1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/Timer.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetLoweringObjectFile.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cstddef>
61 #include <iterator>
62 #include <string>
63
64 using namespace llvm;
65
66 #define DEBUG_TYPE "dwarfdebug"
67
68 STATISTIC(NumCSParams, "Number of dbg call site params created");
69
70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
71 "use-dwarf-ranges-base-address-specifier", cl::Hidden,
72 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
73
74 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
75 cl::Hidden,
76 cl::desc("Generate dwarf aranges"),
77 cl::init(false));
78
79 static cl::opt<bool>
80 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
81 cl::desc("Generate DWARF4 type units."),
82 cl::init(false));
83
84 static cl::opt<bool> SplitDwarfCrossCuReferences(
85 "split-dwarf-cross-cu-references", cl::Hidden,
86 cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
87
88 enum DefaultOnOff { Default, Enable, Disable };
89
90 static cl::opt<DefaultOnOff> UnknownLocations(
91 "use-unknown-locations", cl::Hidden,
92 cl::desc("Make an absence of debug location information explicit."),
93 cl::values(clEnumVal(Default, "At top of block or after label"),
94 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
95 cl::init(Default));
96
97 static cl::opt<AccelTableKind> AccelTables(
98 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
99 cl::values(clEnumValN(AccelTableKind::Default, "Default",
100 "Default for platform"),
101 clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
102 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
103 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
104 cl::init(AccelTableKind::Default));
105
106 static cl::opt<DefaultOnOff>
107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
108 cl::desc("Use inlined strings rather than string section."),
109 cl::values(clEnumVal(Default, "Default for platform"),
110 clEnumVal(Enable, "Enabled"),
111 clEnumVal(Disable, "Disabled")),
112 cl::init(Default));
113
114 static cl::opt<bool>
115 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
116 cl::desc("Disable emission .debug_ranges section."),
117 cl::init(false));
118
119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
120 "dwarf-sections-as-references", cl::Hidden,
121 cl::desc("Use sections+offset as references rather than labels."),
122 cl::values(clEnumVal(Default, "Default for platform"),
123 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
124 cl::init(Default));
125
126 static cl::opt<bool>
127 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
128 cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
129 cl::init(false));
130
131 static cl::opt<DefaultOnOff> DwarfOpConvert(
132 "dwarf-op-convert", cl::Hidden,
133 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
134 cl::values(clEnumVal(Default, "Default for platform"),
135 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
136 cl::init(Default));
137
138 enum LinkageNameOption {
139 DefaultLinkageNames,
140 AllLinkageNames,
141 AbstractLinkageNames
142 };
143
144 static cl::opt<LinkageNameOption>
145 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
146 cl::desc("Which DWARF linkage-name attributes to emit."),
147 cl::values(clEnumValN(DefaultLinkageNames, "Default",
148 "Default for platform"),
149 clEnumValN(AllLinkageNames, "All", "All"),
150 clEnumValN(AbstractLinkageNames, "Abstract",
151 "Abstract subprograms")),
152 cl::init(DefaultLinkageNames));
153
154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
155 "minimize-addr-in-v5", cl::Hidden,
156 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
157 "address pool entry sharing to reduce relocations/object size"),
158 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
159 "Default address minimization strategy"),
160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
161 "Use rnglists for contiguous ranges if that allows "
162 "using a pre-existing base address"),
163 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions,
164 "Expressions",
165 "Use exprloc addrx+offset expressions for any "
166 "address with a prior base address"),
167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form",
168 "Use addrx+offset extension form for any address "
169 "with a prior base address"),
170 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
171 "Stuff")),
172 cl::init(DwarfDebug::MinimizeAddrInV5::Default));
173
174 static constexpr unsigned ULEB128PadSize = 4;
175
emitOp(uint8_t Op,const char * Comment)176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
177 getActiveStreamer().emitInt8(
178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
179 : dwarf::OperationEncodingString(Op));
180 }
181
emitSigned(int64_t Value)182 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
183 getActiveStreamer().emitSLEB128(Value, Twine(Value));
184 }
185
emitUnsigned(uint64_t Value)186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
187 getActiveStreamer().emitULEB128(Value, Twine(Value));
188 }
189
emitData1(uint8_t Value)190 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
191 getActiveStreamer().emitInt8(Value, Twine(Value));
192 }
193
emitBaseTypeRef(uint64_t Idx)194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
197 }
198
isFrameRegister(const TargetRegisterInfo & TRI,llvm::Register MachineReg)199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
200 llvm::Register MachineReg) {
201 // This information is not available while emitting .debug_loc entries.
202 return false;
203 }
204
enableTemporaryBuffer()205 void DebugLocDwarfExpression::enableTemporaryBuffer() {
206 assert(!IsBuffering && "Already buffering?");
207 if (!TmpBuf)
208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
209 IsBuffering = true;
210 }
211
disableTemporaryBuffer()212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
213
getTemporaryBufferSize()214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
215 return TmpBuf ? TmpBuf->Bytes.size() : 0;
216 }
217
commitTemporaryBuffer()218 void DebugLocDwarfExpression::commitTemporaryBuffer() {
219 if (!TmpBuf)
220 return;
221 for (auto Byte : enumerate(TmpBuf->Bytes)) {
222 const char *Comment = (Byte.index() < TmpBuf->Comments.size())
223 ? TmpBuf->Comments[Byte.index()].c_str()
224 : "";
225 OutBS.emitInt8(Byte.value(), Comment);
226 }
227 TmpBuf->Bytes.clear();
228 TmpBuf->Comments.clear();
229 }
230
getType() const231 const DIType *DbgVariable::getType() const {
232 return getVariable()->getType();
233 }
234
235 /// Get .debug_loc entry for the instruction range starting at MI.
getDebugLocValue(const MachineInstr * MI)236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
237 const DIExpression *Expr = MI->getDebugExpression();
238 const bool IsVariadic = MI->isDebugValueList();
239 assert(MI->getNumOperands() >= 3);
240 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries;
241 for (const MachineOperand &Op : MI->debug_operands()) {
242 if (Op.isReg()) {
243 MachineLocation MLoc(Op.getReg(),
244 MI->isNonListDebugValue() && MI->isDebugOffsetImm());
245 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc));
246 } else if (Op.isTargetIndex()) {
247 DbgValueLocEntries.push_back(
248 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset())));
249 } else if (Op.isImm())
250 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm()));
251 else if (Op.isFPImm())
252 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm()));
253 else if (Op.isCImm())
254 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm()));
255 else
256 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!");
257 }
258 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic);
259 }
260
initializeDbgValue(const MachineInstr * DbgValue)261 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
262 assert(FrameIndexExprs.empty() && "Already initialized?");
263 assert(!ValueLoc.get() && "Already initialized?");
264
265 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
266 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
267 "Wrong inlined-at");
268
269 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
270 if (auto *E = DbgValue->getDebugExpression())
271 if (E->getNumElements())
272 FrameIndexExprs.push_back({0, E});
273 }
274
getFrameIndexExprs() const275 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
276 if (FrameIndexExprs.size() == 1)
277 return FrameIndexExprs;
278
279 assert(llvm::all_of(FrameIndexExprs,
280 [](const FrameIndexExpr &A) {
281 return A.Expr->isFragment();
282 }) &&
283 "multiple FI expressions without DW_OP_LLVM_fragment");
284 llvm::sort(FrameIndexExprs,
285 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
286 return A.Expr->getFragmentInfo()->OffsetInBits <
287 B.Expr->getFragmentInfo()->OffsetInBits;
288 });
289
290 return FrameIndexExprs;
291 }
292
addMMIEntry(const DbgVariable & V)293 void DbgVariable::addMMIEntry(const DbgVariable &V) {
294 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
295 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
296 assert(V.getVariable() == getVariable() && "conflicting variable");
297 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
298
299 assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
300 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
301
302 // FIXME: This logic should not be necessary anymore, as we now have proper
303 // deduplication. However, without it, we currently run into the assertion
304 // below, which means that we are likely dealing with broken input, i.e. two
305 // non-fragment entries for the same variable at different frame indices.
306 if (FrameIndexExprs.size()) {
307 auto *Expr = FrameIndexExprs.back().Expr;
308 if (!Expr || !Expr->isFragment())
309 return;
310 }
311
312 for (const auto &FIE : V.FrameIndexExprs)
313 // Ignore duplicate entries.
314 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
315 return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
316 }))
317 FrameIndexExprs.push_back(FIE);
318
319 assert((FrameIndexExprs.size() == 1 ||
320 llvm::all_of(FrameIndexExprs,
321 [](FrameIndexExpr &FIE) {
322 return FIE.Expr && FIE.Expr->isFragment();
323 })) &&
324 "conflicting locations for variable");
325 }
326
computeAccelTableKind(unsigned DwarfVersion,bool GenerateTypeUnits,DebuggerKind Tuning,const Triple & TT)327 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
328 bool GenerateTypeUnits,
329 DebuggerKind Tuning,
330 const Triple &TT) {
331 // Honor an explicit request.
332 if (AccelTables != AccelTableKind::Default)
333 return AccelTables;
334
335 // Accelerator tables with type units are currently not supported.
336 if (GenerateTypeUnits)
337 return AccelTableKind::None;
338
339 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5
340 // always implies debug_names. For lower standard versions we use apple
341 // accelerator tables on apple platforms and debug_names elsewhere.
342 if (DwarfVersion >= 5)
343 return AccelTableKind::Dwarf;
344 if (Tuning == DebuggerKind::LLDB)
345 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
346 : AccelTableKind::Dwarf;
347 return AccelTableKind::None;
348 }
349
DwarfDebug(AsmPrinter * A)350 DwarfDebug::DwarfDebug(AsmPrinter *A)
351 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
352 InfoHolder(A, "info_string", DIEValueAllocator),
353 SkeletonHolder(A, "skel_string", DIEValueAllocator),
354 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
355 const Triple &TT = Asm->TM.getTargetTriple();
356
357 // Make sure we know our "debugger tuning". The target option takes
358 // precedence; fall back to triple-based defaults.
359 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
360 DebuggerTuning = Asm->TM.Options.DebuggerTuning;
361 else if (IsDarwin)
362 DebuggerTuning = DebuggerKind::LLDB;
363 else if (TT.isPS4CPU())
364 DebuggerTuning = DebuggerKind::SCE;
365 else if (TT.isOSAIX())
366 DebuggerTuning = DebuggerKind::DBX;
367 else
368 DebuggerTuning = DebuggerKind::GDB;
369
370 if (DwarfInlinedStrings == Default)
371 UseInlineStrings = TT.isNVPTX() || tuneForDBX();
372 else
373 UseInlineStrings = DwarfInlinedStrings == Enable;
374
375 UseLocSection = !TT.isNVPTX();
376
377 HasAppleExtensionAttributes = tuneForLLDB();
378
379 // Handle split DWARF.
380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
381
382 // SCE defaults to linkage names only for abstract subprograms.
383 if (DwarfLinkageNames == DefaultLinkageNames)
384 UseAllLinkageNames = !tuneForSCE();
385 else
386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
387
388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
390 : MMI->getModule()->getDwarfVersion();
391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
392 DwarfVersion =
393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
394
395 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3.
396 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations.
397
398 // Support DWARF64
399 // 1: For ELF when requested.
400 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths
401 // according to the DWARF64 format for 64-bit assembly, so we must use
402 // DWARF64 in the compiler too for 64-bit mode.
403 Dwarf64 &=
404 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) &&
405 TT.isOSBinFormatELF()) ||
406 TT.isOSBinFormatXCOFF();
407
408 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF())
409 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!");
410
411 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
412
413 // Use sections as references. Force for NVPTX.
414 if (DwarfSectionsAsReferences == Default)
415 UseSectionsAsReferences = TT.isNVPTX();
416 else
417 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
418
419 // Don't generate type units for unsupported object file formats.
420 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
421 A->TM.getTargetTriple().isOSBinFormatWasm()) &&
422 GenerateDwarfTypeUnits;
423
424 TheAccelTableKind = computeAccelTableKind(
425 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
426
427 // Work around a GDB bug. GDB doesn't support the standard opcode;
428 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
429 // is defined as of DWARF 3.
430 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
431 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
432 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
433
434 // GDB does not fully support the DWARF 4 representation for bitfields.
435 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
436
437 // The DWARF v5 string offsets table has - possibly shared - contributions
438 // from each compile and type unit each preceded by a header. The string
439 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
440 // a monolithic string offsets table without any header.
441 UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
442
443 // Emit call-site-param debug info for GDB and LLDB, if the target supports
444 // the debug entry values feature. It can also be enabled explicitly.
445 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
446
447 // It is unclear if the GCC .debug_macro extension is well-specified
448 // for split DWARF. For now, do not allow LLVM to emit it.
449 UseDebugMacroSection =
450 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
451 if (DwarfOpConvert == Default)
452 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
453 else
454 EnableOpConvert = (DwarfOpConvert == Enable);
455
456 // Split DWARF would benefit object size significantly by trading reductions
457 // in address pool usage for slightly increased range list encodings.
458 if (DwarfVersion >= 5) {
459 MinimizeAddr = MinimizeAddrInV5Option;
460 // FIXME: In the future, enable this by default for Split DWARF where the
461 // tradeoff is more pronounced due to being able to offload the range
462 // lists to the dwo file and shrink object files/reduce relocations there.
463 if (MinimizeAddr == MinimizeAddrInV5::Default)
464 MinimizeAddr = MinimizeAddrInV5::Disabled;
465 }
466
467 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
468 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
469 : dwarf::DWARF32);
470 }
471
472 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
473 DwarfDebug::~DwarfDebug() = default;
474
isObjCClass(StringRef Name)475 static bool isObjCClass(StringRef Name) {
476 return Name.startswith("+") || Name.startswith("-");
477 }
478
hasObjCCategory(StringRef Name)479 static bool hasObjCCategory(StringRef Name) {
480 if (!isObjCClass(Name))
481 return false;
482
483 return Name.find(") ") != StringRef::npos;
484 }
485
getObjCClassCategory(StringRef In,StringRef & Class,StringRef & Category)486 static void getObjCClassCategory(StringRef In, StringRef &Class,
487 StringRef &Category) {
488 if (!hasObjCCategory(In)) {
489 Class = In.slice(In.find('[') + 1, In.find(' '));
490 Category = "";
491 return;
492 }
493
494 Class = In.slice(In.find('[') + 1, In.find('('));
495 Category = In.slice(In.find('[') + 1, In.find(' '));
496 }
497
getObjCMethodName(StringRef In)498 static StringRef getObjCMethodName(StringRef In) {
499 return In.slice(In.find(' ') + 1, In.find(']'));
500 }
501
502 // Add the various names to the Dwarf accelerator table names.
addSubprogramNames(const DICompileUnit & CU,const DISubprogram * SP,DIE & Die)503 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
504 const DISubprogram *SP, DIE &Die) {
505 if (getAccelTableKind() != AccelTableKind::Apple &&
506 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
507 return;
508
509 if (!SP->isDefinition())
510 return;
511
512 if (SP->getName() != "")
513 addAccelName(CU, SP->getName(), Die);
514
515 // If the linkage name is different than the name, go ahead and output that as
516 // well into the name table. Only do that if we are going to actually emit
517 // that name.
518 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
519 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
520 addAccelName(CU, SP->getLinkageName(), Die);
521
522 // If this is an Objective-C selector name add it to the ObjC accelerator
523 // too.
524 if (isObjCClass(SP->getName())) {
525 StringRef Class, Category;
526 getObjCClassCategory(SP->getName(), Class, Category);
527 addAccelObjC(CU, Class, Die);
528 if (Category != "")
529 addAccelObjC(CU, Category, Die);
530 // Also add the base method name to the name table.
531 addAccelName(CU, getObjCMethodName(SP->getName()), Die);
532 }
533 }
534
535 /// Check whether we should create a DIE for the given Scope, return true
536 /// if we don't create a DIE (the corresponding DIE is null).
isLexicalScopeDIENull(LexicalScope * Scope)537 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
538 if (Scope->isAbstractScope())
539 return false;
540
541 // We don't create a DIE if there is no Range.
542 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
543 if (Ranges.empty())
544 return true;
545
546 if (Ranges.size() > 1)
547 return false;
548
549 // We don't create a DIE if we have a single Range and the end label
550 // is null.
551 return !getLabelAfterInsn(Ranges.front().second);
552 }
553
forBothCUs(DwarfCompileUnit & CU,Func F)554 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
555 F(CU);
556 if (auto *SkelCU = CU.getSkeleton())
557 if (CU.getCUNode()->getSplitDebugInlining())
558 F(*SkelCU);
559 }
560
shareAcrossDWOCUs() const561 bool DwarfDebug::shareAcrossDWOCUs() const {
562 return SplitDwarfCrossCuReferences;
563 }
564
constructAbstractSubprogramScopeDIE(DwarfCompileUnit & SrcCU,LexicalScope * Scope)565 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
566 LexicalScope *Scope) {
567 assert(Scope && Scope->getScopeNode());
568 assert(Scope->isAbstractScope());
569 assert(!Scope->getInlinedAt());
570
571 auto *SP = cast<DISubprogram>(Scope->getScopeNode());
572
573 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
574 // was inlined from another compile unit.
575 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
576 // Avoid building the original CU if it won't be used
577 SrcCU.constructAbstractSubprogramScopeDIE(Scope);
578 else {
579 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
580 if (auto *SkelCU = CU.getSkeleton()) {
581 (shareAcrossDWOCUs() ? CU : SrcCU)
582 .constructAbstractSubprogramScopeDIE(Scope);
583 if (CU.getCUNode()->getSplitDebugInlining())
584 SkelCU->constructAbstractSubprogramScopeDIE(Scope);
585 } else
586 CU.constructAbstractSubprogramScopeDIE(Scope);
587 }
588 }
589
constructSubprogramDefinitionDIE(const DISubprogram * SP)590 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
591 DICompileUnit *Unit = SP->getUnit();
592 assert(SP->isDefinition() && "Subprogram not a definition");
593 assert(Unit && "Subprogram definition without parent unit");
594 auto &CU = getOrCreateDwarfCompileUnit(Unit);
595 return *CU.getOrCreateSubprogramDIE(SP);
596 }
597
598 /// Represents a parameter whose call site value can be described by applying a
599 /// debug expression to a register in the forwarded register worklist.
600 struct FwdRegParamInfo {
601 /// The described parameter register.
602 unsigned ParamReg;
603
604 /// Debug expression that has been built up when walking through the
605 /// instruction chain that produces the parameter's value.
606 const DIExpression *Expr;
607 };
608
609 /// Register worklist for finding call site values.
610 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
611
612 /// Append the expression \p Addition to \p Original and return the result.
combineDIExpressions(const DIExpression * Original,const DIExpression * Addition)613 static const DIExpression *combineDIExpressions(const DIExpression *Original,
614 const DIExpression *Addition) {
615 std::vector<uint64_t> Elts = Addition->getElements().vec();
616 // Avoid multiple DW_OP_stack_values.
617 if (Original->isImplicit() && Addition->isImplicit())
618 erase_value(Elts, dwarf::DW_OP_stack_value);
619 const DIExpression *CombinedExpr =
620 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
621 return CombinedExpr;
622 }
623
624 /// Emit call site parameter entries that are described by the given value and
625 /// debug expression.
626 template <typename ValT>
finishCallSiteParams(ValT Val,const DIExpression * Expr,ArrayRef<FwdRegParamInfo> DescribedParams,ParamSet & Params)627 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
628 ArrayRef<FwdRegParamInfo> DescribedParams,
629 ParamSet &Params) {
630 for (auto Param : DescribedParams) {
631 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
632
633 // TODO: Entry value operations can currently not be combined with any
634 // other expressions, so we can't emit call site entries in those cases.
635 if (ShouldCombineExpressions && Expr->isEntryValue())
636 continue;
637
638 // If a parameter's call site value is produced by a chain of
639 // instructions we may have already created an expression for the
640 // parameter when walking through the instructions. Append that to the
641 // base expression.
642 const DIExpression *CombinedExpr =
643 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
644 : Expr;
645 assert((!CombinedExpr || CombinedExpr->isValid()) &&
646 "Combined debug expression is invalid");
647
648 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val));
649 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
650 Params.push_back(CSParm);
651 ++NumCSParams;
652 }
653 }
654
655 /// Add \p Reg to the worklist, if it's not already present, and mark that the
656 /// given parameter registers' values can (potentially) be described using
657 /// that register and an debug expression.
addToFwdRegWorklist(FwdRegWorklist & Worklist,unsigned Reg,const DIExpression * Expr,ArrayRef<FwdRegParamInfo> ParamsToAdd)658 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
659 const DIExpression *Expr,
660 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
661 auto I = Worklist.insert({Reg, {}});
662 auto &ParamsForFwdReg = I.first->second;
663 for (auto Param : ParamsToAdd) {
664 assert(none_of(ParamsForFwdReg,
665 [Param](const FwdRegParamInfo &D) {
666 return D.ParamReg == Param.ParamReg;
667 }) &&
668 "Same parameter described twice by forwarding reg");
669
670 // If a parameter's call site value is produced by a chain of
671 // instructions we may have already created an expression for the
672 // parameter when walking through the instructions. Append that to the
673 // new expression.
674 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
675 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
676 }
677 }
678
679 /// Interpret values loaded into registers by \p CurMI.
interpretValues(const MachineInstr * CurMI,FwdRegWorklist & ForwardedRegWorklist,ParamSet & Params)680 static void interpretValues(const MachineInstr *CurMI,
681 FwdRegWorklist &ForwardedRegWorklist,
682 ParamSet &Params) {
683
684 const MachineFunction *MF = CurMI->getMF();
685 const DIExpression *EmptyExpr =
686 DIExpression::get(MF->getFunction().getContext(), {});
687 const auto &TRI = *MF->getSubtarget().getRegisterInfo();
688 const auto &TII = *MF->getSubtarget().getInstrInfo();
689 const auto &TLI = *MF->getSubtarget().getTargetLowering();
690
691 // If an instruction defines more than one item in the worklist, we may run
692 // into situations where a worklist register's value is (potentially)
693 // described by the previous value of another register that is also defined
694 // by that instruction.
695 //
696 // This can for example occur in cases like this:
697 //
698 // $r1 = mov 123
699 // $r0, $r1 = mvrr $r1, 456
700 // call @foo, $r0, $r1
701 //
702 // When describing $r1's value for the mvrr instruction, we need to make sure
703 // that we don't finalize an entry value for $r0, as that is dependent on the
704 // previous value of $r1 (123 rather than 456).
705 //
706 // In order to not have to distinguish between those cases when finalizing
707 // entry values, we simply postpone adding new parameter registers to the
708 // worklist, by first keeping them in this temporary container until the
709 // instruction has been handled.
710 FwdRegWorklist TmpWorklistItems;
711
712 // If the MI is an instruction defining one or more parameters' forwarding
713 // registers, add those defines.
714 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
715 SmallSetVector<unsigned, 4> &Defs) {
716 if (MI.isDebugInstr())
717 return;
718
719 for (const MachineOperand &MO : MI.operands()) {
720 if (MO.isReg() && MO.isDef() &&
721 Register::isPhysicalRegister(MO.getReg())) {
722 for (auto &FwdReg : ForwardedRegWorklist)
723 if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
724 Defs.insert(FwdReg.first);
725 }
726 }
727 };
728
729 // Set of worklist registers that are defined by this instruction.
730 SmallSetVector<unsigned, 4> FwdRegDefs;
731
732 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
733 if (FwdRegDefs.empty())
734 return;
735
736 for (auto ParamFwdReg : FwdRegDefs) {
737 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
738 if (ParamValue->first.isImm()) {
739 int64_t Val = ParamValue->first.getImm();
740 finishCallSiteParams(Val, ParamValue->second,
741 ForwardedRegWorklist[ParamFwdReg], Params);
742 } else if (ParamValue->first.isReg()) {
743 Register RegLoc = ParamValue->first.getReg();
744 Register SP = TLI.getStackPointerRegisterToSaveRestore();
745 Register FP = TRI.getFrameRegister(*MF);
746 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
747 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
748 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
749 finishCallSiteParams(MLoc, ParamValue->second,
750 ForwardedRegWorklist[ParamFwdReg], Params);
751 } else {
752 // ParamFwdReg was described by the non-callee saved register
753 // RegLoc. Mark that the call site values for the parameters are
754 // dependent on that register instead of ParamFwdReg. Since RegLoc
755 // may be a register that will be handled in this iteration, we
756 // postpone adding the items to the worklist, and instead keep them
757 // in a temporary container.
758 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
759 ForwardedRegWorklist[ParamFwdReg]);
760 }
761 }
762 }
763 }
764
765 // Remove all registers that this instruction defines from the worklist.
766 for (auto ParamFwdReg : FwdRegDefs)
767 ForwardedRegWorklist.erase(ParamFwdReg);
768
769 // Now that we are done handling this instruction, add items from the
770 // temporary worklist to the real one.
771 for (auto &New : TmpWorklistItems)
772 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
773 TmpWorklistItems.clear();
774 }
775
interpretNextInstr(const MachineInstr * CurMI,FwdRegWorklist & ForwardedRegWorklist,ParamSet & Params)776 static bool interpretNextInstr(const MachineInstr *CurMI,
777 FwdRegWorklist &ForwardedRegWorklist,
778 ParamSet &Params) {
779 // Skip bundle headers.
780 if (CurMI->isBundle())
781 return true;
782
783 // If the next instruction is a call we can not interpret parameter's
784 // forwarding registers or we finished the interpretation of all
785 // parameters.
786 if (CurMI->isCall())
787 return false;
788
789 if (ForwardedRegWorklist.empty())
790 return false;
791
792 // Avoid NOP description.
793 if (CurMI->getNumOperands() == 0)
794 return true;
795
796 interpretValues(CurMI, ForwardedRegWorklist, Params);
797
798 return true;
799 }
800
801 /// Try to interpret values loaded into registers that forward parameters
802 /// for \p CallMI. Store parameters with interpreted value into \p Params.
collectCallSiteParameters(const MachineInstr * CallMI,ParamSet & Params)803 static void collectCallSiteParameters(const MachineInstr *CallMI,
804 ParamSet &Params) {
805 const MachineFunction *MF = CallMI->getMF();
806 const auto &CalleesMap = MF->getCallSitesInfo();
807 auto CallFwdRegsInfo = CalleesMap.find(CallMI);
808
809 // There is no information for the call instruction.
810 if (CallFwdRegsInfo == CalleesMap.end())
811 return;
812
813 const MachineBasicBlock *MBB = CallMI->getParent();
814
815 // Skip the call instruction.
816 auto I = std::next(CallMI->getReverseIterator());
817
818 FwdRegWorklist ForwardedRegWorklist;
819
820 const DIExpression *EmptyExpr =
821 DIExpression::get(MF->getFunction().getContext(), {});
822
823 // Add all the forwarding registers into the ForwardedRegWorklist.
824 for (const auto &ArgReg : CallFwdRegsInfo->second) {
825 bool InsertedReg =
826 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
827 .second;
828 assert(InsertedReg && "Single register used to forward two arguments?");
829 (void)InsertedReg;
830 }
831
832 // Do not emit CSInfo for undef forwarding registers.
833 for (auto &MO : CallMI->uses())
834 if (MO.isReg() && MO.isUndef())
835 ForwardedRegWorklist.erase(MO.getReg());
836
837 // We erase, from the ForwardedRegWorklist, those forwarding registers for
838 // which we successfully describe a loaded value (by using
839 // the describeLoadedValue()). For those remaining arguments in the working
840 // list, for which we do not describe a loaded value by
841 // the describeLoadedValue(), we try to generate an entry value expression
842 // for their call site value description, if the call is within the entry MBB.
843 // TODO: Handle situations when call site parameter value can be described
844 // as the entry value within basic blocks other than the first one.
845 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
846
847 // Search for a loading value in forwarding registers inside call delay slot.
848 if (CallMI->hasDelaySlot()) {
849 auto Suc = std::next(CallMI->getIterator());
850 // Only one-instruction delay slot is supported.
851 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
852 (void)BundleEnd;
853 assert(std::next(Suc) == BundleEnd &&
854 "More than one instruction in call delay slot");
855 // Try to interpret value loaded by instruction.
856 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
857 return;
858 }
859
860 // Search for a loading value in forwarding registers.
861 for (; I != MBB->rend(); ++I) {
862 // Try to interpret values loaded by instruction.
863 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
864 return;
865 }
866
867 // Emit the call site parameter's value as an entry value.
868 if (ShouldTryEmitEntryVals) {
869 // Create an expression where the register's entry value is used.
870 DIExpression *EntryExpr = DIExpression::get(
871 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
872 for (auto &RegEntry : ForwardedRegWorklist) {
873 MachineLocation MLoc(RegEntry.first);
874 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
875 }
876 }
877 }
878
constructCallSiteEntryDIEs(const DISubprogram & SP,DwarfCompileUnit & CU,DIE & ScopeDIE,const MachineFunction & MF)879 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
880 DwarfCompileUnit &CU, DIE &ScopeDIE,
881 const MachineFunction &MF) {
882 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
883 // the subprogram is required to have one.
884 if (!SP.areAllCallsDescribed() || !SP.isDefinition())
885 return;
886
887 // Use DW_AT_call_all_calls to express that call site entries are present
888 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
889 // because one of its requirements is not met: call site entries for
890 // optimized-out calls are elided.
891 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
892
893 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
894 assert(TII && "TargetInstrInfo not found: cannot label tail calls");
895
896 // Delay slot support check.
897 auto delaySlotSupported = [&](const MachineInstr &MI) {
898 if (!MI.isBundledWithSucc())
899 return false;
900 auto Suc = std::next(MI.getIterator());
901 auto CallInstrBundle = getBundleStart(MI.getIterator());
902 (void)CallInstrBundle;
903 auto DelaySlotBundle = getBundleStart(Suc);
904 (void)DelaySlotBundle;
905 // Ensure that label after call is following delay slot instruction.
906 // Ex. CALL_INSTRUCTION {
907 // DELAY_SLOT_INSTRUCTION }
908 // LABEL_AFTER_CALL
909 assert(getLabelAfterInsn(&*CallInstrBundle) ==
910 getLabelAfterInsn(&*DelaySlotBundle) &&
911 "Call and its successor instruction don't have same label after.");
912 return true;
913 };
914
915 // Emit call site entries for each call or tail call in the function.
916 for (const MachineBasicBlock &MBB : MF) {
917 for (const MachineInstr &MI : MBB.instrs()) {
918 // Bundles with call in them will pass the isCall() test below but do not
919 // have callee operand information so skip them here. Iterator will
920 // eventually reach the call MI.
921 if (MI.isBundle())
922 continue;
923
924 // Skip instructions which aren't calls. Both calls and tail-calling jump
925 // instructions (e.g TAILJMPd64) are classified correctly here.
926 if (!MI.isCandidateForCallSiteEntry())
927 continue;
928
929 // Skip instructions marked as frame setup, as they are not interesting to
930 // the user.
931 if (MI.getFlag(MachineInstr::FrameSetup))
932 continue;
933
934 // Check if delay slot support is enabled.
935 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
936 return;
937
938 // If this is a direct call, find the callee's subprogram.
939 // In the case of an indirect call find the register that holds
940 // the callee.
941 const MachineOperand &CalleeOp = MI.getOperand(0);
942 if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
943 continue;
944
945 unsigned CallReg = 0;
946 DIE *CalleeDIE = nullptr;
947 const Function *CalleeDecl = nullptr;
948 if (CalleeOp.isReg()) {
949 CallReg = CalleeOp.getReg();
950 if (!CallReg)
951 continue;
952 } else {
953 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
954 if (!CalleeDecl || !CalleeDecl->getSubprogram())
955 continue;
956 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
957
958 if (CalleeSP->isDefinition()) {
959 // Ensure that a subprogram DIE for the callee is available in the
960 // appropriate CU.
961 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
962 } else {
963 // Create the declaration DIE if it is missing. This is required to
964 // support compilation of old bitcode with an incomplete list of
965 // retained metadata.
966 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
967 }
968 assert(CalleeDIE && "Must have a DIE for the callee");
969 }
970
971 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
972
973 bool IsTail = TII->isTailCall(MI);
974
975 // If MI is in a bundle, the label was created after the bundle since
976 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
977 // to search for that label below.
978 const MachineInstr *TopLevelCallMI =
979 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
980
981 // For non-tail calls, the return PC is needed to disambiguate paths in
982 // the call graph which could lead to some target function. For tail
983 // calls, no return PC information is needed, unless tuning for GDB in
984 // DWARF4 mode in which case we fake a return PC for compatibility.
985 const MCSymbol *PCAddr =
986 (!IsTail || CU.useGNUAnalogForDwarf5Feature())
987 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
988 : nullptr;
989
990 // For tail calls, it's necessary to record the address of the branch
991 // instruction so that the debugger can show where the tail call occurred.
992 const MCSymbol *CallAddr =
993 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
994
995 assert((IsTail || PCAddr) && "Non-tail call without return PC");
996
997 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
998 << (CalleeDecl ? CalleeDecl->getName()
999 : StringRef(MF.getSubtarget()
1000 .getRegisterInfo()
1001 ->getName(CallReg)))
1002 << (IsTail ? " [IsTail]" : "") << "\n");
1003
1004 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
1005 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
1006
1007 // Optionally emit call-site-param debug info.
1008 if (emitDebugEntryValues()) {
1009 ParamSet Params;
1010 // Try to interpret values of call site parameters.
1011 collectCallSiteParameters(&MI, Params);
1012 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
1013 }
1014 }
1015 }
1016 }
1017
addGnuPubAttributes(DwarfCompileUnit & U,DIE & D) const1018 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
1019 if (!U.hasDwarfPubSections())
1020 return;
1021
1022 U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
1023 }
1024
finishUnitAttributes(const DICompileUnit * DIUnit,DwarfCompileUnit & NewCU)1025 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
1026 DwarfCompileUnit &NewCU) {
1027 DIE &Die = NewCU.getUnitDie();
1028 StringRef FN = DIUnit->getFilename();
1029
1030 StringRef Producer = DIUnit->getProducer();
1031 StringRef Flags = DIUnit->getFlags();
1032 if (!Flags.empty() && !useAppleExtensionAttributes()) {
1033 std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
1034 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
1035 } else
1036 NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1037
1038 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1039 DIUnit->getSourceLanguage());
1040 NewCU.addString(Die, dwarf::DW_AT_name, FN);
1041 StringRef SysRoot = DIUnit->getSysRoot();
1042 if (!SysRoot.empty())
1043 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1044 StringRef SDK = DIUnit->getSDK();
1045 if (!SDK.empty())
1046 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1047
1048 // Add DW_str_offsets_base to the unit DIE, except for split units.
1049 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1050 NewCU.addStringOffsetsStart();
1051
1052 if (!useSplitDwarf()) {
1053 NewCU.initStmtList();
1054
1055 // If we're using split dwarf the compilation dir is going to be in the
1056 // skeleton CU and so we don't need to duplicate it here.
1057 if (!CompilationDir.empty())
1058 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1059 addGnuPubAttributes(NewCU, Die);
1060 }
1061
1062 if (useAppleExtensionAttributes()) {
1063 if (DIUnit->isOptimized())
1064 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1065
1066 StringRef Flags = DIUnit->getFlags();
1067 if (!Flags.empty())
1068 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1069
1070 if (unsigned RVer = DIUnit->getRuntimeVersion())
1071 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1072 dwarf::DW_FORM_data1, RVer);
1073 }
1074
1075 if (DIUnit->getDWOId()) {
1076 // This CU is either a clang module DWO or a skeleton CU.
1077 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1078 DIUnit->getDWOId());
1079 if (!DIUnit->getSplitDebugFilename().empty()) {
1080 // This is a prefabricated skeleton CU.
1081 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1082 ? dwarf::DW_AT_dwo_name
1083 : dwarf::DW_AT_GNU_dwo_name;
1084 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1085 }
1086 }
1087 }
1088 // Create new DwarfCompileUnit for the given metadata node with tag
1089 // DW_TAG_compile_unit.
1090 DwarfCompileUnit &
getOrCreateDwarfCompileUnit(const DICompileUnit * DIUnit)1091 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1092 if (auto *CU = CUMap.lookup(DIUnit))
1093 return *CU;
1094
1095 CompilationDir = DIUnit->getDirectory();
1096
1097 auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1098 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1099 DwarfCompileUnit &NewCU = *OwnedUnit;
1100 InfoHolder.addUnit(std::move(OwnedUnit));
1101
1102 for (auto *IE : DIUnit->getImportedEntities())
1103 NewCU.addImportedEntity(IE);
1104
1105 // LTO with assembly output shares a single line table amongst multiple CUs.
1106 // To avoid the compilation directory being ambiguous, let the line table
1107 // explicitly describe the directory of all files, never relying on the
1108 // compilation directory.
1109 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1110 Asm->OutStreamer->emitDwarfFile0Directive(
1111 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1112 DIUnit->getSource(), NewCU.getUniqueID());
1113
1114 if (useSplitDwarf()) {
1115 NewCU.setSkeleton(constructSkeletonCU(NewCU));
1116 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1117 } else {
1118 finishUnitAttributes(DIUnit, NewCU);
1119 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1120 }
1121
1122 CUMap.insert({DIUnit, &NewCU});
1123 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1124 return NewCU;
1125 }
1126
constructAndAddImportedEntityDIE(DwarfCompileUnit & TheCU,const DIImportedEntity * N)1127 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1128 const DIImportedEntity *N) {
1129 if (isa<DILocalScope>(N->getScope()))
1130 return;
1131 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1132 D->addChild(TheCU.constructImportedEntityDIE(N));
1133 }
1134
1135 /// Sort and unique GVEs by comparing their fragment offset.
1136 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & GVEs)1137 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1138 llvm::sort(
1139 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1140 // Sort order: first null exprs, then exprs without fragment
1141 // info, then sort by fragment offset in bits.
1142 // FIXME: Come up with a more comprehensive comparator so
1143 // the sorting isn't non-deterministic, and so the following
1144 // std::unique call works correctly.
1145 if (!A.Expr || !B.Expr)
1146 return !!B.Expr;
1147 auto FragmentA = A.Expr->getFragmentInfo();
1148 auto FragmentB = B.Expr->getFragmentInfo();
1149 if (!FragmentA || !FragmentB)
1150 return !!FragmentB;
1151 return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1152 });
1153 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1154 [](DwarfCompileUnit::GlobalExpr A,
1155 DwarfCompileUnit::GlobalExpr B) {
1156 return A.Expr == B.Expr;
1157 }),
1158 GVEs.end());
1159 return GVEs;
1160 }
1161
1162 // Emit all Dwarf sections that should come prior to the content. Create
1163 // global DIEs and emit initial debug info sections. This is invoked by
1164 // the target AsmPrinter.
beginModule(Module * M)1165 void DwarfDebug::beginModule(Module *M) {
1166 DebugHandlerBase::beginModule(M);
1167
1168 if (!Asm || !MMI->hasDebugInfo())
1169 return;
1170
1171 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1172 M->debug_compile_units_end());
1173 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1174 assert(MMI->hasDebugInfo() &&
1175 "DebugInfoAvailabilty unexpectedly not initialized");
1176 SingleCU = NumDebugCUs == 1;
1177 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1178 GVMap;
1179 for (const GlobalVariable &Global : M->globals()) {
1180 SmallVector<DIGlobalVariableExpression *, 1> GVs;
1181 Global.getDebugInfo(GVs);
1182 for (auto *GVE : GVs)
1183 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1184 }
1185
1186 // Create the symbol that designates the start of the unit's contribution
1187 // to the string offsets table. In a split DWARF scenario, only the skeleton
1188 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1189 if (useSegmentedStringOffsetsTable())
1190 (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1191 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1192
1193
1194 // Create the symbols that designates the start of the DWARF v5 range list
1195 // and locations list tables. They are located past the table headers.
1196 if (getDwarfVersion() >= 5) {
1197 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1198 Holder.setRnglistsTableBaseSym(
1199 Asm->createTempSymbol("rnglists_table_base"));
1200
1201 if (useSplitDwarf())
1202 InfoHolder.setRnglistsTableBaseSym(
1203 Asm->createTempSymbol("rnglists_dwo_table_base"));
1204 }
1205
1206 // Create the symbol that points to the first entry following the debug
1207 // address table (.debug_addr) header.
1208 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1209 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1210
1211 for (DICompileUnit *CUNode : M->debug_compile_units()) {
1212 // FIXME: Move local imported entities into a list attached to the
1213 // subprogram, then this search won't be needed and a
1214 // getImportedEntities().empty() test should go below with the rest.
1215 bool HasNonLocalImportedEntities = llvm::any_of(
1216 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1217 return !isa<DILocalScope>(IE->getScope());
1218 });
1219
1220 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1221 CUNode->getRetainedTypes().empty() &&
1222 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1223 continue;
1224
1225 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1226
1227 // Global Variables.
1228 for (auto *GVE : CUNode->getGlobalVariables()) {
1229 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1230 // already know about the variable and it isn't adding a constant
1231 // expression.
1232 auto &GVMapEntry = GVMap[GVE->getVariable()];
1233 auto *Expr = GVE->getExpression();
1234 if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1235 GVMapEntry.push_back({nullptr, Expr});
1236 }
1237 DenseSet<DIGlobalVariable *> Processed;
1238 for (auto *GVE : CUNode->getGlobalVariables()) {
1239 DIGlobalVariable *GV = GVE->getVariable();
1240 if (Processed.insert(GV).second)
1241 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1242 }
1243
1244 for (auto *Ty : CUNode->getEnumTypes()) {
1245 // The enum types array by design contains pointers to
1246 // MDNodes rather than DIRefs. Unique them here.
1247 CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1248 }
1249 for (auto *Ty : CUNode->getRetainedTypes()) {
1250 // The retained types array by design contains pointers to
1251 // MDNodes rather than DIRefs. Unique them here.
1252 if (DIType *RT = dyn_cast<DIType>(Ty))
1253 // There is no point in force-emitting a forward declaration.
1254 CU.getOrCreateTypeDIE(RT);
1255 }
1256 // Emit imported_modules last so that the relevant context is already
1257 // available.
1258 for (auto *IE : CUNode->getImportedEntities())
1259 constructAndAddImportedEntityDIE(CU, IE);
1260 }
1261 }
1262
finishEntityDefinitions()1263 void DwarfDebug::finishEntityDefinitions() {
1264 for (const auto &Entity : ConcreteEntities) {
1265 DIE *Die = Entity->getDIE();
1266 assert(Die);
1267 // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1268 // in the ConcreteEntities list, rather than looking it up again here.
1269 // DIE::getUnit isn't simple - it walks parent pointers, etc.
1270 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1271 assert(Unit);
1272 Unit->finishEntityDefinition(Entity.get());
1273 }
1274 }
1275
finishSubprogramDefinitions()1276 void DwarfDebug::finishSubprogramDefinitions() {
1277 for (const DISubprogram *SP : ProcessedSPNodes) {
1278 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1279 forBothCUs(
1280 getOrCreateDwarfCompileUnit(SP->getUnit()),
1281 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1282 }
1283 }
1284
finalizeModuleInfo()1285 void DwarfDebug::finalizeModuleInfo() {
1286 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1287
1288 finishSubprogramDefinitions();
1289
1290 finishEntityDefinitions();
1291
1292 // Include the DWO file name in the hash if there's more than one CU.
1293 // This handles ThinLTO's situation where imported CUs may very easily be
1294 // duplicate with the same CU partially imported into another ThinLTO unit.
1295 StringRef DWOName;
1296 if (CUMap.size() > 1)
1297 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1298
1299 // Handle anything that needs to be done on a per-unit basis after
1300 // all other generation.
1301 for (const auto &P : CUMap) {
1302 auto &TheCU = *P.second;
1303 if (TheCU.getCUNode()->isDebugDirectivesOnly())
1304 continue;
1305 // Emit DW_AT_containing_type attribute to connect types with their
1306 // vtable holding type.
1307 TheCU.constructContainingTypeDIEs();
1308
1309 // Add CU specific attributes if we need to add any.
1310 // If we're splitting the dwarf out now that we've got the entire
1311 // CU then add the dwo id to it.
1312 auto *SkCU = TheCU.getSkeleton();
1313
1314 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1315
1316 if (HasSplitUnit) {
1317 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1318 ? dwarf::DW_AT_dwo_name
1319 : dwarf::DW_AT_GNU_dwo_name;
1320 finishUnitAttributes(TheCU.getCUNode(), TheCU);
1321 TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1322 Asm->TM.Options.MCOptions.SplitDwarfFile);
1323 SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1324 Asm->TM.Options.MCOptions.SplitDwarfFile);
1325 // Emit a unique identifier for this CU.
1326 uint64_t ID =
1327 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1328 if (getDwarfVersion() >= 5) {
1329 TheCU.setDWOId(ID);
1330 SkCU->setDWOId(ID);
1331 } else {
1332 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1333 dwarf::DW_FORM_data8, ID);
1334 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1335 dwarf::DW_FORM_data8, ID);
1336 }
1337
1338 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1339 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1340 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1341 Sym, Sym);
1342 }
1343 } else if (SkCU) {
1344 finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1345 }
1346
1347 // If we have code split among multiple sections or non-contiguous
1348 // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1349 // remain in the .o file, otherwise add a DW_AT_low_pc.
1350 // FIXME: We should use ranges allow reordering of code ala
1351 // .subsections_via_symbols in mach-o. This would mean turning on
1352 // ranges for all subprogram DIEs for mach-o.
1353 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1354
1355 if (unsigned NumRanges = TheCU.getRanges().size()) {
1356 if (NumRanges > 1 && useRangesSection())
1357 // A DW_AT_low_pc attribute may also be specified in combination with
1358 // DW_AT_ranges to specify the default base address for use in
1359 // location lists (see Section 2.6.2) and range lists (see Section
1360 // 2.17.3).
1361 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1362 else
1363 U.setBaseAddress(TheCU.getRanges().front().Begin);
1364 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1365 }
1366
1367 // We don't keep track of which addresses are used in which CU so this
1368 // is a bit pessimistic under LTO.
1369 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1370 U.addAddrTableBase();
1371
1372 if (getDwarfVersion() >= 5) {
1373 if (U.hasRangeLists())
1374 U.addRnglistsBase();
1375
1376 if (!DebugLocs.getLists().empty()) {
1377 if (!useSplitDwarf())
1378 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1379 DebugLocs.getSym(),
1380 TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1381 }
1382 }
1383
1384 auto *CUNode = cast<DICompileUnit>(P.first);
1385 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1386 // attribute.
1387 if (CUNode->getMacros()) {
1388 if (UseDebugMacroSection) {
1389 if (useSplitDwarf())
1390 TheCU.addSectionDelta(
1391 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1392 TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1393 else {
1394 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1395 ? dwarf::DW_AT_macros
1396 : dwarf::DW_AT_GNU_macros;
1397 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1398 TLOF.getDwarfMacroSection()->getBeginSymbol());
1399 }
1400 } else {
1401 if (useSplitDwarf())
1402 TheCU.addSectionDelta(
1403 TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1404 U.getMacroLabelBegin(),
1405 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1406 else
1407 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1408 U.getMacroLabelBegin(),
1409 TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1410 }
1411 }
1412 }
1413
1414 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1415 for (auto *CUNode : MMI->getModule()->debug_compile_units())
1416 if (CUNode->getDWOId())
1417 getOrCreateDwarfCompileUnit(CUNode);
1418
1419 // Compute DIE offsets and sizes.
1420 InfoHolder.computeSizeAndOffsets();
1421 if (useSplitDwarf())
1422 SkeletonHolder.computeSizeAndOffsets();
1423 }
1424
1425 // Emit all Dwarf sections that should come after the content.
endModule()1426 void DwarfDebug::endModule() {
1427 assert(CurFn == nullptr);
1428 assert(CurMI == nullptr);
1429
1430 for (const auto &P : CUMap) {
1431 auto &CU = *P.second;
1432 CU.createBaseTypeDIEs();
1433 }
1434
1435 // If we aren't actually generating debug info (check beginModule -
1436 // conditionalized on the presence of the llvm.dbg.cu metadata node)
1437 if (!Asm || !MMI->hasDebugInfo())
1438 return;
1439
1440 // Finalize the debug info for the module.
1441 finalizeModuleInfo();
1442
1443 if (useSplitDwarf())
1444 // Emit debug_loc.dwo/debug_loclists.dwo section.
1445 emitDebugLocDWO();
1446 else
1447 // Emit debug_loc/debug_loclists section.
1448 emitDebugLoc();
1449
1450 // Corresponding abbreviations into a abbrev section.
1451 emitAbbreviations();
1452
1453 // Emit all the DIEs into a debug info section.
1454 emitDebugInfo();
1455
1456 // Emit info into a debug aranges section.
1457 if (GenerateARangeSection)
1458 emitDebugARanges();
1459
1460 // Emit info into a debug ranges section.
1461 emitDebugRanges();
1462
1463 if (useSplitDwarf())
1464 // Emit info into a debug macinfo.dwo section.
1465 emitDebugMacinfoDWO();
1466 else
1467 // Emit info into a debug macinfo/macro section.
1468 emitDebugMacinfo();
1469
1470 emitDebugStr();
1471
1472 if (useSplitDwarf()) {
1473 emitDebugStrDWO();
1474 emitDebugInfoDWO();
1475 emitDebugAbbrevDWO();
1476 emitDebugLineDWO();
1477 emitDebugRangesDWO();
1478 }
1479
1480 emitDebugAddr();
1481
1482 // Emit info into the dwarf accelerator table sections.
1483 switch (getAccelTableKind()) {
1484 case AccelTableKind::Apple:
1485 emitAccelNames();
1486 emitAccelObjC();
1487 emitAccelNamespaces();
1488 emitAccelTypes();
1489 break;
1490 case AccelTableKind::Dwarf:
1491 emitAccelDebugNames();
1492 break;
1493 case AccelTableKind::None:
1494 break;
1495 case AccelTableKind::Default:
1496 llvm_unreachable("Default should have already been resolved.");
1497 }
1498
1499 // Emit the pubnames and pubtypes sections if requested.
1500 emitDebugPubSections();
1501
1502 // clean up.
1503 // FIXME: AbstractVariables.clear();
1504 }
1505
ensureAbstractEntityIsCreated(DwarfCompileUnit & CU,const DINode * Node,const MDNode * ScopeNode)1506 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1507 const DINode *Node,
1508 const MDNode *ScopeNode) {
1509 if (CU.getExistingAbstractEntity(Node))
1510 return;
1511
1512 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1513 cast<DILocalScope>(ScopeNode)));
1514 }
1515
ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit & CU,const DINode * Node,const MDNode * ScopeNode)1516 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1517 const DINode *Node, const MDNode *ScopeNode) {
1518 if (CU.getExistingAbstractEntity(Node))
1519 return;
1520
1521 if (LexicalScope *Scope =
1522 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1523 CU.createAbstractEntity(Node, Scope);
1524 }
1525
1526 // Collect variable information from side table maintained by MF.
collectVariableInfoFromMFTable(DwarfCompileUnit & TheCU,DenseSet<InlinedEntity> & Processed)1527 void DwarfDebug::collectVariableInfoFromMFTable(
1528 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1529 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1530 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1531 for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1532 if (!VI.Var)
1533 continue;
1534 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1535 "Expected inlined-at fields to agree");
1536
1537 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1538 Processed.insert(Var);
1539 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1540
1541 // If variable scope is not found then skip this variable.
1542 if (!Scope) {
1543 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1544 << ", no variable scope found\n");
1545 continue;
1546 }
1547
1548 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1549 auto RegVar = std::make_unique<DbgVariable>(
1550 cast<DILocalVariable>(Var.first), Var.second);
1551 RegVar->initializeMMI(VI.Expr, VI.Slot);
1552 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1553 << "\n");
1554 if (DbgVariable *DbgVar = MFVars.lookup(Var))
1555 DbgVar->addMMIEntry(*RegVar);
1556 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1557 MFVars.insert({Var, RegVar.get()});
1558 ConcreteEntities.push_back(std::move(RegVar));
1559 }
1560 }
1561 }
1562
1563 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1564 /// enclosing lexical scope. The check ensures there are no other instructions
1565 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1566 /// either open or otherwise rolls off the end of the scope.
validThroughout(LexicalScopes & LScopes,const MachineInstr * DbgValue,const MachineInstr * RangeEnd,const InstructionOrdering & Ordering)1567 static bool validThroughout(LexicalScopes &LScopes,
1568 const MachineInstr *DbgValue,
1569 const MachineInstr *RangeEnd,
1570 const InstructionOrdering &Ordering) {
1571 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1572 auto MBB = DbgValue->getParent();
1573 auto DL = DbgValue->getDebugLoc();
1574 auto *LScope = LScopes.findLexicalScope(DL);
1575 // Scope doesn't exist; this is a dead DBG_VALUE.
1576 if (!LScope)
1577 return false;
1578 auto &LSRange = LScope->getRanges();
1579 if (LSRange.size() == 0)
1580 return false;
1581
1582 const MachineInstr *LScopeBegin = LSRange.front().first;
1583 // If the scope starts before the DBG_VALUE then we may have a negative
1584 // result. Otherwise the location is live coming into the scope and we
1585 // can skip the following checks.
1586 if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1587 // Exit if the lexical scope begins outside of the current block.
1588 if (LScopeBegin->getParent() != MBB)
1589 return false;
1590
1591 MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1592 for (++Pred; Pred != MBB->rend(); ++Pred) {
1593 if (Pred->getFlag(MachineInstr::FrameSetup))
1594 break;
1595 auto PredDL = Pred->getDebugLoc();
1596 if (!PredDL || Pred->isMetaInstruction())
1597 continue;
1598 // Check whether the instruction preceding the DBG_VALUE is in the same
1599 // (sub)scope as the DBG_VALUE.
1600 if (DL->getScope() == PredDL->getScope())
1601 return false;
1602 auto *PredScope = LScopes.findLexicalScope(PredDL);
1603 if (!PredScope || LScope->dominates(PredScope))
1604 return false;
1605 }
1606 }
1607
1608 // If the range of the DBG_VALUE is open-ended, report success.
1609 if (!RangeEnd)
1610 return true;
1611
1612 // Single, constant DBG_VALUEs in the prologue are promoted to be live
1613 // throughout the function. This is a hack, presumably for DWARF v2 and not
1614 // necessarily correct. It would be much better to use a dbg.declare instead
1615 // if we know the constant is live throughout the scope.
1616 if (MBB->pred_empty() &&
1617 all_of(DbgValue->debug_operands(),
1618 [](const MachineOperand &Op) { return Op.isImm(); }))
1619 return true;
1620
1621 // Test if the location terminates before the end of the scope.
1622 const MachineInstr *LScopeEnd = LSRange.back().second;
1623 if (Ordering.isBefore(RangeEnd, LScopeEnd))
1624 return false;
1625
1626 // There's a single location which starts at the scope start, and ends at or
1627 // after the scope end.
1628 return true;
1629 }
1630
1631 /// Build the location list for all DBG_VALUEs in the function that
1632 /// describe the same variable. The resulting DebugLocEntries will have
1633 /// strict monotonically increasing begin addresses and will never
1634 /// overlap. If the resulting list has only one entry that is valid
1635 /// throughout variable's scope return true.
1636 //
1637 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1638 // different kinds of history map entries. One thing to be aware of is that if
1639 // a debug value is ended by another entry (rather than being valid until the
1640 // end of the function), that entry's instruction may or may not be included in
1641 // the range, depending on if the entry is a clobbering entry (it has an
1642 // instruction that clobbers one or more preceding locations), or if it is an
1643 // (overlapping) debug value entry. This distinction can be seen in the example
1644 // below. The first debug value is ended by the clobbering entry 2, and the
1645 // second and third debug values are ended by the overlapping debug value entry
1646 // 4.
1647 //
1648 // Input:
1649 //
1650 // History map entries [type, end index, mi]
1651 //
1652 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1653 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1654 // 2 | | [Clobber, $reg0 = [...], -, -]
1655 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1656 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1657 //
1658 // Output [start, end) [Value...]:
1659 //
1660 // [0-1) [(reg0, fragment 0, 32)]
1661 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1662 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1663 // [4-) [(@g, fragment 0, 96)]
buildLocationList(SmallVectorImpl<DebugLocEntry> & DebugLoc,const DbgValueHistoryMap::Entries & Entries)1664 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1665 const DbgValueHistoryMap::Entries &Entries) {
1666 using OpenRange =
1667 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1668 SmallVector<OpenRange, 4> OpenRanges;
1669 bool isSafeForSingleLocation = true;
1670 const MachineInstr *StartDebugMI = nullptr;
1671 const MachineInstr *EndMI = nullptr;
1672
1673 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1674 const MachineInstr *Instr = EI->getInstr();
1675
1676 // Remove all values that are no longer live.
1677 size_t Index = std::distance(EB, EI);
1678 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1679
1680 // If we are dealing with a clobbering entry, this iteration will result in
1681 // a location list entry starting after the clobbering instruction.
1682 const MCSymbol *StartLabel =
1683 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1684 assert(StartLabel &&
1685 "Forgot label before/after instruction starting a range!");
1686
1687 const MCSymbol *EndLabel;
1688 if (std::next(EI) == Entries.end()) {
1689 const MachineBasicBlock &EndMBB = Asm->MF->back();
1690 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1691 if (EI->isClobber())
1692 EndMI = EI->getInstr();
1693 }
1694 else if (std::next(EI)->isClobber())
1695 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1696 else
1697 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1698 assert(EndLabel && "Forgot label after instruction ending a range!");
1699
1700 if (EI->isDbgValue())
1701 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1702
1703 // If this history map entry has a debug value, add that to the list of
1704 // open ranges and check if its location is valid for a single value
1705 // location.
1706 if (EI->isDbgValue()) {
1707 // Do not add undef debug values, as they are redundant information in
1708 // the location list entries. An undef debug results in an empty location
1709 // description. If there are any non-undef fragments then padding pieces
1710 // with empty location descriptions will automatically be inserted, and if
1711 // all fragments are undef then the whole location list entry is
1712 // redundant.
1713 if (!Instr->isUndefDebugValue()) {
1714 auto Value = getDebugLocValue(Instr);
1715 OpenRanges.emplace_back(EI->getEndIndex(), Value);
1716
1717 // TODO: Add support for single value fragment locations.
1718 if (Instr->getDebugExpression()->isFragment())
1719 isSafeForSingleLocation = false;
1720
1721 if (!StartDebugMI)
1722 StartDebugMI = Instr;
1723 } else {
1724 isSafeForSingleLocation = false;
1725 }
1726 }
1727
1728 // Location list entries with empty location descriptions are redundant
1729 // information in DWARF, so do not emit those.
1730 if (OpenRanges.empty())
1731 continue;
1732
1733 // Omit entries with empty ranges as they do not have any effect in DWARF.
1734 if (StartLabel == EndLabel) {
1735 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1736 continue;
1737 }
1738
1739 SmallVector<DbgValueLoc, 4> Values;
1740 for (auto &R : OpenRanges)
1741 Values.push_back(R.second);
1742 DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1743
1744 // Attempt to coalesce the ranges of two otherwise identical
1745 // DebugLocEntries.
1746 auto CurEntry = DebugLoc.rbegin();
1747 LLVM_DEBUG({
1748 dbgs() << CurEntry->getValues().size() << " Values:\n";
1749 for (auto &Value : CurEntry->getValues())
1750 Value.dump();
1751 dbgs() << "-----\n";
1752 });
1753
1754 auto PrevEntry = std::next(CurEntry);
1755 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1756 DebugLoc.pop_back();
1757 }
1758
1759 return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1760 validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering());
1761 }
1762
createConcreteEntity(DwarfCompileUnit & TheCU,LexicalScope & Scope,const DINode * Node,const DILocation * Location,const MCSymbol * Sym)1763 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1764 LexicalScope &Scope,
1765 const DINode *Node,
1766 const DILocation *Location,
1767 const MCSymbol *Sym) {
1768 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1769 if (isa<const DILocalVariable>(Node)) {
1770 ConcreteEntities.push_back(
1771 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1772 Location));
1773 InfoHolder.addScopeVariable(&Scope,
1774 cast<DbgVariable>(ConcreteEntities.back().get()));
1775 } else if (isa<const DILabel>(Node)) {
1776 ConcreteEntities.push_back(
1777 std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1778 Location, Sym));
1779 InfoHolder.addScopeLabel(&Scope,
1780 cast<DbgLabel>(ConcreteEntities.back().get()));
1781 }
1782 return ConcreteEntities.back().get();
1783 }
1784
1785 // Find variables for each lexical scope.
collectEntityInfo(DwarfCompileUnit & TheCU,const DISubprogram * SP,DenseSet<InlinedEntity> & Processed)1786 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1787 const DISubprogram *SP,
1788 DenseSet<InlinedEntity> &Processed) {
1789 // Grab the variable info that was squirreled away in the MMI side-table.
1790 collectVariableInfoFromMFTable(TheCU, Processed);
1791
1792 for (const auto &I : DbgValues) {
1793 InlinedEntity IV = I.first;
1794 if (Processed.count(IV))
1795 continue;
1796
1797 // Instruction ranges, specifying where IV is accessible.
1798 const auto &HistoryMapEntries = I.second;
1799
1800 // Try to find any non-empty variable location. Do not create a concrete
1801 // entity if there are no locations.
1802 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries))
1803 continue;
1804
1805 LexicalScope *Scope = nullptr;
1806 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1807 if (const DILocation *IA = IV.second)
1808 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1809 else
1810 Scope = LScopes.findLexicalScope(LocalVar->getScope());
1811 // If variable scope is not found then skip this variable.
1812 if (!Scope)
1813 continue;
1814
1815 Processed.insert(IV);
1816 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1817 *Scope, LocalVar, IV.second));
1818
1819 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1820 assert(MInsn->isDebugValue() && "History must begin with debug value");
1821
1822 // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1823 // If the history map contains a single debug value, there may be an
1824 // additional entry which clobbers the debug value.
1825 size_t HistSize = HistoryMapEntries.size();
1826 bool SingleValueWithClobber =
1827 HistSize == 2 && HistoryMapEntries[1].isClobber();
1828 if (HistSize == 1 || SingleValueWithClobber) {
1829 const auto *End =
1830 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1831 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1832 RegVar->initializeDbgValue(MInsn);
1833 continue;
1834 }
1835 }
1836
1837 // Do not emit location lists if .debug_loc secton is disabled.
1838 if (!useLocSection())
1839 continue;
1840
1841 // Handle multiple DBG_VALUE instructions describing one variable.
1842 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1843
1844 // Build the location list for this variable.
1845 SmallVector<DebugLocEntry, 8> Entries;
1846 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1847
1848 // Check whether buildLocationList managed to merge all locations to one
1849 // that is valid throughout the variable's scope. If so, produce single
1850 // value location.
1851 if (isValidSingleLocation) {
1852 RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1853 continue;
1854 }
1855
1856 // If the variable has a DIBasicType, extract it. Basic types cannot have
1857 // unique identifiers, so don't bother resolving the type with the
1858 // identifier map.
1859 const DIBasicType *BT = dyn_cast<DIBasicType>(
1860 static_cast<const Metadata *>(LocalVar->getType()));
1861
1862 // Finalize the entry by lowering it into a DWARF bytestream.
1863 for (auto &Entry : Entries)
1864 Entry.finalize(*Asm, List, BT, TheCU);
1865 }
1866
1867 // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1868 // DWARF-related DbgLabel.
1869 for (const auto &I : DbgLabels) {
1870 InlinedEntity IL = I.first;
1871 const MachineInstr *MI = I.second;
1872 if (MI == nullptr)
1873 continue;
1874
1875 LexicalScope *Scope = nullptr;
1876 const DILabel *Label = cast<DILabel>(IL.first);
1877 // The scope could have an extra lexical block file.
1878 const DILocalScope *LocalScope =
1879 Label->getScope()->getNonLexicalBlockFileScope();
1880 // Get inlined DILocation if it is inlined label.
1881 if (const DILocation *IA = IL.second)
1882 Scope = LScopes.findInlinedScope(LocalScope, IA);
1883 else
1884 Scope = LScopes.findLexicalScope(LocalScope);
1885 // If label scope is not found then skip this label.
1886 if (!Scope)
1887 continue;
1888
1889 Processed.insert(IL);
1890 /// At this point, the temporary label is created.
1891 /// Save the temporary label to DbgLabel entity to get the
1892 /// actually address when generating Dwarf DIE.
1893 MCSymbol *Sym = getLabelBeforeInsn(MI);
1894 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1895 }
1896
1897 // Collect info for variables/labels that were optimized out.
1898 for (const DINode *DN : SP->getRetainedNodes()) {
1899 if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1900 continue;
1901 LexicalScope *Scope = nullptr;
1902 if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1903 Scope = LScopes.findLexicalScope(DV->getScope());
1904 } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1905 Scope = LScopes.findLexicalScope(DL->getScope());
1906 }
1907
1908 if (Scope)
1909 createConcreteEntity(TheCU, *Scope, DN, nullptr);
1910 }
1911 }
1912
1913 // Process beginning of an instruction.
beginInstruction(const MachineInstr * MI)1914 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1915 const MachineFunction &MF = *MI->getMF();
1916 const auto *SP = MF.getFunction().getSubprogram();
1917 bool NoDebug =
1918 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1919
1920 // Delay slot support check.
1921 auto delaySlotSupported = [](const MachineInstr &MI) {
1922 if (!MI.isBundledWithSucc())
1923 return false;
1924 auto Suc = std::next(MI.getIterator());
1925 (void)Suc;
1926 // Ensure that delay slot instruction is successor of the call instruction.
1927 // Ex. CALL_INSTRUCTION {
1928 // DELAY_SLOT_INSTRUCTION }
1929 assert(Suc->isBundledWithPred() &&
1930 "Call bundle instructions are out of order");
1931 return true;
1932 };
1933
1934 // When describing calls, we need a label for the call instruction.
1935 if (!NoDebug && SP->areAllCallsDescribed() &&
1936 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1937 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1938 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1939 bool IsTail = TII->isTailCall(*MI);
1940 // For tail calls, we need the address of the branch instruction for
1941 // DW_AT_call_pc.
1942 if (IsTail)
1943 requestLabelBeforeInsn(MI);
1944 // For non-tail calls, we need the return address for the call for
1945 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1946 // tail calls as well.
1947 requestLabelAfterInsn(MI);
1948 }
1949
1950 DebugHandlerBase::beginInstruction(MI);
1951 if (!CurMI)
1952 return;
1953
1954 if (NoDebug)
1955 return;
1956
1957 // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1958 // If the instruction is part of the function frame setup code, do not emit
1959 // any line record, as there is no correspondence with any user code.
1960 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1961 return;
1962 const DebugLoc &DL = MI->getDebugLoc();
1963 // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1964 // the last line number actually emitted, to see if it was line 0.
1965 unsigned LastAsmLine =
1966 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1967
1968 if (DL == PrevInstLoc) {
1969 // If we have an ongoing unspecified location, nothing to do here.
1970 if (!DL)
1971 return;
1972 // We have an explicit location, same as the previous location.
1973 // But we might be coming back to it after a line 0 record.
1974 if (LastAsmLine == 0 && DL.getLine() != 0) {
1975 // Reinstate the source location but not marked as a statement.
1976 const MDNode *Scope = DL.getScope();
1977 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1978 }
1979 return;
1980 }
1981
1982 if (!DL) {
1983 // We have an unspecified location, which might want to be line 0.
1984 // If we have already emitted a line-0 record, don't repeat it.
1985 if (LastAsmLine == 0)
1986 return;
1987 // If user said Don't Do That, don't do that.
1988 if (UnknownLocations == Disable)
1989 return;
1990 // See if we have a reason to emit a line-0 record now.
1991 // Reasons to emit a line-0 record include:
1992 // - User asked for it (UnknownLocations).
1993 // - Instruction has a label, so it's referenced from somewhere else,
1994 // possibly debug information; we want it to have a source location.
1995 // - Instruction is at the top of a block; we don't want to inherit the
1996 // location from the physically previous (maybe unrelated) block.
1997 if (UnknownLocations == Enable || PrevLabel ||
1998 (PrevInstBB && PrevInstBB != MI->getParent())) {
1999 // Preserve the file and column numbers, if we can, to save space in
2000 // the encoded line table.
2001 // Do not update PrevInstLoc, it remembers the last non-0 line.
2002 const MDNode *Scope = nullptr;
2003 unsigned Column = 0;
2004 if (PrevInstLoc) {
2005 Scope = PrevInstLoc.getScope();
2006 Column = PrevInstLoc.getCol();
2007 }
2008 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
2009 }
2010 return;
2011 }
2012
2013 // We have an explicit location, different from the previous location.
2014 // Don't repeat a line-0 record, but otherwise emit the new location.
2015 // (The new location might be an explicit line 0, which we do emit.)
2016 if (DL.getLine() == 0 && LastAsmLine == 0)
2017 return;
2018 unsigned Flags = 0;
2019 if (DL == PrologEndLoc) {
2020 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2021 PrologEndLoc = DebugLoc();
2022 }
2023 // If the line changed, we call that a new statement; unless we went to
2024 // line 0 and came back, in which case it is not a new statement.
2025 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2026 if (DL.getLine() && DL.getLine() != OldLine)
2027 Flags |= DWARF2_FLAG_IS_STMT;
2028
2029 const MDNode *Scope = DL.getScope();
2030 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2031
2032 // If we're not at line 0, remember this location.
2033 if (DL.getLine())
2034 PrevInstLoc = DL;
2035 }
2036
findPrologueEndLoc(const MachineFunction * MF)2037 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2038 // First known non-DBG_VALUE and non-frame setup location marks
2039 // the beginning of the function body.
2040 for (const auto &MBB : *MF)
2041 for (const auto &MI : MBB)
2042 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2043 MI.getDebugLoc())
2044 return MI.getDebugLoc();
2045 return DebugLoc();
2046 }
2047
2048 /// Register a source line with debug info. Returns the unique label that was
2049 /// emitted and which provides correspondence to the source line list.
recordSourceLine(AsmPrinter & Asm,unsigned Line,unsigned Col,const MDNode * S,unsigned Flags,unsigned CUID,uint16_t DwarfVersion,ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs)2050 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2051 const MDNode *S, unsigned Flags, unsigned CUID,
2052 uint16_t DwarfVersion,
2053 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2054 StringRef Fn;
2055 unsigned FileNo = 1;
2056 unsigned Discriminator = 0;
2057 if (auto *Scope = cast_or_null<DIScope>(S)) {
2058 Fn = Scope->getFilename();
2059 if (Line != 0 && DwarfVersion >= 4)
2060 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2061 Discriminator = LBF->getDiscriminator();
2062
2063 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2064 .getOrCreateSourceID(Scope->getFile());
2065 }
2066 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2067 Discriminator, Fn);
2068 }
2069
emitInitialLocDirective(const MachineFunction & MF,unsigned CUID)2070 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2071 unsigned CUID) {
2072 // Get beginning of function.
2073 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2074 // Ensure the compile unit is created if the function is called before
2075 // beginFunction().
2076 (void)getOrCreateDwarfCompileUnit(
2077 MF.getFunction().getSubprogram()->getUnit());
2078 // We'd like to list the prologue as "not statements" but GDB behaves
2079 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2080 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2081 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2082 CUID, getDwarfVersion(), getUnits());
2083 return PrologEndLoc;
2084 }
2085 return DebugLoc();
2086 }
2087
2088 // Gather pre-function debug information. Assumes being called immediately
2089 // after the function entry point has been emitted.
beginFunctionImpl(const MachineFunction * MF)2090 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2091 CurFn = MF;
2092
2093 auto *SP = MF->getFunction().getSubprogram();
2094 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2095 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2096 return;
2097
2098 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2099
2100 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2101 // belongs to so that we add to the correct per-cu line table in the
2102 // non-asm case.
2103 if (Asm->OutStreamer->hasRawTextSupport())
2104 // Use a single line table if we are generating assembly.
2105 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2106 else
2107 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
2108
2109 // Record beginning of function.
2110 PrologEndLoc = emitInitialLocDirective(
2111 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2112 }
2113
skippedNonDebugFunction()2114 void DwarfDebug::skippedNonDebugFunction() {
2115 // If we don't have a subprogram for this function then there will be a hole
2116 // in the range information. Keep note of this by setting the previously used
2117 // section to nullptr.
2118 PrevCU = nullptr;
2119 CurFn = nullptr;
2120 }
2121
2122 // Gather and emit post-function debug information.
endFunctionImpl(const MachineFunction * MF)2123 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2124 const DISubprogram *SP = MF->getFunction().getSubprogram();
2125
2126 assert(CurFn == MF &&
2127 "endFunction should be called with the same function as beginFunction");
2128
2129 // Set DwarfDwarfCompileUnitID in MCContext to default value.
2130 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2131
2132 LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2133 assert(!FnScope || SP == FnScope->getScopeNode());
2134 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2135 if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2136 PrevLabel = nullptr;
2137 CurFn = nullptr;
2138 return;
2139 }
2140
2141 DenseSet<InlinedEntity> Processed;
2142 collectEntityInfo(TheCU, SP, Processed);
2143
2144 // Add the range of this function to the list of ranges for the CU.
2145 // With basic block sections, add ranges for all basic block sections.
2146 for (const auto &R : Asm->MBBSectionRanges)
2147 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2148
2149 // Under -gmlt, skip building the subprogram if there are no inlined
2150 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2151 // is still needed as we need its source location.
2152 if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2153 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2154 LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2155 assert(InfoHolder.getScopeVariables().empty());
2156 PrevLabel = nullptr;
2157 CurFn = nullptr;
2158 return;
2159 }
2160
2161 #ifndef NDEBUG
2162 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2163 #endif
2164 // Construct abstract scopes.
2165 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2166 auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2167 for (const DINode *DN : SP->getRetainedNodes()) {
2168 if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2169 continue;
2170
2171 const MDNode *Scope = nullptr;
2172 if (auto *DV = dyn_cast<DILocalVariable>(DN))
2173 Scope = DV->getScope();
2174 else if (auto *DL = dyn_cast<DILabel>(DN))
2175 Scope = DL->getScope();
2176 else
2177 llvm_unreachable("Unexpected DI type!");
2178
2179 // Collect info for variables/labels that were optimized out.
2180 ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2181 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2182 && "ensureAbstractEntityIsCreated inserted abstract scopes");
2183 }
2184 constructAbstractSubprogramScopeDIE(TheCU, AScope);
2185 }
2186
2187 ProcessedSPNodes.insert(SP);
2188 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2189 if (auto *SkelCU = TheCU.getSkeleton())
2190 if (!LScopes.getAbstractScopesList().empty() &&
2191 TheCU.getCUNode()->getSplitDebugInlining())
2192 SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2193
2194 // Construct call site entries.
2195 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2196
2197 // Clear debug info
2198 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2199 // DbgVariables except those that are also in AbstractVariables (since they
2200 // can be used cross-function)
2201 InfoHolder.getScopeVariables().clear();
2202 InfoHolder.getScopeLabels().clear();
2203 PrevLabel = nullptr;
2204 CurFn = nullptr;
2205 }
2206
2207 // Register a source line with debug info. Returns the unique label that was
2208 // emitted and which provides correspondence to the source line list.
recordSourceLine(unsigned Line,unsigned Col,const MDNode * S,unsigned Flags)2209 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2210 unsigned Flags) {
2211 ::recordSourceLine(*Asm, Line, Col, S, Flags,
2212 Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2213 getDwarfVersion(), getUnits());
2214 }
2215
2216 //===----------------------------------------------------------------------===//
2217 // Emit Methods
2218 //===----------------------------------------------------------------------===//
2219
2220 // Emit the debug info section.
emitDebugInfo()2221 void DwarfDebug::emitDebugInfo() {
2222 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2223 Holder.emitUnits(/* UseOffsets */ false);
2224 }
2225
2226 // Emit the abbreviation section.
emitAbbreviations()2227 void DwarfDebug::emitAbbreviations() {
2228 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2229
2230 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2231 }
2232
emitStringOffsetsTableHeader()2233 void DwarfDebug::emitStringOffsetsTableHeader() {
2234 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2235 Holder.getStringPool().emitStringOffsetsTableHeader(
2236 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2237 Holder.getStringOffsetsStartSym());
2238 }
2239
2240 template <typename AccelTableT>
emitAccel(AccelTableT & Accel,MCSection * Section,StringRef TableName)2241 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2242 StringRef TableName) {
2243 Asm->OutStreamer->SwitchSection(Section);
2244
2245 // Emit the full data.
2246 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2247 }
2248
emitAccelDebugNames()2249 void DwarfDebug::emitAccelDebugNames() {
2250 // Don't emit anything if we have no compilation units to index.
2251 if (getUnits().empty())
2252 return;
2253
2254 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2255 }
2256
2257 // Emit visible names into a hashed accelerator table section.
emitAccelNames()2258 void DwarfDebug::emitAccelNames() {
2259 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2260 "Names");
2261 }
2262
2263 // Emit objective C classes and categories into a hashed accelerator table
2264 // section.
emitAccelObjC()2265 void DwarfDebug::emitAccelObjC() {
2266 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2267 "ObjC");
2268 }
2269
2270 // Emit namespace dies into a hashed accelerator table.
emitAccelNamespaces()2271 void DwarfDebug::emitAccelNamespaces() {
2272 emitAccel(AccelNamespace,
2273 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2274 "namespac");
2275 }
2276
2277 // Emit type dies into a hashed accelerator table.
emitAccelTypes()2278 void DwarfDebug::emitAccelTypes() {
2279 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2280 "types");
2281 }
2282
2283 // Public name handling.
2284 // The format for the various pubnames:
2285 //
2286 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2287 // for the DIE that is named.
2288 //
2289 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2290 // into the CU and the index value is computed according to the type of value
2291 // for the DIE that is named.
2292 //
2293 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2294 // it's the offset within the debug_info/debug_types dwo section, however, the
2295 // reference in the pubname header doesn't change.
2296
2297 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
computeIndexValue(DwarfUnit * CU,const DIE * Die)2298 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2299 const DIE *Die) {
2300 // Entities that ended up only in a Type Unit reference the CU instead (since
2301 // the pub entry has offsets within the CU there's no real offset that can be
2302 // provided anyway). As it happens all such entities (namespaces and types,
2303 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2304 // not to be true it would be necessary to persist this information from the
2305 // point at which the entry is added to the index data structure - since by
2306 // the time the index is built from that, the original type/namespace DIE in a
2307 // type unit has already been destroyed so it can't be queried for properties
2308 // like tag, etc.
2309 if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2310 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2311 dwarf::GIEL_EXTERNAL);
2312 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2313
2314 // We could have a specification DIE that has our most of our knowledge,
2315 // look for that now.
2316 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2317 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2318 if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2319 Linkage = dwarf::GIEL_EXTERNAL;
2320 } else if (Die->findAttribute(dwarf::DW_AT_external))
2321 Linkage = dwarf::GIEL_EXTERNAL;
2322
2323 switch (Die->getTag()) {
2324 case dwarf::DW_TAG_class_type:
2325 case dwarf::DW_TAG_structure_type:
2326 case dwarf::DW_TAG_union_type:
2327 case dwarf::DW_TAG_enumeration_type:
2328 return dwarf::PubIndexEntryDescriptor(
2329 dwarf::GIEK_TYPE,
2330 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2331 ? dwarf::GIEL_EXTERNAL
2332 : dwarf::GIEL_STATIC);
2333 case dwarf::DW_TAG_typedef:
2334 case dwarf::DW_TAG_base_type:
2335 case dwarf::DW_TAG_subrange_type:
2336 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2337 case dwarf::DW_TAG_namespace:
2338 return dwarf::GIEK_TYPE;
2339 case dwarf::DW_TAG_subprogram:
2340 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2341 case dwarf::DW_TAG_variable:
2342 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2343 case dwarf::DW_TAG_enumerator:
2344 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2345 dwarf::GIEL_STATIC);
2346 default:
2347 return dwarf::GIEK_NONE;
2348 }
2349 }
2350
2351 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2352 /// pubtypes sections.
emitDebugPubSections()2353 void DwarfDebug::emitDebugPubSections() {
2354 for (const auto &NU : CUMap) {
2355 DwarfCompileUnit *TheU = NU.second;
2356 if (!TheU->hasDwarfPubSections())
2357 continue;
2358
2359 bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2360 DICompileUnit::DebugNameTableKind::GNU;
2361
2362 Asm->OutStreamer->SwitchSection(
2363 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2364 : Asm->getObjFileLowering().getDwarfPubNamesSection());
2365 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2366
2367 Asm->OutStreamer->SwitchSection(
2368 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2369 : Asm->getObjFileLowering().getDwarfPubTypesSection());
2370 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2371 }
2372 }
2373
emitSectionReference(const DwarfCompileUnit & CU)2374 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2375 if (useSectionsAsReferences())
2376 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2377 CU.getDebugSectionOffset());
2378 else
2379 Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2380 }
2381
emitDebugPubSection(bool GnuStyle,StringRef Name,DwarfCompileUnit * TheU,const StringMap<const DIE * > & Globals)2382 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2383 DwarfCompileUnit *TheU,
2384 const StringMap<const DIE *> &Globals) {
2385 if (auto *Skeleton = TheU->getSkeleton())
2386 TheU = Skeleton;
2387
2388 // Emit the header.
2389 MCSymbol *EndLabel = Asm->emitDwarfUnitLength(
2390 "pub" + Name, "Length of Public " + Name + " Info");
2391
2392 Asm->OutStreamer->AddComment("DWARF Version");
2393 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2394
2395 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2396 emitSectionReference(*TheU);
2397
2398 Asm->OutStreamer->AddComment("Compilation Unit Length");
2399 Asm->emitDwarfLengthOrOffset(TheU->getLength());
2400
2401 // Emit the pubnames for this compilation unit.
2402 for (const auto &GI : Globals) {
2403 const char *Name = GI.getKeyData();
2404 const DIE *Entity = GI.second;
2405
2406 Asm->OutStreamer->AddComment("DIE offset");
2407 Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2408
2409 if (GnuStyle) {
2410 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2411 Asm->OutStreamer->AddComment(
2412 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2413 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2414 Asm->emitInt8(Desc.toBits());
2415 }
2416
2417 Asm->OutStreamer->AddComment("External Name");
2418 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2419 }
2420
2421 Asm->OutStreamer->AddComment("End Mark");
2422 Asm->emitDwarfLengthOrOffset(0);
2423 Asm->OutStreamer->emitLabel(EndLabel);
2424 }
2425
2426 /// Emit null-terminated strings into a debug str section.
emitDebugStr()2427 void DwarfDebug::emitDebugStr() {
2428 MCSection *StringOffsetsSection = nullptr;
2429 if (useSegmentedStringOffsetsTable()) {
2430 emitStringOffsetsTableHeader();
2431 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2432 }
2433 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2434 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2435 StringOffsetsSection, /* UseRelativeOffsets = */ true);
2436 }
2437
emitDebugLocEntry(ByteStreamer & Streamer,const DebugLocStream::Entry & Entry,const DwarfCompileUnit * CU)2438 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2439 const DebugLocStream::Entry &Entry,
2440 const DwarfCompileUnit *CU) {
2441 auto &&Comments = DebugLocs.getComments(Entry);
2442 auto Comment = Comments.begin();
2443 auto End = Comments.end();
2444
2445 // The expressions are inserted into a byte stream rather early (see
2446 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2447 // need to reference a base_type DIE the offset of that DIE is not yet known.
2448 // To deal with this we instead insert a placeholder early and then extract
2449 // it here and replace it with the real reference.
2450 unsigned PtrSize = Asm->MAI->getCodePointerSize();
2451 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2452 DebugLocs.getBytes(Entry).size()),
2453 Asm->getDataLayout().isLittleEndian(), PtrSize);
2454 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2455
2456 using Encoding = DWARFExpression::Operation::Encoding;
2457 uint64_t Offset = 0;
2458 for (auto &Op : Expr) {
2459 assert(Op.getCode() != dwarf::DW_OP_const_type &&
2460 "3 operand ops not yet supported");
2461 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2462 Offset++;
2463 for (unsigned I = 0; I < 2; ++I) {
2464 if (Op.getDescription().Op[I] == Encoding::SizeNA)
2465 continue;
2466 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2467 uint64_t Offset =
2468 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2469 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2470 Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2471 // Make sure comments stay aligned.
2472 for (unsigned J = 0; J < ULEB128PadSize; ++J)
2473 if (Comment != End)
2474 Comment++;
2475 } else {
2476 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2477 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2478 }
2479 Offset = Op.getOperandEndOffset(I);
2480 }
2481 assert(Offset == Op.getEndOffset());
2482 }
2483 }
2484
emitDebugLocValue(const AsmPrinter & AP,const DIBasicType * BT,const DbgValueLoc & Value,DwarfExpression & DwarfExpr)2485 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2486 const DbgValueLoc &Value,
2487 DwarfExpression &DwarfExpr) {
2488 auto *DIExpr = Value.getExpression();
2489 DIExpressionCursor ExprCursor(DIExpr);
2490 DwarfExpr.addFragmentOffset(DIExpr);
2491
2492 // If the DIExpr is is an Entry Value, we want to follow the same code path
2493 // regardless of whether the DBG_VALUE is variadic or not.
2494 if (DIExpr && DIExpr->isEntryValue()) {
2495 // Entry values can only be a single register with no additional DIExpr,
2496 // so just add it directly.
2497 assert(Value.getLocEntries().size() == 1);
2498 assert(Value.getLocEntries()[0].isLocation());
2499 MachineLocation Location = Value.getLocEntries()[0].getLoc();
2500 DwarfExpr.setLocation(Location, DIExpr);
2501
2502 DwarfExpr.beginEntryValueExpression(ExprCursor);
2503
2504 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2505 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg()))
2506 return;
2507 return DwarfExpr.addExpression(std::move(ExprCursor));
2508 }
2509
2510 // Regular entry.
2511 auto EmitValueLocEntry = [&DwarfExpr, &BT,
2512 &AP](const DbgValueLocEntry &Entry,
2513 DIExpressionCursor &Cursor) -> bool {
2514 if (Entry.isInt()) {
2515 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2516 BT->getEncoding() == dwarf::DW_ATE_signed_char))
2517 DwarfExpr.addSignedConstant(Entry.getInt());
2518 else
2519 DwarfExpr.addUnsignedConstant(Entry.getInt());
2520 } else if (Entry.isLocation()) {
2521 MachineLocation Location = Entry.getLoc();
2522 if (Location.isIndirect())
2523 DwarfExpr.setMemoryLocationKind();
2524
2525 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2526 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2527 return false;
2528 } else if (Entry.isTargetIndexLocation()) {
2529 TargetIndexLocation Loc = Entry.getTargetIndexLocation();
2530 // TODO TargetIndexLocation is a target-independent. Currently only the
2531 // WebAssembly-specific encoding is supported.
2532 assert(AP.TM.getTargetTriple().isWasm());
2533 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2534 } else if (Entry.isConstantFP()) {
2535 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2536 !Cursor) {
2537 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP);
2538 } else if (Entry.getConstantFP()
2539 ->getValueAPF()
2540 .bitcastToAPInt()
2541 .getBitWidth() <= 64 /*bits*/) {
2542 DwarfExpr.addUnsignedConstant(
2543 Entry.getConstantFP()->getValueAPF().bitcastToAPInt());
2544 } else {
2545 LLVM_DEBUG(
2546 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size"
2547 << Entry.getConstantFP()
2548 ->getValueAPF()
2549 .bitcastToAPInt()
2550 .getBitWidth()
2551 << " bits\n");
2552 return false;
2553 }
2554 }
2555 return true;
2556 };
2557
2558 if (!Value.isVariadic()) {
2559 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor))
2560 return;
2561 DwarfExpr.addExpression(std::move(ExprCursor));
2562 return;
2563 }
2564
2565 // If any of the location entries are registers with the value 0, then the
2566 // location is undefined.
2567 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) {
2568 return Entry.isLocation() && !Entry.getLoc().getReg();
2569 }))
2570 return;
2571
2572 DwarfExpr.addExpression(
2573 std::move(ExprCursor),
2574 [EmitValueLocEntry, &Value](unsigned Idx,
2575 DIExpressionCursor &Cursor) -> bool {
2576 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor);
2577 });
2578 }
2579
finalize(const AsmPrinter & AP,DebugLocStream::ListBuilder & List,const DIBasicType * BT,DwarfCompileUnit & TheCU)2580 void DebugLocEntry::finalize(const AsmPrinter &AP,
2581 DebugLocStream::ListBuilder &List,
2582 const DIBasicType *BT,
2583 DwarfCompileUnit &TheCU) {
2584 assert(!Values.empty() &&
2585 "location list entries without values are redundant");
2586 assert(Begin != End && "unexpected location list entry with empty range");
2587 DebugLocStream::EntryBuilder Entry(List, Begin, End);
2588 BufferByteStreamer Streamer = Entry.getStreamer();
2589 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2590 const DbgValueLoc &Value = Values[0];
2591 if (Value.isFragment()) {
2592 // Emit all fragments that belong to the same variable and range.
2593 assert(llvm::all_of(Values, [](DbgValueLoc P) {
2594 return P.isFragment();
2595 }) && "all values are expected to be fragments");
2596 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2597
2598 for (const auto &Fragment : Values)
2599 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2600
2601 } else {
2602 assert(Values.size() == 1 && "only fragments may have >1 value");
2603 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2604 }
2605 DwarfExpr.finalize();
2606 if (DwarfExpr.TagOffset)
2607 List.setTagOffset(*DwarfExpr.TagOffset);
2608 }
2609
emitDebugLocEntryLocation(const DebugLocStream::Entry & Entry,const DwarfCompileUnit * CU)2610 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2611 const DwarfCompileUnit *CU) {
2612 // Emit the size.
2613 Asm->OutStreamer->AddComment("Loc expr size");
2614 if (getDwarfVersion() >= 5)
2615 Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2616 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2617 Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2618 else {
2619 // The entry is too big to fit into 16 bit, drop it as there is nothing we
2620 // can do.
2621 Asm->emitInt16(0);
2622 return;
2623 }
2624 // Emit the entry.
2625 APByteStreamer Streamer(*Asm);
2626 emitDebugLocEntry(Streamer, Entry, CU);
2627 }
2628
2629 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2630 // that designates the end of the table for the caller to emit when the table is
2631 // complete.
emitRnglistsTableHeader(AsmPrinter * Asm,const DwarfFile & Holder)2632 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2633 const DwarfFile &Holder) {
2634 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2635
2636 Asm->OutStreamer->AddComment("Offset entry count");
2637 Asm->emitInt32(Holder.getRangeLists().size());
2638 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2639
2640 for (const RangeSpanList &List : Holder.getRangeLists())
2641 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2642 Asm->getDwarfOffsetByteSize());
2643
2644 return TableEnd;
2645 }
2646
2647 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2648 // designates the end of the table for the caller to emit when the table is
2649 // complete.
emitLoclistsTableHeader(AsmPrinter * Asm,const DwarfDebug & DD)2650 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2651 const DwarfDebug &DD) {
2652 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2653
2654 const auto &DebugLocs = DD.getDebugLocs();
2655
2656 Asm->OutStreamer->AddComment("Offset entry count");
2657 Asm->emitInt32(DebugLocs.getLists().size());
2658 Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2659
2660 for (const auto &List : DebugLocs.getLists())
2661 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2662 Asm->getDwarfOffsetByteSize());
2663
2664 return TableEnd;
2665 }
2666
2667 template <typename Ranges, typename PayloadEmitter>
emitRangeList(DwarfDebug & DD,AsmPrinter * Asm,MCSymbol * Sym,const Ranges & R,const DwarfCompileUnit & CU,unsigned BaseAddressx,unsigned OffsetPair,unsigned StartxLength,unsigned EndOfList,StringRef (* StringifyEnum)(unsigned),bool ShouldUseBaseAddress,PayloadEmitter EmitPayload)2668 static void emitRangeList(
2669 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2670 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2671 unsigned StartxLength, unsigned EndOfList,
2672 StringRef (*StringifyEnum)(unsigned),
2673 bool ShouldUseBaseAddress,
2674 PayloadEmitter EmitPayload) {
2675
2676 auto Size = Asm->MAI->getCodePointerSize();
2677 bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2678
2679 // Emit our symbol so we can find the beginning of the range.
2680 Asm->OutStreamer->emitLabel(Sym);
2681
2682 // Gather all the ranges that apply to the same section so they can share
2683 // a base address entry.
2684 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2685
2686 for (const auto &Range : R)
2687 SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2688
2689 const MCSymbol *CUBase = CU.getBaseAddress();
2690 bool BaseIsSet = false;
2691 for (const auto &P : SectionRanges) {
2692 auto *Base = CUBase;
2693 if (!Base && ShouldUseBaseAddress) {
2694 const MCSymbol *Begin = P.second.front()->Begin;
2695 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2696 if (!UseDwarf5) {
2697 Base = NewBase;
2698 BaseIsSet = true;
2699 Asm->OutStreamer->emitIntValue(-1, Size);
2700 Asm->OutStreamer->AddComment(" base address");
2701 Asm->OutStreamer->emitSymbolValue(Base, Size);
2702 } else if (NewBase != Begin || P.second.size() > 1) {
2703 // Only use a base address if
2704 // * the existing pool address doesn't match (NewBase != Begin)
2705 // * or, there's more than one entry to share the base address
2706 Base = NewBase;
2707 BaseIsSet = true;
2708 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2709 Asm->emitInt8(BaseAddressx);
2710 Asm->OutStreamer->AddComment(" base address index");
2711 Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2712 }
2713 } else if (BaseIsSet && !UseDwarf5) {
2714 BaseIsSet = false;
2715 assert(!Base);
2716 Asm->OutStreamer->emitIntValue(-1, Size);
2717 Asm->OutStreamer->emitIntValue(0, Size);
2718 }
2719
2720 for (const auto *RS : P.second) {
2721 const MCSymbol *Begin = RS->Begin;
2722 const MCSymbol *End = RS->End;
2723 assert(Begin && "Range without a begin symbol?");
2724 assert(End && "Range without an end symbol?");
2725 if (Base) {
2726 if (UseDwarf5) {
2727 // Emit offset_pair when we have a base.
2728 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2729 Asm->emitInt8(OffsetPair);
2730 Asm->OutStreamer->AddComment(" starting offset");
2731 Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2732 Asm->OutStreamer->AddComment(" ending offset");
2733 Asm->emitLabelDifferenceAsULEB128(End, Base);
2734 } else {
2735 Asm->emitLabelDifference(Begin, Base, Size);
2736 Asm->emitLabelDifference(End, Base, Size);
2737 }
2738 } else if (UseDwarf5) {
2739 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2740 Asm->emitInt8(StartxLength);
2741 Asm->OutStreamer->AddComment(" start index");
2742 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2743 Asm->OutStreamer->AddComment(" length");
2744 Asm->emitLabelDifferenceAsULEB128(End, Begin);
2745 } else {
2746 Asm->OutStreamer->emitSymbolValue(Begin, Size);
2747 Asm->OutStreamer->emitSymbolValue(End, Size);
2748 }
2749 EmitPayload(*RS);
2750 }
2751 }
2752
2753 if (UseDwarf5) {
2754 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2755 Asm->emitInt8(EndOfList);
2756 } else {
2757 // Terminate the list with two 0 values.
2758 Asm->OutStreamer->emitIntValue(0, Size);
2759 Asm->OutStreamer->emitIntValue(0, Size);
2760 }
2761 }
2762
2763 // Handles emission of both debug_loclist / debug_loclist.dwo
emitLocList(DwarfDebug & DD,AsmPrinter * Asm,const DebugLocStream::List & List)2764 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2765 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2766 *List.CU, dwarf::DW_LLE_base_addressx,
2767 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2768 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2769 /* ShouldUseBaseAddress */ true,
2770 [&](const DebugLocStream::Entry &E) {
2771 DD.emitDebugLocEntryLocation(E, List.CU);
2772 });
2773 }
2774
emitDebugLocImpl(MCSection * Sec)2775 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2776 if (DebugLocs.getLists().empty())
2777 return;
2778
2779 Asm->OutStreamer->SwitchSection(Sec);
2780
2781 MCSymbol *TableEnd = nullptr;
2782 if (getDwarfVersion() >= 5)
2783 TableEnd = emitLoclistsTableHeader(Asm, *this);
2784
2785 for (const auto &List : DebugLocs.getLists())
2786 emitLocList(*this, Asm, List);
2787
2788 if (TableEnd)
2789 Asm->OutStreamer->emitLabel(TableEnd);
2790 }
2791
2792 // Emit locations into the .debug_loc/.debug_loclists section.
emitDebugLoc()2793 void DwarfDebug::emitDebugLoc() {
2794 emitDebugLocImpl(
2795 getDwarfVersion() >= 5
2796 ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2797 : Asm->getObjFileLowering().getDwarfLocSection());
2798 }
2799
2800 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
emitDebugLocDWO()2801 void DwarfDebug::emitDebugLocDWO() {
2802 if (getDwarfVersion() >= 5) {
2803 emitDebugLocImpl(
2804 Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2805
2806 return;
2807 }
2808
2809 for (const auto &List : DebugLocs.getLists()) {
2810 Asm->OutStreamer->SwitchSection(
2811 Asm->getObjFileLowering().getDwarfLocDWOSection());
2812 Asm->OutStreamer->emitLabel(List.Label);
2813
2814 for (const auto &Entry : DebugLocs.getEntries(List)) {
2815 // GDB only supports startx_length in pre-standard split-DWARF.
2816 // (in v5 standard loclists, it currently* /only/ supports base_address +
2817 // offset_pair, so the implementations can't really share much since they
2818 // need to use different representations)
2819 // * as of October 2018, at least
2820 //
2821 // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2822 // addresses in the address pool to minimize object size/relocations.
2823 Asm->emitInt8(dwarf::DW_LLE_startx_length);
2824 unsigned idx = AddrPool.getIndex(Entry.Begin);
2825 Asm->emitULEB128(idx);
2826 // Also the pre-standard encoding is slightly different, emitting this as
2827 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2828 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2829 emitDebugLocEntryLocation(Entry, List.CU);
2830 }
2831 Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2832 }
2833 }
2834
2835 struct ArangeSpan {
2836 const MCSymbol *Start, *End;
2837 };
2838
2839 // Emit a debug aranges section, containing a CU lookup for any
2840 // address we can tie back to a CU.
emitDebugARanges()2841 void DwarfDebug::emitDebugARanges() {
2842 // Provides a unique id per text section.
2843 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2844
2845 // Filter labels by section.
2846 for (const SymbolCU &SCU : ArangeLabels) {
2847 if (SCU.Sym->isInSection()) {
2848 // Make a note of this symbol and it's section.
2849 MCSection *Section = &SCU.Sym->getSection();
2850 if (!Section->getKind().isMetadata())
2851 SectionMap[Section].push_back(SCU);
2852 } else {
2853 // Some symbols (e.g. common/bss on mach-o) can have no section but still
2854 // appear in the output. This sucks as we rely on sections to build
2855 // arange spans. We can do it without, but it's icky.
2856 SectionMap[nullptr].push_back(SCU);
2857 }
2858 }
2859
2860 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2861
2862 for (auto &I : SectionMap) {
2863 MCSection *Section = I.first;
2864 SmallVector<SymbolCU, 8> &List = I.second;
2865 if (List.size() < 1)
2866 continue;
2867
2868 // If we have no section (e.g. common), just write out
2869 // individual spans for each symbol.
2870 if (!Section) {
2871 for (const SymbolCU &Cur : List) {
2872 ArangeSpan Span;
2873 Span.Start = Cur.Sym;
2874 Span.End = nullptr;
2875 assert(Cur.CU);
2876 Spans[Cur.CU].push_back(Span);
2877 }
2878 continue;
2879 }
2880
2881 // Sort the symbols by offset within the section.
2882 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2883 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2884 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2885
2886 // Symbols with no order assigned should be placed at the end.
2887 // (e.g. section end labels)
2888 if (IA == 0)
2889 return false;
2890 if (IB == 0)
2891 return true;
2892 return IA < IB;
2893 });
2894
2895 // Insert a final terminator.
2896 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2897
2898 // Build spans between each label.
2899 const MCSymbol *StartSym = List[0].Sym;
2900 for (size_t n = 1, e = List.size(); n < e; n++) {
2901 const SymbolCU &Prev = List[n - 1];
2902 const SymbolCU &Cur = List[n];
2903
2904 // Try and build the longest span we can within the same CU.
2905 if (Cur.CU != Prev.CU) {
2906 ArangeSpan Span;
2907 Span.Start = StartSym;
2908 Span.End = Cur.Sym;
2909 assert(Prev.CU);
2910 Spans[Prev.CU].push_back(Span);
2911 StartSym = Cur.Sym;
2912 }
2913 }
2914 }
2915
2916 // Start the dwarf aranges section.
2917 Asm->OutStreamer->SwitchSection(
2918 Asm->getObjFileLowering().getDwarfARangesSection());
2919
2920 unsigned PtrSize = Asm->MAI->getCodePointerSize();
2921
2922 // Build a list of CUs used.
2923 std::vector<DwarfCompileUnit *> CUs;
2924 for (const auto &it : Spans) {
2925 DwarfCompileUnit *CU = it.first;
2926 CUs.push_back(CU);
2927 }
2928
2929 // Sort the CU list (again, to ensure consistent output order).
2930 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2931 return A->getUniqueID() < B->getUniqueID();
2932 });
2933
2934 // Emit an arange table for each CU we used.
2935 for (DwarfCompileUnit *CU : CUs) {
2936 std::vector<ArangeSpan> &List = Spans[CU];
2937
2938 // Describe the skeleton CU's offset and length, not the dwo file's.
2939 if (auto *Skel = CU->getSkeleton())
2940 CU = Skel;
2941
2942 // Emit size of content not including length itself.
2943 unsigned ContentSize =
2944 sizeof(int16_t) + // DWARF ARange version number
2945 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
2946 // section
2947 sizeof(int8_t) + // Pointer Size (in bytes)
2948 sizeof(int8_t); // Segment Size (in bytes)
2949
2950 unsigned TupleSize = PtrSize * 2;
2951
2952 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2953 unsigned Padding = offsetToAlignment(
2954 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
2955
2956 ContentSize += Padding;
2957 ContentSize += (List.size() + 1) * TupleSize;
2958
2959 // For each compile unit, write the list of spans it covers.
2960 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
2961 Asm->OutStreamer->AddComment("DWARF Arange version number");
2962 Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2963 Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2964 emitSectionReference(*CU);
2965 Asm->OutStreamer->AddComment("Address Size (in bytes)");
2966 Asm->emitInt8(PtrSize);
2967 Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2968 Asm->emitInt8(0);
2969
2970 Asm->OutStreamer->emitFill(Padding, 0xff);
2971
2972 for (const ArangeSpan &Span : List) {
2973 Asm->emitLabelReference(Span.Start, PtrSize);
2974
2975 // Calculate the size as being from the span start to it's end.
2976 if (Span.End) {
2977 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2978 } else {
2979 // For symbols without an end marker (e.g. common), we
2980 // write a single arange entry containing just that one symbol.
2981 uint64_t Size = SymSize[Span.Start];
2982 if (Size == 0)
2983 Size = 1;
2984
2985 Asm->OutStreamer->emitIntValue(Size, PtrSize);
2986 }
2987 }
2988
2989 Asm->OutStreamer->AddComment("ARange terminator");
2990 Asm->OutStreamer->emitIntValue(0, PtrSize);
2991 Asm->OutStreamer->emitIntValue(0, PtrSize);
2992 }
2993 }
2994
2995 /// Emit a single range list. We handle both DWARF v5 and earlier.
emitRangeList(DwarfDebug & DD,AsmPrinter * Asm,const RangeSpanList & List)2996 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2997 const RangeSpanList &List) {
2998 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2999 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
3000 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
3001 llvm::dwarf::RangeListEncodingString,
3002 List.CU->getCUNode()->getRangesBaseAddress() ||
3003 DD.getDwarfVersion() >= 5,
3004 [](auto) {});
3005 }
3006
emitDebugRangesImpl(const DwarfFile & Holder,MCSection * Section)3007 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
3008 if (Holder.getRangeLists().empty())
3009 return;
3010
3011 assert(useRangesSection());
3012 assert(!CUMap.empty());
3013 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
3014 return !Pair.second->getCUNode()->isDebugDirectivesOnly();
3015 }));
3016
3017 Asm->OutStreamer->SwitchSection(Section);
3018
3019 MCSymbol *TableEnd = nullptr;
3020 if (getDwarfVersion() >= 5)
3021 TableEnd = emitRnglistsTableHeader(Asm, Holder);
3022
3023 for (const RangeSpanList &List : Holder.getRangeLists())
3024 emitRangeList(*this, Asm, List);
3025
3026 if (TableEnd)
3027 Asm->OutStreamer->emitLabel(TableEnd);
3028 }
3029
3030 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
3031 /// .debug_rnglists section.
emitDebugRanges()3032 void DwarfDebug::emitDebugRanges() {
3033 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3034
3035 emitDebugRangesImpl(Holder,
3036 getDwarfVersion() >= 5
3037 ? Asm->getObjFileLowering().getDwarfRnglistsSection()
3038 : Asm->getObjFileLowering().getDwarfRangesSection());
3039 }
3040
emitDebugRangesDWO()3041 void DwarfDebug::emitDebugRangesDWO() {
3042 emitDebugRangesImpl(InfoHolder,
3043 Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
3044 }
3045
3046 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
3047 /// DWARF 4.
emitMacroHeader(AsmPrinter * Asm,const DwarfDebug & DD,const DwarfCompileUnit & CU,uint16_t DwarfVersion)3048 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
3049 const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
3050 enum HeaderFlagMask {
3051 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
3052 #include "llvm/BinaryFormat/Dwarf.def"
3053 };
3054 Asm->OutStreamer->AddComment("Macro information version");
3055 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
3056 // We emit the line offset flag unconditionally here, since line offset should
3057 // be mostly present.
3058 if (Asm->isDwarf64()) {
3059 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
3060 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
3061 } else {
3062 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
3063 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
3064 }
3065 Asm->OutStreamer->AddComment("debug_line_offset");
3066 if (DD.useSplitDwarf())
3067 Asm->emitDwarfLengthOrOffset(0);
3068 else
3069 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
3070 }
3071
handleMacroNodes(DIMacroNodeArray Nodes,DwarfCompileUnit & U)3072 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3073 for (auto *MN : Nodes) {
3074 if (auto *M = dyn_cast<DIMacro>(MN))
3075 emitMacro(*M);
3076 else if (auto *F = dyn_cast<DIMacroFile>(MN))
3077 emitMacroFile(*F, U);
3078 else
3079 llvm_unreachable("Unexpected DI type!");
3080 }
3081 }
3082
emitMacro(DIMacro & M)3083 void DwarfDebug::emitMacro(DIMacro &M) {
3084 StringRef Name = M.getName();
3085 StringRef Value = M.getValue();
3086
3087 // There should be one space between the macro name and the macro value in
3088 // define entries. In undef entries, only the macro name is emitted.
3089 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3090
3091 if (UseDebugMacroSection) {
3092 if (getDwarfVersion() >= 5) {
3093 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3094 ? dwarf::DW_MACRO_define_strx
3095 : dwarf::DW_MACRO_undef_strx;
3096 Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3097 Asm->emitULEB128(Type);
3098 Asm->OutStreamer->AddComment("Line Number");
3099 Asm->emitULEB128(M.getLine());
3100 Asm->OutStreamer->AddComment("Macro String");
3101 Asm->emitULEB128(
3102 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3103 } else {
3104 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3105 ? dwarf::DW_MACRO_GNU_define_indirect
3106 : dwarf::DW_MACRO_GNU_undef_indirect;
3107 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3108 Asm->emitULEB128(Type);
3109 Asm->OutStreamer->AddComment("Line Number");
3110 Asm->emitULEB128(M.getLine());
3111 Asm->OutStreamer->AddComment("Macro String");
3112 Asm->emitDwarfSymbolReference(
3113 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3114 }
3115 } else {
3116 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3117 Asm->emitULEB128(M.getMacinfoType());
3118 Asm->OutStreamer->AddComment("Line Number");
3119 Asm->emitULEB128(M.getLine());
3120 Asm->OutStreamer->AddComment("Macro String");
3121 Asm->OutStreamer->emitBytes(Str);
3122 Asm->emitInt8('\0');
3123 }
3124 }
3125
emitMacroFileImpl(DIMacroFile & MF,DwarfCompileUnit & U,unsigned StartFile,unsigned EndFile,StringRef (* MacroFormToString)(unsigned Form))3126 void DwarfDebug::emitMacroFileImpl(
3127 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3128 StringRef (*MacroFormToString)(unsigned Form)) {
3129
3130 Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3131 Asm->emitULEB128(StartFile);
3132 Asm->OutStreamer->AddComment("Line Number");
3133 Asm->emitULEB128(MF.getLine());
3134 Asm->OutStreamer->AddComment("File Number");
3135 DIFile &F = *MF.getFile();
3136 if (useSplitDwarf())
3137 Asm->emitULEB128(getDwoLineTable(U)->getFile(
3138 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3139 Asm->OutContext.getDwarfVersion(), F.getSource()));
3140 else
3141 Asm->emitULEB128(U.getOrCreateSourceID(&F));
3142 handleMacroNodes(MF.getElements(), U);
3143 Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3144 Asm->emitULEB128(EndFile);
3145 }
3146
emitMacroFile(DIMacroFile & F,DwarfCompileUnit & U)3147 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3148 // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3149 // so for readibility/uniformity, We are explicitly emitting those.
3150 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3151 if (UseDebugMacroSection)
3152 emitMacroFileImpl(
3153 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3154 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3155 else
3156 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3157 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3158 }
3159
emitDebugMacinfoImpl(MCSection * Section)3160 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3161 for (const auto &P : CUMap) {
3162 auto &TheCU = *P.second;
3163 auto *SkCU = TheCU.getSkeleton();
3164 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3165 auto *CUNode = cast<DICompileUnit>(P.first);
3166 DIMacroNodeArray Macros = CUNode->getMacros();
3167 if (Macros.empty())
3168 continue;
3169 Asm->OutStreamer->SwitchSection(Section);
3170 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3171 if (UseDebugMacroSection)
3172 emitMacroHeader(Asm, *this, U, getDwarfVersion());
3173 handleMacroNodes(Macros, U);
3174 Asm->OutStreamer->AddComment("End Of Macro List Mark");
3175 Asm->emitInt8(0);
3176 }
3177 }
3178
3179 /// Emit macros into a debug macinfo/macro section.
emitDebugMacinfo()3180 void DwarfDebug::emitDebugMacinfo() {
3181 auto &ObjLower = Asm->getObjFileLowering();
3182 emitDebugMacinfoImpl(UseDebugMacroSection
3183 ? ObjLower.getDwarfMacroSection()
3184 : ObjLower.getDwarfMacinfoSection());
3185 }
3186
emitDebugMacinfoDWO()3187 void DwarfDebug::emitDebugMacinfoDWO() {
3188 auto &ObjLower = Asm->getObjFileLowering();
3189 emitDebugMacinfoImpl(UseDebugMacroSection
3190 ? ObjLower.getDwarfMacroDWOSection()
3191 : ObjLower.getDwarfMacinfoDWOSection());
3192 }
3193
3194 // DWARF5 Experimental Separate Dwarf emitters.
3195
initSkeletonUnit(const DwarfUnit & U,DIE & Die,std::unique_ptr<DwarfCompileUnit> NewU)3196 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3197 std::unique_ptr<DwarfCompileUnit> NewU) {
3198
3199 if (!CompilationDir.empty())
3200 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3201 addGnuPubAttributes(*NewU, Die);
3202
3203 SkeletonHolder.addUnit(std::move(NewU));
3204 }
3205
constructSkeletonCU(const DwarfCompileUnit & CU)3206 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3207
3208 auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3209 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3210 UnitKind::Skeleton);
3211 DwarfCompileUnit &NewCU = *OwnedUnit;
3212 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3213
3214 NewCU.initStmtList();
3215
3216 if (useSegmentedStringOffsetsTable())
3217 NewCU.addStringOffsetsStart();
3218
3219 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3220
3221 return NewCU;
3222 }
3223
3224 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3225 // compile units that would normally be in debug_info.
emitDebugInfoDWO()3226 void DwarfDebug::emitDebugInfoDWO() {
3227 assert(useSplitDwarf() && "No split dwarf debug info?");
3228 // Don't emit relocations into the dwo file.
3229 InfoHolder.emitUnits(/* UseOffsets */ true);
3230 }
3231
3232 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3233 // abbreviations for the .debug_info.dwo section.
emitDebugAbbrevDWO()3234 void DwarfDebug::emitDebugAbbrevDWO() {
3235 assert(useSplitDwarf() && "No split dwarf?");
3236 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3237 }
3238
emitDebugLineDWO()3239 void DwarfDebug::emitDebugLineDWO() {
3240 assert(useSplitDwarf() && "No split dwarf?");
3241 SplitTypeUnitFileTable.Emit(
3242 *Asm->OutStreamer, MCDwarfLineTableParams(),
3243 Asm->getObjFileLowering().getDwarfLineDWOSection());
3244 }
3245
emitStringOffsetsTableHeaderDWO()3246 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3247 assert(useSplitDwarf() && "No split dwarf?");
3248 InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3249 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3250 InfoHolder.getStringOffsetsStartSym());
3251 }
3252
3253 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3254 // string section and is identical in format to traditional .debug_str
3255 // sections.
emitDebugStrDWO()3256 void DwarfDebug::emitDebugStrDWO() {
3257 if (useSegmentedStringOffsetsTable())
3258 emitStringOffsetsTableHeaderDWO();
3259 assert(useSplitDwarf() && "No split dwarf?");
3260 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3261 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3262 OffSec, /* UseRelativeOffsets = */ false);
3263 }
3264
3265 // Emit address pool.
emitDebugAddr()3266 void DwarfDebug::emitDebugAddr() {
3267 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3268 }
3269
getDwoLineTable(const DwarfCompileUnit & CU)3270 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3271 if (!useSplitDwarf())
3272 return nullptr;
3273 const DICompileUnit *DIUnit = CU.getCUNode();
3274 SplitTypeUnitFileTable.maybeSetRootFile(
3275 DIUnit->getDirectory(), DIUnit->getFilename(),
3276 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3277 return &SplitTypeUnitFileTable;
3278 }
3279
makeTypeSignature(StringRef Identifier)3280 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3281 MD5 Hash;
3282 Hash.update(Identifier);
3283 // ... take the least significant 8 bytes and return those. Our MD5
3284 // implementation always returns its results in little endian, so we actually
3285 // need the "high" word.
3286 MD5::MD5Result Result;
3287 Hash.final(Result);
3288 return Result.high();
3289 }
3290
addDwarfTypeUnitType(DwarfCompileUnit & CU,StringRef Identifier,DIE & RefDie,const DICompositeType * CTy)3291 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3292 StringRef Identifier, DIE &RefDie,
3293 const DICompositeType *CTy) {
3294 // Fast path if we're building some type units and one has already used the
3295 // address pool we know we're going to throw away all this work anyway, so
3296 // don't bother building dependent types.
3297 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3298 return;
3299
3300 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3301 if (!Ins.second) {
3302 CU.addDIETypeSignature(RefDie, Ins.first->second);
3303 return;
3304 }
3305
3306 bool TopLevelType = TypeUnitsUnderConstruction.empty();
3307 AddrPool.resetUsedFlag();
3308
3309 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3310 getDwoLineTable(CU));
3311 DwarfTypeUnit &NewTU = *OwnedUnit;
3312 DIE &UnitDie = NewTU.getUnitDie();
3313 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3314
3315 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3316 CU.getLanguage());
3317
3318 uint64_t Signature = makeTypeSignature(Identifier);
3319 NewTU.setTypeSignature(Signature);
3320 Ins.first->second = Signature;
3321
3322 if (useSplitDwarf()) {
3323 MCSection *Section =
3324 getDwarfVersion() <= 4
3325 ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3326 : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3327 NewTU.setSection(Section);
3328 } else {
3329 MCSection *Section =
3330 getDwarfVersion() <= 4
3331 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3332 : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3333 NewTU.setSection(Section);
3334 // Non-split type units reuse the compile unit's line table.
3335 CU.applyStmtList(UnitDie);
3336 }
3337
3338 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3339 // units.
3340 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3341 NewTU.addStringOffsetsStart();
3342
3343 NewTU.setType(NewTU.createTypeDIE(CTy));
3344
3345 if (TopLevelType) {
3346 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3347 TypeUnitsUnderConstruction.clear();
3348
3349 // Types referencing entries in the address table cannot be placed in type
3350 // units.
3351 if (AddrPool.hasBeenUsed()) {
3352
3353 // Remove all the types built while building this type.
3354 // This is pessimistic as some of these types might not be dependent on
3355 // the type that used an address.
3356 for (const auto &TU : TypeUnitsToAdd)
3357 TypeSignatures.erase(TU.second);
3358
3359 // Construct this type in the CU directly.
3360 // This is inefficient because all the dependent types will be rebuilt
3361 // from scratch, including building them in type units, discovering that
3362 // they depend on addresses, throwing them out and rebuilding them.
3363 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3364 return;
3365 }
3366
3367 // If the type wasn't dependent on fission addresses, finish adding the type
3368 // and all its dependent types.
3369 for (auto &TU : TypeUnitsToAdd) {
3370 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3371 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3372 }
3373 }
3374 CU.addDIETypeSignature(RefDie, Signature);
3375 }
3376
NonTypeUnitContext(DwarfDebug * DD)3377 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3378 : DD(DD),
3379 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) {
3380 DD->TypeUnitsUnderConstruction.clear();
3381 DD->AddrPool.resetUsedFlag();
3382 }
3383
~NonTypeUnitContext()3384 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3385 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3386 DD->AddrPool.resetUsedFlag(AddrPoolUsed);
3387 }
3388
enterNonTypeUnitContext()3389 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3390 return NonTypeUnitContext(this);
3391 }
3392
3393 // Add the Name along with its companion DIE to the appropriate accelerator
3394 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3395 // AccelTableKind::Apple, we use the table we got as an argument). If
3396 // accelerator tables are disabled, this function does nothing.
3397 template <typename DataT>
addAccelNameImpl(const DICompileUnit & CU,AccelTable<DataT> & AppleAccel,StringRef Name,const DIE & Die)3398 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3399 AccelTable<DataT> &AppleAccel, StringRef Name,
3400 const DIE &Die) {
3401 if (getAccelTableKind() == AccelTableKind::None)
3402 return;
3403
3404 if (getAccelTableKind() != AccelTableKind::Apple &&
3405 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3406 return;
3407
3408 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3409 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3410
3411 switch (getAccelTableKind()) {
3412 case AccelTableKind::Apple:
3413 AppleAccel.addName(Ref, Die);
3414 break;
3415 case AccelTableKind::Dwarf:
3416 AccelDebugNames.addName(Ref, Die);
3417 break;
3418 case AccelTableKind::Default:
3419 llvm_unreachable("Default should have already been resolved.");
3420 case AccelTableKind::None:
3421 llvm_unreachable("None handled above");
3422 }
3423 }
3424
addAccelName(const DICompileUnit & CU,StringRef Name,const DIE & Die)3425 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3426 const DIE &Die) {
3427 addAccelNameImpl(CU, AccelNames, Name, Die);
3428 }
3429
addAccelObjC(const DICompileUnit & CU,StringRef Name,const DIE & Die)3430 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3431 const DIE &Die) {
3432 // ObjC names go only into the Apple accelerator tables.
3433 if (getAccelTableKind() == AccelTableKind::Apple)
3434 addAccelNameImpl(CU, AccelObjC, Name, Die);
3435 }
3436
addAccelNamespace(const DICompileUnit & CU,StringRef Name,const DIE & Die)3437 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3438 const DIE &Die) {
3439 addAccelNameImpl(CU, AccelNamespace, Name, Die);
3440 }
3441
addAccelType(const DICompileUnit & CU,StringRef Name,const DIE & Die,char Flags)3442 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3443 const DIE &Die, char Flags) {
3444 addAccelNameImpl(CU, AccelTypes, Name, Die);
3445 }
3446
getDwarfVersion() const3447 uint16_t DwarfDebug::getDwarfVersion() const {
3448 return Asm->OutStreamer->getContext().getDwarfVersion();
3449 }
3450
getDwarfSectionOffsetForm() const3451 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3452 if (Asm->getDwarfVersion() >= 4)
3453 return dwarf::Form::DW_FORM_sec_offset;
3454 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3455 "DWARF64 is not defined prior DWARFv3");
3456 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3457 : dwarf::Form::DW_FORM_data4;
3458 }
3459
getSectionLabel(const MCSection * S)3460 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3461 auto I = SectionLabels.find(S);
3462 if (I == SectionLabels.end())
3463 return nullptr;
3464 return I->second;
3465 }
insertSectionLabel(const MCSymbol * S)3466 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3467 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3468 if (useSplitDwarf() || getDwarfVersion() >= 5)
3469 AddrPool.getIndex(S);
3470 }
3471
getMD5AsBytes(const DIFile * File) const3472 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3473 assert(File);
3474 if (getDwarfVersion() < 5)
3475 return None;
3476 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3477 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3478 return None;
3479
3480 // Convert the string checksum to an MD5Result for the streamer.
3481 // The verifier validates the checksum so we assume it's okay.
3482 // An MD5 checksum is 16 bytes.
3483 std::string ChecksumString = fromHex(Checksum->Value);
3484 MD5::MD5Result CKMem;
3485 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
3486 return CKMem;
3487 }
3488