xref: /netbsd-src/external/gpl3/gcc/dist/gcc/cselib.cc (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Common subexpression elimination library for GNU compiler.
2    Copyright (C) 1987-2022 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "dumpfile.h"
33 #include "cselib.h"
34 #include "function-abi.h"
35 #include "alias.h"
36 
37 /* A list of cselib_val structures.  */
38 struct elt_list
39 {
40   struct elt_list *next;
41   cselib_val *elt;
42 };
43 
44 static bool cselib_record_memory;
45 static bool cselib_preserve_constants;
46 static bool cselib_any_perm_equivs;
47 static inline void promote_debug_loc (struct elt_loc_list *l);
48 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49 static void new_elt_loc_list (cselib_val *, rtx);
50 static void unchain_one_value (cselib_val *);
51 static void unchain_one_elt_list (struct elt_list **);
52 static void unchain_one_elt_loc_list (struct elt_loc_list **);
53 static void remove_useless_values (void);
54 static unsigned int cselib_hash_rtx (rtx, int, machine_mode);
55 static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx);
56 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
57 static cselib_val *cselib_lookup_mem (rtx, int);
58 static void cselib_invalidate_regno (unsigned int, machine_mode);
59 static void cselib_invalidate_mem (rtx);
60 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
61 static void cselib_record_sets (rtx_insn *);
62 static rtx autoinc_split (rtx, rtx *, machine_mode);
63 
64 #define PRESERVED_VALUE_P(RTX) \
65   (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
66 
67 #define SP_BASED_VALUE_P(RTX) \
68   (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
69 
70 #define SP_DERIVED_VALUE_P(RTX) \
71   (RTL_FLAG_CHECK1 ("SP_DERIVED_VALUE_P", (RTX), VALUE)->call)
72 
73 struct expand_value_data
74 {
75   bitmap regs_active;
76   cselib_expand_callback callback;
77   void *callback_arg;
78   bool dummy;
79 };
80 
81 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
82 
83 /* There are three ways in which cselib can look up an rtx:
84    - for a REG, the reg_values table (which is indexed by regno) is used
85    - for a MEM, we recursively look up its address and then follow the
86      addr_list of that value
87    - for everything else, we compute a hash value and go through the hash
88      table.  Since different rtx's can still have the same hash value,
89      this involves walking the table entries for a given value and comparing
90      the locations of the entries with the rtx we are looking up.  */
91 
92 struct cselib_hasher : nofree_ptr_hash <cselib_val>
93 {
94   struct key {
95     /* The rtx value and its mode (needed separately for constant
96        integers).  */
97     machine_mode mode;
98     rtx x;
99     /* The mode of the contaning MEM, if any, otherwise VOIDmode.  */
100     machine_mode memmode;
101   };
102   typedef key *compare_type;
103   static inline hashval_t hash (const cselib_val *);
104   static inline bool equal (const cselib_val *, const key *);
105 };
106 
107 /* The hash function for our hash table.  The value is always computed with
108    cselib_hash_rtx when adding an element; this function just extracts the
109    hash value from a cselib_val structure.  */
110 
111 inline hashval_t
hash(const cselib_val * v)112 cselib_hasher::hash (const cselib_val *v)
113 {
114   return v->hash;
115 }
116 
117 /* The equality test for our hash table.  The first argument V is a table
118    element (i.e. a cselib_val), while the second arg X is an rtx.  We know
119    that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
120    CONST of an appropriate mode.  */
121 
122 inline bool
equal(const cselib_val * v,const key * x_arg)123 cselib_hasher::equal (const cselib_val *v, const key *x_arg)
124 {
125   struct elt_loc_list *l;
126   rtx x = x_arg->x;
127   machine_mode mode = x_arg->mode;
128   machine_mode memmode = x_arg->memmode;
129 
130   if (mode != GET_MODE (v->val_rtx))
131     return false;
132 
133   if (GET_CODE (x) == VALUE)
134     return x == v->val_rtx;
135 
136   if (SP_DERIVED_VALUE_P (v->val_rtx) && GET_MODE (x) == Pmode)
137     {
138       rtx xoff = NULL;
139       if (autoinc_split (x, &xoff, memmode) == v->val_rtx && xoff == NULL_RTX)
140 	return true;
141     }
142 
143   /* We don't guarantee that distinct rtx's have different hash values,
144      so we need to do a comparison.  */
145   for (l = v->locs; l; l = l->next)
146     if (rtx_equal_for_cselib_1 (l->loc, x, memmode, 0))
147       {
148 	promote_debug_loc (l);
149 	return true;
150       }
151 
152   return false;
153 }
154 
155 /* A table that enables us to look up elts by their value.  */
156 static hash_table<cselib_hasher> *cselib_hash_table;
157 
158 /* A table to hold preserved values.  */
159 static hash_table<cselib_hasher> *cselib_preserved_hash_table;
160 
161 /* This is a global so we don't have to pass this through every function.
162    It is used in new_elt_loc_list to set SETTING_INSN.  */
163 static rtx_insn *cselib_current_insn;
164 
165 /* The unique id that the next create value will take.  */
166 static unsigned int next_uid;
167 
168 /* The number of registers we had when the varrays were last resized.  */
169 static unsigned int cselib_nregs;
170 
171 /* Count values without known locations, or with only locations that
172    wouldn't have been known except for debug insns.  Whenever this
173    grows too big, we remove these useless values from the table.
174 
175    Counting values with only debug values is a bit tricky.  We don't
176    want to increment n_useless_values when we create a value for a
177    debug insn, for this would get n_useless_values out of sync, but we
178    want increment it if all locs in the list that were ever referenced
179    in nondebug insns are removed from the list.
180 
181    In the general case, once we do that, we'd have to stop accepting
182    nondebug expressions in the loc list, to avoid having two values
183    equivalent that, without debug insns, would have been made into
184    separate values.  However, because debug insns never introduce
185    equivalences themselves (no assignments), the only means for
186    growing loc lists is through nondebug assignments.  If the locs
187    also happen to be referenced in debug insns, it will work just fine.
188 
189    A consequence of this is that there's at most one debug-only loc in
190    each loc list.  If we keep it in the first entry, testing whether
191    we have a debug-only loc list takes O(1).
192 
193    Furthermore, since any additional entry in a loc list containing a
194    debug loc would have to come from an assignment (nondebug) that
195    references both the initial debug loc and the newly-equivalent loc,
196    the initial debug loc would be promoted to a nondebug loc, and the
197    loc list would not contain debug locs any more.
198 
199    So the only case we have to be careful with in order to keep
200    n_useless_values in sync between debug and nondebug compilations is
201    to avoid incrementing n_useless_values when removing the single loc
202    from a value that turns out to not appear outside debug values.  We
203    increment n_useless_debug_values instead, and leave such values
204    alone until, for other reasons, we garbage-collect useless
205    values.  */
206 static int n_useless_values;
207 static int n_useless_debug_values;
208 
209 /* Count values whose locs have been taken exclusively from debug
210    insns for the entire life of the value.  */
211 static int n_debug_values;
212 
213 /* Number of useless values before we remove them from the hash table.  */
214 #define MAX_USELESS_VALUES 32
215 
216 /* This table maps from register number to values.  It does not
217    contain pointers to cselib_val structures, but rather elt_lists.
218    The purpose is to be able to refer to the same register in
219    different modes.  The first element of the list defines the mode in
220    which the register was set; if the mode is unknown or the value is
221    no longer valid in that mode, ELT will be NULL for the first
222    element.  */
223 static struct elt_list **reg_values;
224 static unsigned int reg_values_size;
225 #define REG_VALUES(i) reg_values[i]
226 
227 /* The largest number of hard regs used by any entry added to the
228    REG_VALUES table.  Cleared on each cselib_clear_table() invocation.  */
229 static unsigned int max_value_regs;
230 
231 /* Here the set of indices I with REG_VALUES(I) != 0 is saved.  This is used
232    in cselib_clear_table() for fast emptying.  */
233 static unsigned int *used_regs;
234 static unsigned int n_used_regs;
235 
236 /* We pass this to cselib_invalidate_mem to invalidate all of
237    memory for a non-const call instruction.  */
238 static GTY(()) rtx callmem;
239 
240 /* Set by discard_useless_locs if it deleted the last location of any
241    value.  */
242 static int values_became_useless;
243 
244 /* Used as stop element of the containing_mem list so we can check
245    presence in the list by checking the next pointer.  */
246 static cselib_val dummy_val;
247 
248 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
249    that is constant through the whole function and should never be
250    eliminated.  */
251 static cselib_val *cfa_base_preserved_val;
252 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
253 
254 /* Used to list all values that contain memory reference.
255    May or may not contain the useless values - the list is compacted
256    each time memory is invalidated.  */
257 static cselib_val *first_containing_mem = &dummy_val;
258 
259 static object_allocator<elt_list> elt_list_pool ("elt_list");
260 static object_allocator<elt_loc_list> elt_loc_list_pool ("elt_loc_list");
261 static object_allocator<cselib_val> cselib_val_pool ("cselib_val_list");
262 
263 static pool_allocator value_pool ("value", RTX_CODE_SIZE (VALUE));
264 
265 /* If nonnull, cselib will call this function before freeing useless
266    VALUEs.  A VALUE is deemed useless if its "locs" field is null.  */
267 void (*cselib_discard_hook) (cselib_val *);
268 
269 /* If nonnull, cselib will call this function before recording sets or
270    even clobbering outputs of INSN.  All the recorded sets will be
271    represented in the array sets[n_sets].  new_val_min can be used to
272    tell whether values present in sets are introduced by this
273    instruction.  */
274 void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets,
275 				 int n_sets);
276 
277 
278 
279 /* Allocate a struct elt_list and fill in its two elements with the
280    arguments.  */
281 
282 static inline struct elt_list *
new_elt_list(struct elt_list * next,cselib_val * elt)283 new_elt_list (struct elt_list *next, cselib_val *elt)
284 {
285   elt_list *el = elt_list_pool.allocate ();
286   el->next = next;
287   el->elt = elt;
288   return el;
289 }
290 
291 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
292    list.  */
293 
294 static inline void
new_elt_loc_list(cselib_val * val,rtx loc)295 new_elt_loc_list (cselib_val *val, rtx loc)
296 {
297   struct elt_loc_list *el, *next = val->locs;
298 
299   gcc_checking_assert (!next || !next->setting_insn
300 		       || !DEBUG_INSN_P (next->setting_insn)
301 		       || cselib_current_insn == next->setting_insn);
302 
303   /* If we're creating the first loc in a debug insn context, we've
304      just created a debug value.  Count it.  */
305   if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
306     n_debug_values++;
307 
308   val = canonical_cselib_val (val);
309   next = val->locs;
310 
311   if (GET_CODE (loc) == VALUE)
312     {
313       loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
314 
315       gcc_checking_assert (PRESERVED_VALUE_P (loc)
316 			   == PRESERVED_VALUE_P (val->val_rtx));
317 
318       if (val->val_rtx == loc)
319 	return;
320       else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
321 	{
322 	  /* Reverse the insertion.  */
323 	  new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
324 	  return;
325 	}
326 
327       gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
328 
329       if (CSELIB_VAL_PTR (loc)->locs)
330 	{
331 	  /* Bring all locs from LOC to VAL.  */
332 	  for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
333 	    {
334 	      /* Adjust values that have LOC as canonical so that VAL
335 		 becomes their canonical.  */
336 	      if (el->loc && GET_CODE (el->loc) == VALUE)
337 		{
338 		  gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
339 				       == loc);
340 		  CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
341 		}
342 	    }
343 	  el->next = val->locs;
344 	  next = val->locs = CSELIB_VAL_PTR (loc)->locs;
345 	}
346 
347       if (CSELIB_VAL_PTR (loc)->addr_list)
348 	{
349 	  /* Bring in addr_list into canonical node.  */
350 	  struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
351 	  while (last->next)
352 	    last = last->next;
353 	  last->next = val->addr_list;
354 	  val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
355 	  CSELIB_VAL_PTR (loc)->addr_list = NULL;
356 	}
357 
358       if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
359 	  && val->next_containing_mem == NULL)
360 	{
361 	  /* Add VAL to the containing_mem list after LOC.  LOC will
362 	     be removed when we notice it doesn't contain any
363 	     MEMs.  */
364 	  val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
365 	  CSELIB_VAL_PTR (loc)->next_containing_mem = val;
366 	}
367 
368       /* Chain LOC back to VAL.  */
369       el = elt_loc_list_pool.allocate ();
370       el->loc = val->val_rtx;
371       el->setting_insn = cselib_current_insn;
372       el->next = NULL;
373       CSELIB_VAL_PTR (loc)->locs = el;
374     }
375 
376   el = elt_loc_list_pool.allocate ();
377   el->loc = loc;
378   el->setting_insn = cselib_current_insn;
379   el->next = next;
380   val->locs = el;
381 }
382 
383 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
384    originating from a debug insn, maintaining the debug values
385    count.  */
386 
387 static inline void
promote_debug_loc(struct elt_loc_list * l)388 promote_debug_loc (struct elt_loc_list *l)
389 {
390   if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
391       && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
392     {
393       n_debug_values--;
394       l->setting_insn = cselib_current_insn;
395       if (cselib_preserve_constants && l->next)
396 	{
397 	  gcc_assert (l->next->setting_insn
398 		      && DEBUG_INSN_P (l->next->setting_insn)
399 		      && !l->next->next);
400 	  l->next->setting_insn = cselib_current_insn;
401 	}
402       else
403 	gcc_assert (!l->next);
404     }
405 }
406 
407 /* The elt_list at *PL is no longer needed.  Unchain it and free its
408    storage.  */
409 
410 static inline void
unchain_one_elt_list(struct elt_list ** pl)411 unchain_one_elt_list (struct elt_list **pl)
412 {
413   struct elt_list *l = *pl;
414 
415   *pl = l->next;
416   elt_list_pool.remove (l);
417 }
418 
419 /* Likewise for elt_loc_lists.  */
420 
421 static void
unchain_one_elt_loc_list(struct elt_loc_list ** pl)422 unchain_one_elt_loc_list (struct elt_loc_list **pl)
423 {
424   struct elt_loc_list *l = *pl;
425 
426   *pl = l->next;
427   elt_loc_list_pool.remove (l);
428 }
429 
430 /* Likewise for cselib_vals.  This also frees the addr_list associated with
431    V.  */
432 
433 static void
unchain_one_value(cselib_val * v)434 unchain_one_value (cselib_val *v)
435 {
436   while (v->addr_list)
437     unchain_one_elt_list (&v->addr_list);
438 
439   cselib_val_pool.remove (v);
440 }
441 
442 /* Remove all entries from the hash table.  Also used during
443    initialization.  */
444 
445 void
cselib_clear_table(void)446 cselib_clear_table (void)
447 {
448   cselib_reset_table (1);
449 }
450 
451 /* Return TRUE if V is a constant, a function invariant or a VALUE
452    equivalence; FALSE otherwise.  */
453 
454 static bool
invariant_or_equiv_p(cselib_val * v)455 invariant_or_equiv_p (cselib_val *v)
456 {
457   struct elt_loc_list *l;
458 
459   if (v == cfa_base_preserved_val)
460     return true;
461 
462   /* Keep VALUE equivalences around.  */
463   for (l = v->locs; l; l = l->next)
464     if (GET_CODE (l->loc) == VALUE)
465       return true;
466 
467   if (v->locs != NULL
468       && v->locs->next == NULL)
469     {
470       if (CONSTANT_P (v->locs->loc)
471 	  && (GET_CODE (v->locs->loc) != CONST
472 	      || !references_value_p (v->locs->loc, 0)))
473 	return true;
474       /* Although a debug expr may be bound to different expressions,
475 	 we can preserve it as if it was constant, to get unification
476 	 and proper merging within var-tracking.  */
477       if (GET_CODE (v->locs->loc) == DEBUG_EXPR
478 	  || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
479 	  || GET_CODE (v->locs->loc) == ENTRY_VALUE
480 	  || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
481 	return true;
482 
483       /* (plus (value V) (const_int C)) is invariant iff V is invariant.  */
484       if (GET_CODE (v->locs->loc) == PLUS
485 	  && CONST_INT_P (XEXP (v->locs->loc, 1))
486 	  && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
487 	  && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
488 	return true;
489     }
490 
491   return false;
492 }
493 
494 /* Remove from hash table all VALUEs except constants, function
495    invariants and VALUE equivalences.  */
496 
497 int
preserve_constants_and_equivs(cselib_val ** x,void * info ATTRIBUTE_UNUSED)498 preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
499 {
500   cselib_val *v = *x;
501 
502   if (invariant_or_equiv_p (v))
503     {
504       cselib_hasher::key lookup = {
505 	GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
506       };
507       cselib_val **slot
508 	= cselib_preserved_hash_table->find_slot_with_hash (&lookup,
509 							    v->hash, INSERT);
510       gcc_assert (!*slot);
511       *slot = v;
512     }
513 
514   cselib_hash_table->clear_slot (x);
515 
516   return 1;
517 }
518 
519 /* Remove all entries from the hash table, arranging for the next
520    value to be numbered NUM.  */
521 
522 void
cselib_reset_table(unsigned int num)523 cselib_reset_table (unsigned int num)
524 {
525   unsigned int i;
526 
527   max_value_regs = 0;
528 
529   if (cfa_base_preserved_val)
530     {
531       unsigned int regno = cfa_base_preserved_regno;
532       unsigned int new_used_regs = 0;
533       for (i = 0; i < n_used_regs; i++)
534 	if (used_regs[i] == regno)
535 	  {
536 	    new_used_regs = 1;
537 	    continue;
538 	  }
539 	else
540 	  REG_VALUES (used_regs[i]) = 0;
541       gcc_assert (new_used_regs == 1);
542       n_used_regs = new_used_regs;
543       used_regs[0] = regno;
544       max_value_regs
545 	= hard_regno_nregs (regno,
546 			    GET_MODE (cfa_base_preserved_val->locs->loc));
547 
548       /* If cfa_base is sp + const_int, need to preserve also the
549 	 SP_DERIVED_VALUE_P value.  */
550       for (struct elt_loc_list *l = cfa_base_preserved_val->locs;
551 	   l; l = l->next)
552 	if (GET_CODE (l->loc) == PLUS
553 	    && GET_CODE (XEXP (l->loc, 0)) == VALUE
554 	    && SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
555 	    && CONST_INT_P (XEXP (l->loc, 1)))
556 	  {
557 	    if (! invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (l->loc, 0))))
558 	      {
559 		rtx val = cfa_base_preserved_val->val_rtx;
560 		rtx_insn *save_cselib_current_insn = cselib_current_insn;
561 		cselib_current_insn = l->setting_insn;
562 		new_elt_loc_list (CSELIB_VAL_PTR (XEXP (l->loc, 0)),
563 				  plus_constant (Pmode, val,
564 						 -UINTVAL (XEXP (l->loc, 1))));
565 		cselib_current_insn = save_cselib_current_insn;
566 	      }
567 	    break;
568 	  }
569     }
570   else
571     {
572       for (i = 0; i < n_used_regs; i++)
573 	REG_VALUES (used_regs[i]) = 0;
574       n_used_regs = 0;
575     }
576 
577   if (cselib_preserve_constants)
578     cselib_hash_table->traverse <void *, preserve_constants_and_equivs> (NULL);
579   else
580     {
581       cselib_hash_table->empty ();
582       gcc_checking_assert (!cselib_any_perm_equivs);
583     }
584 
585   n_useless_values = 0;
586   n_useless_debug_values = 0;
587   n_debug_values = 0;
588 
589   next_uid = num;
590 
591   first_containing_mem = &dummy_val;
592 }
593 
594 /* Return the number of the next value that will be generated.  */
595 
596 unsigned int
cselib_get_next_uid(void)597 cselib_get_next_uid (void)
598 {
599   return next_uid;
600 }
601 
602 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
603    INSERTing if requested.  When X is part of the address of a MEM,
604    MEMMODE should specify the mode of the MEM.  */
605 
606 static cselib_val **
cselib_find_slot(machine_mode mode,rtx x,hashval_t hash,enum insert_option insert,machine_mode memmode)607 cselib_find_slot (machine_mode mode, rtx x, hashval_t hash,
608 		  enum insert_option insert, machine_mode memmode)
609 {
610   cselib_val **slot = NULL;
611   cselib_hasher::key lookup = { mode, x, memmode };
612   if (cselib_preserve_constants)
613     slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash,
614 							     NO_INSERT);
615   if (!slot)
616     slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert);
617   return slot;
618 }
619 
620 /* Return true if X contains a VALUE rtx.  If ONLY_USELESS is set, we
621    only return true for values which point to a cselib_val whose value
622    element has been set to zero, which implies the cselib_val will be
623    removed.  */
624 
625 int
references_value_p(const_rtx x,int only_useless)626 references_value_p (const_rtx x, int only_useless)
627 {
628   const enum rtx_code code = GET_CODE (x);
629   const char *fmt = GET_RTX_FORMAT (code);
630   int i, j;
631 
632   if (GET_CODE (x) == VALUE
633       && (! only_useless
634 	  || (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
635     return 1;
636 
637   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
638     {
639       if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
640 	return 1;
641       else if (fmt[i] == 'E')
642 	for (j = 0; j < XVECLEN (x, i); j++)
643 	  if (references_value_p (XVECEXP (x, i, j), only_useless))
644 	    return 1;
645     }
646 
647   return 0;
648 }
649 
650 /* Return true if V is a useless VALUE and can be discarded as such.  */
651 
652 static bool
cselib_useless_value_p(cselib_val * v)653 cselib_useless_value_p (cselib_val *v)
654 {
655   return (v->locs == 0
656 	  && !PRESERVED_VALUE_P (v->val_rtx)
657 	  && !SP_DERIVED_VALUE_P (v->val_rtx));
658 }
659 
660 /* For all locations found in X, delete locations that reference useless
661    values (i.e. values without any location).  Called through
662    htab_traverse.  */
663 
664 int
discard_useless_locs(cselib_val ** x,void * info ATTRIBUTE_UNUSED)665 discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
666 {
667   cselib_val *v = *x;
668   struct elt_loc_list **p = &v->locs;
669   bool had_locs = v->locs != NULL;
670   rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
671 
672   while (*p)
673     {
674       if (references_value_p ((*p)->loc, 1))
675 	unchain_one_elt_loc_list (p);
676       else
677 	p = &(*p)->next;
678     }
679 
680   if (had_locs && cselib_useless_value_p (v))
681     {
682       if (setting_insn && DEBUG_INSN_P (setting_insn))
683 	n_useless_debug_values++;
684       else
685 	n_useless_values++;
686       values_became_useless = 1;
687     }
688   return 1;
689 }
690 
691 /* If X is a value with no locations, remove it from the hashtable.  */
692 
693 int
discard_useless_values(cselib_val ** x,void * info ATTRIBUTE_UNUSED)694 discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
695 {
696   cselib_val *v = *x;
697 
698   if (v->locs == 0 && cselib_useless_value_p (v))
699     {
700       if (cselib_discard_hook)
701 	cselib_discard_hook (v);
702 
703       CSELIB_VAL_PTR (v->val_rtx) = NULL;
704       cselib_hash_table->clear_slot (x);
705       unchain_one_value (v);
706       n_useless_values--;
707     }
708 
709   return 1;
710 }
711 
712 /* Clean out useless values (i.e. those which no longer have locations
713    associated with them) from the hash table.  */
714 
715 static void
remove_useless_values(void)716 remove_useless_values (void)
717 {
718   cselib_val **p, *v;
719 
720   /* First pass: eliminate locations that reference the value.  That in
721      turn can make more values useless.  */
722   do
723     {
724       values_became_useless = 0;
725       cselib_hash_table->traverse <void *, discard_useless_locs> (NULL);
726     }
727   while (values_became_useless);
728 
729   /* Second pass: actually remove the values.  */
730 
731   p = &first_containing_mem;
732   for (v = *p; v != &dummy_val; v = v->next_containing_mem)
733     if (v->locs && v == canonical_cselib_val (v))
734       {
735 	*p = v;
736 	p = &(*p)->next_containing_mem;
737       }
738   *p = &dummy_val;
739 
740   n_useless_values += n_useless_debug_values;
741   n_debug_values -= n_useless_debug_values;
742   n_useless_debug_values = 0;
743 
744   cselib_hash_table->traverse <void *, discard_useless_values> (NULL);
745 
746   gcc_assert (!n_useless_values);
747 }
748 
749 /* Arrange for a value to not be removed from the hash table even if
750    it becomes useless.  */
751 
752 void
cselib_preserve_value(cselib_val * v)753 cselib_preserve_value (cselib_val *v)
754 {
755   PRESERVED_VALUE_P (v->val_rtx) = 1;
756 }
757 
758 /* Test whether a value is preserved.  */
759 
760 bool
cselib_preserved_value_p(cselib_val * v)761 cselib_preserved_value_p (cselib_val *v)
762 {
763   return PRESERVED_VALUE_P (v->val_rtx);
764 }
765 
766 /* Arrange for a REG value to be assumed constant through the whole function,
767    never invalidated and preserved across cselib_reset_table calls.  */
768 
769 void
cselib_preserve_cfa_base_value(cselib_val * v,unsigned int regno)770 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
771 {
772   if (cselib_preserve_constants
773       && v->locs
774       && REG_P (v->locs->loc))
775     {
776       cfa_base_preserved_val = v;
777       cfa_base_preserved_regno = regno;
778     }
779 }
780 
781 /* Clean all non-constant expressions in the hash table, but retain
782    their values.  */
783 
784 void
cselib_preserve_only_values(void)785 cselib_preserve_only_values (void)
786 {
787   int i;
788 
789   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
790     cselib_invalidate_regno (i, reg_raw_mode[i]);
791 
792   cselib_invalidate_mem (callmem);
793 
794   remove_useless_values ();
795 
796   gcc_assert (first_containing_mem == &dummy_val);
797 }
798 
799 /* Arrange for a value to be marked as based on stack pointer
800    for find_base_term purposes.  */
801 
802 void
cselib_set_value_sp_based(cselib_val * v)803 cselib_set_value_sp_based (cselib_val *v)
804 {
805   SP_BASED_VALUE_P (v->val_rtx) = 1;
806 }
807 
808 /* Test whether a value is based on stack pointer for
809    find_base_term purposes.  */
810 
811 bool
cselib_sp_based_value_p(cselib_val * v)812 cselib_sp_based_value_p (cselib_val *v)
813 {
814   return SP_BASED_VALUE_P (v->val_rtx);
815 }
816 
817 /* Return the mode in which a register was last set.  If X is not a
818    register, return its mode.  If the mode in which the register was
819    set is not known, or the value was already clobbered, return
820    VOIDmode.  */
821 
822 machine_mode
cselib_reg_set_mode(const_rtx x)823 cselib_reg_set_mode (const_rtx x)
824 {
825   if (!REG_P (x))
826     return GET_MODE (x);
827 
828   if (REG_VALUES (REGNO (x)) == NULL
829       || REG_VALUES (REGNO (x))->elt == NULL)
830     return VOIDmode;
831 
832   return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
833 }
834 
835 /* If x is a PLUS or an autoinc operation, expand the operation,
836    storing the offset, if any, in *OFF.  */
837 
838 static rtx
autoinc_split(rtx x,rtx * off,machine_mode memmode)839 autoinc_split (rtx x, rtx *off, machine_mode memmode)
840 {
841   switch (GET_CODE (x))
842     {
843     case PLUS:
844       *off = XEXP (x, 1);
845       x = XEXP (x, 0);
846       break;
847 
848     case PRE_DEC:
849       if (memmode == VOIDmode)
850 	return x;
851 
852       *off = gen_int_mode (-GET_MODE_SIZE (memmode), GET_MODE (x));
853       x = XEXP (x, 0);
854       break;
855 
856     case PRE_INC:
857       if (memmode == VOIDmode)
858 	return x;
859 
860       *off = gen_int_mode (GET_MODE_SIZE (memmode), GET_MODE (x));
861       x = XEXP (x, 0);
862       break;
863 
864     case PRE_MODIFY:
865       x = XEXP (x, 1);
866       break;
867 
868     case POST_DEC:
869     case POST_INC:
870     case POST_MODIFY:
871       x = XEXP (x, 0);
872       break;
873 
874     default:
875       break;
876     }
877 
878   if (GET_MODE (x) == Pmode
879       && (REG_P (x) || MEM_P (x) || GET_CODE (x) == VALUE)
880       && (*off == NULL_RTX || CONST_INT_P (*off)))
881     {
882       cselib_val *e;
883       if (GET_CODE (x) == VALUE)
884 	e = CSELIB_VAL_PTR (x);
885       else
886 	e = cselib_lookup (x, GET_MODE (x), 0, memmode);
887       if (e)
888 	{
889 	  if (SP_DERIVED_VALUE_P (e->val_rtx)
890 	      && (*off == NULL_RTX || *off == const0_rtx))
891 	    {
892 	      *off = NULL_RTX;
893 	      return e->val_rtx;
894 	    }
895 	  for (struct elt_loc_list *l = e->locs; l; l = l->next)
896 	    if (GET_CODE (l->loc) == PLUS
897 		&& GET_CODE (XEXP (l->loc, 0)) == VALUE
898 		&& SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
899 		&& CONST_INT_P (XEXP (l->loc, 1)))
900 	      {
901 		if (*off == NULL_RTX)
902 		  *off = XEXP (l->loc, 1);
903 		else
904 		  *off = plus_constant (Pmode, *off,
905 					INTVAL (XEXP (l->loc, 1)));
906 		if (*off == const0_rtx)
907 		  *off = NULL_RTX;
908 		return XEXP (l->loc, 0);
909 	      }
910 	}
911     }
912   return x;
913 }
914 
915 /* Return nonzero if we can prove that X and Y contain the same value,
916    taking our gathered information into account.  MEMMODE holds the
917    mode of the enclosing MEM, if any, as required to deal with autoinc
918    addressing modes.  If X and Y are not (known to be) part of
919    addresses, MEMMODE should be VOIDmode.  */
920 
921 int
rtx_equal_for_cselib_1(rtx x,rtx y,machine_mode memmode,int depth)922 rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode, int depth)
923 {
924   enum rtx_code code;
925   const char *fmt;
926   int i;
927 
928   if (REG_P (x) || MEM_P (x))
929     {
930       cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
931 
932       if (e)
933 	x = e->val_rtx;
934     }
935 
936   if (REG_P (y) || MEM_P (y))
937     {
938       cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
939 
940       if (e)
941 	y = e->val_rtx;
942     }
943 
944   if (x == y)
945     return 1;
946 
947   if (GET_CODE (x) == VALUE)
948     {
949       cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
950       struct elt_loc_list *l;
951 
952       if (GET_CODE (y) == VALUE)
953 	return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
954 
955       if ((SP_DERIVED_VALUE_P (x)
956 	   || SP_DERIVED_VALUE_P (e->val_rtx))
957 	  && GET_MODE (y) == Pmode)
958 	{
959 	  rtx yoff = NULL;
960 	  rtx yr = autoinc_split (y, &yoff, memmode);
961 	  if ((yr == x || yr == e->val_rtx) && yoff == NULL_RTX)
962 	    return 1;
963 	}
964 
965       if (depth == 128)
966 	return 0;
967 
968       for (l = e->locs; l; l = l->next)
969 	{
970 	  rtx t = l->loc;
971 
972 	  /* Avoid infinite recursion.  We know we have the canonical
973 	     value, so we can just skip any values in the equivalence
974 	     list.  */
975 	  if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
976 	    continue;
977 	  else if (rtx_equal_for_cselib_1 (t, y, memmode, depth + 1))
978 	    return 1;
979 	}
980 
981       return 0;
982     }
983   else if (GET_CODE (y) == VALUE)
984     {
985       cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
986       struct elt_loc_list *l;
987 
988       if ((SP_DERIVED_VALUE_P (y)
989 	   || SP_DERIVED_VALUE_P (e->val_rtx))
990 	  && GET_MODE (x) == Pmode)
991 	{
992 	  rtx xoff = NULL;
993 	  rtx xr = autoinc_split (x, &xoff, memmode);
994 	  if ((xr == y || xr == e->val_rtx) && xoff == NULL_RTX)
995 	    return 1;
996 	}
997 
998       if (depth == 128)
999 	return 0;
1000 
1001       for (l = e->locs; l; l = l->next)
1002 	{
1003 	  rtx t = l->loc;
1004 
1005 	  if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
1006 	    continue;
1007 	  else if (rtx_equal_for_cselib_1 (x, t, memmode, depth + 1))
1008 	    return 1;
1009 	}
1010 
1011       return 0;
1012     }
1013 
1014   if (GET_MODE (x) != GET_MODE (y))
1015     return 0;
1016 
1017   if (GET_CODE (x) != GET_CODE (y)
1018       || (GET_CODE (x) == PLUS
1019 	  && GET_MODE (x) == Pmode
1020 	  && CONST_INT_P (XEXP (x, 1))
1021 	  && CONST_INT_P (XEXP (y, 1))))
1022     {
1023       rtx xorig = x, yorig = y;
1024       rtx xoff = NULL, yoff = NULL;
1025 
1026       x = autoinc_split (x, &xoff, memmode);
1027       y = autoinc_split (y, &yoff, memmode);
1028 
1029       /* Don't recurse if nothing changed.  */
1030       if (x != xorig || y != yorig)
1031 	{
1032 	  if (!xoff != !yoff)
1033 	    return 0;
1034 
1035 	  if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode, depth))
1036 	    return 0;
1037 
1038 	  return rtx_equal_for_cselib_1 (x, y, memmode, depth);
1039 	}
1040 
1041       if (GET_CODE (xorig) != GET_CODE (yorig))
1042 	return 0;
1043     }
1044 
1045   /* These won't be handled correctly by the code below.  */
1046   switch (GET_CODE (x))
1047     {
1048     CASE_CONST_UNIQUE:
1049     case DEBUG_EXPR:
1050       return 0;
1051 
1052     case CONST_VECTOR:
1053       if (!same_vector_encodings_p (x, y))
1054 	return false;
1055       break;
1056 
1057     case DEBUG_IMPLICIT_PTR:
1058       return DEBUG_IMPLICIT_PTR_DECL (x)
1059 	     == DEBUG_IMPLICIT_PTR_DECL (y);
1060 
1061     case DEBUG_PARAMETER_REF:
1062       return DEBUG_PARAMETER_REF_DECL (x)
1063 	     == DEBUG_PARAMETER_REF_DECL (y);
1064 
1065     case ENTRY_VALUE:
1066       /* ENTRY_VALUEs are function invariant, it is thus undesirable to
1067 	 use rtx_equal_for_cselib_1 to compare the operands.  */
1068       return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1069 
1070     case LABEL_REF:
1071       return label_ref_label (x) == label_ref_label (y);
1072 
1073     case REG:
1074       return REGNO (x) == REGNO (y);
1075 
1076     case MEM:
1077       /* We have to compare any autoinc operations in the addresses
1078 	 using this MEM's mode.  */
1079       return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x),
1080 				     depth);
1081 
1082     default:
1083       break;
1084     }
1085 
1086   code = GET_CODE (x);
1087   fmt = GET_RTX_FORMAT (code);
1088 
1089   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1090     {
1091       int j;
1092 
1093       switch (fmt[i])
1094 	{
1095 	case 'w':
1096 	  if (XWINT (x, i) != XWINT (y, i))
1097 	    return 0;
1098 	  break;
1099 
1100 	case 'n':
1101 	case 'i':
1102 	  if (XINT (x, i) != XINT (y, i))
1103 	    return 0;
1104 	  break;
1105 
1106 	case 'p':
1107 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1108 	    return 0;
1109 	  break;
1110 
1111 	case 'V':
1112 	case 'E':
1113 	  /* Two vectors must have the same length.  */
1114 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1115 	    return 0;
1116 
1117 	  /* And the corresponding elements must match.  */
1118 	  for (j = 0; j < XVECLEN (x, i); j++)
1119 	    if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
1120 					  XVECEXP (y, i, j), memmode, depth))
1121 	      return 0;
1122 	  break;
1123 
1124 	case 'e':
1125 	  if (i == 1
1126 	      && targetm.commutative_p (x, UNKNOWN)
1127 	      && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode,
1128 					 depth)
1129 	      && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode,
1130 					 depth))
1131 	    return 1;
1132 	  if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode,
1133 					depth))
1134 	    return 0;
1135 	  break;
1136 
1137 	case 'S':
1138 	case 's':
1139 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1140 	    return 0;
1141 	  break;
1142 
1143 	case 'u':
1144 	  /* These are just backpointers, so they don't matter.  */
1145 	  break;
1146 
1147 	case '0':
1148 	case 't':
1149 	  break;
1150 
1151 	  /* It is believed that rtx's at this level will never
1152 	     contain anything but integers and other rtx's,
1153 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1154 	default:
1155 	  gcc_unreachable ();
1156 	}
1157     }
1158   return 1;
1159 }
1160 
1161 /* Wrapper for rtx_equal_for_cselib_p to determine whether a SET is
1162    truly redundant, taking into account aliasing information.  */
1163 bool
cselib_redundant_set_p(rtx set)1164 cselib_redundant_set_p (rtx set)
1165 {
1166   gcc_assert (GET_CODE (set) == SET);
1167   rtx dest = SET_DEST (set);
1168   if (cselib_reg_set_mode (dest) != GET_MODE (dest))
1169     return false;
1170 
1171   if (!rtx_equal_for_cselib_p (dest, SET_SRC (set)))
1172     return false;
1173 
1174   while (GET_CODE (dest) == SUBREG
1175 	 || GET_CODE (dest) == ZERO_EXTRACT
1176 	 || GET_CODE (dest) == STRICT_LOW_PART)
1177     dest = XEXP (dest, 0);
1178 
1179   if (!flag_strict_aliasing || !MEM_P (dest))
1180     return true;
1181 
1182   /* For a store we need to check that suppressing it will not change
1183      the effective alias set.  */
1184   rtx dest_addr = XEXP (dest, 0);
1185 
1186   /* Lookup the equivalents to the original dest (rather than just the
1187      MEM).  */
1188   cselib_val *src_val = cselib_lookup (SET_DEST (set),
1189 				       GET_MODE (SET_DEST (set)),
1190 				       0, VOIDmode);
1191 
1192   if (src_val)
1193     {
1194       /* Walk the list of source equivalents to find the MEM accessing
1195 	 the same location.  */
1196       for (elt_loc_list *l = src_val->locs; l; l = l->next)
1197 	{
1198 	  rtx src_equiv = l->loc;
1199 	  while (GET_CODE (src_equiv) == SUBREG
1200 		 || GET_CODE (src_equiv) == ZERO_EXTRACT
1201 		 || GET_CODE (src_equiv) == STRICT_LOW_PART)
1202 	    src_equiv = XEXP (src_equiv, 0);
1203 
1204 	  if (MEM_P (src_equiv))
1205 	    {
1206 	      /* Match the MEMs by comparing the addresses.  We can
1207 		 only remove the later store if the earlier aliases at
1208 		 least all the accesses of the later one.  */
1209 	      if (rtx_equal_for_cselib_1 (dest_addr, XEXP (src_equiv, 0),
1210 					  GET_MODE (dest), 0))
1211 		return mems_same_for_tbaa_p (src_equiv, dest);
1212 	    }
1213 	}
1214     }
1215 
1216   /* We failed to find a recorded value in the cselib history, so try
1217      the source of this set; this catches cases such as *p = *q when p
1218      and q have the same value.  */
1219   rtx src = SET_SRC (set);
1220   while (GET_CODE (src) == SUBREG)
1221     src = XEXP (src, 0);
1222 
1223   if (MEM_P (src)
1224       && rtx_equal_for_cselib_1 (dest_addr, XEXP (src, 0), GET_MODE (dest), 0))
1225     return mems_same_for_tbaa_p (src, dest);
1226 
1227   return false;
1228 }
1229 
1230 /* Helper function for cselib_hash_rtx.  Arguments like for cselib_hash_rtx,
1231    except that it hashes (plus:P x c).  */
1232 
1233 static unsigned int
cselib_hash_plus_const_int(rtx x,HOST_WIDE_INT c,int create,machine_mode memmode)1234 cselib_hash_plus_const_int (rtx x, HOST_WIDE_INT c, int create,
1235 			    machine_mode memmode)
1236 {
1237   cselib_val *e = cselib_lookup (x, GET_MODE (x), create, memmode);
1238   if (! e)
1239     return 0;
1240 
1241   if (! SP_DERIVED_VALUE_P (e->val_rtx))
1242     for (struct elt_loc_list *l = e->locs; l; l = l->next)
1243       if (GET_CODE (l->loc) == PLUS
1244 	  && GET_CODE (XEXP (l->loc, 0)) == VALUE
1245 	  && SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
1246 	  && CONST_INT_P (XEXP (l->loc, 1)))
1247 	{
1248 	  e = CSELIB_VAL_PTR (XEXP (l->loc, 0));
1249 	  c = trunc_int_for_mode (c + UINTVAL (XEXP (l->loc, 1)), Pmode);
1250 	  break;
1251 	}
1252   if (c == 0)
1253     return e->hash;
1254 
1255   unsigned hash = (unsigned) PLUS + (unsigned) GET_MODE (x);
1256   hash += e->hash;
1257   unsigned int tem_hash = (unsigned) CONST_INT + (unsigned) VOIDmode;
1258   tem_hash += ((unsigned) CONST_INT << 7) + (unsigned HOST_WIDE_INT) c;
1259   if (tem_hash == 0)
1260     tem_hash = (unsigned int) CONST_INT;
1261   hash += tem_hash;
1262   return hash ? hash : 1 + (unsigned int) PLUS;
1263 }
1264 
1265 /* Hash an rtx.  Return 0 if we couldn't hash the rtx.
1266    For registers and memory locations, we look up their cselib_val structure
1267    and return its VALUE element.
1268    Possible reasons for return 0 are: the object is volatile, or we couldn't
1269    find a register or memory location in the table and CREATE is zero.  If
1270    CREATE is nonzero, table elts are created for regs and mem.
1271    N.B. this hash function returns the same hash value for RTXes that
1272    differ only in the order of operands, thus it is suitable for comparisons
1273    that take commutativity into account.
1274    If we wanted to also support associative rules, we'd have to use a different
1275    strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1276    MEMMODE indicates the mode of an enclosing MEM, and it's only
1277    used to compute autoinc values.
1278    We used to have a MODE argument for hashing for CONST_INTs, but that
1279    didn't make sense, since it caused spurious hash differences between
1280     (set (reg:SI 1) (const_int))
1281     (plus:SI (reg:SI 2) (reg:SI 1))
1282    and
1283     (plus:SI (reg:SI 2) (const_int))
1284    If the mode is important in any context, it must be checked specifically
1285    in a comparison anyway, since relying on hash differences is unsafe.  */
1286 
1287 static unsigned int
cselib_hash_rtx(rtx x,int create,machine_mode memmode)1288 cselib_hash_rtx (rtx x, int create, machine_mode memmode)
1289 {
1290   cselib_val *e;
1291   poly_int64 offset;
1292   int i, j;
1293   enum rtx_code code;
1294   const char *fmt;
1295   unsigned int hash = 0;
1296 
1297   code = GET_CODE (x);
1298   hash += (unsigned) code + (unsigned) GET_MODE (x);
1299 
1300   switch (code)
1301     {
1302     case VALUE:
1303       e = CSELIB_VAL_PTR (x);
1304       return e->hash;
1305 
1306     case MEM:
1307     case REG:
1308       e = cselib_lookup (x, GET_MODE (x), create, memmode);
1309       if (! e)
1310 	return 0;
1311 
1312       return e->hash;
1313 
1314     case DEBUG_EXPR:
1315       hash += ((unsigned) DEBUG_EXPR << 7)
1316 	      + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
1317       return hash ? hash : (unsigned int) DEBUG_EXPR;
1318 
1319     case DEBUG_IMPLICIT_PTR:
1320       hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1321 	      + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1322       return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1323 
1324     case DEBUG_PARAMETER_REF:
1325       hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1326 	      + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1327       return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1328 
1329     case ENTRY_VALUE:
1330       /* ENTRY_VALUEs are function invariant, thus try to avoid
1331 	 recursing on argument if ENTRY_VALUE is one of the
1332 	 forms emitted by expand_debug_expr, otherwise
1333 	 ENTRY_VALUE hash would depend on the current value
1334 	 in some register or memory.  */
1335       if (REG_P (ENTRY_VALUE_EXP (x)))
1336 	hash += (unsigned int) REG
1337 		+ (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1338 		+ (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1339       else if (MEM_P (ENTRY_VALUE_EXP (x))
1340 	       && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1341 	hash += (unsigned int) MEM
1342 		+ (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1343 		+ (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1344       else
1345 	hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1346       return hash ? hash : (unsigned int) ENTRY_VALUE;
1347 
1348     case CONST_INT:
1349       hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
1350       return hash ? hash : (unsigned int) CONST_INT;
1351 
1352     case CONST_WIDE_INT:
1353       for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
1354 	hash += CONST_WIDE_INT_ELT (x, i);
1355       return hash;
1356 
1357     case CONST_POLY_INT:
1358       {
1359 	inchash::hash h;
1360 	h.add_int (hash);
1361 	for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1362 	  h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
1363 	return h.end ();
1364       }
1365 
1366     case CONST_DOUBLE:
1367       /* This is like the general case, except that it only counts
1368 	 the integers representing the constant.  */
1369       hash += (unsigned) code + (unsigned) GET_MODE (x);
1370       if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
1371 	hash += ((unsigned) CONST_DOUBLE_LOW (x)
1372 		 + (unsigned) CONST_DOUBLE_HIGH (x));
1373       else
1374 	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1375       return hash ? hash : (unsigned int) CONST_DOUBLE;
1376 
1377     case CONST_FIXED:
1378       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1379       hash += fixed_hash (CONST_FIXED_VALUE (x));
1380       return hash ? hash : (unsigned int) CONST_FIXED;
1381 
1382     case CONST_VECTOR:
1383       {
1384 	int units;
1385 	rtx elt;
1386 
1387 	units = const_vector_encoded_nelts (x);
1388 
1389 	for (i = 0; i < units; ++i)
1390 	  {
1391 	    elt = CONST_VECTOR_ENCODED_ELT (x, i);
1392 	    hash += cselib_hash_rtx (elt, 0, memmode);
1393 	  }
1394 
1395 	return hash;
1396       }
1397 
1398       /* Assume there is only one rtx object for any given label.  */
1399     case LABEL_REF:
1400       /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1401 	 differences and differences between each stage's debugging dumps.  */
1402       hash += (((unsigned int) LABEL_REF << 7)
1403 	       + CODE_LABEL_NUMBER (label_ref_label (x)));
1404       return hash ? hash : (unsigned int) LABEL_REF;
1405 
1406     case SYMBOL_REF:
1407       {
1408 	/* Don't hash on the symbol's address to avoid bootstrap differences.
1409 	   Different hash values may cause expressions to be recorded in
1410 	   different orders and thus different registers to be used in the
1411 	   final assembler.  This also avoids differences in the dump files
1412 	   between various stages.  */
1413 	unsigned int h = 0;
1414 	const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1415 
1416 	while (*p)
1417 	  h += (h << 7) + *p++; /* ??? revisit */
1418 
1419 	hash += ((unsigned int) SYMBOL_REF << 7) + h;
1420 	return hash ? hash : (unsigned int) SYMBOL_REF;
1421       }
1422 
1423     case PRE_DEC:
1424     case PRE_INC:
1425       /* We can't compute these without knowing the MEM mode.  */
1426       gcc_assert (memmode != VOIDmode);
1427       offset = GET_MODE_SIZE (memmode);
1428       if (code == PRE_DEC)
1429 	offset = -offset;
1430       /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1431 	 like (mem:MEMMODE (plus (reg) (const_int I))).  */
1432       if (GET_MODE (x) == Pmode
1433 	  && (REG_P (XEXP (x, 0))
1434 	      || MEM_P (XEXP (x, 0))
1435 	      || GET_CODE (XEXP (x, 0)) == VALUE))
1436 	{
1437 	  HOST_WIDE_INT c;
1438 	  if (offset.is_constant (&c))
1439 	    return cselib_hash_plus_const_int (XEXP (x, 0),
1440 					       trunc_int_for_mode (c, Pmode),
1441 					       create, memmode);
1442 	}
1443       hash = ((unsigned) PLUS + (unsigned) GET_MODE (x)
1444 	      + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1445 	      + cselib_hash_rtx (gen_int_mode (offset, GET_MODE (x)),
1446 				 create, memmode));
1447       return hash ? hash : 1 + (unsigned) PLUS;
1448 
1449     case PRE_MODIFY:
1450       gcc_assert (memmode != VOIDmode);
1451       return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1452 
1453     case POST_DEC:
1454     case POST_INC:
1455     case POST_MODIFY:
1456       gcc_assert (memmode != VOIDmode);
1457       return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1458 
1459     case PC:
1460     case CALL:
1461     case UNSPEC_VOLATILE:
1462       return 0;
1463 
1464     case ASM_OPERANDS:
1465       if (MEM_VOLATILE_P (x))
1466 	return 0;
1467 
1468       break;
1469 
1470     case PLUS:
1471       if (GET_MODE (x) == Pmode
1472 	  && (REG_P (XEXP (x, 0))
1473 	      || MEM_P (XEXP (x, 0))
1474 	      || GET_CODE (XEXP (x, 0)) == VALUE)
1475 	  && CONST_INT_P (XEXP (x, 1)))
1476 	return cselib_hash_plus_const_int (XEXP (x, 0), INTVAL (XEXP (x, 1)),
1477 					   create, memmode);
1478       break;
1479 
1480     default:
1481       break;
1482     }
1483 
1484   i = GET_RTX_LENGTH (code) - 1;
1485   fmt = GET_RTX_FORMAT (code);
1486   for (; i >= 0; i--)
1487     {
1488       switch (fmt[i])
1489 	{
1490 	case 'e':
1491 	  {
1492 	    rtx tem = XEXP (x, i);
1493 	    unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1494 
1495 	    if (tem_hash == 0)
1496 	      return 0;
1497 
1498 	    hash += tem_hash;
1499 	  }
1500 	  break;
1501 	case 'E':
1502 	  for (j = 0; j < XVECLEN (x, i); j++)
1503 	    {
1504 	      unsigned int tem_hash
1505 		= cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1506 
1507 	      if (tem_hash == 0)
1508 		return 0;
1509 
1510 	      hash += tem_hash;
1511 	    }
1512 	  break;
1513 
1514 	case 's':
1515 	  {
1516 	    const unsigned char *p = (const unsigned char *) XSTR (x, i);
1517 
1518 	    if (p)
1519 	      while (*p)
1520 		hash += *p++;
1521 	    break;
1522 	  }
1523 
1524 	case 'i':
1525 	  hash += XINT (x, i);
1526 	  break;
1527 
1528 	case 'p':
1529 	  hash += constant_lower_bound (SUBREG_BYTE (x));
1530 	  break;
1531 
1532 	case '0':
1533 	case 't':
1534 	  /* unused */
1535 	  break;
1536 
1537 	default:
1538 	  gcc_unreachable ();
1539 	}
1540     }
1541 
1542   return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1543 }
1544 
1545 /* Create a new value structure for VALUE and initialize it.  The mode of the
1546    value is MODE.  */
1547 
1548 static inline cselib_val *
new_cselib_val(unsigned int hash,machine_mode mode,rtx x)1549 new_cselib_val (unsigned int hash, machine_mode mode, rtx x)
1550 {
1551   cselib_val *e = cselib_val_pool.allocate ();
1552 
1553   gcc_assert (hash);
1554   gcc_assert (next_uid);
1555 
1556   e->hash = hash;
1557   e->uid = next_uid++;
1558   /* We use an alloc pool to allocate this RTL construct because it
1559      accounts for about 8% of the overall memory usage.  We know
1560      precisely when we can have VALUE RTXen (when cselib is active)
1561      so we don't need to put them in garbage collected memory.
1562      ??? Why should a VALUE be an RTX in the first place?  */
1563   e->val_rtx = (rtx_def*) value_pool.allocate ();
1564   memset (e->val_rtx, 0, RTX_HDR_SIZE);
1565   PUT_CODE (e->val_rtx, VALUE);
1566   PUT_MODE (e->val_rtx, mode);
1567   CSELIB_VAL_PTR (e->val_rtx) = e;
1568   e->addr_list = 0;
1569   e->locs = 0;
1570   e->next_containing_mem = 0;
1571 
1572   if (dump_file && (dump_flags & TDF_CSELIB))
1573     {
1574       fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1575       if (flag_dump_noaddr || flag_dump_unnumbered)
1576 	fputs ("# ", dump_file);
1577       else
1578 	fprintf (dump_file, "%p ", (void*)e);
1579       print_rtl_single (dump_file, x);
1580       fputc ('\n', dump_file);
1581     }
1582 
1583   return e;
1584 }
1585 
1586 /* ADDR_ELT is a value that is used as address.  MEM_ELT is the value that
1587    contains the data at this address.  X is a MEM that represents the
1588    value.  Update the two value structures to represent this situation.  */
1589 
1590 static void
add_mem_for_addr(cselib_val * addr_elt,cselib_val * mem_elt,rtx x)1591 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1592 {
1593   addr_elt = canonical_cselib_val (addr_elt);
1594   mem_elt = canonical_cselib_val (mem_elt);
1595 
1596   /* Avoid duplicates.  */
1597   addr_space_t as = MEM_ADDR_SPACE (x);
1598   for (elt_loc_list *l = mem_elt->locs; l; l = l->next)
1599     if (MEM_P (l->loc)
1600 	&& CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt
1601         && MEM_ADDR_SPACE (l->loc) == as)
1602       {
1603 	promote_debug_loc (l);
1604 	return;
1605       }
1606 
1607   addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1608   new_elt_loc_list (mem_elt,
1609 		    replace_equiv_address_nv (x, addr_elt->val_rtx));
1610   if (mem_elt->next_containing_mem == NULL)
1611     {
1612       mem_elt->next_containing_mem = first_containing_mem;
1613       first_containing_mem = mem_elt;
1614     }
1615 }
1616 
1617 /* Subroutine of cselib_lookup.  Return a value for X, which is a MEM rtx.
1618    If CREATE, make a new one if we haven't seen it before.  */
1619 
1620 static cselib_val *
cselib_lookup_mem(rtx x,int create)1621 cselib_lookup_mem (rtx x, int create)
1622 {
1623   machine_mode mode = GET_MODE (x);
1624   machine_mode addr_mode;
1625   cselib_val **slot;
1626   cselib_val *addr;
1627   cselib_val *mem_elt;
1628 
1629   if (MEM_VOLATILE_P (x) || mode == BLKmode
1630       || !cselib_record_memory
1631       || (FLOAT_MODE_P (mode) && flag_float_store))
1632     return 0;
1633 
1634   addr_mode = GET_MODE (XEXP (x, 0));
1635   if (addr_mode == VOIDmode)
1636     addr_mode = Pmode;
1637 
1638   /* Look up the value for the address.  */
1639   addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1640   if (! addr)
1641     return 0;
1642   addr = canonical_cselib_val (addr);
1643 
1644   /* Find a value that describes a value of our mode at that address.  */
1645   addr_space_t as = MEM_ADDR_SPACE (x);
1646   for (elt_list *l = addr->addr_list; l; l = l->next)
1647     if (GET_MODE (l->elt->val_rtx) == mode)
1648       {
1649 	for (elt_loc_list *l2 = l->elt->locs; l2; l2 = l2->next)
1650 	  if (MEM_P (l2->loc) && MEM_ADDR_SPACE (l2->loc) == as)
1651 	    {
1652 	      promote_debug_loc (l->elt->locs);
1653 	      return l->elt;
1654 	    }
1655       }
1656 
1657   if (! create)
1658     return 0;
1659 
1660   mem_elt = new_cselib_val (next_uid, mode, x);
1661   add_mem_for_addr (addr, mem_elt, x);
1662   slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
1663   *slot = mem_elt;
1664   return mem_elt;
1665 }
1666 
1667 /* Search through the possible substitutions in P.  We prefer a non reg
1668    substitution because this allows us to expand the tree further.  If
1669    we find, just a reg, take the lowest regno.  There may be several
1670    non-reg results, we just take the first one because they will all
1671    expand to the same place.  */
1672 
1673 static rtx
expand_loc(struct elt_loc_list * p,struct expand_value_data * evd,int max_depth)1674 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1675 	    int max_depth)
1676 {
1677   rtx reg_result = NULL;
1678   unsigned int regno = UINT_MAX;
1679   struct elt_loc_list *p_in = p;
1680 
1681   for (; p; p = p->next)
1682     {
1683       /* Return these right away to avoid returning stack pointer based
1684 	 expressions for frame pointer and vice versa, which is something
1685 	 that would confuse DSE.  See the comment in cselib_expand_value_rtx_1
1686 	 for more details.  */
1687       if (REG_P (p->loc)
1688 	  && (REGNO (p->loc) == STACK_POINTER_REGNUM
1689 	      || REGNO (p->loc) == FRAME_POINTER_REGNUM
1690 	      || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1691 	      || REGNO (p->loc) == cfa_base_preserved_regno))
1692 	return p->loc;
1693       /* Avoid infinite recursion trying to expand a reg into a
1694 	 the same reg.  */
1695       if ((REG_P (p->loc))
1696 	  && (REGNO (p->loc) < regno)
1697 	  && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1698 	{
1699 	  reg_result = p->loc;
1700 	  regno = REGNO (p->loc);
1701 	}
1702       /* Avoid infinite recursion and do not try to expand the
1703 	 value.  */
1704       else if (GET_CODE (p->loc) == VALUE
1705 	       && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1706 	continue;
1707       else if (!REG_P (p->loc))
1708 	{
1709 	  rtx result, note;
1710 	  if (dump_file && (dump_flags & TDF_CSELIB))
1711 	    {
1712 	      print_inline_rtx (dump_file, p->loc, 0);
1713 	      fprintf (dump_file, "\n");
1714 	    }
1715 	  if (GET_CODE (p->loc) == LO_SUM
1716 	      && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1717 	      && p->setting_insn
1718 	      && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1719 	      && XEXP (note, 0) == XEXP (p->loc, 1))
1720 	    return XEXP (p->loc, 1);
1721 	  result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1722 	  if (result)
1723 	    return result;
1724 	}
1725 
1726     }
1727 
1728   if (regno != UINT_MAX)
1729     {
1730       rtx result;
1731       if (dump_file && (dump_flags & TDF_CSELIB))
1732 	fprintf (dump_file, "r%d\n", regno);
1733 
1734       result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1735       if (result)
1736 	return result;
1737     }
1738 
1739   if (dump_file && (dump_flags & TDF_CSELIB))
1740     {
1741       if (reg_result)
1742 	{
1743 	  print_inline_rtx (dump_file, reg_result, 0);
1744 	  fprintf (dump_file, "\n");
1745 	}
1746       else
1747 	fprintf (dump_file, "NULL\n");
1748     }
1749   return reg_result;
1750 }
1751 
1752 
1753 /* Forward substitute and expand an expression out to its roots.
1754    This is the opposite of common subexpression.  Because local value
1755    numbering is such a weak optimization, the expanded expression is
1756    pretty much unique (not from a pointer equals point of view but
1757    from a tree shape point of view.
1758 
1759    This function returns NULL if the expansion fails.  The expansion
1760    will fail if there is no value number for one of the operands or if
1761    one of the operands has been overwritten between the current insn
1762    and the beginning of the basic block.  For instance x has no
1763    expansion in:
1764 
1765    r1 <- r1 + 3
1766    x <- r1 + 8
1767 
1768    REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1769    It is clear on return.  */
1770 
1771 rtx
cselib_expand_value_rtx(rtx orig,bitmap regs_active,int max_depth)1772 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1773 {
1774   struct expand_value_data evd;
1775 
1776   evd.regs_active = regs_active;
1777   evd.callback = NULL;
1778   evd.callback_arg = NULL;
1779   evd.dummy = false;
1780 
1781   return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1782 }
1783 
1784 /* Same as cselib_expand_value_rtx, but using a callback to try to
1785    resolve some expressions.  The CB function should return ORIG if it
1786    can't or does not want to deal with a certain RTX.  Any other
1787    return value, including NULL, will be used as the expansion for
1788    VALUE, without any further changes.  */
1789 
1790 rtx
cselib_expand_value_rtx_cb(rtx orig,bitmap regs_active,int max_depth,cselib_expand_callback cb,void * data)1791 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1792 			    cselib_expand_callback cb, void *data)
1793 {
1794   struct expand_value_data evd;
1795 
1796   evd.regs_active = regs_active;
1797   evd.callback = cb;
1798   evd.callback_arg = data;
1799   evd.dummy = false;
1800 
1801   return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1802 }
1803 
1804 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1805    or simplified.  Useful to find out whether cselib_expand_value_rtx_cb
1806    would return NULL or non-NULL, without allocating new rtx.  */
1807 
1808 bool
cselib_dummy_expand_value_rtx_cb(rtx orig,bitmap regs_active,int max_depth,cselib_expand_callback cb,void * data)1809 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1810 				  cselib_expand_callback cb, void *data)
1811 {
1812   struct expand_value_data evd;
1813 
1814   evd.regs_active = regs_active;
1815   evd.callback = cb;
1816   evd.callback_arg = data;
1817   evd.dummy = true;
1818 
1819   return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1820 }
1821 
1822 /* Internal implementation of cselib_expand_value_rtx and
1823    cselib_expand_value_rtx_cb.  */
1824 
1825 static rtx
cselib_expand_value_rtx_1(rtx orig,struct expand_value_data * evd,int max_depth)1826 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1827 			   int max_depth)
1828 {
1829   rtx copy, scopy;
1830   int i, j;
1831   RTX_CODE code;
1832   const char *format_ptr;
1833   machine_mode mode;
1834 
1835   code = GET_CODE (orig);
1836 
1837   /* For the context of dse, if we end up expand into a huge tree, we
1838      will not have a useful address, so we might as well just give up
1839      quickly.  */
1840   if (max_depth <= 0)
1841     return NULL;
1842 
1843   switch (code)
1844     {
1845     case REG:
1846       {
1847 	struct elt_list *l = REG_VALUES (REGNO (orig));
1848 
1849 	if (l && l->elt == NULL)
1850 	  l = l->next;
1851 	for (; l; l = l->next)
1852 	  if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1853 	    {
1854 	      rtx result;
1855 	      unsigned regno = REGNO (orig);
1856 
1857 	      /* The only thing that we are not willing to do (this
1858 		 is requirement of dse and if others potential uses
1859 		 need this function we should add a parm to control
1860 		 it) is that we will not substitute the
1861 		 STACK_POINTER_REGNUM, FRAME_POINTER or the
1862 		 HARD_FRAME_POINTER.
1863 
1864 		 These expansions confuses the code that notices that
1865 		 stores into the frame go dead at the end of the
1866 		 function and that the frame is not effected by calls
1867 		 to subroutines.  If you allow the
1868 		 STACK_POINTER_REGNUM substitution, then dse will
1869 		 think that parameter pushing also goes dead which is
1870 		 wrong.  If you allow the FRAME_POINTER or the
1871 		 HARD_FRAME_POINTER then you lose the opportunity to
1872 		 make the frame assumptions.  */
1873 	      if (regno == STACK_POINTER_REGNUM
1874 		  || regno == FRAME_POINTER_REGNUM
1875 		  || regno == HARD_FRAME_POINTER_REGNUM
1876 		  || regno == cfa_base_preserved_regno)
1877 		return orig;
1878 
1879 	      bitmap_set_bit (evd->regs_active, regno);
1880 
1881 	      if (dump_file && (dump_flags & TDF_CSELIB))
1882 		fprintf (dump_file, "expanding: r%d into: ", regno);
1883 
1884 	      result = expand_loc (l->elt->locs, evd, max_depth);
1885 	      bitmap_clear_bit (evd->regs_active, regno);
1886 
1887 	      if (result)
1888 		return result;
1889 	      else
1890 		return orig;
1891 	    }
1892 	return orig;
1893       }
1894 
1895     CASE_CONST_ANY:
1896     case SYMBOL_REF:
1897     case CODE_LABEL:
1898     case PC:
1899     case SCRATCH:
1900       /* SCRATCH must be shared because they represent distinct values.  */
1901       return orig;
1902     case CLOBBER:
1903       if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1904 	return orig;
1905       break;
1906 
1907     case CONST:
1908       if (shared_const_p (orig))
1909 	return orig;
1910       break;
1911 
1912     case SUBREG:
1913       {
1914 	rtx subreg;
1915 
1916 	if (evd->callback)
1917 	  {
1918 	    subreg = evd->callback (orig, evd->regs_active, max_depth,
1919 				    evd->callback_arg);
1920 	    if (subreg != orig)
1921 	      return subreg;
1922 	  }
1923 
1924 	subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1925 					    max_depth - 1);
1926 	if (!subreg)
1927 	  return NULL;
1928 	scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1929 				     GET_MODE (SUBREG_REG (orig)),
1930 				     SUBREG_BYTE (orig));
1931 	if (scopy == NULL
1932 	    || (GET_CODE (scopy) == SUBREG
1933 		&& !REG_P (SUBREG_REG (scopy))
1934 		&& !MEM_P (SUBREG_REG (scopy))))
1935 	  return NULL;
1936 
1937 	return scopy;
1938       }
1939 
1940     case VALUE:
1941       {
1942 	rtx result;
1943 
1944 	if (dump_file && (dump_flags & TDF_CSELIB))
1945 	  {
1946 	    fputs ("\nexpanding ", dump_file);
1947 	    print_rtl_single (dump_file, orig);
1948 	    fputs (" into...", dump_file);
1949 	  }
1950 
1951 	if (evd->callback)
1952 	  {
1953 	    result = evd->callback (orig, evd->regs_active, max_depth,
1954 				    evd->callback_arg);
1955 
1956 	    if (result != orig)
1957 	      return result;
1958 	  }
1959 
1960 	result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1961 	return result;
1962       }
1963 
1964     case DEBUG_EXPR:
1965       if (evd->callback)
1966 	return evd->callback (orig, evd->regs_active, max_depth,
1967 			      evd->callback_arg);
1968       return orig;
1969 
1970     default:
1971       break;
1972     }
1973 
1974   /* Copy the various flags, fields, and other information.  We assume
1975      that all fields need copying, and then clear the fields that should
1976      not be copied.  That is the sensible default behavior, and forces
1977      us to explicitly document why we are *not* copying a flag.  */
1978   if (evd->dummy)
1979     copy = NULL;
1980   else
1981     copy = shallow_copy_rtx (orig);
1982 
1983   format_ptr = GET_RTX_FORMAT (code);
1984 
1985   for (i = 0; i < GET_RTX_LENGTH (code); i++)
1986     switch (*format_ptr++)
1987       {
1988       case 'e':
1989 	if (XEXP (orig, i) != NULL)
1990 	  {
1991 	    rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1992 						    max_depth - 1);
1993 	    if (!result)
1994 	      return NULL;
1995 	    if (copy)
1996 	      XEXP (copy, i) = result;
1997 	  }
1998 	break;
1999 
2000       case 'E':
2001       case 'V':
2002 	if (XVEC (orig, i) != NULL)
2003 	  {
2004 	    if (copy)
2005 	      XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2006 	    for (j = 0; j < XVECLEN (orig, i); j++)
2007 	      {
2008 		rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
2009 							evd, max_depth - 1);
2010 		if (!result)
2011 		  return NULL;
2012 		if (copy)
2013 		  XVECEXP (copy, i, j) = result;
2014 	      }
2015 	  }
2016 	break;
2017 
2018       case 't':
2019       case 'w':
2020       case 'i':
2021       case 's':
2022       case 'S':
2023       case 'T':
2024       case 'u':
2025       case 'B':
2026       case '0':
2027 	/* These are left unchanged.  */
2028 	break;
2029 
2030       default:
2031 	gcc_unreachable ();
2032       }
2033 
2034   if (evd->dummy)
2035     return orig;
2036 
2037   mode = GET_MODE (copy);
2038   /* If an operand has been simplified into CONST_INT, which doesn't
2039      have a mode and the mode isn't derivable from whole rtx's mode,
2040      try simplify_*_operation first with mode from original's operand
2041      and as a fallback wrap CONST_INT into gen_rtx_CONST.  */
2042   scopy = copy;
2043   switch (GET_RTX_CLASS (code))
2044     {
2045     case RTX_UNARY:
2046       if (CONST_INT_P (XEXP (copy, 0))
2047 	  && GET_MODE (XEXP (orig, 0)) != VOIDmode)
2048 	{
2049 	  scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
2050 					    GET_MODE (XEXP (orig, 0)));
2051 	  if (scopy)
2052 	    return scopy;
2053 	}
2054       break;
2055     case RTX_COMM_ARITH:
2056     case RTX_BIN_ARITH:
2057       /* These expressions can derive operand modes from the whole rtx's mode.  */
2058       break;
2059     case RTX_TERNARY:
2060     case RTX_BITFIELD_OPS:
2061       if (CONST_INT_P (XEXP (copy, 0))
2062 	  && GET_MODE (XEXP (orig, 0)) != VOIDmode)
2063 	{
2064 	  scopy = simplify_ternary_operation (code, mode,
2065 					      GET_MODE (XEXP (orig, 0)),
2066 					      XEXP (copy, 0), XEXP (copy, 1),
2067 					      XEXP (copy, 2));
2068 	  if (scopy)
2069 	    return scopy;
2070 	}
2071       break;
2072     case RTX_COMPARE:
2073     case RTX_COMM_COMPARE:
2074       if (CONST_INT_P (XEXP (copy, 0))
2075 	  && GET_MODE (XEXP (copy, 1)) == VOIDmode
2076 	  && (GET_MODE (XEXP (orig, 0)) != VOIDmode
2077 	      || GET_MODE (XEXP (orig, 1)) != VOIDmode))
2078 	{
2079 	  scopy = simplify_relational_operation (code, mode,
2080 						 (GET_MODE (XEXP (orig, 0))
2081 						  != VOIDmode)
2082 						 ? GET_MODE (XEXP (orig, 0))
2083 						 : GET_MODE (XEXP (orig, 1)),
2084 						 XEXP (copy, 0),
2085 						 XEXP (copy, 1));
2086 	  if (scopy)
2087 	    return scopy;
2088 	}
2089       break;
2090     default:
2091       break;
2092     }
2093   scopy = simplify_rtx (copy);
2094   if (scopy)
2095     return scopy;
2096   return copy;
2097 }
2098 
2099 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
2100    with VALUE expressions.  This way, it becomes independent of changes
2101    to registers and memory.
2102    X isn't actually modified; if modifications are needed, new rtl is
2103    allocated.  However, the return value can share rtl with X.
2104    If X is within a MEM, MEMMODE must be the mode of the MEM.  */
2105 
2106 rtx
cselib_subst_to_values(rtx x,machine_mode memmode)2107 cselib_subst_to_values (rtx x, machine_mode memmode)
2108 {
2109   enum rtx_code code = GET_CODE (x);
2110   const char *fmt = GET_RTX_FORMAT (code);
2111   cselib_val *e;
2112   struct elt_list *l;
2113   rtx copy = x;
2114   int i;
2115   poly_int64 offset;
2116 
2117   switch (code)
2118     {
2119     case REG:
2120       l = REG_VALUES (REGNO (x));
2121       if (l && l->elt == NULL)
2122 	l = l->next;
2123       for (; l; l = l->next)
2124 	if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
2125 	  return l->elt->val_rtx;
2126 
2127       gcc_unreachable ();
2128 
2129     case MEM:
2130       e = cselib_lookup_mem (x, 0);
2131       /* This used to happen for autoincrements, but we deal with them
2132 	 properly now.  Remove the if stmt for the next release.  */
2133       if (! e)
2134 	{
2135 	  /* Assign a value that doesn't match any other.  */
2136 	  e = new_cselib_val (next_uid, GET_MODE (x), x);
2137 	}
2138       return e->val_rtx;
2139 
2140     case ENTRY_VALUE:
2141       e = cselib_lookup (x, GET_MODE (x), 0, memmode);
2142       if (! e)
2143 	break;
2144       return e->val_rtx;
2145 
2146     CASE_CONST_ANY:
2147       return x;
2148 
2149     case PRE_DEC:
2150     case PRE_INC:
2151       gcc_assert (memmode != VOIDmode);
2152       offset = GET_MODE_SIZE (memmode);
2153       if (code == PRE_DEC)
2154 	offset = -offset;
2155       return cselib_subst_to_values (plus_constant (GET_MODE (x),
2156 						    XEXP (x, 0), offset),
2157 				     memmode);
2158 
2159     case PRE_MODIFY:
2160       gcc_assert (memmode != VOIDmode);
2161       return cselib_subst_to_values (XEXP (x, 1), memmode);
2162 
2163     case POST_DEC:
2164     case POST_INC:
2165     case POST_MODIFY:
2166       gcc_assert (memmode != VOIDmode);
2167       return cselib_subst_to_values (XEXP (x, 0), memmode);
2168 
2169     case PLUS:
2170       if (GET_MODE (x) == Pmode && CONST_INT_P (XEXP (x, 1)))
2171 	{
2172 	  rtx t = cselib_subst_to_values (XEXP (x, 0), memmode);
2173 	  if (GET_CODE (t) == VALUE)
2174 	    {
2175 	      if (SP_DERIVED_VALUE_P (t) && XEXP (x, 1) == const0_rtx)
2176 		return t;
2177 	      for (struct elt_loc_list *l = CSELIB_VAL_PTR (t)->locs;
2178 		   l; l = l->next)
2179 		if (GET_CODE (l->loc) == PLUS
2180 		    && GET_CODE (XEXP (l->loc, 0)) == VALUE
2181 		    && SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
2182 		    && CONST_INT_P (XEXP (l->loc, 1)))
2183 		  return plus_constant (Pmode, l->loc, INTVAL (XEXP (x, 1)));
2184 	    }
2185 	  if (t != XEXP (x, 0))
2186 	    {
2187 	      copy = shallow_copy_rtx (x);
2188 	      XEXP (copy, 0) = t;
2189 	    }
2190 	  return copy;
2191 	}
2192 
2193     default:
2194       break;
2195     }
2196 
2197   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2198     {
2199       if (fmt[i] == 'e')
2200 	{
2201 	  rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
2202 
2203 	  if (t != XEXP (x, i))
2204 	    {
2205 	      if (x == copy)
2206 		copy = shallow_copy_rtx (x);
2207 	      XEXP (copy, i) = t;
2208 	    }
2209 	}
2210       else if (fmt[i] == 'E')
2211 	{
2212 	  int j;
2213 
2214 	  for (j = 0; j < XVECLEN (x, i); j++)
2215 	    {
2216 	      rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
2217 
2218 	      if (t != XVECEXP (x, i, j))
2219 		{
2220 		  if (XVEC (x, i) == XVEC (copy, i))
2221 		    {
2222 		      if (x == copy)
2223 			copy = shallow_copy_rtx (x);
2224 		      XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
2225 		    }
2226 		  XVECEXP (copy, i, j) = t;
2227 		}
2228 	    }
2229 	}
2230     }
2231 
2232   return copy;
2233 }
2234 
2235 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN.  */
2236 
2237 rtx
cselib_subst_to_values_from_insn(rtx x,machine_mode memmode,rtx_insn * insn)2238 cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn)
2239 {
2240   rtx ret;
2241   gcc_assert (!cselib_current_insn);
2242   cselib_current_insn = insn;
2243   ret = cselib_subst_to_values (x, memmode);
2244   cselib_current_insn = NULL;
2245   return ret;
2246 }
2247 
2248 /* Look up the rtl expression X in our tables and return the value it
2249    has.  If CREATE is zero, we return NULL if we don't know the value.
2250    Otherwise, we create a new one if possible, using mode MODE if X
2251    doesn't have a mode (i.e. because it's a constant).  When X is part
2252    of an address, MEMMODE should be the mode of the enclosing MEM if
2253    we're tracking autoinc expressions.  */
2254 
2255 static cselib_val *
cselib_lookup_1(rtx x,machine_mode mode,int create,machine_mode memmode)2256 cselib_lookup_1 (rtx x, machine_mode mode,
2257 		 int create, machine_mode memmode)
2258 {
2259   cselib_val **slot;
2260   cselib_val *e;
2261   unsigned int hashval;
2262 
2263   if (GET_MODE (x) != VOIDmode)
2264     mode = GET_MODE (x);
2265 
2266   if (GET_CODE (x) == VALUE)
2267     return CSELIB_VAL_PTR (x);
2268 
2269   if (REG_P (x))
2270     {
2271       struct elt_list *l;
2272       unsigned int i = REGNO (x);
2273 
2274       l = REG_VALUES (i);
2275       if (l && l->elt == NULL)
2276 	l = l->next;
2277       for (; l; l = l->next)
2278 	if (mode == GET_MODE (l->elt->val_rtx))
2279 	  {
2280 	    promote_debug_loc (l->elt->locs);
2281 	    return l->elt;
2282 	  }
2283 
2284       if (! create)
2285 	return 0;
2286 
2287       if (i < FIRST_PSEUDO_REGISTER)
2288 	{
2289 	  unsigned int n = hard_regno_nregs (i, mode);
2290 
2291 	  if (n > max_value_regs)
2292 	    max_value_regs = n;
2293 	}
2294 
2295       e = new_cselib_val (next_uid, GET_MODE (x), x);
2296       if (GET_MODE (x) == Pmode && x == stack_pointer_rtx)
2297 	SP_DERIVED_VALUE_P (e->val_rtx) = 1;
2298       new_elt_loc_list (e, x);
2299 
2300       scalar_int_mode int_mode;
2301       if (REG_VALUES (i) == 0)
2302 	{
2303 	  /* Maintain the invariant that the first entry of
2304 	     REG_VALUES, if present, must be the value used to set the
2305 	     register, or NULL.  */
2306 	  used_regs[n_used_regs++] = i;
2307 	  REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2308 	}
2309       else if (cselib_preserve_constants
2310 	       && is_int_mode (mode, &int_mode))
2311 	{
2312 	  /* During var-tracking, try harder to find equivalences
2313 	     for SUBREGs.  If a setter sets say a DImode register
2314 	     and user uses that register only in SImode, add a lowpart
2315 	     subreg location.  */
2316 	  struct elt_list *lwider = NULL;
2317 	  scalar_int_mode lmode;
2318 	  l = REG_VALUES (i);
2319 	  if (l && l->elt == NULL)
2320 	    l = l->next;
2321 	  for (; l; l = l->next)
2322 	    if (is_int_mode (GET_MODE (l->elt->val_rtx), &lmode)
2323 		&& GET_MODE_SIZE (lmode) > GET_MODE_SIZE (int_mode)
2324 		&& (lwider == NULL
2325 		    || partial_subreg_p (lmode,
2326 					 GET_MODE (lwider->elt->val_rtx))))
2327 	      {
2328 		struct elt_loc_list *el;
2329 		if (i < FIRST_PSEUDO_REGISTER
2330 		    && hard_regno_nregs (i, lmode) != 1)
2331 		  continue;
2332 		for (el = l->elt->locs; el; el = el->next)
2333 		  if (!REG_P (el->loc))
2334 		    break;
2335 		if (el)
2336 		  lwider = l;
2337 	      }
2338 	  if (lwider)
2339 	    {
2340 	      rtx sub = lowpart_subreg (int_mode, lwider->elt->val_rtx,
2341 					GET_MODE (lwider->elt->val_rtx));
2342 	      if (sub)
2343 		new_elt_loc_list (e, sub);
2344 	    }
2345 	}
2346       REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
2347       slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
2348       *slot = e;
2349       return e;
2350     }
2351 
2352   if (MEM_P (x))
2353     return cselib_lookup_mem (x, create);
2354 
2355   hashval = cselib_hash_rtx (x, create, memmode);
2356   /* Can't even create if hashing is not possible.  */
2357   if (! hashval)
2358     return 0;
2359 
2360   slot = cselib_find_slot (mode, x, hashval,
2361 			   create ? INSERT : NO_INSERT, memmode);
2362   if (slot == 0)
2363     return 0;
2364 
2365   e = (cselib_val *) *slot;
2366   if (e)
2367     return e;
2368 
2369   e = new_cselib_val (hashval, mode, x);
2370 
2371   /* We have to fill the slot before calling cselib_subst_to_values:
2372      the hash table is inconsistent until we do so, and
2373      cselib_subst_to_values will need to do lookups.  */
2374   *slot = e;
2375   rtx v = cselib_subst_to_values (x, memmode);
2376 
2377   /* If cselib_preserve_constants, we might get a SP_DERIVED_VALUE_P
2378      VALUE that isn't in the hash tables anymore.  */
2379   if (GET_CODE (v) == VALUE && SP_DERIVED_VALUE_P (v) && PRESERVED_VALUE_P (v))
2380     PRESERVED_VALUE_P (e->val_rtx) = 1;
2381 
2382   new_elt_loc_list (e, v);
2383   return e;
2384 }
2385 
2386 /* Wrapper for cselib_lookup, that indicates X is in INSN.  */
2387 
2388 cselib_val *
cselib_lookup_from_insn(rtx x,machine_mode mode,int create,machine_mode memmode,rtx_insn * insn)2389 cselib_lookup_from_insn (rtx x, machine_mode mode,
2390 			 int create, machine_mode memmode, rtx_insn *insn)
2391 {
2392   cselib_val *ret;
2393 
2394   gcc_assert (!cselib_current_insn);
2395   cselib_current_insn = insn;
2396 
2397   ret = cselib_lookup (x, mode, create, memmode);
2398 
2399   cselib_current_insn = NULL;
2400 
2401   return ret;
2402 }
2403 
2404 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2405    maintains invariants related with debug insns.  */
2406 
2407 cselib_val *
cselib_lookup(rtx x,machine_mode mode,int create,machine_mode memmode)2408 cselib_lookup (rtx x, machine_mode mode,
2409 	       int create, machine_mode memmode)
2410 {
2411   cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
2412 
2413   /* ??? Should we return NULL if we're not to create an entry, the
2414      found loc is a debug loc and cselib_current_insn is not DEBUG?
2415      If so, we should also avoid converting val to non-DEBUG; probably
2416      easiest setting cselib_current_insn to NULL before the call
2417      above.  */
2418 
2419   if (dump_file && (dump_flags & TDF_CSELIB))
2420     {
2421       fputs ("cselib lookup ", dump_file);
2422       print_inline_rtx (dump_file, x, 2);
2423       fprintf (dump_file, " => %u:%u\n",
2424 	       ret ? ret->uid : 0,
2425 	       ret ? ret->hash : 0);
2426     }
2427 
2428   return ret;
2429 }
2430 
2431 /* Invalidate the value at *L, which is part of REG_VALUES (REGNO).  */
2432 
2433 static void
cselib_invalidate_regno_val(unsigned int regno,struct elt_list ** l)2434 cselib_invalidate_regno_val (unsigned int regno, struct elt_list **l)
2435 {
2436   cselib_val *v = (*l)->elt;
2437   if (*l == REG_VALUES (regno))
2438     {
2439       /* Maintain the invariant that the first entry of
2440 	 REG_VALUES, if present, must be the value used to set
2441 	 the register, or NULL.  This is also nice because
2442 	 then we won't push the same regno onto user_regs
2443 	 multiple times.  */
2444       (*l)->elt = NULL;
2445       l = &(*l)->next;
2446     }
2447   else
2448     unchain_one_elt_list (l);
2449 
2450   v = canonical_cselib_val (v);
2451 
2452   bool had_locs = v->locs != NULL;
2453   rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
2454 
2455   /* Now, we clear the mapping from value to reg.  It must exist, so
2456      this code will crash intentionally if it doesn't.  */
2457   for (elt_loc_list **p = &v->locs; ; p = &(*p)->next)
2458     {
2459       rtx x = (*p)->loc;
2460 
2461       if (REG_P (x) && REGNO (x) == regno)
2462 	{
2463 	  unchain_one_elt_loc_list (p);
2464 	  break;
2465 	}
2466     }
2467 
2468   if (had_locs && cselib_useless_value_p (v))
2469     {
2470       if (setting_insn && DEBUG_INSN_P (setting_insn))
2471 	n_useless_debug_values++;
2472       else
2473 	n_useless_values++;
2474     }
2475 }
2476 
2477 /* Invalidate any entries in reg_values that overlap REGNO.  This is called
2478    if REGNO is changing.  MODE is the mode of the assignment to REGNO, which
2479    is used to determine how many hard registers are being changed.  If MODE
2480    is VOIDmode, then only REGNO is being changed; this is used when
2481    invalidating call clobbered registers across a call.  */
2482 
2483 static void
cselib_invalidate_regno(unsigned int regno,machine_mode mode)2484 cselib_invalidate_regno (unsigned int regno, machine_mode mode)
2485 {
2486   unsigned int endregno;
2487   unsigned int i;
2488 
2489   /* If we see pseudos after reload, something is _wrong_.  */
2490   gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2491 	      || reg_renumber[regno] < 0);
2492 
2493   /* Determine the range of registers that must be invalidated.  For
2494      pseudos, only REGNO is affected.  For hard regs, we must take MODE
2495      into account, and we must also invalidate lower register numbers
2496      if they contain values that overlap REGNO.  */
2497   if (regno < FIRST_PSEUDO_REGISTER)
2498     {
2499       gcc_assert (mode != VOIDmode);
2500 
2501       if (regno < max_value_regs)
2502 	i = 0;
2503       else
2504 	i = regno - max_value_regs;
2505 
2506       endregno = end_hard_regno (mode, regno);
2507     }
2508   else
2509     {
2510       i = regno;
2511       endregno = regno + 1;
2512     }
2513 
2514   for (; i < endregno; i++)
2515     {
2516       struct elt_list **l = &REG_VALUES (i);
2517 
2518       /* Go through all known values for this reg; if it overlaps the range
2519 	 we're invalidating, remove the value.  */
2520       while (*l)
2521 	{
2522 	  cselib_val *v = (*l)->elt;
2523 	  unsigned int this_last = i;
2524 
2525 	  if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2526 	    this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2527 
2528 	  if (this_last < regno || v == NULL
2529 	      || (v == cfa_base_preserved_val
2530 		  && i == cfa_base_preserved_regno))
2531 	    {
2532 	      l = &(*l)->next;
2533 	      continue;
2534 	    }
2535 
2536 	  /* We have an overlap.  */
2537 	  cselib_invalidate_regno_val (i, l);
2538 	}
2539     }
2540 }
2541 
2542 /* Invalidate any locations in the table which are changed because of a
2543    store to MEM_RTX.  If this is called because of a non-const call
2544    instruction, MEM_RTX is (mem:BLK const0_rtx).  */
2545 
2546 static void
cselib_invalidate_mem(rtx mem_rtx)2547 cselib_invalidate_mem (rtx mem_rtx)
2548 {
2549   cselib_val **vp, *v, *next;
2550   int num_mems = 0;
2551   rtx mem_addr;
2552 
2553   mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2554   mem_rtx = canon_rtx (mem_rtx);
2555 
2556   vp = &first_containing_mem;
2557   for (v = *vp; v != &dummy_val; v = next)
2558     {
2559       bool has_mem = false;
2560       struct elt_loc_list **p = &v->locs;
2561       bool had_locs = v->locs != NULL;
2562       rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
2563 
2564       while (*p)
2565 	{
2566 	  rtx x = (*p)->loc;
2567 	  cselib_val *addr;
2568 	  struct elt_list **mem_chain;
2569 
2570 	  /* MEMs may occur in locations only at the top level; below
2571 	     that every MEM or REG is substituted by its VALUE.  */
2572 	  if (!MEM_P (x))
2573 	    {
2574 	      p = &(*p)->next;
2575 	      continue;
2576 	    }
2577 	  if (num_mems < param_max_cselib_memory_locations
2578 	      && ! canon_anti_dependence (x, false, mem_rtx,
2579 					  GET_MODE (mem_rtx), mem_addr))
2580 	    {
2581 	      has_mem = true;
2582 	      num_mems++;
2583 	      p = &(*p)->next;
2584 	      continue;
2585 	    }
2586 
2587 	  /* This one overlaps.  */
2588 	  /* We must have a mapping from this MEM's address to the
2589 	     value (E).  Remove that, too.  */
2590 	  addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2591 	  addr = canonical_cselib_val (addr);
2592 	  gcc_checking_assert (v == canonical_cselib_val (v));
2593 	  mem_chain = &addr->addr_list;
2594 	  for (;;)
2595 	    {
2596 	      cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2597 
2598 	      if (canon == v)
2599 		{
2600 		  unchain_one_elt_list (mem_chain);
2601 		  break;
2602 		}
2603 
2604 	      /* Record canonicalized elt.  */
2605 	      (*mem_chain)->elt = canon;
2606 
2607 	      mem_chain = &(*mem_chain)->next;
2608 	    }
2609 
2610 	  unchain_one_elt_loc_list (p);
2611 	}
2612 
2613       if (had_locs && cselib_useless_value_p (v))
2614 	{
2615 	  if (setting_insn && DEBUG_INSN_P (setting_insn))
2616 	    n_useless_debug_values++;
2617 	  else
2618 	    n_useless_values++;
2619 	}
2620 
2621       next = v->next_containing_mem;
2622       if (has_mem)
2623 	{
2624 	  *vp = v;
2625 	  vp = &(*vp)->next_containing_mem;
2626 	}
2627       else
2628 	v->next_containing_mem = NULL;
2629     }
2630   *vp = &dummy_val;
2631 }
2632 
2633 /* Invalidate DEST.  */
2634 
2635 void
cselib_invalidate_rtx(rtx dest)2636 cselib_invalidate_rtx (rtx dest)
2637 {
2638   while (GET_CODE (dest) == SUBREG
2639 	 || GET_CODE (dest) == ZERO_EXTRACT
2640 	 || GET_CODE (dest) == STRICT_LOW_PART)
2641     dest = XEXP (dest, 0);
2642 
2643   if (REG_P (dest))
2644     cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2645   else if (MEM_P (dest))
2646     cselib_invalidate_mem (dest);
2647 }
2648 
2649 /* A wrapper for cselib_invalidate_rtx to be called via note_stores.  */
2650 
2651 static void
cselib_invalidate_rtx_note_stores(rtx dest,const_rtx,void * data ATTRIBUTE_UNUSED)2652 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx,
2653 				   void *data ATTRIBUTE_UNUSED)
2654 {
2655   cselib_invalidate_rtx (dest);
2656 }
2657 
2658 /* Record the result of a SET instruction.  DEST is being set; the source
2659    contains the value described by SRC_ELT.  If DEST is a MEM, DEST_ADDR_ELT
2660    describes its address.  */
2661 
2662 static void
cselib_record_set(rtx dest,cselib_val * src_elt,cselib_val * dest_addr_elt)2663 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2664 {
2665   if (src_elt == 0 || side_effects_p (dest))
2666     return;
2667 
2668   if (REG_P (dest))
2669     {
2670       unsigned int dreg = REGNO (dest);
2671       if (dreg < FIRST_PSEUDO_REGISTER)
2672 	{
2673 	  unsigned int n = REG_NREGS (dest);
2674 
2675 	  if (n > max_value_regs)
2676 	    max_value_regs = n;
2677 	}
2678 
2679       if (REG_VALUES (dreg) == 0)
2680 	{
2681 	  used_regs[n_used_regs++] = dreg;
2682 	  REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2683 	}
2684       else
2685 	{
2686 	  /* The register should have been invalidated.  */
2687 	  gcc_assert (REG_VALUES (dreg)->elt == 0);
2688 	  REG_VALUES (dreg)->elt = src_elt;
2689 	}
2690 
2691       if (cselib_useless_value_p (src_elt))
2692 	n_useless_values--;
2693       new_elt_loc_list (src_elt, dest);
2694     }
2695   else if (MEM_P (dest) && dest_addr_elt != 0
2696 	   && cselib_record_memory)
2697     {
2698       if (cselib_useless_value_p (src_elt))
2699 	n_useless_values--;
2700       add_mem_for_addr (dest_addr_elt, src_elt, dest);
2701     }
2702 }
2703 
2704 /* Make ELT and X's VALUE equivalent to each other at INSN.  */
2705 
2706 void
cselib_add_permanent_equiv(cselib_val * elt,rtx x,rtx_insn * insn)2707 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn)
2708 {
2709   cselib_val *nelt;
2710   rtx_insn *save_cselib_current_insn = cselib_current_insn;
2711 
2712   gcc_checking_assert (elt);
2713   gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2714   gcc_checking_assert (!side_effects_p (x));
2715 
2716   cselib_current_insn = insn;
2717 
2718   nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2719 
2720   if (nelt != elt)
2721     {
2722       cselib_any_perm_equivs = true;
2723 
2724       if (!PRESERVED_VALUE_P (nelt->val_rtx))
2725 	cselib_preserve_value (nelt);
2726 
2727       new_elt_loc_list (nelt, elt->val_rtx);
2728     }
2729 
2730   cselib_current_insn = save_cselib_current_insn;
2731 }
2732 
2733 /* Return TRUE if any permanent equivalences have been recorded since
2734    the table was last initialized.  */
2735 bool
cselib_have_permanent_equivalences(void)2736 cselib_have_permanent_equivalences (void)
2737 {
2738   return cselib_any_perm_equivs;
2739 }
2740 
2741 /* Record stack_pointer_rtx to be equal to
2742    (plus:P cfa_base_preserved_val offset).  Used by var-tracking
2743    at the start of basic blocks for !frame_pointer_needed functions.  */
2744 
2745 void
cselib_record_sp_cfa_base_equiv(HOST_WIDE_INT offset,rtx_insn * insn)2746 cselib_record_sp_cfa_base_equiv (HOST_WIDE_INT offset, rtx_insn *insn)
2747 {
2748   rtx sp_derived_value = NULL_RTX;
2749   for (struct elt_loc_list *l = cfa_base_preserved_val->locs; l; l = l->next)
2750     if (GET_CODE (l->loc) == VALUE
2751 	&& SP_DERIVED_VALUE_P (l->loc))
2752       {
2753 	sp_derived_value = l->loc;
2754 	break;
2755       }
2756     else if (GET_CODE (l->loc) == PLUS
2757 	     && GET_CODE (XEXP (l->loc, 0)) == VALUE
2758 	     && SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
2759 	     && CONST_INT_P (XEXP (l->loc, 1)))
2760       {
2761 	sp_derived_value = XEXP (l->loc, 0);
2762 	offset = offset + UINTVAL (XEXP (l->loc, 1));
2763 	break;
2764       }
2765   if (sp_derived_value == NULL_RTX)
2766     return;
2767   cselib_val *val
2768     = cselib_lookup_from_insn (plus_constant (Pmode, sp_derived_value, offset),
2769 			       Pmode, 1, VOIDmode, insn);
2770   if (val != NULL)
2771     {
2772       PRESERVED_VALUE_P (val->val_rtx) = 1;
2773       cselib_record_set (stack_pointer_rtx, val, NULL);
2774     }
2775 }
2776 
2777 /* Return true if V is SP_DERIVED_VALUE_P (or SP_DERIVED_VALUE_P + CONST_INT)
2778    that can be expressed using cfa_base_preserved_val + CONST_INT.  */
2779 
2780 bool
cselib_sp_derived_value_p(cselib_val * v)2781 cselib_sp_derived_value_p (cselib_val *v)
2782 {
2783   if (!SP_DERIVED_VALUE_P (v->val_rtx))
2784     for (struct elt_loc_list *l = v->locs; l; l = l->next)
2785       if (GET_CODE (l->loc) == PLUS
2786 	  && GET_CODE (XEXP (l->loc, 0)) == VALUE
2787 	  && SP_DERIVED_VALUE_P (XEXP (l->loc, 0))
2788 	  && CONST_INT_P (XEXP (l->loc, 1)))
2789 	v = CSELIB_VAL_PTR (XEXP (l->loc, 0));
2790   if (!SP_DERIVED_VALUE_P (v->val_rtx))
2791     return false;
2792   for (struct elt_loc_list *l = v->locs; l; l = l->next)
2793     if (l->loc == cfa_base_preserved_val->val_rtx)
2794       return true;
2795     else if (GET_CODE (l->loc) == PLUS
2796 	     && XEXP (l->loc, 0) == cfa_base_preserved_val->val_rtx
2797 	     && CONST_INT_P (XEXP (l->loc, 1)))
2798       return true;
2799   return false;
2800 }
2801 
2802 /* There is no good way to determine how many elements there can be
2803    in a PARALLEL.  Since it's fairly cheap, use a really large number.  */
2804 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2805 
2806 struct cselib_record_autoinc_data
2807 {
2808   struct cselib_set *sets;
2809   int n_sets;
2810 };
2811 
2812 /* Callback for for_each_inc_dec.  Records in ARG the SETs implied by
2813    autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST.  */
2814 
2815 static int
cselib_record_autoinc_cb(rtx mem ATTRIBUTE_UNUSED,rtx op ATTRIBUTE_UNUSED,rtx dest,rtx src,rtx srcoff,void * arg)2816 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2817 			  rtx dest, rtx src, rtx srcoff, void *arg)
2818 {
2819   struct cselib_record_autoinc_data *data;
2820   data = (struct cselib_record_autoinc_data *)arg;
2821 
2822   data->sets[data->n_sets].dest = dest;
2823 
2824   if (srcoff)
2825     data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2826   else
2827     data->sets[data->n_sets].src = src;
2828 
2829   data->n_sets++;
2830 
2831   return 0;
2832 }
2833 
2834 /* Record the effects of any sets and autoincs in INSN.  */
2835 static void
cselib_record_sets(rtx_insn * insn)2836 cselib_record_sets (rtx_insn *insn)
2837 {
2838   int n_sets = 0;
2839   int i;
2840   struct cselib_set sets[MAX_SETS];
2841   rtx cond = 0;
2842   int n_sets_before_autoinc;
2843   int n_strict_low_parts = 0;
2844   struct cselib_record_autoinc_data data;
2845 
2846   rtx body = PATTERN (insn);
2847   if (GET_CODE (body) == COND_EXEC)
2848     {
2849       cond = COND_EXEC_TEST (body);
2850       body = COND_EXEC_CODE (body);
2851     }
2852 
2853   /* Find all sets.  */
2854   if (GET_CODE (body) == SET)
2855     {
2856       sets[0].src = SET_SRC (body);
2857       sets[0].dest = SET_DEST (body);
2858       n_sets = 1;
2859     }
2860   else if (GET_CODE (body) == PARALLEL)
2861     {
2862       /* Look through the PARALLEL and record the values being
2863 	 set, if possible.  Also handle any CLOBBERs.  */
2864       for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2865 	{
2866 	  rtx x = XVECEXP (body, 0, i);
2867 
2868 	  if (GET_CODE (x) == SET)
2869 	    {
2870 	      sets[n_sets].src = SET_SRC (x);
2871 	      sets[n_sets].dest = SET_DEST (x);
2872 	      n_sets++;
2873 	    }
2874 	}
2875     }
2876 
2877   if (n_sets == 1
2878       && MEM_P (sets[0].src)
2879       && !cselib_record_memory
2880       && MEM_READONLY_P (sets[0].src))
2881     {
2882       rtx note = find_reg_equal_equiv_note (insn);
2883 
2884       if (note && CONSTANT_P (XEXP (note, 0)))
2885 	sets[0].src = XEXP (note, 0);
2886     }
2887 
2888   data.sets = sets;
2889   data.n_sets = n_sets_before_autoinc = n_sets;
2890   for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data);
2891   n_sets = data.n_sets;
2892 
2893   /* Look up the values that are read.  Do this before invalidating the
2894      locations that are written.  */
2895   for (i = 0; i < n_sets; i++)
2896     {
2897       rtx dest = sets[i].dest;
2898       rtx orig = dest;
2899 
2900       /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2901          the low part after invalidating any knowledge about larger modes.  */
2902       if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2903 	sets[i].dest = dest = XEXP (dest, 0);
2904 
2905       /* We don't know how to record anything but REG or MEM.  */
2906       if (REG_P (dest)
2907 	  || (MEM_P (dest) && cselib_record_memory))
2908         {
2909 	  rtx src = sets[i].src;
2910 	  if (cond)
2911 	    src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2912 	  sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2913 	  if (MEM_P (dest))
2914 	    {
2915 	      machine_mode address_mode = get_address_mode (dest);
2916 
2917 	      sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2918 						     address_mode, 1,
2919 						     GET_MODE (dest));
2920 	    }
2921 	  else
2922 	    sets[i].dest_addr_elt = 0;
2923 	}
2924 
2925       /* Improve handling of STRICT_LOW_PART if the current value is known
2926 	 to be const0_rtx, then the low bits will be set to dest and higher
2927 	 bits will remain zero.  Used in code like:
2928 
2929 	 {di:SI=0;clobber flags:CC;}
2930 	 flags:CCNO=cmp(bx:SI,0)
2931 	 strict_low_part(di:QI)=flags:CCNO<=0
2932 
2933 	 where we can note both that di:QI=flags:CCNO<=0 and
2934 	 also that because di:SI is known to be 0 and strict_low_part(di:QI)
2935 	 preserves the upper bits that di:SI=zero_extend(flags:CCNO<=0).  */
2936       scalar_int_mode mode;
2937       if (dest != orig
2938 	  && cselib_record_sets_hook
2939 	  && REG_P (dest)
2940 	  && HARD_REGISTER_P (dest)
2941 	  && sets[i].src_elt
2942 	  && is_a <scalar_int_mode> (GET_MODE (dest), &mode)
2943 	  && n_sets + n_strict_low_parts < MAX_SETS)
2944 	{
2945 	  opt_scalar_int_mode wider_mode_iter;
2946 	  FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2947 	    {
2948 	      scalar_int_mode wider_mode = wider_mode_iter.require ();
2949 	      if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
2950 		break;
2951 
2952 	      rtx reg = gen_lowpart (wider_mode, dest);
2953 	      if (!REG_P (reg))
2954 		break;
2955 
2956 	      cselib_val *v = cselib_lookup (reg, wider_mode, 0, VOIDmode);
2957 	      if (!v)
2958 		continue;
2959 
2960 	      struct elt_loc_list *l;
2961 	      for (l = v->locs; l; l = l->next)
2962 		if (l->loc == const0_rtx)
2963 		  break;
2964 
2965 	      if (!l)
2966 		continue;
2967 
2968 	      sets[n_sets + n_strict_low_parts].dest = reg;
2969 	      sets[n_sets + n_strict_low_parts].src = dest;
2970 	      sets[n_sets + n_strict_low_parts++].src_elt = sets[i].src_elt;
2971 	      break;
2972 	    }
2973 	}
2974     }
2975 
2976   if (cselib_record_sets_hook)
2977     cselib_record_sets_hook (insn, sets, n_sets);
2978 
2979   /* Invalidate all locations written by this insn.  Note that the elts we
2980      looked up in the previous loop aren't affected, just some of their
2981      locations may go away.  */
2982   note_pattern_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2983 
2984   for (i = n_sets_before_autoinc; i < n_sets; i++)
2985     cselib_invalidate_rtx (sets[i].dest);
2986 
2987   /* If this is an asm, look for duplicate sets.  This can happen when the
2988      user uses the same value as an output multiple times.  This is valid
2989      if the outputs are not actually used thereafter.  Treat this case as
2990      if the value isn't actually set.  We do this by smashing the destination
2991      to pc_rtx, so that we won't record the value later.  */
2992   if (n_sets >= 2 && asm_noperands (body) >= 0)
2993     {
2994       for (i = 0; i < n_sets; i++)
2995 	{
2996 	  rtx dest = sets[i].dest;
2997 	  if (REG_P (dest) || MEM_P (dest))
2998 	    {
2999 	      int j;
3000 	      for (j = i + 1; j < n_sets; j++)
3001 		if (rtx_equal_p (dest, sets[j].dest))
3002 		  {
3003 		    sets[i].dest = pc_rtx;
3004 		    sets[j].dest = pc_rtx;
3005 		  }
3006 	    }
3007 	}
3008     }
3009 
3010   /* Now enter the equivalences in our tables.  */
3011   for (i = 0; i < n_sets; i++)
3012     {
3013       rtx dest = sets[i].dest;
3014       if (REG_P (dest)
3015 	  || (MEM_P (dest) && cselib_record_memory))
3016 	cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
3017     }
3018 
3019   /* And deal with STRICT_LOW_PART.  */
3020   for (i = 0; i < n_strict_low_parts; i++)
3021     {
3022       if (! PRESERVED_VALUE_P (sets[n_sets + i].src_elt->val_rtx))
3023 	continue;
3024       machine_mode dest_mode = GET_MODE (sets[n_sets + i].dest);
3025       cselib_val *v
3026 	= cselib_lookup (sets[n_sets + i].dest, dest_mode, 1, VOIDmode);
3027       cselib_preserve_value (v);
3028       rtx r = gen_rtx_ZERO_EXTEND (dest_mode,
3029 				   sets[n_sets + i].src_elt->val_rtx);
3030       cselib_add_permanent_equiv (v, r, insn);
3031     }
3032 }
3033 
3034 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx.  */
3035 
3036 bool
fp_setter_insn(rtx_insn * insn)3037 fp_setter_insn (rtx_insn *insn)
3038 {
3039   rtx expr, pat = NULL_RTX;
3040 
3041   if (!RTX_FRAME_RELATED_P (insn))
3042     return false;
3043 
3044   expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
3045   if (expr)
3046     pat = XEXP (expr, 0);
3047   if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
3048     return false;
3049 
3050   /* Don't return true for frame pointer restores in the epilogue.  */
3051   if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
3052     return false;
3053   return true;
3054 }
3055 
3056 /* V is one of the values in REG_VALUES (REGNO).  Return true if it
3057    would be invalidated by CALLEE_ABI.  */
3058 
3059 static bool
cselib_invalidated_by_call_p(const function_abi & callee_abi,unsigned int regno,cselib_val * v)3060 cselib_invalidated_by_call_p (const function_abi &callee_abi,
3061 			      unsigned int regno, cselib_val *v)
3062 {
3063   machine_mode mode = GET_MODE (v->val_rtx);
3064   if (mode == VOIDmode)
3065     {
3066       v = REG_VALUES (regno)->elt;
3067       if (!v)
3068 	/* If we don't know what the mode of the constant value is, and we
3069 	   don't know what mode the register was set in, conservatively
3070 	   assume that the register is clobbered.  The value's going to be
3071 	   essentially useless in this case anyway.  */
3072 	return true;
3073       mode = GET_MODE (v->val_rtx);
3074     }
3075   return callee_abi.clobbers_reg_p (mode, regno);
3076 }
3077 
3078 /* Record the effects of INSN.  */
3079 
3080 void
cselib_process_insn(rtx_insn * insn)3081 cselib_process_insn (rtx_insn *insn)
3082 {
3083   int i;
3084   rtx x;
3085 
3086   cselib_current_insn = insn;
3087 
3088   /* Forget everything at a CODE_LABEL or a setjmp.  */
3089   if ((LABEL_P (insn)
3090        || (CALL_P (insn)
3091 	   && find_reg_note (insn, REG_SETJMP, NULL)))
3092       && !cselib_preserve_constants)
3093     {
3094       cselib_reset_table (next_uid);
3095       cselib_current_insn = NULL;
3096       return;
3097     }
3098 
3099   if (! INSN_P (insn))
3100     {
3101       cselib_current_insn = NULL;
3102       return;
3103     }
3104 
3105   /* If this is a call instruction, forget anything stored in a
3106      call clobbered register, or, if this is not a const call, in
3107      memory.  */
3108   if (CALL_P (insn))
3109     {
3110       function_abi callee_abi = insn_callee_abi (insn);
3111       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3112 	{
3113 	  elt_list **l = &REG_VALUES (i);
3114 	  while (*l)
3115 	    {
3116 	      cselib_val *v = (*l)->elt;
3117 	      if (v && cselib_invalidated_by_call_p (callee_abi, i, v))
3118 		cselib_invalidate_regno_val (i, l);
3119 	      else
3120 		l = &(*l)->next;
3121 	    }
3122 	}
3123 
3124       /* Since it is not clear how cselib is going to be used, be
3125 	 conservative here and treat looping pure or const functions
3126 	 as if they were regular functions.  */
3127       if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
3128 	  || !(RTL_CONST_OR_PURE_CALL_P (insn)))
3129 	cselib_invalidate_mem (callmem);
3130       else
3131 	/* For const/pure calls, invalidate any argument slots because
3132 	   they are owned by the callee.  */
3133 	for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
3134 	  if (GET_CODE (XEXP (x, 0)) == USE
3135 	      && MEM_P (XEXP (XEXP (x, 0), 0)))
3136 	    cselib_invalidate_mem (XEXP (XEXP (x, 0), 0));
3137     }
3138 
3139   cselib_record_sets (insn);
3140 
3141   /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
3142      after we have processed the insn.  */
3143   if (CALL_P (insn))
3144     {
3145       for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
3146 	if (GET_CODE (XEXP (x, 0)) == CLOBBER)
3147 	  cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
3148 
3149       /* Flush everything on setjmp.  */
3150       if (cselib_preserve_constants
3151 	  && find_reg_note (insn, REG_SETJMP, NULL))
3152 	{
3153 	  cselib_preserve_only_values ();
3154 	  cselib_reset_table (next_uid);
3155 	}
3156     }
3157 
3158   /* On setter of the hard frame pointer if frame_pointer_needed,
3159      invalidate stack_pointer_rtx, so that sp and {,h}fp based
3160      VALUEs are distinct.  */
3161   if (reload_completed
3162       && frame_pointer_needed
3163       && fp_setter_insn (insn))
3164     cselib_invalidate_rtx (stack_pointer_rtx);
3165 
3166   cselib_current_insn = NULL;
3167 
3168   if (n_useless_values > MAX_USELESS_VALUES
3169       /* remove_useless_values is linear in the hash table size.  Avoid
3170          quadratic behavior for very large hashtables with very few
3171 	 useless elements.  */
3172       && ((unsigned int)n_useless_values
3173 	  > (cselib_hash_table->elements () - n_debug_values) / 4))
3174     remove_useless_values ();
3175 }
3176 
3177 /* Initialize cselib for one pass.  The caller must also call
3178    init_alias_analysis.  */
3179 
3180 void
cselib_init(int record_what)3181 cselib_init (int record_what)
3182 {
3183   cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
3184   cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
3185   cselib_any_perm_equivs = false;
3186 
3187   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
3188      see canon_true_dependence.  This is only created once.  */
3189   if (! callmem)
3190     callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
3191 
3192   cselib_nregs = max_reg_num ();
3193 
3194   /* We preserve reg_values to allow expensive clearing of the whole thing.
3195      Reallocate it however if it happens to be too large.  */
3196   if (!reg_values || reg_values_size < cselib_nregs
3197       || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
3198     {
3199       free (reg_values);
3200       /* Some space for newly emit instructions so we don't end up
3201 	 reallocating in between passes.  */
3202       reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
3203       reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
3204     }
3205   used_regs = XNEWVEC (unsigned int, cselib_nregs);
3206   n_used_regs = 0;
3207   /* FIXME: enable sanitization (PR87845) */
3208   cselib_hash_table
3209     = new hash_table<cselib_hasher> (31, /* ggc */ false,
3210 				     /* sanitize_eq_and_hash */ false);
3211   if (cselib_preserve_constants)
3212     cselib_preserved_hash_table
3213       = new hash_table<cselib_hasher> (31, /* ggc */ false,
3214 				       /* sanitize_eq_and_hash */ false);
3215   next_uid = 1;
3216 }
3217 
3218 /* Called when the current user is done with cselib.  */
3219 
3220 void
cselib_finish(void)3221 cselib_finish (void)
3222 {
3223   bool preserved = cselib_preserve_constants;
3224   cselib_discard_hook = NULL;
3225   cselib_preserve_constants = false;
3226   cselib_any_perm_equivs = false;
3227   cfa_base_preserved_val = NULL;
3228   cfa_base_preserved_regno = INVALID_REGNUM;
3229   elt_list_pool.release ();
3230   elt_loc_list_pool.release ();
3231   cselib_val_pool.release ();
3232   value_pool.release ();
3233   cselib_clear_table ();
3234   delete cselib_hash_table;
3235   cselib_hash_table = NULL;
3236   if (preserved)
3237     delete cselib_preserved_hash_table;
3238   cselib_preserved_hash_table = NULL;
3239   free (used_regs);
3240   used_regs = 0;
3241   n_useless_values = 0;
3242   n_useless_debug_values = 0;
3243   n_debug_values = 0;
3244   next_uid = 0;
3245 }
3246 
3247 /* Dump the cselib_val *X to FILE *OUT.  */
3248 
3249 int
dump_cselib_val(cselib_val ** x,FILE * out)3250 dump_cselib_val (cselib_val **x, FILE *out)
3251 {
3252   cselib_val *v = *x;
3253   bool need_lf = true;
3254 
3255   print_inline_rtx (out, v->val_rtx, 0);
3256 
3257   if (v->locs)
3258     {
3259       struct elt_loc_list *l = v->locs;
3260       if (need_lf)
3261 	{
3262 	  fputc ('\n', out);
3263 	  need_lf = false;
3264 	}
3265       fputs (" locs:", out);
3266       do
3267 	{
3268 	  if (l->setting_insn)
3269 	    fprintf (out, "\n  from insn %i ",
3270 		     INSN_UID (l->setting_insn));
3271 	  else
3272 	    fprintf (out, "\n   ");
3273 	  print_inline_rtx (out, l->loc, 4);
3274 	}
3275       while ((l = l->next));
3276       fputc ('\n', out);
3277     }
3278   else
3279     {
3280       fputs (" no locs", out);
3281       need_lf = true;
3282     }
3283 
3284   if (v->addr_list)
3285     {
3286       struct elt_list *e = v->addr_list;
3287       if (need_lf)
3288 	{
3289 	  fputc ('\n', out);
3290 	  need_lf = false;
3291 	}
3292       fputs (" addr list:", out);
3293       do
3294 	{
3295 	  fputs ("\n  ", out);
3296 	  print_inline_rtx (out, e->elt->val_rtx, 2);
3297 	}
3298       while ((e = e->next));
3299       fputc ('\n', out);
3300     }
3301   else
3302     {
3303       fputs (" no addrs", out);
3304       need_lf = true;
3305     }
3306 
3307   if (v->next_containing_mem == &dummy_val)
3308     fputs (" last mem\n", out);
3309   else if (v->next_containing_mem)
3310     {
3311       fputs (" next mem ", out);
3312       print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
3313       fputc ('\n', out);
3314     }
3315   else if (need_lf)
3316     fputc ('\n', out);
3317 
3318   return 1;
3319 }
3320 
3321 /* Dump to OUT everything in the CSELIB table.  */
3322 
3323 void
dump_cselib_table(FILE * out)3324 dump_cselib_table (FILE *out)
3325 {
3326   fprintf (out, "cselib hash table:\n");
3327   cselib_hash_table->traverse <FILE *, dump_cselib_val> (out);
3328   fprintf (out, "cselib preserved hash table:\n");
3329   cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out);
3330   if (first_containing_mem != &dummy_val)
3331     {
3332       fputs ("first mem ", out);
3333       print_inline_rtx (out, first_containing_mem->val_rtx, 2);
3334       fputc ('\n', out);
3335     }
3336   fprintf (out, "next uid %i\n", next_uid);
3337 }
3338 
3339 #include "gt-cselib.h"
3340