ID");
3433 Func->setComdat(ComdatList[ComdatID - 1]);
3434 }
3435 } else if (hasImplicitComdat(RawLinkage)) {
3436 Func->setComdat(reinterpret_cast<Comdat *>(1));
3437 }
3438
3439 if (Record.size() > 13 && Record[13] != 0)
3440 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3441
3442 if (Record.size() > 14 && Record[14] != 0)
3443 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3444
3445 if (Record.size() > 15) {
3446 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3447 }
3448 inferDSOLocal(Func);
3449
3450 // Record[16] is the address space number.
3451
3452 // Check whether we have enough values to read a partition name.
3453 if (Record.size() > 18)
3454 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3455
3456 Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3457 assert(Func->getType() == flattenPointerTypes(FullTy) &&
3458 "Incorrect fully specified type provided for Function");
3459 ValueList.push_back(Func, FullTy);
3460
3461 // If this is a function with a body, remember the prototype we are
3462 // creating now, so that we can match up the body with them later.
3463 if (!isProto) {
3464 Func->setIsMaterializable(true);
3465 FunctionsWithBodies.push_back(Func);
3466 DeferredFunctionInfo[Func] = 0;
3467 }
3468 return Error::success();
3469 }
3470
parseGlobalIndirectSymbolRecord(unsigned BitCode,ArrayRef<uint64_t> Record)3471 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3472 unsigned BitCode, ArrayRef<uint64_t> Record) {
3473 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3474 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3475 // dllstorageclass, threadlocal, unnamed_addr,
3476 // preemption specifier] (name in VST)
3477 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3478 // visibility, dllstorageclass, threadlocal, unnamed_addr,
3479 // preemption specifier] (name in VST)
3480 // v2: [strtab_offset, strtab_size, v1]
3481 StringRef Name;
3482 std::tie(Name, Record) = readNameFromStrtab(Record);
3483
3484 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3485 if (Record.size() < (3 + (unsigned)NewRecord))
3486 return error("Invalid record");
3487 unsigned OpNum = 0;
3488 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3489 Type *Ty = flattenPointerTypes(FullTy);
3490 if (!Ty)
3491 return error("Invalid record");
3492
3493 unsigned AddrSpace;
3494 if (!NewRecord) {
3495 auto *PTy = dyn_cast<PointerType>(Ty);
3496 if (!PTy)
3497 return error("Invalid type for value");
3498 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3499 AddrSpace = PTy->getAddressSpace();
3500 } else {
3501 AddrSpace = Record[OpNum++];
3502 }
3503
3504 auto Val = Record[OpNum++];
3505 auto Linkage = Record[OpNum++];
3506 GlobalIndirectSymbol *NewGA;
3507 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3508 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3509 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3510 TheModule);
3511 else
3512 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3513 nullptr, TheModule);
3514
3515 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3516 "Incorrect fully structured type provided for GlobalIndirectSymbol");
3517 // Local linkage must have default visibility.
3518 // auto-upgrade `hidden` and `protected` for old bitcode.
3519 if (OpNum != Record.size()) {
3520 auto VisInd = OpNum++;
3521 if (!NewGA->hasLocalLinkage())
3522 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3523 }
3524 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3525 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3526 if (OpNum != Record.size())
3527 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3528 else
3529 upgradeDLLImportExportLinkage(NewGA, Linkage);
3530 if (OpNum != Record.size())
3531 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3532 if (OpNum != Record.size())
3533 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3534 }
3535 if (OpNum != Record.size())
3536 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3537 inferDSOLocal(NewGA);
3538
3539 // Check whether we have enough values to read a partition name.
3540 if (OpNum + 1 < Record.size()) {
3541 NewGA->setPartition(
3542 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3543 OpNum += 2;
3544 }
3545
3546 FullTy = PointerType::get(FullTy, AddrSpace);
3547 assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3548 "Incorrect fully structured type provided for GlobalIndirectSymbol");
3549 ValueList.push_back(NewGA, FullTy);
3550 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3551 return Error::success();
3552 }
3553
parseModule(uint64_t ResumeBit,bool ShouldLazyLoadMetadata,DataLayoutCallbackTy DataLayoutCallback)3554 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3555 bool ShouldLazyLoadMetadata,
3556 DataLayoutCallbackTy DataLayoutCallback) {
3557 if (ResumeBit) {
3558 if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3559 return JumpFailed;
3560 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3561 return Err;
3562
3563 SmallVector<uint64_t, 64> Record;
3564
3565 // Parts of bitcode parsing depend on the datalayout. Make sure we
3566 // finalize the datalayout before we run any of that code.
3567 bool ResolvedDataLayout = false;
3568 auto ResolveDataLayout = [&] {
3569 if (ResolvedDataLayout)
3570 return;
3571
3572 // datalayout and triple can't be parsed after this point.
3573 ResolvedDataLayout = true;
3574
3575 // Upgrade data layout string.
3576 std::string DL = llvm::UpgradeDataLayoutString(
3577 TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3578 TheModule->setDataLayout(DL);
3579
3580 if (auto LayoutOverride =
3581 DataLayoutCallback(TheModule->getTargetTriple()))
3582 TheModule->setDataLayout(*LayoutOverride);
3583 };
3584
3585 // Read all the records for this module.
3586 while (true) {
3587 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3588 if (!MaybeEntry)
3589 return MaybeEntry.takeError();
3590 llvm::BitstreamEntry Entry = MaybeEntry.get();
3591
3592 switch (Entry.Kind) {
3593 case BitstreamEntry::Error:
3594 return error("Malformed block");
3595 case BitstreamEntry::EndBlock:
3596 ResolveDataLayout();
3597 return globalCleanup();
3598
3599 case BitstreamEntry::SubBlock:
3600 switch (Entry.ID) {
3601 default: // Skip unknown content.
3602 if (Error Err = Stream.SkipBlock())
3603 return Err;
3604 break;
3605 case bitc::BLOCKINFO_BLOCK_ID:
3606 if (readBlockInfo())
3607 return error("Malformed block");
3608 break;
3609 case bitc::PARAMATTR_BLOCK_ID:
3610 if (Error Err = parseAttributeBlock())
3611 return Err;
3612 break;
3613 case bitc::PARAMATTR_GROUP_BLOCK_ID:
3614 if (Error Err = parseAttributeGroupBlock())
3615 return Err;
3616 break;
3617 case bitc::TYPE_BLOCK_ID_NEW:
3618 if (Error Err = parseTypeTable())
3619 return Err;
3620 break;
3621 case bitc::VALUE_SYMTAB_BLOCK_ID:
3622 if (!SeenValueSymbolTable) {
3623 // Either this is an old form VST without function index and an
3624 // associated VST forward declaration record (which would have caused
3625 // the VST to be jumped to and parsed before it was encountered
3626 // normally in the stream), or there were no function blocks to
3627 // trigger an earlier parsing of the VST.
3628 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3629 if (Error Err = parseValueSymbolTable())
3630 return Err;
3631 SeenValueSymbolTable = true;
3632 } else {
3633 // We must have had a VST forward declaration record, which caused
3634 // the parser to jump to and parse the VST earlier.
3635 assert(VSTOffset > 0);
3636 if (Error Err = Stream.SkipBlock())
3637 return Err;
3638 }
3639 break;
3640 case bitc::CONSTANTS_BLOCK_ID:
3641 if (Error Err = parseConstants())
3642 return Err;
3643 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3644 return Err;
3645 break;
3646 case bitc::METADATA_BLOCK_ID:
3647 if (ShouldLazyLoadMetadata) {
3648 if (Error Err = rememberAndSkipMetadata())
3649 return Err;
3650 break;
3651 }
3652 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3653 if (Error Err = MDLoader->parseModuleMetadata())
3654 return Err;
3655 break;
3656 case bitc::METADATA_KIND_BLOCK_ID:
3657 if (Error Err = MDLoader->parseMetadataKinds())
3658 return Err;
3659 break;
3660 case bitc::FUNCTION_BLOCK_ID:
3661 ResolveDataLayout();
3662
3663 // If this is the first function body we've seen, reverse the
3664 // FunctionsWithBodies list.
3665 if (!SeenFirstFunctionBody) {
3666 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3667 if (Error Err = globalCleanup())
3668 return Err;
3669 SeenFirstFunctionBody = true;
3670 }
3671
3672 if (VSTOffset > 0) {
3673 // If we have a VST forward declaration record, make sure we
3674 // parse the VST now if we haven't already. It is needed to
3675 // set up the DeferredFunctionInfo vector for lazy reading.
3676 if (!SeenValueSymbolTable) {
3677 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3678 return Err;
3679 SeenValueSymbolTable = true;
3680 // Fall through so that we record the NextUnreadBit below.
3681 // This is necessary in case we have an anonymous function that
3682 // is later materialized. Since it will not have a VST entry we
3683 // need to fall back to the lazy parse to find its offset.
3684 } else {
3685 // If we have a VST forward declaration record, but have already
3686 // parsed the VST (just above, when the first function body was
3687 // encountered here), then we are resuming the parse after
3688 // materializing functions. The ResumeBit points to the
3689 // start of the last function block recorded in the
3690 // DeferredFunctionInfo map. Skip it.
3691 if (Error Err = Stream.SkipBlock())
3692 return Err;
3693 continue;
3694 }
3695 }
3696
3697 // Support older bitcode files that did not have the function
3698 // index in the VST, nor a VST forward declaration record, as
3699 // well as anonymous functions that do not have VST entries.
3700 // Build the DeferredFunctionInfo vector on the fly.
3701 if (Error Err = rememberAndSkipFunctionBody())
3702 return Err;
3703
3704 // Suspend parsing when we reach the function bodies. Subsequent
3705 // materialization calls will resume it when necessary. If the bitcode
3706 // file is old, the symbol table will be at the end instead and will not
3707 // have been seen yet. In this case, just finish the parse now.
3708 if (SeenValueSymbolTable) {
3709 NextUnreadBit = Stream.GetCurrentBitNo();
3710 // After the VST has been parsed, we need to make sure intrinsic name
3711 // are auto-upgraded.
3712 return globalCleanup();
3713 }
3714 break;
3715 case bitc::USELIST_BLOCK_ID:
3716 if (Error Err = parseUseLists())
3717 return Err;
3718 break;
3719 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3720 if (Error Err = parseOperandBundleTags())
3721 return Err;
3722 break;
3723 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3724 if (Error Err = parseSyncScopeNames())
3725 return Err;
3726 break;
3727 }
3728 continue;
3729
3730 case BitstreamEntry::Record:
3731 // The interesting case.
3732 break;
3733 }
3734
3735 // Read a record.
3736 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3737 if (!MaybeBitCode)
3738 return MaybeBitCode.takeError();
3739 switch (unsigned BitCode = MaybeBitCode.get()) {
3740 default: break; // Default behavior, ignore unknown content.
3741 case bitc::MODULE_CODE_VERSION: {
3742 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3743 if (!VersionOrErr)
3744 return VersionOrErr.takeError();
3745 UseRelativeIDs = *VersionOrErr >= 1;
3746 break;
3747 }
3748 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3749 if (ResolvedDataLayout)
3750 return error("target triple too late in module");
3751 std::string S;
3752 if (convertToString(Record, 0, S))
3753 return error("Invalid record");
3754 TheModule->setTargetTriple(S);
3755 break;
3756 }
3757 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3758 if (ResolvedDataLayout)
3759 return error("datalayout too late in module");
3760 std::string S;
3761 if (convertToString(Record, 0, S))
3762 return error("Invalid record");
3763 TheModule->setDataLayout(S);
3764 break;
3765 }
3766 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3767 std::string S;
3768 if (convertToString(Record, 0, S))
3769 return error("Invalid record");
3770 TheModule->setModuleInlineAsm(S);
3771 break;
3772 }
3773 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3774 // Deprecated, but still needed to read old bitcode files.
3775 std::string S;
3776 if (convertToString(Record, 0, S))
3777 return error("Invalid record");
3778 // Ignore value.
3779 break;
3780 }
3781 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3782 std::string S;
3783 if (convertToString(Record, 0, S))
3784 return error("Invalid record");
3785 SectionTable.push_back(S);
3786 break;
3787 }
3788 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3789 std::string S;
3790 if (convertToString(Record, 0, S))
3791 return error("Invalid record");
3792 GCTable.push_back(S);
3793 break;
3794 }
3795 case bitc::MODULE_CODE_COMDAT:
3796 if (Error Err = parseComdatRecord(Record))
3797 return Err;
3798 break;
3799 case bitc::MODULE_CODE_GLOBALVAR:
3800 if (Error Err = parseGlobalVarRecord(Record))
3801 return Err;
3802 break;
3803 case bitc::MODULE_CODE_FUNCTION:
3804 ResolveDataLayout();
3805 if (Error Err = parseFunctionRecord(Record))
3806 return Err;
3807 break;
3808 case bitc::MODULE_CODE_IFUNC:
3809 case bitc::MODULE_CODE_ALIAS:
3810 case bitc::MODULE_CODE_ALIAS_OLD:
3811 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3812 return Err;
3813 break;
3814 /// MODULE_CODE_VSTOFFSET: [offset]
3815 case bitc::MODULE_CODE_VSTOFFSET:
3816 if (Record.empty())
3817 return error("Invalid record");
3818 // Note that we subtract 1 here because the offset is relative to one word
3819 // before the start of the identification or module block, which was
3820 // historically always the start of the regular bitcode header.
3821 VSTOffset = Record[0] - 1;
3822 break;
3823 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3824 case bitc::MODULE_CODE_SOURCE_FILENAME:
3825 SmallString<128> ValueName;
3826 if (convertToString(Record, 0, ValueName))
3827 return error("Invalid record");
3828 TheModule->setSourceFileName(ValueName);
3829 break;
3830 }
3831 Record.clear();
3832 }
3833 }
3834
parseBitcodeInto(Module * M,bool ShouldLazyLoadMetadata,bool IsImporting,DataLayoutCallbackTy DataLayoutCallback)3835 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3836 bool IsImporting,
3837 DataLayoutCallbackTy DataLayoutCallback) {
3838 TheModule = M;
3839 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3840 [&](unsigned ID) { return getTypeByID(ID); });
3841 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3842 }
3843
typeCheckLoadStoreInst(Type * ValType,Type * PtrType)3844 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3845 if (!isa<PointerType>(PtrType))
3846 return error("Load/Store operand is not a pointer type");
3847
3848 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3849 return error("Explicit load/store type does not match pointee "
3850 "type of pointer operand");
3851 if (!PointerType::isLoadableOrStorableType(ValType))
3852 return error("Cannot load/store from pointer");
3853 return Error::success();
3854 }
3855
propagateByValSRetTypes(CallBase * CB,ArrayRef<Type * > ArgsFullTys)3856 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3857 ArrayRef<Type *> ArgsFullTys) {
3858 for (unsigned i = 0; i != CB->arg_size(); ++i) {
3859 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3860 Attribute::InAlloca}) {
3861 if (!CB->paramHasAttr(i, Kind))
3862 continue;
3863
3864 CB->removeParamAttr(i, Kind);
3865
3866 Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]);
3867 Attribute NewAttr;
3868 switch (Kind) {
3869 case Attribute::ByVal:
3870 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3871 break;
3872 case Attribute::StructRet:
3873 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3874 break;
3875 case Attribute::InAlloca:
3876 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3877 break;
3878 default:
3879 llvm_unreachable("not an upgraded type attribute");
3880 }
3881
3882 CB->addParamAttr(i, NewAttr);
3883 }
3884 }
3885 }
3886
3887 /// Lazily parse the specified function body block.
parseFunctionBody(Function * F)3888 Error BitcodeReader::parseFunctionBody(Function *F) {
3889 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3890 return Err;
3891
3892 // Unexpected unresolved metadata when parsing function.
3893 if (MDLoader->hasFwdRefs())
3894 return error("Invalid function metadata: incoming forward references");
3895
3896 InstructionList.clear();
3897 unsigned ModuleValueListSize = ValueList.size();
3898 unsigned ModuleMDLoaderSize = MDLoader->size();
3899
3900 // Add all the function arguments to the value table.
3901 unsigned ArgNo = 0;
3902 FunctionType *FullFTy = FunctionTypes[F];
3903 for (Argument &I : F->args()) {
3904 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3905 "Incorrect fully specified type for Function Argument");
3906 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3907 }
3908 unsigned NextValueNo = ValueList.size();
3909 BasicBlock *CurBB = nullptr;
3910 unsigned CurBBNo = 0;
3911
3912 DebugLoc LastLoc;
3913 auto getLastInstruction = [&]() -> Instruction * {
3914 if (CurBB && !CurBB->empty())
3915 return &CurBB->back();
3916 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3917 !FunctionBBs[CurBBNo - 1]->empty())
3918 return &FunctionBBs[CurBBNo - 1]->back();
3919 return nullptr;
3920 };
3921
3922 std::vector<OperandBundleDef> OperandBundles;
3923
3924 // Read all the records.
3925 SmallVector<uint64_t, 64> Record;
3926
3927 while (true) {
3928 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3929 if (!MaybeEntry)
3930 return MaybeEntry.takeError();
3931 llvm::BitstreamEntry Entry = MaybeEntry.get();
3932
3933 switch (Entry.Kind) {
3934 case BitstreamEntry::Error:
3935 return error("Malformed block");
3936 case BitstreamEntry::EndBlock:
3937 goto OutOfRecordLoop;
3938
3939 case BitstreamEntry::SubBlock:
3940 switch (Entry.ID) {
3941 default: // Skip unknown content.
3942 if (Error Err = Stream.SkipBlock())
3943 return Err;
3944 break;
3945 case bitc::CONSTANTS_BLOCK_ID:
3946 if (Error Err = parseConstants())
3947 return Err;
3948 NextValueNo = ValueList.size();
3949 break;
3950 case bitc::VALUE_SYMTAB_BLOCK_ID:
3951 if (Error Err = parseValueSymbolTable())
3952 return Err;
3953 break;
3954 case bitc::METADATA_ATTACHMENT_ID:
3955 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3956 return Err;
3957 break;
3958 case bitc::METADATA_BLOCK_ID:
3959 assert(DeferredMetadataInfo.empty() &&
3960 "Must read all module-level metadata before function-level");
3961 if (Error Err = MDLoader->parseFunctionMetadata())
3962 return Err;
3963 break;
3964 case bitc::USELIST_BLOCK_ID:
3965 if (Error Err = parseUseLists())
3966 return Err;
3967 break;
3968 }
3969 continue;
3970
3971 case BitstreamEntry::Record:
3972 // The interesting case.
3973 break;
3974 }
3975
3976 // Read a record.
3977 Record.clear();
3978 Instruction *I = nullptr;
3979 Type *FullTy = nullptr;
3980 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3981 if (!MaybeBitCode)
3982 return MaybeBitCode.takeError();
3983 switch (unsigned BitCode = MaybeBitCode.get()) {
3984 default: // Default behavior: reject
3985 return error("Invalid value");
3986 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
3987 if (Record.empty() || Record[0] == 0)
3988 return error("Invalid record");
3989 // Create all the basic blocks for the function.
3990 FunctionBBs.resize(Record[0]);
3991
3992 // See if anything took the address of blocks in this function.
3993 auto BBFRI = BasicBlockFwdRefs.find(F);
3994 if (BBFRI == BasicBlockFwdRefs.end()) {
3995 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3996 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3997 } else {
3998 auto &BBRefs = BBFRI->second;
3999 // Check for invalid basic block references.
4000 if (BBRefs.size() > FunctionBBs.size())
4001 return error("Invalid ID");
4002 assert(!BBRefs.empty() && "Unexpected empty array");
4003 assert(!BBRefs.front() && "Invalid reference to entry block");
4004 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4005 ++I)
4006 if (I < RE && BBRefs[I]) {
4007 BBRefs[I]->insertInto(F);
4008 FunctionBBs[I] = BBRefs[I];
4009 } else {
4010 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4011 }
4012
4013 // Erase from the table.
4014 BasicBlockFwdRefs.erase(BBFRI);
4015 }
4016
4017 CurBB = FunctionBBs[0];
4018 continue;
4019 }
4020
4021 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
4022 // This record indicates that the last instruction is at the same
4023 // location as the previous instruction with a location.
4024 I = getLastInstruction();
4025
4026 if (!I)
4027 return error("Invalid record");
4028 I->setDebugLoc(LastLoc);
4029 I = nullptr;
4030 continue;
4031
4032 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4033 I = getLastInstruction();
4034 if (!I || Record.size() < 4)
4035 return error("Invalid record");
4036
4037 unsigned Line = Record[0], Col = Record[1];
4038 unsigned ScopeID = Record[2], IAID = Record[3];
4039 bool isImplicitCode = Record.size() == 5 && Record[4];
4040
4041 MDNode *Scope = nullptr, *IA = nullptr;
4042 if (ScopeID) {
4043 Scope = dyn_cast_or_null<MDNode>(
4044 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4045 if (!Scope)
4046 return error("Invalid record");
4047 }
4048 if (IAID) {
4049 IA = dyn_cast_or_null<MDNode>(
4050 MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4051 if (!IA)
4052 return error("Invalid record");
4053 }
4054 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4055 isImplicitCode);
4056 I->setDebugLoc(LastLoc);
4057 I = nullptr;
4058 continue;
4059 }
4060 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
4061 unsigned OpNum = 0;
4062 Value *LHS;
4063 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4064 OpNum+1 > Record.size())
4065 return error("Invalid record");
4066
4067 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4068 if (Opc == -1)
4069 return error("Invalid record");
4070 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4071 InstructionList.push_back(I);
4072 if (OpNum < Record.size()) {
4073 if (isa<FPMathOperator>(I)) {
4074 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4075 if (FMF.any())
4076 I->setFastMathFlags(FMF);
4077 }
4078 }
4079 break;
4080 }
4081 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4082 unsigned OpNum = 0;
4083 Value *LHS, *RHS;
4084 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4085 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4086 OpNum+1 > Record.size())
4087 return error("Invalid record");
4088
4089 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4090 if (Opc == -1)
4091 return error("Invalid record");
4092 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4093 InstructionList.push_back(I);
4094 if (OpNum < Record.size()) {
4095 if (Opc == Instruction::Add ||
4096 Opc == Instruction::Sub ||
4097 Opc == Instruction::Mul ||
4098 Opc == Instruction::Shl) {
4099 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4100 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4101 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4102 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4103 } else if (Opc == Instruction::SDiv ||
4104 Opc == Instruction::UDiv ||
4105 Opc == Instruction::LShr ||
4106 Opc == Instruction::AShr) {
4107 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4108 cast<BinaryOperator>(I)->setIsExact(true);
4109 } else if (isa<FPMathOperator>(I)) {
4110 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4111 if (FMF.any())
4112 I->setFastMathFlags(FMF);
4113 }
4114
4115 }
4116 break;
4117 }
4118 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
4119 unsigned OpNum = 0;
4120 Value *Op;
4121 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4122 OpNum+2 != Record.size())
4123 return error("Invalid record");
4124
4125 FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4126 Type *ResTy = flattenPointerTypes(FullTy);
4127 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4128 if (Opc == -1 || !ResTy)
4129 return error("Invalid record");
4130 Instruction *Temp = nullptr;
4131 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4132 if (Temp) {
4133 InstructionList.push_back(Temp);
4134 assert(CurBB && "No current BB?");
4135 CurBB->getInstList().push_back(Temp);
4136 }
4137 } else {
4138 auto CastOp = (Instruction::CastOps)Opc;
4139 if (!CastInst::castIsValid(CastOp, Op, ResTy))
4140 return error("Invalid cast");
4141 I = CastInst::Create(CastOp, Op, ResTy);
4142 }
4143 InstructionList.push_back(I);
4144 break;
4145 }
4146 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4147 case bitc::FUNC_CODE_INST_GEP_OLD:
4148 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4149 unsigned OpNum = 0;
4150
4151 Type *Ty;
4152 bool InBounds;
4153
4154 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4155 InBounds = Record[OpNum++];
4156 FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4157 Ty = flattenPointerTypes(FullTy);
4158 } else {
4159 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4160 Ty = nullptr;
4161 }
4162
4163 Value *BasePtr;
4164 Type *FullBaseTy = nullptr;
4165 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4166 return error("Invalid record");
4167
4168 if (!Ty) {
4169 std::tie(FullTy, Ty) =
4170 getPointerElementTypes(FullBaseTy->getScalarType());
4171 } else if (!cast<PointerType>(FullBaseTy->getScalarType())
4172 ->isOpaqueOrPointeeTypeMatches(Ty))
4173 return error(
4174 "Explicit gep type does not match pointee type of pointer operand");
4175
4176 SmallVector<Value*, 16> GEPIdx;
4177 while (OpNum != Record.size()) {
4178 Value *Op;
4179 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4180 return error("Invalid record");
4181 GEPIdx.push_back(Op);
4182 }
4183
4184 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4185 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4186
4187 InstructionList.push_back(I);
4188 if (InBounds)
4189 cast<GetElementPtrInst>(I)->setIsInBounds(true);
4190 break;
4191 }
4192
4193 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4194 // EXTRACTVAL: [opty, opval, n x indices]
4195 unsigned OpNum = 0;
4196 Value *Agg;
4197 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4198 return error("Invalid record");
4199
4200 unsigned RecSize = Record.size();
4201 if (OpNum == RecSize)
4202 return error("EXTRACTVAL: Invalid instruction with 0 indices");
4203
4204 SmallVector<unsigned, 4> EXTRACTVALIdx;
4205 for (; OpNum != RecSize; ++OpNum) {
4206 bool IsArray = FullTy->isArrayTy();
4207 bool IsStruct = FullTy->isStructTy();
4208 uint64_t Index = Record[OpNum];
4209
4210 if (!IsStruct && !IsArray)
4211 return error("EXTRACTVAL: Invalid type");
4212 if ((unsigned)Index != Index)
4213 return error("Invalid value");
4214 if (IsStruct && Index >= FullTy->getStructNumElements())
4215 return error("EXTRACTVAL: Invalid struct index");
4216 if (IsArray && Index >= FullTy->getArrayNumElements())
4217 return error("EXTRACTVAL: Invalid array index");
4218 EXTRACTVALIdx.push_back((unsigned)Index);
4219
4220 if (IsStruct)
4221 FullTy = FullTy->getStructElementType(Index);
4222 else
4223 FullTy = FullTy->getArrayElementType();
4224 }
4225
4226 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4227 InstructionList.push_back(I);
4228 break;
4229 }
4230
4231 case bitc::FUNC_CODE_INST_INSERTVAL: {
4232 // INSERTVAL: [opty, opval, opty, opval, n x indices]
4233 unsigned OpNum = 0;
4234 Value *Agg;
4235 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4236 return error("Invalid record");
4237 Value *Val;
4238 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4239 return error("Invalid record");
4240
4241 unsigned RecSize = Record.size();
4242 if (OpNum == RecSize)
4243 return error("INSERTVAL: Invalid instruction with 0 indices");
4244
4245 SmallVector<unsigned, 4> INSERTVALIdx;
4246 Type *CurTy = Agg->getType();
4247 for (; OpNum != RecSize; ++OpNum) {
4248 bool IsArray = CurTy->isArrayTy();
4249 bool IsStruct = CurTy->isStructTy();
4250 uint64_t Index = Record[OpNum];
4251
4252 if (!IsStruct && !IsArray)
4253 return error("INSERTVAL: Invalid type");
4254 if ((unsigned)Index != Index)
4255 return error("Invalid value");
4256 if (IsStruct && Index >= CurTy->getStructNumElements())
4257 return error("INSERTVAL: Invalid struct index");
4258 if (IsArray && Index >= CurTy->getArrayNumElements())
4259 return error("INSERTVAL: Invalid array index");
4260
4261 INSERTVALIdx.push_back((unsigned)Index);
4262 if (IsStruct)
4263 CurTy = CurTy->getStructElementType(Index);
4264 else
4265 CurTy = CurTy->getArrayElementType();
4266 }
4267
4268 if (CurTy != Val->getType())
4269 return error("Inserted value type doesn't match aggregate type");
4270
4271 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4272 InstructionList.push_back(I);
4273 break;
4274 }
4275
4276 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4277 // obsolete form of select
4278 // handles select i1 ... in old bitcode
4279 unsigned OpNum = 0;
4280 Value *TrueVal, *FalseVal, *Cond;
4281 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4282 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4283 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4284 return error("Invalid record");
4285
4286 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4287 InstructionList.push_back(I);
4288 break;
4289 }
4290
4291 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4292 // new form of select
4293 // handles select i1 or select [N x i1]
4294 unsigned OpNum = 0;
4295 Value *TrueVal, *FalseVal, *Cond;
4296 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4297 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4298 getValueTypePair(Record, OpNum, NextValueNo, Cond))
4299 return error("Invalid record");
4300
4301 // select condition can be either i1 or [N x i1]
4302 if (VectorType* vector_type =
4303 dyn_cast<VectorType>(Cond->getType())) {
4304 // expect <n x i1>
4305 if (vector_type->getElementType() != Type::getInt1Ty(Context))
4306 return error("Invalid type for value");
4307 } else {
4308 // expect i1
4309 if (Cond->getType() != Type::getInt1Ty(Context))
4310 return error("Invalid type for value");
4311 }
4312
4313 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4314 InstructionList.push_back(I);
4315 if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4316 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4317 if (FMF.any())
4318 I->setFastMathFlags(FMF);
4319 }
4320 break;
4321 }
4322
4323 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4324 unsigned OpNum = 0;
4325 Value *Vec, *Idx;
4326 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4327 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4328 return error("Invalid record");
4329 if (!Vec->getType()->isVectorTy())
4330 return error("Invalid type for value");
4331 I = ExtractElementInst::Create(Vec, Idx);
4332 FullTy = cast<VectorType>(FullTy)->getElementType();
4333 InstructionList.push_back(I);
4334 break;
4335 }
4336
4337 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4338 unsigned OpNum = 0;
4339 Value *Vec, *Elt, *Idx;
4340 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4341 return error("Invalid record");
4342 if (!Vec->getType()->isVectorTy())
4343 return error("Invalid type for value");
4344 if (popValue(Record, OpNum, NextValueNo,
4345 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4346 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4347 return error("Invalid record");
4348 I = InsertElementInst::Create(Vec, Elt, Idx);
4349 InstructionList.push_back(I);
4350 break;
4351 }
4352
4353 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4354 unsigned OpNum = 0;
4355 Value *Vec1, *Vec2, *Mask;
4356 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4357 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4358 return error("Invalid record");
4359
4360 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4361 return error("Invalid record");
4362 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4363 return error("Invalid type for value");
4364
4365 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4366 FullTy =
4367 VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4368 cast<VectorType>(Mask->getType())->getElementCount());
4369 InstructionList.push_back(I);
4370 break;
4371 }
4372
4373 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
4374 // Old form of ICmp/FCmp returning bool
4375 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4376 // both legal on vectors but had different behaviour.
4377 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4378 // FCmp/ICmp returning bool or vector of bool
4379
4380 unsigned OpNum = 0;
4381 Value *LHS, *RHS;
4382 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4383 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4384 return error("Invalid record");
4385
4386 if (OpNum >= Record.size())
4387 return error(
4388 "Invalid record: operand number exceeded available operands");
4389
4390 unsigned PredVal = Record[OpNum];
4391 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4392 FastMathFlags FMF;
4393 if (IsFP && Record.size() > OpNum+1)
4394 FMF = getDecodedFastMathFlags(Record[++OpNum]);
4395
4396 if (OpNum+1 != Record.size())
4397 return error("Invalid record");
4398
4399 if (LHS->getType()->isFPOrFPVectorTy())
4400 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4401 else
4402 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4403
4404 if (FMF.any())
4405 I->setFastMathFlags(FMF);
4406 InstructionList.push_back(I);
4407 break;
4408 }
4409
4410 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4411 {
4412 unsigned Size = Record.size();
4413 if (Size == 0) {
4414 I = ReturnInst::Create(Context);
4415 InstructionList.push_back(I);
4416 break;
4417 }
4418
4419 unsigned OpNum = 0;
4420 Value *Op = nullptr;
4421 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4422 return error("Invalid record");
4423 if (OpNum != Record.size())
4424 return error("Invalid record");
4425
4426 I = ReturnInst::Create(Context, Op);
4427 InstructionList.push_back(I);
4428 break;
4429 }
4430 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4431 if (Record.size() != 1 && Record.size() != 3)
4432 return error("Invalid record");
4433 BasicBlock *TrueDest = getBasicBlock(Record[0]);
4434 if (!TrueDest)
4435 return error("Invalid record");
4436
4437 if (Record.size() == 1) {
4438 I = BranchInst::Create(TrueDest);
4439 InstructionList.push_back(I);
4440 }
4441 else {
4442 BasicBlock *FalseDest = getBasicBlock(Record[1]);
4443 Value *Cond = getValue(Record, 2, NextValueNo,
4444 Type::getInt1Ty(Context));
4445 if (!FalseDest || !Cond)
4446 return error("Invalid record");
4447 I = BranchInst::Create(TrueDest, FalseDest, Cond);
4448 InstructionList.push_back(I);
4449 }
4450 break;
4451 }
4452 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4453 if (Record.size() != 1 && Record.size() != 2)
4454 return error("Invalid record");
4455 unsigned Idx = 0;
4456 Value *CleanupPad =
4457 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4458 if (!CleanupPad)
4459 return error("Invalid record");
4460 BasicBlock *UnwindDest = nullptr;
4461 if (Record.size() == 2) {
4462 UnwindDest = getBasicBlock(Record[Idx++]);
4463 if (!UnwindDest)
4464 return error("Invalid record");
4465 }
4466
4467 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4468 InstructionList.push_back(I);
4469 break;
4470 }
4471 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4472 if (Record.size() != 2)
4473 return error("Invalid record");
4474 unsigned Idx = 0;
4475 Value *CatchPad =
4476 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4477 if (!CatchPad)
4478 return error("Invalid record");
4479 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4480 if (!BB)
4481 return error("Invalid record");
4482
4483 I = CatchReturnInst::Create(CatchPad, BB);
4484 InstructionList.push_back(I);
4485 break;
4486 }
4487 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4488 // We must have, at minimum, the outer scope and the number of arguments.
4489 if (Record.size() < 2)
4490 return error("Invalid record");
4491
4492 unsigned Idx = 0;
4493
4494 Value *ParentPad =
4495 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4496
4497 unsigned NumHandlers = Record[Idx++];
4498
4499 SmallVector<BasicBlock *, 2> Handlers;
4500 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4501 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4502 if (!BB)
4503 return error("Invalid record");
4504 Handlers.push_back(BB);
4505 }
4506
4507 BasicBlock *UnwindDest = nullptr;
4508 if (Idx + 1 == Record.size()) {
4509 UnwindDest = getBasicBlock(Record[Idx++]);
4510 if (!UnwindDest)
4511 return error("Invalid record");
4512 }
4513
4514 if (Record.size() != Idx)
4515 return error("Invalid record");
4516
4517 auto *CatchSwitch =
4518 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4519 for (BasicBlock *Handler : Handlers)
4520 CatchSwitch->addHandler(Handler);
4521 I = CatchSwitch;
4522 InstructionList.push_back(I);
4523 break;
4524 }
4525 case bitc::FUNC_CODE_INST_CATCHPAD:
4526 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4527 // We must have, at minimum, the outer scope and the number of arguments.
4528 if (Record.size() < 2)
4529 return error("Invalid record");
4530
4531 unsigned Idx = 0;
4532
4533 Value *ParentPad =
4534 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4535
4536 unsigned NumArgOperands = Record[Idx++];
4537
4538 SmallVector<Value *, 2> Args;
4539 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4540 Value *Val;
4541 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4542 return error("Invalid record");
4543 Args.push_back(Val);
4544 }
4545
4546 if (Record.size() != Idx)
4547 return error("Invalid record");
4548
4549 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4550 I = CleanupPadInst::Create(ParentPad, Args);
4551 else
4552 I = CatchPadInst::Create(ParentPad, Args);
4553 InstructionList.push_back(I);
4554 break;
4555 }
4556 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4557 // Check magic
4558 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4559 // "New" SwitchInst format with case ranges. The changes to write this
4560 // format were reverted but we still recognize bitcode that uses it.
4561 // Hopefully someday we will have support for case ranges and can use
4562 // this format again.
4563
4564 Type *OpTy = getTypeByID(Record[1]);
4565 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4566
4567 Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4568 BasicBlock *Default = getBasicBlock(Record[3]);
4569 if (!OpTy || !Cond || !Default)
4570 return error("Invalid record");
4571
4572 unsigned NumCases = Record[4];
4573
4574 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4575 InstructionList.push_back(SI);
4576
4577 unsigned CurIdx = 5;
4578 for (unsigned i = 0; i != NumCases; ++i) {
4579 SmallVector<ConstantInt*, 1> CaseVals;
4580 unsigned NumItems = Record[CurIdx++];
4581 for (unsigned ci = 0; ci != NumItems; ++ci) {
4582 bool isSingleNumber = Record[CurIdx++];
4583
4584 APInt Low;
4585 unsigned ActiveWords = 1;
4586 if (ValueBitWidth > 64)
4587 ActiveWords = Record[CurIdx++];
4588 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4589 ValueBitWidth);
4590 CurIdx += ActiveWords;
4591
4592 if (!isSingleNumber) {
4593 ActiveWords = 1;
4594 if (ValueBitWidth > 64)
4595 ActiveWords = Record[CurIdx++];
4596 APInt High = readWideAPInt(
4597 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4598 CurIdx += ActiveWords;
4599
4600 // FIXME: It is not clear whether values in the range should be
4601 // compared as signed or unsigned values. The partially
4602 // implemented changes that used this format in the past used
4603 // unsigned comparisons.
4604 for ( ; Low.ule(High); ++Low)
4605 CaseVals.push_back(ConstantInt::get(Context, Low));
4606 } else
4607 CaseVals.push_back(ConstantInt::get(Context, Low));
4608 }
4609 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4610 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4611 cve = CaseVals.end(); cvi != cve; ++cvi)
4612 SI->addCase(*cvi, DestBB);
4613 }
4614 I = SI;
4615 break;
4616 }
4617
4618 // Old SwitchInst format without case ranges.
4619
4620 if (Record.size() < 3 || (Record.size() & 1) == 0)
4621 return error("Invalid record");
4622 Type *OpTy = getTypeByID(Record[0]);
4623 Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4624 BasicBlock *Default = getBasicBlock(Record[2]);
4625 if (!OpTy || !Cond || !Default)
4626 return error("Invalid record");
4627 unsigned NumCases = (Record.size()-3)/2;
4628 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4629 InstructionList.push_back(SI);
4630 for (unsigned i = 0, e = NumCases; i != e; ++i) {
4631 ConstantInt *CaseVal =
4632 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4633 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4634 if (!CaseVal || !DestBB) {
4635 delete SI;
4636 return error("Invalid record");
4637 }
4638 SI->addCase(CaseVal, DestBB);
4639 }
4640 I = SI;
4641 break;
4642 }
4643 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4644 if (Record.size() < 2)
4645 return error("Invalid record");
4646 Type *OpTy = getTypeByID(Record[0]);
4647 Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4648 if (!OpTy || !Address)
4649 return error("Invalid record");
4650 unsigned NumDests = Record.size()-2;
4651 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4652 InstructionList.push_back(IBI);
4653 for (unsigned i = 0, e = NumDests; i != e; ++i) {
4654 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4655 IBI->addDestination(DestBB);
4656 } else {
4657 delete IBI;
4658 return error("Invalid record");
4659 }
4660 }
4661 I = IBI;
4662 break;
4663 }
4664
4665 case bitc::FUNC_CODE_INST_INVOKE: {
4666 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4667 if (Record.size() < 4)
4668 return error("Invalid record");
4669 unsigned OpNum = 0;
4670 AttributeList PAL = getAttributes(Record[OpNum++]);
4671 unsigned CCInfo = Record[OpNum++];
4672 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4673 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4674
4675 FunctionType *FTy = nullptr;
4676 FunctionType *FullFTy = nullptr;
4677 if ((CCInfo >> 13) & 1) {
4678 FullFTy =
4679 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4680 if (!FullFTy)
4681 return error("Explicit invoke type is not a function type");
4682 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4683 }
4684
4685 Value *Callee;
4686 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4687 return error("Invalid record");
4688
4689 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4690 if (!CalleeTy)
4691 return error("Callee is not a pointer");
4692 if (!FTy) {
4693 FullFTy =
4694 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4695 if (!FullFTy)
4696 return error("Callee is not of pointer to function type");
4697 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4698 } else if (getPointerElementFlatType(FullTy) != FTy)
4699 return error("Explicit invoke type does not match pointee type of "
4700 "callee operand");
4701 if (Record.size() < FTy->getNumParams() + OpNum)
4702 return error("Insufficient operands to call");
4703
4704 SmallVector<Value*, 16> Ops;
4705 SmallVector<Type *, 16> ArgsFullTys;
4706 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4707 Ops.push_back(getValue(Record, OpNum, NextValueNo,
4708 FTy->getParamType(i)));
4709 ArgsFullTys.push_back(FullFTy->getParamType(i));
4710 if (!Ops.back())
4711 return error("Invalid record");
4712 }
4713
4714 if (!FTy->isVarArg()) {
4715 if (Record.size() != OpNum)
4716 return error("Invalid record");
4717 } else {
4718 // Read type/value pairs for varargs params.
4719 while (OpNum != Record.size()) {
4720 Value *Op;
4721 Type *FullTy;
4722 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4723 return error("Invalid record");
4724 Ops.push_back(Op);
4725 ArgsFullTys.push_back(FullTy);
4726 }
4727 }
4728
4729 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4730 OperandBundles);
4731 FullTy = FullFTy->getReturnType();
4732 OperandBundles.clear();
4733 InstructionList.push_back(I);
4734 cast<InvokeInst>(I)->setCallingConv(
4735 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4736 cast<InvokeInst>(I)->setAttributes(PAL);
4737 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
4738
4739 break;
4740 }
4741 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4742 unsigned Idx = 0;
4743 Value *Val = nullptr;
4744 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4745 return error("Invalid record");
4746 I = ResumeInst::Create(Val);
4747 InstructionList.push_back(I);
4748 break;
4749 }
4750 case bitc::FUNC_CODE_INST_CALLBR: {
4751 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4752 unsigned OpNum = 0;
4753 AttributeList PAL = getAttributes(Record[OpNum++]);
4754 unsigned CCInfo = Record[OpNum++];
4755
4756 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4757 unsigned NumIndirectDests = Record[OpNum++];
4758 SmallVector<BasicBlock *, 16> IndirectDests;
4759 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4760 IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4761
4762 FunctionType *FTy = nullptr;
4763 FunctionType *FullFTy = nullptr;
4764 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4765 FullFTy =
4766 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4767 if (!FullFTy)
4768 return error("Explicit call type is not a function type");
4769 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4770 }
4771
4772 Value *Callee;
4773 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4774 return error("Invalid record");
4775
4776 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4777 if (!OpTy)
4778 return error("Callee is not a pointer type");
4779 if (!FTy) {
4780 FullFTy =
4781 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4782 if (!FullFTy)
4783 return error("Callee is not of pointer to function type");
4784 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4785 } else if (getPointerElementFlatType(FullTy) != FTy)
4786 return error("Explicit call type does not match pointee type of "
4787 "callee operand");
4788 if (Record.size() < FTy->getNumParams() + OpNum)
4789 return error("Insufficient operands to call");
4790
4791 SmallVector<Value*, 16> Args;
4792 // Read the fixed params.
4793 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4794 if (FTy->getParamType(i)->isLabelTy())
4795 Args.push_back(getBasicBlock(Record[OpNum]));
4796 else
4797 Args.push_back(getValue(Record, OpNum, NextValueNo,
4798 FTy->getParamType(i)));
4799 if (!Args.back())
4800 return error("Invalid record");
4801 }
4802
4803 // Read type/value pairs for varargs params.
4804 if (!FTy->isVarArg()) {
4805 if (OpNum != Record.size())
4806 return error("Invalid record");
4807 } else {
4808 while (OpNum != Record.size()) {
4809 Value *Op;
4810 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4811 return error("Invalid record");
4812 Args.push_back(Op);
4813 }
4814 }
4815
4816 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4817 OperandBundles);
4818 FullTy = FullFTy->getReturnType();
4819 OperandBundles.clear();
4820 InstructionList.push_back(I);
4821 cast<CallBrInst>(I)->setCallingConv(
4822 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4823 cast<CallBrInst>(I)->setAttributes(PAL);
4824 break;
4825 }
4826 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4827 I = new UnreachableInst(Context);
4828 InstructionList.push_back(I);
4829 break;
4830 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4831 if (Record.empty())
4832 return error("Invalid record");
4833 // The first record specifies the type.
4834 FullTy = getFullyStructuredTypeByID(Record[0]);
4835 Type *Ty = flattenPointerTypes(FullTy);
4836 if (!Ty)
4837 return error("Invalid record");
4838
4839 // Phi arguments are pairs of records of [value, basic block].
4840 // There is an optional final record for fast-math-flags if this phi has a
4841 // floating-point type.
4842 size_t NumArgs = (Record.size() - 1) / 2;
4843 PHINode *PN = PHINode::Create(Ty, NumArgs);
4844 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4845 return error("Invalid record");
4846 InstructionList.push_back(PN);
4847
4848 for (unsigned i = 0; i != NumArgs; i++) {
4849 Value *V;
4850 // With the new function encoding, it is possible that operands have
4851 // negative IDs (for forward references). Use a signed VBR
4852 // representation to keep the encoding small.
4853 if (UseRelativeIDs)
4854 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4855 else
4856 V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4857 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4858 if (!V || !BB)
4859 return error("Invalid record");
4860 PN->addIncoming(V, BB);
4861 }
4862 I = PN;
4863
4864 // If there are an even number of records, the final record must be FMF.
4865 if (Record.size() % 2 == 0) {
4866 assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4867 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4868 if (FMF.any())
4869 I->setFastMathFlags(FMF);
4870 }
4871
4872 break;
4873 }
4874
4875 case bitc::FUNC_CODE_INST_LANDINGPAD:
4876 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4877 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4878 unsigned Idx = 0;
4879 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4880 if (Record.size() < 3)
4881 return error("Invalid record");
4882 } else {
4883 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4884 if (Record.size() < 4)
4885 return error("Invalid record");
4886 }
4887 FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4888 Type *Ty = flattenPointerTypes(FullTy);
4889 if (!Ty)
4890 return error("Invalid record");
4891 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4892 Value *PersFn = nullptr;
4893 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4894 return error("Invalid record");
4895
4896 if (!F->hasPersonalityFn())
4897 F->setPersonalityFn(cast<Constant>(PersFn));
4898 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4899 return error("Personality function mismatch");
4900 }
4901
4902 bool IsCleanup = !!Record[Idx++];
4903 unsigned NumClauses = Record[Idx++];
4904 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4905 LP->setCleanup(IsCleanup);
4906 for (unsigned J = 0; J != NumClauses; ++J) {
4907 LandingPadInst::ClauseType CT =
4908 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4909 Value *Val;
4910
4911 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4912 delete LP;
4913 return error("Invalid record");
4914 }
4915
4916 assert((CT != LandingPadInst::Catch ||
4917 !isa<ArrayType>(Val->getType())) &&
4918 "Catch clause has a invalid type!");
4919 assert((CT != LandingPadInst::Filter ||
4920 isa<ArrayType>(Val->getType())) &&
4921 "Filter clause has invalid type!");
4922 LP->addClause(cast<Constant>(Val));
4923 }
4924
4925 I = LP;
4926 InstructionList.push_back(I);
4927 break;
4928 }
4929
4930 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4931 if (Record.size() != 4)
4932 return error("Invalid record");
4933 using APV = AllocaPackedValues;
4934 const uint64_t Rec = Record[3];
4935 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4936 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4937 FullTy = getFullyStructuredTypeByID(Record[0]);
4938 Type *Ty = flattenPointerTypes(FullTy);
4939 if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4940 auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4941 if (!PTy)
4942 return error("Old-style alloca with a non-pointer type");
4943 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4944 }
4945 Type *OpTy = getTypeByID(Record[1]);
4946 Value *Size = getFnValueByID(Record[2], OpTy);
4947 MaybeAlign Align;
4948 if (Error Err =
4949 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4950 return Err;
4951 }
4952 if (!Ty || !Size)
4953 return error("Invalid record");
4954
4955 // FIXME: Make this an optional field.
4956 const DataLayout &DL = TheModule->getDataLayout();
4957 unsigned AS = DL.getAllocaAddrSpace();
4958
4959 SmallPtrSet<Type *, 4> Visited;
4960 if (!Align && !Ty->isSized(&Visited))
4961 return error("alloca of unsized type");
4962 if (!Align)
4963 Align = DL.getPrefTypeAlign(Ty);
4964
4965 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4966 AI->setUsedWithInAlloca(InAlloca);
4967 AI->setSwiftError(SwiftError);
4968 I = AI;
4969 FullTy = PointerType::get(FullTy, AS);
4970 InstructionList.push_back(I);
4971 break;
4972 }
4973 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4974 unsigned OpNum = 0;
4975 Value *Op;
4976 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4977 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4978 return error("Invalid record");
4979
4980 if (!isa<PointerType>(Op->getType()))
4981 return error("Load operand is not a pointer type");
4982
4983 Type *Ty = nullptr;
4984 if (OpNum + 3 == Record.size()) {
4985 FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4986 Ty = flattenPointerTypes(FullTy);
4987 } else
4988 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4989
4990 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4991 return Err;
4992
4993 MaybeAlign Align;
4994 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4995 return Err;
4996 SmallPtrSet<Type *, 4> Visited;
4997 if (!Align && !Ty->isSized(&Visited))
4998 return error("load of unsized type");
4999 if (!Align)
5000 Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5001 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5002 InstructionList.push_back(I);
5003 break;
5004 }
5005 case bitc::FUNC_CODE_INST_LOADATOMIC: {
5006 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5007 unsigned OpNum = 0;
5008 Value *Op;
5009 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
5010 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5011 return error("Invalid record");
5012
5013 if (!isa<PointerType>(Op->getType()))
5014 return error("Load operand is not a pointer type");
5015
5016 Type *Ty = nullptr;
5017 if (OpNum + 5 == Record.size()) {
5018 FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
5019 Ty = flattenPointerTypes(FullTy);
5020 } else
5021 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
5022
5023 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5024 return Err;
5025
5026 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5027 if (Ordering == AtomicOrdering::NotAtomic ||
5028 Ordering == AtomicOrdering::Release ||
5029 Ordering == AtomicOrdering::AcquireRelease)
5030 return error("Invalid record");
5031 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5032 return error("Invalid record");
5033 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5034
5035 MaybeAlign Align;
5036 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5037 return Err;
5038 if (!Align)
5039 return error("Alignment missing from atomic load");
5040 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5041 InstructionList.push_back(I);
5042 break;
5043 }
5044 case bitc::FUNC_CODE_INST_STORE:
5045 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5046 unsigned OpNum = 0;
5047 Value *Val, *Ptr;
5048 Type *FullTy;
5049 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5050 (BitCode == bitc::FUNC_CODE_INST_STORE
5051 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5052 : popValue(Record, OpNum, NextValueNo,
5053 getPointerElementFlatType(FullTy), Val)) ||
5054 OpNum + 2 != Record.size())
5055 return error("Invalid record");
5056
5057 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5058 return Err;
5059 MaybeAlign Align;
5060 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5061 return Err;
5062 SmallPtrSet<Type *, 4> Visited;
5063 if (!Align && !Val->getType()->isSized(&Visited))
5064 return error("store of unsized type");
5065 if (!Align)
5066 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5067 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5068 InstructionList.push_back(I);
5069 break;
5070 }
5071 case bitc::FUNC_CODE_INST_STOREATOMIC:
5072 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5073 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5074 unsigned OpNum = 0;
5075 Value *Val, *Ptr;
5076 Type *FullTy;
5077 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5078 !isa<PointerType>(Ptr->getType()) ||
5079 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5080 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5081 : popValue(Record, OpNum, NextValueNo,
5082 getPointerElementFlatType(FullTy), Val)) ||
5083 OpNum + 4 != Record.size())
5084 return error("Invalid record");
5085
5086 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5087 return Err;
5088 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5089 if (Ordering == AtomicOrdering::NotAtomic ||
5090 Ordering == AtomicOrdering::Acquire ||
5091 Ordering == AtomicOrdering::AcquireRelease)
5092 return error("Invalid record");
5093 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5094 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5095 return error("Invalid record");
5096
5097 MaybeAlign Align;
5098 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5099 return Err;
5100 if (!Align)
5101 return error("Alignment missing from atomic store");
5102 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5103 InstructionList.push_back(I);
5104 break;
5105 }
5106 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5107 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5108 // failure_ordering?, weak?]
5109 const size_t NumRecords = Record.size();
5110 unsigned OpNum = 0;
5111 Value *Ptr = nullptr;
5112 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5113 return error("Invalid record");
5114
5115 if (!isa<PointerType>(Ptr->getType()))
5116 return error("Cmpxchg operand is not a pointer type");
5117
5118 Value *Cmp = nullptr;
5119 if (popValue(Record, OpNum, NextValueNo,
5120 getPointerElementFlatType(FullTy), Cmp))
5121 return error("Invalid record");
5122
5123 FullTy = cast<PointerType>(FullTy)->getElementType();
5124
5125 Value *New = nullptr;
5126 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5127 NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5128 return error("Invalid record");
5129
5130 const AtomicOrdering SuccessOrdering =
5131 getDecodedOrdering(Record[OpNum + 1]);
5132 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5133 SuccessOrdering == AtomicOrdering::Unordered)
5134 return error("Invalid record");
5135
5136 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5137
5138 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5139 return Err;
5140
5141 const AtomicOrdering FailureOrdering =
5142 NumRecords < 7
5143 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5144 : getDecodedOrdering(Record[OpNum + 3]);
5145
5146 if (FailureOrdering == AtomicOrdering::NotAtomic ||
5147 FailureOrdering == AtomicOrdering::Unordered)
5148 return error("Invalid record");
5149
5150 const Align Alignment(
5151 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5152
5153 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5154 FailureOrdering, SSID);
5155 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5156 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5157
5158 if (NumRecords < 8) {
5159 // Before weak cmpxchgs existed, the instruction simply returned the
5160 // value loaded from memory, so bitcode files from that era will be
5161 // expecting the first component of a modern cmpxchg.
5162 CurBB->getInstList().push_back(I);
5163 I = ExtractValueInst::Create(I, 0);
5164 FullTy = cast<StructType>(FullTy)->getElementType(0);
5165 } else {
5166 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5167 }
5168
5169 InstructionList.push_back(I);
5170 break;
5171 }
5172 case bitc::FUNC_CODE_INST_CMPXCHG: {
5173 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5174 // failure_ordering, weak, align?]
5175 const size_t NumRecords = Record.size();
5176 unsigned OpNum = 0;
5177 Value *Ptr = nullptr;
5178 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5179 return error("Invalid record");
5180
5181 if (!isa<PointerType>(Ptr->getType()))
5182 return error("Cmpxchg operand is not a pointer type");
5183
5184 Value *Cmp = nullptr;
5185 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5186 return error("Invalid record");
5187
5188 Value *Val = nullptr;
5189 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5190 return error("Invalid record");
5191
5192 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5193 return error("Invalid record");
5194
5195 const bool IsVol = Record[OpNum];
5196
5197 const AtomicOrdering SuccessOrdering =
5198 getDecodedOrdering(Record[OpNum + 1]);
5199 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5200 return error("Invalid cmpxchg success ordering");
5201
5202 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5203
5204 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5205 return Err;
5206
5207 const AtomicOrdering FailureOrdering =
5208 getDecodedOrdering(Record[OpNum + 3]);
5209 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5210 return error("Invalid cmpxchg failure ordering");
5211
5212 const bool IsWeak = Record[OpNum + 4];
5213
5214 MaybeAlign Alignment;
5215
5216 if (NumRecords == (OpNum + 6)) {
5217 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5218 return Err;
5219 }
5220 if (!Alignment)
5221 Alignment =
5222 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5223
5224 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5225 FailureOrdering, SSID);
5226 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5227 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5228 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5229
5230 InstructionList.push_back(I);
5231 break;
5232 }
5233 case bitc::FUNC_CODE_INST_ATOMICRMW: {
5234 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid, align?]
5235 const size_t NumRecords = Record.size();
5236 unsigned OpNum = 0;
5237
5238 Value *Ptr = nullptr;
5239 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5240 return error("Invalid record");
5241
5242 if (!isa<PointerType>(Ptr->getType()))
5243 return error("Invalid record");
5244
5245 Value *Val = nullptr;
5246 if (popValue(Record, OpNum, NextValueNo, nullptr, Val))
5247 return error("Invalid record");
5248
5249 if (!cast<PointerType>(Ptr->getType())
5250 ->isOpaqueOrPointeeTypeMatches(Val->getType()))
5251 return error("Invalid record");
5252
5253 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5254 return error("Invalid record");
5255
5256 const AtomicRMWInst::BinOp Operation =
5257 getDecodedRMWOperation(Record[OpNum]);
5258 if (Operation < AtomicRMWInst::FIRST_BINOP ||
5259 Operation > AtomicRMWInst::LAST_BINOP)
5260 return error("Invalid record");
5261
5262 const bool IsVol = Record[OpNum + 1];
5263
5264 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5265 if (Ordering == AtomicOrdering::NotAtomic ||
5266 Ordering == AtomicOrdering::Unordered)
5267 return error("Invalid record");
5268
5269 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5270
5271 MaybeAlign Alignment;
5272
5273 if (NumRecords == (OpNum + 5)) {
5274 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5275 return Err;
5276 }
5277
5278 if (!Alignment)
5279 Alignment =
5280 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5281
5282 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5283 cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5284
5285 InstructionList.push_back(I);
5286 break;
5287 }
5288 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5289 if (2 != Record.size())
5290 return error("Invalid record");
5291 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5292 if (Ordering == AtomicOrdering::NotAtomic ||
5293 Ordering == AtomicOrdering::Unordered ||
5294 Ordering == AtomicOrdering::Monotonic)
5295 return error("Invalid record");
5296 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5297 I = new FenceInst(Context, Ordering, SSID);
5298 InstructionList.push_back(I);
5299 break;
5300 }
5301 case bitc::FUNC_CODE_INST_CALL: {
5302 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5303 if (Record.size() < 3)
5304 return error("Invalid record");
5305
5306 unsigned OpNum = 0;
5307 AttributeList PAL = getAttributes(Record[OpNum++]);
5308 unsigned CCInfo = Record[OpNum++];
5309
5310 FastMathFlags FMF;
5311 if ((CCInfo >> bitc::CALL_FMF) & 1) {
5312 FMF = getDecodedFastMathFlags(Record[OpNum++]);
5313 if (!FMF.any())
5314 return error("Fast math flags indicator set for call with no FMF");
5315 }
5316
5317 FunctionType *FTy = nullptr;
5318 FunctionType *FullFTy = nullptr;
5319 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5320 FullFTy =
5321 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5322 if (!FullFTy)
5323 return error("Explicit call type is not a function type");
5324 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5325 }
5326
5327 Value *Callee;
5328 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5329 return error("Invalid record");
5330
5331 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5332 if (!OpTy)
5333 return error("Callee is not a pointer type");
5334 if (!FTy) {
5335 FullFTy =
5336 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5337 if (!FullFTy)
5338 return error("Callee is not of pointer to function type");
5339 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5340 } else if (getPointerElementFlatType(FullTy) != FTy)
5341 return error("Explicit call type does not match pointee type of "
5342 "callee operand");
5343 if (Record.size() < FTy->getNumParams() + OpNum)
5344 return error("Insufficient operands to call");
5345
5346 SmallVector<Value*, 16> Args;
5347 SmallVector<Type*, 16> ArgsFullTys;
5348 // Read the fixed params.
5349 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5350 if (FTy->getParamType(i)->isLabelTy())
5351 Args.push_back(getBasicBlock(Record[OpNum]));
5352 else
5353 Args.push_back(getValue(Record, OpNum, NextValueNo,
5354 FTy->getParamType(i)));
5355 ArgsFullTys.push_back(FullFTy->getParamType(i));
5356 if (!Args.back())
5357 return error("Invalid record");
5358 }
5359
5360 // Read type/value pairs for varargs params.
5361 if (!FTy->isVarArg()) {
5362 if (OpNum != Record.size())
5363 return error("Invalid record");
5364 } else {
5365 while (OpNum != Record.size()) {
5366 Value *Op;
5367 Type *FullTy;
5368 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5369 return error("Invalid record");
5370 Args.push_back(Op);
5371 ArgsFullTys.push_back(FullTy);
5372 }
5373 }
5374
5375 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5376 FullTy = FullFTy->getReturnType();
5377 OperandBundles.clear();
5378 InstructionList.push_back(I);
5379 cast<CallInst>(I)->setCallingConv(
5380 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5381 CallInst::TailCallKind TCK = CallInst::TCK_None;
5382 if (CCInfo & 1 << bitc::CALL_TAIL)
5383 TCK = CallInst::TCK_Tail;
5384 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5385 TCK = CallInst::TCK_MustTail;
5386 if (CCInfo & (1 << bitc::CALL_NOTAIL))
5387 TCK = CallInst::TCK_NoTail;
5388 cast<CallInst>(I)->setTailCallKind(TCK);
5389 cast<CallInst>(I)->setAttributes(PAL);
5390 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
5391 if (FMF.any()) {
5392 if (!isa<FPMathOperator>(I))
5393 return error("Fast-math-flags specified for call without "
5394 "floating-point scalar or vector return type");
5395 I->setFastMathFlags(FMF);
5396 }
5397 break;
5398 }
5399 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5400 if (Record.size() < 3)
5401 return error("Invalid record");
5402 Type *OpTy = getTypeByID(Record[0]);
5403 Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5404 FullTy = getFullyStructuredTypeByID(Record[2]);
5405 Type *ResTy = flattenPointerTypes(FullTy);
5406 if (!OpTy || !Op || !ResTy)
5407 return error("Invalid record");
5408 I = new VAArgInst(Op, ResTy);
5409 InstructionList.push_back(I);
5410 break;
5411 }
5412
5413 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5414 // A call or an invoke can be optionally prefixed with some variable
5415 // number of operand bundle blocks. These blocks are read into
5416 // OperandBundles and consumed at the next call or invoke instruction.
5417
5418 if (Record.empty() || Record[0] >= BundleTags.size())
5419 return error("Invalid record");
5420
5421 std::vector<Value *> Inputs;
5422
5423 unsigned OpNum = 1;
5424 while (OpNum != Record.size()) {
5425 Value *Op;
5426 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5427 return error("Invalid record");
5428 Inputs.push_back(Op);
5429 }
5430
5431 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5432 continue;
5433 }
5434
5435 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5436 unsigned OpNum = 0;
5437 Value *Op = nullptr;
5438 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5439 return error("Invalid record");
5440 if (OpNum != Record.size())
5441 return error("Invalid record");
5442
5443 I = new FreezeInst(Op);
5444 InstructionList.push_back(I);
5445 break;
5446 }
5447 }
5448
5449 // Add instruction to end of current BB. If there is no current BB, reject
5450 // this file.
5451 if (!CurBB) {
5452 I->deleteValue();
5453 return error("Invalid instruction with no BB");
5454 }
5455 if (!OperandBundles.empty()) {
5456 I->deleteValue();
5457 return error("Operand bundles found with no consumer");
5458 }
5459 CurBB->getInstList().push_back(I);
5460
5461 // If this was a terminator instruction, move to the next block.
5462 if (I->isTerminator()) {
5463 ++CurBBNo;
5464 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5465 }
5466
5467 // Non-void values get registered in the value table for future use.
5468 if (!I->getType()->isVoidTy()) {
5469 if (!FullTy) {
5470 FullTy = I->getType();
5471 assert(
5472 !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5473 !isa<ArrayType>(FullTy) &&
5474 (!isa<VectorType>(FullTy) ||
5475 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5476 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5477 "Structured types must be assigned with corresponding non-opaque "
5478 "pointer type");
5479 }
5480
5481 assert(I->getType() == flattenPointerTypes(FullTy) &&
5482 "Incorrect fully structured type provided for Instruction");
5483 ValueList.assignValue(I, NextValueNo++, FullTy);
5484 }
5485 }
5486
5487 OutOfRecordLoop:
5488
5489 if (!OperandBundles.empty())
5490 return error("Operand bundles found with no consumer");
5491
5492 // Check the function list for unresolved values.
5493 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5494 if (!A->getParent()) {
5495 // We found at least one unresolved value. Nuke them all to avoid leaks.
5496 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5497 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5498 A->replaceAllUsesWith(UndefValue::get(A->getType()));
5499 delete A;
5500 }
5501 }
5502 return error("Never resolved value found in function");
5503 }
5504 }
5505
5506 // Unexpected unresolved metadata about to be dropped.
5507 if (MDLoader->hasFwdRefs())
5508 return error("Invalid function metadata: outgoing forward refs");
5509
5510 // Trim the value list down to the size it was before we parsed this function.
5511 ValueList.shrinkTo(ModuleValueListSize);
5512 MDLoader->shrinkTo(ModuleMDLoaderSize);
5513 std::vector<BasicBlock*>().swap(FunctionBBs);
5514 return Error::success();
5515 }
5516
5517 /// Find the function body in the bitcode stream
findFunctionInStream(Function * F,DenseMap<Function *,uint64_t>::iterator DeferredFunctionInfoIterator)5518 Error BitcodeReader::findFunctionInStream(
5519 Function *F,
5520 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5521 while (DeferredFunctionInfoIterator->second == 0) {
5522 // This is the fallback handling for the old format bitcode that
5523 // didn't contain the function index in the VST, or when we have
5524 // an anonymous function which would not have a VST entry.
5525 // Assert that we have one of those two cases.
5526 assert(VSTOffset == 0 || !F->hasName());
5527 // Parse the next body in the stream and set its position in the
5528 // DeferredFunctionInfo map.
5529 if (Error Err = rememberAndSkipFunctionBodies())
5530 return Err;
5531 }
5532 return Error::success();
5533 }
5534
getDecodedSyncScopeID(unsigned Val)5535 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5536 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5537 return SyncScope::ID(Val);
5538 if (Val >= SSIDs.size())
5539 return SyncScope::System; // Map unknown synchronization scopes to system.
5540 return SSIDs[Val];
5541 }
5542
5543 //===----------------------------------------------------------------------===//
5544 // GVMaterializer implementation
5545 //===----------------------------------------------------------------------===//
5546
materialize(GlobalValue * GV)5547 Error BitcodeReader::materialize(GlobalValue *GV) {
5548 Function *F = dyn_cast<Function>(GV);
5549 // If it's not a function or is already material, ignore the request.
5550 if (!F || !F->isMaterializable())
5551 return Error::success();
5552
5553 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5554 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5555 // If its position is recorded as 0, its body is somewhere in the stream
5556 // but we haven't seen it yet.
5557 if (DFII->second == 0)
5558 if (Error Err = findFunctionInStream(F, DFII))
5559 return Err;
5560
5561 // Materialize metadata before parsing any function bodies.
5562 if (Error Err = materializeMetadata())
5563 return Err;
5564
5565 // Move the bit stream to the saved position of the deferred function body.
5566 if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5567 return JumpFailed;
5568 if (Error Err = parseFunctionBody(F))
5569 return Err;
5570 F->setIsMaterializable(false);
5571
5572 if (StripDebugInfo)
5573 stripDebugInfo(*F);
5574
5575 // Upgrade any old intrinsic calls in the function.
5576 for (auto &I : UpgradedIntrinsics) {
5577 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5578 UI != UE;) {
5579 User *U = *UI;
5580 ++UI;
5581 if (CallInst *CI = dyn_cast<CallInst>(U))
5582 UpgradeIntrinsicCall(CI, I.second);
5583 }
5584 }
5585
5586 // Update calls to the remangled intrinsics
5587 for (auto &I : RemangledIntrinsics)
5588 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5589 UI != UE;)
5590 // Don't expect any other users than call sites
5591 cast<CallBase>(*UI++)->setCalledFunction(I.second);
5592
5593 // Finish fn->subprogram upgrade for materialized functions.
5594 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5595 F->setSubprogram(SP);
5596
5597 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5598 if (!MDLoader->isStrippingTBAA()) {
5599 for (auto &I : instructions(F)) {
5600 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5601 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5602 continue;
5603 MDLoader->setStripTBAA(true);
5604 stripTBAA(F->getParent());
5605 }
5606 }
5607
5608 for (auto &I : instructions(F)) {
5609 // "Upgrade" older incorrect branch weights by dropping them.
5610 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5611 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5612 MDString *MDS = cast<MDString>(MD->getOperand(0));
5613 StringRef ProfName = MDS->getString();
5614 // Check consistency of !prof branch_weights metadata.
5615 if (!ProfName.equals("branch_weights"))
5616 continue;
5617 unsigned ExpectedNumOperands = 0;
5618 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5619 ExpectedNumOperands = BI->getNumSuccessors();
5620 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5621 ExpectedNumOperands = SI->getNumSuccessors();
5622 else if (isa<CallInst>(&I))
5623 ExpectedNumOperands = 1;
5624 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5625 ExpectedNumOperands = IBI->getNumDestinations();
5626 else if (isa<SelectInst>(&I))
5627 ExpectedNumOperands = 2;
5628 else
5629 continue; // ignore and continue.
5630
5631 // If branch weight doesn't match, just strip branch weight.
5632 if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5633 I.setMetadata(LLVMContext::MD_prof, nullptr);
5634 }
5635 }
5636
5637 // Remove incompatible attributes on function calls.
5638 if (auto *CI = dyn_cast<CallBase>(&I)) {
5639 CI->removeAttributes(AttributeList::ReturnIndex,
5640 AttributeFuncs::typeIncompatible(
5641 CI->getFunctionType()->getReturnType()));
5642
5643 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5644 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5645 CI->getArgOperand(ArgNo)->getType()));
5646 }
5647 }
5648
5649 // Look for functions that rely on old function attribute behavior.
5650 UpgradeFunctionAttributes(*F);
5651
5652 // Bring in any functions that this function forward-referenced via
5653 // blockaddresses.
5654 return materializeForwardReferencedFunctions();
5655 }
5656
materializeModule()5657 Error BitcodeReader::materializeModule() {
5658 if (Error Err = materializeMetadata())
5659 return Err;
5660
5661 // Promise to materialize all forward references.
5662 WillMaterializeAllForwardRefs = true;
5663
5664 // Iterate over the module, deserializing any functions that are still on
5665 // disk.
5666 for (Function &F : *TheModule) {
5667 if (Error Err = materialize(&F))
5668 return Err;
5669 }
5670 // At this point, if there are any function bodies, parse the rest of
5671 // the bits in the module past the last function block we have recorded
5672 // through either lazy scanning or the VST.
5673 if (LastFunctionBlockBit || NextUnreadBit)
5674 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5675 ? LastFunctionBlockBit
5676 : NextUnreadBit))
5677 return Err;
5678
5679 // Check that all block address forward references got resolved (as we
5680 // promised above).
5681 if (!BasicBlockFwdRefs.empty())
5682 return error("Never resolved function from blockaddress");
5683
5684 // Upgrade any intrinsic calls that slipped through (should not happen!) and
5685 // delete the old functions to clean up. We can't do this unless the entire
5686 // module is materialized because there could always be another function body
5687 // with calls to the old function.
5688 for (auto &I : UpgradedIntrinsics) {
5689 for (auto *U : I.first->users()) {
5690 if (CallInst *CI = dyn_cast<CallInst>(U))
5691 UpgradeIntrinsicCall(CI, I.second);
5692 }
5693 if (!I.first->use_empty())
5694 I.first->replaceAllUsesWith(I.second);
5695 I.first->eraseFromParent();
5696 }
5697 UpgradedIntrinsics.clear();
5698 // Do the same for remangled intrinsics
5699 for (auto &I : RemangledIntrinsics) {
5700 I.first->replaceAllUsesWith(I.second);
5701 I.first->eraseFromParent();
5702 }
5703 RemangledIntrinsics.clear();
5704
5705 UpgradeDebugInfo(*TheModule);
5706
5707 UpgradeModuleFlags(*TheModule);
5708
5709 UpgradeARCRuntime(*TheModule);
5710
5711 return Error::success();
5712 }
5713
getIdentifiedStructTypes() const5714 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5715 return IdentifiedStructTypes;
5716 }
5717
ModuleSummaryIndexBitcodeReader(BitstreamCursor Cursor,StringRef Strtab,ModuleSummaryIndex & TheIndex,StringRef ModulePath,unsigned ModuleId)5718 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5719 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5720 StringRef ModulePath, unsigned ModuleId)
5721 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5722 ModulePath(ModulePath), ModuleId(ModuleId) {}
5723
addThisModule()5724 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5725 TheIndex.addModule(ModulePath, ModuleId);
5726 }
5727
5728 ModuleSummaryIndex::ModuleInfo *
getThisModule()5729 ModuleSummaryIndexBitcodeReader::getThisModule() {
5730 return TheIndex.getModule(ModulePath);
5731 }
5732
5733 std::pair<ValueInfo, GlobalValue::GUID>
getValueInfoFromValueId(unsigned ValueId)5734 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5735 auto VGI = ValueIdToValueInfoMap[ValueId];
5736 assert(VGI.first);
5737 return VGI;
5738 }
5739
setValueGUID(uint64_t ValueID,StringRef ValueName,GlobalValue::LinkageTypes Linkage,StringRef SourceFileName)5740 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5741 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5742 StringRef SourceFileName) {
5743 std::string GlobalId =
5744 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5745 auto ValueGUID = GlobalValue::getGUID(GlobalId);
5746 auto OriginalNameID = ValueGUID;
5747 if (GlobalValue::isLocalLinkage(Linkage))
5748 OriginalNameID = GlobalValue::getGUID(ValueName);
5749 if (PrintSummaryGUIDs)
5750 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5751 << ValueName << "\n";
5752
5753 // UseStrtab is false for legacy summary formats and value names are
5754 // created on stack. In that case we save the name in a string saver in
5755 // the index so that the value name can be recorded.
5756 ValueIdToValueInfoMap[ValueID] = std::make_pair(
5757 TheIndex.getOrInsertValueInfo(
5758 ValueGUID,
5759 UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5760 OriginalNameID);
5761 }
5762
5763 // Specialized value symbol table parser used when reading module index
5764 // blocks where we don't actually create global values. The parsed information
5765 // is saved in the bitcode reader for use when later parsing summaries.
parseValueSymbolTable(uint64_t Offset,DenseMap<unsigned,GlobalValue::LinkageTypes> & ValueIdToLinkageMap)5766 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5767 uint64_t Offset,
5768 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5769 // With a strtab the VST is not required to parse the summary.
5770 if (UseStrtab)
5771 return Error::success();
5772
5773 assert(Offset > 0 && "Expected non-zero VST offset");
5774 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5775 if (!MaybeCurrentBit)
5776 return MaybeCurrentBit.takeError();
5777 uint64_t CurrentBit = MaybeCurrentBit.get();
5778
5779 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5780 return Err;
5781
5782 SmallVector<uint64_t, 64> Record;
5783
5784 // Read all the records for this value table.
5785 SmallString<128> ValueName;
5786
5787 while (true) {
5788 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5789 if (!MaybeEntry)
5790 return MaybeEntry.takeError();
5791 BitstreamEntry Entry = MaybeEntry.get();
5792
5793 switch (Entry.Kind) {
5794 case BitstreamEntry::SubBlock: // Handled for us already.
5795 case BitstreamEntry::Error:
5796 return error("Malformed block");
5797 case BitstreamEntry::EndBlock:
5798 // Done parsing VST, jump back to wherever we came from.
5799 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5800 return JumpFailed;
5801 return Error::success();
5802 case BitstreamEntry::Record:
5803 // The interesting case.
5804 break;
5805 }
5806
5807 // Read a record.
5808 Record.clear();
5809 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5810 if (!MaybeRecord)
5811 return MaybeRecord.takeError();
5812 switch (MaybeRecord.get()) {
5813 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5814 break;
5815 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5816 if (convertToString(Record, 1, ValueName))
5817 return error("Invalid record");
5818 unsigned ValueID = Record[0];
5819 assert(!SourceFileName.empty());
5820 auto VLI = ValueIdToLinkageMap.find(ValueID);
5821 assert(VLI != ValueIdToLinkageMap.end() &&
5822 "No linkage found for VST entry?");
5823 auto Linkage = VLI->second;
5824 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5825 ValueName.clear();
5826 break;
5827 }
5828 case bitc::VST_CODE_FNENTRY: {
5829 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5830 if (convertToString(Record, 2, ValueName))
5831 return error("Invalid record");
5832 unsigned ValueID = Record[0];
5833 assert(!SourceFileName.empty());
5834 auto VLI = ValueIdToLinkageMap.find(ValueID);
5835 assert(VLI != ValueIdToLinkageMap.end() &&
5836 "No linkage found for VST entry?");
5837 auto Linkage = VLI->second;
5838 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5839 ValueName.clear();
5840 break;
5841 }
5842 case bitc::VST_CODE_COMBINED_ENTRY: {
5843 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5844 unsigned ValueID = Record[0];
5845 GlobalValue::GUID RefGUID = Record[1];
5846 // The "original name", which is the second value of the pair will be
5847 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5848 ValueIdToValueInfoMap[ValueID] =
5849 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5850 break;
5851 }
5852 }
5853 }
5854 }
5855
5856 // Parse just the blocks needed for building the index out of the module.
5857 // At the end of this routine the module Index is populated with a map
5858 // from global value id to GlobalValueSummary objects.
parseModule()5859 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5860 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5861 return Err;
5862
5863 SmallVector<uint64_t, 64> Record;
5864 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5865 unsigned ValueId = 0;
5866
5867 // Read the index for this module.
5868 while (true) {
5869 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5870 if (!MaybeEntry)
5871 return MaybeEntry.takeError();
5872 llvm::BitstreamEntry Entry = MaybeEntry.get();
5873
5874 switch (Entry.Kind) {
5875 case BitstreamEntry::Error:
5876 return error("Malformed block");
5877 case BitstreamEntry::EndBlock:
5878 return Error::success();
5879
5880 case BitstreamEntry::SubBlock:
5881 switch (Entry.ID) {
5882 default: // Skip unknown content.
5883 if (Error Err = Stream.SkipBlock())
5884 return Err;
5885 break;
5886 case bitc::BLOCKINFO_BLOCK_ID:
5887 // Need to parse these to get abbrev ids (e.g. for VST)
5888 if (readBlockInfo())
5889 return error("Malformed block");
5890 break;
5891 case bitc::VALUE_SYMTAB_BLOCK_ID:
5892 // Should have been parsed earlier via VSTOffset, unless there
5893 // is no summary section.
5894 assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5895 !SeenGlobalValSummary) &&
5896 "Expected early VST parse via VSTOffset record");
5897 if (Error Err = Stream.SkipBlock())
5898 return Err;
5899 break;
5900 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5901 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5902 // Add the module if it is a per-module index (has a source file name).
5903 if (!SourceFileName.empty())
5904 addThisModule();
5905 assert(!SeenValueSymbolTable &&
5906 "Already read VST when parsing summary block?");
5907 // We might not have a VST if there were no values in the
5908 // summary. An empty summary block generated when we are
5909 // performing ThinLTO compiles so we don't later invoke
5910 // the regular LTO process on them.
5911 if (VSTOffset > 0) {
5912 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5913 return Err;
5914 SeenValueSymbolTable = true;
5915 }
5916 SeenGlobalValSummary = true;
5917 if (Error Err = parseEntireSummary(Entry.ID))
5918 return Err;
5919 break;
5920 case bitc::MODULE_STRTAB_BLOCK_ID:
5921 if (Error Err = parseModuleStringTable())
5922 return Err;
5923 break;
5924 }
5925 continue;
5926
5927 case BitstreamEntry::Record: {
5928 Record.clear();
5929 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5930 if (!MaybeBitCode)
5931 return MaybeBitCode.takeError();
5932 switch (MaybeBitCode.get()) {
5933 default:
5934 break; // Default behavior, ignore unknown content.
5935 case bitc::MODULE_CODE_VERSION: {
5936 if (Error Err = parseVersionRecord(Record).takeError())
5937 return Err;
5938 break;
5939 }
5940 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5941 case bitc::MODULE_CODE_SOURCE_FILENAME: {
5942 SmallString<128> ValueName;
5943 if (convertToString(Record, 0, ValueName))
5944 return error("Invalid record");
5945 SourceFileName = ValueName.c_str();
5946 break;
5947 }
5948 /// MODULE_CODE_HASH: [5*i32]
5949 case bitc::MODULE_CODE_HASH: {
5950 if (Record.size() != 5)
5951 return error("Invalid hash length " + Twine(Record.size()).str());
5952 auto &Hash = getThisModule()->second.second;
5953 int Pos = 0;
5954 for (auto &Val : Record) {
5955 assert(!(Val >> 32) && "Unexpected high bits set");
5956 Hash[Pos++] = Val;
5957 }
5958 break;
5959 }
5960 /// MODULE_CODE_VSTOFFSET: [offset]
5961 case bitc::MODULE_CODE_VSTOFFSET:
5962 if (Record.empty())
5963 return error("Invalid record");
5964 // Note that we subtract 1 here because the offset is relative to one
5965 // word before the start of the identification or module block, which
5966 // was historically always the start of the regular bitcode header.
5967 VSTOffset = Record[0] - 1;
5968 break;
5969 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
5970 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
5971 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
5972 // v2: [strtab offset, strtab size, v1]
5973 case bitc::MODULE_CODE_GLOBALVAR:
5974 case bitc::MODULE_CODE_FUNCTION:
5975 case bitc::MODULE_CODE_ALIAS: {
5976 StringRef Name;
5977 ArrayRef<uint64_t> GVRecord;
5978 std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5979 if (GVRecord.size() <= 3)
5980 return error("Invalid record");
5981 uint64_t RawLinkage = GVRecord[3];
5982 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5983 if (!UseStrtab) {
5984 ValueIdToLinkageMap[ValueId++] = Linkage;
5985 break;
5986 }
5987
5988 setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5989 break;
5990 }
5991 }
5992 }
5993 continue;
5994 }
5995 }
5996 }
5997
5998 std::vector<ValueInfo>
makeRefList(ArrayRef<uint64_t> Record)5999 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6000 std::vector<ValueInfo> Ret;
6001 Ret.reserve(Record.size());
6002 for (uint64_t RefValueId : Record)
6003 Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6004 return Ret;
6005 }
6006
6007 std::vector<FunctionSummary::EdgeTy>
makeCallList(ArrayRef<uint64_t> Record,bool IsOldProfileFormat,bool HasProfile,bool HasRelBF)6008 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6009 bool IsOldProfileFormat,
6010 bool HasProfile, bool HasRelBF) {
6011 std::vector<FunctionSummary::EdgeTy> Ret;
6012 Ret.reserve(Record.size());
6013 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6014 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6015 uint64_t RelBF = 0;
6016 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6017 if (IsOldProfileFormat) {
6018 I += 1; // Skip old callsitecount field
6019 if (HasProfile)
6020 I += 1; // Skip old profilecount field
6021 } else if (HasProfile)
6022 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6023 else if (HasRelBF)
6024 RelBF = Record[++I];
6025 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6026 }
6027 return Ret;
6028 }
6029
6030 static void
parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record,size_t & Slot,WholeProgramDevirtResolution & Wpd)6031 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6032 WholeProgramDevirtResolution &Wpd) {
6033 uint64_t ArgNum = Record[Slot++];
6034 WholeProgramDevirtResolution::ByArg &B =
6035 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6036 Slot += ArgNum;
6037
6038 B.TheKind =
6039 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6040 B.Info = Record[Slot++];
6041 B.Byte = Record[Slot++];
6042 B.Bit = Record[Slot++];
6043 }
6044
parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,StringRef Strtab,size_t & Slot,TypeIdSummary & TypeId)6045 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6046 StringRef Strtab, size_t &Slot,
6047 TypeIdSummary &TypeId) {
6048 uint64_t Id = Record[Slot++];
6049 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6050
6051 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6052 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6053 static_cast<size_t>(Record[Slot + 1])};
6054 Slot += 2;
6055
6056 uint64_t ResByArgNum = Record[Slot++];
6057 for (uint64_t I = 0; I != ResByArgNum; ++I)
6058 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6059 }
6060
parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,StringRef Strtab,ModuleSummaryIndex & TheIndex)6061 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6062 StringRef Strtab,
6063 ModuleSummaryIndex &TheIndex) {
6064 size_t Slot = 0;
6065 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6066 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6067 Slot += 2;
6068
6069 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6070 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6071 TypeId.TTRes.AlignLog2 = Record[Slot++];
6072 TypeId.TTRes.SizeM1 = Record[Slot++];
6073 TypeId.TTRes.BitMask = Record[Slot++];
6074 TypeId.TTRes.InlineBits = Record[Slot++];
6075
6076 while (Slot < Record.size())
6077 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6078 }
6079
6080 std::vector<FunctionSummary::ParamAccess>
parseParamAccesses(ArrayRef<uint64_t> Record)6081 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6082 auto ReadRange = [&]() {
6083 APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6084 BitcodeReader::decodeSignRotatedValue(Record.front()));
6085 Record = Record.drop_front();
6086 APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6087 BitcodeReader::decodeSignRotatedValue(Record.front()));
6088 Record = Record.drop_front();
6089 ConstantRange Range{Lower, Upper};
6090 assert(!Range.isFullSet());
6091 assert(!Range.isUpperSignWrapped());
6092 return Range;
6093 };
6094
6095 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6096 while (!Record.empty()) {
6097 PendingParamAccesses.emplace_back();
6098 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6099 ParamAccess.ParamNo = Record.front();
6100 Record = Record.drop_front();
6101 ParamAccess.Use = ReadRange();
6102 ParamAccess.Calls.resize(Record.front());
6103 Record = Record.drop_front();
6104 for (auto &Call : ParamAccess.Calls) {
6105 Call.ParamNo = Record.front();
6106 Record = Record.drop_front();
6107 Call.Callee = getValueInfoFromValueId(Record.front()).first;
6108 Record = Record.drop_front();
6109 Call.Offsets = ReadRange();
6110 }
6111 }
6112 return PendingParamAccesses;
6113 }
6114
parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record,size_t & Slot,TypeIdCompatibleVtableInfo & TypeId)6115 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6116 ArrayRef<uint64_t> Record, size_t &Slot,
6117 TypeIdCompatibleVtableInfo &TypeId) {
6118 uint64_t Offset = Record[Slot++];
6119 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6120 TypeId.push_back({Offset, Callee});
6121 }
6122
parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record)6123 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6124 ArrayRef<uint64_t> Record) {
6125 size_t Slot = 0;
6126 TypeIdCompatibleVtableInfo &TypeId =
6127 TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6128 {Strtab.data() + Record[Slot],
6129 static_cast<size_t>(Record[Slot + 1])});
6130 Slot += 2;
6131
6132 while (Slot < Record.size())
6133 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6134 }
6135
setSpecialRefs(std::vector<ValueInfo> & Refs,unsigned ROCnt,unsigned WOCnt)6136 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6137 unsigned WOCnt) {
6138 // Readonly and writeonly refs are in the end of the refs list.
6139 assert(ROCnt + WOCnt <= Refs.size());
6140 unsigned FirstWORef = Refs.size() - WOCnt;
6141 unsigned RefNo = FirstWORef - ROCnt;
6142 for (; RefNo < FirstWORef; ++RefNo)
6143 Refs[RefNo].setReadOnly();
6144 for (; RefNo < Refs.size(); ++RefNo)
6145 Refs[RefNo].setWriteOnly();
6146 }
6147
6148 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6149 // objects in the index.
parseEntireSummary(unsigned ID)6150 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6151 if (Error Err = Stream.EnterSubBlock(ID))
6152 return Err;
6153 SmallVector<uint64_t, 64> Record;
6154
6155 // Parse version
6156 {
6157 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6158 if (!MaybeEntry)
6159 return MaybeEntry.takeError();
6160 BitstreamEntry Entry = MaybeEntry.get();
6161
6162 if (Entry.Kind != BitstreamEntry::Record)
6163 return error("Invalid Summary Block: record for version expected");
6164 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6165 if (!MaybeRecord)
6166 return MaybeRecord.takeError();
6167 if (MaybeRecord.get() != bitc::FS_VERSION)
6168 return error("Invalid Summary Block: version expected");
6169 }
6170 const uint64_t Version = Record[0];
6171 const bool IsOldProfileFormat = Version == 1;
6172 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6173 return error("Invalid summary version " + Twine(Version) +
6174 ". Version should be in the range [1-" +
6175 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6176 "].");
6177 Record.clear();
6178
6179 // Keep around the last seen summary to be used when we see an optional
6180 // "OriginalName" attachement.
6181 GlobalValueSummary *LastSeenSummary = nullptr;
6182 GlobalValue::GUID LastSeenGUID = 0;
6183
6184 // We can expect to see any number of type ID information records before
6185 // each function summary records; these variables store the information
6186 // collected so far so that it can be used to create the summary object.
6187 std::vector<GlobalValue::GUID> PendingTypeTests;
6188 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6189 PendingTypeCheckedLoadVCalls;
6190 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6191 PendingTypeCheckedLoadConstVCalls;
6192 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6193
6194 while (true) {
6195 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6196 if (!MaybeEntry)
6197 return MaybeEntry.takeError();
6198 BitstreamEntry Entry = MaybeEntry.get();
6199
6200 switch (Entry.Kind) {
6201 case BitstreamEntry::SubBlock: // Handled for us already.
6202 case BitstreamEntry::Error:
6203 return error("Malformed block");
6204 case BitstreamEntry::EndBlock:
6205 return Error::success();
6206 case BitstreamEntry::Record:
6207 // The interesting case.
6208 break;
6209 }
6210
6211 // Read a record. The record format depends on whether this
6212 // is a per-module index or a combined index file. In the per-module
6213 // case the records contain the associated value's ID for correlation
6214 // with VST entries. In the combined index the correlation is done
6215 // via the bitcode offset of the summary records (which were saved
6216 // in the combined index VST entries). The records also contain
6217 // information used for ThinLTO renaming and importing.
6218 Record.clear();
6219 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6220 if (!MaybeBitCode)
6221 return MaybeBitCode.takeError();
6222 switch (unsigned BitCode = MaybeBitCode.get()) {
6223 default: // Default behavior: ignore.
6224 break;
6225 case bitc::FS_FLAGS: { // [flags]
6226 TheIndex.setFlags(Record[0]);
6227 break;
6228 }
6229 case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6230 uint64_t ValueID = Record[0];
6231 GlobalValue::GUID RefGUID = Record[1];
6232 ValueIdToValueInfoMap[ValueID] =
6233 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6234 break;
6235 }
6236 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6237 // numrefs x valueid, n x (valueid)]
6238 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6239 // numrefs x valueid,
6240 // n x (valueid, hotness)]
6241 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6242 // numrefs x valueid,
6243 // n x (valueid, relblockfreq)]
6244 case bitc::FS_PERMODULE:
6245 case bitc::FS_PERMODULE_RELBF:
6246 case bitc::FS_PERMODULE_PROFILE: {
6247 unsigned ValueID = Record[0];
6248 uint64_t RawFlags = Record[1];
6249 unsigned InstCount = Record[2];
6250 uint64_t RawFunFlags = 0;
6251 unsigned NumRefs = Record[3];
6252 unsigned NumRORefs = 0, NumWORefs = 0;
6253 int RefListStartIndex = 4;
6254 if (Version >= 4) {
6255 RawFunFlags = Record[3];
6256 NumRefs = Record[4];
6257 RefListStartIndex = 5;
6258 if (Version >= 5) {
6259 NumRORefs = Record[5];
6260 RefListStartIndex = 6;
6261 if (Version >= 7) {
6262 NumWORefs = Record[6];
6263 RefListStartIndex = 7;
6264 }
6265 }
6266 }
6267
6268 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6269 // The module path string ref set in the summary must be owned by the
6270 // index's module string table. Since we don't have a module path
6271 // string table section in the per-module index, we create a single
6272 // module path string table entry with an empty (0) ID to take
6273 // ownership.
6274 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6275 assert(Record.size() >= RefListStartIndex + NumRefs &&
6276 "Record size inconsistent with number of references");
6277 std::vector<ValueInfo> Refs = makeRefList(
6278 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6279 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6280 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6281 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6282 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6283 IsOldProfileFormat, HasProfile, HasRelBF);
6284 setSpecialRefs(Refs, NumRORefs, NumWORefs);
6285 auto FS = std::make_unique<FunctionSummary>(
6286 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6287 std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6288 std::move(PendingTypeTestAssumeVCalls),
6289 std::move(PendingTypeCheckedLoadVCalls),
6290 std::move(PendingTypeTestAssumeConstVCalls),
6291 std::move(PendingTypeCheckedLoadConstVCalls),
6292 std::move(PendingParamAccesses));
6293 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6294 FS->setModulePath(getThisModule()->first());
6295 FS->setOriginalName(VIAndOriginalGUID.second);
6296 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6297 break;
6298 }
6299 // FS_ALIAS: [valueid, flags, valueid]
6300 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6301 // they expect all aliasee summaries to be available.
6302 case bitc::FS_ALIAS: {
6303 unsigned ValueID = Record[0];
6304 uint64_t RawFlags = Record[1];
6305 unsigned AliaseeID = Record[2];
6306 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6307 auto AS = std::make_unique<AliasSummary>(Flags);
6308 // The module path string ref set in the summary must be owned by the
6309 // index's module string table. Since we don't have a module path
6310 // string table section in the per-module index, we create a single
6311 // module path string table entry with an empty (0) ID to take
6312 // ownership.
6313 AS->setModulePath(getThisModule()->first());
6314
6315 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6316 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6317 if (!AliaseeInModule)
6318 return error("Alias expects aliasee summary to be parsed");
6319 AS->setAliasee(AliaseeVI, AliaseeInModule);
6320
6321 auto GUID = getValueInfoFromValueId(ValueID);
6322 AS->setOriginalName(GUID.second);
6323 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6324 break;
6325 }
6326 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6327 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6328 unsigned ValueID = Record[0];
6329 uint64_t RawFlags = Record[1];
6330 unsigned RefArrayStart = 2;
6331 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6332 /* WriteOnly */ false,
6333 /* Constant */ false,
6334 GlobalObject::VCallVisibilityPublic);
6335 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6336 if (Version >= 5) {
6337 GVF = getDecodedGVarFlags(Record[2]);
6338 RefArrayStart = 3;
6339 }
6340 std::vector<ValueInfo> Refs =
6341 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6342 auto FS =
6343 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6344 FS->setModulePath(getThisModule()->first());
6345 auto GUID = getValueInfoFromValueId(ValueID);
6346 FS->setOriginalName(GUID.second);
6347 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6348 break;
6349 }
6350 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6351 // numrefs, numrefs x valueid,
6352 // n x (valueid, offset)]
6353 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6354 unsigned ValueID = Record[0];
6355 uint64_t RawFlags = Record[1];
6356 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6357 unsigned NumRefs = Record[3];
6358 unsigned RefListStartIndex = 4;
6359 unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6360 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6361 std::vector<ValueInfo> Refs = makeRefList(
6362 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6363 VTableFuncList VTableFuncs;
6364 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6365 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6366 uint64_t Offset = Record[++I];
6367 VTableFuncs.push_back({Callee, Offset});
6368 }
6369 auto VS =
6370 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6371 VS->setModulePath(getThisModule()->first());
6372 VS->setVTableFuncs(VTableFuncs);
6373 auto GUID = getValueInfoFromValueId(ValueID);
6374 VS->setOriginalName(GUID.second);
6375 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6376 break;
6377 }
6378 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6379 // numrefs x valueid, n x (valueid)]
6380 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6381 // numrefs x valueid, n x (valueid, hotness)]
6382 case bitc::FS_COMBINED:
6383 case bitc::FS_COMBINED_PROFILE: {
6384 unsigned ValueID = Record[0];
6385 uint64_t ModuleId = Record[1];
6386 uint64_t RawFlags = Record[2];
6387 unsigned InstCount = Record[3];
6388 uint64_t RawFunFlags = 0;
6389 uint64_t EntryCount = 0;
6390 unsigned NumRefs = Record[4];
6391 unsigned NumRORefs = 0, NumWORefs = 0;
6392 int RefListStartIndex = 5;
6393
6394 if (Version >= 4) {
6395 RawFunFlags = Record[4];
6396 RefListStartIndex = 6;
6397 size_t NumRefsIndex = 5;
6398 if (Version >= 5) {
6399 unsigned NumRORefsOffset = 1;
6400 RefListStartIndex = 7;
6401 if (Version >= 6) {
6402 NumRefsIndex = 6;
6403 EntryCount = Record[5];
6404 RefListStartIndex = 8;
6405 if (Version >= 7) {
6406 RefListStartIndex = 9;
6407 NumWORefs = Record[8];
6408 NumRORefsOffset = 2;
6409 }
6410 }
6411 NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6412 }
6413 NumRefs = Record[NumRefsIndex];
6414 }
6415
6416 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6417 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6418 assert(Record.size() >= RefListStartIndex + NumRefs &&
6419 "Record size inconsistent with number of references");
6420 std::vector<ValueInfo> Refs = makeRefList(
6421 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6422 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6423 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6424 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6425 IsOldProfileFormat, HasProfile, false);
6426 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6427 setSpecialRefs(Refs, NumRORefs, NumWORefs);
6428 auto FS = std::make_unique<FunctionSummary>(
6429 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6430 std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6431 std::move(PendingTypeTestAssumeVCalls),
6432 std::move(PendingTypeCheckedLoadVCalls),
6433 std::move(PendingTypeTestAssumeConstVCalls),
6434 std::move(PendingTypeCheckedLoadConstVCalls),
6435 std::move(PendingParamAccesses));
6436 LastSeenSummary = FS.get();
6437 LastSeenGUID = VI.getGUID();
6438 FS->setModulePath(ModuleIdMap[ModuleId]);
6439 TheIndex.addGlobalValueSummary(VI, std::move(FS));
6440 break;
6441 }
6442 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6443 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6444 // they expect all aliasee summaries to be available.
6445 case bitc::FS_COMBINED_ALIAS: {
6446 unsigned ValueID = Record[0];
6447 uint64_t ModuleId = Record[1];
6448 uint64_t RawFlags = Record[2];
6449 unsigned AliaseeValueId = Record[3];
6450 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6451 auto AS = std::make_unique<AliasSummary>(Flags);
6452 LastSeenSummary = AS.get();
6453 AS->setModulePath(ModuleIdMap[ModuleId]);
6454
6455 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6456 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6457 AS->setAliasee(AliaseeVI, AliaseeInModule);
6458
6459 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6460 LastSeenGUID = VI.getGUID();
6461 TheIndex.addGlobalValueSummary(VI, std::move(AS));
6462 break;
6463 }
6464 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6465 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6466 unsigned ValueID = Record[0];
6467 uint64_t ModuleId = Record[1];
6468 uint64_t RawFlags = Record[2];
6469 unsigned RefArrayStart = 3;
6470 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6471 /* WriteOnly */ false,
6472 /* Constant */ false,
6473 GlobalObject::VCallVisibilityPublic);
6474 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6475 if (Version >= 5) {
6476 GVF = getDecodedGVarFlags(Record[3]);
6477 RefArrayStart = 4;
6478 }
6479 std::vector<ValueInfo> Refs =
6480 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6481 auto FS =
6482 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6483 LastSeenSummary = FS.get();
6484 FS->setModulePath(ModuleIdMap[ModuleId]);
6485 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6486 LastSeenGUID = VI.getGUID();
6487 TheIndex.addGlobalValueSummary(VI, std::move(FS));
6488 break;
6489 }
6490 // FS_COMBINED_ORIGINAL_NAME: [original_name]
6491 case bitc::FS_COMBINED_ORIGINAL_NAME: {
6492 uint64_t OriginalName = Record[0];
6493 if (!LastSeenSummary)
6494 return error("Name attachment that does not follow a combined record");
6495 LastSeenSummary->setOriginalName(OriginalName);
6496 TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6497 // Reset the LastSeenSummary
6498 LastSeenSummary = nullptr;
6499 LastSeenGUID = 0;
6500 break;
6501 }
6502 case bitc::FS_TYPE_TESTS:
6503 assert(PendingTypeTests.empty());
6504 llvm::append_range(PendingTypeTests, Record);
6505 break;
6506
6507 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6508 assert(PendingTypeTestAssumeVCalls.empty());
6509 for (unsigned I = 0; I != Record.size(); I += 2)
6510 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6511 break;
6512
6513 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6514 assert(PendingTypeCheckedLoadVCalls.empty());
6515 for (unsigned I = 0; I != Record.size(); I += 2)
6516 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6517 break;
6518
6519 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6520 PendingTypeTestAssumeConstVCalls.push_back(
6521 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6522 break;
6523
6524 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6525 PendingTypeCheckedLoadConstVCalls.push_back(
6526 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6527 break;
6528
6529 case bitc::FS_CFI_FUNCTION_DEFS: {
6530 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6531 for (unsigned I = 0; I != Record.size(); I += 2)
6532 CfiFunctionDefs.insert(
6533 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6534 break;
6535 }
6536
6537 case bitc::FS_CFI_FUNCTION_DECLS: {
6538 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6539 for (unsigned I = 0; I != Record.size(); I += 2)
6540 CfiFunctionDecls.insert(
6541 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6542 break;
6543 }
6544
6545 case bitc::FS_TYPE_ID:
6546 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6547 break;
6548
6549 case bitc::FS_TYPE_ID_METADATA:
6550 parseTypeIdCompatibleVtableSummaryRecord(Record);
6551 break;
6552
6553 case bitc::FS_BLOCK_COUNT:
6554 TheIndex.addBlockCount(Record[0]);
6555 break;
6556
6557 case bitc::FS_PARAM_ACCESS: {
6558 PendingParamAccesses = parseParamAccesses(Record);
6559 break;
6560 }
6561 }
6562 }
6563 llvm_unreachable("Exit infinite loop");
6564 }
6565
6566 // Parse the module string table block into the Index.
6567 // This populates the ModulePathStringTable map in the index.
parseModuleStringTable()6568 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6569 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6570 return Err;
6571
6572 SmallVector<uint64_t, 64> Record;
6573
6574 SmallString<128> ModulePath;
6575 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6576
6577 while (true) {
6578 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6579 if (!MaybeEntry)
6580 return MaybeEntry.takeError();
6581 BitstreamEntry Entry = MaybeEntry.get();
6582
6583 switch (Entry.Kind) {
6584 case BitstreamEntry::SubBlock: // Handled for us already.
6585 case BitstreamEntry::Error:
6586 return error("Malformed block");
6587 case BitstreamEntry::EndBlock:
6588 return Error::success();
6589 case BitstreamEntry::Record:
6590 // The interesting case.
6591 break;
6592 }
6593
6594 Record.clear();
6595 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6596 if (!MaybeRecord)
6597 return MaybeRecord.takeError();
6598 switch (MaybeRecord.get()) {
6599 default: // Default behavior: ignore.
6600 break;
6601 case bitc::MST_CODE_ENTRY: {
6602 // MST_ENTRY: [modid, namechar x N]
6603 uint64_t ModuleId = Record[0];
6604
6605 if (convertToString(Record, 1, ModulePath))
6606 return error("Invalid record");
6607
6608 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6609 ModuleIdMap[ModuleId] = LastSeenModule->first();
6610
6611 ModulePath.clear();
6612 break;
6613 }
6614 /// MST_CODE_HASH: [5*i32]
6615 case bitc::MST_CODE_HASH: {
6616 if (Record.size() != 5)
6617 return error("Invalid hash length " + Twine(Record.size()).str());
6618 if (!LastSeenModule)
6619 return error("Invalid hash that does not follow a module path");
6620 int Pos = 0;
6621 for (auto &Val : Record) {
6622 assert(!(Val >> 32) && "Unexpected high bits set");
6623 LastSeenModule->second.second[Pos++] = Val;
6624 }
6625 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6626 LastSeenModule = nullptr;
6627 break;
6628 }
6629 }
6630 }
6631 llvm_unreachable("Exit infinite loop");
6632 }
6633
6634 namespace {
6635
6636 // FIXME: This class is only here to support the transition to llvm::Error. It
6637 // will be removed once this transition is complete. Clients should prefer to
6638 // deal with the Error value directly, rather than converting to error_code.
6639 class BitcodeErrorCategoryType : public std::error_category {
name() const6640 const char *name() const noexcept override {
6641 return "llvm.bitcode";
6642 }
6643
message(int IE) const6644 std::string message(int IE) const override {
6645 BitcodeError E = static_cast<BitcodeError>(IE);
6646 switch (E) {
6647 case BitcodeError::CorruptedBitcode:
6648 return "Corrupted bitcode";
6649 }
6650 llvm_unreachable("Unknown error type!");
6651 }
6652 };
6653
6654 } // end anonymous namespace
6655
6656 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6657
BitcodeErrorCategory()6658 const std::error_category &llvm::BitcodeErrorCategory() {
6659 return *ErrorCategory;
6660 }
6661
readBlobInRecord(BitstreamCursor & Stream,unsigned Block,unsigned RecordID)6662 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6663 unsigned Block, unsigned RecordID) {
6664 if (Error Err = Stream.EnterSubBlock(Block))
6665 return std::move(Err);
6666
6667 StringRef Strtab;
6668 while (true) {
6669 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6670 if (!MaybeEntry)
6671 return MaybeEntry.takeError();
6672 llvm::BitstreamEntry Entry = MaybeEntry.get();
6673
6674 switch (Entry.Kind) {
6675 case BitstreamEntry::EndBlock:
6676 return Strtab;
6677
6678 case BitstreamEntry::Error:
6679 return error("Malformed block");
6680
6681 case BitstreamEntry::SubBlock:
6682 if (Error Err = Stream.SkipBlock())
6683 return std::move(Err);
6684 break;
6685
6686 case BitstreamEntry::Record:
6687 StringRef Blob;
6688 SmallVector<uint64_t, 1> Record;
6689 Expected<unsigned> MaybeRecord =
6690 Stream.readRecord(Entry.ID, Record, &Blob);
6691 if (!MaybeRecord)
6692 return MaybeRecord.takeError();
6693 if (MaybeRecord.get() == RecordID)
6694 Strtab = Blob;
6695 break;
6696 }
6697 }
6698 }
6699
6700 //===----------------------------------------------------------------------===//
6701 // External interface
6702 //===----------------------------------------------------------------------===//
6703
6704 Expected<std::vector<BitcodeModule>>
getBitcodeModuleList(MemoryBufferRef Buffer)6705 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6706 auto FOrErr = getBitcodeFileContents(Buffer);
6707 if (!FOrErr)
6708 return FOrErr.takeError();
6709 return std::move(FOrErr->Mods);
6710 }
6711
6712 Expected<BitcodeFileContents>
getBitcodeFileContents(MemoryBufferRef Buffer)6713 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6714 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6715 if (!StreamOrErr)
6716 return StreamOrErr.takeError();
6717 BitstreamCursor &Stream = *StreamOrErr;
6718
6719 BitcodeFileContents F;
6720 while (true) {
6721 uint64_t BCBegin = Stream.getCurrentByteNo();
6722
6723 // We may be consuming bitcode from a client that leaves garbage at the end
6724 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6725 // the end that there cannot possibly be another module, stop looking.
6726 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6727 return F;
6728
6729 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6730 if (!MaybeEntry)
6731 return MaybeEntry.takeError();
6732 llvm::BitstreamEntry Entry = MaybeEntry.get();
6733
6734 switch (Entry.Kind) {
6735 case BitstreamEntry::EndBlock:
6736 case BitstreamEntry::Error:
6737 return error("Malformed block");
6738
6739 case BitstreamEntry::SubBlock: {
6740 uint64_t IdentificationBit = -1ull;
6741 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6742 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6743 if (Error Err = Stream.SkipBlock())
6744 return std::move(Err);
6745
6746 {
6747 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6748 if (!MaybeEntry)
6749 return MaybeEntry.takeError();
6750 Entry = MaybeEntry.get();
6751 }
6752
6753 if (Entry.Kind != BitstreamEntry::SubBlock ||
6754 Entry.ID != bitc::MODULE_BLOCK_ID)
6755 return error("Malformed block");
6756 }
6757
6758 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6759 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6760 if (Error Err = Stream.SkipBlock())
6761 return std::move(Err);
6762
6763 F.Mods.push_back({Stream.getBitcodeBytes().slice(
6764 BCBegin, Stream.getCurrentByteNo() - BCBegin),
6765 Buffer.getBufferIdentifier(), IdentificationBit,
6766 ModuleBit});
6767 continue;
6768 }
6769
6770 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6771 Expected<StringRef> Strtab =
6772 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6773 if (!Strtab)
6774 return Strtab.takeError();
6775 // This string table is used by every preceding bitcode module that does
6776 // not have its own string table. A bitcode file may have multiple
6777 // string tables if it was created by binary concatenation, for example
6778 // with "llvm-cat -b".
6779 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6780 if (!I->Strtab.empty())
6781 break;
6782 I->Strtab = *Strtab;
6783 }
6784 // Similarly, the string table is used by every preceding symbol table;
6785 // normally there will be just one unless the bitcode file was created
6786 // by binary concatenation.
6787 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6788 F.StrtabForSymtab = *Strtab;
6789 continue;
6790 }
6791
6792 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6793 Expected<StringRef> SymtabOrErr =
6794 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6795 if (!SymtabOrErr)
6796 return SymtabOrErr.takeError();
6797
6798 // We can expect the bitcode file to have multiple symbol tables if it
6799 // was created by binary concatenation. In that case we silently
6800 // ignore any subsequent symbol tables, which is fine because this is a
6801 // low level function. The client is expected to notice that the number
6802 // of modules in the symbol table does not match the number of modules
6803 // in the input file and regenerate the symbol table.
6804 if (F.Symtab.empty())
6805 F.Symtab = *SymtabOrErr;
6806 continue;
6807 }
6808
6809 if (Error Err = Stream.SkipBlock())
6810 return std::move(Err);
6811 continue;
6812 }
6813 case BitstreamEntry::Record:
6814 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6815 continue;
6816 else
6817 return StreamFailed.takeError();
6818 }
6819 }
6820 }
6821
6822 /// Get a lazy one-at-time loading module from bitcode.
6823 ///
6824 /// This isn't always used in a lazy context. In particular, it's also used by
6825 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull
6826 /// in forward-referenced functions from block address references.
6827 ///
6828 /// \param[in] MaterializeAll Set to \c true if we should materialize
6829 /// everything.
6830 Expected<std::unique_ptr<Module>>
getModuleImpl(LLVMContext & Context,bool MaterializeAll,bool ShouldLazyLoadMetadata,bool IsImporting,DataLayoutCallbackTy DataLayoutCallback)6831 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6832 bool ShouldLazyLoadMetadata, bool IsImporting,
6833 DataLayoutCallbackTy DataLayoutCallback) {
6834 BitstreamCursor Stream(Buffer);
6835
6836 std::string ProducerIdentification;
6837 if (IdentificationBit != -1ull) {
6838 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6839 return std::move(JumpFailed);
6840 Expected<std::string> ProducerIdentificationOrErr =
6841 readIdentificationBlock(Stream);
6842 if (!ProducerIdentificationOrErr)
6843 return ProducerIdentificationOrErr.takeError();
6844
6845 ProducerIdentification = *ProducerIdentificationOrErr;
6846 }
6847
6848 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6849 return std::move(JumpFailed);
6850 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6851 Context);
6852
6853 std::unique_ptr<Module> M =
6854 std::make_unique<Module>(ModuleIdentifier, Context);
6855 M->setMaterializer(R);
6856
6857 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6858 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6859 IsImporting, DataLayoutCallback))
6860 return std::move(Err);
6861
6862 if (MaterializeAll) {
6863 // Read in the entire module, and destroy the BitcodeReader.
6864 if (Error Err = M->materializeAll())
6865 return std::move(Err);
6866 } else {
6867 // Resolve forward references from blockaddresses.
6868 if (Error Err = R->materializeForwardReferencedFunctions())
6869 return std::move(Err);
6870 }
6871 return std::move(M);
6872 }
6873
6874 Expected<std::unique_ptr<Module>>
getLazyModule(LLVMContext & Context,bool ShouldLazyLoadMetadata,bool IsImporting)6875 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6876 bool IsImporting) {
6877 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6878 [](StringRef) { return None; });
6879 }
6880
6881 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6882 // We don't use ModuleIdentifier here because the client may need to control the
6883 // module path used in the combined summary (e.g. when reading summaries for
6884 // regular LTO modules).
readSummary(ModuleSummaryIndex & CombinedIndex,StringRef ModulePath,uint64_t ModuleId)6885 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6886 StringRef ModulePath, uint64_t ModuleId) {
6887 BitstreamCursor Stream(Buffer);
6888 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6889 return JumpFailed;
6890
6891 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6892 ModulePath, ModuleId);
6893 return R.parseModule();
6894 }
6895
6896 // Parse the specified bitcode buffer, returning the function info index.
getSummary()6897 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6898 BitstreamCursor Stream(Buffer);
6899 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6900 return std::move(JumpFailed);
6901
6902 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6903 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6904 ModuleIdentifier, 0);
6905
6906 if (Error Err = R.parseModule())
6907 return std::move(Err);
6908
6909 return std::move(Index);
6910 }
6911
getEnableSplitLTOUnitFlag(BitstreamCursor & Stream,unsigned ID)6912 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6913 unsigned ID) {
6914 if (Error Err = Stream.EnterSubBlock(ID))
6915 return std::move(Err);
6916 SmallVector<uint64_t, 64> Record;
6917
6918 while (true) {
6919 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6920 if (!MaybeEntry)
6921 return MaybeEntry.takeError();
6922 BitstreamEntry Entry = MaybeEntry.get();
6923
6924 switch (Entry.Kind) {
6925 case BitstreamEntry::SubBlock: // Handled for us already.
6926 case BitstreamEntry::Error:
6927 return error("Malformed block");
6928 case BitstreamEntry::EndBlock:
6929 // If no flags record found, conservatively return true to mimic
6930 // behavior before this flag was added.
6931 return true;
6932 case BitstreamEntry::Record:
6933 // The interesting case.
6934 break;
6935 }
6936
6937 // Look for the FS_FLAGS record.
6938 Record.clear();
6939 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6940 if (!MaybeBitCode)
6941 return MaybeBitCode.takeError();
6942 switch (MaybeBitCode.get()) {
6943 default: // Default behavior: ignore.
6944 break;
6945 case bitc::FS_FLAGS: { // [flags]
6946 uint64_t Flags = Record[0];
6947 // Scan flags.
6948 assert(Flags <= 0x7f && "Unexpected bits in flag");
6949
6950 return Flags & 0x8;
6951 }
6952 }
6953 }
6954 llvm_unreachable("Exit infinite loop");
6955 }
6956
6957 // Check if the given bitcode buffer contains a global value summary block.
getLTOInfo()6958 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6959 BitstreamCursor Stream(Buffer);
6960 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6961 return std::move(JumpFailed);
6962
6963 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6964 return std::move(Err);
6965
6966 while (true) {
6967 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6968 if (!MaybeEntry)
6969 return MaybeEntry.takeError();
6970 llvm::BitstreamEntry Entry = MaybeEntry.get();
6971
6972 switch (Entry.Kind) {
6973 case BitstreamEntry::Error:
6974 return error("Malformed block");
6975 case BitstreamEntry::EndBlock:
6976 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6977 /*EnableSplitLTOUnit=*/false};
6978
6979 case BitstreamEntry::SubBlock:
6980 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6981 Expected<bool> EnableSplitLTOUnit =
6982 getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6983 if (!EnableSplitLTOUnit)
6984 return EnableSplitLTOUnit.takeError();
6985 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6986 *EnableSplitLTOUnit};
6987 }
6988
6989 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6990 Expected<bool> EnableSplitLTOUnit =
6991 getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6992 if (!EnableSplitLTOUnit)
6993 return EnableSplitLTOUnit.takeError();
6994 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6995 *EnableSplitLTOUnit};
6996 }
6997
6998 // Ignore other sub-blocks.
6999 if (Error Err = Stream.SkipBlock())
7000 return std::move(Err);
7001 continue;
7002
7003 case BitstreamEntry::Record:
7004 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7005 continue;
7006 else
7007 return StreamFailed.takeError();
7008 }
7009 }
7010 }
7011
getSingleModule(MemoryBufferRef Buffer)7012 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7013 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7014 if (!MsOrErr)
7015 return MsOrErr.takeError();
7016
7017 if (MsOrErr->size() != 1)
7018 return error("Expected a single module");
7019
7020 return (*MsOrErr)[0];
7021 }
7022
7023 Expected<std::unique_ptr<Module>>
getLazyBitcodeModule(MemoryBufferRef Buffer,LLVMContext & Context,bool ShouldLazyLoadMetadata,bool IsImporting)7024 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7025 bool ShouldLazyLoadMetadata, bool IsImporting) {
7026 Expected<BitcodeModule> BM = getSingleModule(Buffer);
7027 if (!BM)
7028 return BM.takeError();
7029
7030 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7031 }
7032
getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool ShouldLazyLoadMetadata,bool IsImporting)7033 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7034 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7035 bool ShouldLazyLoadMetadata, bool IsImporting) {
7036 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7037 IsImporting);
7038 if (MOrErr)
7039 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7040 return MOrErr;
7041 }
7042
7043 Expected<std::unique_ptr<Module>>
parseModule(LLVMContext & Context,DataLayoutCallbackTy DataLayoutCallback)7044 BitcodeModule::parseModule(LLVMContext &Context,
7045 DataLayoutCallbackTy DataLayoutCallback) {
7046 return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7047 // TODO: Restore the use-lists to the in-memory state when the bitcode was
7048 // written. We must defer until the Module has been fully materialized.
7049 }
7050
7051 Expected<std::unique_ptr<Module>>
parseBitcodeFile(MemoryBufferRef Buffer,LLVMContext & Context,DataLayoutCallbackTy DataLayoutCallback)7052 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7053 DataLayoutCallbackTy DataLayoutCallback) {
7054 Expected<BitcodeModule> BM = getSingleModule(Buffer);
7055 if (!BM)
7056 return BM.takeError();
7057
7058 return BM->parseModule(Context, DataLayoutCallback);
7059 }
7060
getBitcodeTargetTriple(MemoryBufferRef Buffer)7061 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7062 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7063 if (!StreamOrErr)
7064 return StreamOrErr.takeError();
7065
7066 return readTriple(*StreamOrErr);
7067 }
7068
isBitcodeContainingObjCCategory(MemoryBufferRef Buffer)7069 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7070 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7071 if (!StreamOrErr)
7072 return StreamOrErr.takeError();
7073
7074 return hasObjCCategory(*StreamOrErr);
7075 }
7076
getBitcodeProducerString(MemoryBufferRef Buffer)7077 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7078 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7079 if (!StreamOrErr)
7080 return StreamOrErr.takeError();
7081
7082 return readIdentificationCode(*StreamOrErr);
7083 }
7084
readModuleSummaryIndex(MemoryBufferRef Buffer,ModuleSummaryIndex & CombinedIndex,uint64_t ModuleId)7085 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7086 ModuleSummaryIndex &CombinedIndex,
7087 uint64_t ModuleId) {
7088 Expected<BitcodeModule> BM = getSingleModule(Buffer);
7089 if (!BM)
7090 return BM.takeError();
7091
7092 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7093 }
7094
7095 Expected<std::unique_ptr<ModuleSummaryIndex>>
getModuleSummaryIndex(MemoryBufferRef Buffer)7096 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7097 Expected<BitcodeModule> BM = getSingleModule(Buffer);
7098 if (!BM)
7099 return BM.takeError();
7100
7101 return BM->getSummary();
7102 }
7103
getBitcodeLTOInfo(MemoryBufferRef Buffer)7104 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7105 Expected<BitcodeModule> BM = getSingleModule(Buffer);
7106 if (!BM)
7107 return BM.takeError();
7108
7109 return BM->getLTOInfo();
7110 }
7111
7112 Expected<std::unique_ptr<ModuleSummaryIndex>>
getModuleSummaryIndexForFile(StringRef Path,bool IgnoreEmptyThinLTOIndexFile)7113 llvm::getModuleSummaryIndexForFile(StringRef Path,
7114 bool IgnoreEmptyThinLTOIndexFile) {
7115 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7116 MemoryBuffer::getFileOrSTDIN(Path);
7117 if (!FileOrErr)
7118 return errorCodeToError(FileOrErr.getError());
7119 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7120 return nullptr;
7121 return getModuleSummaryIndex(**FileOrErr);
7122 }
7123