xref: /netbsd-src/sys/dev/ic/elinkxl.c (revision be6f2fcee7fefd8149c125c7283a8c03adc8149e)
1 /*	$NetBSD: elinkxl.c,v 1.140 2024/06/29 12:11:11 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Frank van der Linden.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.140 2024/06/29 12:11:11 riastradh Exp $");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/callout.h>
38 #include <sys/kernel.h>
39 #include <sys/mbuf.h>
40 #include <sys/socket.h>
41 #include <sys/ioctl.h>
42 #include <sys/errno.h>
43 #include <sys/syslog.h>
44 #include <sys/select.h>
45 #include <sys/device.h>
46 #include <sys/rndsource.h>
47 
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_ether.h>
51 #include <net/if_media.h>
52 #include <net/bpf.h>
53 
54 #include <sys/cpu.h>
55 #include <sys/bus.h>
56 #include <sys/intr.h>
57 #include <machine/endian.h>
58 
59 #include <dev/mii/miivar.h>
60 #include <dev/mii/mii.h>
61 #include <dev/mii/mii_bitbang.h>
62 
63 #include <dev/ic/elink3reg.h>
64 /* #include <dev/ic/elink3var.h> */
65 #include <dev/ic/elinkxlreg.h>
66 #include <dev/ic/elinkxlvar.h>
67 
68 #ifdef DEBUG
69 int exdebug = 0;
70 #endif
71 
72 /* ifmedia callbacks */
73 int ex_media_chg(struct ifnet *ifp);
74 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
75 
76 static int ex_ifflags_cb(struct ethercom *);
77 
78 void ex_probe_media(struct ex_softc *);
79 void ex_set_filter(struct ex_softc *);
80 void ex_set_media(struct ex_softc *);
81 void ex_set_xcvr(struct ex_softc *, uint16_t);
82 struct mbuf *ex_get(struct ex_softc *, int);
83 uint16_t ex_read_eeprom(struct ex_softc *, int);
84 int ex_init(struct ifnet *);
85 void ex_read(struct ex_softc *);
86 void ex_reset(struct ex_softc *);
87 void ex_set_mc(struct ex_softc *);
88 void ex_getstats(struct ex_softc *);
89 void ex_tick(void *);
90 
91 static int ex_eeprom_busy(struct ex_softc *);
92 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
93 static void ex_init_txdescs(struct ex_softc *);
94 
95 static void ex_setup_tx(struct ex_softc *);
96 static bool ex_shutdown(device_t, int);
97 static void ex_start(struct ifnet *);
98 static void ex_txstat(struct ex_softc *);
99 
100 int ex_mii_readreg(device_t, int, int, uint16_t *);
101 int ex_mii_writereg(device_t, int, int, uint16_t);
102 void ex_mii_statchg(struct ifnet *);
103 
104 void ex_probemedia(struct ex_softc *);
105 
106 /*
107  * Structure to map media-present bits in boards to ifmedia codes and
108  * printable media names.  Used for table-driven ifmedia initialization.
109  */
110 struct ex_media {
111 	int	exm_mpbit;		/* media present bit */
112 	const char *exm_name;		/* name of medium */
113 	int	exm_ifmedia;		/* ifmedia word for medium */
114 	int	exm_epmedia;		/* ELINKMEDIA_* constant */
115 };
116 
117 /*
118  * Media table for 3c90x chips.  Note that chips with MII have no
119  * `native' media.
120  */
121 static const struct ex_media ex_native_media[] = {
122 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER | IFM_10_T,
123 	  ELINKMEDIA_10BASE_T },
124 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER | IFM_10_T | IFM_FDX,
125 	  ELINKMEDIA_10BASE_T },
126 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER | IFM_10_5,
127 	  ELINKMEDIA_AUI },
128 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER | IFM_10_2,
129 	  ELINKMEDIA_10BASE_2 },
130 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER | IFM_100_TX,
131 	  ELINKMEDIA_100BASE_TX },
132 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER | IFM_100_TX|IFM_FDX,
133 	  ELINKMEDIA_100BASE_TX },
134 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER | IFM_100_FX,
135 	  ELINKMEDIA_100BASE_FX },
136 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER | IFM_MANUAL,
137 	  ELINKMEDIA_MII },
138 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER | IFM_100_T4,
139 	  ELINKMEDIA_100BASE_T4 },
140 	{ 0,			NULL,		0,
141 	  0 },
142 };
143 
144 /*
145  * MII bit-bang glue.
146  */
147 uint32_t ex_mii_bitbang_read(device_t);
148 void ex_mii_bitbang_write(device_t, uint32_t);
149 
150 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
151 	ex_mii_bitbang_read,
152 	ex_mii_bitbang_write,
153 	{
154 		ELINK_PHY_DATA,		/* MII_BIT_MDO */
155 		ELINK_PHY_DATA,		/* MII_BIT_MDI */
156 		ELINK_PHY_CLK,		/* MII_BIT_MDC */
157 		ELINK_PHY_DIR,		/* MII_BIT_DIR_HOST_PHY */
158 		0,			/* MII_BIT_DIR_PHY_HOST */
159 	}
160 };
161 
162 /*
163  * Back-end attach and configure.
164  */
165 void
ex_config(struct ex_softc * sc)166 ex_config(struct ex_softc *sc)
167 {
168 	struct ifnet *ifp;
169 	struct mii_data * const mii = &sc->ex_mii;
170 	uint16_t val;
171 	uint8_t macaddr[ETHER_ADDR_LEN] = {0};
172 	bus_space_tag_t iot = sc->sc_iot;
173 	bus_space_handle_t ioh = sc->sc_ioh;
174 	int i, error, attach_stage;
175 
176 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
177 
178 	callout_init(&sc->ex_mii_callout, 0);
179 	callout_setfunc(&sc->ex_mii_callout, ex_tick, sc);
180 
181 	ex_reset(sc);
182 
183 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
184 	macaddr[0] = val >> 8;
185 	macaddr[1] = val & 0xff;
186 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
187 	macaddr[2] = val >> 8;
188 	macaddr[3] = val & 0xff;
189 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
190 	macaddr[4] = val >> 8;
191 	macaddr[5] = val & 0xff;
192 
193 	aprint_normal_dev(sc->sc_dev, "MAC address %s\n",
194 	    ether_sprintf(macaddr));
195 
196 	if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY | EX_CONF_PHY_POWER)) {
197 		GO_WINDOW(2);
198 		val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
199 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
200 			val |= ELINK_RESET_OPT_LEDPOLAR;
201 		if (sc->ex_conf & EX_CONF_PHY_POWER)
202 			val |= ELINK_RESET_OPT_PHYPOWER;
203 		bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
204 	}
205 	if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
206 		GO_WINDOW(0);
207 		bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
208 		    EX_XCVR_PWR_MAGICBITS);
209 	}
210 
211 	attach_stage = 0;
212 
213 	/*
214 	 * Allocate the upload descriptors, and create and load the DMA
215 	 * map for them.
216 	 */
217 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
218 	    EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
219 	    &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
220 		aprint_error_dev(sc->sc_dev,
221 		    "can't allocate upload descriptors, error = %d\n", error);
222 		goto fail;
223 	}
224 
225 	attach_stage = 1;
226 
227 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
228 	    EX_NUPD * sizeof (struct ex_upd), (void **)&sc->sc_upd,
229 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
230 		aprint_error_dev(sc->sc_dev,
231 		    "can't map upload descriptors, error = %d\n", error);
232 		goto fail;
233 	}
234 
235 	attach_stage = 2;
236 
237 	if ((error = bus_dmamap_create(sc->sc_dmat,
238 	    EX_NUPD * sizeof (struct ex_upd), 1,
239 	    EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
240 	    &sc->sc_upd_dmamap)) != 0) {
241 		aprint_error_dev(sc->sc_dev,
242 		    "can't create upload desc. DMA map, error = %d\n", error);
243 		goto fail;
244 	}
245 
246 	attach_stage = 3;
247 
248 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
249 	    sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
250 	    BUS_DMA_NOWAIT)) != 0) {
251 		aprint_error_dev(sc->sc_dev,
252 		    "can't load upload desc. DMA map, error = %d\n", error);
253 		goto fail;
254 	}
255 
256 	attach_stage = 4;
257 
258 	/*
259 	 * Allocate the download descriptors, and create and load the DMA
260 	 * map for them.
261 	 */
262 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
263 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, PAGE_SIZE, 0, &sc->sc_dseg, 1,
264 	    &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
265 		aprint_error_dev(sc->sc_dev,
266 		    "can't allocate download descriptors, error = %d\n", error);
267 		goto fail;
268 	}
269 
270 	attach_stage = 5;
271 
272 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
273 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, (void **)&sc->sc_dpd,
274 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
275 		aprint_error_dev(sc->sc_dev,
276 		    "can't map download descriptors, error = %d\n", error);
277 		goto fail;
278 	}
279 	memset(sc->sc_dpd, 0, DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN);
280 
281 	attach_stage = 6;
282 
283 	if ((error = bus_dmamap_create(sc->sc_dmat,
284 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, 1,
285 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, 0, BUS_DMA_NOWAIT,
286 	    &sc->sc_dpd_dmamap)) != 0) {
287 		aprint_error_dev(sc->sc_dev,
288 		    "can't create download desc. DMA map, error = %d\n", error);
289 		goto fail;
290 	}
291 
292 	attach_stage = 7;
293 
294 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
295 	    sc->sc_dpd, DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, NULL,
296 	    BUS_DMA_NOWAIT)) != 0) {
297 		aprint_error_dev(sc->sc_dev,
298 		    "can't load download desc. DMA map, error = %d\n", error);
299 		goto fail;
300 	}
301 	bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
302 	    DPDMEMPAD_OFF, EX_IP4CSUMTX_PADLEN, BUS_DMASYNC_PREWRITE);
303 
304 	attach_stage = 8;
305 
306 
307 	/*
308 	 * Create the transmit buffer DMA maps.
309 	 */
310 	for (i = 0; i < EX_NDPD; i++) {
311 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
312 		    EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
313 		    &sc->sc_tx_dmamaps[i])) != 0) {
314 			aprint_error_dev(sc->sc_dev,
315 			    "can't create tx DMA map %d, error = %d\n",
316 			    i, error);
317 			goto fail;
318 		}
319 	}
320 
321 	attach_stage = 9;
322 
323 	/*
324 	 * Create the receive buffer DMA maps.
325 	 */
326 	for (i = 0; i < EX_NUPD; i++) {
327 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
328 		    EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
329 		    &sc->sc_rx_dmamaps[i])) != 0) {
330 			aprint_error_dev(sc->sc_dev,
331 			    "can't create rx DMA map %d, error = %d\n",
332 			    i, error);
333 			goto fail;
334 		}
335 	}
336 
337 	attach_stage = 10;
338 
339 	/*
340 	 * Create ring of upload descriptors, only once. The DMA engine
341 	 * will loop over this when receiving packets, stalling if it
342 	 * hits an UPD with a finished receive.
343 	 */
344 	for (i = 0; i < EX_NUPD; i++) {
345 		sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
346 		sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
347 		sc->sc_upd[i].upd_frags[0].fr_len =
348 		    htole32((MCLBYTES - 2) | EX_FR_LAST);
349 		if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
350 			aprint_error_dev(sc->sc_dev,
351 			    "can't allocate or map rx buffers\n");
352 			goto fail;
353 		}
354 	}
355 
356 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
357 	    EX_NUPD * sizeof (struct ex_upd),
358 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
359 
360 	ex_init_txdescs(sc);
361 
362 	attach_stage = 11;
363 
364 
365 	GO_WINDOW(3);
366 	val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
367 	if (val & ELINK_MEDIACAP_MII)
368 		sc->ex_conf |= EX_CONF_MII;
369 
370 	ifp = &sc->sc_ethercom.ec_if;
371 
372 	/*
373 	 * Initialize our media structures and MII info.  We'll
374 	 * probe the MII if we discover that we have one.
375 	 */
376 	mii->mii_ifp = ifp;
377 	mii->mii_readreg = ex_mii_readreg;
378 	mii->mii_writereg = ex_mii_writereg;
379 	mii->mii_statchg = ex_mii_statchg;
380 	sc->sc_ethercom.ec_mii = mii;
381 	ifmedia_init(&mii->mii_media, IFM_IMASK, ex_media_chg, ex_media_stat);
382 
383 	if (sc->ex_conf & EX_CONF_MII) {
384 		/*
385 		 * Find PHY, extract media information from it.
386 		 * First, select the right transceiver.
387 		 */
388 		ex_set_xcvr(sc, val);
389 
390 		mii_attach(sc->sc_dev, mii, 0xffffffff,
391 		    MII_PHY_ANY, MII_OFFSET_ANY, 0);
392 		if (LIST_FIRST(&mii->mii_phys) == NULL) {
393 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE,
394 			    0, NULL);
395 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
396 		} else {
397 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
398 		}
399 	} else
400 		ex_probemedia(sc);
401 
402 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
403 	ifp->if_softc = sc;
404 	ifp->if_start = ex_start;
405 	ifp->if_ioctl = ex_ioctl;
406 	ifp->if_watchdog = ex_watchdog;
407 	ifp->if_init = ex_init;
408 	ifp->if_stop = ex_stop;
409 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
410 	sc->sc_if_flags = ifp->if_flags;
411 	IFQ_SET_READY(&ifp->if_snd);
412 
413 	/*
414 	 * We can support 802.1Q VLAN-sized frames.
415 	 */
416 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
417 
418 	/*
419 	 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
420 	 */
421 	if (sc->ex_conf & EX_CONF_90XB)
422 		sc->sc_ethercom.ec_if.if_capabilities |=
423 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
424 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
425 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
426 
427 	if_attach(ifp);
428 	if_deferred_start_init(ifp, NULL);
429 	ether_ifattach(ifp, macaddr);
430 	ether_set_ifflags_cb(&sc->sc_ethercom, ex_ifflags_cb);
431 
432 	GO_WINDOW(1);
433 
434 	sc->tx_start_thresh = 20;
435 	sc->tx_succ_ok = 0;
436 
437 	/* TODO: set queues to 0 */
438 
439 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
440 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
441 
442 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, ex_shutdown))
443 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
444 	else
445 		aprint_error_dev(sc->sc_dev,
446 		    "couldn't establish power handler\n");
447 
448 	/* The attach is successful. */
449 	sc->ex_flags |= EX_FLAGS_ATTACHED;
450 	return;
451 
452  fail:
453 	/*
454 	 * Free any resources we've allocated during the failed attach
455 	 * attempt.  Do this in reverse order and fall though.
456 	 */
457 	switch (attach_stage) {
458 	case 11:
459 	    {
460 		struct ex_rxdesc *rxd;
461 
462 		for (i = 0; i < EX_NUPD; i++) {
463 			rxd = &sc->sc_rxdescs[i];
464 			if (rxd->rx_mbhead != NULL) {
465 				bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
466 				m_freem(rxd->rx_mbhead);
467 			}
468 		}
469 	    }
470 		/* FALLTHROUGH */
471 
472 	case 10:
473 		for (i = 0; i < EX_NUPD; i++)
474 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
475 		/* FALLTHROUGH */
476 
477 	case 9:
478 		for (i = 0; i < EX_NDPD; i++)
479 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
480 		/* FALLTHROUGH */
481 	case 8:
482 		bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
483 		/* FALLTHROUGH */
484 
485 	case 7:
486 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
487 		/* FALLTHROUGH */
488 
489 	case 6:
490 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_dpd,
491 		    EX_NDPD * sizeof (struct ex_dpd));
492 		/* FALLTHROUGH */
493 
494 	case 5:
495 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
496 		break;
497 
498 	case 4:
499 		bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
500 		/* FALLTHROUGH */
501 
502 	case 3:
503 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
504 		/* FALLTHROUGH */
505 
506 	case 2:
507 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_upd,
508 		    EX_NUPD * sizeof (struct ex_upd));
509 		/* FALLTHROUGH */
510 
511 	case 1:
512 		bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
513 		break;
514 	}
515 
516 }
517 
518 /*
519  * Find the media present on non-MII chips.
520  */
521 void
ex_probemedia(struct ex_softc * sc)522 ex_probemedia(struct ex_softc *sc)
523 {
524 	bus_space_tag_t iot = sc->sc_iot;
525 	bus_space_handle_t ioh = sc->sc_ioh;
526 	struct ifmedia *ifm = &sc->ex_mii.mii_media;
527 	const struct ex_media *exm;
528 	uint16_t config1, reset_options, default_media;
529 	int defmedia = 0;
530 	const char *sep = "", *defmedianame = NULL;
531 
532 	GO_WINDOW(3);
533 	config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
534 	reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
535 	GO_WINDOW(0);
536 
537 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
538 
539 	/* Sanity check that there are any media! */
540 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
541 		aprint_error_dev(sc->sc_dev, "no media present!\n");
542 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
543 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
544 		return;
545 	}
546 
547 	aprint_normal_dev(sc->sc_dev, "");
548 
549 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
550 
551 	for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
552 		if (reset_options & exm->exm_mpbit) {
553 			/*
554 			 * Default media is a little complicated.  We
555 			 * support full-duplex which uses the same
556 			 * reset options bit.
557 			 *
558 			 * XXX Check EEPROM for default to FDX?
559 			 */
560 			if (exm->exm_epmedia == default_media) {
561 				if ((exm->exm_ifmedia & IFM_FDX) == 0) {
562 					defmedia = exm->exm_ifmedia;
563 					defmedianame = exm->exm_name;
564 				}
565 			} else if (defmedia == 0) {
566 				defmedia = exm->exm_ifmedia;
567 				defmedianame = exm->exm_name;
568 			}
569 			ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
570 			    NULL);
571 			PRINT(exm->exm_name);
572 		}
573 	}
574 
575 #undef PRINT
576 
577 #ifdef DIAGNOSTIC
578 	if (defmedia == 0)
579 		panic("ex_probemedia: impossible");
580 #endif
581 
582 	aprint_normal(", default %s\n", defmedianame);
583 	ifmedia_set(ifm, defmedia);
584 }
585 
586 /*
587  * Setup transmitter parameters.
588  */
589 static void
ex_setup_tx(struct ex_softc * sc)590 ex_setup_tx(struct ex_softc *sc)
591 {
592 	bus_space_tag_t iot = sc->sc_iot;
593 	bus_space_handle_t ioh = sc->sc_ioh;
594 
595 	/*
596 	 * Disable reclaim threshold for 90xB, set free threshold to
597 	 * 6 * 256 = 1536 for 90x.
598 	 */
599 	if (sc->ex_conf & EX_CONF_90XB)
600 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
601 		    ELINK_TXRECLTHRESH | 255);
602 	else
603 		bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
604 
605 	/* Setup early transmission start threshold. */
606 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
607 	    ELINK_TXSTARTTHRESH | sc->tx_start_thresh);
608 }
609 
610 /*
611  * Bring device up.
612  */
613 int
ex_init(struct ifnet * ifp)614 ex_init(struct ifnet *ifp)
615 {
616 	struct ex_softc *sc = ifp->if_softc;
617 	bus_space_tag_t iot = sc->sc_iot;
618 	bus_space_handle_t ioh = sc->sc_ioh;
619 	int i;
620 	uint16_t val;
621 	int error = 0;
622 
623 	if ((error = ex_enable(sc)) != 0)
624 		goto out;
625 
626 	ex_waitcmd(sc);
627 	ex_stop(ifp, 0);
628 
629 	GO_WINDOW(2);
630 
631 	/* Turn on PHY power. */
632 	if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
633 		val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
634 		if (sc->ex_conf & EX_CONF_PHY_POWER)
635 			val |= ELINK_RESET_OPT_PHYPOWER; /* turn on PHY power */
636 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
637 			val |= ELINK_RESET_OPT_LEDPOLAR; /* invert LED polarity */
638 		bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
639 	}
640 
641 	/*
642 	 * Set the station address and clear the station mask. The latter
643 	 * is needed for 90x cards, 0 is the default for 90xB cards.
644 	 */
645 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
646 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
647 		    CLLADDR(ifp->if_sadl)[i]);
648 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
649 	}
650 
651 	GO_WINDOW(3);
652 
653 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
654 	ex_waitcmd(sc);
655 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
656 	ex_waitcmd(sc);
657 
658 	/* Load Tx parameters. */
659 	ex_setup_tx(sc);
660 
661 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
662 	    SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
663 
664 	bus_space_write_4(iot, ioh, ELINK_DMACTRL,
665 	    bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
666 
667 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
668 	    SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
669 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
670 	    SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
671 
672 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
673 	if (sc->intr_ack)
674 	    (* sc->intr_ack)(sc);
675 	ex_set_media(sc);
676 	ex_set_mc(sc);
677 
678 
679 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
680 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
681 	bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
682 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
683 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
684 
685 	ifp->if_flags |= IFF_RUNNING;
686 	ifp->if_flags &= ~IFF_OACTIVE;
687 	ex_start(ifp);
688 	sc->sc_if_flags = ifp->if_flags;
689 
690 	GO_WINDOW(1);
691 
692 	callout_schedule(&sc->ex_mii_callout, hz);
693 
694  out:
695 	if (error) {
696 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
697 		ifp->if_timer = 0;
698 		aprint_error_dev(sc->sc_dev, "interface not running\n");
699 	}
700 	return (error);
701 }
702 
703 #define	MCHASHSIZE		256
704 #define	ex_mchash(addr)		(ether_crc32_be((addr), ETHER_ADDR_LEN) & \
705 				    (MCHASHSIZE - 1))
706 
707 /*
708  * Set multicast receive filter. Also take care of promiscuous mode
709  * here (XXX).
710  */
711 void
ex_set_mc(struct ex_softc * sc)712 ex_set_mc(struct ex_softc *sc)
713 {
714 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
715 	struct ethercom *ec = &sc->sc_ethercom;
716 	struct ether_multi *enm;
717 	struct ether_multistep estep;
718 	int i;
719 	uint16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
720 
721 	if (ifp->if_flags & IFF_PROMISC) {
722 		mask |= FIL_PROMISC;
723 		goto allmulti;
724 	}
725 
726 	ETHER_LOCK(ec);
727 	ETHER_FIRST_MULTI(estep, ec, enm);
728 	if (enm == NULL) {
729 		ETHER_UNLOCK(ec);
730 		goto nomulti;
731 	}
732 
733 	if ((sc->ex_conf & EX_CONF_90XB) == 0) {
734 		/* No multicast hash filtering. */
735 		ETHER_UNLOCK(ec);
736 		goto allmulti;
737 	}
738 
739 	for (i = 0; i < MCHASHSIZE; i++)
740 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
741 		    ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
742 
743 	do {
744 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
745 		    ETHER_ADDR_LEN) != 0) {
746 			ETHER_UNLOCK(ec);
747 			goto allmulti;
748 		}
749 
750 		i = ex_mchash(enm->enm_addrlo);
751 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
752 		    ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
753 		ETHER_NEXT_MULTI(estep, enm);
754 	} while (enm != NULL);
755 	ETHER_UNLOCK(ec);
756 	mask |= FIL_MULTIHASH;
757 
758 nomulti:
759 	ifp->if_flags &= ~IFF_ALLMULTI;
760 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
761 	    SET_RX_FILTER | mask);
762 	return;
763 
764 allmulti:
765 	ifp->if_flags |= IFF_ALLMULTI;
766 	mask |= FIL_MULTICAST;
767 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
768 	    SET_RX_FILTER | mask);
769 }
770 
771 
772 /*
773  * The Tx Complete interrupts occur only on errors,
774  * and this is the error handler.
775  */
776 static void
ex_txstat(struct ex_softc * sc)777 ex_txstat(struct ex_softc *sc)
778 {
779 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
780 	bus_space_tag_t iot = sc->sc_iot;
781 	bus_space_handle_t ioh = sc->sc_ioh;
782 	int i, err = 0;
783 
784 	/*
785 	 * We need to read+write TX_STATUS until we get a 0 status
786 	 * in order to turn off the interrupt flag.
787 	 * ELINK_TXSTATUS is in the upper byte of 2 with ELINK_TIMER.
788 	 */
789 	for (;;) {
790 		i = bus_space_read_2(iot, ioh, ELINK_TIMER);
791 		if ((i & TXS_COMPLETE) == 0)
792 			break;
793 		bus_space_write_2(iot, ioh, ELINK_TIMER, 0x0);
794 		err |= i;
795 	}
796 	err &= ~TXS_TIMER;
797 
798 	if ((err & (TXS_UNDERRUN | TXS_JABBER | TXS_RECLAIM))
799 	    || err == 0 /* should not happen, just in case */) {
800 		/*
801 		 * Make sure the transmission is stopped.
802 		 */
803 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNSTALL);
804 		for (i = 1000; i > 0; i--)
805 			if ((bus_space_read_4(iot, ioh, ELINK_DMACTRL) &
806 			    ELINK_DMAC_DNINPROG) == 0)
807 				break;
808 
809 		/*
810 		 * Reset the transmitter.
811 		 */
812 		bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
813 
814 		/* Resetting takes a while and we will do more than wait. */
815 
816 		ifp->if_flags &= ~IFF_OACTIVE;
817 		if_statinc(ifp, if_oerrors);
818 		aprint_error_dev(sc->sc_dev, "%s%s%s",
819 		    (err & TXS_UNDERRUN) ? " transmit underrun" : "",
820 		    (err & TXS_JABBER) ? " jabber" : "",
821 		    (err & TXS_RECLAIM) ? " reclaim" : "");
822 		if (err == 0)
823 			aprint_error(" unknown Tx error");
824 		printf(" (%x)", err);
825 		if (err & TXS_UNDERRUN) {
826 			aprint_error(" @%d", sc->tx_start_thresh);
827 			if (sc->tx_succ_ok < 256 &&
828 			    (i = uimin(ETHER_MAX_LEN, sc->tx_start_thresh + 20))
829 			    > sc->tx_start_thresh) {
830 				aprint_error(", new threshold is %d", i);
831 				sc->tx_start_thresh = i;
832 			}
833 			sc->tx_succ_ok = 0;
834 		}
835 		aprint_error("\n");
836 		if (err & TXS_MAX_COLLISION)
837 			if_statinc(ifp, if_collisions);
838 
839 		/* Wait for TX_RESET to finish. */
840 		ex_waitcmd(sc);
841 
842 		/* Reload Tx parameters. */
843 		ex_setup_tx(sc);
844 	} else {
845 		if (err & TXS_MAX_COLLISION)
846 			if_statinc(ifp, if_collisions);
847 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
848 	}
849 
850 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
851 
852 	/* Retransmit current packet if any. */
853 	if (sc->tx_head) {
854 		ifp->if_flags |= IFF_OACTIVE;
855 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
856 		    ELINK_DNUNSTALL);
857 		bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
858 		    DPD_DMADDR(sc, sc->tx_head));
859 
860 		/* Retrigger watchdog if stopped. */
861 		if (ifp->if_timer == 0)
862 			ifp->if_timer = 1;
863 	}
864 }
865 
866 int
ex_media_chg(struct ifnet * ifp)867 ex_media_chg(struct ifnet *ifp)
868 {
869 
870 	if (ifp->if_flags & IFF_UP)
871 		ex_init(ifp);
872 	return 0;
873 }
874 
875 void
ex_set_xcvr(struct ex_softc * sc,const uint16_t media)876 ex_set_xcvr(struct ex_softc *sc, const uint16_t media)
877 {
878 	bus_space_tag_t iot = sc->sc_iot;
879 	bus_space_handle_t ioh = sc->sc_ioh;
880 	uint32_t icfg;
881 
882 	/*
883 	 * We're already in Window 3
884 	 */
885 	icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
886 	icfg &= ~(CONFIG_XCVR_SEL << 16);
887 	if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
888 		icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
889 	if (media & ELINK_MEDIACAP_100BASETX)
890 		icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
891 	if (media & ELINK_MEDIACAP_100BASEFX)
892 		icfg |= ELINKMEDIA_100BASE_FX
893 			<< (CONFIG_XCVR_SEL_SHIFT + 16);
894 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
895 }
896 
897 void
ex_set_media(struct ex_softc * sc)898 ex_set_media(struct ex_softc *sc)
899 {
900 	bus_space_tag_t iot = sc->sc_iot;
901 	bus_space_handle_t ioh = sc->sc_ioh;
902 	uint32_t configreg;
903 
904 	if (((sc->ex_conf & EX_CONF_MII) &&
905 	    (sc->ex_mii.mii_media_active & IFM_FDX))
906 	    || (!(sc->ex_conf & EX_CONF_MII) &&
907 	    (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
908 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
909 		    MAC_CONTROL_FDX);
910 	} else {
911 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
912 	}
913 
914 	/*
915 	 * If the device has MII, select it, and then tell the
916 	 * PHY which media to use.
917 	 */
918 	if (sc->ex_conf & EX_CONF_MII) {
919 		uint16_t val;
920 
921 		GO_WINDOW(3);
922 		val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
923 		ex_set_xcvr(sc, val);
924 		mii_mediachg(&sc->ex_mii);
925 		return;
926 	}
927 
928 	GO_WINDOW(4);
929 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
930 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
931 	delay(800);
932 
933 	/*
934 	 * Now turn on the selected media/transceiver.
935 	 */
936 	switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
937 	case IFM_10_T:
938 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
939 		    JABBER_GUARD_ENABLE | LINKBEAT_ENABLE);
940 		break;
941 
942 	case IFM_10_2:
943 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
944 		DELAY(800);
945 		break;
946 
947 	case IFM_100_TX:
948 	case IFM_100_FX:
949 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
950 		    LINKBEAT_ENABLE);
951 		DELAY(800);
952 		break;
953 
954 	case IFM_10_5:
955 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
956 		    SQE_ENABLE);
957 		DELAY(800);
958 		break;
959 
960 	case IFM_MANUAL:
961 		break;
962 
963 	case IFM_NONE:
964 		return;
965 
966 	default:
967 		panic("ex_set_media: impossible");
968 	}
969 
970 	GO_WINDOW(3);
971 	configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
972 
973 	configreg &= ~(CONFIG_MEDIAMASK << 16);
974 	configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
975 	    (CONFIG_MEDIAMASK_SHIFT + 16));
976 
977 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
978 }
979 
980 /*
981  * Get currently-selected media from card.
982  * (if_media callback, may be called before interface is brought up).
983  */
984 void
ex_media_stat(struct ifnet * ifp,struct ifmediareq * req)985 ex_media_stat(struct ifnet *ifp, struct ifmediareq *req)
986 {
987 	struct ex_softc *sc = ifp->if_softc;
988 	uint16_t help;
989 
990 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
991 		if (sc->ex_conf & EX_CONF_MII) {
992 			mii_pollstat(&sc->ex_mii);
993 			req->ifm_status = sc->ex_mii.mii_media_status;
994 			req->ifm_active = sc->ex_mii.mii_media_active;
995 		} else {
996 			GO_WINDOW(4);
997 			req->ifm_status = IFM_AVALID;
998 			req->ifm_active =
999 			    sc->ex_mii.mii_media.ifm_cur->ifm_media;
1000 			help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
1001 						ELINK_W4_MEDIA_TYPE);
1002 			if (help & LINKBEAT_DETECT)
1003 				req->ifm_status |= IFM_ACTIVE;
1004 			GO_WINDOW(1);
1005 		}
1006 	}
1007 }
1008 
1009 
1010 
1011 /*
1012  * Start outputting on the interface.
1013  */
1014 static void
ex_start(struct ifnet * ifp)1015 ex_start(struct ifnet *ifp)
1016 {
1017 	struct ex_softc *sc = ifp->if_softc;
1018 	bus_space_tag_t iot = sc->sc_iot;
1019 	bus_space_handle_t ioh = sc->sc_ioh;
1020 	volatile struct ex_fraghdr *fr = NULL;
1021 	volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
1022 	struct ex_txdesc *txp;
1023 	struct mbuf *mb_head;
1024 	bus_dmamap_t dmamap;
1025 	int m_csumflags, offset, seglen, totlen, segment, error;
1026 	uint32_t csum_flags;
1027 
1028 	if (sc->tx_head || sc->tx_free == NULL)
1029 		return;
1030 
1031 	txp = NULL;
1032 
1033 	/*
1034 	 * We're finished if there is nothing more to add to the list or if
1035 	 * we're all filled up with buffers to transmit.
1036 	 */
1037 	while (sc->tx_free != NULL) {
1038 		/*
1039 		 * Grab a packet to transmit.
1040 		 */
1041 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1042 		if (mb_head == NULL)
1043 			break;
1044 
1045 		/*
1046 		 * mb_head might be updated later,
1047 		 * so preserve csum_flags here.
1048 		 */
1049 		m_csumflags = mb_head->m_pkthdr.csum_flags;
1050 
1051 		/*
1052 		 * Get pointer to next available tx desc.
1053 		 */
1054 		txp = sc->tx_free;
1055 		dmamap = txp->tx_dmamap;
1056 
1057 		/*
1058 		 * Go through each of the mbufs in the chain and initialize
1059 		 * the transmit buffer descriptors with the physical address
1060 		 * and size of the mbuf.
1061 		 */
1062  reload:
1063 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1064 		    mb_head, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1065 		switch (error) {
1066 		case 0:
1067 			/* Success. */
1068 			break;
1069 
1070 		case EFBIG:
1071 		    {
1072 			struct mbuf *mn;
1073 
1074 			/*
1075 			 * We ran out of segments.  We have to recopy this
1076 			 * mbuf chain first.  Bail out if we can't get the
1077 			 * new buffers.
1078 			 */
1079 			aprint_error_dev(sc->sc_dev, "too many segments, ");
1080 
1081 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1082 			if (mn == NULL) {
1083 				m_freem(mb_head);
1084 				aprint_error("aborting\n");
1085 				goto out;
1086 			}
1087 			MCLAIM(mn, &sc->sc_ethercom.ec_tx_mowner);
1088 			if (mb_head->m_pkthdr.len > MHLEN) {
1089 				MCLGET(mn, M_DONTWAIT);
1090 				if ((mn->m_flags & M_EXT) == 0) {
1091 					m_freem(mn);
1092 					m_freem(mb_head);
1093 					aprint_error("aborting\n");
1094 					goto out;
1095 				}
1096 			}
1097 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1098 			    mtod(mn, void *));
1099 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1100 			m_freem(mb_head);
1101 			mb_head = mn;
1102 			aprint_error("retrying\n");
1103 			goto reload;
1104 		    }
1105 
1106 		default:
1107 			/*
1108 			 * Some other problem; report it.
1109 			 */
1110 			aprint_error_dev(sc->sc_dev,
1111 			    "can't load mbuf chain, error = %d\n", error);
1112 			m_freem(mb_head);
1113 			goto out;
1114 		}
1115 
1116 		/*
1117 		 * remove our tx desc from freelist.
1118 		 */
1119 		sc->tx_free = txp->tx_next;
1120 		txp->tx_next = NULL;
1121 
1122 		fr = &txp->tx_dpd->dpd_frags[0];
1123 		totlen = 0;
1124 		for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1125 			fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1126 			seglen = dmamap->dm_segs[segment].ds_len;
1127 			fr->fr_len = htole32(seglen);
1128 			totlen += seglen;
1129 		}
1130 		if (__predict_false(totlen <= EX_IP4CSUMTX_PADLEN &&
1131 		    (m_csumflags & M_CSUM_IPv4) != 0)) {
1132 			/*
1133 			 * Pad short packets to avoid ip4csum-tx bug.
1134 			 *
1135 			 * XXX Should we still consider if such short
1136 			 *     (36 bytes or less) packets might already
1137 			 *     occupy EX_NTFRAG (== 32) fragments here?
1138 			 */
1139 			KASSERT(segment < EX_NTFRAGS);
1140 			fr->fr_addr = htole32(DPDMEMPAD_DMADDR(sc));
1141 			seglen = EX_IP4CSUMTX_PADLEN + 1 - totlen;
1142 			fr->fr_len = htole32(EX_FR_LAST | seglen);
1143 			totlen += seglen;
1144 		} else {
1145 			fr--;
1146 			fr->fr_len |= htole32(EX_FR_LAST);
1147 		}
1148 		txp->tx_mbhead = mb_head;
1149 
1150 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1151 		    BUS_DMASYNC_PREWRITE);
1152 
1153 		dpd = txp->tx_dpd;
1154 		dpd->dpd_nextptr = 0;
1155 		dpd->dpd_fsh = htole32(totlen);
1156 
1157 		/* Byte-swap constants so compiler can optimize. */
1158 
1159 		if (sc->ex_conf & EX_CONF_90XB) {
1160 			csum_flags = 0;
1161 
1162 			if (m_csumflags & M_CSUM_IPv4)
1163 				csum_flags |= htole32(EX_DPD_IPCKSUM);
1164 
1165 			if (m_csumflags & M_CSUM_TCPv4)
1166 				csum_flags |= htole32(EX_DPD_TCPCKSUM);
1167 			else if (m_csumflags & M_CSUM_UDPv4)
1168 				csum_flags |= htole32(EX_DPD_UDPCKSUM);
1169 
1170 			dpd->dpd_fsh |= csum_flags;
1171 		} else {
1172 			KDASSERT((mb_head->m_pkthdr.csum_flags &
1173 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1174 		}
1175 
1176 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1177 		    ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
1178 		    sizeof (struct ex_dpd),
1179 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1180 
1181 		/*
1182 		 * No need to stall the download engine, we know it's
1183 		 * not busy right now.
1184 		 *
1185 		 * Fix up pointers in both the "soft" tx and the physical
1186 		 * tx list.
1187 		 */
1188 		if (sc->tx_head != NULL) {
1189 			prevdpd = sc->tx_tail->tx_dpd;
1190 			offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
1191 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1192 			    offset, sizeof (struct ex_dpd),
1193 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1194 			prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1195 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1196 			    offset, sizeof (struct ex_dpd),
1197 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1198 			sc->tx_tail->tx_next = txp;
1199 			sc->tx_tail = txp;
1200 		} else {
1201 			sc->tx_tail = sc->tx_head = txp;
1202 		}
1203 
1204 		/*
1205 		 * Pass packet to bpf if there is a listener.
1206 		 */
1207 		bpf_mtap(ifp, mb_head, BPF_D_OUT);
1208 	}
1209  out:
1210 	if (sc->tx_head) {
1211 		sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1212 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1213 		    ((char *)sc->tx_tail->tx_dpd - (char *)sc->sc_dpd),
1214 		    sizeof (struct ex_dpd),
1215 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1216 		ifp->if_flags |= IFF_OACTIVE;
1217 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1218 		bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1219 		    DPD_DMADDR(sc, sc->tx_head));
1220 
1221 		/* trigger watchdog */
1222 		ifp->if_timer = 5;
1223 	}
1224 }
1225 
1226 
1227 int
ex_intr(void * arg)1228 ex_intr(void *arg)
1229 {
1230 	struct ex_softc *sc = arg;
1231 	bus_space_tag_t iot = sc->sc_iot;
1232 	bus_space_handle_t ioh = sc->sc_ioh;
1233 	uint16_t stat;
1234 	int ret = 0;
1235 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1236 
1237 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1238 	    !device_is_active(sc->sc_dev))
1239 		return (0);
1240 
1241 	for (;;) {
1242 		stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1243 
1244 		if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1245 			if ((stat & INTR_LATCH) == 0) {
1246 #if 0
1247 				aprint_error_dev(sc->sc_dev,
1248 				       "intr latch cleared\n");
1249 #endif
1250 				break;
1251 			}
1252 		}
1253 
1254 		ret = 1;
1255 
1256 		/*
1257 		 * Acknowledge interrupts.
1258 		 */
1259 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1260 		    (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1261 		if (sc->intr_ack)
1262 			(*sc->intr_ack)(sc);
1263 
1264 		if (stat & HOST_ERROR) {
1265 			aprint_error_dev(sc->sc_dev,
1266 			    "adapter failure (%x)\n", stat);
1267 			ex_reset(sc);
1268 			ex_init(ifp);
1269 			return 1;
1270 		}
1271 		if (stat & UPD_STATS) {
1272 			ex_getstats(sc);
1273 		}
1274 		if (stat & TX_COMPLETE) {
1275 			ex_txstat(sc);
1276 #if 0
1277 			if (stat & DN_COMPLETE)
1278 				aprint_error_dev(sc->sc_dev,
1279 				    "Ignoring Dn interrupt (%x)\n", stat);
1280 #endif
1281 			/*
1282 			 * In some rare cases, both Tx Complete and
1283 			 * Dn Complete bits are set.  However, the packet
1284 			 * has been reloaded in ex_txstat() and should not
1285 			 * handle the Dn Complete event here.
1286 			 * Hence the "else" below.
1287 			 */
1288 		} else if (stat & DN_COMPLETE) {
1289 			struct ex_txdesc *txp, *ptxp = NULL;
1290 			bus_dmamap_t txmap;
1291 
1292 			/* reset watchdog timer, was set in ex_start() */
1293 			ifp->if_timer = 0;
1294 
1295 			for (txp = sc->tx_head; txp != NULL;
1296 			    txp = txp->tx_next) {
1297 				bus_dmamap_sync(sc->sc_dmat,
1298 				    sc->sc_dpd_dmamap,
1299 				    (char *)txp->tx_dpd - (char *)sc->sc_dpd,
1300 				    sizeof (struct ex_dpd),
1301 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1302 				if (txp->tx_mbhead != NULL) {
1303 					txmap = txp->tx_dmamap;
1304 					bus_dmamap_sync(sc->sc_dmat, txmap,
1305 					    0, txmap->dm_mapsize,
1306 					    BUS_DMASYNC_POSTWRITE);
1307 					bus_dmamap_unload(sc->sc_dmat, txmap);
1308 					m_freem(txp->tx_mbhead);
1309 					txp->tx_mbhead = NULL;
1310 				}
1311 				ptxp = txp;
1312 			}
1313 
1314 			/*
1315 			 * Move finished tx buffers back to the tx free list.
1316 			 */
1317 			if (sc->tx_free) {
1318 				sc->tx_ftail->tx_next = sc->tx_head;
1319 				sc->tx_ftail = ptxp;
1320 			} else
1321 				sc->tx_ftail = sc->tx_free = sc->tx_head;
1322 
1323 			sc->tx_head = sc->tx_tail = NULL;
1324 			ifp->if_flags &= ~IFF_OACTIVE;
1325 
1326 			if (sc->tx_succ_ok < 256)
1327 				sc->tx_succ_ok++;
1328 		}
1329 
1330 		if (stat & UP_COMPLETE) {
1331 			struct ex_rxdesc *rxd;
1332 			struct mbuf *m;
1333 			struct ex_upd *upd;
1334 			bus_dmamap_t rxmap;
1335 			uint32_t pktstat;
1336 
1337  rcvloop:
1338 			rxd = sc->rx_head;
1339 			rxmap = rxd->rx_dmamap;
1340 			m = rxd->rx_mbhead;
1341 			upd = rxd->rx_upd;
1342 
1343 			bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1344 			    rxmap->dm_mapsize,
1345 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1346 			bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1347 			    ((char *)upd - (char *)sc->sc_upd),
1348 			    sizeof (struct ex_upd),
1349 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1350 			pktstat = le32toh(upd->upd_pktstatus);
1351 
1352 			if (pktstat & EX_UPD_COMPLETE) {
1353 				/*
1354 				 * Remove first packet from the chain.
1355 				 */
1356 				sc->rx_head = rxd->rx_next;
1357 				rxd->rx_next = NULL;
1358 
1359 				/*
1360 				 * Add a new buffer to the receive chain.
1361 				 * If this fails, the old buffer is recycled
1362 				 * instead.
1363 				 */
1364 				if (ex_add_rxbuf(sc, rxd) == 0) {
1365 					uint16_t total_len;
1366 
1367 					if (pktstat &
1368 					    ((sc->sc_ethercom.ec_capenable &
1369 					    ETHERCAP_VLAN_MTU) ?
1370 					    EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1371 						if_statinc(ifp, if_ierrors);
1372 						m_freem(m);
1373 						goto rcvloop;
1374 					}
1375 
1376 					total_len = pktstat & EX_UPD_PKTLENMASK;
1377 					if (total_len <
1378 					    sizeof(struct ether_header)) {
1379 						m_freem(m);
1380 						goto rcvloop;
1381 					}
1382 					m_set_rcvif(m, ifp);
1383 					m->m_pkthdr.len = m->m_len = total_len;
1384 		/*
1385 		 * Set the incoming checksum information for the packet.
1386 		 */
1387 		if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1388 		    (pktstat & EX_UPD_IPCHECKED) != 0) {
1389 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1390 			if (pktstat & EX_UPD_IPCKSUMERR)
1391 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1392 			if (pktstat & EX_UPD_TCPCHECKED) {
1393 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1394 				if (pktstat & EX_UPD_TCPCKSUMERR)
1395 					m->m_pkthdr.csum_flags |=
1396 					    M_CSUM_TCP_UDP_BAD;
1397 			} else if (pktstat & EX_UPD_UDPCHECKED) {
1398 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1399 				if (pktstat & EX_UPD_UDPCKSUMERR)
1400 					m->m_pkthdr.csum_flags |=
1401 					    M_CSUM_TCP_UDP_BAD;
1402 			}
1403 		}
1404 					if_percpuq_enqueue(ifp->if_percpuq, m);
1405 				}
1406 				goto rcvloop;
1407 			}
1408 			/*
1409 			 * Just in case we filled up all UPDs and the DMA engine
1410 			 * stalled. We could be more subtle about this.
1411 			 */
1412 			if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1413 				aprint_error_dev(sc->sc_dev,
1414 				       "uplistptr was 0\n");
1415 				ex_init(ifp);
1416 			} else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1417 				   & 0x2000) {
1418 				aprint_error_dev(sc->sc_dev,
1419 				       "receive stalled\n");
1420 				bus_space_write_2(iot, ioh, ELINK_COMMAND,
1421 						  ELINK_UPUNSTALL);
1422 			}
1423 		}
1424 
1425 		if (stat)
1426 			rnd_add_uint32(&sc->rnd_source, stat);
1427 	}
1428 
1429 	/* no more interrupts */
1430 	if (ret)
1431 		if_schedule_deferred_start(ifp);
1432 	return ret;
1433 }
1434 
1435 static int
ex_ifflags_cb(struct ethercom * ec)1436 ex_ifflags_cb(struct ethercom *ec)
1437 {
1438 	struct ifnet *ifp = &ec->ec_if;
1439 	struct ex_softc *sc = ifp->if_softc;
1440 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
1441 
1442 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1443 		return ENETRESET;
1444 	else if ((change & IFF_PROMISC) != 0)
1445 		ex_set_mc(sc);
1446 	return 0;
1447 }
1448 
1449 int
ex_ioctl(struct ifnet * ifp,u_long cmd,void * data)1450 ex_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1451 {
1452 	struct ex_softc *sc = ifp->if_softc;
1453 	int s, error;
1454 
1455 	s = splnet();
1456 
1457 	switch (cmd) {
1458 	default:
1459 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1460 			break;
1461 
1462 		error = 0;
1463 
1464 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1465 			;
1466 		else if (ifp->if_flags & IFF_RUNNING) {
1467 			/*
1468 			 * Multicast list has changed; set the hardware filter
1469 			 * accordingly.
1470 			 */
1471 			ex_set_mc(sc);
1472 		}
1473 		break;
1474 	}
1475 
1476 	sc->sc_if_flags = ifp->if_flags;
1477 	splx(s);
1478 	return (error);
1479 }
1480 
1481 void
ex_getstats(struct ex_softc * sc)1482 ex_getstats(struct ex_softc *sc)
1483 {
1484 	bus_space_handle_t ioh = sc->sc_ioh;
1485 	bus_space_tag_t iot = sc->sc_iot;
1486 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1487 	uint8_t upperok;
1488 
1489 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1490 
1491 	GO_WINDOW(6);
1492 	upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1493 	if_statadd_ref(ifp, nsr, if_opackets,
1494 	    bus_space_read_1(iot, ioh, TX_FRAMES_OK));
1495 	if_statadd_ref(ifp, nsr, if_opackets, (upperok & 0x30) << 4);
1496 	if_statadd_ref(ifp, nsr, if_ierrors,
1497 	    bus_space_read_1(iot, ioh, RX_OVERRUNS));
1498 	if_statadd_ref(ifp, nsr, if_collisions,
1499 	    bus_space_read_1(iot, ioh, TX_COLLISIONS));
1500 	/*
1501 	 * There seems to be no way to get the exact number of collisions,
1502 	 * this is the number that occurred at the very least.
1503 	 */
1504 	if_statadd_ref(ifp, nsr, if_collisions,
1505 	    2 * bus_space_read_1(iot, ioh, TX_AFTER_X_COLLISIONS));
1506 
1507 	IF_STAT_PUTREF(ifp);
1508 
1509 	/*
1510 	 * Interface byte counts are counted by ether_input() and
1511 	 * ether_output(), so don't accumulate them here.  Just
1512 	 * read the NIC counters so they don't generate overflow interrupts.
1513 	 * Upper byte counters are latched from reading the totals, so
1514 	 * they don't need to be read if we don't need their values.
1515 	 */
1516 	(void)bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1517 	(void)bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1518 
1519 	/*
1520 	 * Clear the following to avoid stats overflow interrupts
1521 	 */
1522 	(void)bus_space_read_1(iot, ioh, TX_DEFERRALS);
1523 	(void)bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1524 	(void)bus_space_read_1(iot, ioh, TX_NO_SQE);
1525 	(void)bus_space_read_1(iot, ioh, TX_CD_LOST);
1526 	(void)bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1527 	GO_WINDOW(4);
1528 	(void)bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1529 	GO_WINDOW(1);
1530 }
1531 
1532 void
ex_tick(void * arg)1533 ex_tick(void *arg)
1534 {
1535 	struct ex_softc *sc = arg;
1536 	int s;
1537 
1538 	if (!device_is_active(sc->sc_dev))
1539 		return;
1540 
1541 	s = splnet();
1542 
1543 	if (sc->ex_conf & EX_CONF_MII)
1544 		mii_tick(&sc->ex_mii);
1545 
1546 	if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1547 	    & COMMAND_IN_PROGRESS))
1548 		ex_getstats(sc);
1549 
1550 	splx(s);
1551 
1552 	callout_schedule(&sc->ex_mii_callout, hz);
1553 }
1554 
1555 void
ex_reset(struct ex_softc * sc)1556 ex_reset(struct ex_softc *sc)
1557 {
1558 	uint16_t val = GLOBAL_RESET;
1559 
1560 	if (sc->ex_conf & EX_CONF_RESETHACK)
1561 		val |= 0x10;
1562 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1563 	/*
1564 	 * XXX apparently the command in progress bit can't be trusted
1565 	 * during a reset, so we just always wait this long. Fortunately
1566 	 * we normally only reset the chip during autoconfig.
1567 	 */
1568 	delay(100000);
1569 	ex_waitcmd(sc);
1570 }
1571 
1572 void
ex_watchdog(struct ifnet * ifp)1573 ex_watchdog(struct ifnet *ifp)
1574 {
1575 	struct ex_softc *sc = ifp->if_softc;
1576 
1577 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1578 	if_statinc(ifp, if_oerrors);
1579 
1580 	ex_reset(sc);
1581 	ex_init(ifp);
1582 }
1583 
1584 void
ex_stop(struct ifnet * ifp,int disable)1585 ex_stop(struct ifnet *ifp, int disable)
1586 {
1587 	struct ex_softc *sc = ifp->if_softc;
1588 	bus_space_tag_t iot = sc->sc_iot;
1589 	bus_space_handle_t ioh = sc->sc_ioh;
1590 	struct ex_txdesc *tx;
1591 	struct ex_rxdesc *rx;
1592 	int i;
1593 
1594 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1595 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1596 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1597 
1598 	for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1599 		if (tx->tx_mbhead == NULL)
1600 			continue;
1601 		bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1602 		tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1603 		m_freem(tx->tx_mbhead);
1604 		tx->tx_mbhead = NULL;
1605 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1606 		    ((char *)tx->tx_dpd - (char *)sc->sc_dpd),
1607 		    sizeof (struct ex_dpd),
1608 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1609 	}
1610 	sc->tx_tail = sc->tx_head = NULL;
1611 	ex_init_txdescs(sc);
1612 
1613 	sc->rx_tail = sc->rx_head = 0;
1614 	for (i = 0; i < EX_NUPD; i++) {
1615 		rx = &sc->sc_rxdescs[i];
1616 		if (rx->rx_mbhead != NULL) {
1617 			bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1618 			m_freem(rx->rx_mbhead);
1619 			rx->rx_mbhead = NULL;
1620 		}
1621 		ex_add_rxbuf(sc, rx);
1622 	}
1623 
1624 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1625 
1626 	callout_stop(&sc->ex_mii_callout);
1627 	if (sc->ex_conf & EX_CONF_MII)
1628 		mii_down(&sc->ex_mii);
1629 
1630 	if (disable)
1631 		ex_disable(sc);
1632 
1633 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1634 	sc->sc_if_flags = ifp->if_flags;
1635 	ifp->if_timer = 0;
1636 }
1637 
1638 static void
ex_init_txdescs(struct ex_softc * sc)1639 ex_init_txdescs(struct ex_softc *sc)
1640 {
1641 	int i;
1642 
1643 	for (i = 0; i < EX_NDPD; i++) {
1644 		sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1645 		sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1646 		if (i < EX_NDPD - 1)
1647 			sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1648 		else
1649 			sc->sc_txdescs[i].tx_next = NULL;
1650 	}
1651 	sc->tx_free = &sc->sc_txdescs[0];
1652 	sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1653 }
1654 
1655 
1656 int
ex_activate(device_t self,enum devact act)1657 ex_activate(device_t self, enum devact act)
1658 {
1659 	struct ex_softc *sc = device_private(self);
1660 
1661 	switch (act) {
1662 	case DVACT_DEACTIVATE:
1663 		if_deactivate(&sc->sc_ethercom.ec_if);
1664 		return 0;
1665 	default:
1666 		return EOPNOTSUPP;
1667 	}
1668 }
1669 
1670 int
ex_detach(struct ex_softc * sc)1671 ex_detach(struct ex_softc *sc)
1672 {
1673 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1674 	struct ex_rxdesc *rxd;
1675 	int i, s;
1676 
1677 	/* Succeed now if there's no work to do. */
1678 	if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1679 		return (0);
1680 
1681 	s = splnet();
1682 	/* Stop the interface. Callouts are stopped in it. */
1683 	ex_stop(ifp, 1);
1684 	splx(s);
1685 
1686 	/* Destroy our callout. */
1687 	callout_destroy(&sc->ex_mii_callout);
1688 
1689 	if (sc->ex_conf & EX_CONF_MII) {
1690 		/* Detach all PHYs */
1691 		mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1692 	}
1693 
1694 	rnd_detach_source(&sc->rnd_source);
1695 	ether_ifdetach(ifp);
1696 	if_detach(ifp);
1697 
1698 	/* Delete all remaining media. */
1699 	ifmedia_fini(&sc->ex_mii.mii_media);
1700 
1701 	for (i = 0; i < EX_NUPD; i++) {
1702 		rxd = &sc->sc_rxdescs[i];
1703 		if (rxd->rx_mbhead != NULL) {
1704 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1705 			m_freem(rxd->rx_mbhead);
1706 			rxd->rx_mbhead = NULL;
1707 		}
1708 	}
1709 	for (i = 0; i < EX_NUPD; i++)
1710 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1711 	for (i = 0; i < EX_NDPD; i++)
1712 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1713 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1714 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1715 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_dpd,
1716 	    EX_NDPD * sizeof (struct ex_dpd));
1717 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1718 	bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1719 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1720 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_upd,
1721 	    EX_NUPD * sizeof (struct ex_upd));
1722 	bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1723 
1724 	pmf_device_deregister(sc->sc_dev);
1725 
1726 	return (0);
1727 }
1728 
1729 /*
1730  * Before reboots, reset card completely.
1731  */
1732 static bool
ex_shutdown(device_t self,int flags)1733 ex_shutdown(device_t self, int flags)
1734 {
1735 	struct ex_softc *sc = device_private(self);
1736 
1737 	ex_stop(&sc->sc_ethercom.ec_if, 1);
1738 	/*
1739 	 * Make sure the interface is powered up when we reboot,
1740 	 * otherwise firmware on some systems gets really confused.
1741 	 */
1742 	(void) ex_enable(sc);
1743 	return true;
1744 }
1745 
1746 /*
1747  * Read EEPROM data.
1748  * XXX what to do if EEPROM doesn't unbusy?
1749  */
1750 uint16_t
ex_read_eeprom(struct ex_softc * sc,int offset)1751 ex_read_eeprom(struct ex_softc *sc, int offset)
1752 {
1753 	bus_space_tag_t iot = sc->sc_iot;
1754 	bus_space_handle_t ioh = sc->sc_ioh;
1755 	uint16_t data = 0, cmd = READ_EEPROM;
1756 	int off;
1757 
1758 	off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1759 	cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1760 
1761 	GO_WINDOW(0);
1762 	if (ex_eeprom_busy(sc))
1763 		goto out;
1764 	bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1765 	    cmd | (off + (offset & 0x3f)));
1766 	if (ex_eeprom_busy(sc))
1767 		goto out;
1768 	data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1769 out:
1770 	return data;
1771 }
1772 
1773 static int
ex_eeprom_busy(struct ex_softc * sc)1774 ex_eeprom_busy(struct ex_softc *sc)
1775 {
1776 	bus_space_tag_t iot = sc->sc_iot;
1777 	bus_space_handle_t ioh = sc->sc_ioh;
1778 	int i = 100;
1779 
1780 	while (i--) {
1781 		if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1782 		    EEPROM_BUSY))
1783 			return 0;
1784 		delay(100);
1785 	}
1786 	aprint_error_dev(sc->sc_dev, "eeprom stays busy.\n");
1787 	return (1);
1788 }
1789 
1790 /*
1791  * Create a new rx buffer and add it to the 'soft' rx list.
1792  */
1793 static int
ex_add_rxbuf(struct ex_softc * sc,struct ex_rxdesc * rxd)1794 ex_add_rxbuf(struct ex_softc *sc, struct ex_rxdesc *rxd)
1795 {
1796 	struct mbuf *m, *oldm;
1797 	bus_dmamap_t rxmap;
1798 	int error, rval = 0;
1799 
1800 	oldm = rxd->rx_mbhead;
1801 	rxmap = rxd->rx_dmamap;
1802 
1803 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1804 	if (m != NULL) {
1805 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1806 		MCLGET(m, M_DONTWAIT);
1807 		if ((m->m_flags & M_EXT) == 0) {
1808 			m_freem(m);
1809 			if (oldm == NULL)
1810 				return 1;
1811 			m = oldm;
1812 			MRESETDATA(m);
1813 			rval = 1;
1814 		}
1815 	} else {
1816 		if (oldm == NULL)
1817 			return 1;
1818 		m = oldm;
1819 		MRESETDATA(m);
1820 		rval = 1;
1821 	}
1822 
1823 	/*
1824 	 * Setup the DMA map for this receive buffer.
1825 	 */
1826 	if (m != oldm) {
1827 		if (oldm != NULL)
1828 			bus_dmamap_unload(sc->sc_dmat, rxmap);
1829 		error = bus_dmamap_load(sc->sc_dmat, rxmap,
1830 		    m->m_ext.ext_buf, MCLBYTES, NULL,
1831 		    BUS_DMA_READ | BUS_DMA_NOWAIT);
1832 		if (error) {
1833 			aprint_error_dev(sc->sc_dev, "can't load rx buffer, error = %d\n",
1834 			    error);
1835 			panic("ex_add_rxbuf");	/* XXX */
1836 		}
1837 	}
1838 
1839 	/*
1840 	 * Align for data after 14 byte header.
1841 	 */
1842 	m->m_data += 2;
1843 
1844 	rxd->rx_mbhead = m;
1845 	rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1846 	rxd->rx_upd->upd_frags[0].fr_addr =
1847 	    htole32(rxmap->dm_segs[0].ds_addr + 2);
1848 	rxd->rx_upd->upd_nextptr = 0;
1849 
1850 	/*
1851 	 * Attach it to the end of the list.
1852 	 */
1853 	if (sc->rx_head != NULL) {
1854 		sc->rx_tail->rx_next = rxd;
1855 		sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1856 		    ((char *)rxd->rx_upd - (char *)sc->sc_upd));
1857 		bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1858 		    (char *)sc->rx_tail->rx_upd - (char *)sc->sc_upd,
1859 		    sizeof (struct ex_upd),
1860 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1861 	} else {
1862 		sc->rx_head = rxd;
1863 	}
1864 	sc->rx_tail = rxd;
1865 
1866 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1867 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1868 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1869 	    ((char *)rxd->rx_upd - (char *)sc->sc_upd),
1870 	    sizeof (struct ex_upd), BUS_DMASYNC_PREREAD |BUS_DMASYNC_PREWRITE);
1871 	return (rval);
1872 }
1873 
1874 uint32_t
ex_mii_bitbang_read(device_t self)1875 ex_mii_bitbang_read(device_t self)
1876 {
1877 	struct ex_softc *sc = device_private(self);
1878 
1879 	/* We're already in Window 4. */
1880 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1881 }
1882 
1883 void
ex_mii_bitbang_write(device_t self,uint32_t val)1884 ex_mii_bitbang_write(device_t self, uint32_t val)
1885 {
1886 	struct ex_softc *sc = device_private(self);
1887 
1888 	/* We're already in Window 4. */
1889 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1890 }
1891 
1892 int
ex_mii_readreg(device_t v,int phy,int reg,uint16_t * val)1893 ex_mii_readreg(device_t v, int phy, int reg, uint16_t *val)
1894 {
1895 	struct ex_softc *sc = device_private(v);
1896 	int rv;
1897 
1898 	if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1899 		return -1;
1900 
1901 	GO_WINDOW(4);
1902 
1903 	rv = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg, val);
1904 
1905 	GO_WINDOW(1);
1906 
1907 	return rv;
1908 }
1909 
1910 int
ex_mii_writereg(device_t v,int phy,int reg,uint16_t val)1911 ex_mii_writereg(device_t v, int phy, int reg, uint16_t val)
1912 {
1913 	struct ex_softc *sc = device_private(v);
1914 	int rv;
1915 
1916 	GO_WINDOW(4);
1917 
1918 	rv = mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, val);
1919 
1920 	GO_WINDOW(1);
1921 
1922 	return rv;
1923 }
1924 
1925 void
ex_mii_statchg(struct ifnet * ifp)1926 ex_mii_statchg(struct ifnet *ifp)
1927 {
1928 	struct ex_softc *sc = ifp->if_softc;
1929 	bus_space_tag_t iot = sc->sc_iot;
1930 	bus_space_handle_t ioh = sc->sc_ioh;
1931 	int mctl;
1932 
1933 	GO_WINDOW(3);
1934 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1935 	if (sc->ex_mii.mii_media_active & IFM_FDX)
1936 		mctl |= MAC_CONTROL_FDX;
1937 	else
1938 		mctl &= ~MAC_CONTROL_FDX;
1939 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1940 	GO_WINDOW(1);	/* back to operating window */
1941 }
1942 
1943 int
ex_enable(struct ex_softc * sc)1944 ex_enable(struct ex_softc *sc)
1945 {
1946 	if (sc->enabled == 0 && sc->enable != NULL) {
1947 		if ((*sc->enable)(sc) != 0) {
1948 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
1949 			return (EIO);
1950 		}
1951 		sc->enabled = 1;
1952 	}
1953 	return (0);
1954 }
1955 
1956 void
ex_disable(struct ex_softc * sc)1957 ex_disable(struct ex_softc *sc)
1958 {
1959 	if (sc->enabled == 1 && sc->disable != NULL) {
1960 		(*sc->disable)(sc);
1961 		sc->enabled = 0;
1962 	}
1963 }
1964 
1965