1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright (c) 2016 - 2018 Cavium Inc.
3 * All rights reserved.
4 * www.cavium.com
5 */
6
7 #ifndef __ECORE_CHAIN_H__
8 #define __ECORE_CHAIN_H__
9
10 #include <assert.h> /* @DPDK */
11
12 #include "common_hsi.h"
13 #include "ecore_utils.h"
14
15 enum ecore_chain_mode {
16 /* Each Page contains a next pointer at its end */
17 ECORE_CHAIN_MODE_NEXT_PTR,
18
19 /* Chain is a single page (next ptr) is unrequired */
20 ECORE_CHAIN_MODE_SINGLE,
21
22 /* Page pointers are located in a side list */
23 ECORE_CHAIN_MODE_PBL,
24 };
25
26 enum ecore_chain_use_mode {
27 ECORE_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */
28 ECORE_CHAIN_USE_TO_CONSUME, /* Chain starts full */
29 ECORE_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */
30 };
31
32 enum ecore_chain_cnt_type {
33 /* The chain's size/prod/cons are kept in 16-bit variables */
34 ECORE_CHAIN_CNT_TYPE_U16,
35
36 /* The chain's size/prod/cons are kept in 32-bit variables */
37 ECORE_CHAIN_CNT_TYPE_U32,
38 };
39
40 struct ecore_chain_next {
41 struct regpair next_phys;
42 void *next_virt;
43 };
44
45 struct ecore_chain_pbl_u16 {
46 u16 prod_page_idx;
47 u16 cons_page_idx;
48 };
49
50 struct ecore_chain_pbl_u32 {
51 u32 prod_page_idx;
52 u32 cons_page_idx;
53 };
54
55 struct ecore_chain_ext_pbl {
56 dma_addr_t p_pbl_phys;
57 void *p_pbl_virt;
58 };
59
60 struct ecore_chain_u16 {
61 /* Cyclic index of next element to produce/consme */
62 u16 prod_idx;
63 u16 cons_idx;
64 };
65
66 struct ecore_chain_u32 {
67 /* Cyclic index of next element to produce/consme */
68 u32 prod_idx;
69 u32 cons_idx;
70 };
71
72 struct ecore_chain {
73 /* fastpath portion of the chain - required for commands such
74 * as produce / consume.
75 */
76 /* Point to next element to produce/consume */
77 void *p_prod_elem;
78 void *p_cons_elem;
79
80 /* Fastpath portions of the PBL [if exists] */
81
82 struct {
83 /* Table for keeping the virtual addresses of the chain pages,
84 * respectively to the physical addresses in the pbl table.
85 */
86 void **pp_virt_addr_tbl;
87
88 union {
89 struct ecore_chain_pbl_u16 pbl_u16;
90 struct ecore_chain_pbl_u32 pbl_u32;
91 } c;
92 } pbl;
93
94 union {
95 struct ecore_chain_u16 chain16;
96 struct ecore_chain_u32 chain32;
97 } u;
98
99 /* Capacity counts only usable elements */
100 u32 capacity;
101 u32 page_cnt;
102
103 /* A u8 would suffice for mode, but it would save as a lot of headaches
104 * on castings & defaults.
105 */
106 enum ecore_chain_mode mode;
107
108 /* Elements information for fast calculations */
109 u16 elem_per_page;
110 u16 elem_per_page_mask;
111 u16 elem_size;
112 u16 next_page_mask;
113 u16 usable_per_page;
114 u8 elem_unusable;
115
116 u8 cnt_type;
117
118 /* Slowpath of the chain - required for initialization and destruction,
119 * but isn't involved in regular functionality.
120 */
121
122 /* Base address of a pre-allocated buffer for pbl */
123 struct {
124 dma_addr_t p_phys_table;
125 void *p_virt_table;
126 } pbl_sp;
127
128 /* Address of first page of the chain - the address is required
129 * for fastpath operation [consume/produce] but only for the SINGLE
130 * flavour which isn't considered fastpath [== SPQ].
131 */
132 void *p_virt_addr;
133 dma_addr_t p_phys_addr;
134
135 /* Total number of elements [for entire chain] */
136 u32 size;
137
138 u8 intended_use;
139
140 /* TBD - do we really need this? Couldn't find usage for it */
141 bool b_external_pbl;
142
143 void *dp_ctx;
144 };
145
146 #define ECORE_CHAIN_PBL_ENTRY_SIZE (8)
147 #define ECORE_CHAIN_PAGE_SIZE (0x1000)
148 #define ELEMS_PER_PAGE(elem_size) (ECORE_CHAIN_PAGE_SIZE / (elem_size))
149
150 #define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \
151 ((mode == ECORE_CHAIN_MODE_NEXT_PTR) ? \
152 (u8)(1 + ((sizeof(struct ecore_chain_next) - 1) / \
153 (elem_size))) : 0)
154
155 #define USABLE_ELEMS_PER_PAGE(elem_size, mode) \
156 ((u32)(ELEMS_PER_PAGE(elem_size) - \
157 UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)))
158
159 #define ECORE_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \
160 DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
161
162 #define is_chain_u16(p) ((p)->cnt_type == ECORE_CHAIN_CNT_TYPE_U16)
163 #define is_chain_u32(p) ((p)->cnt_type == ECORE_CHAIN_CNT_TYPE_U32)
164
165 /* Accessors */
ecore_chain_get_prod_idx(struct ecore_chain * p_chain)166 static OSAL_INLINE u16 ecore_chain_get_prod_idx(struct ecore_chain *p_chain)
167 {
168 OSAL_ASSERT(is_chain_u16(p_chain));
169 return p_chain->u.chain16.prod_idx;
170 }
171
ecore_chain_get_prod_idx_u32(struct ecore_chain * p_chain)172 static OSAL_INLINE u32 ecore_chain_get_prod_idx_u32(struct ecore_chain *p_chain)
173 {
174 OSAL_ASSERT(is_chain_u32(p_chain));
175 return p_chain->u.chain32.prod_idx;
176 }
177
ecore_chain_get_cons_idx(struct ecore_chain * p_chain)178 static OSAL_INLINE u16 ecore_chain_get_cons_idx(struct ecore_chain *p_chain)
179 {
180 OSAL_ASSERT(is_chain_u16(p_chain));
181 return p_chain->u.chain16.cons_idx;
182 }
183
ecore_chain_get_cons_idx_u32(struct ecore_chain * p_chain)184 static OSAL_INLINE u32 ecore_chain_get_cons_idx_u32(struct ecore_chain *p_chain)
185 {
186 OSAL_ASSERT(is_chain_u32(p_chain));
187 return p_chain->u.chain32.cons_idx;
188 }
189
190 /* FIXME:
191 * Should create OSALs for the below definitions.
192 * For Linux, replace them with the existing U16_MAX and U32_MAX, and handle
193 * kernel versions that lack them.
194 */
195 #define ECORE_U16_MAX ((u16)~0U)
196 #define ECORE_U32_MAX ((u32)~0U)
197
ecore_chain_get_elem_left(struct ecore_chain * p_chain)198 static OSAL_INLINE u16 ecore_chain_get_elem_left(struct ecore_chain *p_chain)
199 {
200 u16 used;
201
202 OSAL_ASSERT(is_chain_u16(p_chain));
203
204 used = (u16)(((u32)ECORE_U16_MAX + 1 +
205 (u32)(p_chain->u.chain16.prod_idx)) -
206 (u32)p_chain->u.chain16.cons_idx);
207 if (p_chain->mode == ECORE_CHAIN_MODE_NEXT_PTR)
208 used -= p_chain->u.chain16.prod_idx / p_chain->elem_per_page -
209 p_chain->u.chain16.cons_idx / p_chain->elem_per_page;
210
211 return (u16)(p_chain->capacity - used);
212 }
213
214 static OSAL_INLINE u32
ecore_chain_get_elem_left_u32(struct ecore_chain * p_chain)215 ecore_chain_get_elem_left_u32(struct ecore_chain *p_chain)
216 {
217 u32 used;
218
219 OSAL_ASSERT(is_chain_u32(p_chain));
220
221 used = (u32)(((u64)ECORE_U32_MAX + 1 +
222 (u64)(p_chain->u.chain32.prod_idx)) -
223 (u64)p_chain->u.chain32.cons_idx);
224 if (p_chain->mode == ECORE_CHAIN_MODE_NEXT_PTR)
225 used -= p_chain->u.chain32.prod_idx / p_chain->elem_per_page -
226 p_chain->u.chain32.cons_idx / p_chain->elem_per_page;
227
228 return p_chain->capacity - used;
229 }
230
ecore_chain_is_full(struct ecore_chain * p_chain)231 static OSAL_INLINE u8 ecore_chain_is_full(struct ecore_chain *p_chain)
232 {
233 if (is_chain_u16(p_chain))
234 return (ecore_chain_get_elem_left(p_chain) ==
235 p_chain->capacity);
236 else
237 return (ecore_chain_get_elem_left_u32(p_chain) ==
238 p_chain->capacity);
239 }
240
ecore_chain_is_empty(struct ecore_chain * p_chain)241 static OSAL_INLINE u8 ecore_chain_is_empty(struct ecore_chain *p_chain)
242 {
243 if (is_chain_u16(p_chain))
244 return (ecore_chain_get_elem_left(p_chain) == 0);
245 else
246 return (ecore_chain_get_elem_left_u32(p_chain) == 0);
247 }
248
249 static OSAL_INLINE
ecore_chain_get_elem_per_page(struct ecore_chain * p_chain)250 u16 ecore_chain_get_elem_per_page(struct ecore_chain *p_chain)
251 {
252 return p_chain->elem_per_page;
253 }
254
255 static OSAL_INLINE
ecore_chain_get_usable_per_page(struct ecore_chain * p_chain)256 u16 ecore_chain_get_usable_per_page(struct ecore_chain *p_chain)
257 {
258 return p_chain->usable_per_page;
259 }
260
261 static OSAL_INLINE
ecore_chain_get_unusable_per_page(struct ecore_chain * p_chain)262 u8 ecore_chain_get_unusable_per_page(struct ecore_chain *p_chain)
263 {
264 return p_chain->elem_unusable;
265 }
266
ecore_chain_get_size(struct ecore_chain * p_chain)267 static OSAL_INLINE u32 ecore_chain_get_size(struct ecore_chain *p_chain)
268 {
269 return p_chain->size;
270 }
271
ecore_chain_get_page_cnt(struct ecore_chain * p_chain)272 static OSAL_INLINE u32 ecore_chain_get_page_cnt(struct ecore_chain *p_chain)
273 {
274 return p_chain->page_cnt;
275 }
276
277 static OSAL_INLINE
ecore_chain_get_pbl_phys(struct ecore_chain * p_chain)278 dma_addr_t ecore_chain_get_pbl_phys(struct ecore_chain *p_chain)
279 {
280 return p_chain->pbl_sp.p_phys_table;
281 }
282
283 /**
284 * @brief ecore_chain_advance_page -
285 *
286 * Advance the next element accros pages for a linked chain
287 *
288 * @param p_chain
289 * @param p_next_elem
290 * @param idx_to_inc
291 * @param page_to_inc
292 */
293 static OSAL_INLINE void
ecore_chain_advance_page(struct ecore_chain * p_chain,void ** p_next_elem,void * idx_to_inc,void * page_to_inc)294 ecore_chain_advance_page(struct ecore_chain *p_chain, void **p_next_elem,
295 void *idx_to_inc, void *page_to_inc)
296 {
297 struct ecore_chain_next *p_next = OSAL_NULL;
298 u32 page_index = 0;
299
300 switch (p_chain->mode) {
301 case ECORE_CHAIN_MODE_NEXT_PTR:
302 p_next = (struct ecore_chain_next *)(*p_next_elem);
303 *p_next_elem = p_next->next_virt;
304 if (is_chain_u16(p_chain))
305 *(u16 *)idx_to_inc += (u16)p_chain->elem_unusable;
306 else
307 *(u32 *)idx_to_inc += (u16)p_chain->elem_unusable;
308 break;
309 case ECORE_CHAIN_MODE_SINGLE:
310 *p_next_elem = p_chain->p_virt_addr;
311 break;
312 case ECORE_CHAIN_MODE_PBL:
313 if (is_chain_u16(p_chain)) {
314 if (++(*(u16 *)page_to_inc) == p_chain->page_cnt)
315 *(u16 *)page_to_inc = 0;
316 page_index = *(u16 *)page_to_inc;
317 } else {
318 if (++(*(u32 *)page_to_inc) == p_chain->page_cnt)
319 *(u32 *)page_to_inc = 0;
320 page_index = *(u32 *)page_to_inc;
321 }
322 *p_next_elem = p_chain->pbl.pp_virt_addr_tbl[page_index];
323 }
324 }
325
326 #define is_unusable_idx(p, idx) \
327 (((p)->u.chain16.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
328
329 #define is_unusable_idx_u32(p, idx) \
330 (((p)->u.chain32.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
331
332 #define is_unusable_next_idx(p, idx) \
333 ((((p)->u.chain16.idx + 1) & \
334 (p)->elem_per_page_mask) == (p)->usable_per_page)
335
336 #define is_unusable_next_idx_u32(p, idx) \
337 ((((p)->u.chain32.idx + 1) & \
338 (p)->elem_per_page_mask) == (p)->usable_per_page)
339
340 #define test_and_skip(p, idx) \
341 do { \
342 if (is_chain_u16(p)) { \
343 if (is_unusable_idx(p, idx)) \
344 (p)->u.chain16.idx += \
345 (p)->elem_unusable; \
346 } else { \
347 if (is_unusable_idx_u32(p, idx)) \
348 (p)->u.chain32.idx += \
349 (p)->elem_unusable; \
350 } \
351 } while (0)
352
353 /**
354 * @brief ecore_chain_return_multi_produced -
355 *
356 * A chain in which the driver "Produces" elements should use this API
357 * to indicate previous produced elements are now consumed.
358 *
359 * @param p_chain
360 * @param num
361 */
362 static OSAL_INLINE
ecore_chain_return_multi_produced(struct ecore_chain * p_chain,u32 num)363 void ecore_chain_return_multi_produced(struct ecore_chain *p_chain, u32 num)
364 {
365 if (is_chain_u16(p_chain))
366 p_chain->u.chain16.cons_idx += (u16)num;
367 else
368 p_chain->u.chain32.cons_idx += num;
369 test_and_skip(p_chain, cons_idx);
370 }
371
372 /**
373 * @brief ecore_chain_return_produced -
374 *
375 * A chain in which the driver "Produces" elements should use this API
376 * to indicate previous produced elements are now consumed.
377 *
378 * @param p_chain
379 */
ecore_chain_return_produced(struct ecore_chain * p_chain)380 static OSAL_INLINE void ecore_chain_return_produced(struct ecore_chain *p_chain)
381 {
382 if (is_chain_u16(p_chain))
383 p_chain->u.chain16.cons_idx++;
384 else
385 p_chain->u.chain32.cons_idx++;
386 test_and_skip(p_chain, cons_idx);
387 }
388
389 /**
390 * @brief ecore_chain_produce -
391 *
392 * A chain in which the driver "Produces" elements should use this to get
393 * a pointer to the next element which can be "Produced". It's driver
394 * responsibility to validate that the chain has room for new element.
395 *
396 * @param p_chain
397 *
398 * @return void*, a pointer to next element
399 */
ecore_chain_produce(struct ecore_chain * p_chain)400 static OSAL_INLINE void *ecore_chain_produce(struct ecore_chain *p_chain)
401 {
402 void *p_ret = OSAL_NULL, *p_prod_idx, *p_prod_page_idx;
403
404 if (is_chain_u16(p_chain)) {
405 if ((p_chain->u.chain16.prod_idx &
406 p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
407 p_prod_idx = &p_chain->u.chain16.prod_idx;
408 p_prod_page_idx = &p_chain->pbl.c.pbl_u16.prod_page_idx;
409 ecore_chain_advance_page(p_chain, &p_chain->p_prod_elem,
410 p_prod_idx, p_prod_page_idx);
411 }
412 p_chain->u.chain16.prod_idx++;
413 } else {
414 if ((p_chain->u.chain32.prod_idx &
415 p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
416 p_prod_idx = &p_chain->u.chain32.prod_idx;
417 p_prod_page_idx = &p_chain->pbl.c.pbl_u32.prod_page_idx;
418 ecore_chain_advance_page(p_chain, &p_chain->p_prod_elem,
419 p_prod_idx, p_prod_page_idx);
420 }
421 p_chain->u.chain32.prod_idx++;
422 }
423
424 p_ret = p_chain->p_prod_elem;
425 p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) +
426 p_chain->elem_size);
427
428 return p_ret;
429 }
430
431 /**
432 * @brief ecore_chain_get_capacity -
433 *
434 * Get the maximum number of BDs in chain
435 *
436 * @param p_chain
437 * @param num
438 *
439 * @return number of unusable BDs
440 */
ecore_chain_get_capacity(struct ecore_chain * p_chain)441 static OSAL_INLINE u32 ecore_chain_get_capacity(struct ecore_chain *p_chain)
442 {
443 return p_chain->capacity;
444 }
445
446 /**
447 * @brief ecore_chain_recycle_consumed -
448 *
449 * Returns an element which was previously consumed;
450 * Increments producers so they could be written to FW.
451 *
452 * @param p_chain
453 */
454 static OSAL_INLINE
ecore_chain_recycle_consumed(struct ecore_chain * p_chain)455 void ecore_chain_recycle_consumed(struct ecore_chain *p_chain)
456 {
457 test_and_skip(p_chain, prod_idx);
458 if (is_chain_u16(p_chain))
459 p_chain->u.chain16.prod_idx++;
460 else
461 p_chain->u.chain32.prod_idx++;
462 }
463
464 /**
465 * @brief ecore_chain_consume -
466 *
467 * A Chain in which the driver utilizes data written by a different source
468 * (i.e., FW) should use this to access passed buffers.
469 *
470 * @param p_chain
471 *
472 * @return void*, a pointer to the next buffer written
473 */
ecore_chain_consume(struct ecore_chain * p_chain)474 static OSAL_INLINE void *ecore_chain_consume(struct ecore_chain *p_chain)
475 {
476 void *p_ret = OSAL_NULL, *p_cons_idx, *p_cons_page_idx;
477
478 if (is_chain_u16(p_chain)) {
479 if ((p_chain->u.chain16.cons_idx &
480 p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
481 p_cons_idx = &p_chain->u.chain16.cons_idx;
482 p_cons_page_idx = &p_chain->pbl.c.pbl_u16.cons_page_idx;
483 ecore_chain_advance_page(p_chain, &p_chain->p_cons_elem,
484 p_cons_idx, p_cons_page_idx);
485 }
486 p_chain->u.chain16.cons_idx++;
487 } else {
488 if ((p_chain->u.chain32.cons_idx &
489 p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
490 p_cons_idx = &p_chain->u.chain32.cons_idx;
491 p_cons_page_idx = &p_chain->pbl.c.pbl_u32.cons_page_idx;
492 ecore_chain_advance_page(p_chain, &p_chain->p_cons_elem,
493 p_cons_idx, p_cons_page_idx);
494 }
495 p_chain->u.chain32.cons_idx++;
496 }
497
498 p_ret = p_chain->p_cons_elem;
499 p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) +
500 p_chain->elem_size);
501
502 return p_ret;
503 }
504
505 /**
506 * @brief ecore_chain_reset -
507 *
508 * Resets the chain to its start state
509 *
510 * @param p_chain pointer to a previously allocted chain
511 */
ecore_chain_reset(struct ecore_chain * p_chain)512 static OSAL_INLINE void ecore_chain_reset(struct ecore_chain *p_chain)
513 {
514 u32 i;
515
516 if (is_chain_u16(p_chain)) {
517 p_chain->u.chain16.prod_idx = 0;
518 p_chain->u.chain16.cons_idx = 0;
519 } else {
520 p_chain->u.chain32.prod_idx = 0;
521 p_chain->u.chain32.cons_idx = 0;
522 }
523 p_chain->p_cons_elem = p_chain->p_virt_addr;
524 p_chain->p_prod_elem = p_chain->p_virt_addr;
525
526 if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
527 /* Use "page_cnt-1" as a reset value for the prod/cons page's
528 * indices, to avoid unnecessary page advancing on the first
529 * call to ecore_chain_produce/consume. Instead, the indices
530 * will be advanced to page_cnt and then will be wrapped to 0.
531 */
532 u32 reset_val = p_chain->page_cnt - 1;
533
534 if (is_chain_u16(p_chain)) {
535 p_chain->pbl.c.pbl_u16.prod_page_idx = (u16)reset_val;
536 p_chain->pbl.c.pbl_u16.cons_page_idx = (u16)reset_val;
537 } else {
538 p_chain->pbl.c.pbl_u32.prod_page_idx = reset_val;
539 p_chain->pbl.c.pbl_u32.cons_page_idx = reset_val;
540 }
541 }
542
543 switch (p_chain->intended_use) {
544 case ECORE_CHAIN_USE_TO_CONSUME:
545 /* produce empty elements */
546 for (i = 0; i < p_chain->capacity; i++)
547 ecore_chain_recycle_consumed(p_chain);
548 break;
549
550 case ECORE_CHAIN_USE_TO_CONSUME_PRODUCE:
551 case ECORE_CHAIN_USE_TO_PRODUCE:
552 default:
553 /* Do nothing */
554 break;
555 }
556 }
557
558 /**
559 * @brief ecore_chain_init_params -
560 *
561 * Initalizes a basic chain struct
562 *
563 * @param p_chain
564 * @param page_cnt number of pages in the allocated buffer
565 * @param elem_size size of each element in the chain
566 * @param intended_use
567 * @param mode
568 * @param cnt_type
569 * @param dp_ctx
570 */
571 static OSAL_INLINE void
ecore_chain_init_params(struct ecore_chain * p_chain,u32 page_cnt,u8 elem_size,enum ecore_chain_use_mode intended_use,enum ecore_chain_mode mode,enum ecore_chain_cnt_type cnt_type,void * dp_ctx)572 ecore_chain_init_params(struct ecore_chain *p_chain, u32 page_cnt, u8 elem_size,
573 enum ecore_chain_use_mode intended_use,
574 enum ecore_chain_mode mode,
575 enum ecore_chain_cnt_type cnt_type, void *dp_ctx)
576 {
577 /* chain fixed parameters */
578 p_chain->p_virt_addr = OSAL_NULL;
579 p_chain->p_phys_addr = 0;
580 p_chain->elem_size = elem_size;
581 p_chain->intended_use = (u8)intended_use;
582 p_chain->mode = mode;
583 p_chain->cnt_type = (u8)cnt_type;
584
585 p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size);
586 p_chain->usable_per_page = USABLE_ELEMS_PER_PAGE(elem_size, mode);
587 p_chain->elem_per_page_mask = p_chain->elem_per_page - 1;
588 p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
589 p_chain->next_page_mask = (p_chain->usable_per_page &
590 p_chain->elem_per_page_mask);
591
592 p_chain->page_cnt = page_cnt;
593 p_chain->capacity = p_chain->usable_per_page * page_cnt;
594 p_chain->size = p_chain->elem_per_page * page_cnt;
595 p_chain->b_external_pbl = false;
596 p_chain->pbl_sp.p_phys_table = 0;
597 p_chain->pbl_sp.p_virt_table = OSAL_NULL;
598 p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
599
600 p_chain->dp_ctx = dp_ctx;
601 }
602
603 /**
604 * @brief ecore_chain_init_mem -
605 *
606 * Initalizes a basic chain struct with its chain buffers
607 *
608 * @param p_chain
609 * @param p_virt_addr virtual address of allocated buffer's beginning
610 * @param p_phys_addr physical address of allocated buffer's beginning
611 *
612 */
ecore_chain_init_mem(struct ecore_chain * p_chain,void * p_virt_addr,dma_addr_t p_phys_addr)613 static OSAL_INLINE void ecore_chain_init_mem(struct ecore_chain *p_chain,
614 void *p_virt_addr,
615 dma_addr_t p_phys_addr)
616 {
617 p_chain->p_virt_addr = p_virt_addr;
618 p_chain->p_phys_addr = p_phys_addr;
619 }
620
621 /**
622 * @brief ecore_chain_init_pbl_mem -
623 *
624 * Initalizes a basic chain struct with its pbl buffers
625 *
626 * @param p_chain
627 * @param p_virt_pbl pointer to a pre allocated side table which will hold
628 * virtual page addresses.
629 * @param p_phys_pbl pointer to a pre-allocated side table which will hold
630 * physical page addresses.
631 * @param pp_virt_addr_tbl
632 * pointer to a pre-allocated side table which will hold
633 * the virtual addresses of the chain pages.
634 *
635 */
ecore_chain_init_pbl_mem(struct ecore_chain * p_chain,void * p_virt_pbl,dma_addr_t p_phys_pbl,void ** pp_virt_addr_tbl)636 static OSAL_INLINE void ecore_chain_init_pbl_mem(struct ecore_chain *p_chain,
637 void *p_virt_pbl,
638 dma_addr_t p_phys_pbl,
639 void **pp_virt_addr_tbl)
640 {
641 p_chain->pbl_sp.p_phys_table = p_phys_pbl;
642 p_chain->pbl_sp.p_virt_table = p_virt_pbl;
643 p_chain->pbl.pp_virt_addr_tbl = pp_virt_addr_tbl;
644 }
645
646 /**
647 * @brief ecore_chain_init_next_ptr_elem -
648 *
649 * Initalizes a next pointer element
650 *
651 * @param p_chain
652 * @param p_virt_curr virtual address of a chain page of which the next
653 * pointer element is initialized
654 * @param p_virt_next virtual address of the next chain page
655 * @param p_phys_next physical address of the next chain page
656 *
657 */
658 static OSAL_INLINE void
ecore_chain_init_next_ptr_elem(struct ecore_chain * p_chain,void * p_virt_curr,void * p_virt_next,dma_addr_t p_phys_next)659 ecore_chain_init_next_ptr_elem(struct ecore_chain *p_chain, void *p_virt_curr,
660 void *p_virt_next, dma_addr_t p_phys_next)
661 {
662 struct ecore_chain_next *p_next;
663 u32 size;
664
665 size = p_chain->elem_size * p_chain->usable_per_page;
666 p_next = (struct ecore_chain_next *)((u8 *)p_virt_curr + size);
667
668 DMA_REGPAIR_LE(p_next->next_phys, p_phys_next);
669
670 p_next->next_virt = p_virt_next;
671 }
672
673 /**
674 * @brief ecore_chain_get_last_elem -
675 *
676 * Returns a pointer to the last element of the chain
677 *
678 * @param p_chain
679 *
680 * @return void*
681 */
ecore_chain_get_last_elem(struct ecore_chain * p_chain)682 static OSAL_INLINE void *ecore_chain_get_last_elem(struct ecore_chain *p_chain)
683 {
684 struct ecore_chain_next *p_next = OSAL_NULL;
685 void *p_virt_addr = OSAL_NULL;
686 u32 size, last_page_idx;
687
688 if (!p_chain->p_virt_addr)
689 goto out;
690
691 switch (p_chain->mode) {
692 case ECORE_CHAIN_MODE_NEXT_PTR:
693 size = p_chain->elem_size * p_chain->usable_per_page;
694 p_virt_addr = p_chain->p_virt_addr;
695 p_next = (struct ecore_chain_next *)((u8 *)p_virt_addr + size);
696 while (p_next->next_virt != p_chain->p_virt_addr) {
697 p_virt_addr = p_next->next_virt;
698 p_next =
699 (struct ecore_chain_next *)((u8 *)p_virt_addr +
700 size);
701 }
702 break;
703 case ECORE_CHAIN_MODE_SINGLE:
704 p_virt_addr = p_chain->p_virt_addr;
705 break;
706 case ECORE_CHAIN_MODE_PBL:
707 last_page_idx = p_chain->page_cnt - 1;
708 p_virt_addr = p_chain->pbl.pp_virt_addr_tbl[last_page_idx];
709 break;
710 }
711 /* p_virt_addr points at this stage to the last page of the chain */
712 size = p_chain->elem_size * (p_chain->usable_per_page - 1);
713 p_virt_addr = ((u8 *)p_virt_addr + size);
714 out:
715 return p_virt_addr;
716 }
717
718 /**
719 * @brief ecore_chain_set_prod - sets the prod to the given value
720 *
721 * @param prod_idx
722 * @param p_prod_elem
723 */
ecore_chain_set_prod(struct ecore_chain * p_chain,u32 prod_idx,void * p_prod_elem)724 static OSAL_INLINE void ecore_chain_set_prod(struct ecore_chain *p_chain,
725 u32 prod_idx, void *p_prod_elem)
726 {
727 if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
728 u32 cur_prod, page_mask, page_cnt, page_diff;
729
730 cur_prod = is_chain_u16(p_chain) ? p_chain->u.chain16.prod_idx
731 : p_chain->u.chain32.prod_idx;
732
733 /* Assume that number of elements in a page is power of 2 */
734 page_mask = ~p_chain->elem_per_page_mask;
735
736 /* Use "cur_prod - 1" and "prod_idx - 1" since producer index
737 * reaches the first element of next page before the page index
738 * is incremented. See ecore_chain_produce().
739 * Index wrap around is not a problem because the difference
740 * between current and given producer indexes is always
741 * positive and lower than the chain's capacity.
742 */
743 page_diff = (((cur_prod - 1) & page_mask) -
744 ((prod_idx - 1) & page_mask)) /
745 p_chain->elem_per_page;
746
747 page_cnt = ecore_chain_get_page_cnt(p_chain);
748 if (is_chain_u16(p_chain))
749 p_chain->pbl.c.pbl_u16.prod_page_idx =
750 (p_chain->pbl.c.pbl_u16.prod_page_idx -
751 page_diff + page_cnt) % page_cnt;
752 else
753 p_chain->pbl.c.pbl_u32.prod_page_idx =
754 (p_chain->pbl.c.pbl_u32.prod_page_idx -
755 page_diff + page_cnt) % page_cnt;
756 }
757
758 if (is_chain_u16(p_chain))
759 p_chain->u.chain16.prod_idx = (u16)prod_idx;
760 else
761 p_chain->u.chain32.prod_idx = prod_idx;
762 p_chain->p_prod_elem = p_prod_elem;
763 }
764
765 /**
766 * @brief ecore_chain_set_cons - sets the cons to the given value
767 *
768 * @param cons_idx
769 * @param p_cons_elem
770 */
ecore_chain_set_cons(struct ecore_chain * p_chain,u32 cons_idx,void * p_cons_elem)771 static OSAL_INLINE void ecore_chain_set_cons(struct ecore_chain *p_chain,
772 u32 cons_idx, void *p_cons_elem)
773 {
774 if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
775 u32 cur_cons, page_mask, page_cnt, page_diff;
776
777 cur_cons = is_chain_u16(p_chain) ? p_chain->u.chain16.cons_idx
778 : p_chain->u.chain32.cons_idx;
779
780 /* Assume that number of elements in a page is power of 2 */
781 page_mask = ~p_chain->elem_per_page_mask;
782
783 /* Use "cur_cons - 1" and "cons_idx - 1" since consumer index
784 * reaches the first element of next page before the page index
785 * is incremented. See ecore_chain_consume().
786 * Index wrap around is not a problem because the difference
787 * between current and given consumer indexes is always
788 * positive and lower than the chain's capacity.
789 */
790 page_diff = (((cur_cons - 1) & page_mask) -
791 ((cons_idx - 1) & page_mask)) /
792 p_chain->elem_per_page;
793
794 page_cnt = ecore_chain_get_page_cnt(p_chain);
795 if (is_chain_u16(p_chain))
796 p_chain->pbl.c.pbl_u16.cons_page_idx =
797 (p_chain->pbl.c.pbl_u16.cons_page_idx -
798 page_diff + page_cnt) % page_cnt;
799 else
800 p_chain->pbl.c.pbl_u32.cons_page_idx =
801 (p_chain->pbl.c.pbl_u32.cons_page_idx -
802 page_diff + page_cnt) % page_cnt;
803 }
804
805 if (is_chain_u16(p_chain))
806 p_chain->u.chain16.cons_idx = (u16)cons_idx;
807 else
808 p_chain->u.chain32.cons_idx = cons_idx;
809
810 p_chain->p_cons_elem = p_cons_elem;
811 }
812
813 /**
814 * @brief ecore_chain_pbl_zero_mem - set chain memory to 0
815 *
816 * @param p_chain
817 */
ecore_chain_pbl_zero_mem(struct ecore_chain * p_chain)818 static OSAL_INLINE void ecore_chain_pbl_zero_mem(struct ecore_chain *p_chain)
819 {
820 u32 i, page_cnt;
821
822 if (p_chain->mode != ECORE_CHAIN_MODE_PBL)
823 return;
824
825 page_cnt = ecore_chain_get_page_cnt(p_chain);
826
827 for (i = 0; i < page_cnt; i++)
828 OSAL_MEM_ZERO(p_chain->pbl.pp_virt_addr_tbl[i],
829 ECORE_CHAIN_PAGE_SIZE);
830 }
831
832 int ecore_chain_print(struct ecore_chain *p_chain, char *buffer,
833 u32 buffer_size, u32 *element_indx, u32 stop_indx,
834 bool print_metadata,
835 int (*func_ptr_print_element)(struct ecore_chain *p_chain,
836 void *p_element,
837 char *buffer),
838 int (*func_ptr_print_metadata)(struct ecore_chain
839 *p_chain,
840 char *buffer));
841
842 #endif /* __ECORE_CHAIN_H__ */
843