xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/CodeGen/RegAllocGreedy.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <memory>
77 #include <queue>
78 #include <tuple>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "regalloc"
84 
85 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
86 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
87 STATISTIC(NumEvicted,      "Number of interferences evicted");
88 
89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
90     "split-spill-mode", cl::Hidden,
91     cl::desc("Spill mode for splitting live ranges"),
92     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
93                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
94                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
95     cl::init(SplitEditor::SM_Speed));
96 
97 static cl::opt<unsigned>
98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
99                              cl::desc("Last chance recoloring max depth"),
100                              cl::init(5));
101 
102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
103     "lcr-max-interf", cl::Hidden,
104     cl::desc("Last chance recoloring maximum number of considered"
105              " interference at a time"),
106     cl::init(8));
107 
108 static cl::opt<bool> ExhaustiveSearch(
109     "exhaustive-register-search", cl::NotHidden,
110     cl::desc("Exhaustive Search for registers bypassing the depth "
111              "and interference cutoffs of last chance recoloring"),
112     cl::Hidden);
113 
114 static cl::opt<bool> EnableLocalReassignment(
115     "enable-local-reassign", cl::Hidden,
116     cl::desc("Local reassignment can yield better allocation decisions, but "
117              "may be compile time intensive"),
118     cl::init(false));
119 
120 static cl::opt<bool> EnableDeferredSpilling(
121     "enable-deferred-spilling", cl::Hidden,
122     cl::desc("Instead of spilling a variable right away, defer the actual "
123              "code insertion to the end of the allocation. That way the "
124              "allocator might still find a suitable coloring for this "
125              "variable because of other evicted variables."),
126     cl::init(false));
127 
128 // FIXME: Find a good default for this flag and remove the flag.
129 static cl::opt<unsigned>
130 CSRFirstTimeCost("regalloc-csr-first-time-cost",
131               cl::desc("Cost for first time use of callee-saved register."),
132               cl::init(0), cl::Hidden);
133 
134 static cl::opt<bool> ConsiderLocalIntervalCost(
135     "consider-local-interval-cost", cl::Hidden,
136     cl::desc("Consider the cost of local intervals created by a split "
137              "candidate when choosing the best split candidate."),
138     cl::init(false));
139 
140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
141                                        createGreedyRegisterAllocator);
142 
143 namespace {
144 
145 class RAGreedy : public MachineFunctionPass,
146                  public RegAllocBase,
147                  private LiveRangeEdit::Delegate {
148   // Convenient shortcuts.
149   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
150   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
151   using SmallVirtRegSet = SmallSet<Register, 16>;
152 
153   // context
154   MachineFunction *MF;
155 
156   // Shortcuts to some useful interface.
157   const TargetInstrInfo *TII;
158   const TargetRegisterInfo *TRI;
159   RegisterClassInfo RCI;
160 
161   // analyses
162   SlotIndexes *Indexes;
163   MachineBlockFrequencyInfo *MBFI;
164   MachineDominatorTree *DomTree;
165   MachineLoopInfo *Loops;
166   MachineOptimizationRemarkEmitter *ORE;
167   EdgeBundles *Bundles;
168   SpillPlacement *SpillPlacer;
169   LiveDebugVariables *DebugVars;
170   AliasAnalysis *AA;
171 
172   // state
173   std::unique_ptr<Spiller> SpillerInstance;
174   PQueue Queue;
175   unsigned NextCascade;
176   std::unique_ptr<VirtRegAuxInfo> VRAI;
177 
178   // Live ranges pass through a number of stages as we try to allocate them.
179   // Some of the stages may also create new live ranges:
180   //
181   // - Region splitting.
182   // - Per-block splitting.
183   // - Local splitting.
184   // - Spilling.
185   //
186   // Ranges produced by one of the stages skip the previous stages when they are
187   // dequeued. This improves performance because we can skip interference checks
188   // that are unlikely to give any results. It also guarantees that the live
189   // range splitting algorithm terminates, something that is otherwise hard to
190   // ensure.
191   enum LiveRangeStage {
192     /// Newly created live range that has never been queued.
193     RS_New,
194 
195     /// Only attempt assignment and eviction. Then requeue as RS_Split.
196     RS_Assign,
197 
198     /// Attempt live range splitting if assignment is impossible.
199     RS_Split,
200 
201     /// Attempt more aggressive live range splitting that is guaranteed to make
202     /// progress.  This is used for split products that may not be making
203     /// progress.
204     RS_Split2,
205 
206     /// Live range will be spilled.  No more splitting will be attempted.
207     RS_Spill,
208 
209 
210     /// Live range is in memory. Because of other evictions, it might get moved
211     /// in a register in the end.
212     RS_Memory,
213 
214     /// There is nothing more we can do to this live range.  Abort compilation
215     /// if it can't be assigned.
216     RS_Done
217   };
218 
219   // Enum CutOffStage to keep a track whether the register allocation failed
220   // because of the cutoffs encountered in last chance recoloring.
221   // Note: This is used as bitmask. New value should be next power of 2.
222   enum CutOffStage {
223     // No cutoffs encountered
224     CO_None = 0,
225 
226     // lcr-max-depth cutoff encountered
227     CO_Depth = 1,
228 
229     // lcr-max-interf cutoff encountered
230     CO_Interf = 2
231   };
232 
233   uint8_t CutOffInfo;
234 
235 #ifndef NDEBUG
236   static const char *const StageName[];
237 #endif
238 
239   // RegInfo - Keep additional information about each live range.
240   struct RegInfo {
241     LiveRangeStage Stage = RS_New;
242 
243     // Cascade - Eviction loop prevention. See canEvictInterference().
244     unsigned Cascade = 0;
245 
246     RegInfo() = default;
247   };
248 
249   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
250 
getStage(const LiveInterval & VirtReg) const251   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
252     return ExtraRegInfo[VirtReg.reg()].Stage;
253   }
254 
setStage(const LiveInterval & VirtReg,LiveRangeStage Stage)255   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
256     ExtraRegInfo.resize(MRI->getNumVirtRegs());
257     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
258   }
259 
260   template<typename Iterator>
setStage(Iterator Begin,Iterator End,LiveRangeStage NewStage)261   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
262     ExtraRegInfo.resize(MRI->getNumVirtRegs());
263     for (;Begin != End; ++Begin) {
264       Register Reg = *Begin;
265       if (ExtraRegInfo[Reg].Stage == RS_New)
266         ExtraRegInfo[Reg].Stage = NewStage;
267     }
268   }
269 
270   /// Cost of evicting interference.
271   struct EvictionCost {
272     unsigned BrokenHints = 0; ///< Total number of broken hints.
273     float MaxWeight = 0;      ///< Maximum spill weight evicted.
274 
275     EvictionCost() = default;
276 
isMax__anone1e285680111::RAGreedy::EvictionCost277     bool isMax() const { return BrokenHints == ~0u; }
278 
setMax__anone1e285680111::RAGreedy::EvictionCost279     void setMax() { BrokenHints = ~0u; }
280 
setBrokenHints__anone1e285680111::RAGreedy::EvictionCost281     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
282 
operator <__anone1e285680111::RAGreedy::EvictionCost283     bool operator<(const EvictionCost &O) const {
284       return std::tie(BrokenHints, MaxWeight) <
285              std::tie(O.BrokenHints, O.MaxWeight);
286     }
287   };
288 
289   /// EvictionTrack - Keeps track of past evictions in order to optimize region
290   /// split decision.
291   class EvictionTrack {
292 
293   public:
294     using EvictorInfo =
295         std::pair<Register /* evictor */, MCRegister /* physreg */>;
296     using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>;
297 
298   private:
299     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
300     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
301     EvicteeInfo Evictees;
302 
303   public:
304     /// Clear all eviction information.
clear()305     void clear() { Evictees.clear(); }
306 
307     ///  Clear eviction information for the given evictee Vreg.
308     /// E.g. when Vreg get's a new allocation, the old eviction info is no
309     /// longer relevant.
310     /// \param Evictee The evictee Vreg for whom we want to clear collected
311     /// eviction info.
clearEvicteeInfo(Register Evictee)312     void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); }
313 
314     /// Track new eviction.
315     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
316     /// \param PhysReg The physical register Evictee was evicted from.
317     /// \param Evictor The evictor Vreg that evicted Evictee.
318     /// \param Evictee The evictee Vreg.
addEviction(MCRegister PhysReg,Register Evictor,Register Evictee)319     void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) {
320       Evictees[Evictee].first = Evictor;
321       Evictees[Evictee].second = PhysReg;
322     }
323 
324     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
325     /// \param Evictee The evictee vreg.
326     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
327     /// nobody has evicted Evictee from PhysReg.
getEvictor(Register Evictee)328     EvictorInfo getEvictor(Register Evictee) {
329       if (Evictees.count(Evictee)) {
330         return Evictees[Evictee];
331       }
332 
333       return EvictorInfo(0, 0);
334     }
335   };
336 
337   // Keeps track of past evictions in order to optimize region split decision.
338   EvictionTrack LastEvicted;
339 
340   // splitting state.
341   std::unique_ptr<SplitAnalysis> SA;
342   std::unique_ptr<SplitEditor> SE;
343 
344   /// Cached per-block interference maps
345   InterferenceCache IntfCache;
346 
347   /// All basic blocks where the current register has uses.
348   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
349 
350   /// Global live range splitting candidate info.
351   struct GlobalSplitCandidate {
352     // Register intended for assignment, or 0.
353     MCRegister PhysReg;
354 
355     // SplitKit interval index for this candidate.
356     unsigned IntvIdx;
357 
358     // Interference for PhysReg.
359     InterferenceCache::Cursor Intf;
360 
361     // Bundles where this candidate should be live.
362     BitVector LiveBundles;
363     SmallVector<unsigned, 8> ActiveBlocks;
364 
reset__anone1e285680111::RAGreedy::GlobalSplitCandidate365     void reset(InterferenceCache &Cache, MCRegister Reg) {
366       PhysReg = Reg;
367       IntvIdx = 0;
368       Intf.setPhysReg(Cache, Reg);
369       LiveBundles.clear();
370       ActiveBlocks.clear();
371     }
372 
373     // Set B[I] = C for every live bundle where B[I] was NoCand.
getBundles__anone1e285680111::RAGreedy::GlobalSplitCandidate374     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
375       unsigned Count = 0;
376       for (unsigned I : LiveBundles.set_bits())
377         if (B[I] == NoCand) {
378           B[I] = C;
379           Count++;
380         }
381       return Count;
382     }
383   };
384 
385   /// Candidate info for each PhysReg in AllocationOrder.
386   /// This vector never shrinks, but grows to the size of the largest register
387   /// class.
388   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
389 
390   enum : unsigned { NoCand = ~0u };
391 
392   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
393   /// NoCand which indicates the stack interval.
394   SmallVector<unsigned, 32> BundleCand;
395 
396   /// Callee-save register cost, calculated once per machine function.
397   BlockFrequency CSRCost;
398 
399   /// Run or not the local reassignment heuristic. This information is
400   /// obtained from the TargetSubtargetInfo.
401   bool EnableLocalReassign;
402 
403   /// Enable or not the consideration of the cost of local intervals created
404   /// by a split candidate when choosing the best split candidate.
405   bool EnableAdvancedRASplitCost;
406 
407   /// Set of broken hints that may be reconciled later because of eviction.
408   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
409 
410   /// The register cost values. This list will be recreated for each Machine
411   /// Function
412   ArrayRef<uint8_t> RegCosts;
413 
414 public:
415   RAGreedy();
416 
417   /// Return the pass name.
getPassName() const418   StringRef getPassName() const override { return "Greedy Register Allocator"; }
419 
420   /// RAGreedy analysis usage.
421   void getAnalysisUsage(AnalysisUsage &AU) const override;
422   void releaseMemory() override;
spiller()423   Spiller &spiller() override { return *SpillerInstance; }
424   void enqueue(LiveInterval *LI) override;
425   LiveInterval *dequeue() override;
426   MCRegister selectOrSplit(LiveInterval &,
427                            SmallVectorImpl<Register> &) override;
428   void aboutToRemoveInterval(LiveInterval &) override;
429 
430   /// Perform register allocation.
431   bool runOnMachineFunction(MachineFunction &mf) override;
432 
getRequiredProperties() const433   MachineFunctionProperties getRequiredProperties() const override {
434     return MachineFunctionProperties().set(
435         MachineFunctionProperties::Property::NoPHIs);
436   }
437 
getClearedProperties() const438   MachineFunctionProperties getClearedProperties() const override {
439     return MachineFunctionProperties().set(
440       MachineFunctionProperties::Property::IsSSA);
441   }
442 
443   static char ID;
444 
445 private:
446   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
447                                SmallVirtRegSet &, unsigned = 0);
448 
449   bool LRE_CanEraseVirtReg(Register) override;
450   void LRE_WillShrinkVirtReg(Register) override;
451   void LRE_DidCloneVirtReg(Register, Register) override;
452   void enqueue(PQueue &CurQueue, LiveInterval *LI);
453   LiveInterval *dequeue(PQueue &CurQueue);
454 
455   BlockFrequency calcSpillCost();
456   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
457   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
458   bool growRegion(GlobalSplitCandidate &Cand);
459   bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand,
460                                   unsigned BBNumber,
461                                   const AllocationOrder &Order);
462   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
463                                GlobalSplitCandidate &Cand, unsigned BBNumber,
464                                const AllocationOrder &Order);
465   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
466                                      const AllocationOrder &Order,
467                                      bool *CanCauseEvictionChain);
468   bool calcCompactRegion(GlobalSplitCandidate&);
469   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
470   void calcGapWeights(MCRegister, SmallVectorImpl<float> &);
471   Register canReassign(LiveInterval &VirtReg, Register PrevReg) const;
472   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const;
473   bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &,
474                             const SmallVirtRegSet &) const;
475   bool canEvictInterferenceInRange(const LiveInterval &VirtReg,
476                                    MCRegister PhysReg, SlotIndex Start,
477                                    SlotIndex End, EvictionCost &MaxCost) const;
478   MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order,
479                                       const LiveInterval &VirtReg,
480                                       SlotIndex Start, SlotIndex End,
481                                       float *BestEvictWeight) const;
482   void evictInterference(LiveInterval &, MCRegister,
483                          SmallVectorImpl<Register> &);
484   bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg,
485                                   SmallLISet &RecoloringCandidates,
486                                   const SmallVirtRegSet &FixedRegisters);
487 
488   MCRegister tryAssign(LiveInterval&, AllocationOrder&,
489                      SmallVectorImpl<Register>&,
490                      const SmallVirtRegSet&);
491   MCRegister tryEvict(LiveInterval &, AllocationOrder &,
492                     SmallVectorImpl<Register> &, uint8_t,
493                     const SmallVirtRegSet &);
494   MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &,
495                             SmallVectorImpl<Register> &);
496   /// Calculate cost of region splitting.
497   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
498                                     AllocationOrder &Order,
499                                     BlockFrequency &BestCost,
500                                     unsigned &NumCands, bool IgnoreCSR,
501                                     bool *CanCauseEvictionChain = nullptr);
502   /// Perform region splitting.
503   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
504                          bool HasCompact,
505                          SmallVectorImpl<Register> &NewVRegs);
506   /// Check other options before using a callee-saved register for the first
507   /// time.
508   MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg,
509                                    AllocationOrder &Order, MCRegister PhysReg,
510                                    uint8_t &CostPerUseLimit,
511                                    SmallVectorImpl<Register> &NewVRegs);
512   void initializeCSRCost();
513   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
514                          SmallVectorImpl<Register>&);
515   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
516                                SmallVectorImpl<Register>&);
517   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
518     SmallVectorImpl<Register>&);
519   unsigned trySplit(LiveInterval&, AllocationOrder&,
520                     SmallVectorImpl<Register>&,
521                     const SmallVirtRegSet&);
522   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
523                                    SmallVectorImpl<Register> &,
524                                    SmallVirtRegSet &, unsigned);
525   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
526                                SmallVirtRegSet &, unsigned);
527   void tryHintRecoloring(LiveInterval &);
528   void tryHintsRecoloring();
529 
530   /// Model the information carried by one end of a copy.
531   struct HintInfo {
532     /// The frequency of the copy.
533     BlockFrequency Freq;
534     /// The virtual register or physical register.
535     Register Reg;
536     /// Its currently assigned register.
537     /// In case of a physical register Reg == PhysReg.
538     MCRegister PhysReg;
539 
HintInfo__anone1e285680111::RAGreedy::HintInfo540     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
541         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
542   };
543   using HintsInfo = SmallVector<HintInfo, 4>;
544 
545   BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister);
546   void collectHintInfo(Register, HintsInfo &);
547 
548   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
549 
550   /// Greedy RA statistic to remark.
551   struct RAGreedyStats {
552     unsigned Reloads = 0;
553     unsigned FoldedReloads = 0;
554     unsigned ZeroCostFoldedReloads = 0;
555     unsigned Spills = 0;
556     unsigned FoldedSpills = 0;
557     unsigned Copies = 0;
558     float ReloadsCost = 0.0f;
559     float FoldedReloadsCost = 0.0f;
560     float SpillsCost = 0.0f;
561     float FoldedSpillsCost = 0.0f;
562     float CopiesCost = 0.0f;
563 
isEmpty__anone1e285680111::RAGreedy::RAGreedyStats564     bool isEmpty() {
565       return !(Reloads || FoldedReloads || Spills || FoldedSpills ||
566                ZeroCostFoldedReloads || Copies);
567     }
568 
add__anone1e285680111::RAGreedy::RAGreedyStats569     void add(RAGreedyStats other) {
570       Reloads += other.Reloads;
571       FoldedReloads += other.FoldedReloads;
572       ZeroCostFoldedReloads += other.ZeroCostFoldedReloads;
573       Spills += other.Spills;
574       FoldedSpills += other.FoldedSpills;
575       Copies += other.Copies;
576       ReloadsCost += other.ReloadsCost;
577       FoldedReloadsCost += other.FoldedReloadsCost;
578       SpillsCost += other.SpillsCost;
579       FoldedSpillsCost += other.FoldedSpillsCost;
580       CopiesCost += other.CopiesCost;
581     }
582 
583     void report(MachineOptimizationRemarkMissed &R);
584   };
585 
586   /// Compute statistic for a basic block.
587   RAGreedyStats computeStats(MachineBasicBlock &MBB);
588 
589   /// Compute and report statistic through a remark.
590   RAGreedyStats reportStats(MachineLoop *L);
591 
592   /// Report the statistic for each loop.
593   void reportStats();
594 };
595 
596 } // end anonymous namespace
597 
598 char RAGreedy::ID = 0;
599 char &llvm::RAGreedyID = RAGreedy::ID;
600 
601 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
602                 "Greedy Register Allocator", false, false)
603 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
604 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
605 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
606 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
607 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
608 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
609 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
610 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
611 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
612 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
613 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
614 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
615 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
616 INITIALIZE_PASS_END(RAGreedy, "greedy",
617                 "Greedy Register Allocator", false, false)
618 
619 #ifndef NDEBUG
620 const char *const RAGreedy::StageName[] = {
621     "RS_New",
622     "RS_Assign",
623     "RS_Split",
624     "RS_Split2",
625     "RS_Spill",
626     "RS_Memory",
627     "RS_Done"
628 };
629 #endif
630 
631 // Hysteresis to use when comparing floats.
632 // This helps stabilize decisions based on float comparisons.
633 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
634 
createGreedyRegisterAllocator()635 FunctionPass* llvm::createGreedyRegisterAllocator() {
636   return new RAGreedy();
637 }
638 
RAGreedy()639 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
640 }
641 
getAnalysisUsage(AnalysisUsage & AU) const642 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
643   AU.setPreservesCFG();
644   AU.addRequired<MachineBlockFrequencyInfo>();
645   AU.addPreserved<MachineBlockFrequencyInfo>();
646   AU.addRequired<AAResultsWrapperPass>();
647   AU.addPreserved<AAResultsWrapperPass>();
648   AU.addRequired<LiveIntervals>();
649   AU.addPreserved<LiveIntervals>();
650   AU.addRequired<SlotIndexes>();
651   AU.addPreserved<SlotIndexes>();
652   AU.addRequired<LiveDebugVariables>();
653   AU.addPreserved<LiveDebugVariables>();
654   AU.addRequired<LiveStacks>();
655   AU.addPreserved<LiveStacks>();
656   AU.addRequired<MachineDominatorTree>();
657   AU.addPreserved<MachineDominatorTree>();
658   AU.addRequired<MachineLoopInfo>();
659   AU.addPreserved<MachineLoopInfo>();
660   AU.addRequired<VirtRegMap>();
661   AU.addPreserved<VirtRegMap>();
662   AU.addRequired<LiveRegMatrix>();
663   AU.addPreserved<LiveRegMatrix>();
664   AU.addRequired<EdgeBundles>();
665   AU.addRequired<SpillPlacement>();
666   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
667   MachineFunctionPass::getAnalysisUsage(AU);
668 }
669 
670 //===----------------------------------------------------------------------===//
671 //                     LiveRangeEdit delegate methods
672 //===----------------------------------------------------------------------===//
673 
LRE_CanEraseVirtReg(Register VirtReg)674 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
675   LiveInterval &LI = LIS->getInterval(VirtReg);
676   if (VRM->hasPhys(VirtReg)) {
677     Matrix->unassign(LI);
678     aboutToRemoveInterval(LI);
679     return true;
680   }
681   // Unassigned virtreg is probably in the priority queue.
682   // RegAllocBase will erase it after dequeueing.
683   // Nonetheless, clear the live-range so that the debug
684   // dump will show the right state for that VirtReg.
685   LI.clear();
686   return false;
687 }
688 
LRE_WillShrinkVirtReg(Register VirtReg)689 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
690   if (!VRM->hasPhys(VirtReg))
691     return;
692 
693   // Register is assigned, put it back on the queue for reassignment.
694   LiveInterval &LI = LIS->getInterval(VirtReg);
695   Matrix->unassign(LI);
696   enqueue(&LI);
697 }
698 
LRE_DidCloneVirtReg(Register New,Register Old)699 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
700   // Cloning a register we haven't even heard about yet?  Just ignore it.
701   if (!ExtraRegInfo.inBounds(Old))
702     return;
703 
704   // LRE may clone a virtual register because dead code elimination causes it to
705   // be split into connected components. The new components are much smaller
706   // than the original, so they should get a new chance at being assigned.
707   // same stage as the parent.
708   ExtraRegInfo[Old].Stage = RS_Assign;
709   ExtraRegInfo.grow(New);
710   ExtraRegInfo[New] = ExtraRegInfo[Old];
711 }
712 
releaseMemory()713 void RAGreedy::releaseMemory() {
714   SpillerInstance.reset();
715   ExtraRegInfo.clear();
716   GlobalCand.clear();
717 }
718 
enqueue(LiveInterval * LI)719 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
720 
enqueue(PQueue & CurQueue,LiveInterval * LI)721 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
722   // Prioritize live ranges by size, assigning larger ranges first.
723   // The queue holds (size, reg) pairs.
724   const unsigned Size = LI->getSize();
725   const Register Reg = LI->reg();
726   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
727   unsigned Prio;
728 
729   ExtraRegInfo.grow(Reg);
730   if (ExtraRegInfo[Reg].Stage == RS_New)
731     ExtraRegInfo[Reg].Stage = RS_Assign;
732 
733   if (ExtraRegInfo[Reg].Stage == RS_Split) {
734     // Unsplit ranges that couldn't be allocated immediately are deferred until
735     // everything else has been allocated.
736     Prio = Size;
737   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
738     // Memory operand should be considered last.
739     // Change the priority such that Memory operand are assigned in
740     // the reverse order that they came in.
741     // TODO: Make this a member variable and probably do something about hints.
742     static unsigned MemOp = 0;
743     Prio = MemOp++;
744   } else {
745     // Giant live ranges fall back to the global assignment heuristic, which
746     // prevents excessive spilling in pathological cases.
747     bool ReverseLocal = TRI->reverseLocalAssignment();
748     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
749     bool ForceGlobal = !ReverseLocal &&
750       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
751 
752     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
753         LIS->intervalIsInOneMBB(*LI)) {
754       // Allocate original local ranges in linear instruction order. Since they
755       // are singly defined, this produces optimal coloring in the absence of
756       // global interference and other constraints.
757       if (!ReverseLocal)
758         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
759       else {
760         // Allocating bottom up may allow many short LRGs to be assigned first
761         // to one of the cheap registers. This could be much faster for very
762         // large blocks on targets with many physical registers.
763         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
764       }
765       Prio |= RC.AllocationPriority << 24;
766     } else {
767       // Allocate global and split ranges in long->short order. Long ranges that
768       // don't fit should be spilled (or split) ASAP so they don't create
769       // interference.  Mark a bit to prioritize global above local ranges.
770       Prio = (1u << 29) + Size;
771     }
772     // Mark a higher bit to prioritize global and local above RS_Split.
773     Prio |= (1u << 31);
774 
775     // Boost ranges that have a physical register hint.
776     if (VRM->hasKnownPreference(Reg))
777       Prio |= (1u << 30);
778   }
779   // The virtual register number is a tie breaker for same-sized ranges.
780   // Give lower vreg numbers higher priority to assign them first.
781   CurQueue.push(std::make_pair(Prio, ~Reg));
782 }
783 
dequeue()784 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
785 
dequeue(PQueue & CurQueue)786 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
787   if (CurQueue.empty())
788     return nullptr;
789   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
790   CurQueue.pop();
791   return LI;
792 }
793 
794 //===----------------------------------------------------------------------===//
795 //                            Direct Assignment
796 //===----------------------------------------------------------------------===//
797 
798 /// tryAssign - Try to assign VirtReg to an available register.
tryAssign(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs,const SmallVirtRegSet & FixedRegisters)799 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg,
800                              AllocationOrder &Order,
801                              SmallVectorImpl<Register> &NewVRegs,
802                              const SmallVirtRegSet &FixedRegisters) {
803   MCRegister PhysReg;
804   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
805     assert(*I);
806     if (!Matrix->checkInterference(VirtReg, *I)) {
807       if (I.isHint())
808         return *I;
809       else
810         PhysReg = *I;
811     }
812   }
813   if (!PhysReg.isValid())
814     return PhysReg;
815 
816   // PhysReg is available, but there may be a better choice.
817 
818   // If we missed a simple hint, try to cheaply evict interference from the
819   // preferred register.
820   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
821     if (Order.isHint(Hint)) {
822       MCRegister PhysHint = Hint.asMCReg();
823       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
824       EvictionCost MaxCost;
825       MaxCost.setBrokenHints(1);
826       if (canEvictInterference(VirtReg, PhysHint, true, MaxCost,
827                                FixedRegisters)) {
828         evictInterference(VirtReg, PhysHint, NewVRegs);
829         return PhysHint;
830       }
831       // Record the missed hint, we may be able to recover
832       // at the end if the surrounding allocation changed.
833       SetOfBrokenHints.insert(&VirtReg);
834     }
835 
836   // Try to evict interference from a cheaper alternative.
837   uint8_t Cost = RegCosts[PhysReg];
838 
839   // Most registers have 0 additional cost.
840   if (!Cost)
841     return PhysReg;
842 
843   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
844                     << Cost << '\n');
845   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
846   return CheapReg ? CheapReg : PhysReg;
847 }
848 
849 //===----------------------------------------------------------------------===//
850 //                         Interference eviction
851 //===----------------------------------------------------------------------===//
852 
canReassign(LiveInterval & VirtReg,Register PrevReg) const853 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const {
854   auto Order =
855       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
856   MCRegister PhysReg;
857   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
858     if ((*I).id() == PrevReg.id())
859       continue;
860 
861     MCRegUnitIterator Units(*I, TRI);
862     for (; Units.isValid(); ++Units) {
863       // Instantiate a "subquery", not to be confused with the Queries array.
864       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
865       if (subQ.checkInterference())
866         break;
867     }
868     // If no units have interference, break out with the current PhysReg.
869     if (!Units.isValid())
870       PhysReg = *I;
871   }
872   if (PhysReg)
873     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
874                       << printReg(PrevReg, TRI) << " to "
875                       << printReg(PhysReg, TRI) << '\n');
876   return PhysReg;
877 }
878 
879 /// shouldEvict - determine if A should evict the assigned live range B. The
880 /// eviction policy defined by this function together with the allocation order
881 /// defined by enqueue() decides which registers ultimately end up being split
882 /// and spilled.
883 ///
884 /// Cascade numbers are used to prevent infinite loops if this function is a
885 /// cyclic relation.
886 ///
887 /// @param A          The live range to be assigned.
888 /// @param IsHint     True when A is about to be assigned to its preferred
889 ///                   register.
890 /// @param B          The live range to be evicted.
891 /// @param BreaksHint True when B is already assigned to its preferred register.
shouldEvict(LiveInterval & A,bool IsHint,LiveInterval & B,bool BreaksHint) const892 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
893                            LiveInterval &B, bool BreaksHint) const {
894   bool CanSplit = getStage(B) < RS_Spill;
895 
896   // Be fairly aggressive about following hints as long as the evictee can be
897   // split.
898   if (CanSplit && IsHint && !BreaksHint)
899     return true;
900 
901   if (A.weight() > B.weight()) {
902     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
903     return true;
904   }
905   return false;
906 }
907 
908 /// canEvictInterference - Return true if all interferences between VirtReg and
909 /// PhysReg can be evicted.
910 ///
911 /// @param VirtReg Live range that is about to be assigned.
912 /// @param PhysReg Desired register for assignment.
913 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
914 /// @param MaxCost Only look for cheaper candidates and update with new cost
915 ///                when returning true.
916 /// @returns True when interference can be evicted cheaper than MaxCost.
canEvictInterference(LiveInterval & VirtReg,MCRegister PhysReg,bool IsHint,EvictionCost & MaxCost,const SmallVirtRegSet & FixedRegisters) const917 bool RAGreedy::canEvictInterference(
918     LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
919     EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const {
920   // It is only possible to evict virtual register interference.
921   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
922     return false;
923 
924   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
925 
926   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
927   // involved in an eviction before. If a cascade number was assigned, deny
928   // evicting anything with the same or a newer cascade number. This prevents
929   // infinite eviction loops.
930   //
931   // This works out so a register without a cascade number is allowed to evict
932   // anything, and it can be evicted by anything.
933   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
934   if (!Cascade)
935     Cascade = NextCascade;
936 
937   EvictionCost Cost;
938   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
939     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
940     // If there is 10 or more interferences, chances are one is heavier.
941     if (Q.collectInterferingVRegs(10) >= 10)
942       return false;
943 
944     // Check if any interfering live range is heavier than MaxWeight.
945     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
946       assert(Register::isVirtualRegister(Intf->reg()) &&
947              "Only expecting virtual register interference from query");
948 
949       // Do not allow eviction of a virtual register if we are in the middle
950       // of last-chance recoloring and this virtual register is one that we
951       // have scavenged a physical register for.
952       if (FixedRegisters.count(Intf->reg()))
953         return false;
954 
955       // Never evict spill products. They cannot split or spill.
956       if (getStage(*Intf) == RS_Done)
957         return false;
958       // Once a live range becomes small enough, it is urgent that we find a
959       // register for it. This is indicated by an infinite spill weight. These
960       // urgent live ranges get to evict almost anything.
961       //
962       // Also allow urgent evictions of unspillable ranges from a strictly
963       // larger allocation order.
964       bool Urgent =
965           !VirtReg.isSpillable() &&
966           (Intf->isSpillable() ||
967            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
968                RegClassInfo.getNumAllocatableRegs(
969                    MRI->getRegClass(Intf->reg())));
970       // Only evict older cascades or live ranges without a cascade.
971       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
972       if (Cascade <= IntfCascade) {
973         if (!Urgent)
974           return false;
975         // We permit breaking cascades for urgent evictions. It should be the
976         // last resort, though, so make it really expensive.
977         Cost.BrokenHints += 10;
978       }
979       // Would this break a satisfied hint?
980       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
981       // Update eviction cost.
982       Cost.BrokenHints += BreaksHint;
983       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
984       // Abort if this would be too expensive.
985       if (!(Cost < MaxCost))
986         return false;
987       if (Urgent)
988         continue;
989       // Apply the eviction policy for non-urgent evictions.
990       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
991         return false;
992       // If !MaxCost.isMax(), then we're just looking for a cheap register.
993       // Evicting another local live range in this case could lead to suboptimal
994       // coloring.
995       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
996           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
997         return false;
998       }
999     }
1000   }
1001   MaxCost = Cost;
1002   return true;
1003 }
1004 
1005 /// Return true if all interferences between VirtReg and PhysReg between
1006 /// Start and End can be evicted.
1007 ///
1008 /// \param VirtReg Live range that is about to be assigned.
1009 /// \param PhysReg Desired register for assignment.
1010 /// \param Start   Start of range to look for interferences.
1011 /// \param End     End of range to look for interferences.
1012 /// \param MaxCost Only look for cheaper candidates and update with new cost
1013 ///                when returning true.
1014 /// \return True when interference can be evicted cheaper than MaxCost.
canEvictInterferenceInRange(const LiveInterval & VirtReg,MCRegister PhysReg,SlotIndex Start,SlotIndex End,EvictionCost & MaxCost) const1015 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
1016                                            MCRegister PhysReg, SlotIndex Start,
1017                                            SlotIndex End,
1018                                            EvictionCost &MaxCost) const {
1019   EvictionCost Cost;
1020 
1021   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1022     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1023     Q.collectInterferingVRegs();
1024 
1025     // Check if any interfering live range is heavier than MaxWeight.
1026     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1027       // Check if interference overlast the segment in interest.
1028       if (!Intf->overlaps(Start, End))
1029         continue;
1030 
1031       // Cannot evict non virtual reg interference.
1032       if (!Register::isVirtualRegister(Intf->reg()))
1033         return false;
1034       // Never evict spill products. They cannot split or spill.
1035       if (getStage(*Intf) == RS_Done)
1036         return false;
1037 
1038       // Would this break a satisfied hint?
1039       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
1040       // Update eviction cost.
1041       Cost.BrokenHints += BreaksHint;
1042       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1043       // Abort if this would be too expensive.
1044       if (!(Cost < MaxCost))
1045         return false;
1046     }
1047   }
1048 
1049   if (Cost.MaxWeight == 0)
1050     return false;
1051 
1052   MaxCost = Cost;
1053   return true;
1054 }
1055 
1056 /// Return the physical register that will be best
1057 /// candidate for eviction by a local split interval that will be created
1058 /// between Start and End.
1059 ///
1060 /// \param Order            The allocation order
1061 /// \param VirtReg          Live range that is about to be assigned.
1062 /// \param Start            Start of range to look for interferences
1063 /// \param End              End of range to look for interferences
1064 /// \param BestEvictweight  The eviction cost of that eviction
1065 /// \return The PhysReg which is the best candidate for eviction and the
1066 /// eviction cost in BestEvictweight
getCheapestEvicteeWeight(const AllocationOrder & Order,const LiveInterval & VirtReg,SlotIndex Start,SlotIndex End,float * BestEvictweight) const1067 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1068                                               const LiveInterval &VirtReg,
1069                                               SlotIndex Start, SlotIndex End,
1070                                               float *BestEvictweight) const {
1071   EvictionCost BestEvictCost;
1072   BestEvictCost.setMax();
1073   BestEvictCost.MaxWeight = VirtReg.weight();
1074   MCRegister BestEvicteePhys;
1075 
1076   // Go over all physical registers and find the best candidate for eviction
1077   for (MCRegister PhysReg : Order.getOrder()) {
1078 
1079     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1080                                      BestEvictCost))
1081       continue;
1082 
1083     // Best so far.
1084     BestEvicteePhys = PhysReg;
1085   }
1086   *BestEvictweight = BestEvictCost.MaxWeight;
1087   return BestEvicteePhys;
1088 }
1089 
1090 /// evictInterference - Evict any interferring registers that prevent VirtReg
1091 /// from being assigned to Physreg. This assumes that canEvictInterference
1092 /// returned true.
evictInterference(LiveInterval & VirtReg,MCRegister PhysReg,SmallVectorImpl<Register> & NewVRegs)1093 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
1094                                  SmallVectorImpl<Register> &NewVRegs) {
1095   // Make sure that VirtReg has a cascade number, and assign that cascade
1096   // number to every evicted register. These live ranges than then only be
1097   // evicted by a newer cascade, preventing infinite loops.
1098   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1099   if (!Cascade)
1100     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1101 
1102   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1103                     << " interference: Cascade " << Cascade << '\n');
1104 
1105   // Collect all interfering virtregs first.
1106   SmallVector<LiveInterval*, 8> Intfs;
1107   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1108     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1109     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1110     // should be fast, we may need to recalculate if when different physregs
1111     // overlap the same register unit so we had different SubRanges queried
1112     // against it.
1113     Q.collectInterferingVRegs();
1114     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1115     Intfs.append(IVR.begin(), IVR.end());
1116   }
1117 
1118   // Evict them second. This will invalidate the queries.
1119   for (LiveInterval *Intf : Intfs) {
1120     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1121     if (!VRM->hasPhys(Intf->reg()))
1122       continue;
1123 
1124     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1125 
1126     Matrix->unassign(*Intf);
1127     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1128             VirtReg.isSpillable() < Intf->isSpillable()) &&
1129            "Cannot decrease cascade number, illegal eviction");
1130     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1131     ++NumEvicted;
1132     NewVRegs.push_back(Intf->reg());
1133   }
1134 }
1135 
1136 /// Returns true if the given \p PhysReg is a callee saved register and has not
1137 /// been used for allocation yet.
isUnusedCalleeSavedReg(MCRegister PhysReg) const1138 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1139   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1140   if (!CSR)
1141     return false;
1142 
1143   return !Matrix->isPhysRegUsed(PhysReg);
1144 }
1145 
1146 /// tryEvict - Try to evict all interferences for a physreg.
1147 /// @param  VirtReg Currently unassigned virtual register.
1148 /// @param  Order   Physregs to try.
1149 /// @return         Physreg to assign VirtReg, or 0.
tryEvict(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs,uint8_t CostPerUseLimit,const SmallVirtRegSet & FixedRegisters)1150 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order,
1151                             SmallVectorImpl<Register> &NewVRegs,
1152                             uint8_t CostPerUseLimit,
1153                             const SmallVirtRegSet &FixedRegisters) {
1154   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1155                      TimePassesIsEnabled);
1156 
1157   // Keep track of the cheapest interference seen so far.
1158   EvictionCost BestCost;
1159   BestCost.setMax();
1160   MCRegister BestPhys;
1161   unsigned OrderLimit = Order.getOrder().size();
1162 
1163   // When we are just looking for a reduced cost per use, don't break any
1164   // hints, and only evict smaller spill weights.
1165   if (CostPerUseLimit < uint8_t(~0u)) {
1166     BestCost.BrokenHints = 0;
1167     BestCost.MaxWeight = VirtReg.weight();
1168 
1169     // Check of any registers in RC are below CostPerUseLimit.
1170     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1171     uint8_t MinCost = RegClassInfo.getMinCost(RC);
1172     if (MinCost >= CostPerUseLimit) {
1173       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1174                         << MinCost << ", no cheaper registers to be found.\n");
1175       return 0;
1176     }
1177 
1178     // It is normal for register classes to have a long tail of registers with
1179     // the same cost. We don't need to look at them if they're too expensive.
1180     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
1181       OrderLimit = RegClassInfo.getLastCostChange(RC);
1182       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1183                         << " regs.\n");
1184     }
1185   }
1186 
1187   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1188        ++I) {
1189     MCRegister PhysReg = *I;
1190     assert(PhysReg);
1191     if (RegCosts[PhysReg] >= CostPerUseLimit)
1192       continue;
1193     // The first use of a callee-saved register in a function has cost 1.
1194     // Don't start using a CSR when the CostPerUseLimit is low.
1195     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1196       LLVM_DEBUG(
1197           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1198                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1199                  << '\n');
1200       continue;
1201     }
1202 
1203     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1204                               FixedRegisters))
1205       continue;
1206 
1207     // Best so far.
1208     BestPhys = PhysReg;
1209 
1210     // Stop if the hint can be used.
1211     if (I.isHint())
1212       break;
1213   }
1214 
1215   if (BestPhys.isValid())
1216     evictInterference(VirtReg, BestPhys, NewVRegs);
1217   return BestPhys;
1218 }
1219 
1220 //===----------------------------------------------------------------------===//
1221 //                              Region Splitting
1222 //===----------------------------------------------------------------------===//
1223 
1224 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1225 /// interference pattern in Physreg and its aliases. Add the constraints to
1226 /// SpillPlacement and return the static cost of this split in Cost, assuming
1227 /// that all preferences in SplitConstraints are met.
1228 /// Return false if there are no bundles with positive bias.
addSplitConstraints(InterferenceCache::Cursor Intf,BlockFrequency & Cost)1229 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1230                                    BlockFrequency &Cost) {
1231   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1232 
1233   // Reset interference dependent info.
1234   SplitConstraints.resize(UseBlocks.size());
1235   BlockFrequency StaticCost = 0;
1236   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1237     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1238     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1239 
1240     BC.Number = BI.MBB->getNumber();
1241     Intf.moveToBlock(BC.Number);
1242     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1243     BC.Exit = (BI.LiveOut &&
1244                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1245                   ? SpillPlacement::PrefReg
1246                   : SpillPlacement::DontCare;
1247     BC.ChangesValue = BI.FirstDef.isValid();
1248 
1249     if (!Intf.hasInterference())
1250       continue;
1251 
1252     // Number of spill code instructions to insert.
1253     unsigned Ins = 0;
1254 
1255     // Interference for the live-in value.
1256     if (BI.LiveIn) {
1257       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1258         BC.Entry = SpillPlacement::MustSpill;
1259         ++Ins;
1260       } else if (Intf.first() < BI.FirstInstr) {
1261         BC.Entry = SpillPlacement::PrefSpill;
1262         ++Ins;
1263       } else if (Intf.first() < BI.LastInstr) {
1264         ++Ins;
1265       }
1266 
1267       // Abort if the spill cannot be inserted at the MBB' start
1268       if (((BC.Entry == SpillPlacement::MustSpill) ||
1269            (BC.Entry == SpillPlacement::PrefSpill)) &&
1270           SlotIndex::isEarlierInstr(BI.FirstInstr,
1271                                     SA->getFirstSplitPoint(BC.Number)))
1272         return false;
1273     }
1274 
1275     // Interference for the live-out value.
1276     if (BI.LiveOut) {
1277       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1278         BC.Exit = SpillPlacement::MustSpill;
1279         ++Ins;
1280       } else if (Intf.last() > BI.LastInstr) {
1281         BC.Exit = SpillPlacement::PrefSpill;
1282         ++Ins;
1283       } else if (Intf.last() > BI.FirstInstr) {
1284         ++Ins;
1285       }
1286     }
1287 
1288     // Accumulate the total frequency of inserted spill code.
1289     while (Ins--)
1290       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1291   }
1292   Cost = StaticCost;
1293 
1294   // Add constraints for use-blocks. Note that these are the only constraints
1295   // that may add a positive bias, it is downhill from here.
1296   SpillPlacer->addConstraints(SplitConstraints);
1297   return SpillPlacer->scanActiveBundles();
1298 }
1299 
1300 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1301 /// live-through blocks in Blocks.
addThroughConstraints(InterferenceCache::Cursor Intf,ArrayRef<unsigned> Blocks)1302 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1303                                      ArrayRef<unsigned> Blocks) {
1304   const unsigned GroupSize = 8;
1305   SpillPlacement::BlockConstraint BCS[GroupSize];
1306   unsigned TBS[GroupSize];
1307   unsigned B = 0, T = 0;
1308 
1309   for (unsigned Number : Blocks) {
1310     Intf.moveToBlock(Number);
1311 
1312     if (!Intf.hasInterference()) {
1313       assert(T < GroupSize && "Array overflow");
1314       TBS[T] = Number;
1315       if (++T == GroupSize) {
1316         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1317         T = 0;
1318       }
1319       continue;
1320     }
1321 
1322     assert(B < GroupSize && "Array overflow");
1323     BCS[B].Number = Number;
1324 
1325     // Abort if the spill cannot be inserted at the MBB' start
1326     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1327     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
1328     if (FirstNonDebugInstr != MBB->end() &&
1329         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
1330                                   SA->getFirstSplitPoint(Number)))
1331       return false;
1332     // Interference for the live-in value.
1333     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1334       BCS[B].Entry = SpillPlacement::MustSpill;
1335     else
1336       BCS[B].Entry = SpillPlacement::PrefSpill;
1337 
1338     // Interference for the live-out value.
1339     if (Intf.last() >= SA->getLastSplitPoint(Number))
1340       BCS[B].Exit = SpillPlacement::MustSpill;
1341     else
1342       BCS[B].Exit = SpillPlacement::PrefSpill;
1343 
1344     if (++B == GroupSize) {
1345       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1346       B = 0;
1347     }
1348   }
1349 
1350   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1351   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1352   return true;
1353 }
1354 
growRegion(GlobalSplitCandidate & Cand)1355 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1356   // Keep track of through blocks that have not been added to SpillPlacer.
1357   BitVector Todo = SA->getThroughBlocks();
1358   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1359   unsigned AddedTo = 0;
1360 #ifndef NDEBUG
1361   unsigned Visited = 0;
1362 #endif
1363 
1364   while (true) {
1365     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1366     // Find new through blocks in the periphery of PrefRegBundles.
1367     for (unsigned Bundle : NewBundles) {
1368       // Look at all blocks connected to Bundle in the full graph.
1369       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1370       for (unsigned Block : Blocks) {
1371         if (!Todo.test(Block))
1372           continue;
1373         Todo.reset(Block);
1374         // This is a new through block. Add it to SpillPlacer later.
1375         ActiveBlocks.push_back(Block);
1376 #ifndef NDEBUG
1377         ++Visited;
1378 #endif
1379       }
1380     }
1381     // Any new blocks to add?
1382     if (ActiveBlocks.size() == AddedTo)
1383       break;
1384 
1385     // Compute through constraints from the interference, or assume that all
1386     // through blocks prefer spilling when forming compact regions.
1387     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1388     if (Cand.PhysReg) {
1389       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1390         return false;
1391     } else
1392       // Provide a strong negative bias on through blocks to prevent unwanted
1393       // liveness on loop backedges.
1394       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1395     AddedTo = ActiveBlocks.size();
1396 
1397     // Perhaps iterating can enable more bundles?
1398     SpillPlacer->iterate();
1399   }
1400   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1401   return true;
1402 }
1403 
1404 /// calcCompactRegion - Compute the set of edge bundles that should be live
1405 /// when splitting the current live range into compact regions.  Compact
1406 /// regions can be computed without looking at interference.  They are the
1407 /// regions formed by removing all the live-through blocks from the live range.
1408 ///
1409 /// Returns false if the current live range is already compact, or if the
1410 /// compact regions would form single block regions anyway.
calcCompactRegion(GlobalSplitCandidate & Cand)1411 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1412   // Without any through blocks, the live range is already compact.
1413   if (!SA->getNumThroughBlocks())
1414     return false;
1415 
1416   // Compact regions don't correspond to any physreg.
1417   Cand.reset(IntfCache, MCRegister::NoRegister);
1418 
1419   LLVM_DEBUG(dbgs() << "Compact region bundles");
1420 
1421   // Use the spill placer to determine the live bundles. GrowRegion pretends
1422   // that all the through blocks have interference when PhysReg is unset.
1423   SpillPlacer->prepare(Cand.LiveBundles);
1424 
1425   // The static split cost will be zero since Cand.Intf reports no interference.
1426   BlockFrequency Cost;
1427   if (!addSplitConstraints(Cand.Intf, Cost)) {
1428     LLVM_DEBUG(dbgs() << ", none.\n");
1429     return false;
1430   }
1431 
1432   if (!growRegion(Cand)) {
1433     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1434     return false;
1435   }
1436 
1437   SpillPlacer->finish();
1438 
1439   if (!Cand.LiveBundles.any()) {
1440     LLVM_DEBUG(dbgs() << ", none.\n");
1441     return false;
1442   }
1443 
1444   LLVM_DEBUG({
1445     for (int I : Cand.LiveBundles.set_bits())
1446       dbgs() << " EB#" << I;
1447     dbgs() << ".\n";
1448   });
1449   return true;
1450 }
1451 
1452 /// calcSpillCost - Compute how expensive it would be to split the live range in
1453 /// SA around all use blocks instead of forming bundle regions.
calcSpillCost()1454 BlockFrequency RAGreedy::calcSpillCost() {
1455   BlockFrequency Cost = 0;
1456   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1457   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1458     unsigned Number = BI.MBB->getNumber();
1459     // We normally only need one spill instruction - a load or a store.
1460     Cost += SpillPlacer->getBlockFrequency(Number);
1461 
1462     // Unless the value is redefined in the block.
1463     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1464       Cost += SpillPlacer->getBlockFrequency(Number);
1465   }
1466   return Cost;
1467 }
1468 
1469 /// Check if splitting Evictee will create a local split interval in
1470 /// basic block number BBNumber that may cause a bad eviction chain. This is
1471 /// intended to prevent bad eviction sequences like:
1472 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1473 /// movl	%ecx, %ebp
1474 /// movl	%ebx, %ecx
1475 /// movl	%edi, %ebx
1476 /// movl	%edx, %edi
1477 /// cltd
1478 /// idivl	%esi
1479 /// movl	%edi, %edx
1480 /// movl	%ebx, %edi
1481 /// movl	%ecx, %ebx
1482 /// movl	%ebp, %ecx
1483 /// movl	16(%esp), %ebp          # 4 - byte Reload
1484 ///
1485 /// Such sequences are created in 2 scenarios:
1486 ///
1487 /// Scenario #1:
1488 /// %0 is evicted from physreg0 by %1.
1489 /// Evictee %0 is intended for region splitting with split candidate
1490 /// physreg0 (the reg %0 was evicted from).
1491 /// Region splitting creates a local interval because of interference with the
1492 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1493 /// and "by stack" intervals and local interval created when interference
1494 /// occurs).
1495 /// One of the split intervals ends up evicting %2 from physreg1.
1496 /// Evictee %2 is intended for region splitting with split candidate
1497 /// physreg1.
1498 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1499 ///
1500 /// Scenario #2
1501 /// %0 is evicted from physreg0 by %1.
1502 /// %2 is evicted from physreg2 by %3 etc.
1503 /// Evictee %0 is intended for region splitting with split candidate
1504 /// physreg1.
1505 /// Region splitting creates a local interval because of interference with the
1506 /// evictor %1.
1507 /// One of the split intervals ends up evicting back original evictor %1
1508 /// from physreg0 (the reg %0 was evicted from).
1509 /// Another evictee %2 is intended for region splitting with split candidate
1510 /// physreg1.
1511 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1512 ///
1513 /// \param Evictee  The register considered to be split.
1514 /// \param Cand     The split candidate that determines the physical register
1515 ///                 we are splitting for and the interferences.
1516 /// \param BBNumber The number of a BB for which the region split process will
1517 ///                 create a local split interval.
1518 /// \param Order    The physical registers that may get evicted by a split
1519 ///                 artifact of Evictee.
1520 /// \return True if splitting Evictee may cause a bad eviction chain, false
1521 /// otherwise.
splitCanCauseEvictionChain(Register Evictee,GlobalSplitCandidate & Cand,unsigned BBNumber,const AllocationOrder & Order)1522 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
1523                                           GlobalSplitCandidate &Cand,
1524                                           unsigned BBNumber,
1525                                           const AllocationOrder &Order) {
1526   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1527   unsigned Evictor = VregEvictorInfo.first;
1528   MCRegister PhysReg = VregEvictorInfo.second;
1529 
1530   // No actual evictor.
1531   if (!Evictor || !PhysReg)
1532     return false;
1533 
1534   float MaxWeight = 0;
1535   MCRegister FutureEvictedPhysReg =
1536       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1537                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1538 
1539   // The bad eviction chain occurs when either the split candidate is the
1540   // evicting reg or one of the split artifact will evict the evicting reg.
1541   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1542     return false;
1543 
1544   Cand.Intf.moveToBlock(BBNumber);
1545 
1546   // Check to see if the Evictor contains interference (with Evictee) in the
1547   // given BB. If so, this interference caused the eviction of Evictee from
1548   // PhysReg. This suggest that we will create a local interval during the
1549   // region split to avoid this interference This local interval may cause a bad
1550   // eviction chain.
1551   if (!LIS->hasInterval(Evictor))
1552     return false;
1553   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1554   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1555     return false;
1556 
1557   // Now, check to see if the local interval we will create is going to be
1558   // expensive enough to evict somebody If so, this may cause a bad eviction
1559   // chain.
1560   float splitArtifactWeight =
1561       VRAI->futureWeight(LIS->getInterval(Evictee),
1562                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1563   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1564     return false;
1565 
1566   return true;
1567 }
1568 
1569 /// Check if splitting VirtRegToSplit will create a local split interval
1570 /// in basic block number BBNumber that may cause a spill.
1571 ///
1572 /// \param VirtRegToSplit The register considered to be split.
1573 /// \param Cand           The split candidate that determines the physical
1574 ///                       register we are splitting for and the interferences.
1575 /// \param BBNumber       The number of a BB for which the region split process
1576 ///                       will create a local split interval.
1577 /// \param Order          The physical registers that may get evicted by a
1578 ///                       split artifact of VirtRegToSplit.
1579 /// \return True if splitting VirtRegToSplit may cause a spill, false
1580 /// otherwise.
splitCanCauseLocalSpill(unsigned VirtRegToSplit,GlobalSplitCandidate & Cand,unsigned BBNumber,const AllocationOrder & Order)1581 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1582                                        GlobalSplitCandidate &Cand,
1583                                        unsigned BBNumber,
1584                                        const AllocationOrder &Order) {
1585   Cand.Intf.moveToBlock(BBNumber);
1586 
1587   // Check if the local interval will find a non interfereing assignment.
1588   for (auto PhysReg : Order.getOrder()) {
1589     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1590                                    Cand.Intf.last(), PhysReg))
1591       return false;
1592   }
1593 
1594   // The local interval is not able to find non interferencing assignment
1595   // and not able to evict a less worthy interval, therfore, it can cause a
1596   // spill.
1597   return true;
1598 }
1599 
1600 /// calcGlobalSplitCost - Return the global split cost of following the split
1601 /// pattern in LiveBundles. This cost should be added to the local cost of the
1602 /// interference pattern in SplitConstraints.
1603 ///
calcGlobalSplitCost(GlobalSplitCandidate & Cand,const AllocationOrder & Order,bool * CanCauseEvictionChain)1604 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1605                                              const AllocationOrder &Order,
1606                                              bool *CanCauseEvictionChain) {
1607   BlockFrequency GlobalCost = 0;
1608   const BitVector &LiveBundles = Cand.LiveBundles;
1609   Register VirtRegToSplit = SA->getParent().reg();
1610   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1611   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1612     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1613     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1614     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1615     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1616     unsigned Ins = 0;
1617 
1618     Cand.Intf.moveToBlock(BC.Number);
1619     // Check wheather a local interval is going to be created during the region
1620     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1621     // is enabled.
1622     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1623         BI.LiveOut && RegIn && RegOut) {
1624 
1625       if (CanCauseEvictionChain &&
1626           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1627         // This interference causes our eviction from this assignment, we might
1628         // evict somebody else and eventually someone will spill, add that cost.
1629         // See splitCanCauseEvictionChain for detailed description of scenarios.
1630         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1631         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1632 
1633         *CanCauseEvictionChain = true;
1634 
1635       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1636                                          Order)) {
1637         // This interference causes local interval to spill, add that cost.
1638         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1639         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1640       }
1641     }
1642 
1643     if (BI.LiveIn)
1644       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1645     if (BI.LiveOut)
1646       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1647     while (Ins--)
1648       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1649   }
1650 
1651   for (unsigned Number : Cand.ActiveBlocks) {
1652     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1653     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1654     if (!RegIn && !RegOut)
1655       continue;
1656     if (RegIn && RegOut) {
1657       // We need double spill code if this block has interference.
1658       Cand.Intf.moveToBlock(Number);
1659       if (Cand.Intf.hasInterference()) {
1660         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1661         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1662 
1663         // Check wheather a local interval is going to be created during the
1664         // region split.
1665         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1666             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1667           // This interference cause our eviction from this assignment, we might
1668           // evict somebody else, add that cost.
1669           // See splitCanCauseEvictionChain for detailed description of
1670           // scenarios.
1671           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1672           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1673 
1674           *CanCauseEvictionChain = true;
1675         }
1676       }
1677       continue;
1678     }
1679     // live-in / stack-out or stack-in live-out.
1680     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1681   }
1682   return GlobalCost;
1683 }
1684 
1685 /// splitAroundRegion - Split the current live range around the regions
1686 /// determined by BundleCand and GlobalCand.
1687 ///
1688 /// Before calling this function, GlobalCand and BundleCand must be initialized
1689 /// so each bundle is assigned to a valid candidate, or NoCand for the
1690 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1691 /// objects must be initialized for the current live range, and intervals
1692 /// created for the used candidates.
1693 ///
1694 /// @param LREdit    The LiveRangeEdit object handling the current split.
1695 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1696 ///                  must appear in this list.
splitAroundRegion(LiveRangeEdit & LREdit,ArrayRef<unsigned> UsedCands)1697 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1698                                  ArrayRef<unsigned> UsedCands) {
1699   // These are the intervals created for new global ranges. We may create more
1700   // intervals for local ranges.
1701   const unsigned NumGlobalIntvs = LREdit.size();
1702   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1703                     << " globals.\n");
1704   assert(NumGlobalIntvs && "No global intervals configured");
1705 
1706   // Isolate even single instructions when dealing with a proper sub-class.
1707   // That guarantees register class inflation for the stack interval because it
1708   // is all copies.
1709   Register Reg = SA->getParent().reg();
1710   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1711 
1712   // First handle all the blocks with uses.
1713   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1714   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1715     unsigned Number = BI.MBB->getNumber();
1716     unsigned IntvIn = 0, IntvOut = 0;
1717     SlotIndex IntfIn, IntfOut;
1718     if (BI.LiveIn) {
1719       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1720       if (CandIn != NoCand) {
1721         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1722         IntvIn = Cand.IntvIdx;
1723         Cand.Intf.moveToBlock(Number);
1724         IntfIn = Cand.Intf.first();
1725       }
1726     }
1727     if (BI.LiveOut) {
1728       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1729       if (CandOut != NoCand) {
1730         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1731         IntvOut = Cand.IntvIdx;
1732         Cand.Intf.moveToBlock(Number);
1733         IntfOut = Cand.Intf.last();
1734       }
1735     }
1736 
1737     // Create separate intervals for isolated blocks with multiple uses.
1738     if (!IntvIn && !IntvOut) {
1739       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1740       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1741         SE->splitSingleBlock(BI);
1742       continue;
1743     }
1744 
1745     if (IntvIn && IntvOut)
1746       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1747     else if (IntvIn)
1748       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1749     else
1750       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1751   }
1752 
1753   // Handle live-through blocks. The relevant live-through blocks are stored in
1754   // the ActiveBlocks list with each candidate. We need to filter out
1755   // duplicates.
1756   BitVector Todo = SA->getThroughBlocks();
1757   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1758     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1759     for (unsigned Number : Blocks) {
1760       if (!Todo.test(Number))
1761         continue;
1762       Todo.reset(Number);
1763 
1764       unsigned IntvIn = 0, IntvOut = 0;
1765       SlotIndex IntfIn, IntfOut;
1766 
1767       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1768       if (CandIn != NoCand) {
1769         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1770         IntvIn = Cand.IntvIdx;
1771         Cand.Intf.moveToBlock(Number);
1772         IntfIn = Cand.Intf.first();
1773       }
1774 
1775       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1776       if (CandOut != NoCand) {
1777         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1778         IntvOut = Cand.IntvIdx;
1779         Cand.Intf.moveToBlock(Number);
1780         IntfOut = Cand.Intf.last();
1781       }
1782       if (!IntvIn && !IntvOut)
1783         continue;
1784       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1785     }
1786   }
1787 
1788   ++NumGlobalSplits;
1789 
1790   SmallVector<unsigned, 8> IntvMap;
1791   SE->finish(&IntvMap);
1792   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1793 
1794   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1795   unsigned OrigBlocks = SA->getNumLiveBlocks();
1796 
1797   // Sort out the new intervals created by splitting. We get four kinds:
1798   // - Remainder intervals should not be split again.
1799   // - Candidate intervals can be assigned to Cand.PhysReg.
1800   // - Block-local splits are candidates for local splitting.
1801   // - DCE leftovers should go back on the queue.
1802   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1803     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1804 
1805     // Ignore old intervals from DCE.
1806     if (getStage(Reg) != RS_New)
1807       continue;
1808 
1809     // Remainder interval. Don't try splitting again, spill if it doesn't
1810     // allocate.
1811     if (IntvMap[I] == 0) {
1812       setStage(Reg, RS_Spill);
1813       continue;
1814     }
1815 
1816     // Global intervals. Allow repeated splitting as long as the number of live
1817     // blocks is strictly decreasing.
1818     if (IntvMap[I] < NumGlobalIntvs) {
1819       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1820         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1821                           << " blocks as original.\n");
1822         // Don't allow repeated splitting as a safe guard against looping.
1823         setStage(Reg, RS_Split2);
1824       }
1825       continue;
1826     }
1827 
1828     // Other intervals are treated as new. This includes local intervals created
1829     // for blocks with multiple uses, and anything created by DCE.
1830   }
1831 
1832   if (VerifyEnabled)
1833     MF->verify(this, "After splitting live range around region");
1834 }
1835 
tryRegionSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs)1836 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1837                                     AllocationOrder &Order,
1838                                     SmallVectorImpl<Register> &NewVRegs) {
1839   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1840     return MCRegister::NoRegister;
1841   unsigned NumCands = 0;
1842   BlockFrequency SpillCost = calcSpillCost();
1843   BlockFrequency BestCost;
1844 
1845   // Check if we can split this live range around a compact region.
1846   bool HasCompact = calcCompactRegion(GlobalCand.front());
1847   if (HasCompact) {
1848     // Yes, keep GlobalCand[0] as the compact region candidate.
1849     NumCands = 1;
1850     BestCost = BlockFrequency::getMaxFrequency();
1851   } else {
1852     // No benefit from the compact region, our fallback will be per-block
1853     // splitting. Make sure we find a solution that is cheaper than spilling.
1854     BestCost = SpillCost;
1855     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1856                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1857   }
1858 
1859   bool CanCauseEvictionChain = false;
1860   unsigned BestCand =
1861       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1862                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1863 
1864   // Split candidates with compact regions can cause a bad eviction sequence.
1865   // See splitCanCauseEvictionChain for detailed description of scenarios.
1866   // To avoid it, we need to comapre the cost with the spill cost and not the
1867   // current max frequency.
1868   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1869     CanCauseEvictionChain) {
1870     return MCRegister::NoRegister;
1871   }
1872 
1873   // No solutions found, fall back to single block splitting.
1874   if (!HasCompact && BestCand == NoCand)
1875     return MCRegister::NoRegister;
1876 
1877   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1878 }
1879 
calculateRegionSplitCost(LiveInterval & VirtReg,AllocationOrder & Order,BlockFrequency & BestCost,unsigned & NumCands,bool IgnoreCSR,bool * CanCauseEvictionChain)1880 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1881                                             AllocationOrder &Order,
1882                                             BlockFrequency &BestCost,
1883                                             unsigned &NumCands, bool IgnoreCSR,
1884                                             bool *CanCauseEvictionChain) {
1885   unsigned BestCand = NoCand;
1886   for (MCPhysReg PhysReg : Order) {
1887     assert(PhysReg);
1888     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1889       continue;
1890 
1891     // Discard bad candidates before we run out of interference cache cursors.
1892     // This will only affect register classes with a lot of registers (>32).
1893     if (NumCands == IntfCache.getMaxCursors()) {
1894       unsigned WorstCount = ~0u;
1895       unsigned Worst = 0;
1896       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1897         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1898           continue;
1899         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1900         if (Count < WorstCount) {
1901           Worst = CandIndex;
1902           WorstCount = Count;
1903         }
1904       }
1905       --NumCands;
1906       GlobalCand[Worst] = GlobalCand[NumCands];
1907       if (BestCand == NumCands)
1908         BestCand = Worst;
1909     }
1910 
1911     if (GlobalCand.size() <= NumCands)
1912       GlobalCand.resize(NumCands+1);
1913     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1914     Cand.reset(IntfCache, PhysReg);
1915 
1916     SpillPlacer->prepare(Cand.LiveBundles);
1917     BlockFrequency Cost;
1918     if (!addSplitConstraints(Cand.Intf, Cost)) {
1919       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1920       continue;
1921     }
1922     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1923                MBFI->printBlockFreq(dbgs(), Cost));
1924     if (Cost >= BestCost) {
1925       LLVM_DEBUG({
1926         if (BestCand == NoCand)
1927           dbgs() << " worse than no bundles\n";
1928         else
1929           dbgs() << " worse than "
1930                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1931       });
1932       continue;
1933     }
1934     if (!growRegion(Cand)) {
1935       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1936       continue;
1937     }
1938 
1939     SpillPlacer->finish();
1940 
1941     // No live bundles, defer to splitSingleBlocks().
1942     if (!Cand.LiveBundles.any()) {
1943       LLVM_DEBUG(dbgs() << " no bundles.\n");
1944       continue;
1945     }
1946 
1947     bool HasEvictionChain = false;
1948     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1949     LLVM_DEBUG({
1950       dbgs() << ", total = ";
1951       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1952       for (int I : Cand.LiveBundles.set_bits())
1953         dbgs() << " EB#" << I;
1954       dbgs() << ".\n";
1955     });
1956     if (Cost < BestCost) {
1957       BestCand = NumCands;
1958       BestCost = Cost;
1959       // See splitCanCauseEvictionChain for detailed description of bad
1960       // eviction chain scenarios.
1961       if (CanCauseEvictionChain)
1962         *CanCauseEvictionChain = HasEvictionChain;
1963     }
1964     ++NumCands;
1965   }
1966 
1967   if (CanCauseEvictionChain && BestCand != NoCand) {
1968     // See splitCanCauseEvictionChain for detailed description of bad
1969     // eviction chain scenarios.
1970     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1971                       << printReg(VirtReg.reg(), TRI) << "  may ");
1972     if (!(*CanCauseEvictionChain))
1973       LLVM_DEBUG(dbgs() << "not ");
1974     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1975   }
1976 
1977   return BestCand;
1978 }
1979 
doRegionSplit(LiveInterval & VirtReg,unsigned BestCand,bool HasCompact,SmallVectorImpl<Register> & NewVRegs)1980 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1981                                  bool HasCompact,
1982                                  SmallVectorImpl<Register> &NewVRegs) {
1983   SmallVector<unsigned, 8> UsedCands;
1984   // Prepare split editor.
1985   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1986   SE->reset(LREdit, SplitSpillMode);
1987 
1988   // Assign all edge bundles to the preferred candidate, or NoCand.
1989   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1990 
1991   // Assign bundles for the best candidate region.
1992   if (BestCand != NoCand) {
1993     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1994     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1995       UsedCands.push_back(BestCand);
1996       Cand.IntvIdx = SE->openIntv();
1997       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1998                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1999       (void)B;
2000     }
2001   }
2002 
2003   // Assign bundles for the compact region.
2004   if (HasCompact) {
2005     GlobalSplitCandidate &Cand = GlobalCand.front();
2006     assert(!Cand.PhysReg && "Compact region has no physreg");
2007     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
2008       UsedCands.push_back(0);
2009       Cand.IntvIdx = SE->openIntv();
2010       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2011                         << " bundles, intv " << Cand.IntvIdx << ".\n");
2012       (void)B;
2013     }
2014   }
2015 
2016   splitAroundRegion(LREdit, UsedCands);
2017   return 0;
2018 }
2019 
2020 //===----------------------------------------------------------------------===//
2021 //                            Per-Block Splitting
2022 //===----------------------------------------------------------------------===//
2023 
2024 /// tryBlockSplit - Split a global live range around every block with uses. This
2025 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2026 /// they don't allocate.
tryBlockSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs)2027 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2028                                  SmallVectorImpl<Register> &NewVRegs) {
2029   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2030   Register Reg = VirtReg.reg();
2031   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2032   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2033   SE->reset(LREdit, SplitSpillMode);
2034   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2035   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2036     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2037       SE->splitSingleBlock(BI);
2038   }
2039   // No blocks were split.
2040   if (LREdit.empty())
2041     return 0;
2042 
2043   // We did split for some blocks.
2044   SmallVector<unsigned, 8> IntvMap;
2045   SE->finish(&IntvMap);
2046 
2047   // Tell LiveDebugVariables about the new ranges.
2048   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2049 
2050   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2051 
2052   // Sort out the new intervals created by splitting. The remainder interval
2053   // goes straight to spilling, the new local ranges get to stay RS_New.
2054   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2055     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2056     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2057       setStage(LI, RS_Spill);
2058   }
2059 
2060   if (VerifyEnabled)
2061     MF->verify(this, "After splitting live range around basic blocks");
2062   return 0;
2063 }
2064 
2065 //===----------------------------------------------------------------------===//
2066 //                         Per-Instruction Splitting
2067 //===----------------------------------------------------------------------===//
2068 
2069 /// Get the number of allocatable registers that match the constraints of \p Reg
2070 /// on \p MI and that are also in \p SuperRC.
getNumAllocatableRegsForConstraints(const MachineInstr * MI,Register Reg,const TargetRegisterClass * SuperRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,const RegisterClassInfo & RCI)2071 static unsigned getNumAllocatableRegsForConstraints(
2072     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
2073     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2074     const RegisterClassInfo &RCI) {
2075   assert(SuperRC && "Invalid register class");
2076 
2077   const TargetRegisterClass *ConstrainedRC =
2078       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2079                                              /* ExploreBundle */ true);
2080   if (!ConstrainedRC)
2081     return 0;
2082   return RCI.getNumAllocatableRegs(ConstrainedRC);
2083 }
2084 
2085 /// tryInstructionSplit - Split a live range around individual instructions.
2086 /// This is normally not worthwhile since the spiller is doing essentially the
2087 /// same thing. However, when the live range is in a constrained register
2088 /// class, it may help to insert copies such that parts of the live range can
2089 /// be moved to a larger register class.
2090 ///
2091 /// This is similar to spilling to a larger register class.
2092 unsigned
tryInstructionSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs)2093 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2094                               SmallVectorImpl<Register> &NewVRegs) {
2095   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2096   // There is no point to this if there are no larger sub-classes.
2097   if (!RegClassInfo.isProperSubClass(CurRC))
2098     return 0;
2099 
2100   // Always enable split spill mode, since we're effectively spilling to a
2101   // register.
2102   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2103   SE->reset(LREdit, SplitEditor::SM_Size);
2104 
2105   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2106   if (Uses.size() <= 1)
2107     return 0;
2108 
2109   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2110                     << " individual instrs.\n");
2111 
2112   const TargetRegisterClass *SuperRC =
2113       TRI->getLargestLegalSuperClass(CurRC, *MF);
2114   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2115   // Split around every non-copy instruction if this split will relax
2116   // the constraints on the virtual register.
2117   // Otherwise, splitting just inserts uncoalescable copies that do not help
2118   // the allocation.
2119   for (const auto &Use : Uses) {
2120     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2121       if (MI->isFullCopy() ||
2122           SuperRCNumAllocatableRegs ==
2123               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2124                                                   TII, TRI, RCI)) {
2125         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2126         continue;
2127       }
2128     SE->openIntv();
2129     SlotIndex SegStart = SE->enterIntvBefore(Use);
2130     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2131     SE->useIntv(SegStart, SegStop);
2132   }
2133 
2134   if (LREdit.empty()) {
2135     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2136     return 0;
2137   }
2138 
2139   SmallVector<unsigned, 8> IntvMap;
2140   SE->finish(&IntvMap);
2141   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2142   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2143 
2144   // Assign all new registers to RS_Spill. This was the last chance.
2145   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2146   return 0;
2147 }
2148 
2149 //===----------------------------------------------------------------------===//
2150 //                             Local Splitting
2151 //===----------------------------------------------------------------------===//
2152 
2153 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2154 /// in order to use PhysReg between two entries in SA->UseSlots.
2155 ///
2156 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2157 ///
calcGapWeights(MCRegister PhysReg,SmallVectorImpl<float> & GapWeight)2158 void RAGreedy::calcGapWeights(MCRegister PhysReg,
2159                               SmallVectorImpl<float> &GapWeight) {
2160   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2161   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2162   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2163   const unsigned NumGaps = Uses.size()-1;
2164 
2165   // Start and end points for the interference check.
2166   SlotIndex StartIdx =
2167     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2168   SlotIndex StopIdx =
2169     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2170 
2171   GapWeight.assign(NumGaps, 0.0f);
2172 
2173   // Add interference from each overlapping register.
2174   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2175     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2176           .checkInterference())
2177       continue;
2178 
2179     // We know that VirtReg is a continuous interval from FirstInstr to
2180     // LastInstr, so we don't need InterferenceQuery.
2181     //
2182     // Interference that overlaps an instruction is counted in both gaps
2183     // surrounding the instruction. The exception is interference before
2184     // StartIdx and after StopIdx.
2185     //
2186     LiveIntervalUnion::SegmentIter IntI =
2187       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2188     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2189       // Skip the gaps before IntI.
2190       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2191         if (++Gap == NumGaps)
2192           break;
2193       if (Gap == NumGaps)
2194         break;
2195 
2196       // Update the gaps covered by IntI.
2197       const float weight = IntI.value()->weight();
2198       for (; Gap != NumGaps; ++Gap) {
2199         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2200         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2201           break;
2202       }
2203       if (Gap == NumGaps)
2204         break;
2205     }
2206   }
2207 
2208   // Add fixed interference.
2209   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2210     const LiveRange &LR = LIS->getRegUnit(*Units);
2211     LiveRange::const_iterator I = LR.find(StartIdx);
2212     LiveRange::const_iterator E = LR.end();
2213 
2214     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2215     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2216       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2217         if (++Gap == NumGaps)
2218           break;
2219       if (Gap == NumGaps)
2220         break;
2221 
2222       for (; Gap != NumGaps; ++Gap) {
2223         GapWeight[Gap] = huge_valf;
2224         if (Uses[Gap+1].getBaseIndex() >= I->end)
2225           break;
2226       }
2227       if (Gap == NumGaps)
2228         break;
2229     }
2230   }
2231 }
2232 
2233 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2234 /// basic block.
2235 ///
tryLocalSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs)2236 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2237                                  SmallVectorImpl<Register> &NewVRegs) {
2238   // TODO: the function currently only handles a single UseBlock; it should be
2239   // possible to generalize.
2240   if (SA->getUseBlocks().size() != 1)
2241     return 0;
2242 
2243   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2244 
2245   // Note that it is possible to have an interval that is live-in or live-out
2246   // while only covering a single block - A phi-def can use undef values from
2247   // predecessors, and the block could be a single-block loop.
2248   // We don't bother doing anything clever about such a case, we simply assume
2249   // that the interval is continuous from FirstInstr to LastInstr. We should
2250   // make sure that we don't do anything illegal to such an interval, though.
2251 
2252   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2253   if (Uses.size() <= 2)
2254     return 0;
2255   const unsigned NumGaps = Uses.size()-1;
2256 
2257   LLVM_DEBUG({
2258     dbgs() << "tryLocalSplit: ";
2259     for (const auto &Use : Uses)
2260       dbgs() << ' ' << Use;
2261     dbgs() << '\n';
2262   });
2263 
2264   // If VirtReg is live across any register mask operands, compute a list of
2265   // gaps with register masks.
2266   SmallVector<unsigned, 8> RegMaskGaps;
2267   if (Matrix->checkRegMaskInterference(VirtReg)) {
2268     // Get regmask slots for the whole block.
2269     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2270     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2271     // Constrain to VirtReg's live range.
2272     unsigned RI =
2273         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2274     unsigned RE = RMS.size();
2275     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2276       // Look for Uses[I] <= RMS <= Uses[I + 1].
2277       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2278       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2279         continue;
2280       // Skip a regmask on the same instruction as the last use. It doesn't
2281       // overlap the live range.
2282       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2283         break;
2284       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2285                         << Uses[I + 1]);
2286       RegMaskGaps.push_back(I);
2287       // Advance ri to the next gap. A regmask on one of the uses counts in
2288       // both gaps.
2289       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2290         ++RI;
2291     }
2292     LLVM_DEBUG(dbgs() << '\n');
2293   }
2294 
2295   // Since we allow local split results to be split again, there is a risk of
2296   // creating infinite loops. It is tempting to require that the new live
2297   // ranges have less instructions than the original. That would guarantee
2298   // convergence, but it is too strict. A live range with 3 instructions can be
2299   // split 2+3 (including the COPY), and we want to allow that.
2300   //
2301   // Instead we use these rules:
2302   //
2303   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2304   //    noop split, of course).
2305   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2306   //    the new ranges must have fewer instructions than before the split.
2307   // 3. New ranges with the same number of instructions are marked RS_Split2,
2308   //    smaller ranges are marked RS_New.
2309   //
2310   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2311   // excessive splitting and infinite loops.
2312   //
2313   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2314 
2315   // Best split candidate.
2316   unsigned BestBefore = NumGaps;
2317   unsigned BestAfter = 0;
2318   float BestDiff = 0;
2319 
2320   const float blockFreq =
2321     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2322     (1.0f / MBFI->getEntryFreq());
2323   SmallVector<float, 8> GapWeight;
2324 
2325   for (MCPhysReg PhysReg : Order) {
2326     assert(PhysReg);
2327     // Keep track of the largest spill weight that would need to be evicted in
2328     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2329     calcGapWeights(PhysReg, GapWeight);
2330 
2331     // Remove any gaps with regmask clobbers.
2332     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2333       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2334         GapWeight[RegMaskGaps[I]] = huge_valf;
2335 
2336     // Try to find the best sequence of gaps to close.
2337     // The new spill weight must be larger than any gap interference.
2338 
2339     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2340     unsigned SplitBefore = 0, SplitAfter = 1;
2341 
2342     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2343     // It is the spill weight that needs to be evicted.
2344     float MaxGap = GapWeight[0];
2345 
2346     while (true) {
2347       // Live before/after split?
2348       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2349       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2350 
2351       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2352                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2353 
2354       // Stop before the interval gets so big we wouldn't be making progress.
2355       if (!LiveBefore && !LiveAfter) {
2356         LLVM_DEBUG(dbgs() << " all\n");
2357         break;
2358       }
2359       // Should the interval be extended or shrunk?
2360       bool Shrink = true;
2361 
2362       // How many gaps would the new range have?
2363       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2364 
2365       // Legally, without causing looping?
2366       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2367 
2368       if (Legal && MaxGap < huge_valf) {
2369         // Estimate the new spill weight. Each instruction reads or writes the
2370         // register. Conservatively assume there are no read-modify-write
2371         // instructions.
2372         //
2373         // Try to guess the size of the new interval.
2374         const float EstWeight = normalizeSpillWeight(
2375             blockFreq * (NewGaps + 1),
2376             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2377                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2378             1);
2379         // Would this split be possible to allocate?
2380         // Never allocate all gaps, we wouldn't be making progress.
2381         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2382         if (EstWeight * Hysteresis >= MaxGap) {
2383           Shrink = false;
2384           float Diff = EstWeight - MaxGap;
2385           if (Diff > BestDiff) {
2386             LLVM_DEBUG(dbgs() << " (best)");
2387             BestDiff = Hysteresis * Diff;
2388             BestBefore = SplitBefore;
2389             BestAfter = SplitAfter;
2390           }
2391         }
2392       }
2393 
2394       // Try to shrink.
2395       if (Shrink) {
2396         if (++SplitBefore < SplitAfter) {
2397           LLVM_DEBUG(dbgs() << " shrink\n");
2398           // Recompute the max when necessary.
2399           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2400             MaxGap = GapWeight[SplitBefore];
2401             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2402               MaxGap = std::max(MaxGap, GapWeight[I]);
2403           }
2404           continue;
2405         }
2406         MaxGap = 0;
2407       }
2408 
2409       // Try to extend the interval.
2410       if (SplitAfter >= NumGaps) {
2411         LLVM_DEBUG(dbgs() << " end\n");
2412         break;
2413       }
2414 
2415       LLVM_DEBUG(dbgs() << " extend\n");
2416       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2417     }
2418   }
2419 
2420   // Didn't find any candidates?
2421   if (BestBefore == NumGaps)
2422     return 0;
2423 
2424   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2425                     << Uses[BestAfter] << ", " << BestDiff << ", "
2426                     << (BestAfter - BestBefore + 1) << " instrs\n");
2427 
2428   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2429   SE->reset(LREdit);
2430 
2431   SE->openIntv();
2432   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2433   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2434   SE->useIntv(SegStart, SegStop);
2435   SmallVector<unsigned, 8> IntvMap;
2436   SE->finish(&IntvMap);
2437   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2438 
2439   // If the new range has the same number of instructions as before, mark it as
2440   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2441   // leave the new intervals as RS_New so they can compete.
2442   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2443   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2444   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2445   if (NewGaps >= NumGaps) {
2446     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2447     assert(!ProgressRequired && "Didn't make progress when it was required.");
2448     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2449       if (IntvMap[I] == 1) {
2450         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2451         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2452       }
2453     LLVM_DEBUG(dbgs() << '\n');
2454   }
2455   ++NumLocalSplits;
2456 
2457   return 0;
2458 }
2459 
2460 //===----------------------------------------------------------------------===//
2461 //                          Live Range Splitting
2462 //===----------------------------------------------------------------------===//
2463 
2464 /// trySplit - Try to split VirtReg or one of its interferences, making it
2465 /// assignable.
2466 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
trySplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs,const SmallVirtRegSet & FixedRegisters)2467 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2468                             SmallVectorImpl<Register> &NewVRegs,
2469                             const SmallVirtRegSet &FixedRegisters) {
2470   // Ranges must be Split2 or less.
2471   if (getStage(VirtReg) >= RS_Spill)
2472     return 0;
2473 
2474   // Local intervals are handled separately.
2475   if (LIS->intervalIsInOneMBB(VirtReg)) {
2476     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2477                        TimerGroupDescription, TimePassesIsEnabled);
2478     SA->analyze(&VirtReg);
2479     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2480     if (PhysReg || !NewVRegs.empty())
2481       return PhysReg;
2482     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2483   }
2484 
2485   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2486                      TimerGroupDescription, TimePassesIsEnabled);
2487 
2488   SA->analyze(&VirtReg);
2489 
2490   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2491   // coalescer. That may cause the range to become allocatable which means that
2492   // tryRegionSplit won't be making progress. This check should be replaced with
2493   // an assertion when the coalescer is fixed.
2494   if (SA->didRepairRange()) {
2495     // VirtReg has changed, so all cached queries are invalid.
2496     Matrix->invalidateVirtRegs();
2497     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2498       return PhysReg;
2499   }
2500 
2501   // First try to split around a region spanning multiple blocks. RS_Split2
2502   // ranges already made dubious progress with region splitting, so they go
2503   // straight to single block splitting.
2504   if (getStage(VirtReg) < RS_Split2) {
2505     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2506     if (PhysReg || !NewVRegs.empty())
2507       return PhysReg;
2508   }
2509 
2510   // Then isolate blocks.
2511   return tryBlockSplit(VirtReg, Order, NewVRegs);
2512 }
2513 
2514 //===----------------------------------------------------------------------===//
2515 //                          Last Chance Recoloring
2516 //===----------------------------------------------------------------------===//
2517 
2518 /// Return true if \p reg has any tied def operand.
hasTiedDef(MachineRegisterInfo * MRI,unsigned reg)2519 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2520   for (const MachineOperand &MO : MRI->def_operands(reg))
2521     if (MO.isTied())
2522       return true;
2523 
2524   return false;
2525 }
2526 
2527 /// mayRecolorAllInterferences - Check if the virtual registers that
2528 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2529 /// recolored to free \p PhysReg.
2530 /// When true is returned, \p RecoloringCandidates has been augmented with all
2531 /// the live intervals that need to be recolored in order to free \p PhysReg
2532 /// for \p VirtReg.
2533 /// \p FixedRegisters contains all the virtual registers that cannot be
2534 /// recolored.
mayRecolorAllInterferences(MCRegister PhysReg,LiveInterval & VirtReg,SmallLISet & RecoloringCandidates,const SmallVirtRegSet & FixedRegisters)2535 bool RAGreedy::mayRecolorAllInterferences(
2536     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
2537     const SmallVirtRegSet &FixedRegisters) {
2538   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2539 
2540   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2541     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2542     // If there is LastChanceRecoloringMaxInterference or more interferences,
2543     // chances are one would not be recolorable.
2544     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2545         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2546       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2547       CutOffInfo |= CO_Interf;
2548       return false;
2549     }
2550     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2551       // If Intf is done and sit on the same register class as VirtReg,
2552       // it would not be recolorable as it is in the same state as VirtReg.
2553       // However, if VirtReg has tied defs and Intf doesn't, then
2554       // there is still a point in examining if it can be recolorable.
2555       if (((getStage(*Intf) == RS_Done &&
2556             MRI->getRegClass(Intf->reg()) == CurRC) &&
2557            !(hasTiedDef(MRI, VirtReg.reg()) &&
2558              !hasTiedDef(MRI, Intf->reg()))) ||
2559           FixedRegisters.count(Intf->reg())) {
2560         LLVM_DEBUG(
2561             dbgs() << "Early abort: the interference is not recolorable.\n");
2562         return false;
2563       }
2564       RecoloringCandidates.insert(Intf);
2565     }
2566   }
2567   return true;
2568 }
2569 
2570 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2571 /// its interferences.
2572 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2573 /// virtual register that was using it. The recoloring process may recursively
2574 /// use the last chance recoloring. Therefore, when a virtual register has been
2575 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2576 /// be last-chance-recolored again during this recoloring "session".
2577 /// E.g.,
2578 /// Let
2579 /// vA can use {R1, R2    }
2580 /// vB can use {    R2, R3}
2581 /// vC can use {R1        }
2582 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2583 /// instance) and they all interfere.
2584 ///
2585 /// vA is assigned R1
2586 /// vB is assigned R2
2587 /// vC tries to evict vA but vA is already done.
2588 /// Regular register allocation fails.
2589 ///
2590 /// Last chance recoloring kicks in:
2591 /// vC does as if vA was evicted => vC uses R1.
2592 /// vC is marked as fixed.
2593 /// vA needs to find a color.
2594 /// None are available.
2595 /// vA cannot evict vC: vC is a fixed virtual register now.
2596 /// vA does as if vB was evicted => vA uses R2.
2597 /// vB needs to find a color.
2598 /// R3 is available.
2599 /// Recoloring => vC = R1, vA = R2, vB = R3
2600 ///
2601 /// \p Order defines the preferred allocation order for \p VirtReg.
2602 /// \p NewRegs will contain any new virtual register that have been created
2603 /// (split, spill) during the process and that must be assigned.
2604 /// \p FixedRegisters contains all the virtual registers that cannot be
2605 /// recolored.
2606 /// \p Depth gives the current depth of the last chance recoloring.
2607 /// \return a physical register that can be used for VirtReg or ~0u if none
2608 /// exists.
tryLastChanceRecoloring(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs,SmallVirtRegSet & FixedRegisters,unsigned Depth)2609 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2610                                            AllocationOrder &Order,
2611                                            SmallVectorImpl<Register> &NewVRegs,
2612                                            SmallVirtRegSet &FixedRegisters,
2613                                            unsigned Depth) {
2614   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2615     return ~0u;
2616 
2617   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2618   // Ranges must be Done.
2619   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2620          "Last chance recoloring should really be last chance");
2621   // Set the max depth to LastChanceRecoloringMaxDepth.
2622   // We may want to reconsider that if we end up with a too large search space
2623   // for target with hundreds of registers.
2624   // Indeed, in that case we may want to cut the search space earlier.
2625   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2626     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2627     CutOffInfo |= CO_Depth;
2628     return ~0u;
2629   }
2630 
2631   // Set of Live intervals that will need to be recolored.
2632   SmallLISet RecoloringCandidates;
2633   // Record the original mapping virtual register to physical register in case
2634   // the recoloring fails.
2635   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2636   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2637   // this recoloring "session".
2638   assert(!FixedRegisters.count(VirtReg.reg()));
2639   FixedRegisters.insert(VirtReg.reg());
2640   SmallVector<Register, 4> CurrentNewVRegs;
2641 
2642   for (MCRegister PhysReg : Order) {
2643     assert(PhysReg.isValid());
2644     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2645                       << printReg(PhysReg, TRI) << '\n');
2646     RecoloringCandidates.clear();
2647     VirtRegToPhysReg.clear();
2648     CurrentNewVRegs.clear();
2649 
2650     // It is only possible to recolor virtual register interference.
2651     if (Matrix->checkInterference(VirtReg, PhysReg) >
2652         LiveRegMatrix::IK_VirtReg) {
2653       LLVM_DEBUG(
2654           dbgs() << "Some interferences are not with virtual registers.\n");
2655 
2656       continue;
2657     }
2658 
2659     // Early give up on this PhysReg if it is obvious we cannot recolor all
2660     // the interferences.
2661     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2662                                     FixedRegisters)) {
2663       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2664       continue;
2665     }
2666 
2667     // RecoloringCandidates contains all the virtual registers that interfer
2668     // with VirtReg on PhysReg (or one of its aliases).
2669     // Enqueue them for recoloring and perform the actual recoloring.
2670     PQueue RecoloringQueue;
2671     for (LiveInterval *RC : RecoloringCandidates) {
2672       Register ItVirtReg = RC->reg();
2673       enqueue(RecoloringQueue, RC);
2674       assert(VRM->hasPhys(ItVirtReg) &&
2675              "Interferences are supposed to be with allocated variables");
2676 
2677       // Record the current allocation.
2678       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2679       // unset the related struct.
2680       Matrix->unassign(*RC);
2681     }
2682 
2683     // Do as if VirtReg was assigned to PhysReg so that the underlying
2684     // recoloring has the right information about the interferes and
2685     // available colors.
2686     Matrix->assign(VirtReg, PhysReg);
2687 
2688     // Save the current recoloring state.
2689     // If we cannot recolor all the interferences, we will have to start again
2690     // at this point for the next physical register.
2691     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2692     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2693                                 FixedRegisters, Depth)) {
2694       // Push the queued vregs into the main queue.
2695       for (Register NewVReg : CurrentNewVRegs)
2696         NewVRegs.push_back(NewVReg);
2697       // Do not mess up with the global assignment process.
2698       // I.e., VirtReg must be unassigned.
2699       Matrix->unassign(VirtReg);
2700       return PhysReg;
2701     }
2702 
2703     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2704                       << printReg(PhysReg, TRI) << '\n');
2705 
2706     // The recoloring attempt failed, undo the changes.
2707     FixedRegisters = SaveFixedRegisters;
2708     Matrix->unassign(VirtReg);
2709 
2710     // For a newly created vreg which is also in RecoloringCandidates,
2711     // don't add it to NewVRegs because its physical register will be restored
2712     // below. Other vregs in CurrentNewVRegs are created by calling
2713     // selectOrSplit and should be added into NewVRegs.
2714     for (Register &R : CurrentNewVRegs) {
2715       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2716         continue;
2717       NewVRegs.push_back(R);
2718     }
2719 
2720     for (LiveInterval *RC : RecoloringCandidates) {
2721       Register ItVirtReg = RC->reg();
2722       if (VRM->hasPhys(ItVirtReg))
2723         Matrix->unassign(*RC);
2724       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2725       Matrix->assign(*RC, ItPhysReg);
2726     }
2727   }
2728 
2729   // Last chance recoloring did not worked either, give up.
2730   return ~0u;
2731 }
2732 
2733 /// tryRecoloringCandidates - Try to assign a new color to every register
2734 /// in \RecoloringQueue.
2735 /// \p NewRegs will contain any new virtual register created during the
2736 /// recoloring process.
2737 /// \p FixedRegisters[in/out] contains all the registers that have been
2738 /// recolored.
2739 /// \return true if all virtual registers in RecoloringQueue were successfully
2740 /// recolored, false otherwise.
tryRecoloringCandidates(PQueue & RecoloringQueue,SmallVectorImpl<Register> & NewVRegs,SmallVirtRegSet & FixedRegisters,unsigned Depth)2741 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2742                                        SmallVectorImpl<Register> &NewVRegs,
2743                                        SmallVirtRegSet &FixedRegisters,
2744                                        unsigned Depth) {
2745   while (!RecoloringQueue.empty()) {
2746     LiveInterval *LI = dequeue(RecoloringQueue);
2747     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2748     MCRegister PhysReg =
2749         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2750     // When splitting happens, the live-range may actually be empty.
2751     // In that case, this is okay to continue the recoloring even
2752     // if we did not find an alternative color for it. Indeed,
2753     // there will not be anything to color for LI in the end.
2754     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2755       return false;
2756 
2757     if (!PhysReg) {
2758       assert(LI->empty() && "Only empty live-range do not require a register");
2759       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2760                         << " succeeded. Empty LI.\n");
2761       continue;
2762     }
2763     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2764                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2765 
2766     Matrix->assign(*LI, PhysReg);
2767     FixedRegisters.insert(LI->reg());
2768   }
2769   return true;
2770 }
2771 
2772 //===----------------------------------------------------------------------===//
2773 //                            Main Entry Point
2774 //===----------------------------------------------------------------------===//
2775 
selectOrSplit(LiveInterval & VirtReg,SmallVectorImpl<Register> & NewVRegs)2776 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2777                                    SmallVectorImpl<Register> &NewVRegs) {
2778   CutOffInfo = CO_None;
2779   LLVMContext &Ctx = MF->getFunction().getContext();
2780   SmallVirtRegSet FixedRegisters;
2781   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2782   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2783     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2784     if (CutOffEncountered == CO_Depth)
2785       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2786                     "reached. Use -fexhaustive-register-search to skip "
2787                     "cutoffs");
2788     else if (CutOffEncountered == CO_Interf)
2789       Ctx.emitError("register allocation failed: maximum interference for "
2790                     "recoloring reached. Use -fexhaustive-register-search "
2791                     "to skip cutoffs");
2792     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2793       Ctx.emitError("register allocation failed: maximum interference and "
2794                     "depth for recoloring reached. Use "
2795                     "-fexhaustive-register-search to skip cutoffs");
2796   }
2797   return Reg;
2798 }
2799 
2800 /// Using a CSR for the first time has a cost because it causes push|pop
2801 /// to be added to prologue|epilogue. Splitting a cold section of the live
2802 /// range can have lower cost than using the CSR for the first time;
2803 /// Spilling a live range in the cold path can have lower cost than using
2804 /// the CSR for the first time. Returns the physical register if we decide
2805 /// to use the CSR; otherwise return 0.
2806 MCRegister
tryAssignCSRFirstTime(LiveInterval & VirtReg,AllocationOrder & Order,MCRegister PhysReg,uint8_t & CostPerUseLimit,SmallVectorImpl<Register> & NewVRegs)2807 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
2808                                 MCRegister PhysReg, uint8_t &CostPerUseLimit,
2809                                 SmallVectorImpl<Register> &NewVRegs) {
2810   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2811     // We choose spill over using the CSR for the first time if the spill cost
2812     // is lower than CSRCost.
2813     SA->analyze(&VirtReg);
2814     if (calcSpillCost() >= CSRCost)
2815       return PhysReg;
2816 
2817     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2818     // we will not use a callee-saved register in tryEvict.
2819     CostPerUseLimit = 1;
2820     return 0;
2821   }
2822   if (getStage(VirtReg) < RS_Split) {
2823     // We choose pre-splitting over using the CSR for the first time if
2824     // the cost of splitting is lower than CSRCost.
2825     SA->analyze(&VirtReg);
2826     unsigned NumCands = 0;
2827     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2828     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2829                                                  NumCands, true /*IgnoreCSR*/);
2830     if (BestCand == NoCand)
2831       // Use the CSR if we can't find a region split below CSRCost.
2832       return PhysReg;
2833 
2834     // Perform the actual pre-splitting.
2835     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2836     return 0;
2837   }
2838   return PhysReg;
2839 }
2840 
aboutToRemoveInterval(LiveInterval & LI)2841 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2842   // Do not keep invalid information around.
2843   SetOfBrokenHints.remove(&LI);
2844 }
2845 
initializeCSRCost()2846 void RAGreedy::initializeCSRCost() {
2847   // We use the larger one out of the command-line option and the value report
2848   // by TRI.
2849   CSRCost = BlockFrequency(
2850       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2851   if (!CSRCost.getFrequency())
2852     return;
2853 
2854   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2855   uint64_t ActualEntry = MBFI->getEntryFreq();
2856   if (!ActualEntry) {
2857     CSRCost = 0;
2858     return;
2859   }
2860   uint64_t FixedEntry = 1 << 14;
2861   if (ActualEntry < FixedEntry)
2862     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2863   else if (ActualEntry <= UINT32_MAX)
2864     // Invert the fraction and divide.
2865     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2866   else
2867     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2868     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2869 }
2870 
2871 /// Collect the hint info for \p Reg.
2872 /// The results are stored into \p Out.
2873 /// \p Out is not cleared before being populated.
collectHintInfo(Register Reg,HintsInfo & Out)2874 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2875   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2876     if (!Instr.isFullCopy())
2877       continue;
2878     // Look for the other end of the copy.
2879     Register OtherReg = Instr.getOperand(0).getReg();
2880     if (OtherReg == Reg) {
2881       OtherReg = Instr.getOperand(1).getReg();
2882       if (OtherReg == Reg)
2883         continue;
2884     }
2885     // Get the current assignment.
2886     MCRegister OtherPhysReg =
2887         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2888     // Push the collected information.
2889     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2890                            OtherPhysReg));
2891   }
2892 }
2893 
2894 /// Using the given \p List, compute the cost of the broken hints if
2895 /// \p PhysReg was used.
2896 /// \return The cost of \p List for \p PhysReg.
getBrokenHintFreq(const HintsInfo & List,MCRegister PhysReg)2897 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2898                                            MCRegister PhysReg) {
2899   BlockFrequency Cost = 0;
2900   for (const HintInfo &Info : List) {
2901     if (Info.PhysReg != PhysReg)
2902       Cost += Info.Freq;
2903   }
2904   return Cost;
2905 }
2906 
2907 /// Using the register assigned to \p VirtReg, try to recolor
2908 /// all the live ranges that are copy-related with \p VirtReg.
2909 /// The recoloring is then propagated to all the live-ranges that have
2910 /// been recolored and so on, until no more copies can be coalesced or
2911 /// it is not profitable.
2912 /// For a given live range, profitability is determined by the sum of the
2913 /// frequencies of the non-identity copies it would introduce with the old
2914 /// and new register.
tryHintRecoloring(LiveInterval & VirtReg)2915 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2916   // We have a broken hint, check if it is possible to fix it by
2917   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2918   // some register and PhysReg may be available for the other live-ranges.
2919   SmallSet<Register, 4> Visited;
2920   SmallVector<unsigned, 2> RecoloringCandidates;
2921   HintsInfo Info;
2922   Register Reg = VirtReg.reg();
2923   MCRegister PhysReg = VRM->getPhys(Reg);
2924   // Start the recoloring algorithm from the input live-interval, then
2925   // it will propagate to the ones that are copy-related with it.
2926   Visited.insert(Reg);
2927   RecoloringCandidates.push_back(Reg);
2928 
2929   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2930                     << '(' << printReg(PhysReg, TRI) << ")\n");
2931 
2932   do {
2933     Reg = RecoloringCandidates.pop_back_val();
2934 
2935     // We cannot recolor physical register.
2936     if (Register::isPhysicalRegister(Reg))
2937       continue;
2938 
2939     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2940 
2941     // Get the live interval mapped with this virtual register to be able
2942     // to check for the interference with the new color.
2943     LiveInterval &LI = LIS->getInterval(Reg);
2944     MCRegister CurrPhys = VRM->getPhys(Reg);
2945     // Check that the new color matches the register class constraints and
2946     // that it is free for this live range.
2947     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2948                                 Matrix->checkInterference(LI, PhysReg)))
2949       continue;
2950 
2951     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2952                       << ") is recolorable.\n");
2953 
2954     // Gather the hint info.
2955     Info.clear();
2956     collectHintInfo(Reg, Info);
2957     // Check if recoloring the live-range will increase the cost of the
2958     // non-identity copies.
2959     if (CurrPhys != PhysReg) {
2960       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2961       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2962       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2963       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2964                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2965                         << '\n');
2966       if (OldCopiesCost < NewCopiesCost) {
2967         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2968         continue;
2969       }
2970       // At this point, the cost is either cheaper or equal. If it is
2971       // equal, we consider this is profitable because it may expose
2972       // more recoloring opportunities.
2973       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2974       // Recolor the live-range.
2975       Matrix->unassign(LI);
2976       Matrix->assign(LI, PhysReg);
2977     }
2978     // Push all copy-related live-ranges to keep reconciling the broken
2979     // hints.
2980     for (const HintInfo &HI : Info) {
2981       if (Visited.insert(HI.Reg).second)
2982         RecoloringCandidates.push_back(HI.Reg);
2983     }
2984   } while (!RecoloringCandidates.empty());
2985 }
2986 
2987 /// Try to recolor broken hints.
2988 /// Broken hints may be repaired by recoloring when an evicted variable
2989 /// freed up a register for a larger live-range.
2990 /// Consider the following example:
2991 /// BB1:
2992 ///   a =
2993 ///   b =
2994 /// BB2:
2995 ///   ...
2996 ///   = b
2997 ///   = a
2998 /// Let us assume b gets split:
2999 /// BB1:
3000 ///   a =
3001 ///   b =
3002 /// BB2:
3003 ///   c = b
3004 ///   ...
3005 ///   d = c
3006 ///   = d
3007 ///   = a
3008 /// Because of how the allocation work, b, c, and d may be assigned different
3009 /// colors. Now, if a gets evicted later:
3010 /// BB1:
3011 ///   a =
3012 ///   st a, SpillSlot
3013 ///   b =
3014 /// BB2:
3015 ///   c = b
3016 ///   ...
3017 ///   d = c
3018 ///   = d
3019 ///   e = ld SpillSlot
3020 ///   = e
3021 /// This is likely that we can assign the same register for b, c, and d,
3022 /// getting rid of 2 copies.
tryHintsRecoloring()3023 void RAGreedy::tryHintsRecoloring() {
3024   for (LiveInterval *LI : SetOfBrokenHints) {
3025     assert(Register::isVirtualRegister(LI->reg()) &&
3026            "Recoloring is possible only for virtual registers");
3027     // Some dead defs may be around (e.g., because of debug uses).
3028     // Ignore those.
3029     if (!VRM->hasPhys(LI->reg()))
3030       continue;
3031     tryHintRecoloring(*LI);
3032   }
3033 }
3034 
selectOrSplitImpl(LiveInterval & VirtReg,SmallVectorImpl<Register> & NewVRegs,SmallVirtRegSet & FixedRegisters,unsigned Depth)3035 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3036                                        SmallVectorImpl<Register> &NewVRegs,
3037                                        SmallVirtRegSet &FixedRegisters,
3038                                        unsigned Depth) {
3039   uint8_t CostPerUseLimit = uint8_t(~0u);
3040   // First try assigning a free register.
3041   auto Order =
3042       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3043   if (MCRegister PhysReg =
3044           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3045     // If VirtReg got an assignment, the eviction info is no longer relevant.
3046     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3047     // When NewVRegs is not empty, we may have made decisions such as evicting
3048     // a virtual register, go with the earlier decisions and use the physical
3049     // register.
3050     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3051         NewVRegs.empty()) {
3052       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3053                                                 CostPerUseLimit, NewVRegs);
3054       if (CSRReg || !NewVRegs.empty())
3055         // Return now if we decide to use a CSR or create new vregs due to
3056         // pre-splitting.
3057         return CSRReg;
3058     } else
3059       return PhysReg;
3060   }
3061 
3062   LiveRangeStage Stage = getStage(VirtReg);
3063   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3064                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3065 
3066   // Try to evict a less worthy live range, but only for ranges from the primary
3067   // queue. The RS_Split ranges already failed to do this, and they should not
3068   // get a second chance until they have been split.
3069   if (Stage != RS_Split)
3070     if (Register PhysReg =
3071             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3072                      FixedRegisters)) {
3073       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3074       // If VirtReg has a hint and that hint is broken record this
3075       // virtual register as a recoloring candidate for broken hint.
3076       // Indeed, since we evicted a variable in its neighborhood it is
3077       // likely we can at least partially recolor some of the
3078       // copy-related live-ranges.
3079       if (Hint && Hint != PhysReg)
3080         SetOfBrokenHints.insert(&VirtReg);
3081       // If VirtReg eviction someone, the eviction info for it as an evictee is
3082       // no longer relevant.
3083       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3084       return PhysReg;
3085     }
3086 
3087   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3088 
3089   // The first time we see a live range, don't try to split or spill.
3090   // Wait until the second time, when all smaller ranges have been allocated.
3091   // This gives a better picture of the interference to split around.
3092   if (Stage < RS_Split) {
3093     setStage(VirtReg, RS_Split);
3094     LLVM_DEBUG(dbgs() << "wait for second round\n");
3095     NewVRegs.push_back(VirtReg.reg());
3096     return 0;
3097   }
3098 
3099   if (Stage < RS_Spill) {
3100     // Try splitting VirtReg or interferences.
3101     unsigned NewVRegSizeBefore = NewVRegs.size();
3102     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3103     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3104       // If VirtReg got split, the eviction info is no longer relevant.
3105       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3106       return PhysReg;
3107     }
3108   }
3109 
3110   // If we couldn't allocate a register from spilling, there is probably some
3111   // invalid inline assembly. The base class will report it.
3112   if (Stage >= RS_Done || !VirtReg.isSpillable())
3113     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3114                                    Depth);
3115 
3116   // Finally spill VirtReg itself.
3117   if ((EnableDeferredSpilling ||
3118        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3119       getStage(VirtReg) < RS_Memory) {
3120     // TODO: This is experimental and in particular, we do not model
3121     // the live range splitting done by spilling correctly.
3122     // We would need a deep integration with the spiller to do the
3123     // right thing here. Anyway, that is still good for early testing.
3124     setStage(VirtReg, RS_Memory);
3125     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3126     NewVRegs.push_back(VirtReg.reg());
3127   } else {
3128     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3129                        TimerGroupDescription, TimePassesIsEnabled);
3130     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3131     spiller().spill(LRE);
3132     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3133 
3134     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3135     // the new regs are kept in LDV (still mapping to the old register), until
3136     // we rewrite spilled locations in LDV at a later stage.
3137     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3138 
3139     if (VerifyEnabled)
3140       MF->verify(this, "After spilling");
3141   }
3142 
3143   // The live virtual register requesting allocation was spilled, so tell
3144   // the caller not to allocate anything during this round.
3145   return 0;
3146 }
3147 
report(MachineOptimizationRemarkMissed & R)3148 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
3149   using namespace ore;
3150   if (Spills) {
3151     R << NV("NumSpills", Spills) << " spills ";
3152     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
3153   }
3154   if (FoldedSpills) {
3155     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3156     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
3157       << " total folded spills cost ";
3158   }
3159   if (Reloads) {
3160     R << NV("NumReloads", Reloads) << " reloads ";
3161     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
3162   }
3163   if (FoldedReloads) {
3164     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3165     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
3166       << " total folded reloads cost ";
3167   }
3168   if (ZeroCostFoldedReloads)
3169     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
3170       << " zero cost folded reloads ";
3171   if (Copies) {
3172     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
3173     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
3174   }
3175 }
3176 
computeStats(MachineBasicBlock & MBB)3177 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
3178   RAGreedyStats Stats;
3179   const MachineFrameInfo &MFI = MF->getFrameInfo();
3180   int FI;
3181 
3182   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3183     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
3184         A->getPseudoValue())->getFrameIndex());
3185   };
3186   auto isPatchpointInstr = [](const MachineInstr &MI) {
3187     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
3188            MI.getOpcode() == TargetOpcode::STACKMAP ||
3189            MI.getOpcode() == TargetOpcode::STATEPOINT;
3190   };
3191   for (MachineInstr &MI : MBB) {
3192     if (MI.isCopy()) {
3193       MachineOperand &Dest = MI.getOperand(0);
3194       MachineOperand &Src = MI.getOperand(1);
3195       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
3196           Src.getReg().isVirtual())
3197         ++Stats.Copies;
3198       continue;
3199     }
3200 
3201     SmallVector<const MachineMemOperand *, 2> Accesses;
3202     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3203       ++Stats.Reloads;
3204       continue;
3205     }
3206     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3207       ++Stats.Spills;
3208       continue;
3209     }
3210     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3211         llvm::any_of(Accesses, isSpillSlotAccess)) {
3212       if (!isPatchpointInstr(MI)) {
3213         Stats.FoldedReloads += Accesses.size();
3214         continue;
3215       }
3216       // For statepoint there may be folded and zero cost folded stack reloads.
3217       std::pair<unsigned, unsigned> NonZeroCostRange =
3218           TII->getPatchpointUnfoldableRange(MI);
3219       SmallSet<unsigned, 16> FoldedReloads;
3220       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
3221       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
3222         MachineOperand &MO = MI.getOperand(Idx);
3223         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
3224           continue;
3225         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
3226           FoldedReloads.insert(MO.getIndex());
3227         else
3228           ZeroCostFoldedReloads.insert(MO.getIndex());
3229       }
3230       // If stack slot is used in folded reload it is not zero cost then.
3231       for (unsigned Slot : FoldedReloads)
3232         ZeroCostFoldedReloads.erase(Slot);
3233       Stats.FoldedReloads += FoldedReloads.size();
3234       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
3235       continue;
3236     }
3237     Accesses.clear();
3238     if (TII->hasStoreToStackSlot(MI, Accesses) &&
3239         llvm::any_of(Accesses, isSpillSlotAccess)) {
3240       Stats.FoldedSpills += Accesses.size();
3241     }
3242   }
3243   // Set cost of collected statistic by multiplication to relative frequency of
3244   // this basic block.
3245   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
3246   Stats.ReloadsCost = RelFreq * Stats.Reloads;
3247   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
3248   Stats.SpillsCost = RelFreq * Stats.Spills;
3249   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
3250   Stats.CopiesCost = RelFreq * Stats.Copies;
3251   return Stats;
3252 }
3253 
reportStats(MachineLoop * L)3254 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
3255   RAGreedyStats Stats;
3256 
3257   // Sum up the spill and reloads in subloops.
3258   for (MachineLoop *SubLoop : *L)
3259     Stats.add(reportStats(SubLoop));
3260 
3261   for (MachineBasicBlock *MBB : L->getBlocks())
3262     // Handle blocks that were not included in subloops.
3263     if (Loops->getLoopFor(MBB) == L)
3264       Stats.add(computeStats(*MBB));
3265 
3266   if (!Stats.isEmpty()) {
3267     using namespace ore;
3268 
3269     ORE->emit([&]() {
3270       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
3271                                         L->getStartLoc(), L->getHeader());
3272       Stats.report(R);
3273       R << "generated in loop";
3274       return R;
3275     });
3276   }
3277   return Stats;
3278 }
3279 
reportStats()3280 void RAGreedy::reportStats() {
3281   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
3282     return;
3283   RAGreedyStats Stats;
3284   for (MachineLoop *L : *Loops)
3285     Stats.add(reportStats(L));
3286   // Process non-loop blocks.
3287   for (MachineBasicBlock &MBB : *MF)
3288     if (!Loops->getLoopFor(&MBB))
3289       Stats.add(computeStats(MBB));
3290   if (!Stats.isEmpty()) {
3291     using namespace ore;
3292 
3293     ORE->emit([&]() {
3294       DebugLoc Loc;
3295       if (auto *SP = MF->getFunction().getSubprogram())
3296         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
3297       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
3298                                         &MF->front());
3299       Stats.report(R);
3300       R << "generated in function";
3301       return R;
3302     });
3303   }
3304 }
3305 
runOnMachineFunction(MachineFunction & mf)3306 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3307   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3308                     << "********** Function: " << mf.getName() << '\n');
3309 
3310   MF = &mf;
3311   TRI = MF->getSubtarget().getRegisterInfo();
3312   TII = MF->getSubtarget().getInstrInfo();
3313   RCI.runOnMachineFunction(mf);
3314 
3315   EnableLocalReassign = EnableLocalReassignment ||
3316                         MF->getSubtarget().enableRALocalReassignment(
3317                             MF->getTarget().getOptLevel());
3318 
3319   EnableAdvancedRASplitCost =
3320       ConsiderLocalIntervalCost.getNumOccurrences()
3321           ? ConsiderLocalIntervalCost
3322           : MF->getSubtarget().enableAdvancedRASplitCost();
3323 
3324   if (VerifyEnabled)
3325     MF->verify(this, "Before greedy register allocator");
3326 
3327   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3328                      getAnalysis<LiveIntervals>(),
3329                      getAnalysis<LiveRegMatrix>());
3330   Indexes = &getAnalysis<SlotIndexes>();
3331   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3332   DomTree = &getAnalysis<MachineDominatorTree>();
3333   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3334   Loops = &getAnalysis<MachineLoopInfo>();
3335   Bundles = &getAnalysis<EdgeBundles>();
3336   SpillPlacer = &getAnalysis<SpillPlacement>();
3337   DebugVars = &getAnalysis<LiveDebugVariables>();
3338   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3339 
3340   initializeCSRCost();
3341 
3342   RegCosts = TRI->getRegisterCosts(*MF);
3343 
3344   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3345   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
3346 
3347   VRAI->calculateSpillWeightsAndHints();
3348 
3349   LLVM_DEBUG(LIS->dump());
3350 
3351   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3352   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
3353   ExtraRegInfo.clear();
3354   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3355   NextCascade = 1;
3356   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3357   GlobalCand.resize(32);  // This will grow as needed.
3358   SetOfBrokenHints.clear();
3359   LastEvicted.clear();
3360 
3361   allocatePhysRegs();
3362   tryHintsRecoloring();
3363 
3364   if (VerifyEnabled)
3365     MF->verify(this, "Before post optimization");
3366   postOptimization();
3367   reportStats();
3368 
3369   releaseMemory();
3370   return true;
3371 }
3372