xref: /netbsd-src/external/lgpl3/mpc/dist/src/eta.c (revision 367b82799ab709709d3c3b541df56a2a14644d3e)
1 /* eta -- Functions for computing the Dedekind eta function
2 
3 Copyright (C) 2022 INRIA
4 
5 This file is part of GNU MPC.
6 
7 GNU MPC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU Lesser General Public License as published by the
9 Free Software Foundation; either version 3 of the License, or (at your
10 option) any later version.
11 
12 GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16 
17 You should have received a copy of the GNU Lesser General Public License
18 along with this program. If not, see http://www.gnu.org/licenses/ .
19 */
20 
21 #include <math.h>
22 #include <limits.h> /* for CHAR_BIT */
23 #include "mpc-impl.h"
24 
25 static void
eta_series(mpcb_ptr eta,mpcb_srcptr q,mpfr_exp_t expq,int N)26 eta_series (mpcb_ptr eta, mpcb_srcptr q, mpfr_exp_t expq, int N)
27    /* Evaluate 2N+1 terms of the Dedekind eta function without the q^(1/24)
28       factor (where internally N is taken to be at least 1).
29       expq is an upper bound on the exponent of |q|, valid everywhere
30       inside the ball; for the error analysis to hold the function assumes
31       that expq < -1, which implies |q| < 1/4. */
32 {
33    const mpfr_prec_t p = mpcb_get_prec (q);
34    mpcb_t q2, qn, q2n1, q3nm1, q3np1;
35    int M, n;
36    mpcr_t r, r2;
37 
38    mpcb_init (q2);
39    mpcb_init (qn);
40    mpcb_init (q2n1);
41    mpcb_init (q3nm1);
42    mpcb_init (q3np1);
43 
44    mpcb_sqr (q2, q);
45 
46    /* n = 0 */
47    mpcb_set_ui_ui (eta, 1, 0, p);
48 
49    /* n = 1 */
50    mpcb_set (qn, q); /* q^n */
51    mpcb_neg (q2n1, q); /* -q^(2n-1) */
52    mpcb_neg (q3nm1, q); /* +- q^((3n-1)*n/2) */
53    mpcb_neg (q3np1, q2); /* +- q^(3n+1)*n/2) */
54    mpcb_add (eta, eta, q3nm1);
55    mpcb_add (eta, eta, q3np1);
56 
57    N = MPC_MAX (1, N);
58    for (n = 2; n <= N; n++) {
59       mpcb_mul (qn, qn, q);
60       mpcb_mul (q2n1, q2n1, q2);
61       mpcb_mul (q3nm1, q3np1, q2n1);
62       mpcb_mul (q3np1, q3nm1, qn);
63       mpcb_add (eta, eta, q3nm1);
64       mpcb_add (eta, eta, q3np1);
65    }
66 
67    /* Compute the relative error due to the truncation of the series
68       as explained in algorithms.tex. */
69    M = (3 * (N+1) - 1) * (N+1) / 2;
70    mpcr_set_one (r);
71    mpcr_div_2ui (r, r, (unsigned long int) (- (M * expq + 1)));
72 
73    /* Compose the two relative errors. */
74    mpcr_mul (r2, r, eta->r);
75    mpcr_add (eta->r, eta->r, r);
76    mpcr_add (eta->r, eta->r, r2);
77 
78    mpcb_clear (q2);
79    mpcb_clear (qn);
80    mpcb_clear (q2n1);
81    mpcb_clear (q3nm1);
82    mpcb_clear (q3np1);
83 }
84 
85 
86 static void
mpcb_eta_q24(mpcb_ptr eta,mpcb_srcptr q24)87 mpcb_eta_q24 (mpcb_ptr eta, mpcb_srcptr q24)
88    /* Assuming that q24 is a ball containing
89       q^{1/24} = exp (2 * pi * i * z / 24) for z in the fundamental domain,
90       the function computes eta (z).
91       In fact it works on a larger domain and checks that |q|=|q24^24| < 1/4
92       in the ball; otherwise or if in doubt it returns infinity. */
93 {
94    mpcb_t q;
95    mpfr_exp_t expq;
96    int N;
97 
98    mpcb_init (q);
99 
100    mpcb_pow_ui (q, q24, 24);
101 
102    /* We need an upper bound on the exponent of |q|. Writing q as having
103       the centre x+i*y and the radius r, we have
104       |q| =  sqrt (x^2+y^2) |1+\theta| with |theta| <= r
105           <= (1 + r) \sqrt 2 max (|x|, |y|)
106           <  2^{max (Exp x, Exp y) + 1}
107       assuming that r < sqrt 2 - 1, which is the case for r < 1/4
108       or Exp r < -1.
109       Then Exp (|q|) <= max (Exp x, Exp y) + 1. */
110    if (mpcr_inf_p (q->r) || mpcr_get_exp (q->r) >= -1)
111       mpcb_set_inf (eta);
112    else {
113       expq = MPC_MAX (mpfr_get_exp (mpc_realref (q->c)),
114                       mpfr_get_exp (mpc_imagref (q->c))) + 1;
115       if (expq >= -1)
116          mpcb_set_inf (eta);
117       else {
118          /* Compute an approximate N such that
119             (3*N+1)*N/2 * |expq| > prec. */
120          N = (int) sqrt (2 * mpcb_get_prec (q24) / 3.0 / (-expq)) + 1;
121          eta_series (eta, q, expq, N);
122          mpcb_mul (eta, eta, q24);
123       }
124    }
125 
126    mpcb_clear (q);
127 }
128 
129 
130 static void
q24_from_z(mpcb_ptr q24,mpc_srcptr z,unsigned long int err_re,unsigned long int err_im)131 q24_from_z (mpcb_ptr q24, mpc_srcptr z, unsigned long int err_re,
132    unsigned long int err_im)
133    /* Given z=x+i*y, compute q24 = exp (pi*i*z/12).
134       err_re and err_im are a priori errors (in 1/2 ulp) of x and y,
135       respectively; they can be 0 if a part is exact. In particular we
136       need err_re=0 when x=0.
137       The function requires and checks that |x|<=5/8 and y>=1/2.
138       Moreover if err_im != 0, it assumes (but cannot check, so this must be
139       assured by the caller) that y is a lower bound on the correct value.
140       The algorithm is taken from algorithms.tex.
141       The precision of q24 is computed from z with a little extra so that
142       the series has a good chance of being rounded to the precision of z. */
143 {
144    const mpfr_prec_t pz = MPC_MAX_PREC (z);
145    int xzero;
146    long int Y, err_a, err_b;
147    mpfr_prec_t p, min;
148    mpfr_t pi, u, v, t, r, s;
149    mpc_t q24c;
150 
151    xzero = mpfr_zero_p (mpc_realref (z));
152    if (   mpfr_cmp_d  (mpc_realref (z),  0.625) > 0
153        || mpfr_cmp_d  (mpc_realref (z), -0.625) < 0
154        || mpfr_cmp_d (mpc_imagref (z), 0.5) < 0
155        || (xzero && err_re > 0))
156        mpcb_set_inf (q24);
157    else {
158       /* Experiments seem to imply that it is enough to add 20 bits to the
159          target precision; to be on the safe side, we also add 1%. */
160       p = pz * 101 / 100 + 20;
161       /* We need 2^p >= 240 + 66 k_x = 240 + 33 err_re. */
162       if (p < (mpfr_prec_t) (CHAR_BIT * sizeof (mpfr_prec_t))) {
163          min = (240 + 33 * err_re) >> p;
164          while (min > 0) {
165             p++;
166             min >>= 1;
167          }
168       }
169 
170       mpfr_init2 (pi, p);
171       mpfr_init2 (u, p);
172       mpfr_init2 (v, p);
173       mpfr_init2 (t, p);
174       mpfr_init2 (r, p);
175       mpfr_init2 (s, p);
176       mpc_init2 (q24c, p);
177 
178       mpfr_const_pi (pi, MPFR_RNDD);
179       mpfr_div_ui (pi, pi, 12, MPFR_RNDD);
180       mpfr_mul (u, mpc_imagref (z), pi, MPFR_RNDD);
181       mpfr_neg (u, u, MPFR_RNDU);
182       mpfr_mul (v, mpc_realref (z), pi, MPFR_RNDN);
183       mpfr_exp (t, u, MPFR_RNDU);
184       if (xzero) {
185          mpfr_set (mpc_realref (q24c), t, MPFR_RNDN);
186          mpfr_set_ui (mpc_imagref (q24c), 0, MPFR_RNDN);
187       }
188       else {
189          /* Unfortunately we cannot round in two different directions with
190             mpfr_sin_cos. */
191          mpfr_cos (r, v, MPFR_RNDZ);
192          mpfr_sin (s, v, MPFR_RNDA);
193          mpfr_mul (mpc_realref (q24c), t, r, MPFR_RNDN);
194          mpfr_mul (mpc_imagref (q24c), t, s, MPFR_RNDN);
195       }
196       Y = mpfr_get_exp (mpc_imagref (z));
197       if (xzero) {
198          Y = (224 + 33 * err_im + 63) / 64 << Y;
199          err_a = Y + 1;
200          err_b = 0;
201       }
202       else {
203          if (Y >= 2)
204             Y = (32 + 5 * err_im) << (Y - 2);
205          else if (Y == 1)
206             Y = 16 + (5 * err_im + 1) / 2;
207          else /* Y == 0 */
208             Y = 8 + (5 * err_im + 3) / 4;
209          err_a = Y + 9 + err_re;
210          err_b = Y + (67 + 9 * err_re + 1) / 2;
211       }
212       mpcb_set_c (q24, q24c, p, err_a, err_b);
213 
214       mpfr_clear (pi);
215       mpfr_clear (u);
216       mpfr_clear (v);
217       mpfr_clear (t);
218       mpfr_clear (r);
219       mpfr_clear (s);
220       mpc_clear (q24c);
221    }
222 }
223 
224 
225 void
mpcb_eta_err(mpcb_ptr eta,mpc_srcptr z,unsigned long int err_re,unsigned long int err_im)226 mpcb_eta_err (mpcb_ptr eta, mpc_srcptr z, unsigned long int err_re,
227    unsigned long int err_im)
228    /* Given z=x+i*y in the fundamental domain, compute eta (z).
229       err_re and err_im are a priori errors (in 1/2 ulp) of x and y,
230       respectively; they can be 0 if a part is exact. In particular we
231       need err_re=0 when x=0.
232       The function requires (and checks through the call to q24_from_z)
233       that |x|<=5/8 and y>=1/2.
234       Moreover if err_im != 0, it assumes (but cannot check, so this must
235       be assured by the caller) that y is a lower bound on the correct
236       value. */
237 {
238    mpcb_t q24;
239 
240    mpcb_init (q24);
241 
242    q24_from_z (q24, z, err_re, err_im);
243    mpcb_eta_q24 (eta, q24);
244 
245    mpcb_clear (q24);
246 }
247 
248 
249 int
mpc_eta_fund(mpc_ptr rop,mpc_srcptr z,mpc_rnd_t rnd)250 mpc_eta_fund (mpc_ptr rop, mpc_srcptr z, mpc_rnd_t rnd)
251    /* Given z in the fundamental domain for Sl_2 (Z), that is,
252       |Re z| <= 1/2 and |z| >= 1, compute Dedekind eta (z).
253       Outside the fundamental domain, the function may loop
254       indefinitely. */
255 {
256    mpfr_prec_t prec;
257    mpc_t zl;
258    mpcb_t eta;
259    int xzero, ok, inex;
260 
261    mpc_init2 (zl, 2);
262    mpcb_init (eta);
263 
264    xzero = mpfr_zero_p (mpc_realref (z));
265    prec = MPC_MAX (MPC_MAX_PREC (rop), MPC_MAX_PREC (z));
266    do {
267       mpc_set_prec (zl, prec);
268       mpc_set (zl, z, MPC_RNDNN); /* exact */
269       mpcb_eta_err (eta, zl, 0, 0);
270 
271       if (!xzero)
272          ok = mpcb_can_round (eta, MPC_PREC_RE (rop), MPC_PREC_IM (rop),
273             rnd);
274       else {
275          /* TODO: The result is real, so the ball contains part of the
276             imaginary axis, and rounding to a complex number is impossible
277             independently of the precision.
278             It would be best to project to a real interval and to decide
279             whether we can round. Lacking such functionality, we add
280             the non-representable number 0.1*I (in ball arithmetic) and
281             check whether rounding is possible then. */
282          mpc_t fuzz;
283          mpcb_t fuzzb;
284          mpc_init2 (fuzz, prec);
285          mpcb_init (fuzzb);
286          mpc_set_ui_ui (fuzz, 0, 1, MPC_RNDNN);
287          mpc_div_ui (fuzz, fuzz, 10, MPC_RNDNN);
288          mpcb_set_c (fuzzb, fuzz, prec, 0, 1);
289          ok = mpfr_zero_p (mpc_imagref (eta->c));
290          mpcb_add (eta, eta, fuzzb);
291          ok &= mpcb_can_round (eta, MPC_PREC_RE (rop), 2, rnd);
292          mpc_clear (fuzz);
293          mpcb_clear (fuzzb);
294       }
295 
296       prec += 20;
297    } while (!ok);
298 
299    if (!xzero)
300       inex = mpcb_round (rop, eta, rnd);
301    else
302       inex = MPC_INEX (mpfr_set (mpc_realref (rop), mpc_realref (eta->c),
303                           MPC_RND_RE (rnd)),
304                        mpfr_set_ui (mpc_imagref (rop), 0, MPFR_RNDN));
305 
306    mpc_clear (zl);
307    mpcb_clear (eta);
308 
309    return inex;
310 }
311 
312