1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
44
45 using namespace llvm;
46
47 #define DEBUG_TYPE "regalloc"
48
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple, "Number of splits that were simple");
51 STATISTIC(NumCopies, "Number of copies inserted for splitting");
52 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
53 STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
54
55 //===----------------------------------------------------------------------===//
56 // Last Insert Point Analysis
57 //===----------------------------------------------------------------------===//
58
InsertPointAnalysis(const LiveIntervals & lis,unsigned BBNum)59 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
60 unsigned BBNum)
61 : LIS(lis), LastInsertPoint(BBNum) {}
62
63 SlotIndex
computeLastInsertPoint(const LiveInterval & CurLI,const MachineBasicBlock & MBB)64 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
65 const MachineBasicBlock &MBB) {
66 unsigned Num = MBB.getNumber();
67 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
68 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
69
70 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
71 bool EHPadSuccessor = false;
72 for (const MachineBasicBlock *SMBB : MBB.successors()) {
73 if (SMBB->isEHPad()) {
74 ExceptionalSuccessors.push_back(SMBB);
75 EHPadSuccessor = true;
76 } else if (SMBB->isInlineAsmBrIndirectTarget())
77 ExceptionalSuccessors.push_back(SMBB);
78 }
79
80 // Compute insert points on the first call. The pair is independent of the
81 // current live interval.
82 if (!LIP.first.isValid()) {
83 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
84 if (FirstTerm == MBB.end())
85 LIP.first = MBBEnd;
86 else
87 LIP.first = LIS.getInstructionIndex(*FirstTerm);
88
89 // If there is a landing pad or inlineasm_br successor, also find the
90 // instruction. If there is no such instruction, we don't need to do
91 // anything special. We assume there cannot be multiple instructions that
92 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
93 // assume that if there are any, they will be after any other call
94 // instructions in the block.
95 if (ExceptionalSuccessors.empty())
96 return LIP.first;
97 for (const MachineInstr &MI : llvm::reverse(MBB)) {
98 if ((EHPadSuccessor && MI.isCall()) ||
99 MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
100 LIP.second = LIS.getInstructionIndex(MI);
101 break;
102 }
103 }
104 }
105
106 // If CurLI is live into a landing pad successor, move the last insert point
107 // back to the call that may throw.
108 if (!LIP.second)
109 return LIP.first;
110
111 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
112 return LIS.isLiveInToMBB(CurLI, EHPad);
113 }))
114 return LIP.first;
115
116 // Find the value leaving MBB.
117 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
118 if (!VNI)
119 return LIP.first;
120
121 // The def of statepoint instruction is a gc relocation and it should be alive
122 // in landing pad. So we cannot split interval after statepoint instruction.
123 if (SlotIndex::isSameInstr(VNI->def, LIP.second))
124 if (auto *I = LIS.getInstructionFromIndex(LIP.second))
125 if (I->getOpcode() == TargetOpcode::STATEPOINT)
126 return LIP.second;
127
128 // If the value leaving MBB was defined after the call in MBB, it can't
129 // really be live-in to the landing pad. This can happen if the landing pad
130 // has a PHI, and this register is undef on the exceptional edge.
131 // <rdar://problem/10664933>
132 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
133 return LIP.first;
134
135 // Value is properly live-in to the landing pad.
136 // Only allow inserts before the call.
137 return LIP.second;
138 }
139
140 MachineBasicBlock::iterator
getLastInsertPointIter(const LiveInterval & CurLI,MachineBasicBlock & MBB)141 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
142 MachineBasicBlock &MBB) {
143 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
144 if (LIP == LIS.getMBBEndIdx(&MBB))
145 return MBB.end();
146 return LIS.getInstructionFromIndex(LIP);
147 }
148
149 //===----------------------------------------------------------------------===//
150 // Split Analysis
151 //===----------------------------------------------------------------------===//
152
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)153 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
154 const MachineLoopInfo &mli)
155 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
156 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
157
clear()158 void SplitAnalysis::clear() {
159 UseSlots.clear();
160 UseBlocks.clear();
161 ThroughBlocks.clear();
162 CurLI = nullptr;
163 DidRepairRange = false;
164 }
165
166 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()167 void SplitAnalysis::analyzeUses() {
168 assert(UseSlots.empty() && "Call clear first");
169
170 // First get all the defs from the interval values. This provides the correct
171 // slots for early clobbers.
172 for (const VNInfo *VNI : CurLI->valnos)
173 if (!VNI->isPHIDef() && !VNI->isUnused())
174 UseSlots.push_back(VNI->def);
175
176 // Get use slots form the use-def chain.
177 const MachineRegisterInfo &MRI = MF.getRegInfo();
178 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
179 if (!MO.isUndef())
180 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
181
182 array_pod_sort(UseSlots.begin(), UseSlots.end());
183
184 // Remove duplicates, keeping the smaller slot for each instruction.
185 // That is what we want for early clobbers.
186 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
187 SlotIndex::isSameInstr),
188 UseSlots.end());
189
190 // Compute per-live block info.
191 if (!calcLiveBlockInfo()) {
192 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
193 // I am looking at you, RegisterCoalescer!
194 DidRepairRange = true;
195 ++NumRepairs;
196 LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
197 const_cast<LiveIntervals&>(LIS)
198 .shrinkToUses(const_cast<LiveInterval*>(CurLI));
199 UseBlocks.clear();
200 ThroughBlocks.clear();
201 bool fixed = calcLiveBlockInfo();
202 (void)fixed;
203 assert(fixed && "Couldn't fix broken live interval");
204 }
205
206 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
207 << UseBlocks.size() << " blocks, through "
208 << NumThroughBlocks << " blocks.\n");
209 }
210
211 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
212 /// where CurLI is live.
calcLiveBlockInfo()213 bool SplitAnalysis::calcLiveBlockInfo() {
214 ThroughBlocks.resize(MF.getNumBlockIDs());
215 NumThroughBlocks = NumGapBlocks = 0;
216 if (CurLI->empty())
217 return true;
218
219 LiveInterval::const_iterator LVI = CurLI->begin();
220 LiveInterval::const_iterator LVE = CurLI->end();
221
222 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
223 UseI = UseSlots.begin();
224 UseE = UseSlots.end();
225
226 // Loop over basic blocks where CurLI is live.
227 MachineFunction::iterator MFI =
228 LIS.getMBBFromIndex(LVI->start)->getIterator();
229 while (true) {
230 BlockInfo BI;
231 BI.MBB = &*MFI;
232 SlotIndex Start, Stop;
233 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
234
235 // If the block contains no uses, the range must be live through. At one
236 // point, RegisterCoalescer could create dangling ranges that ended
237 // mid-block.
238 if (UseI == UseE || *UseI >= Stop) {
239 ++NumThroughBlocks;
240 ThroughBlocks.set(BI.MBB->getNumber());
241 // The range shouldn't end mid-block if there are no uses. This shouldn't
242 // happen.
243 if (LVI->end < Stop)
244 return false;
245 } else {
246 // This block has uses. Find the first and last uses in the block.
247 BI.FirstInstr = *UseI;
248 assert(BI.FirstInstr >= Start);
249 do ++UseI;
250 while (UseI != UseE && *UseI < Stop);
251 BI.LastInstr = UseI[-1];
252 assert(BI.LastInstr < Stop);
253
254 // LVI is the first live segment overlapping MBB.
255 BI.LiveIn = LVI->start <= Start;
256
257 // When not live in, the first use should be a def.
258 if (!BI.LiveIn) {
259 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
260 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
261 BI.FirstDef = BI.FirstInstr;
262 }
263
264 // Look for gaps in the live range.
265 BI.LiveOut = true;
266 while (LVI->end < Stop) {
267 SlotIndex LastStop = LVI->end;
268 if (++LVI == LVE || LVI->start >= Stop) {
269 BI.LiveOut = false;
270 BI.LastInstr = LastStop;
271 break;
272 }
273
274 if (LastStop < LVI->start) {
275 // There is a gap in the live range. Create duplicate entries for the
276 // live-in snippet and the live-out snippet.
277 ++NumGapBlocks;
278
279 // Push the Live-in part.
280 BI.LiveOut = false;
281 UseBlocks.push_back(BI);
282 UseBlocks.back().LastInstr = LastStop;
283
284 // Set up BI for the live-out part.
285 BI.LiveIn = false;
286 BI.LiveOut = true;
287 BI.FirstInstr = BI.FirstDef = LVI->start;
288 }
289
290 // A Segment that starts in the middle of the block must be a def.
291 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
292 if (!BI.FirstDef)
293 BI.FirstDef = LVI->start;
294 }
295
296 UseBlocks.push_back(BI);
297
298 // LVI is now at LVE or LVI->end >= Stop.
299 if (LVI == LVE)
300 break;
301 }
302
303 // Live segment ends exactly at Stop. Move to the next segment.
304 if (LVI->end == Stop && ++LVI == LVE)
305 break;
306
307 // Pick the next basic block.
308 if (LVI->start < Stop)
309 ++MFI;
310 else
311 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
312 }
313
314 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
315 return true;
316 }
317
countLiveBlocks(const LiveInterval * cli) const318 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
319 if (cli->empty())
320 return 0;
321 LiveInterval *li = const_cast<LiveInterval*>(cli);
322 LiveInterval::iterator LVI = li->begin();
323 LiveInterval::iterator LVE = li->end();
324 unsigned Count = 0;
325
326 // Loop over basic blocks where li is live.
327 MachineFunction::const_iterator MFI =
328 LIS.getMBBFromIndex(LVI->start)->getIterator();
329 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
330 while (true) {
331 ++Count;
332 LVI = li->advanceTo(LVI, Stop);
333 if (LVI == LVE)
334 return Count;
335 do {
336 ++MFI;
337 Stop = LIS.getMBBEndIdx(&*MFI);
338 } while (Stop <= LVI->start);
339 }
340 }
341
isOriginalEndpoint(SlotIndex Idx) const342 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
343 unsigned OrigReg = VRM.getOriginal(CurLI->reg());
344 const LiveInterval &Orig = LIS.getInterval(OrigReg);
345 assert(!Orig.empty() && "Splitting empty interval?");
346 LiveInterval::const_iterator I = Orig.find(Idx);
347
348 // Range containing Idx should begin at Idx.
349 if (I != Orig.end() && I->start <= Idx)
350 return I->start == Idx;
351
352 // Range does not contain Idx, previous must end at Idx.
353 return I != Orig.begin() && (--I)->end == Idx;
354 }
355
analyze(const LiveInterval * li)356 void SplitAnalysis::analyze(const LiveInterval *li) {
357 clear();
358 CurLI = li;
359 analyzeUses();
360 }
361
362 //===----------------------------------------------------------------------===//
363 // Split Editor
364 //===----------------------------------------------------------------------===//
365
366 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & SA,AliasAnalysis & AA,LiveIntervals & LIS,VirtRegMap & VRM,MachineDominatorTree & MDT,MachineBlockFrequencyInfo & MBFI,VirtRegAuxInfo & VRAI)367 SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA,
368 LiveIntervals &LIS, VirtRegMap &VRM,
369 MachineDominatorTree &MDT,
370 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
371 : SA(SA), AA(AA), LIS(LIS), VRM(VRM),
372 MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT),
373 TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
374 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
375 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
376
reset(LiveRangeEdit & LRE,ComplementSpillMode SM)377 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
378 Edit = &LRE;
379 SpillMode = SM;
380 OpenIdx = 0;
381 RegAssign.clear();
382 Values.clear();
383
384 // Reset the LiveIntervalCalc instances needed for this spill mode.
385 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
386 &LIS.getVNInfoAllocator());
387 if (SpillMode)
388 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
389 &LIS.getVNInfoAllocator());
390
391 // We don't need an AliasAnalysis since we will only be performing
392 // cheap-as-a-copy remats anyway.
393 Edit->anyRematerializable(nullptr);
394 }
395
396 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const397 LLVM_DUMP_METHOD void SplitEditor::dump() const {
398 if (RegAssign.empty()) {
399 dbgs() << " empty\n";
400 return;
401 }
402
403 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
404 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
405 dbgs() << '\n';
406 }
407 #endif
408
getSubRangeForMaskExact(LaneBitmask LM,LiveInterval & LI)409 LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM,
410 LiveInterval &LI) {
411 for (LiveInterval::SubRange &S : LI.subranges())
412 if (S.LaneMask == LM)
413 return S;
414 llvm_unreachable("SubRange for this mask not found");
415 }
416
getSubRangeForMask(LaneBitmask LM,LiveInterval & LI)417 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
418 LiveInterval &LI) {
419 for (LiveInterval::SubRange &S : LI.subranges())
420 if ((S.LaneMask & LM) == LM)
421 return S;
422 llvm_unreachable("SubRange for this mask not found");
423 }
424
addDeadDef(LiveInterval & LI,VNInfo * VNI,bool Original)425 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
426 if (!LI.hasSubRanges()) {
427 LI.createDeadDef(VNI);
428 return;
429 }
430
431 SlotIndex Def = VNI->def;
432 if (Original) {
433 // If we are transferring a def from the original interval, make sure
434 // to only update the subranges for which the original subranges had
435 // a def at this location.
436 for (LiveInterval::SubRange &S : LI.subranges()) {
437 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
438 VNInfo *PV = PS.getVNInfoAt(Def);
439 if (PV != nullptr && PV->def == Def)
440 S.createDeadDef(Def, LIS.getVNInfoAllocator());
441 }
442 } else {
443 // This is a new def: either from rematerialization, or from an inserted
444 // copy. Since rematerialization can regenerate a definition of a sub-
445 // register, we need to check which subranges need to be updated.
446 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
447 assert(DefMI != nullptr);
448 LaneBitmask LM;
449 for (const MachineOperand &DefOp : DefMI->defs()) {
450 Register R = DefOp.getReg();
451 if (R != LI.reg())
452 continue;
453 if (unsigned SR = DefOp.getSubReg())
454 LM |= TRI.getSubRegIndexLaneMask(SR);
455 else {
456 LM = MRI.getMaxLaneMaskForVReg(R);
457 break;
458 }
459 }
460 for (LiveInterval::SubRange &S : LI.subranges())
461 if ((S.LaneMask & LM).any())
462 S.createDeadDef(Def, LIS.getVNInfoAllocator());
463 }
464 }
465
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx,bool Original)466 VNInfo *SplitEditor::defValue(unsigned RegIdx,
467 const VNInfo *ParentVNI,
468 SlotIndex Idx,
469 bool Original) {
470 assert(ParentVNI && "Mapping NULL value");
471 assert(Idx.isValid() && "Invalid SlotIndex");
472 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
473 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
474
475 // Create a new value.
476 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
477
478 bool Force = LI->hasSubRanges();
479 ValueForcePair FP(Force ? nullptr : VNI, Force);
480 // Use insert for lookup, so we can add missing values with a second lookup.
481 std::pair<ValueMap::iterator, bool> InsP =
482 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
483
484 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
485 // forced. Keep it as a simple def without any liveness.
486 if (!Force && InsP.second)
487 return VNI;
488
489 // If the previous value was a simple mapping, add liveness for it now.
490 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
491 addDeadDef(*LI, OldVNI, Original);
492
493 // No longer a simple mapping. Switch to a complex mapping. If the
494 // interval has subranges, make it a forced mapping.
495 InsP.first->second = ValueForcePair(nullptr, Force);
496 }
497
498 // This is a complex mapping, add liveness for VNI
499 addDeadDef(*LI, VNI, Original);
500 return VNI;
501 }
502
forceRecompute(unsigned RegIdx,const VNInfo & ParentVNI)503 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
504 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
505 VNInfo *VNI = VFP.getPointer();
506
507 // ParentVNI was either unmapped or already complex mapped. Either way, just
508 // set the force bit.
509 if (!VNI) {
510 VFP.setInt(true);
511 return;
512 }
513
514 // This was previously a single mapping. Make sure the old def is represented
515 // by a trivial live range.
516 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
517
518 // Mark as complex mapped, forced.
519 VFP = ValueForcePair(nullptr, true);
520 }
521
buildSingleSubRegCopy(Register FromReg,Register ToReg,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,unsigned SubIdx,LiveInterval & DestLI,bool Late,SlotIndex Def)522 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
523 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
524 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
525 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
526 bool FirstCopy = !Def.isValid();
527 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
528 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
529 | getInternalReadRegState(!FirstCopy), SubIdx)
530 .addReg(FromReg, 0, SubIdx);
531
532 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
533 SlotIndexes &Indexes = *LIS.getSlotIndexes();
534 if (FirstCopy) {
535 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
536 } else {
537 CopyMI->bundleWithPred();
538 }
539 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
540 DestLI.refineSubRanges(Allocator, LaneMask,
541 [Def, &Allocator](LiveInterval::SubRange &SR) {
542 SR.createDeadDef(Def, Allocator);
543 },
544 Indexes, TRI);
545 return Def;
546 }
547
buildCopy(Register FromReg,Register ToReg,LaneBitmask LaneMask,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,bool Late,unsigned RegIdx)548 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
549 LaneBitmask LaneMask, MachineBasicBlock &MBB,
550 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
551 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
552 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
553 // The full vreg is copied.
554 MachineInstr *CopyMI =
555 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
556 SlotIndexes &Indexes = *LIS.getSlotIndexes();
557 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
558 }
559
560 // Only a subset of lanes needs to be copied. The following is a simple
561 // heuristic to construct a sequence of COPYs. We could add a target
562 // specific callback if this turns out to be suboptimal.
563 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
564
565 // First pass: Try to find a perfectly matching subregister index. If none
566 // exists find the one covering the most lanemask bits.
567 const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
568 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
569
570 SmallVector<unsigned, 8> Indexes;
571
572 // Abort if we cannot possibly implement the COPY with the given indexes.
573 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, Indexes))
574 report_fatal_error("Impossible to implement partial COPY");
575
576 SlotIndex Def;
577 for (unsigned BestIdx : Indexes) {
578 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
579 DestLI, Late, Def);
580 }
581
582 return Def;
583 }
584
defFromParent(unsigned RegIdx,VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)585 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
586 VNInfo *ParentVNI,
587 SlotIndex UseIdx,
588 MachineBasicBlock &MBB,
589 MachineBasicBlock::iterator I) {
590 SlotIndex Def;
591 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
592
593 // We may be trying to avoid interference that ends at a deleted instruction,
594 // so always begin RegIdx 0 early and all others late.
595 bool Late = RegIdx != 0;
596
597 // Attempt cheap-as-a-copy rematerialization.
598 unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
599 LiveInterval &OrigLI = LIS.getInterval(Original);
600 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
601
602 Register Reg = LI->reg();
603 bool DidRemat = false;
604 if (OrigVNI) {
605 LiveRangeEdit::Remat RM(ParentVNI);
606 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
607 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
608 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
609 ++NumRemats;
610 DidRemat = true;
611 }
612 }
613 if (!DidRemat) {
614 LaneBitmask LaneMask;
615 if (OrigLI.hasSubRanges()) {
616 LaneMask = LaneBitmask::getNone();
617 for (LiveInterval::SubRange &S : OrigLI.subranges()) {
618 if (S.liveAt(UseIdx))
619 LaneMask |= S.LaneMask;
620 }
621 } else {
622 LaneMask = LaneBitmask::getAll();
623 }
624
625 if (LaneMask.none()) {
626 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
627 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
628 SlotIndexes &Indexes = *LIS.getSlotIndexes();
629 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
630 } else {
631 ++NumCopies;
632 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
633 }
634 }
635
636 // Define the value in Reg.
637 return defValue(RegIdx, ParentVNI, Def, false);
638 }
639
640 /// Create a new virtual register and live interval.
openIntv()641 unsigned SplitEditor::openIntv() {
642 // Create the complement as index 0.
643 if (Edit->empty())
644 Edit->createEmptyInterval();
645
646 // Create the open interval.
647 OpenIdx = Edit->size();
648 Edit->createEmptyInterval();
649 return OpenIdx;
650 }
651
selectIntv(unsigned Idx)652 void SplitEditor::selectIntv(unsigned Idx) {
653 assert(Idx != 0 && "Cannot select the complement interval");
654 assert(Idx < Edit->size() && "Can only select previously opened interval");
655 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
656 OpenIdx = Idx;
657 }
658
enterIntvBefore(SlotIndex Idx)659 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
660 assert(OpenIdx && "openIntv not called before enterIntvBefore");
661 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
662 Idx = Idx.getBaseIndex();
663 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
664 if (!ParentVNI) {
665 LLVM_DEBUG(dbgs() << ": not live\n");
666 return Idx;
667 }
668 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
669 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
670 assert(MI && "enterIntvBefore called with invalid index");
671
672 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
673 return VNI->def;
674 }
675
enterIntvAfter(SlotIndex Idx)676 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
677 assert(OpenIdx && "openIntv not called before enterIntvAfter");
678 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
679 Idx = Idx.getBoundaryIndex();
680 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
681 if (!ParentVNI) {
682 LLVM_DEBUG(dbgs() << ": not live\n");
683 return Idx;
684 }
685 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
686 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
687 assert(MI && "enterIntvAfter called with invalid index");
688
689 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
690 std::next(MachineBasicBlock::iterator(MI)));
691 return VNI->def;
692 }
693
enterIntvAtEnd(MachineBasicBlock & MBB)694 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
695 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
696 SlotIndex End = LIS.getMBBEndIdx(&MBB);
697 SlotIndex Last = End.getPrevSlot();
698 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
699 << Last);
700 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
701 if (!ParentVNI) {
702 LLVM_DEBUG(dbgs() << ": not live\n");
703 return End;
704 }
705 SlotIndex LSP = SA.getLastSplitPoint(&MBB);
706 if (LSP < Last) {
707 // It could be that the use after LSP is a def, and thus the ParentVNI
708 // just selected starts at that def. For this case to exist, the def
709 // must be part of a tied def/use pair (as otherwise we'd have split
710 // distinct live ranges into individual live intervals), and thus we
711 // can insert the def into the VNI of the use and the tied def/use
712 // pair can live in the resulting interval.
713 Last = LSP;
714 ParentVNI = Edit->getParent().getVNInfoAt(Last);
715 if (!ParentVNI) {
716 // undef use --> undef tied def
717 LLVM_DEBUG(dbgs() << ": tied use not live\n");
718 return End;
719 }
720 }
721
722 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
723 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
724 SA.getLastSplitPointIter(&MBB));
725 RegAssign.insert(VNI->def, End, OpenIdx);
726 LLVM_DEBUG(dump());
727 return VNI->def;
728 }
729
730 /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)731 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
732 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
733 }
734
useIntv(SlotIndex Start,SlotIndex End)735 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
736 assert(OpenIdx && "openIntv not called before useIntv");
737 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
738 RegAssign.insert(Start, End, OpenIdx);
739 LLVM_DEBUG(dump());
740 }
741
leaveIntvAfter(SlotIndex Idx)742 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
743 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
744 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
745
746 // The interval must be live beyond the instruction at Idx.
747 SlotIndex Boundary = Idx.getBoundaryIndex();
748 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
749 if (!ParentVNI) {
750 LLVM_DEBUG(dbgs() << ": not live\n");
751 return Boundary.getNextSlot();
752 }
753 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
754 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
755 assert(MI && "No instruction at index");
756
757 // In spill mode, make live ranges as short as possible by inserting the copy
758 // before MI. This is only possible if that instruction doesn't redefine the
759 // value. The inserted COPY is not a kill, and we don't need to recompute
760 // the source live range. The spiller also won't try to hoist this copy.
761 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
762 MI->readsVirtualRegister(Edit->getReg())) {
763 forceRecompute(0, *ParentVNI);
764 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
765 return Idx;
766 }
767
768 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
769 std::next(MachineBasicBlock::iterator(MI)));
770 return VNI->def;
771 }
772
leaveIntvBefore(SlotIndex Idx)773 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
774 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
775 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
776
777 // The interval must be live into the instruction at Idx.
778 Idx = Idx.getBaseIndex();
779 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
780 if (!ParentVNI) {
781 LLVM_DEBUG(dbgs() << ": not live\n");
782 return Idx.getNextSlot();
783 }
784 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
785
786 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
787 assert(MI && "No instruction at index");
788 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
789 return VNI->def;
790 }
791
leaveIntvAtTop(MachineBasicBlock & MBB)792 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
793 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
794 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
795 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
796 << Start);
797
798 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
799 if (!ParentVNI) {
800 LLVM_DEBUG(dbgs() << ": not live\n");
801 return Start;
802 }
803
804 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
805 MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
806 RegAssign.insert(Start, VNI->def, OpenIdx);
807 LLVM_DEBUG(dump());
808 return VNI->def;
809 }
810
hasTiedUseOf(MachineInstr & MI,unsigned Reg)811 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
812 return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
813 return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
814 });
815 }
816
overlapIntv(SlotIndex Start,SlotIndex End)817 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
818 assert(OpenIdx && "openIntv not called before overlapIntv");
819 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
820 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
821 "Parent changes value in extended range");
822 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
823 "Range cannot span basic blocks");
824
825 // The complement interval will be extended as needed by LICalc.extend().
826 if (ParentVNI)
827 forceRecompute(0, *ParentVNI);
828
829 // If the last use is tied to a def, we can't mark it as live for the
830 // interval which includes only the use. That would cause the tied pair
831 // to end up in two different intervals.
832 if (auto *MI = LIS.getInstructionFromIndex(End))
833 if (hasTiedUseOf(*MI, Edit->getReg())) {
834 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
835 return;
836 }
837
838 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
839 RegAssign.insert(Start, End, OpenIdx);
840 LLVM_DEBUG(dump());
841 }
842
843 //===----------------------------------------------------------------------===//
844 // Spill modes
845 //===----------------------------------------------------------------------===//
846
removeBackCopies(SmallVectorImpl<VNInfo * > & Copies)847 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
848 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
849 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
850 RegAssignMap::iterator AssignI;
851 AssignI.setMap(RegAssign);
852
853 for (const VNInfo *C : Copies) {
854 SlotIndex Def = C->def;
855 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
856 assert(MI && "No instruction for back-copy");
857
858 MachineBasicBlock *MBB = MI->getParent();
859 MachineBasicBlock::iterator MBBI(MI);
860 bool AtBegin;
861 do AtBegin = MBBI == MBB->begin();
862 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
863
864 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
865 LIS.removeVRegDefAt(*LI, Def);
866 LIS.RemoveMachineInstrFromMaps(*MI);
867 MI->eraseFromParent();
868
869 // Adjust RegAssign if a register assignment is killed at Def. We want to
870 // avoid calculating the live range of the source register if possible.
871 AssignI.find(Def.getPrevSlot());
872 if (!AssignI.valid() || AssignI.start() >= Def)
873 continue;
874 // If MI doesn't kill the assigned register, just leave it.
875 if (AssignI.stop() != Def)
876 continue;
877 unsigned RegIdx = AssignI.value();
878 // We could hoist back-copy right after another back-copy. As a result
879 // MMBI points to copy instruction which is actually dead now.
880 // We cannot set its stop to MBBI which will be the same as start and
881 // interval does not support that.
882 SlotIndex Kill =
883 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
884 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
885 Kill <= AssignI.start()) {
886 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
887 << '\n');
888 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
889 } else {
890 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
891 AssignI.setStop(Kill);
892 }
893 }
894 }
895
896 MachineBasicBlock*
findShallowDominator(MachineBasicBlock * MBB,MachineBasicBlock * DefMBB)897 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
898 MachineBasicBlock *DefMBB) {
899 if (MBB == DefMBB)
900 return MBB;
901 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
902
903 const MachineLoopInfo &Loops = SA.Loops;
904 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
905 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
906
907 // Best candidate so far.
908 MachineBasicBlock *BestMBB = MBB;
909 unsigned BestDepth = std::numeric_limits<unsigned>::max();
910
911 while (true) {
912 const MachineLoop *Loop = Loops.getLoopFor(MBB);
913
914 // MBB isn't in a loop, it doesn't get any better. All dominators have a
915 // higher frequency by definition.
916 if (!Loop) {
917 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
918 << " dominates " << printMBBReference(*MBB)
919 << " at depth 0\n");
920 return MBB;
921 }
922
923 // We'll never be able to exit the DefLoop.
924 if (Loop == DefLoop) {
925 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
926 << " dominates " << printMBBReference(*MBB)
927 << " in the same loop\n");
928 return MBB;
929 }
930
931 // Least busy dominator seen so far.
932 unsigned Depth = Loop->getLoopDepth();
933 if (Depth < BestDepth) {
934 BestMBB = MBB;
935 BestDepth = Depth;
936 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
937 << " dominates " << printMBBReference(*MBB)
938 << " at depth " << Depth << '\n');
939 }
940
941 // Leave loop by going to the immediate dominator of the loop header.
942 // This is a bigger stride than simply walking up the dominator tree.
943 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
944
945 // Too far up the dominator tree?
946 if (!IDom || !MDT.dominates(DefDomNode, IDom))
947 return BestMBB;
948
949 MBB = IDom->getBlock();
950 }
951 }
952
computeRedundantBackCopies(DenseSet<unsigned> & NotToHoistSet,SmallVectorImpl<VNInfo * > & BackCopies)953 void SplitEditor::computeRedundantBackCopies(
954 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
955 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
956 LiveInterval *Parent = &Edit->getParent();
957 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
958 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
959
960 // Aggregate VNIs having the same value as ParentVNI.
961 for (VNInfo *VNI : LI->valnos) {
962 if (VNI->isUnused())
963 continue;
964 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
965 EqualVNs[ParentVNI->id].insert(VNI);
966 }
967
968 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
969 // redundant VNIs to BackCopies.
970 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
971 VNInfo *ParentVNI = Parent->getValNumInfo(i);
972 if (!NotToHoistSet.count(ParentVNI->id))
973 continue;
974 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
975 SmallPtrSetIterator<VNInfo *> It2 = It1;
976 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
977 It2 = It1;
978 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
979 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
980 continue;
981
982 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
983 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
984 if (MBB1 == MBB2) {
985 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
986 } else if (MDT.dominates(MBB1, MBB2)) {
987 DominatedVNIs.insert(*It2);
988 } else if (MDT.dominates(MBB2, MBB1)) {
989 DominatedVNIs.insert(*It1);
990 }
991 }
992 }
993 if (!DominatedVNIs.empty()) {
994 forceRecompute(0, *ParentVNI);
995 append_range(BackCopies, DominatedVNIs);
996 DominatedVNIs.clear();
997 }
998 }
999 }
1000
1001 /// For SM_Size mode, find a common dominator for all the back-copies for
1002 /// the same ParentVNI and hoist the backcopies to the dominator BB.
1003 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1004 /// to do the hoisting, simply remove the dominated backcopies for the same
1005 /// ParentVNI.
hoistCopies()1006 void SplitEditor::hoistCopies() {
1007 // Get the complement interval, always RegIdx 0.
1008 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1009 LiveInterval *Parent = &Edit->getParent();
1010
1011 // Track the nearest common dominator for all back-copies for each ParentVNI,
1012 // indexed by ParentVNI->id.
1013 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1014 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1015 // The total cost of all the back-copies for each ParentVNI.
1016 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1017 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1018 // for Speed.
1019 DenseSet<unsigned> NotToHoistSet;
1020
1021 // Find the nearest common dominator for parent values with multiple
1022 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1023 for (VNInfo *VNI : LI->valnos) {
1024 if (VNI->isUnused())
1025 continue;
1026 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1027 assert(ParentVNI && "Parent not live at complement def");
1028
1029 // Don't hoist remats. The complement is probably going to disappear
1030 // completely anyway.
1031 if (Edit->didRematerialize(ParentVNI))
1032 continue;
1033
1034 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1035
1036 DomPair &Dom = NearestDom[ParentVNI->id];
1037
1038 // Keep directly defined parent values. This is either a PHI or an
1039 // instruction in the complement range. All other copies of ParentVNI
1040 // should be eliminated.
1041 if (VNI->def == ParentVNI->def) {
1042 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1043 Dom = DomPair(ValMBB, VNI->def);
1044 continue;
1045 }
1046 // Skip the singly mapped values. There is nothing to gain from hoisting a
1047 // single back-copy.
1048 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1049 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1050 continue;
1051 }
1052
1053 if (!Dom.first) {
1054 // First time we see ParentVNI. VNI dominates itself.
1055 Dom = DomPair(ValMBB, VNI->def);
1056 } else if (Dom.first == ValMBB) {
1057 // Two defs in the same block. Pick the earlier def.
1058 if (!Dom.second.isValid() || VNI->def < Dom.second)
1059 Dom.second = VNI->def;
1060 } else {
1061 // Different basic blocks. Check if one dominates.
1062 MachineBasicBlock *Near =
1063 MDT.findNearestCommonDominator(Dom.first, ValMBB);
1064 if (Near == ValMBB)
1065 // Def ValMBB dominates.
1066 Dom = DomPair(ValMBB, VNI->def);
1067 else if (Near != Dom.first)
1068 // None dominate. Hoist to common dominator, need new def.
1069 Dom = DomPair(Near, SlotIndex());
1070 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1071 }
1072
1073 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1074 << VNI->def << " for parent " << ParentVNI->id << '@'
1075 << ParentVNI->def << " hoist to "
1076 << printMBBReference(*Dom.first) << ' ' << Dom.second
1077 << '\n');
1078 }
1079
1080 // Insert the hoisted copies.
1081 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1082 DomPair &Dom = NearestDom[i];
1083 if (!Dom.first || Dom.second.isValid())
1084 continue;
1085 // This value needs a hoisted copy inserted at the end of Dom.first.
1086 VNInfo *ParentVNI = Parent->getValNumInfo(i);
1087 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1088 // Get a less loopy dominator than Dom.first.
1089 Dom.first = findShallowDominator(Dom.first, DefMBB);
1090 if (SpillMode == SM_Speed &&
1091 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1092 NotToHoistSet.insert(ParentVNI->id);
1093 continue;
1094 }
1095 SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1096 if (LSP <= ParentVNI->def) {
1097 NotToHoistSet.insert(ParentVNI->id);
1098 continue;
1099 }
1100 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1101 SA.getLastSplitPointIter(Dom.first))->def;
1102 }
1103
1104 // Remove redundant back-copies that are now known to be dominated by another
1105 // def with the same value.
1106 SmallVector<VNInfo*, 8> BackCopies;
1107 for (VNInfo *VNI : LI->valnos) {
1108 if (VNI->isUnused())
1109 continue;
1110 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1111 const DomPair &Dom = NearestDom[ParentVNI->id];
1112 if (!Dom.first || Dom.second == VNI->def ||
1113 NotToHoistSet.count(ParentVNI->id))
1114 continue;
1115 BackCopies.push_back(VNI);
1116 forceRecompute(0, *ParentVNI);
1117 }
1118
1119 // If it is not beneficial to hoist all the BackCopies, simply remove
1120 // redundant BackCopies in speed mode.
1121 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1122 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1123
1124 removeBackCopies(BackCopies);
1125 }
1126
1127 /// transferValues - Transfer all possible values to the new live ranges.
1128 /// Values that were rematerialized are left alone, they need LICalc.extend().
transferValues()1129 bool SplitEditor::transferValues() {
1130 bool Skipped = false;
1131 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1132 for (const LiveRange::Segment &S : Edit->getParent()) {
1133 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1134 VNInfo *ParentVNI = S.valno;
1135 // RegAssign has holes where RegIdx 0 should be used.
1136 SlotIndex Start = S.start;
1137 AssignI.advanceTo(Start);
1138 do {
1139 unsigned RegIdx;
1140 SlotIndex End = S.end;
1141 if (!AssignI.valid()) {
1142 RegIdx = 0;
1143 } else if (AssignI.start() <= Start) {
1144 RegIdx = AssignI.value();
1145 if (AssignI.stop() < End) {
1146 End = AssignI.stop();
1147 ++AssignI;
1148 }
1149 } else {
1150 RegIdx = 0;
1151 End = std::min(End, AssignI.start());
1152 }
1153
1154 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1155 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1156 << printReg(Edit->get(RegIdx)) << ')');
1157 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1158
1159 // Check for a simply defined value that can be blitted directly.
1160 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1161 if (VNInfo *VNI = VFP.getPointer()) {
1162 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1163 LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1164 Start = End;
1165 continue;
1166 }
1167
1168 // Skip values with forced recomputation.
1169 if (VFP.getInt()) {
1170 LLVM_DEBUG(dbgs() << "(recalc)");
1171 Skipped = true;
1172 Start = End;
1173 continue;
1174 }
1175
1176 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1177
1178 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1179 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1180 // LiveInBlocks.
1181 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1182 SlotIndex BlockStart, BlockEnd;
1183 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1184
1185 // The first block may be live-in, or it may have its own def.
1186 if (Start != BlockStart) {
1187 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1188 assert(VNI && "Missing def for complex mapped value");
1189 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1190 // MBB has its own def. Is it also live-out?
1191 if (BlockEnd <= End)
1192 LIC.setLiveOutValue(&*MBB, VNI);
1193
1194 // Skip to the next block for live-in.
1195 ++MBB;
1196 BlockStart = BlockEnd;
1197 }
1198
1199 // Handle the live-in blocks covered by [Start;End).
1200 assert(Start <= BlockStart && "Expected live-in block");
1201 while (BlockStart < End) {
1202 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1203 BlockEnd = LIS.getMBBEndIdx(&*MBB);
1204 if (BlockStart == ParentVNI->def) {
1205 // This block has the def of a parent PHI, so it isn't live-in.
1206 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1207 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1208 assert(VNI && "Missing def for complex mapped parent PHI");
1209 if (End >= BlockEnd)
1210 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1211 } else {
1212 // This block needs a live-in value. The last block covered may not
1213 // be live-out.
1214 if (End < BlockEnd)
1215 LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1216 else {
1217 // Live-through, and we don't know the value.
1218 LIC.addLiveInBlock(LI, MDT[&*MBB]);
1219 LIC.setLiveOutValue(&*MBB, nullptr);
1220 }
1221 }
1222 BlockStart = BlockEnd;
1223 ++MBB;
1224 }
1225 Start = End;
1226 } while (Start != S.end);
1227 LLVM_DEBUG(dbgs() << '\n');
1228 }
1229
1230 LICalc[0].calculateValues();
1231 if (SpillMode)
1232 LICalc[1].calculateValues();
1233
1234 return Skipped;
1235 }
1236
removeDeadSegment(SlotIndex Def,LiveRange & LR)1237 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1238 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1239 if (Seg == nullptr)
1240 return true;
1241 if (Seg->end != Def.getDeadSlot())
1242 return false;
1243 // This is a dead PHI. Remove it.
1244 LR.removeSegment(*Seg, true);
1245 return true;
1246 }
1247
extendPHIRange(MachineBasicBlock & B,LiveIntervalCalc & LIC,LiveRange & LR,LaneBitmask LM,ArrayRef<SlotIndex> Undefs)1248 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1249 LiveRange &LR, LaneBitmask LM,
1250 ArrayRef<SlotIndex> Undefs) {
1251 for (MachineBasicBlock *P : B.predecessors()) {
1252 SlotIndex End = LIS.getMBBEndIdx(P);
1253 SlotIndex LastUse = End.getPrevSlot();
1254 // The predecessor may not have a live-out value. That is OK, like an
1255 // undef PHI operand.
1256 LiveInterval &PLI = Edit->getParent();
1257 // Need the cast because the inputs to ?: would otherwise be deemed
1258 // "incompatible": SubRange vs LiveInterval.
1259 LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1260 : static_cast<LiveRange &>(PLI);
1261 if (PSR.liveAt(LastUse))
1262 LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1263 }
1264 }
1265
extendPHIKillRanges()1266 void SplitEditor::extendPHIKillRanges() {
1267 // Extend live ranges to be live-out for successor PHI values.
1268
1269 // Visit each PHI def slot in the parent live interval. If the def is dead,
1270 // remove it. Otherwise, extend the live interval to reach the end indexes
1271 // of all predecessor blocks.
1272
1273 LiveInterval &ParentLI = Edit->getParent();
1274 for (const VNInfo *V : ParentLI.valnos) {
1275 if (V->isUnused() || !V->isPHIDef())
1276 continue;
1277
1278 unsigned RegIdx = RegAssign.lookup(V->def);
1279 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1280 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1281 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1282 if (!removeDeadSegment(V->def, LI))
1283 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1284 }
1285
1286 SmallVector<SlotIndex, 4> Undefs;
1287 LiveIntervalCalc SubLIC;
1288
1289 for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1290 for (const VNInfo *V : PS.valnos) {
1291 if (V->isUnused() || !V->isPHIDef())
1292 continue;
1293 unsigned RegIdx = RegAssign.lookup(V->def);
1294 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1295 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1296 if (removeDeadSegment(V->def, S))
1297 continue;
1298
1299 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1300 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1301 &LIS.getVNInfoAllocator());
1302 Undefs.clear();
1303 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1304 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1305 }
1306 }
1307 }
1308
1309 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)1310 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1311 struct ExtPoint {
1312 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1313 : MO(O), RegIdx(R), Next(N) {}
1314
1315 MachineOperand MO;
1316 unsigned RegIdx;
1317 SlotIndex Next;
1318 };
1319
1320 SmallVector<ExtPoint,4> ExtPoints;
1321
1322 for (MachineOperand &MO :
1323 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1324 MachineInstr *MI = MO.getParent();
1325 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1326 if (MI->isDebugValue()) {
1327 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1328 MO.setReg(0);
1329 continue;
1330 }
1331
1332 // <undef> operands don't really read the register, so it doesn't matter
1333 // which register we choose. When the use operand is tied to a def, we must
1334 // use the same register as the def, so just do that always.
1335 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1336 if (MO.isDef() || MO.isUndef())
1337 Idx = Idx.getRegSlot(MO.isEarlyClobber());
1338
1339 // Rewrite to the mapped register at Idx.
1340 unsigned RegIdx = RegAssign.lookup(Idx);
1341 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1342 MO.setReg(LI.reg());
1343 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1344 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1345
1346 // Extend liveness to Idx if the instruction reads reg.
1347 if (!ExtendRanges || MO.isUndef())
1348 continue;
1349
1350 // Skip instructions that don't read Reg.
1351 if (MO.isDef()) {
1352 if (!MO.getSubReg() && !MO.isEarlyClobber())
1353 continue;
1354 // We may want to extend a live range for a partial redef, or for a use
1355 // tied to an early clobber.
1356 Idx = Idx.getPrevSlot();
1357 if (!Edit->getParent().liveAt(Idx))
1358 continue;
1359 } else
1360 Idx = Idx.getRegSlot(true);
1361
1362 SlotIndex Next = Idx.getNextSlot();
1363 if (LI.hasSubRanges()) {
1364 // We have to delay extending subranges until we have seen all operands
1365 // defining the register. This is because a <def,read-undef> operand
1366 // will create an "undef" point, and we cannot extend any subranges
1367 // until all of them have been accounted for.
1368 if (MO.isUse())
1369 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1370 } else {
1371 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1372 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1373 }
1374 }
1375
1376 for (ExtPoint &EP : ExtPoints) {
1377 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1378 assert(LI.hasSubRanges());
1379
1380 LiveIntervalCalc SubLIC;
1381 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1382 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1383 : MRI.getMaxLaneMaskForVReg(Reg);
1384 for (LiveInterval::SubRange &S : LI.subranges()) {
1385 if ((S.LaneMask & LM).none())
1386 continue;
1387 // The problem here can be that the new register may have been created
1388 // for a partially defined original register. For example:
1389 // %0:subreg_hireg<def,read-undef> = ...
1390 // ...
1391 // %1 = COPY %0
1392 if (S.empty())
1393 continue;
1394 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1395 &LIS.getVNInfoAllocator());
1396 SmallVector<SlotIndex, 4> Undefs;
1397 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1398 SubLIC.extend(S, EP.Next, 0, Undefs);
1399 }
1400 }
1401
1402 for (Register R : *Edit) {
1403 LiveInterval &LI = LIS.getInterval(R);
1404 if (!LI.hasSubRanges())
1405 continue;
1406 LI.clear();
1407 LI.removeEmptySubRanges();
1408 LIS.constructMainRangeFromSubranges(LI);
1409 }
1410 }
1411
deleteRematVictims()1412 void SplitEditor::deleteRematVictims() {
1413 SmallVector<MachineInstr*, 8> Dead;
1414 for (const Register &R : *Edit) {
1415 LiveInterval *LI = &LIS.getInterval(R);
1416 for (const LiveRange::Segment &S : LI->segments) {
1417 // Dead defs end at the dead slot.
1418 if (S.end != S.valno->def.getDeadSlot())
1419 continue;
1420 if (S.valno->isPHIDef())
1421 continue;
1422 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1423 assert(MI && "Missing instruction for dead def");
1424 MI->addRegisterDead(LI->reg(), &TRI);
1425
1426 if (!MI->allDefsAreDead())
1427 continue;
1428
1429 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1430 Dead.push_back(MI);
1431 }
1432 }
1433
1434 if (Dead.empty())
1435 return;
1436
1437 Edit->eliminateDeadDefs(Dead, None, &AA);
1438 }
1439
forceRecomputeVNI(const VNInfo & ParentVNI)1440 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1441 // Fast-path for common case.
1442 if (!ParentVNI.isPHIDef()) {
1443 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1444 forceRecompute(I, ParentVNI);
1445 return;
1446 }
1447
1448 // Trace value through phis.
1449 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1450 SmallVector<const VNInfo *, 4> WorkList;
1451 Visited.insert(&ParentVNI);
1452 WorkList.push_back(&ParentVNI);
1453
1454 const LiveInterval &ParentLI = Edit->getParent();
1455 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1456 do {
1457 const VNInfo &VNI = *WorkList.back();
1458 WorkList.pop_back();
1459 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1460 forceRecompute(I, VNI);
1461 if (!VNI.isPHIDef())
1462 continue;
1463
1464 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1465 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1466 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1467 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1468 assert(PredVNI && "Value available in PhiVNI predecessor");
1469 if (Visited.insert(PredVNI).second)
1470 WorkList.push_back(PredVNI);
1471 }
1472 } while(!WorkList.empty());
1473 }
1474
finish(SmallVectorImpl<unsigned> * LRMap)1475 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1476 ++NumFinished;
1477
1478 // At this point, the live intervals in Edit contain VNInfos corresponding to
1479 // the inserted copies.
1480
1481 // Add the original defs from the parent interval.
1482 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1483 if (ParentVNI->isUnused())
1484 continue;
1485 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1486 defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1487
1488 // Force rematted values to be recomputed everywhere.
1489 // The new live ranges may be truncated.
1490 if (Edit->didRematerialize(ParentVNI))
1491 forceRecomputeVNI(*ParentVNI);
1492 }
1493
1494 // Hoist back-copies to the complement interval when in spill mode.
1495 switch (SpillMode) {
1496 case SM_Partition:
1497 // Leave all back-copies as is.
1498 break;
1499 case SM_Size:
1500 case SM_Speed:
1501 // hoistCopies will behave differently between size and speed.
1502 hoistCopies();
1503 }
1504
1505 // Transfer the simply mapped values, check if any are skipped.
1506 bool Skipped = transferValues();
1507
1508 // Rewrite virtual registers, possibly extending ranges.
1509 rewriteAssigned(Skipped);
1510
1511 if (Skipped)
1512 extendPHIKillRanges();
1513 else
1514 ++NumSimple;
1515
1516 // Delete defs that were rematted everywhere.
1517 if (Skipped)
1518 deleteRematVictims();
1519
1520 // Get rid of unused values and set phi-kill flags.
1521 for (Register Reg : *Edit) {
1522 LiveInterval &LI = LIS.getInterval(Reg);
1523 LI.removeEmptySubRanges();
1524 LI.RenumberValues();
1525 }
1526
1527 // Provide a reverse mapping from original indices to Edit ranges.
1528 if (LRMap) {
1529 LRMap->clear();
1530 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1531 LRMap->push_back(i);
1532 }
1533
1534 // Now check if any registers were separated into multiple components.
1535 ConnectedVNInfoEqClasses ConEQ(LIS);
1536 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1537 // Don't use iterators, they are invalidated by create() below.
1538 Register VReg = Edit->get(i);
1539 LiveInterval &LI = LIS.getInterval(VReg);
1540 SmallVector<LiveInterval*, 8> SplitLIs;
1541 LIS.splitSeparateComponents(LI, SplitLIs);
1542 Register Original = VRM.getOriginal(VReg);
1543 for (LiveInterval *SplitLI : SplitLIs)
1544 VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1545
1546 // The new intervals all map back to i.
1547 if (LRMap)
1548 LRMap->resize(Edit->size(), i);
1549 }
1550
1551 // Calculate spill weight and allocation hints for new intervals.
1552 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1553
1554 assert(!LRMap || LRMap->size() == Edit->size());
1555 }
1556
1557 //===----------------------------------------------------------------------===//
1558 // Single Block Splitting
1559 //===----------------------------------------------------------------------===//
1560
shouldSplitSingleBlock(const BlockInfo & BI,bool SingleInstrs) const1561 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1562 bool SingleInstrs) const {
1563 // Always split for multiple instructions.
1564 if (!BI.isOneInstr())
1565 return true;
1566 // Don't split for single instructions unless explicitly requested.
1567 if (!SingleInstrs)
1568 return false;
1569 // Splitting a live-through range always makes progress.
1570 if (BI.LiveIn && BI.LiveOut)
1571 return true;
1572 // No point in isolating a copy. It has no register class constraints.
1573 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1574 return false;
1575 // Finally, don't isolate an end point that was created by earlier splits.
1576 return isOriginalEndpoint(BI.FirstInstr);
1577 }
1578
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1579 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1580 openIntv();
1581 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1582 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1583 LastSplitPoint));
1584 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1585 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1586 } else {
1587 // The last use is after the last valid split point.
1588 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1589 useIntv(SegStart, SegStop);
1590 overlapIntv(SegStop, BI.LastInstr);
1591 }
1592 }
1593
1594 //===----------------------------------------------------------------------===//
1595 // Global Live Range Splitting Support
1596 //===----------------------------------------------------------------------===//
1597
1598 // These methods support a method of global live range splitting that uses a
1599 // global algorithm to decide intervals for CFG edges. They will insert split
1600 // points and color intervals in basic blocks while avoiding interference.
1601 //
1602 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1603 // are on the stack.
1604
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1605 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1606 unsigned IntvIn, SlotIndex LeaveBefore,
1607 unsigned IntvOut, SlotIndex EnterAfter){
1608 SlotIndex Start, Stop;
1609 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1610
1611 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1612 << ") intf " << LeaveBefore << '-' << EnterAfter
1613 << ", live-through " << IntvIn << " -> " << IntvOut);
1614
1615 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1616
1617 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1618 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1619 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1620
1621 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1622
1623 if (!IntvOut) {
1624 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1625 //
1626 // <<<<<<<<< Possible LeaveBefore interference.
1627 // |-----------| Live through.
1628 // -____________ Spill on entry.
1629 //
1630 selectIntv(IntvIn);
1631 SlotIndex Idx = leaveIntvAtTop(*MBB);
1632 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1633 (void)Idx;
1634 return;
1635 }
1636
1637 if (!IntvIn) {
1638 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1639 //
1640 // >>>>>>> Possible EnterAfter interference.
1641 // |-----------| Live through.
1642 // ___________-- Reload on exit.
1643 //
1644 selectIntv(IntvOut);
1645 SlotIndex Idx = enterIntvAtEnd(*MBB);
1646 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1647 (void)Idx;
1648 return;
1649 }
1650
1651 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1652 LLVM_DEBUG(dbgs() << ", straight through.\n");
1653 //
1654 // |-----------| Live through.
1655 // ------------- Straight through, same intv, no interference.
1656 //
1657 selectIntv(IntvOut);
1658 useIntv(Start, Stop);
1659 return;
1660 }
1661
1662 // We cannot legally insert splits after LSP.
1663 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1664 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1665
1666 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1667 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1668 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1669 //
1670 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1671 // |-----------| Live through.
1672 // ------======= Switch intervals between interference.
1673 //
1674 selectIntv(IntvOut);
1675 SlotIndex Idx;
1676 if (LeaveBefore && LeaveBefore < LSP) {
1677 Idx = enterIntvBefore(LeaveBefore);
1678 useIntv(Idx, Stop);
1679 } else {
1680 Idx = enterIntvAtEnd(*MBB);
1681 }
1682 selectIntv(IntvIn);
1683 useIntv(Start, Idx);
1684 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1685 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1686 return;
1687 }
1688
1689 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1690 //
1691 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1692 // |-----------| Live through.
1693 // ==---------== Switch intervals before/after interference.
1694 //
1695 assert(LeaveBefore <= EnterAfter && "Missed case");
1696
1697 selectIntv(IntvOut);
1698 SlotIndex Idx = enterIntvAfter(EnterAfter);
1699 useIntv(Idx, Stop);
1700 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1701
1702 selectIntv(IntvIn);
1703 Idx = leaveIntvBefore(LeaveBefore);
1704 useIntv(Start, Idx);
1705 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1706 }
1707
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1708 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1709 unsigned IntvIn, SlotIndex LeaveBefore) {
1710 SlotIndex Start, Stop;
1711 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1712
1713 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1714 << Stop << "), uses " << BI.FirstInstr << '-'
1715 << BI.LastInstr << ", reg-in " << IntvIn
1716 << ", leave before " << LeaveBefore
1717 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1718
1719 assert(IntvIn && "Must have register in");
1720 assert(BI.LiveIn && "Must be live-in");
1721 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1722
1723 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1724 LLVM_DEBUG(dbgs() << " before interference.\n");
1725 //
1726 // <<< Interference after kill.
1727 // |---o---x | Killed in block.
1728 // ========= Use IntvIn everywhere.
1729 //
1730 selectIntv(IntvIn);
1731 useIntv(Start, BI.LastInstr);
1732 return;
1733 }
1734
1735 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1736
1737 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1738 //
1739 // <<< Possible interference after last use.
1740 // |---o---o---| Live-out on stack.
1741 // =========____ Leave IntvIn after last use.
1742 //
1743 // < Interference after last use.
1744 // |---o---o--o| Live-out on stack, late last use.
1745 // ============ Copy to stack after LSP, overlap IntvIn.
1746 // \_____ Stack interval is live-out.
1747 //
1748 if (BI.LastInstr < LSP) {
1749 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1750 selectIntv(IntvIn);
1751 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1752 useIntv(Start, Idx);
1753 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1754 } else {
1755 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1756 selectIntv(IntvIn);
1757 SlotIndex Idx = leaveIntvBefore(LSP);
1758 overlapIntv(Idx, BI.LastInstr);
1759 useIntv(Start, Idx);
1760 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1761 }
1762 return;
1763 }
1764
1765 // The interference is overlapping somewhere we wanted to use IntvIn. That
1766 // means we need to create a local interval that can be allocated a
1767 // different register.
1768 unsigned LocalIntv = openIntv();
1769 (void)LocalIntv;
1770 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1771
1772 if (!BI.LiveOut || BI.LastInstr < LSP) {
1773 //
1774 // <<<<<<< Interference overlapping uses.
1775 // |---o---o---| Live-out on stack.
1776 // =====----____ Leave IntvIn before interference, then spill.
1777 //
1778 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1779 SlotIndex From = enterIntvBefore(LeaveBefore);
1780 useIntv(From, To);
1781 selectIntv(IntvIn);
1782 useIntv(Start, From);
1783 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1784 return;
1785 }
1786
1787 // <<<<<<< Interference overlapping uses.
1788 // |---o---o--o| Live-out on stack, late last use.
1789 // =====------- Copy to stack before LSP, overlap LocalIntv.
1790 // \_____ Stack interval is live-out.
1791 //
1792 SlotIndex To = leaveIntvBefore(LSP);
1793 overlapIntv(To, BI.LastInstr);
1794 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1795 useIntv(From, To);
1796 selectIntv(IntvIn);
1797 useIntv(Start, From);
1798 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1799 }
1800
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1801 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1802 unsigned IntvOut, SlotIndex EnterAfter) {
1803 SlotIndex Start, Stop;
1804 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1805
1806 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1807 << Stop << "), uses " << BI.FirstInstr << '-'
1808 << BI.LastInstr << ", reg-out " << IntvOut
1809 << ", enter after " << EnterAfter
1810 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1811
1812 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1813
1814 assert(IntvOut && "Must have register out");
1815 assert(BI.LiveOut && "Must be live-out");
1816 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1817
1818 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1819 LLVM_DEBUG(dbgs() << " after interference.\n");
1820 //
1821 // >>>> Interference before def.
1822 // | o---o---| Defined in block.
1823 // ========= Use IntvOut everywhere.
1824 //
1825 selectIntv(IntvOut);
1826 useIntv(BI.FirstInstr, Stop);
1827 return;
1828 }
1829
1830 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1831 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1832 //
1833 // >>>> Interference before def.
1834 // |---o---o---| Live-through, stack-in.
1835 // ____========= Enter IntvOut before first use.
1836 //
1837 selectIntv(IntvOut);
1838 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1839 useIntv(Idx, Stop);
1840 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1841 return;
1842 }
1843
1844 // The interference is overlapping somewhere we wanted to use IntvOut. That
1845 // means we need to create a local interval that can be allocated a
1846 // different register.
1847 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1848 //
1849 // >>>>>>> Interference overlapping uses.
1850 // |---o---o---| Live-through, stack-in.
1851 // ____---====== Create local interval for interference range.
1852 //
1853 selectIntv(IntvOut);
1854 SlotIndex Idx = enterIntvAfter(EnterAfter);
1855 useIntv(Idx, Stop);
1856 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1857
1858 openIntv();
1859 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1860 useIntv(From, Idx);
1861 }
1862
print(raw_ostream & OS) const1863 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1864 OS << "{" << printMBBReference(*MBB) << ", "
1865 << "uses " << FirstInstr << " to " << LastInstr << ", "
1866 << "1st def " << FirstDef << ", "
1867 << (LiveIn ? "live in" : "dead in") << ", "
1868 << (LiveOut ? "live out" : "dead out") << "}";
1869 }
1870
dump() const1871 void SplitAnalysis::BlockInfo::dump() const {
1872 print(dbgs());
1873 dbgs() << "\n";
1874 }
1875