1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/sysmacros.h>
29 #include <sys/cred.h>
30 #include <sys/proc.h>
31 #include <sys/strsubr.h>
32 #include <sys/priocntl.h>
33 #include <sys/class.h>
34 #include <sys/disp.h>
35 #include <sys/procset.h>
36 #include <sys/debug.h>
37 #include <sys/kmem.h>
38 #include <sys/errno.h>
39 #include <sys/systm.h>
40 #include <sys/schedctl.h>
41 #include <sys/vmsystm.h>
42 #include <sys/atomic.h>
43 #include <sys/project.h>
44 #include <sys/modctl.h>
45 #include <sys/fss.h>
46 #include <sys/fsspriocntl.h>
47 #include <sys/cpupart.h>
48 #include <sys/zone.h>
49 #include <vm/rm.h>
50 #include <vm/seg_kmem.h>
51 #include <sys/tnf_probe.h>
52 #include <sys/policy.h>
53 #include <sys/sdt.h>
54 #include <sys/cpucaps.h>
55
56 /*
57 * FSS Data Structures:
58 *
59 * fsszone
60 * ----- -----
61 * ----- | | | |
62 * | |-------->| |<------->| |<---->...
63 * | | ----- -----
64 * | | ^ ^ ^
65 * | |--- | \ \
66 * ----- | | \ \
67 * fsspset | | \ \
68 * | | \ \
69 * | ----- ----- -----
70 * -->| |<--->| |<--->| |
71 * | | | | | |
72 * ----- ----- -----
73 * fssproj
74 *
75 *
76 * That is, fsspsets contain a list of fsszone's that are currently active in
77 * the pset, and a list of fssproj's, corresponding to projects with runnable
78 * threads on the pset. fssproj's in turn point to the fsszone which they
79 * are a member of.
80 *
81 * An fssproj_t is removed when there are no threads in it.
82 *
83 * An fsszone_t is removed when there are no projects with threads in it.
84 *
85 * Projects in a zone compete with each other for cpu time, receiving cpu
86 * allocation within a zone proportional to fssproj->fssp_shares
87 * (project.cpu-shares); at a higher level zones compete with each other,
88 * receiving allocation in a pset proportional to fsszone->fssz_shares
89 * (zone.cpu-shares). See fss_decay_usage() for the precise formula.
90 */
91
92 static pri_t fss_init(id_t, int, classfuncs_t **);
93
94 static struct sclass fss = {
95 "FSS",
96 fss_init,
97 0
98 };
99
100 extern struct mod_ops mod_schedops;
101
102 /*
103 * Module linkage information for the kernel.
104 */
105 static struct modlsched modlsched = {
106 &mod_schedops, "fair share scheduling class", &fss
107 };
108
109 static struct modlinkage modlinkage = {
110 MODREV_1, (void *)&modlsched, NULL
111 };
112
113 #define FSS_MAXUPRI 60
114
115 /*
116 * The fssproc_t structures are kept in an array of circular doubly linked
117 * lists. A hash on the thread pointer is used to determine which list each
118 * thread should be placed in. Each list has a dummy "head" which is never
119 * removed, so the list is never empty. fss_update traverses these lists to
120 * update the priorities of threads that have been waiting on the run queue.
121 */
122 #define FSS_LISTS 16 /* number of lists, must be power of 2 */
123 #define FSS_LIST_HASH(t) (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1))
124 #define FSS_LIST_NEXT(i) (((i) + 1) & (FSS_LISTS - 1))
125
126 #define FSS_LIST_INSERT(fssproc) \
127 { \
128 int index = FSS_LIST_HASH(fssproc->fss_tp); \
129 kmutex_t *lockp = &fss_listlock[index]; \
130 fssproc_t *headp = &fss_listhead[index]; \
131 mutex_enter(lockp); \
132 fssproc->fss_next = headp->fss_next; \
133 fssproc->fss_prev = headp; \
134 headp->fss_next->fss_prev = fssproc; \
135 headp->fss_next = fssproc; \
136 mutex_exit(lockp); \
137 }
138
139 #define FSS_LIST_DELETE(fssproc) \
140 { \
141 int index = FSS_LIST_HASH(fssproc->fss_tp); \
142 kmutex_t *lockp = &fss_listlock[index]; \
143 mutex_enter(lockp); \
144 fssproc->fss_prev->fss_next = fssproc->fss_next; \
145 fssproc->fss_next->fss_prev = fssproc->fss_prev; \
146 mutex_exit(lockp); \
147 }
148
149 #define FSS_TICK_COST 1000 /* tick cost for threads with nice level = 0 */
150
151 /*
152 * Decay rate percentages are based on n/128 rather than n/100 so that
153 * calculations can avoid having to do an integer divide by 100 (divide
154 * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift).
155 *
156 * FSS_DECAY_MIN = 83/128 ~= 65%
157 * FSS_DECAY_MAX = 108/128 ~= 85%
158 * FSS_DECAY_USG = 96/128 ~= 75%
159 */
160 #define FSS_DECAY_MIN 83 /* fsspri decay pct for threads w/ nice -20 */
161 #define FSS_DECAY_MAX 108 /* fsspri decay pct for threads w/ nice +19 */
162 #define FSS_DECAY_USG 96 /* fssusage decay pct for projects */
163 #define FSS_DECAY_BASE 128 /* base for decay percentages above */
164
165 #define FSS_NICE_MIN 0
166 #define FSS_NICE_MAX (2 * NZERO - 1)
167 #define FSS_NICE_RANGE (FSS_NICE_MAX - FSS_NICE_MIN + 1)
168
169 static int fss_nice_tick[FSS_NICE_RANGE];
170 static int fss_nice_decay[FSS_NICE_RANGE];
171
172 static pri_t fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */
173 static pri_t fss_maxumdpri; /* maximum user mode fss priority */
174 static pri_t fss_maxglobpri; /* maximum global priority used by fss class */
175 static pri_t fss_minglobpri; /* minimum global priority */
176
177 static fssproc_t fss_listhead[FSS_LISTS];
178 static kmutex_t fss_listlock[FSS_LISTS];
179
180 static fsspset_t *fsspsets;
181 static kmutex_t fsspsets_lock; /* protects fsspsets */
182
183 static id_t fss_cid;
184
185 static time_t fss_minrun = 2; /* t_pri becomes 59 within 2 secs */
186 static time_t fss_minslp = 2; /* min time on sleep queue for hardswap */
187 static int fss_quantum = 11;
188
189 static void fss_newpri(fssproc_t *);
190 static void fss_update(void *);
191 static int fss_update_list(int);
192 static void fss_change_priority(kthread_t *, fssproc_t *);
193
194 static int fss_admin(caddr_t, cred_t *);
195 static int fss_getclinfo(void *);
196 static int fss_parmsin(void *);
197 static int fss_parmsout(void *, pc_vaparms_t *);
198 static int fss_vaparmsin(void *, pc_vaparms_t *);
199 static int fss_vaparmsout(void *, pc_vaparms_t *);
200 static int fss_getclpri(pcpri_t *);
201 static int fss_alloc(void **, int);
202 static void fss_free(void *);
203
204 static int fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
205 static void fss_exitclass(void *);
206 static int fss_canexit(kthread_t *, cred_t *);
207 static int fss_fork(kthread_t *, kthread_t *, void *);
208 static void fss_forkret(kthread_t *, kthread_t *);
209 static void fss_parmsget(kthread_t *, void *);
210 static int fss_parmsset(kthread_t *, void *, id_t, cred_t *);
211 static void fss_stop(kthread_t *, int, int);
212 static void fss_exit(kthread_t *);
213 static void fss_active(kthread_t *);
214 static void fss_inactive(kthread_t *);
215 static pri_t fss_swapin(kthread_t *, int);
216 static pri_t fss_swapout(kthread_t *, int);
217 static void fss_trapret(kthread_t *);
218 static void fss_preempt(kthread_t *);
219 static void fss_setrun(kthread_t *);
220 static void fss_sleep(kthread_t *);
221 static void fss_tick(kthread_t *);
222 static void fss_wakeup(kthread_t *);
223 static int fss_donice(kthread_t *, cred_t *, int, int *);
224 static int fss_doprio(kthread_t *, cred_t *, int, int *);
225 static pri_t fss_globpri(kthread_t *);
226 static void fss_yield(kthread_t *);
227 static void fss_nullsys();
228
229 static struct classfuncs fss_classfuncs = {
230 /* class functions */
231 fss_admin,
232 fss_getclinfo,
233 fss_parmsin,
234 fss_parmsout,
235 fss_vaparmsin,
236 fss_vaparmsout,
237 fss_getclpri,
238 fss_alloc,
239 fss_free,
240
241 /* thread functions */
242 fss_enterclass,
243 fss_exitclass,
244 fss_canexit,
245 fss_fork,
246 fss_forkret,
247 fss_parmsget,
248 fss_parmsset,
249 fss_stop,
250 fss_exit,
251 fss_active,
252 fss_inactive,
253 fss_swapin,
254 fss_swapout,
255 fss_trapret,
256 fss_preempt,
257 fss_setrun,
258 fss_sleep,
259 fss_tick,
260 fss_wakeup,
261 fss_donice,
262 fss_globpri,
263 fss_nullsys, /* set_process_group */
264 fss_yield,
265 fss_doprio,
266 };
267
268 int
_init()269 _init()
270 {
271 return (mod_install(&modlinkage));
272 }
273
274 int
_fini()275 _fini()
276 {
277 return (EBUSY);
278 }
279
280 int
_info(struct modinfo * modinfop)281 _info(struct modinfo *modinfop)
282 {
283 return (mod_info(&modlinkage, modinfop));
284 }
285
286 /*ARGSUSED*/
287 static int
fss_project_walker(kproject_t * kpj,void * buf)288 fss_project_walker(kproject_t *kpj, void *buf)
289 {
290 return (0);
291 }
292
293 void *
fss_allocbuf(int op,int type)294 fss_allocbuf(int op, int type)
295 {
296 fssbuf_t *fssbuf;
297 void **fsslist;
298 int cnt;
299 int i;
300 size_t size;
301
302 ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF);
303 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
304 ASSERT(MUTEX_HELD(&cpu_lock));
305
306 fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP);
307 switch (op) {
308 case FSS_NPSET_BUF:
309 cnt = cpupart_list(NULL, 0, CP_NONEMPTY);
310 break;
311 case FSS_NPROJ_BUF:
312 cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL);
313 break;
314 case FSS_ONE_BUF:
315 cnt = 1;
316 break;
317 }
318
319 switch (type) {
320 case FSS_ALLOC_PROJ:
321 size = sizeof (fssproj_t);
322 break;
323 case FSS_ALLOC_ZONE:
324 size = sizeof (fsszone_t);
325 break;
326 }
327 fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP);
328 fssbuf->fssb_size = cnt;
329 fssbuf->fssb_list = fsslist;
330 for (i = 0; i < cnt; i++)
331 fsslist[i] = kmem_zalloc(size, KM_SLEEP);
332 return (fssbuf);
333 }
334
335 void
fss_freebuf(fssbuf_t * fssbuf,int type)336 fss_freebuf(fssbuf_t *fssbuf, int type)
337 {
338 void **fsslist;
339 int i;
340 size_t size;
341
342 ASSERT(fssbuf != NULL);
343 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
344 fsslist = fssbuf->fssb_list;
345
346 switch (type) {
347 case FSS_ALLOC_PROJ:
348 size = sizeof (fssproj_t);
349 break;
350 case FSS_ALLOC_ZONE:
351 size = sizeof (fsszone_t);
352 break;
353 }
354
355 for (i = 0; i < fssbuf->fssb_size; i++) {
356 if (fsslist[i] != NULL)
357 kmem_free(fsslist[i], size);
358 }
359 kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size);
360 kmem_free(fssbuf, sizeof (fssbuf_t));
361 }
362
363 static fsspset_t *
fss_find_fsspset(cpupart_t * cpupart)364 fss_find_fsspset(cpupart_t *cpupart)
365 {
366 int i;
367 fsspset_t *fsspset = NULL;
368 int found = 0;
369
370 ASSERT(cpupart != NULL);
371 ASSERT(MUTEX_HELD(&fsspsets_lock));
372
373 /*
374 * Search for the cpupart pointer in the array of fsspsets.
375 */
376 for (i = 0; i < max_ncpus; i++) {
377 fsspset = &fsspsets[i];
378 if (fsspset->fssps_cpupart == cpupart) {
379 ASSERT(fsspset->fssps_nproj > 0);
380 found = 1;
381 break;
382 }
383 }
384 if (found == 0) {
385 /*
386 * If we didn't find anything, then use the first
387 * available slot in the fsspsets array.
388 */
389 for (i = 0; i < max_ncpus; i++) {
390 fsspset = &fsspsets[i];
391 if (fsspset->fssps_cpupart == NULL) {
392 ASSERT(fsspset->fssps_nproj == 0);
393 found = 1;
394 break;
395 }
396 }
397 fsspset->fssps_cpupart = cpupart;
398 }
399 ASSERT(found == 1);
400 return (fsspset);
401 }
402
403 static void
fss_del_fsspset(fsspset_t * fsspset)404 fss_del_fsspset(fsspset_t *fsspset)
405 {
406 ASSERT(MUTEX_HELD(&fsspsets_lock));
407 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
408 ASSERT(fsspset->fssps_nproj == 0);
409 ASSERT(fsspset->fssps_list == NULL);
410 ASSERT(fsspset->fssps_zones == NULL);
411 fsspset->fssps_cpupart = NULL;
412 fsspset->fssps_maxfsspri = 0;
413 fsspset->fssps_shares = 0;
414 }
415
416 /*
417 * The following routine returns a pointer to the fsszone structure which
418 * belongs to zone "zone" and cpu partition fsspset, if such structure exists.
419 */
420 static fsszone_t *
fss_find_fsszone(fsspset_t * fsspset,zone_t * zone)421 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone)
422 {
423 fsszone_t *fsszone;
424
425 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
426
427 if (fsspset->fssps_list != NULL) {
428 /*
429 * There are projects/zones active on this cpu partition
430 * already. Try to find our zone among them.
431 */
432 fsszone = fsspset->fssps_zones;
433 do {
434 if (fsszone->fssz_zone == zone) {
435 return (fsszone);
436 }
437 fsszone = fsszone->fssz_next;
438 } while (fsszone != fsspset->fssps_zones);
439 }
440 return (NULL);
441 }
442
443 /*
444 * The following routine links new fsszone structure into doubly linked list of
445 * zones active on the specified cpu partition.
446 */
447 static void
fss_insert_fsszone(fsspset_t * fsspset,zone_t * zone,fsszone_t * fsszone)448 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone)
449 {
450 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
451
452 fsszone->fssz_zone = zone;
453 fsszone->fssz_rshares = zone->zone_shares;
454
455 if (fsspset->fssps_zones == NULL) {
456 /*
457 * This will be the first fsszone for this fsspset
458 */
459 fsszone->fssz_next = fsszone->fssz_prev = fsszone;
460 fsspset->fssps_zones = fsszone;
461 } else {
462 /*
463 * Insert this fsszone to the doubly linked list.
464 */
465 fsszone_t *fssz_head = fsspset->fssps_zones;
466
467 fsszone->fssz_next = fssz_head;
468 fsszone->fssz_prev = fssz_head->fssz_prev;
469 fssz_head->fssz_prev->fssz_next = fsszone;
470 fssz_head->fssz_prev = fsszone;
471 fsspset->fssps_zones = fsszone;
472 }
473 }
474
475 /*
476 * The following routine removes a single fsszone structure from the doubly
477 * linked list of zones active on the specified cpu partition. Note that
478 * global fsspsets_lock must be held in case this fsszone structure is the last
479 * on the above mentioned list. Also note that the fsszone structure is not
480 * freed here, it is the responsibility of the caller to call kmem_free for it.
481 */
482 static void
fss_remove_fsszone(fsspset_t * fsspset,fsszone_t * fsszone)483 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone)
484 {
485 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
486 ASSERT(fsszone->fssz_nproj == 0);
487 ASSERT(fsszone->fssz_shares == 0);
488 ASSERT(fsszone->fssz_runnable == 0);
489
490 if (fsszone->fssz_next != fsszone) {
491 /*
492 * This is not the last zone in the list.
493 */
494 fsszone->fssz_prev->fssz_next = fsszone->fssz_next;
495 fsszone->fssz_next->fssz_prev = fsszone->fssz_prev;
496 if (fsspset->fssps_zones == fsszone)
497 fsspset->fssps_zones = fsszone->fssz_next;
498 } else {
499 /*
500 * This was the last zone active in this cpu partition.
501 */
502 fsspset->fssps_zones = NULL;
503 }
504 }
505
506 /*
507 * The following routine returns a pointer to the fssproj structure
508 * which belongs to project kpj and cpu partition fsspset, if such structure
509 * exists.
510 */
511 static fssproj_t *
fss_find_fssproj(fsspset_t * fsspset,kproject_t * kpj)512 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj)
513 {
514 fssproj_t *fssproj;
515
516 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
517
518 if (fsspset->fssps_list != NULL) {
519 /*
520 * There are projects running on this cpu partition already.
521 * Try to find our project among them.
522 */
523 fssproj = fsspset->fssps_list;
524 do {
525 if (fssproj->fssp_proj == kpj) {
526 ASSERT(fssproj->fssp_pset == fsspset);
527 return (fssproj);
528 }
529 fssproj = fssproj->fssp_next;
530 } while (fssproj != fsspset->fssps_list);
531 }
532 return (NULL);
533 }
534
535 /*
536 * The following routine links new fssproj structure into doubly linked list
537 * of projects running on the specified cpu partition.
538 */
539 static void
fss_insert_fssproj(fsspset_t * fsspset,kproject_t * kpj,fsszone_t * fsszone,fssproj_t * fssproj)540 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone,
541 fssproj_t *fssproj)
542 {
543 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
544
545 fssproj->fssp_pset = fsspset;
546 fssproj->fssp_proj = kpj;
547 fssproj->fssp_shares = kpj->kpj_shares;
548
549 fsspset->fssps_nproj++;
550
551 if (fsspset->fssps_list == NULL) {
552 /*
553 * This will be the first fssproj for this fsspset
554 */
555 fssproj->fssp_next = fssproj->fssp_prev = fssproj;
556 fsspset->fssps_list = fssproj;
557 } else {
558 /*
559 * Insert this fssproj to the doubly linked list.
560 */
561 fssproj_t *fssp_head = fsspset->fssps_list;
562
563 fssproj->fssp_next = fssp_head;
564 fssproj->fssp_prev = fssp_head->fssp_prev;
565 fssp_head->fssp_prev->fssp_next = fssproj;
566 fssp_head->fssp_prev = fssproj;
567 fsspset->fssps_list = fssproj;
568 }
569 fssproj->fssp_fsszone = fsszone;
570 fsszone->fssz_nproj++;
571 ASSERT(fsszone->fssz_nproj != 0);
572 }
573
574 /*
575 * The following routine removes a single fssproj structure from the doubly
576 * linked list of projects running on the specified cpu partition. Note that
577 * global fsspsets_lock must be held in case if this fssproj structure is the
578 * last on the above mentioned list. Also note that the fssproj structure is
579 * not freed here, it is the responsibility of the caller to call kmem_free
580 * for it.
581 */
582 static void
fss_remove_fssproj(fsspset_t * fsspset,fssproj_t * fssproj)583 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj)
584 {
585 fsszone_t *fsszone;
586
587 ASSERT(MUTEX_HELD(&fsspsets_lock));
588 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
589 ASSERT(fssproj->fssp_runnable == 0);
590
591 fsspset->fssps_nproj--;
592
593 fsszone = fssproj->fssp_fsszone;
594 fsszone->fssz_nproj--;
595
596 if (fssproj->fssp_next != fssproj) {
597 /*
598 * This is not the last part in the list.
599 */
600 fssproj->fssp_prev->fssp_next = fssproj->fssp_next;
601 fssproj->fssp_next->fssp_prev = fssproj->fssp_prev;
602 if (fsspset->fssps_list == fssproj)
603 fsspset->fssps_list = fssproj->fssp_next;
604 if (fsszone->fssz_nproj == 0)
605 fss_remove_fsszone(fsspset, fsszone);
606 } else {
607 /*
608 * This was the last project part running
609 * at this cpu partition.
610 */
611 fsspset->fssps_list = NULL;
612 ASSERT(fsspset->fssps_nproj == 0);
613 ASSERT(fsszone->fssz_nproj == 0);
614 fss_remove_fsszone(fsspset, fsszone);
615 fss_del_fsspset(fsspset);
616 }
617 }
618
619 static void
fss_inactive(kthread_t * t)620 fss_inactive(kthread_t *t)
621 {
622 fssproc_t *fssproc;
623 fssproj_t *fssproj;
624 fsspset_t *fsspset;
625 fsszone_t *fsszone;
626
627 ASSERT(THREAD_LOCK_HELD(t));
628 fssproc = FSSPROC(t);
629 fssproj = FSSPROC2FSSPROJ(fssproc);
630 if (fssproj == NULL) /* if this thread already exited */
631 return;
632 fsspset = FSSPROJ2FSSPSET(fssproj);
633 fsszone = fssproj->fssp_fsszone;
634 disp_lock_enter_high(&fsspset->fssps_displock);
635 ASSERT(fssproj->fssp_runnable > 0);
636 if (--fssproj->fssp_runnable == 0) {
637 fsszone->fssz_shares -= fssproj->fssp_shares;
638 if (--fsszone->fssz_runnable == 0)
639 fsspset->fssps_shares -= fsszone->fssz_rshares;
640 }
641 ASSERT(fssproc->fss_runnable == 1);
642 fssproc->fss_runnable = 0;
643 disp_lock_exit_high(&fsspset->fssps_displock);
644 }
645
646 static void
fss_active(kthread_t * t)647 fss_active(kthread_t *t)
648 {
649 fssproc_t *fssproc;
650 fssproj_t *fssproj;
651 fsspset_t *fsspset;
652 fsszone_t *fsszone;
653
654 ASSERT(THREAD_LOCK_HELD(t));
655 fssproc = FSSPROC(t);
656 fssproj = FSSPROC2FSSPROJ(fssproc);
657 if (fssproj == NULL) /* if this thread already exited */
658 return;
659 fsspset = FSSPROJ2FSSPSET(fssproj);
660 fsszone = fssproj->fssp_fsszone;
661 disp_lock_enter_high(&fsspset->fssps_displock);
662 if (++fssproj->fssp_runnable == 1) {
663 fsszone->fssz_shares += fssproj->fssp_shares;
664 if (++fsszone->fssz_runnable == 1)
665 fsspset->fssps_shares += fsszone->fssz_rshares;
666 }
667 ASSERT(fssproc->fss_runnable == 0);
668 fssproc->fss_runnable = 1;
669 disp_lock_exit_high(&fsspset->fssps_displock);
670 }
671
672 /*
673 * Fair share scheduler initialization. Called by dispinit() at boot time.
674 * We can ignore clparmsz argument since we know that the smallest possible
675 * parameter buffer is big enough for us.
676 */
677 /*ARGSUSED*/
678 static pri_t
fss_init(id_t cid,int clparmsz,classfuncs_t ** clfuncspp)679 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
680 {
681 int i;
682
683 ASSERT(MUTEX_HELD(&cpu_lock));
684
685 fss_cid = cid;
686 fss_maxumdpri = minclsyspri - 1;
687 fss_maxglobpri = minclsyspri;
688 fss_minglobpri = 0;
689 fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP);
690
691 /*
692 * Initialize the fssproc hash table.
693 */
694 for (i = 0; i < FSS_LISTS; i++)
695 fss_listhead[i].fss_next = fss_listhead[i].fss_prev =
696 &fss_listhead[i];
697
698 *clfuncspp = &fss_classfuncs;
699
700 /*
701 * Fill in fss_nice_tick and fss_nice_decay arrays:
702 * The cost of a tick is lower at positive nice values (so that it
703 * will not increase its project's usage as much as normal) with 50%
704 * drop at the maximum level and 50% increase at the minimum level.
705 * The fsspri decay is slower at positive nice values. fsspri values
706 * of processes with negative nice levels must decay faster to receive
707 * time slices more frequently than normal.
708 */
709 for (i = 0; i < FSS_NICE_RANGE; i++) {
710 fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2)
711 - i)) / FSS_NICE_RANGE;
712 fss_nice_decay[i] = FSS_DECAY_MIN +
713 ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) /
714 (FSS_NICE_RANGE - 1);
715 }
716
717 return (fss_maxglobpri);
718 }
719
720 /*
721 * Calculate the new cpupri based on the usage, the number of shares and
722 * the number of active threads. Reset the tick counter for this thread.
723 */
724 static void
fss_newpri(fssproc_t * fssproc)725 fss_newpri(fssproc_t *fssproc)
726 {
727 kthread_t *tp;
728 fssproj_t *fssproj;
729 fsspset_t *fsspset;
730 fsszone_t *fsszone;
731 fsspri_t fsspri, maxfsspri;
732 pri_t invpri;
733 uint32_t ticks;
734
735 tp = fssproc->fss_tp;
736 ASSERT(tp != NULL);
737
738 if (tp->t_cid != fss_cid)
739 return;
740
741 ASSERT(THREAD_LOCK_HELD(tp));
742
743 fssproj = FSSPROC2FSSPROJ(fssproc);
744 fsszone = FSSPROJ2FSSZONE(fssproj);
745 if (fssproj == NULL)
746 /*
747 * No need to change priority of exited threads.
748 */
749 return;
750
751 fsspset = FSSPROJ2FSSPSET(fssproj);
752 disp_lock_enter_high(&fsspset->fssps_displock);
753
754 if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) {
755 /*
756 * Special case: threads with no shares.
757 */
758 fssproc->fss_umdpri = fss_minglobpri;
759 fssproc->fss_ticks = 0;
760 disp_lock_exit_high(&fsspset->fssps_displock);
761 return;
762 }
763
764 /*
765 * fsspri += shusage * nrunnable * ticks
766 */
767 ticks = fssproc->fss_ticks;
768 fssproc->fss_ticks = 0;
769 fsspri = fssproc->fss_fsspri;
770 fsspri += fssproj->fssp_shusage * fssproj->fssp_runnable * ticks;
771 fssproc->fss_fsspri = fsspri;
772
773 if (fsspri < fss_maxumdpri)
774 fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */
775
776 /*
777 * The general priority formula:
778 *
779 * (fsspri * umdprirange)
780 * pri = maxumdpri - ------------------------
781 * maxfsspri
782 *
783 * If this thread's fsspri is greater than the previous largest
784 * fsspri, then record it as the new high and priority for this
785 * thread will be one (the lowest priority assigned to a thread
786 * that has non-zero shares).
787 * Note that this formula cannot produce out of bounds priority
788 * values; if it is changed, additional checks may need to be
789 * added.
790 */
791 maxfsspri = fsspset->fssps_maxfsspri;
792 if (fsspri >= maxfsspri) {
793 fsspset->fssps_maxfsspri = fsspri;
794 disp_lock_exit_high(&fsspset->fssps_displock);
795 fssproc->fss_umdpri = 1;
796 } else {
797 disp_lock_exit_high(&fsspset->fssps_displock);
798 invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri;
799 fssproc->fss_umdpri = fss_maxumdpri - invpri;
800 }
801 }
802
803 /*
804 * Decays usages of all running projects and resets their tick counters.
805 * Called once per second from fss_update() after updating priorities.
806 */
807 static void
fss_decay_usage()808 fss_decay_usage()
809 {
810 uint32_t zone_ext_shares, zone_int_shares;
811 uint32_t kpj_shares, pset_shares;
812 fsspset_t *fsspset;
813 fssproj_t *fssproj;
814 fsszone_t *fsszone;
815 fsspri_t maxfsspri;
816 int psetid;
817
818 mutex_enter(&fsspsets_lock);
819 /*
820 * Go through all active processor sets and decay usages of projects
821 * running on them.
822 */
823 for (psetid = 0; psetid < max_ncpus; psetid++) {
824 fsspset = &fsspsets[psetid];
825 mutex_enter(&fsspset->fssps_lock);
826
827 if (fsspset->fssps_cpupart == NULL ||
828 (fssproj = fsspset->fssps_list) == NULL) {
829 mutex_exit(&fsspset->fssps_lock);
830 continue;
831 }
832
833 /*
834 * Decay maxfsspri for this cpu partition with the
835 * fastest possible decay rate.
836 */
837 disp_lock_enter(&fsspset->fssps_displock);
838
839 maxfsspri = (fsspset->fssps_maxfsspri *
840 fss_nice_decay[NZERO]) / FSS_DECAY_BASE;
841 if (maxfsspri < fss_maxumdpri)
842 maxfsspri = fss_maxumdpri;
843 fsspset->fssps_maxfsspri = maxfsspri;
844
845 do {
846 /*
847 * Decay usage for each project running on
848 * this cpu partition.
849 */
850 fssproj->fssp_usage =
851 (fssproj->fssp_usage * FSS_DECAY_USG) /
852 FSS_DECAY_BASE + fssproj->fssp_ticks;
853 fssproj->fssp_ticks = 0;
854
855 fsszone = fssproj->fssp_fsszone;
856 /*
857 * Readjust the project's number of shares if it has
858 * changed since we checked it last time.
859 */
860 kpj_shares = fssproj->fssp_proj->kpj_shares;
861 if (fssproj->fssp_shares != kpj_shares) {
862 if (fssproj->fssp_runnable != 0) {
863 fsszone->fssz_shares -=
864 fssproj->fssp_shares;
865 fsszone->fssz_shares += kpj_shares;
866 }
867 fssproj->fssp_shares = kpj_shares;
868 }
869
870 /*
871 * Readjust the zone's number of shares if it
872 * has changed since we checked it last time.
873 */
874 zone_ext_shares = fsszone->fssz_zone->zone_shares;
875 if (fsszone->fssz_rshares != zone_ext_shares) {
876 if (fsszone->fssz_runnable != 0) {
877 fsspset->fssps_shares -=
878 fsszone->fssz_rshares;
879 fsspset->fssps_shares +=
880 zone_ext_shares;
881 }
882 fsszone->fssz_rshares = zone_ext_shares;
883 }
884 zone_int_shares = fsszone->fssz_shares;
885 pset_shares = fsspset->fssps_shares;
886 /*
887 * Calculate fssp_shusage value to be used
888 * for fsspri increments for the next second.
889 */
890 if (kpj_shares == 0 || zone_ext_shares == 0) {
891 fssproj->fssp_shusage = 0;
892 } else if (FSSPROJ2KPROJ(fssproj) == proj0p) {
893 /*
894 * Project 0 in the global zone has 50%
895 * of its zone.
896 */
897 fssproj->fssp_shusage = (fssproj->fssp_usage *
898 zone_int_shares * zone_int_shares) /
899 (zone_ext_shares * zone_ext_shares);
900 } else {
901 /*
902 * Thread's priority is based on its project's
903 * normalized usage (shusage) value which gets
904 * calculated this way:
905 *
906 * pset_shares^2 zone_int_shares^2
907 * usage * ------------- * ------------------
908 * kpj_shares^2 zone_ext_shares^2
909 *
910 * Where zone_int_shares is the sum of shares
911 * of all active projects within the zone (and
912 * the pset), and zone_ext_shares is the number
913 * of zone shares (ie, zone.cpu-shares).
914 *
915 * If there is only one zone active on the pset
916 * the above reduces to:
917 *
918 * zone_int_shares^2
919 * shusage = usage * ---------------------
920 * kpj_shares^2
921 *
922 * If there's only one project active in the
923 * zone this formula reduces to:
924 *
925 * pset_shares^2
926 * shusage = usage * ----------------------
927 * zone_ext_shares^2
928 */
929 fssproj->fssp_shusage = fssproj->fssp_usage *
930 pset_shares * zone_int_shares;
931 fssproj->fssp_shusage /=
932 kpj_shares * zone_ext_shares;
933 fssproj->fssp_shusage *=
934 pset_shares * zone_int_shares;
935 fssproj->fssp_shusage /=
936 kpj_shares * zone_ext_shares;
937 }
938 fssproj = fssproj->fssp_next;
939 } while (fssproj != fsspset->fssps_list);
940
941 disp_lock_exit(&fsspset->fssps_displock);
942 mutex_exit(&fsspset->fssps_lock);
943 }
944 mutex_exit(&fsspsets_lock);
945 }
946
947 static void
fss_change_priority(kthread_t * t,fssproc_t * fssproc)948 fss_change_priority(kthread_t *t, fssproc_t *fssproc)
949 {
950 pri_t new_pri;
951
952 ASSERT(THREAD_LOCK_HELD(t));
953 new_pri = fssproc->fss_umdpri;
954 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
955
956 t->t_cpri = fssproc->fss_upri;
957 fssproc->fss_flags &= ~FSSRESTORE;
958 if (t == curthread || t->t_state == TS_ONPROC) {
959 /*
960 * curthread is always onproc
961 */
962 cpu_t *cp = t->t_disp_queue->disp_cpu;
963 THREAD_CHANGE_PRI(t, new_pri);
964 if (t == cp->cpu_dispthread)
965 cp->cpu_dispatch_pri = DISP_PRIO(t);
966 if (DISP_MUST_SURRENDER(t)) {
967 fssproc->fss_flags |= FSSBACKQ;
968 cpu_surrender(t);
969 } else {
970 fssproc->fss_timeleft = fss_quantum;
971 }
972 } else {
973 /*
974 * When the priority of a thread is changed, it may be
975 * necessary to adjust its position on a sleep queue or
976 * dispatch queue. The function thread_change_pri accomplishes
977 * this.
978 */
979 if (thread_change_pri(t, new_pri, 0)) {
980 /*
981 * The thread was on a run queue.
982 */
983 fssproc->fss_timeleft = fss_quantum;
984 } else {
985 fssproc->fss_flags |= FSSBACKQ;
986 }
987 }
988 }
989
990 /*
991 * Update priorities of all fair-sharing threads that are currently runnable
992 * at a user mode priority based on the number of shares and current usage.
993 * Called once per second via timeout which we reset here.
994 *
995 * There are several lists of fair-sharing threads broken up by a hash on the
996 * thread pointer. Each list has its own lock. This avoids blocking all
997 * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs.
998 * fss_update traverses each list in turn.
999 */
1000 static void
fss_update(void * arg)1001 fss_update(void *arg)
1002 {
1003 int i;
1004 int new_marker = -1;
1005 static int fss_update_marker;
1006
1007 /*
1008 * Decay and update usages for all projects.
1009 */
1010 fss_decay_usage();
1011
1012 /*
1013 * Start with the fss_update_marker list, then do the rest.
1014 */
1015 i = fss_update_marker;
1016
1017 /*
1018 * Go around all threads, set new priorities and decay
1019 * per-thread CPU usages.
1020 */
1021 do {
1022 /*
1023 * If this is the first list after the current marker to have
1024 * threads with priorities updates, advance the marker to this
1025 * list for the next time fss_update runs.
1026 */
1027 if (fss_update_list(i) &&
1028 new_marker == -1 && i != fss_update_marker)
1029 new_marker = i;
1030 } while ((i = FSS_LIST_NEXT(i)) != fss_update_marker);
1031
1032 /*
1033 * Advance marker for the next fss_update call
1034 */
1035 if (new_marker != -1)
1036 fss_update_marker = new_marker;
1037
1038 (void) timeout(fss_update, arg, hz);
1039 }
1040
1041 /*
1042 * Updates priority for a list of threads. Returns 1 if the priority of one
1043 * of the threads was actually updated, 0 if none were for various reasons
1044 * (thread is no longer in the FSS class, is not runnable, has the preemption
1045 * control no-preempt bit set, etc.)
1046 */
1047 static int
fss_update_list(int i)1048 fss_update_list(int i)
1049 {
1050 fssproc_t *fssproc;
1051 fssproj_t *fssproj;
1052 fsspri_t fsspri;
1053 kthread_t *t;
1054 int updated = 0;
1055
1056 mutex_enter(&fss_listlock[i]);
1057 for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i];
1058 fssproc = fssproc->fss_next) {
1059 t = fssproc->fss_tp;
1060 /*
1061 * Lock the thread and verify the state.
1062 */
1063 thread_lock(t);
1064 /*
1065 * Skip the thread if it is no longer in the FSS class or
1066 * is running with kernel mode priority.
1067 */
1068 if (t->t_cid != fss_cid)
1069 goto next;
1070 if ((fssproc->fss_flags & FSSKPRI) != 0)
1071 goto next;
1072
1073 fssproj = FSSPROC2FSSPROJ(fssproc);
1074 if (fssproj == NULL)
1075 goto next;
1076 if (fssproj->fssp_shares != 0) {
1077 /*
1078 * Decay fsspri value.
1079 */
1080 fsspri = fssproc->fss_fsspri;
1081 fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) /
1082 FSS_DECAY_BASE;
1083 fssproc->fss_fsspri = fsspri;
1084 }
1085
1086 if (t->t_schedctl && schedctl_get_nopreempt(t))
1087 goto next;
1088 if (t->t_state != TS_RUN && t->t_state != TS_WAIT) {
1089 /*
1090 * Make next syscall/trap call fss_trapret
1091 */
1092 t->t_trapret = 1;
1093 aston(t);
1094 goto next;
1095 }
1096 fss_newpri(fssproc);
1097 updated = 1;
1098
1099 /*
1100 * Only dequeue the thread if it needs to be moved; otherwise
1101 * it should just round-robin here.
1102 */
1103 if (t->t_pri != fssproc->fss_umdpri)
1104 fss_change_priority(t, fssproc);
1105 next:
1106 thread_unlock(t);
1107 }
1108 mutex_exit(&fss_listlock[i]);
1109 return (updated);
1110 }
1111
1112 /*ARGSUSED*/
1113 static int
fss_admin(caddr_t uaddr,cred_t * reqpcredp)1114 fss_admin(caddr_t uaddr, cred_t *reqpcredp)
1115 {
1116 fssadmin_t fssadmin;
1117
1118 if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t)))
1119 return (EFAULT);
1120
1121 switch (fssadmin.fss_cmd) {
1122 case FSS_SETADMIN:
1123 if (secpolicy_dispadm(reqpcredp) != 0)
1124 return (EPERM);
1125 if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz)
1126 return (EINVAL);
1127 fss_quantum = fssadmin.fss_quantum;
1128 break;
1129 case FSS_GETADMIN:
1130 fssadmin.fss_quantum = fss_quantum;
1131 if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t)))
1132 return (EFAULT);
1133 break;
1134 default:
1135 return (EINVAL);
1136 }
1137 return (0);
1138 }
1139
1140 static int
fss_getclinfo(void * infop)1141 fss_getclinfo(void *infop)
1142 {
1143 fssinfo_t *fssinfo = (fssinfo_t *)infop;
1144 fssinfo->fss_maxupri = fss_maxupri;
1145 return (0);
1146 }
1147
1148 static int
fss_parmsin(void * parmsp)1149 fss_parmsin(void *parmsp)
1150 {
1151 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1152
1153 /*
1154 * Check validity of parameters.
1155 */
1156 if ((fssparmsp->fss_uprilim > fss_maxupri ||
1157 fssparmsp->fss_uprilim < -fss_maxupri) &&
1158 fssparmsp->fss_uprilim != FSS_NOCHANGE)
1159 return (EINVAL);
1160
1161 if ((fssparmsp->fss_upri > fss_maxupri ||
1162 fssparmsp->fss_upri < -fss_maxupri) &&
1163 fssparmsp->fss_upri != FSS_NOCHANGE)
1164 return (EINVAL);
1165
1166 return (0);
1167 }
1168
1169 /*ARGSUSED*/
1170 static int
fss_parmsout(void * parmsp,pc_vaparms_t * vaparmsp)1171 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1172 {
1173 return (0);
1174 }
1175
1176 static int
fss_vaparmsin(void * parmsp,pc_vaparms_t * vaparmsp)1177 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
1178 {
1179 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1180 int priflag = 0;
1181 int limflag = 0;
1182 uint_t cnt;
1183 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1184
1185 /*
1186 * FSS_NOCHANGE (-32768) is outside of the range of values for
1187 * fss_uprilim and fss_upri. If the structure fssparms_t is changed,
1188 * FSS_NOCHANGE should be replaced by a flag word.
1189 */
1190 fssparmsp->fss_uprilim = FSS_NOCHANGE;
1191 fssparmsp->fss_upri = FSS_NOCHANGE;
1192
1193 /*
1194 * Get the varargs parameter and check validity of parameters.
1195 */
1196 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1197 return (EINVAL);
1198
1199 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1200 switch (vpp->pc_key) {
1201 case FSS_KY_UPRILIM:
1202 if (limflag++)
1203 return (EINVAL);
1204 fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm;
1205 if (fssparmsp->fss_uprilim > fss_maxupri ||
1206 fssparmsp->fss_uprilim < -fss_maxupri)
1207 return (EINVAL);
1208 break;
1209 case FSS_KY_UPRI:
1210 if (priflag++)
1211 return (EINVAL);
1212 fssparmsp->fss_upri = (pri_t)vpp->pc_parm;
1213 if (fssparmsp->fss_upri > fss_maxupri ||
1214 fssparmsp->fss_upri < -fss_maxupri)
1215 return (EINVAL);
1216 break;
1217 default:
1218 return (EINVAL);
1219 }
1220 }
1221
1222 if (vaparmsp->pc_vaparmscnt == 0) {
1223 /*
1224 * Use default parameters.
1225 */
1226 fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0;
1227 }
1228
1229 return (0);
1230 }
1231
1232 /*
1233 * Copy all selected fair-sharing class parameters to the user. The parameters
1234 * are specified by a key.
1235 */
1236 static int
fss_vaparmsout(void * parmsp,pc_vaparms_t * vaparmsp)1237 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1238 {
1239 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1240 int priflag = 0;
1241 int limflag = 0;
1242 uint_t cnt;
1243 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1244
1245 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1246
1247 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1248 return (EINVAL);
1249
1250 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1251 switch (vpp->pc_key) {
1252 case FSS_KY_UPRILIM:
1253 if (limflag++)
1254 return (EINVAL);
1255 if (copyout(&fssparmsp->fss_uprilim,
1256 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1257 return (EFAULT);
1258 break;
1259 case FSS_KY_UPRI:
1260 if (priflag++)
1261 return (EINVAL);
1262 if (copyout(&fssparmsp->fss_upri,
1263 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1264 return (EFAULT);
1265 break;
1266 default:
1267 return (EINVAL);
1268 }
1269 }
1270
1271 return (0);
1272 }
1273
1274 /*
1275 * Return the user mode scheduling priority range.
1276 */
1277 static int
fss_getclpri(pcpri_t * pcprip)1278 fss_getclpri(pcpri_t *pcprip)
1279 {
1280 pcprip->pc_clpmax = fss_maxupri;
1281 pcprip->pc_clpmin = -fss_maxupri;
1282 return (0);
1283 }
1284
1285 static int
fss_alloc(void ** p,int flag)1286 fss_alloc(void **p, int flag)
1287 {
1288 void *bufp;
1289
1290 if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) {
1291 return (ENOMEM);
1292 } else {
1293 *p = bufp;
1294 return (0);
1295 }
1296 }
1297
1298 static void
fss_free(void * bufp)1299 fss_free(void *bufp)
1300 {
1301 if (bufp)
1302 kmem_free(bufp, sizeof (fssproc_t));
1303 }
1304
1305 /*
1306 * Thread functions
1307 */
1308 static int
fss_enterclass(kthread_t * t,id_t cid,void * parmsp,cred_t * reqpcredp,void * bufp)1309 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
1310 void *bufp)
1311 {
1312 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1313 fssproc_t *fssproc;
1314 pri_t reqfssuprilim;
1315 pri_t reqfssupri;
1316 static uint32_t fssexists = 0;
1317 fsspset_t *fsspset;
1318 fssproj_t *fssproj;
1319 fsszone_t *fsszone;
1320 kproject_t *kpj;
1321 zone_t *zone;
1322 int fsszone_allocated = 0;
1323
1324 fssproc = (fssproc_t *)bufp;
1325 ASSERT(fssproc != NULL);
1326
1327 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1328
1329 /*
1330 * Only root can move threads to FSS class.
1331 */
1332 if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0)
1333 return (EPERM);
1334 /*
1335 * Initialize the fssproc structure.
1336 */
1337 fssproc->fss_umdpri = fss_maxumdpri / 2;
1338
1339 if (fssparmsp == NULL) {
1340 /*
1341 * Use default values.
1342 */
1343 fssproc->fss_nice = NZERO;
1344 fssproc->fss_uprilim = fssproc->fss_upri = 0;
1345 } else {
1346 /*
1347 * Use supplied values.
1348 */
1349 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) {
1350 reqfssuprilim = 0;
1351 } else {
1352 if (fssparmsp->fss_uprilim > 0 &&
1353 secpolicy_setpriority(reqpcredp) != 0)
1354 return (EPERM);
1355 reqfssuprilim = fssparmsp->fss_uprilim;
1356 }
1357 if (fssparmsp->fss_upri == FSS_NOCHANGE) {
1358 reqfssupri = reqfssuprilim;
1359 } else {
1360 if (fssparmsp->fss_upri > 0 &&
1361 secpolicy_setpriority(reqpcredp) != 0)
1362 return (EPERM);
1363 /*
1364 * Set the user priority to the requested value or
1365 * the upri limit, whichever is lower.
1366 */
1367 reqfssupri = fssparmsp->fss_upri;
1368 if (reqfssupri > reqfssuprilim)
1369 reqfssupri = reqfssuprilim;
1370 }
1371 fssproc->fss_uprilim = reqfssuprilim;
1372 fssproc->fss_upri = reqfssupri;
1373 fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri;
1374 if (fssproc->fss_nice > FSS_NICE_MAX)
1375 fssproc->fss_nice = FSS_NICE_MAX;
1376 }
1377
1378 fssproc->fss_timeleft = fss_quantum;
1379 fssproc->fss_tp = t;
1380 cpucaps_sc_init(&fssproc->fss_caps);
1381
1382 /*
1383 * Put a lock on our fsspset structure.
1384 */
1385 mutex_enter(&fsspsets_lock);
1386 fsspset = fss_find_fsspset(t->t_cpupart);
1387 mutex_enter(&fsspset->fssps_lock);
1388 mutex_exit(&fsspsets_lock);
1389
1390 zone = ttoproc(t)->p_zone;
1391 if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) {
1392 if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP))
1393 == NULL) {
1394 mutex_exit(&fsspset->fssps_lock);
1395 return (ENOMEM);
1396 } else {
1397 fsszone_allocated = 1;
1398 fss_insert_fsszone(fsspset, zone, fsszone);
1399 }
1400 }
1401 kpj = ttoproj(t);
1402 if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) {
1403 if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP))
1404 == NULL) {
1405 if (fsszone_allocated) {
1406 fss_remove_fsszone(fsspset, fsszone);
1407 kmem_free(fsszone, sizeof (fsszone_t));
1408 }
1409 mutex_exit(&fsspset->fssps_lock);
1410 return (ENOMEM);
1411 } else {
1412 fss_insert_fssproj(fsspset, kpj, fsszone, fssproj);
1413 }
1414 }
1415 fssproj->fssp_threads++;
1416 fssproc->fss_proj = fssproj;
1417
1418 /*
1419 * Reset priority. Process goes to a "user mode" priority here
1420 * regardless of whether or not it has slept since entering the kernel.
1421 */
1422 thread_lock(t);
1423 t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
1424 t->t_cid = cid;
1425 t->t_cldata = (void *)fssproc;
1426 t->t_schedflag |= TS_RUNQMATCH;
1427 fss_change_priority(t, fssproc);
1428 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
1429 t->t_state == TS_WAIT)
1430 fss_active(t);
1431 thread_unlock(t);
1432
1433 mutex_exit(&fsspset->fssps_lock);
1434
1435 /*
1436 * Link new structure into fssproc list.
1437 */
1438 FSS_LIST_INSERT(fssproc);
1439
1440 /*
1441 * If this is the first fair-sharing thread to occur since boot,
1442 * we set up the initial call to fss_update() here. Use an atomic
1443 * compare-and-swap since that's easier and faster than a mutex
1444 * (but check with an ordinary load first since most of the time
1445 * this will already be done).
1446 */
1447 if (fssexists == 0 && cas32(&fssexists, 0, 1) == 0)
1448 (void) timeout(fss_update, NULL, hz);
1449
1450 return (0);
1451 }
1452
1453 /*
1454 * Remove fssproc_t from the list.
1455 */
1456 static void
fss_exitclass(void * procp)1457 fss_exitclass(void *procp)
1458 {
1459 fssproc_t *fssproc = (fssproc_t *)procp;
1460 fssproj_t *fssproj;
1461 fsspset_t *fsspset;
1462 fsszone_t *fsszone;
1463 kthread_t *t = fssproc->fss_tp;
1464
1465 /*
1466 * We should be either getting this thread off the deathrow or
1467 * this thread has already moved to another scheduling class and
1468 * we're being called with its old cldata buffer pointer. In both
1469 * cases, the content of this buffer can not be changed while we're
1470 * here.
1471 */
1472 mutex_enter(&fsspsets_lock);
1473 thread_lock(t);
1474 if (t->t_cid != fss_cid) {
1475 /*
1476 * We're being called as a result of the priocntl() system
1477 * call -- someone is trying to move our thread to another
1478 * scheduling class. We can't call fss_inactive() here
1479 * because our thread's t_cldata pointer already points
1480 * to another scheduling class specific data.
1481 */
1482 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1483
1484 fssproj = FSSPROC2FSSPROJ(fssproc);
1485 fsspset = FSSPROJ2FSSPSET(fssproj);
1486 fsszone = fssproj->fssp_fsszone;
1487
1488 if (fssproc->fss_runnable) {
1489 disp_lock_enter_high(&fsspset->fssps_displock);
1490 if (--fssproj->fssp_runnable == 0) {
1491 fsszone->fssz_shares -= fssproj->fssp_shares;
1492 if (--fsszone->fssz_runnable == 0)
1493 fsspset->fssps_shares -=
1494 fsszone->fssz_rshares;
1495 }
1496 disp_lock_exit_high(&fsspset->fssps_displock);
1497 }
1498 thread_unlock(t);
1499
1500 mutex_enter(&fsspset->fssps_lock);
1501 if (--fssproj->fssp_threads == 0) {
1502 fss_remove_fssproj(fsspset, fssproj);
1503 if (fsszone->fssz_nproj == 0)
1504 kmem_free(fsszone, sizeof (fsszone_t));
1505 kmem_free(fssproj, sizeof (fssproj_t));
1506 }
1507 mutex_exit(&fsspset->fssps_lock);
1508
1509 } else {
1510 ASSERT(t->t_state == TS_FREE);
1511 /*
1512 * We're being called from thread_free() when our thread
1513 * is removed from the deathrow. There is nothing we need
1514 * do here since everything should've been done earlier
1515 * in fss_exit().
1516 */
1517 thread_unlock(t);
1518 }
1519 mutex_exit(&fsspsets_lock);
1520
1521 FSS_LIST_DELETE(fssproc);
1522 fss_free(fssproc);
1523 }
1524
1525 /*ARGSUSED*/
1526 static int
fss_canexit(kthread_t * t,cred_t * credp)1527 fss_canexit(kthread_t *t, cred_t *credp)
1528 {
1529 /*
1530 * A thread is allowed to exit FSS only if we have sufficient
1531 * privileges.
1532 */
1533 if (credp != NULL && secpolicy_setpriority(credp) != 0)
1534 return (EPERM);
1535 else
1536 return (0);
1537 }
1538
1539 /*
1540 * Initialize fair-share class specific proc structure for a child.
1541 */
1542 static int
fss_fork(kthread_t * pt,kthread_t * ct,void * bufp)1543 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp)
1544 {
1545 fssproc_t *pfssproc; /* ptr to parent's fssproc structure */
1546 fssproc_t *cfssproc; /* ptr to child's fssproc structure */
1547 fssproj_t *fssproj;
1548 fsspset_t *fsspset;
1549
1550 ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock));
1551 ASSERT(ct->t_state == TS_STOPPED);
1552
1553 cfssproc = (fssproc_t *)bufp;
1554 ASSERT(cfssproc != NULL);
1555 bzero(cfssproc, sizeof (fssproc_t));
1556
1557 thread_lock(pt);
1558 pfssproc = FSSPROC(pt);
1559 fssproj = FSSPROC2FSSPROJ(pfssproc);
1560 fsspset = FSSPROJ2FSSPSET(fssproj);
1561 thread_unlock(pt);
1562
1563 mutex_enter(&fsspset->fssps_lock);
1564 /*
1565 * Initialize child's fssproc structure.
1566 */
1567 thread_lock(pt);
1568 ASSERT(FSSPROJ(pt) == fssproj);
1569 cfssproc->fss_proj = fssproj;
1570 cfssproc->fss_timeleft = fss_quantum;
1571 cfssproc->fss_umdpri = pfssproc->fss_umdpri;
1572 cfssproc->fss_fsspri = 0;
1573 cfssproc->fss_uprilim = pfssproc->fss_uprilim;
1574 cfssproc->fss_upri = pfssproc->fss_upri;
1575 cfssproc->fss_tp = ct;
1576 cfssproc->fss_nice = pfssproc->fss_nice;
1577 cpucaps_sc_init(&cfssproc->fss_caps);
1578
1579 cfssproc->fss_flags =
1580 pfssproc->fss_flags & ~(FSSKPRI | FSSBACKQ | FSSRESTORE);
1581 ct->t_cldata = (void *)cfssproc;
1582 ct->t_schedflag |= TS_RUNQMATCH;
1583 thread_unlock(pt);
1584
1585 fssproj->fssp_threads++;
1586 mutex_exit(&fsspset->fssps_lock);
1587
1588 /*
1589 * Link new structure into fssproc hash table.
1590 */
1591 FSS_LIST_INSERT(cfssproc);
1592 return (0);
1593 }
1594
1595 /*
1596 * Child is placed at back of dispatcher queue and parent gives up processor
1597 * so that the child runs first after the fork. This allows the child
1598 * immediately execing to break the multiple use of copy on write pages with no
1599 * disk home. The parent will get to steal them back rather than uselessly
1600 * copying them.
1601 */
1602 static void
fss_forkret(kthread_t * t,kthread_t * ct)1603 fss_forkret(kthread_t *t, kthread_t *ct)
1604 {
1605 proc_t *pp = ttoproc(t);
1606 proc_t *cp = ttoproc(ct);
1607 fssproc_t *fssproc;
1608
1609 ASSERT(t == curthread);
1610 ASSERT(MUTEX_HELD(&pidlock));
1611
1612 /*
1613 * Grab the child's p_lock before dropping pidlock to ensure the
1614 * process does not disappear before we set it running.
1615 */
1616 mutex_enter(&cp->p_lock);
1617 continuelwps(cp);
1618 mutex_exit(&cp->p_lock);
1619
1620 mutex_enter(&pp->p_lock);
1621 mutex_exit(&pidlock);
1622 continuelwps(pp);
1623
1624 thread_lock(t);
1625
1626 fssproc = FSSPROC(t);
1627 fss_newpri(fssproc);
1628 fssproc->fss_timeleft = fss_quantum;
1629 t->t_pri = fssproc->fss_umdpri;
1630 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1631 fssproc->fss_flags &= ~FSSKPRI;
1632 THREAD_TRANSITION(t);
1633
1634 /*
1635 * We don't want to call fss_setrun(t) here because it may call
1636 * fss_active, which we don't need.
1637 */
1638 fssproc->fss_flags &= ~FSSBACKQ;
1639
1640 if (t->t_disp_time != ddi_get_lbolt())
1641 setbackdq(t);
1642 else
1643 setfrontdq(t);
1644
1645 thread_unlock(t);
1646 /*
1647 * Safe to drop p_lock now since it is safe to change
1648 * the scheduling class after this point.
1649 */
1650 mutex_exit(&pp->p_lock);
1651
1652 swtch();
1653 }
1654
1655 /*
1656 * Get the fair-sharing parameters of the thread pointed to by fssprocp into
1657 * the buffer pointed by fssparmsp.
1658 */
1659 static void
fss_parmsget(kthread_t * t,void * parmsp)1660 fss_parmsget(kthread_t *t, void *parmsp)
1661 {
1662 fssproc_t *fssproc = FSSPROC(t);
1663 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1664
1665 fssparmsp->fss_uprilim = fssproc->fss_uprilim;
1666 fssparmsp->fss_upri = fssproc->fss_upri;
1667 }
1668
1669 /*ARGSUSED*/
1670 static int
fss_parmsset(kthread_t * t,void * parmsp,id_t reqpcid,cred_t * reqpcredp)1671 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1672 {
1673 char nice;
1674 pri_t reqfssuprilim;
1675 pri_t reqfssupri;
1676 fssproc_t *fssproc = FSSPROC(t);
1677 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1678
1679 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1680
1681 if (fssparmsp->fss_uprilim == FSS_NOCHANGE)
1682 reqfssuprilim = fssproc->fss_uprilim;
1683 else
1684 reqfssuprilim = fssparmsp->fss_uprilim;
1685
1686 if (fssparmsp->fss_upri == FSS_NOCHANGE)
1687 reqfssupri = fssproc->fss_upri;
1688 else
1689 reqfssupri = fssparmsp->fss_upri;
1690
1691 /*
1692 * Make sure the user priority doesn't exceed the upri limit.
1693 */
1694 if (reqfssupri > reqfssuprilim)
1695 reqfssupri = reqfssuprilim;
1696
1697 /*
1698 * Basic permissions enforced by generic kernel code for all classes
1699 * require that a thread attempting to change the scheduling parameters
1700 * of a target thread be privileged or have a real or effective UID
1701 * matching that of the target thread. We are not called unless these
1702 * basic permission checks have already passed. The fair-sharing class
1703 * requires in addition that the calling thread be privileged if it
1704 * is attempting to raise the upri limit above its current value.
1705 * This may have been checked previously but if our caller passed us
1706 * a non-NULL credential pointer we assume it hasn't and we check it
1707 * here.
1708 */
1709 if ((reqpcredp != NULL) &&
1710 (reqfssuprilim > fssproc->fss_uprilim) &&
1711 secpolicy_setpriority(reqpcredp) != 0)
1712 return (EPERM);
1713
1714 /*
1715 * Set fss_nice to the nice value corresponding to the user priority we
1716 * are setting. Note that setting the nice field of the parameter
1717 * struct won't affect upri or nice.
1718 */
1719 nice = NZERO - (reqfssupri * NZERO) / fss_maxupri;
1720 if (nice > FSS_NICE_MAX)
1721 nice = FSS_NICE_MAX;
1722
1723 thread_lock(t);
1724
1725 fssproc->fss_uprilim = reqfssuprilim;
1726 fssproc->fss_upri = reqfssupri;
1727 fssproc->fss_nice = nice;
1728 fss_newpri(fssproc);
1729
1730 if ((fssproc->fss_flags & FSSKPRI) != 0) {
1731 thread_unlock(t);
1732 return (0);
1733 }
1734
1735 fss_change_priority(t, fssproc);
1736 thread_unlock(t);
1737 return (0);
1738
1739 }
1740
1741 /*
1742 * The thread is being stopped.
1743 */
1744 /*ARGSUSED*/
1745 static void
fss_stop(kthread_t * t,int why,int what)1746 fss_stop(kthread_t *t, int why, int what)
1747 {
1748 ASSERT(THREAD_LOCK_HELD(t));
1749 ASSERT(t == curthread);
1750
1751 fss_inactive(t);
1752 }
1753
1754 /*
1755 * The current thread is exiting, do necessary adjustments to its project
1756 */
1757 static void
fss_exit(kthread_t * t)1758 fss_exit(kthread_t *t)
1759 {
1760 fsspset_t *fsspset;
1761 fssproj_t *fssproj;
1762 fssproc_t *fssproc;
1763 fsszone_t *fsszone;
1764 int free = 0;
1765
1766 /*
1767 * Thread t here is either a current thread (in which case we hold
1768 * its process' p_lock), or a thread being destroyed by forklwp_fail(),
1769 * in which case we hold pidlock and thread is no longer on the
1770 * thread list.
1771 */
1772 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock));
1773
1774 fssproc = FSSPROC(t);
1775 fssproj = FSSPROC2FSSPROJ(fssproc);
1776 fsspset = FSSPROJ2FSSPSET(fssproj);
1777 fsszone = fssproj->fssp_fsszone;
1778
1779 mutex_enter(&fsspsets_lock);
1780 mutex_enter(&fsspset->fssps_lock);
1781
1782 thread_lock(t);
1783 disp_lock_enter_high(&fsspset->fssps_displock);
1784 if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) {
1785 if (--fssproj->fssp_runnable == 0) {
1786 fsszone->fssz_shares -= fssproj->fssp_shares;
1787 if (--fsszone->fssz_runnable == 0)
1788 fsspset->fssps_shares -= fsszone->fssz_rshares;
1789 }
1790 ASSERT(fssproc->fss_runnable == 1);
1791 fssproc->fss_runnable = 0;
1792 }
1793 if (--fssproj->fssp_threads == 0) {
1794 fss_remove_fssproj(fsspset, fssproj);
1795 free = 1;
1796 }
1797 disp_lock_exit_high(&fsspset->fssps_displock);
1798 fssproc->fss_proj = NULL; /* mark this thread as already exited */
1799 thread_unlock(t);
1800
1801 if (free) {
1802 if (fsszone->fssz_nproj == 0)
1803 kmem_free(fsszone, sizeof (fsszone_t));
1804 kmem_free(fssproj, sizeof (fssproj_t));
1805 }
1806 mutex_exit(&fsspset->fssps_lock);
1807 mutex_exit(&fsspsets_lock);
1808
1809 /*
1810 * A thread could be exiting in between clock ticks, so we need to
1811 * calculate how much CPU time it used since it was charged last time.
1812 *
1813 * CPU caps are not enforced on exiting processes - it is usually
1814 * desirable to exit as soon as possible to free resources.
1815 */
1816 if (CPUCAPS_ON()) {
1817 thread_lock(t);
1818 fssproc = FSSPROC(t);
1819 (void) cpucaps_charge(t, &fssproc->fss_caps,
1820 CPUCAPS_CHARGE_ONLY);
1821 thread_unlock(t);
1822 }
1823 }
1824
1825 static void
fss_nullsys()1826 fss_nullsys()
1827 {
1828 }
1829
1830 /*
1831 * fss_swapin() returns -1 if the thread is loaded or is not eligible to be
1832 * swapped in. Otherwise, it returns the thread's effective priority based
1833 * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX).
1834 */
1835 /*ARGSUSED*/
1836 static pri_t
fss_swapin(kthread_t * t,int flags)1837 fss_swapin(kthread_t *t, int flags)
1838 {
1839 fssproc_t *fssproc = FSSPROC(t);
1840 long epri = -1;
1841 proc_t *pp = ttoproc(t);
1842
1843 ASSERT(THREAD_LOCK_HELD(t));
1844
1845 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1846 time_t swapout_time;
1847
1848 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz;
1849 if (INHERITED(t) || (fssproc->fss_flags & FSSKPRI)) {
1850 epri = (long)DISP_PRIO(t) + swapout_time;
1851 } else {
1852 /*
1853 * Threads which have been out for a long time,
1854 * have high user mode priority and are associated
1855 * with a small address space are more deserving.
1856 */
1857 epri = fssproc->fss_umdpri;
1858 ASSERT(epri >= 0 && epri <= fss_maxumdpri);
1859 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2;
1860 }
1861 /*
1862 * Scale epri so that SHRT_MAX / 2 represents zero priority.
1863 */
1864 epri += SHRT_MAX / 2;
1865 if (epri < 0)
1866 epri = 0;
1867 else if (epri > SHRT_MAX)
1868 epri = SHRT_MAX;
1869 }
1870 return ((pri_t)epri);
1871 }
1872
1873 /*
1874 * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to
1875 * be swapped out. Otherwise, it returns the thread's effective priority
1876 * based on if the swapper is in softswap or hardswap mode.
1877 */
1878 static pri_t
fss_swapout(kthread_t * t,int flags)1879 fss_swapout(kthread_t *t, int flags)
1880 {
1881 fssproc_t *fssproc = FSSPROC(t);
1882 long epri = -1;
1883 proc_t *pp = ttoproc(t);
1884 time_t swapin_time;
1885
1886 ASSERT(THREAD_LOCK_HELD(t));
1887
1888 if (INHERITED(t) ||
1889 (fssproc->fss_flags & FSSKPRI) ||
1890 (t->t_proc_flag & TP_LWPEXIT) ||
1891 (t->t_state & (TS_ZOMB|TS_FREE|TS_STOPPED|TS_ONPROC|TS_WAIT)) ||
1892 !(t->t_schedflag & TS_LOAD) ||
1893 !(SWAP_OK(t)))
1894 return (-1);
1895
1896 ASSERT(t->t_state & (TS_SLEEP | TS_RUN));
1897
1898 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz;
1899
1900 if (flags == SOFTSWAP) {
1901 if (t->t_state == TS_SLEEP && swapin_time > maxslp) {
1902 epri = 0;
1903 } else {
1904 return ((pri_t)epri);
1905 }
1906 } else {
1907 pri_t pri;
1908
1909 if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) ||
1910 (t->t_state == TS_RUN && swapin_time > fss_minrun)) {
1911 pri = fss_maxumdpri;
1912 epri = swapin_time -
1913 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri;
1914 } else {
1915 return ((pri_t)epri);
1916 }
1917 }
1918
1919 /*
1920 * Scale epri so that SHRT_MAX / 2 represents zero priority.
1921 */
1922 epri += SHRT_MAX / 2;
1923 if (epri < 0)
1924 epri = 0;
1925 else if (epri > SHRT_MAX)
1926 epri = SHRT_MAX;
1927
1928 return ((pri_t)epri);
1929 }
1930
1931 /*
1932 * If thread is currently at a kernel mode priority (has slept) and is
1933 * returning to the userland we assign it the appropriate user mode priority
1934 * and time quantum here. If we're lowering the thread's priority below that
1935 * of other runnable threads then we will set runrun via cpu_surrender() to
1936 * cause preemption.
1937 */
1938 static void
fss_trapret(kthread_t * t)1939 fss_trapret(kthread_t *t)
1940 {
1941 fssproc_t *fssproc = FSSPROC(t);
1942 cpu_t *cp = CPU;
1943
1944 ASSERT(THREAD_LOCK_HELD(t));
1945 ASSERT(t == curthread);
1946 ASSERT(cp->cpu_dispthread == t);
1947 ASSERT(t->t_state == TS_ONPROC);
1948
1949 t->t_kpri_req = 0;
1950 if (fssproc->fss_flags & FSSKPRI) {
1951 /*
1952 * If thread has blocked in the kernel
1953 */
1954 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
1955 cp->cpu_dispatch_pri = DISP_PRIO(t);
1956 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1957 fssproc->fss_flags &= ~FSSKPRI;
1958
1959 if (DISP_MUST_SURRENDER(t))
1960 cpu_surrender(t);
1961 }
1962
1963 /*
1964 * Swapout lwp if the swapper is waiting for this thread to reach
1965 * a safe point.
1966 */
1967 if (t->t_schedflag & TS_SWAPENQ) {
1968 thread_unlock(t);
1969 swapout_lwp(ttolwp(t));
1970 thread_lock(t);
1971 }
1972 }
1973
1974 /*
1975 * Arrange for thread to be placed in appropriate location on dispatcher queue.
1976 * This is called with the current thread in TS_ONPROC and locked.
1977 */
1978 static void
fss_preempt(kthread_t * t)1979 fss_preempt(kthread_t *t)
1980 {
1981 fssproc_t *fssproc = FSSPROC(t);
1982 klwp_t *lwp;
1983 uint_t flags;
1984
1985 ASSERT(t == curthread);
1986 ASSERT(THREAD_LOCK_HELD(curthread));
1987 ASSERT(t->t_state == TS_ONPROC);
1988
1989 /*
1990 * If preempted in the kernel, make sure the thread has a kernel
1991 * priority if needed.
1992 */
1993 lwp = curthread->t_lwp;
1994 if (!(fssproc->fss_flags & FSSKPRI) && lwp != NULL && t->t_kpri_req) {
1995 fssproc->fss_flags |= FSSKPRI;
1996 THREAD_CHANGE_PRI(t, minclsyspri);
1997 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1998 t->t_trapret = 1; /* so that fss_trapret will run */
1999 aston(t);
2000 }
2001
2002 /*
2003 * This thread may be placed on wait queue by CPU Caps. In this case we
2004 * do not need to do anything until it is removed from the wait queue.
2005 * Do not enforce CPU caps on threads running at a kernel priority
2006 */
2007 if (CPUCAPS_ON()) {
2008 (void) cpucaps_charge(t, &fssproc->fss_caps,
2009 CPUCAPS_CHARGE_ENFORCE);
2010
2011 if (!(fssproc->fss_flags & FSSKPRI) && CPUCAPS_ENFORCE(t))
2012 return;
2013 }
2014
2015 /*
2016 * If preempted in user-land mark the thread as swappable because it
2017 * cannot be holding any kernel locks.
2018 */
2019 ASSERT(t->t_schedflag & TS_DONT_SWAP);
2020 if (lwp != NULL && lwp->lwp_state == LWP_USER)
2021 t->t_schedflag &= ~TS_DONT_SWAP;
2022
2023 /*
2024 * Check to see if we're doing "preemption control" here. If
2025 * we are, and if the user has requested that this thread not
2026 * be preempted, and if preemptions haven't been put off for
2027 * too long, let the preemption happen here but try to make
2028 * sure the thread is rescheduled as soon as possible. We do
2029 * this by putting it on the front of the highest priority run
2030 * queue in the FSS class. If the preemption has been put off
2031 * for too long, clear the "nopreempt" bit and let the thread
2032 * be preempted.
2033 */
2034 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
2035 if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
2036 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
2037 if (!(fssproc->fss_flags & FSSKPRI)) {
2038 /*
2039 * If not already remembered, remember current
2040 * priority for restoration in fss_yield().
2041 */
2042 if (!(fssproc->fss_flags & FSSRESTORE)) {
2043 fssproc->fss_scpri = t->t_pri;
2044 fssproc->fss_flags |= FSSRESTORE;
2045 }
2046 THREAD_CHANGE_PRI(t, fss_maxumdpri);
2047 t->t_schedflag |= TS_DONT_SWAP;
2048 }
2049 schedctl_set_yield(t, 1);
2050 setfrontdq(t);
2051 return;
2052 } else {
2053 if (fssproc->fss_flags & FSSRESTORE) {
2054 THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
2055 fssproc->fss_flags &= ~FSSRESTORE;
2056 }
2057 schedctl_set_nopreempt(t, 0);
2058 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
2059 /*
2060 * Fall through and be preempted below.
2061 */
2062 }
2063 }
2064
2065 flags = fssproc->fss_flags & (FSSBACKQ | FSSKPRI);
2066
2067 if (flags == FSSBACKQ) {
2068 fssproc->fss_timeleft = fss_quantum;
2069 fssproc->fss_flags &= ~FSSBACKQ;
2070 setbackdq(t);
2071 } else if (flags == (FSSBACKQ | FSSKPRI)) {
2072 fssproc->fss_flags &= ~FSSBACKQ;
2073 setbackdq(t);
2074 } else {
2075 setfrontdq(t);
2076 }
2077 }
2078
2079 /*
2080 * Called when a thread is waking up and is to be placed on the run queue.
2081 */
2082 static void
fss_setrun(kthread_t * t)2083 fss_setrun(kthread_t *t)
2084 {
2085 fssproc_t *fssproc = FSSPROC(t);
2086
2087 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
2088
2089 if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED)
2090 fss_active(t);
2091
2092 fssproc->fss_timeleft = fss_quantum;
2093
2094 fssproc->fss_flags &= ~FSSBACKQ;
2095 /*
2096 * If previously were running at the kernel priority then keep that
2097 * priority and the fss_timeleft doesn't matter.
2098 */
2099 if ((fssproc->fss_flags & FSSKPRI) == 0)
2100 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2101
2102 if (t->t_disp_time != ddi_get_lbolt())
2103 setbackdq(t);
2104 else
2105 setfrontdq(t);
2106 }
2107
2108 /*
2109 * Prepare thread for sleep. We reset the thread priority so it will run at the
2110 * kernel priority level when it wakes up.
2111 */
2112 static void
fss_sleep(kthread_t * t)2113 fss_sleep(kthread_t *t)
2114 {
2115 fssproc_t *fssproc = FSSPROC(t);
2116
2117 ASSERT(t == curthread);
2118 ASSERT(THREAD_LOCK_HELD(t));
2119
2120 ASSERT(t->t_state == TS_ONPROC);
2121
2122 /*
2123 * Account for time spent on CPU before going to sleep.
2124 */
2125 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
2126
2127 fss_inactive(t);
2128
2129 /*
2130 * Assign a system priority to the thread and arrange for it to be
2131 * retained when the thread is next placed on the run queue (i.e.,
2132 * when it wakes up) instead of being given a new pri. Also arrange
2133 * for trapret processing as the thread leaves the system call so it
2134 * will drop back to normal priority range.
2135 */
2136 if (t->t_kpri_req) {
2137 THREAD_CHANGE_PRI(t, minclsyspri);
2138 fssproc->fss_flags |= FSSKPRI;
2139 t->t_trapret = 1; /* so that fss_trapret will run */
2140 aston(t);
2141 } else if (fssproc->fss_flags & FSSKPRI) {
2142 /*
2143 * The thread has done a THREAD_KPRI_REQUEST(), slept, then
2144 * done THREAD_KPRI_RELEASE() (so no t_kpri_req is 0 again),
2145 * then slept again all without finishing the current system
2146 * call so trapret won't have cleared FSSKPRI
2147 */
2148 fssproc->fss_flags &= ~FSSKPRI;
2149 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2150 if (DISP_MUST_SURRENDER(curthread))
2151 cpu_surrender(t);
2152 }
2153 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
2154 }
2155
2156 /*
2157 * A tick interrupt has ocurrend on a running thread. Check to see if our
2158 * time slice has expired. We must also clear the TS_DONT_SWAP flag in
2159 * t_schedflag if the thread is eligible to be swapped out.
2160 */
2161 static void
fss_tick(kthread_t * t)2162 fss_tick(kthread_t *t)
2163 {
2164 fssproc_t *fssproc;
2165 fssproj_t *fssproj;
2166 klwp_t *lwp;
2167 boolean_t call_cpu_surrender = B_FALSE;
2168 boolean_t cpucaps_enforce = B_FALSE;
2169
2170 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2171
2172 /*
2173 * It's safe to access fsspset and fssproj structures because we're
2174 * holding our p_lock here.
2175 */
2176 thread_lock(t);
2177 fssproc = FSSPROC(t);
2178 fssproj = FSSPROC2FSSPROJ(fssproc);
2179 if (fssproj != NULL) {
2180 fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj);
2181 disp_lock_enter_high(&fsspset->fssps_displock);
2182 fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice];
2183 fssproc->fss_ticks++;
2184 disp_lock_exit_high(&fsspset->fssps_displock);
2185 }
2186
2187 /*
2188 * Keep track of thread's project CPU usage. Note that projects
2189 * get charged even when threads are running in the kernel.
2190 * Do not surrender CPU if running in the SYS class.
2191 */
2192 if (CPUCAPS_ON()) {
2193 cpucaps_enforce = cpucaps_charge(t,
2194 &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE) &&
2195 !(fssproc->fss_flags & FSSKPRI);
2196 }
2197
2198 /*
2199 * A thread's execution time for threads running in the SYS class
2200 * is not tracked.
2201 */
2202 if ((fssproc->fss_flags & FSSKPRI) == 0) {
2203 /*
2204 * If thread is not in kernel mode, decrement its fss_timeleft
2205 */
2206 if (--fssproc->fss_timeleft <= 0) {
2207 pri_t new_pri;
2208
2209 /*
2210 * If we're doing preemption control and trying to
2211 * avoid preempting this thread, just note that the
2212 * thread should yield soon and let it keep running
2213 * (unless it's been a while).
2214 */
2215 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
2216 if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
2217 DTRACE_SCHED1(schedctl__nopreempt,
2218 kthread_t *, t);
2219 schedctl_set_yield(t, 1);
2220 thread_unlock_nopreempt(t);
2221 return;
2222 }
2223 }
2224 fssproc->fss_flags &= ~FSSRESTORE;
2225
2226 fss_newpri(fssproc);
2227 new_pri = fssproc->fss_umdpri;
2228 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
2229
2230 /*
2231 * When the priority of a thread is changed, it may
2232 * be necessary to adjust its position on a sleep queue
2233 * or dispatch queue. The function thread_change_pri
2234 * accomplishes this.
2235 */
2236 if (thread_change_pri(t, new_pri, 0)) {
2237 if ((t->t_schedflag & TS_LOAD) &&
2238 (lwp = t->t_lwp) &&
2239 lwp->lwp_state == LWP_USER)
2240 t->t_schedflag &= ~TS_DONT_SWAP;
2241 fssproc->fss_timeleft = fss_quantum;
2242 } else {
2243 call_cpu_surrender = B_TRUE;
2244 }
2245 } else if (t->t_state == TS_ONPROC &&
2246 t->t_pri < t->t_disp_queue->disp_maxrunpri) {
2247 /*
2248 * If there is a higher-priority thread which is
2249 * waiting for a processor, then thread surrenders
2250 * the processor.
2251 */
2252 call_cpu_surrender = B_TRUE;
2253 }
2254 }
2255
2256 if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) {
2257 /*
2258 * The thread used more than half of its quantum, so assume that
2259 * it used the whole quantum.
2260 *
2261 * Update thread's priority just before putting it on the wait
2262 * queue so that it gets charged for the CPU time from its
2263 * quantum even before that quantum expires.
2264 */
2265 fss_newpri(fssproc);
2266 if (t->t_pri != fssproc->fss_umdpri)
2267 fss_change_priority(t, fssproc);
2268
2269 /*
2270 * We need to call cpu_surrender for this thread due to cpucaps
2271 * enforcement, but fss_change_priority may have already done
2272 * so. In this case FSSBACKQ is set and there is no need to call
2273 * cpu-surrender again.
2274 */
2275 if (!(fssproc->fss_flags & FSSBACKQ))
2276 call_cpu_surrender = B_TRUE;
2277 }
2278
2279 if (call_cpu_surrender) {
2280 fssproc->fss_flags |= FSSBACKQ;
2281 cpu_surrender(t);
2282 }
2283
2284 thread_unlock_nopreempt(t); /* clock thread can't be preempted */
2285 }
2286
2287 /*
2288 * Processes waking up go to the back of their queue. We don't need to assign
2289 * a time quantum here because thread is still at a kernel mode priority and
2290 * the time slicing is not done for threads running in the kernel after
2291 * sleeping. The proper time quantum will be assigned by fss_trapret before the
2292 * thread returns to user mode.
2293 */
2294 static void
fss_wakeup(kthread_t * t)2295 fss_wakeup(kthread_t *t)
2296 {
2297 fssproc_t *fssproc;
2298
2299 ASSERT(THREAD_LOCK_HELD(t));
2300 ASSERT(t->t_state == TS_SLEEP);
2301
2302 fss_active(t);
2303
2304 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
2305 fssproc = FSSPROC(t);
2306 fssproc->fss_flags &= ~FSSBACKQ;
2307
2308 if (fssproc->fss_flags & FSSKPRI) {
2309 /*
2310 * If we already have a kernel priority assigned, then we
2311 * just use it.
2312 */
2313 setbackdq(t);
2314 } else if (t->t_kpri_req) {
2315 /*
2316 * Give thread a priority boost if we were asked.
2317 */
2318 fssproc->fss_flags |= FSSKPRI;
2319 THREAD_CHANGE_PRI(t, minclsyspri);
2320 setbackdq(t);
2321 t->t_trapret = 1; /* so that fss_trapret will run */
2322 aston(t);
2323 } else {
2324 /*
2325 * Otherwise, we recalculate the priority.
2326 */
2327 if (t->t_disp_time == ddi_get_lbolt()) {
2328 setfrontdq(t);
2329 } else {
2330 fssproc->fss_timeleft = fss_quantum;
2331 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2332 setbackdq(t);
2333 }
2334 }
2335 }
2336
2337 /*
2338 * fss_donice() is called when a nice(1) command is issued on the thread to
2339 * alter the priority. The nice(1) command exists in Solaris for compatibility.
2340 * Thread priority adjustments should be done via priocntl(1).
2341 */
2342 static int
fss_donice(kthread_t * t,cred_t * cr,int incr,int * retvalp)2343 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2344 {
2345 int newnice;
2346 fssproc_t *fssproc = FSSPROC(t);
2347 fssparms_t fssparms;
2348
2349 /*
2350 * If there is no change to priority, just return current setting.
2351 */
2352 if (incr == 0) {
2353 if (retvalp)
2354 *retvalp = fssproc->fss_nice - NZERO;
2355 return (0);
2356 }
2357
2358 if ((incr < 0 || incr > 2 * NZERO) && secpolicy_setpriority(cr) != 0)
2359 return (EPERM);
2360
2361 /*
2362 * Specifying a nice increment greater than the upper limit of
2363 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice
2364 * value being set to the upper limit. We check for this before
2365 * computing the new value because otherwise we could get overflow
2366 * if a privileged user specified some ridiculous increment.
2367 */
2368 if (incr > FSS_NICE_MAX)
2369 incr = FSS_NICE_MAX;
2370
2371 newnice = fssproc->fss_nice + incr;
2372 if (newnice > FSS_NICE_MAX)
2373 newnice = FSS_NICE_MAX;
2374 else if (newnice < FSS_NICE_MIN)
2375 newnice = FSS_NICE_MIN;
2376
2377 fssparms.fss_uprilim = fssparms.fss_upri =
2378 -((newnice - NZERO) * fss_maxupri) / NZERO;
2379
2380 /*
2381 * Reset the uprilim and upri values of the thread.
2382 */
2383 (void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL);
2384
2385 /*
2386 * Although fss_parmsset already reset fss_nice it may not have been
2387 * set to precisely the value calculated above because fss_parmsset
2388 * determines the nice value from the user priority and we may have
2389 * truncated during the integer conversion from nice value to user
2390 * priority and back. We reset fss_nice to the value we calculated
2391 * above.
2392 */
2393 fssproc->fss_nice = (char)newnice;
2394
2395 if (retvalp)
2396 *retvalp = newnice - NZERO;
2397 return (0);
2398 }
2399
2400 /*
2401 * Increment the priority of the specified thread by incr and
2402 * return the new value in *retvalp.
2403 */
2404 static int
fss_doprio(kthread_t * t,cred_t * cr,int incr,int * retvalp)2405 fss_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2406 {
2407 int newpri;
2408 fssproc_t *fssproc = FSSPROC(t);
2409 fssparms_t fssparms;
2410
2411 /*
2412 * If there is no change to priority, just return current setting.
2413 */
2414 if (incr == 0) {
2415 *retvalp = fssproc->fss_upri;
2416 return (0);
2417 }
2418
2419 newpri = fssproc->fss_upri + incr;
2420 if (newpri > fss_maxupri || newpri < -fss_maxupri)
2421 return (EINVAL);
2422
2423 *retvalp = newpri;
2424 fssparms.fss_uprilim = fssparms.fss_upri = newpri;
2425
2426 /*
2427 * Reset the uprilim and upri values of the thread.
2428 */
2429 return (fss_parmsset(t, &fssparms, (id_t)0, cr));
2430 }
2431
2432 /*
2433 * Return the global scheduling priority that would be assigned to a thread
2434 * entering the fair-sharing class with the fss_upri.
2435 */
2436 /*ARGSUSED*/
2437 static pri_t
fss_globpri(kthread_t * t)2438 fss_globpri(kthread_t *t)
2439 {
2440 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2441
2442 return (fss_maxumdpri / 2);
2443 }
2444
2445 /*
2446 * Called from the yield(2) system call when a thread is yielding (surrendering)
2447 * the processor. The kernel thread is placed at the back of a dispatch queue.
2448 */
2449 static void
fss_yield(kthread_t * t)2450 fss_yield(kthread_t *t)
2451 {
2452 fssproc_t *fssproc = FSSPROC(t);
2453
2454 ASSERT(t == curthread);
2455 ASSERT(THREAD_LOCK_HELD(t));
2456
2457 /*
2458 * Collect CPU usage spent before yielding
2459 */
2460 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
2461
2462 /*
2463 * Clear the preemption control "yield" bit since the user is
2464 * doing a yield.
2465 */
2466 if (t->t_schedctl)
2467 schedctl_set_yield(t, 0);
2468 /*
2469 * If fss_preempt() artifically increased the thread's priority
2470 * to avoid preemption, restore the original priority now.
2471 */
2472 if (fssproc->fss_flags & FSSRESTORE) {
2473 THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
2474 fssproc->fss_flags &= ~FSSRESTORE;
2475 }
2476 if (fssproc->fss_timeleft < 0) {
2477 /*
2478 * Time slice was artificially extended to avoid preemption,
2479 * so pretend we're preempting it now.
2480 */
2481 DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft);
2482 fssproc->fss_timeleft = fss_quantum;
2483 }
2484 fssproc->fss_flags &= ~FSSBACKQ;
2485 setbackdq(t);
2486 }
2487
2488 void
fss_changeproj(kthread_t * t,void * kp,void * zp,fssbuf_t * projbuf,fssbuf_t * zonebuf)2489 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf,
2490 fssbuf_t *zonebuf)
2491 {
2492 kproject_t *kpj_new = kp;
2493 zone_t *zone = zp;
2494 fssproj_t *fssproj_old, *fssproj_new;
2495 fsspset_t *fsspset;
2496 kproject_t *kpj_old;
2497 fssproc_t *fssproc;
2498 fsszone_t *fsszone_old, *fsszone_new;
2499 int free = 0;
2500 int id;
2501
2502 ASSERT(MUTEX_HELD(&cpu_lock));
2503 ASSERT(MUTEX_HELD(&pidlock));
2504 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2505
2506 if (t->t_cid != fss_cid)
2507 return;
2508
2509 fssproc = FSSPROC(t);
2510 mutex_enter(&fsspsets_lock);
2511 fssproj_old = FSSPROC2FSSPROJ(fssproc);
2512 if (fssproj_old == NULL) {
2513 mutex_exit(&fsspsets_lock);
2514 return;
2515 }
2516
2517 fsspset = FSSPROJ2FSSPSET(fssproj_old);
2518 mutex_enter(&fsspset->fssps_lock);
2519 kpj_old = FSSPROJ2KPROJ(fssproj_old);
2520 fsszone_old = fssproj_old->fssp_fsszone;
2521
2522 ASSERT(t->t_cpupart == fsspset->fssps_cpupart);
2523
2524 if (kpj_old == kpj_new) {
2525 mutex_exit(&fsspset->fssps_lock);
2526 mutex_exit(&fsspsets_lock);
2527 return;
2528 }
2529
2530 if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) {
2531 /*
2532 * If the zone for the new project is not currently active on
2533 * the cpu partition we're on, get one of the pre-allocated
2534 * buffers and link it in our per-pset zone list. Such buffers
2535 * should already exist.
2536 */
2537 for (id = 0; id < zonebuf->fssb_size; id++) {
2538 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
2539 fss_insert_fsszone(fsspset, zone, fsszone_new);
2540 zonebuf->fssb_list[id] = NULL;
2541 break;
2542 }
2543 }
2544 }
2545 ASSERT(fsszone_new != NULL);
2546 if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) {
2547 /*
2548 * If our new project is not currently running
2549 * on the cpu partition we're on, get one of the
2550 * pre-allocated buffers and link it in our new cpu
2551 * partition doubly linked list. Such buffers should already
2552 * exist.
2553 */
2554 for (id = 0; id < projbuf->fssb_size; id++) {
2555 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
2556 fss_insert_fssproj(fsspset, kpj_new,
2557 fsszone_new, fssproj_new);
2558 projbuf->fssb_list[id] = NULL;
2559 break;
2560 }
2561 }
2562 }
2563 ASSERT(fssproj_new != NULL);
2564
2565 thread_lock(t);
2566 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2567 t->t_state == TS_WAIT)
2568 fss_inactive(t);
2569 ASSERT(fssproj_old->fssp_threads > 0);
2570 if (--fssproj_old->fssp_threads == 0) {
2571 fss_remove_fssproj(fsspset, fssproj_old);
2572 free = 1;
2573 }
2574 fssproc->fss_proj = fssproj_new;
2575 fssproc->fss_fsspri = 0;
2576 fssproj_new->fssp_threads++;
2577 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2578 t->t_state == TS_WAIT)
2579 fss_active(t);
2580 thread_unlock(t);
2581 if (free) {
2582 if (fsszone_old->fssz_nproj == 0)
2583 kmem_free(fsszone_old, sizeof (fsszone_t));
2584 kmem_free(fssproj_old, sizeof (fssproj_t));
2585 }
2586
2587 mutex_exit(&fsspset->fssps_lock);
2588 mutex_exit(&fsspsets_lock);
2589 }
2590
2591 void
fss_changepset(kthread_t * t,void * newcp,fssbuf_t * projbuf,fssbuf_t * zonebuf)2592 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf,
2593 fssbuf_t *zonebuf)
2594 {
2595 fsspset_t *fsspset_old, *fsspset_new;
2596 fssproj_t *fssproj_old, *fssproj_new;
2597 fsszone_t *fsszone_old, *fsszone_new;
2598 fssproc_t *fssproc;
2599 kproject_t *kpj;
2600 zone_t *zone;
2601 int id;
2602
2603 ASSERT(MUTEX_HELD(&cpu_lock));
2604 ASSERT(MUTEX_HELD(&pidlock));
2605 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2606
2607 if (t->t_cid != fss_cid)
2608 return;
2609
2610 fssproc = FSSPROC(t);
2611 zone = ttoproc(t)->p_zone;
2612 mutex_enter(&fsspsets_lock);
2613 fssproj_old = FSSPROC2FSSPROJ(fssproc);
2614 if (fssproj_old == NULL) {
2615 mutex_exit(&fsspsets_lock);
2616 return;
2617 }
2618 fsszone_old = fssproj_old->fssp_fsszone;
2619 fsspset_old = FSSPROJ2FSSPSET(fssproj_old);
2620 kpj = FSSPROJ2KPROJ(fssproj_old);
2621
2622 if (fsspset_old->fssps_cpupart == newcp) {
2623 mutex_exit(&fsspsets_lock);
2624 return;
2625 }
2626
2627 ASSERT(ttoproj(t) == kpj);
2628
2629 fsspset_new = fss_find_fsspset(newcp);
2630
2631 mutex_enter(&fsspset_new->fssps_lock);
2632 if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) {
2633 for (id = 0; id < zonebuf->fssb_size; id++) {
2634 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
2635 fss_insert_fsszone(fsspset_new, zone,
2636 fsszone_new);
2637 zonebuf->fssb_list[id] = NULL;
2638 break;
2639 }
2640 }
2641 }
2642 ASSERT(fsszone_new != NULL);
2643 if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) {
2644 for (id = 0; id < projbuf->fssb_size; id++) {
2645 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
2646 fss_insert_fssproj(fsspset_new, kpj,
2647 fsszone_new, fssproj_new);
2648 projbuf->fssb_list[id] = NULL;
2649 break;
2650 }
2651 }
2652 }
2653 ASSERT(fssproj_new != NULL);
2654
2655 fssproj_new->fssp_threads++;
2656 thread_lock(t);
2657 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2658 t->t_state == TS_WAIT)
2659 fss_inactive(t);
2660 fssproc->fss_proj = fssproj_new;
2661 fssproc->fss_fsspri = 0;
2662 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2663 t->t_state == TS_WAIT)
2664 fss_active(t);
2665 thread_unlock(t);
2666 mutex_exit(&fsspset_new->fssps_lock);
2667
2668 mutex_enter(&fsspset_old->fssps_lock);
2669 if (--fssproj_old->fssp_threads == 0) {
2670 fss_remove_fssproj(fsspset_old, fssproj_old);
2671 if (fsszone_old->fssz_nproj == 0)
2672 kmem_free(fsszone_old, sizeof (fsszone_t));
2673 kmem_free(fssproj_old, sizeof (fssproj_t));
2674 }
2675 mutex_exit(&fsspset_old->fssps_lock);
2676
2677 mutex_exit(&fsspsets_lock);
2678 }
2679