xref: /llvm-project/llvm/lib/Object/ELF.cpp (revision cf83a7fdc2dfac8220d9923a831181dccb9f7277)
1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/ELF.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/BinaryFormat/ELF.h"
12 #include "llvm/Support/Compiler.h"
13 #include "llvm/Support/DataExtractor.h"
14 
15 using namespace llvm;
16 using namespace object;
17 
18 #define STRINGIFY_ENUM_CASE(ns, name)                                          \
19   case ns::name:                                                               \
20     return #name;
21 
22 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
23 
24 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
25                                                  uint32_t Type) {
26   switch (Machine) {
27   case ELF::EM_68K:
28     switch (Type) {
29 #include "llvm/BinaryFormat/ELFRelocs/M68k.def"
30     default:
31       break;
32     }
33     break;
34   case ELF::EM_X86_64:
35     switch (Type) {
36 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
37     default:
38       break;
39     }
40     break;
41   case ELF::EM_386:
42   case ELF::EM_IAMCU:
43     switch (Type) {
44 #include "llvm/BinaryFormat/ELFRelocs/i386.def"
45     default:
46       break;
47     }
48     break;
49   case ELF::EM_MIPS:
50     switch (Type) {
51 #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
52     default:
53       break;
54     }
55     break;
56   case ELF::EM_AARCH64:
57     switch (Type) {
58 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
59     default:
60       break;
61     }
62     break;
63   case ELF::EM_ARM:
64     switch (Type) {
65 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
66     default:
67       break;
68     }
69     break;
70   case ELF::EM_ARC_COMPACT:
71   case ELF::EM_ARC_COMPACT2:
72     switch (Type) {
73 #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
74     default:
75       break;
76     }
77     break;
78   case ELF::EM_AVR:
79     switch (Type) {
80 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
81     default:
82       break;
83     }
84     break;
85   case ELF::EM_HEXAGON:
86     switch (Type) {
87 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
88     default:
89       break;
90     }
91     break;
92   case ELF::EM_LANAI:
93     switch (Type) {
94 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
95     default:
96       break;
97     }
98     break;
99   case ELF::EM_PPC:
100     switch (Type) {
101 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
102     default:
103       break;
104     }
105     break;
106   case ELF::EM_PPC64:
107     switch (Type) {
108 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
109     default:
110       break;
111     }
112     break;
113   case ELF::EM_RISCV:
114     switch (Type) {
115 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
116     default:
117       break;
118     }
119     break;
120   case ELF::EM_S390:
121     switch (Type) {
122 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
123     default:
124       break;
125     }
126     break;
127   case ELF::EM_SPARC:
128   case ELF::EM_SPARC32PLUS:
129   case ELF::EM_SPARCV9:
130     switch (Type) {
131 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
132     default:
133       break;
134     }
135     break;
136   case ELF::EM_AMDGPU:
137     switch (Type) {
138 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
139     default:
140       break;
141     }
142     break;
143   case ELF::EM_BPF:
144     switch (Type) {
145 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
146     default:
147       break;
148     }
149     break;
150   case ELF::EM_MSP430:
151     switch (Type) {
152 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
153     default:
154       break;
155     }
156     break;
157   case ELF::EM_VE:
158     switch (Type) {
159 #include "llvm/BinaryFormat/ELFRelocs/VE.def"
160     default:
161       break;
162     }
163     break;
164   case ELF::EM_CSKY:
165     switch (Type) {
166 #include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
167     default:
168       break;
169     }
170     break;
171   case ELF::EM_LOONGARCH:
172     switch (Type) {
173 #include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
174     default:
175       break;
176     }
177     break;
178   case ELF::EM_XTENSA:
179     switch (Type) {
180 #include "llvm/BinaryFormat/ELFRelocs/Xtensa.def"
181     default:
182       break;
183     }
184     break;
185   default:
186     break;
187   }
188   return "Unknown";
189 }
190 
191 #undef ELF_RELOC
192 
193 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
194   switch (Machine) {
195   case ELF::EM_X86_64:
196     return ELF::R_X86_64_RELATIVE;
197   case ELF::EM_386:
198   case ELF::EM_IAMCU:
199     return ELF::R_386_RELATIVE;
200   case ELF::EM_MIPS:
201     break;
202   case ELF::EM_AARCH64:
203     return ELF::R_AARCH64_RELATIVE;
204   case ELF::EM_ARM:
205     return ELF::R_ARM_RELATIVE;
206   case ELF::EM_ARC_COMPACT:
207   case ELF::EM_ARC_COMPACT2:
208     return ELF::R_ARC_RELATIVE;
209   case ELF::EM_AVR:
210     break;
211   case ELF::EM_HEXAGON:
212     return ELF::R_HEX_RELATIVE;
213   case ELF::EM_LANAI:
214     break;
215   case ELF::EM_PPC:
216     break;
217   case ELF::EM_PPC64:
218     return ELF::R_PPC64_RELATIVE;
219   case ELF::EM_RISCV:
220     return ELF::R_RISCV_RELATIVE;
221   case ELF::EM_S390:
222     return ELF::R_390_RELATIVE;
223   case ELF::EM_SPARC:
224   case ELF::EM_SPARC32PLUS:
225   case ELF::EM_SPARCV9:
226     return ELF::R_SPARC_RELATIVE;
227   case ELF::EM_CSKY:
228     return ELF::R_CKCORE_RELATIVE;
229   case ELF::EM_VE:
230     return ELF::R_VE_RELATIVE;
231   case ELF::EM_AMDGPU:
232     break;
233   case ELF::EM_BPF:
234     break;
235   case ELF::EM_LOONGARCH:
236     return ELF::R_LARCH_RELATIVE;
237   default:
238     break;
239   }
240   return 0;
241 }
242 
243 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
244   switch (Machine) {
245   case ELF::EM_ARM:
246     switch (Type) {
247       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
248       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
249       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
250       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
251       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
252     }
253     break;
254   case ELF::EM_HEXAGON:
255     switch (Type) {
256       STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED);
257       STRINGIFY_ENUM_CASE(ELF, SHT_HEXAGON_ATTRIBUTES);
258     }
259     break;
260   case ELF::EM_X86_64:
261     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
262     break;
263   case ELF::EM_MIPS:
264   case ELF::EM_MIPS_RS3_LE:
265     switch (Type) {
266       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
267       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
268       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
269       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
270     }
271     break;
272   case ELF::EM_MSP430:
273     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_MSP430_ATTRIBUTES); }
274     break;
275   case ELF::EM_RISCV:
276     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
277     break;
278   case ELF::EM_AARCH64:
279     switch (Type) {
280       STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_AUTH_RELR);
281       STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC);
282       STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_STATIC);
283     }
284   default:
285     break;
286   }
287 
288   switch (Type) {
289     STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
290     STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
291     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
292     STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
293     STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
294     STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
295     STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
296     STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
297     STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
298     STRINGIFY_ENUM_CASE(ELF, SHT_REL);
299     STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
300     STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
301     STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
302     STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
303     STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
304     STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
305     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
306     STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
307     STRINGIFY_ENUM_CASE(ELF, SHT_CREL);
308     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
309     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
310     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
311     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
312     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
313     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
314     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
315     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
316     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
317     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
318     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
319     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP_V0);
320     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP);
321     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_OFFLOADING);
322     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LTO);
323     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_JT_SIZES)
324     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
325     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
326     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
327     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
328     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
329   default:
330     return "Unknown";
331   }
332 }
333 
334 template <class ELFT>
335 std::vector<typename ELFT::Rel>
336 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
337   // This function decodes the contents of an SHT_RELR packed relocation
338   // section.
339   //
340   // Proposal for adding SHT_RELR sections to generic-abi is here:
341   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
342   //
343   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
344   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
345   //
346   // i.e. start with an address, followed by any number of bitmaps. The address
347   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
348   // relocations each, at subsequent offsets following the last address entry.
349   //
350   // The bitmap entries must have 1 in the least significant bit. The assumption
351   // here is that an address cannot have 1 in lsb. Odd addresses are not
352   // supported.
353   //
354   // Excluding the least significant bit in the bitmap, each non-zero bit in
355   // the bitmap represents a relocation to be applied to a corresponding machine
356   // word that follows the base address word. The second least significant bit
357   // represents the machine word immediately following the initial address, and
358   // each bit that follows represents the next word, in linear order. As such,
359   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
360   // 63 relocations in a 64-bit object.
361   //
362   // This encoding has a couple of interesting properties:
363   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
364   //    even means address, odd means bitmap.
365   // 2. Just a simple list of addresses is a valid encoding.
366 
367   Elf_Rel Rel;
368   Rel.r_info = 0;
369   Rel.setType(getRelativeRelocationType(), false);
370   std::vector<Elf_Rel> Relocs;
371 
372   // Word type: uint32_t for Elf32, and uint64_t for Elf64.
373   using Addr = typename ELFT::uint;
374 
375   Addr Base = 0;
376   for (Elf_Relr R : relrs) {
377     typename ELFT::uint Entry = R;
378     if ((Entry & 1) == 0) {
379       // Even entry: encodes the offset for next relocation.
380       Rel.r_offset = Entry;
381       Relocs.push_back(Rel);
382       // Set base offset for subsequent bitmap entries.
383       Base = Entry + sizeof(Addr);
384     } else {
385       // Odd entry: encodes bitmap for relocations starting at base.
386       for (Addr Offset = Base; (Entry >>= 1) != 0; Offset += sizeof(Addr))
387         if ((Entry & 1) != 0) {
388           Rel.r_offset = Offset;
389           Relocs.push_back(Rel);
390         }
391       Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(Addr);
392     }
393   }
394 
395   return Relocs;
396 }
397 
398 template <class ELFT>
399 Expected<uint64_t>
400 ELFFile<ELFT>::getCrelHeader(ArrayRef<uint8_t> Content) const {
401   DataExtractor Data(Content, isLE(), sizeof(typename ELFT::Addr));
402   Error Err = Error::success();
403   uint64_t Hdr = 0;
404   Hdr = Data.getULEB128(&Hdr, &Err);
405   if (Err)
406     return Err;
407   return Hdr;
408 }
409 
410 template <class ELFT>
411 Expected<typename ELFFile<ELFT>::RelsOrRelas>
412 ELFFile<ELFT>::decodeCrel(ArrayRef<uint8_t> Content) const {
413   std::vector<Elf_Rel> Rels;
414   std::vector<Elf_Rela> Relas;
415   size_t I = 0;
416   bool HasAddend;
417   Error Err = object::decodeCrel<ELFT::Is64Bits>(
418       Content,
419       [&](uint64_t Count, bool HasA) {
420         HasAddend = HasA;
421         if (HasAddend)
422           Relas.resize(Count);
423         else
424           Rels.resize(Count);
425       },
426       [&](Elf_Crel Crel) {
427         if (HasAddend) {
428           Relas[I].r_offset = Crel.r_offset;
429           Relas[I].setSymbolAndType(Crel.r_symidx, Crel.r_type, false);
430           Relas[I++].r_addend = Crel.r_addend;
431         } else {
432           Rels[I].r_offset = Crel.r_offset;
433           Rels[I++].setSymbolAndType(Crel.r_symidx, Crel.r_type, false);
434         }
435       });
436   if (Err)
437     return std::move(Err);
438   return std::make_pair(std::move(Rels), std::move(Relas));
439 }
440 
441 template <class ELFT>
442 Expected<typename ELFFile<ELFT>::RelsOrRelas>
443 ELFFile<ELFT>::crels(const Elf_Shdr &Sec) const {
444   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
445   if (!ContentsOrErr)
446     return ContentsOrErr.takeError();
447   return decodeCrel(*ContentsOrErr);
448 }
449 
450 template <class ELFT>
451 Expected<std::vector<typename ELFT::Rela>>
452 ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const {
453   // This function reads relocations in Android's packed relocation format,
454   // which is based on SLEB128 and delta encoding.
455   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
456   if (!ContentsOrErr)
457     return ContentsOrErr.takeError();
458   ArrayRef<uint8_t> Content = *ContentsOrErr;
459   if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' ||
460       Content[2] != 'S' || Content[3] != '2')
461     return createError("invalid packed relocation header");
462   DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
463   DataExtractor::Cursor Cur(/*Offset=*/4);
464 
465   uint64_t NumRelocs = Data.getSLEB128(Cur);
466   uint64_t Offset = Data.getSLEB128(Cur);
467   uint64_t Addend = 0;
468 
469   if (!Cur)
470     return std::move(Cur.takeError());
471 
472   std::vector<Elf_Rela> Relocs;
473   Relocs.reserve(NumRelocs);
474   while (NumRelocs) {
475     uint64_t NumRelocsInGroup = Data.getSLEB128(Cur);
476     if (!Cur)
477       return std::move(Cur.takeError());
478     if (NumRelocsInGroup > NumRelocs)
479       return createError("relocation group unexpectedly large");
480     NumRelocs -= NumRelocsInGroup;
481 
482     uint64_t GroupFlags = Data.getSLEB128(Cur);
483     bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
484     bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
485     bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
486     bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
487 
488     uint64_t GroupOffsetDelta;
489     if (GroupedByOffsetDelta)
490       GroupOffsetDelta = Data.getSLEB128(Cur);
491 
492     uint64_t GroupRInfo;
493     if (GroupedByInfo)
494       GroupRInfo = Data.getSLEB128(Cur);
495 
496     if (GroupedByAddend && GroupHasAddend)
497       Addend += Data.getSLEB128(Cur);
498 
499     if (!GroupHasAddend)
500       Addend = 0;
501 
502     for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) {
503       Elf_Rela R;
504       Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur);
505       R.r_offset = Offset;
506       R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur);
507       if (GroupHasAddend && !GroupedByAddend)
508         Addend += Data.getSLEB128(Cur);
509       R.r_addend = Addend;
510       Relocs.push_back(R);
511     }
512     if (!Cur)
513       return std::move(Cur.takeError());
514   }
515 
516   return Relocs;
517 }
518 
519 template <class ELFT>
520 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
521                                                  uint64_t Type) const {
522 #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
523   case value:                                                                  \
524     return #tag;
525 
526 #define DYNAMIC_TAG(n, v)
527   switch (Arch) {
528   case ELF::EM_AARCH64:
529     switch (Type) {
530 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
531 #include "llvm/BinaryFormat/DynamicTags.def"
532 #undef AARCH64_DYNAMIC_TAG
533     }
534     break;
535 
536   case ELF::EM_HEXAGON:
537     switch (Type) {
538 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
539 #include "llvm/BinaryFormat/DynamicTags.def"
540 #undef HEXAGON_DYNAMIC_TAG
541     }
542     break;
543 
544   case ELF::EM_MIPS:
545     switch (Type) {
546 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
547 #include "llvm/BinaryFormat/DynamicTags.def"
548 #undef MIPS_DYNAMIC_TAG
549     }
550     break;
551 
552   case ELF::EM_PPC:
553     switch (Type) {
554 #define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
555 #include "llvm/BinaryFormat/DynamicTags.def"
556 #undef PPC_DYNAMIC_TAG
557     }
558     break;
559 
560   case ELF::EM_PPC64:
561     switch (Type) {
562 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
563 #include "llvm/BinaryFormat/DynamicTags.def"
564 #undef PPC64_DYNAMIC_TAG
565     }
566     break;
567 
568   case ELF::EM_RISCV:
569     switch (Type) {
570 #define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
571 #include "llvm/BinaryFormat/DynamicTags.def"
572 #undef RISCV_DYNAMIC_TAG
573     }
574     break;
575   }
576 #undef DYNAMIC_TAG
577   switch (Type) {
578 // Now handle all dynamic tags except the architecture specific ones
579 #define AARCH64_DYNAMIC_TAG(name, value)
580 #define MIPS_DYNAMIC_TAG(name, value)
581 #define HEXAGON_DYNAMIC_TAG(name, value)
582 #define PPC_DYNAMIC_TAG(name, value)
583 #define PPC64_DYNAMIC_TAG(name, value)
584 #define RISCV_DYNAMIC_TAG(name, value)
585 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
586 #define DYNAMIC_TAG_MARKER(name, value)
587 #define DYNAMIC_TAG(name, value) case value: return #name;
588 #include "llvm/BinaryFormat/DynamicTags.def"
589 #undef DYNAMIC_TAG
590 #undef AARCH64_DYNAMIC_TAG
591 #undef MIPS_DYNAMIC_TAG
592 #undef HEXAGON_DYNAMIC_TAG
593 #undef PPC_DYNAMIC_TAG
594 #undef PPC64_DYNAMIC_TAG
595 #undef RISCV_DYNAMIC_TAG
596 #undef DYNAMIC_TAG_MARKER
597 #undef DYNAMIC_STRINGIFY_ENUM
598   default:
599     return "<unknown:>0x" + utohexstr(Type, true);
600   }
601 }
602 
603 template <class ELFT>
604 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
605   return getDynamicTagAsString(getHeader().e_machine, Type);
606 }
607 
608 template <class ELFT>
609 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
610   ArrayRef<Elf_Dyn> Dyn;
611 
612   auto ProgramHeadersOrError = program_headers();
613   if (!ProgramHeadersOrError)
614     return ProgramHeadersOrError.takeError();
615 
616   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
617     if (Phdr.p_type == ELF::PT_DYNAMIC) {
618       const uint8_t *DynOffset = base() + Phdr.p_offset;
619       if (DynOffset > end())
620         return createError(
621             "dynamic section offset past file size: corrupted ELF");
622       Dyn = ArrayRef(reinterpret_cast<const Elf_Dyn *>(DynOffset),
623                      Phdr.p_filesz / sizeof(Elf_Dyn));
624       break;
625     }
626   }
627 
628   // If we can't find the dynamic section in the program headers, we just fall
629   // back on the sections.
630   if (Dyn.empty()) {
631     auto SectionsOrError = sections();
632     if (!SectionsOrError)
633       return SectionsOrError.takeError();
634 
635     for (const Elf_Shdr &Sec : *SectionsOrError) {
636       if (Sec.sh_type == ELF::SHT_DYNAMIC) {
637         Expected<ArrayRef<Elf_Dyn>> DynOrError =
638             getSectionContentsAsArray<Elf_Dyn>(Sec);
639         if (!DynOrError)
640           return DynOrError.takeError();
641         Dyn = *DynOrError;
642         break;
643       }
644     }
645 
646     if (!Dyn.data())
647       return ArrayRef<Elf_Dyn>();
648   }
649 
650   if (Dyn.empty())
651     return createError("invalid empty dynamic section");
652 
653   if (Dyn.back().d_tag != ELF::DT_NULL)
654     return createError("dynamic sections must be DT_NULL terminated");
655 
656   return Dyn;
657 }
658 
659 template <class ELFT>
660 Expected<const uint8_t *>
661 ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const {
662   auto ProgramHeadersOrError = program_headers();
663   if (!ProgramHeadersOrError)
664     return ProgramHeadersOrError.takeError();
665 
666   llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
667 
668   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
669     if (Phdr.p_type == ELF::PT_LOAD)
670       LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
671 
672   auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A,
673                      const Elf_Phdr_Impl<ELFT> *B) {
674     return A->p_vaddr < B->p_vaddr;
675   };
676   if (!llvm::is_sorted(LoadSegments, SortPred)) {
677     if (Error E =
678             WarnHandler("loadable segments are unsorted by virtual address"))
679       return std::move(E);
680     llvm::stable_sort(LoadSegments, SortPred);
681   }
682 
683   const Elf_Phdr *const *I = llvm::upper_bound(
684       LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
685         return VAddr < Phdr->p_vaddr;
686       });
687 
688   if (I == LoadSegments.begin())
689     return createError("virtual address is not in any segment: 0x" +
690                        Twine::utohexstr(VAddr));
691   --I;
692   const Elf_Phdr &Phdr = **I;
693   uint64_t Delta = VAddr - Phdr.p_vaddr;
694   if (Delta >= Phdr.p_filesz)
695     return createError("virtual address is not in any segment: 0x" +
696                        Twine::utohexstr(VAddr));
697 
698   uint64_t Offset = Phdr.p_offset + Delta;
699   if (Offset >= getBufSize())
700     return createError("can't map virtual address 0x" +
701                        Twine::utohexstr(VAddr) + " to the segment with index " +
702                        Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
703                        ": the segment ends at 0x" +
704                        Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
705                        ", which is greater than the file size (0x" +
706                        Twine::utohexstr(getBufSize()) + ")");
707 
708   return base() + Offset;
709 }
710 
711 // Helper to extract and decode the next ULEB128 value as unsigned int.
712 // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the unsigned
713 // int limit.
714 // Also returns zero if ULEBSizeErr is already in an error state.
715 // ULEBSizeErr is an out variable if an error occurs.
716 template <typename IntTy, std::enable_if_t<std::is_unsigned_v<IntTy>, int> = 0>
717 static IntTy readULEB128As(DataExtractor &Data, DataExtractor::Cursor &Cur,
718                            Error &ULEBSizeErr) {
719   // Bail out and do not extract data if ULEBSizeErr is already set.
720   if (ULEBSizeErr)
721     return 0;
722   uint64_t Offset = Cur.tell();
723   uint64_t Value = Data.getULEB128(Cur);
724   if (Value > std::numeric_limits<IntTy>::max()) {
725     ULEBSizeErr = createError("ULEB128 value at offset 0x" +
726                               Twine::utohexstr(Offset) + " exceeds UINT" +
727                               Twine(std::numeric_limits<IntTy>::digits) +
728                               "_MAX (0x" + Twine::utohexstr(Value) + ")");
729     return 0;
730   }
731   return static_cast<IntTy>(Value);
732 }
733 
734 template <typename ELFT>
735 static Expected<std::vector<BBAddrMap>>
736 decodeBBAddrMapImpl(const ELFFile<ELFT> &EF,
737                     const typename ELFFile<ELFT>::Elf_Shdr &Sec,
738                     const typename ELFFile<ELFT>::Elf_Shdr *RelaSec,
739                     std::vector<PGOAnalysisMap> *PGOAnalyses) {
740   bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
741 
742   // This DenseMap maps the offset of each function (the location of the
743   // reference to the function in the SHT_LLVM_BB_ADDR_MAP section) to the
744   // addend (the location of the function in the text section).
745   llvm::DenseMap<uint64_t, uint64_t> FunctionOffsetTranslations;
746   if (IsRelocatable && RelaSec) {
747     assert(RelaSec &&
748            "Can't read a SHT_LLVM_BB_ADDR_MAP section in a relocatable "
749            "object file without providing a relocation section.");
750     Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = EF.relas(*RelaSec);
751     if (!Relas)
752       return createError("unable to read relocations for section " +
753                          describe(EF, Sec) + ": " +
754                          toString(Relas.takeError()));
755     for (typename ELFFile<ELFT>::Elf_Rela Rela : *Relas)
756       FunctionOffsetTranslations[Rela.r_offset] = Rela.r_addend;
757   }
758   auto GetAddressForRelocation =
759       [&](unsigned RelocationOffsetInSection) -> Expected<unsigned> {
760     auto FOTIterator =
761         FunctionOffsetTranslations.find(RelocationOffsetInSection);
762     if (FOTIterator == FunctionOffsetTranslations.end()) {
763       return createError("failed to get relocation data for offset: " +
764                          Twine::utohexstr(RelocationOffsetInSection) +
765                          " in section " + describe(EF, Sec));
766     }
767     return FOTIterator->second;
768   };
769   Expected<ArrayRef<uint8_t>> ContentsOrErr = EF.getSectionContents(Sec);
770   if (!ContentsOrErr)
771     return ContentsOrErr.takeError();
772   ArrayRef<uint8_t> Content = *ContentsOrErr;
773   DataExtractor Data(Content, EF.isLE(), ELFT::Is64Bits ? 8 : 4);
774   std::vector<BBAddrMap> FunctionEntries;
775 
776   DataExtractor::Cursor Cur(0);
777   Error ULEBSizeErr = Error::success();
778   Error MetadataDecodeErr = Error::success();
779 
780   // Helper lampda to extract the (possiblly relocatable) address stored at Cur.
781   auto ExtractAddress = [&]() -> Expected<typename ELFFile<ELFT>::uintX_t> {
782     uint64_t RelocationOffsetInSection = Cur.tell();
783     auto Address =
784         static_cast<typename ELFFile<ELFT>::uintX_t>(Data.getAddress(Cur));
785     if (!Cur)
786       return Cur.takeError();
787     if (!IsRelocatable)
788       return Address;
789     assert(Address == 0);
790     Expected<unsigned> AddressOrErr =
791         GetAddressForRelocation(RelocationOffsetInSection);
792     if (!AddressOrErr)
793       return AddressOrErr.takeError();
794     return *AddressOrErr;
795   };
796 
797   uint8_t Version = 0;
798   uint8_t Feature = 0;
799   BBAddrMap::Features FeatEnable{};
800   while (!ULEBSizeErr && !MetadataDecodeErr && Cur &&
801          Cur.tell() < Content.size()) {
802     if (Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP) {
803       Version = Data.getU8(Cur);
804       if (!Cur)
805         break;
806       if (Version > 2)
807         return createError("unsupported SHT_LLVM_BB_ADDR_MAP version: " +
808                            Twine(static_cast<int>(Version)));
809       Feature = Data.getU8(Cur); // Feature byte
810       if (!Cur)
811         break;
812       auto FeatEnableOrErr = BBAddrMap::Features::decode(Feature);
813       if (!FeatEnableOrErr)
814         return FeatEnableOrErr.takeError();
815       FeatEnable = *FeatEnableOrErr;
816       if (Feature != 0 && Version < 2 && Cur)
817         return createError(
818             "version should be >= 2 for SHT_LLVM_BB_ADDR_MAP when "
819             "PGO features are enabled: version = " +
820             Twine(static_cast<int>(Version)) +
821             " feature = " + Twine(static_cast<int>(Feature)));
822     }
823     uint32_t NumBlocksInBBRange = 0;
824     uint32_t NumBBRanges = 1;
825     typename ELFFile<ELFT>::uintX_t RangeBaseAddress = 0;
826     if (FeatEnable.MultiBBRange) {
827       NumBBRanges = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
828       if (!Cur || ULEBSizeErr)
829         break;
830       if (!NumBBRanges)
831         return createError("invalid zero number of BB ranges at offset " +
832                            Twine::utohexstr(Cur.tell()) + " in " +
833                            describe(EF, Sec));
834     } else {
835       auto AddressOrErr = ExtractAddress();
836       if (!AddressOrErr)
837         return AddressOrErr.takeError();
838       RangeBaseAddress = *AddressOrErr;
839       NumBlocksInBBRange = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
840     }
841     std::vector<BBAddrMap::BBRangeEntry> BBRangeEntries;
842     uint32_t TotalNumBlocks = 0;
843     for (uint32_t BBRangeIndex = 0; BBRangeIndex < NumBBRanges;
844          ++BBRangeIndex) {
845       uint32_t PrevBBEndOffset = 0;
846       if (FeatEnable.MultiBBRange) {
847         auto AddressOrErr = ExtractAddress();
848         if (!AddressOrErr)
849           return AddressOrErr.takeError();
850         RangeBaseAddress = *AddressOrErr;
851         NumBlocksInBBRange = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
852       }
853       std::vector<BBAddrMap::BBEntry> BBEntries;
854       if (!FeatEnable.OmitBBEntries) {
855         for (uint32_t BlockIndex = 0; !MetadataDecodeErr && !ULEBSizeErr &&
856                                       Cur && (BlockIndex < NumBlocksInBBRange);
857              ++BlockIndex) {
858           uint32_t ID = Version >= 2
859                             ? readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr)
860                             : BlockIndex;
861           uint32_t Offset = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
862           uint32_t Size = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
863           uint32_t MD = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
864           if (Version >= 1) {
865             // Offset is calculated relative to the end of the previous BB.
866             Offset += PrevBBEndOffset;
867             PrevBBEndOffset = Offset + Size;
868           }
869           Expected<BBAddrMap::BBEntry::Metadata> MetadataOrErr =
870               BBAddrMap::BBEntry::Metadata::decode(MD);
871           if (!MetadataOrErr) {
872             MetadataDecodeErr = MetadataOrErr.takeError();
873             break;
874           }
875           BBEntries.push_back({ID, Offset, Size, *MetadataOrErr});
876         }
877         TotalNumBlocks += BBEntries.size();
878       }
879       BBRangeEntries.push_back({RangeBaseAddress, std::move(BBEntries)});
880     }
881     FunctionEntries.push_back({std::move(BBRangeEntries)});
882 
883     if (PGOAnalyses || FeatEnable.hasPGOAnalysis()) {
884       // Function entry count
885       uint64_t FuncEntryCount =
886           FeatEnable.FuncEntryCount
887               ? readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr)
888               : 0;
889 
890       std::vector<PGOAnalysisMap::PGOBBEntry> PGOBBEntries;
891       for (uint32_t BlockIndex = 0;
892            FeatEnable.hasPGOAnalysisBBData() && !MetadataDecodeErr &&
893            !ULEBSizeErr && Cur && (BlockIndex < TotalNumBlocks);
894            ++BlockIndex) {
895         // Block frequency
896         uint64_t BBF = FeatEnable.BBFreq
897                            ? readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr)
898                            : 0;
899 
900         // Branch probability
901         llvm::SmallVector<PGOAnalysisMap::PGOBBEntry::SuccessorEntry, 2>
902             Successors;
903         if (FeatEnable.BrProb) {
904           auto SuccCount = readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr);
905           for (uint64_t I = 0; I < SuccCount; ++I) {
906             uint32_t BBID = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
907             uint32_t BrProb = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
908             if (PGOAnalyses)
909               Successors.push_back({BBID, BranchProbability::getRaw(BrProb)});
910           }
911         }
912 
913         if (PGOAnalyses)
914           PGOBBEntries.push_back({BlockFrequency(BBF), std::move(Successors)});
915       }
916 
917       if (PGOAnalyses)
918         PGOAnalyses->push_back(
919             {FuncEntryCount, std::move(PGOBBEntries), FeatEnable});
920     }
921   }
922   // Either Cur is in the error state, or we have an error in ULEBSizeErr or
923   // MetadataDecodeErr (but not both), but we join all errors here to be safe.
924   if (!Cur || ULEBSizeErr || MetadataDecodeErr)
925     return joinErrors(joinErrors(Cur.takeError(), std::move(ULEBSizeErr)),
926                       std::move(MetadataDecodeErr));
927   return FunctionEntries;
928 }
929 
930 template <class ELFT>
931 Expected<std::vector<BBAddrMap>>
932 ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec, const Elf_Shdr *RelaSec,
933                                std::vector<PGOAnalysisMap> *PGOAnalyses) const {
934   size_t OriginalPGOSize = PGOAnalyses ? PGOAnalyses->size() : 0;
935   auto AddrMapsOrErr = decodeBBAddrMapImpl(*this, Sec, RelaSec, PGOAnalyses);
936   // remove new analyses when an error occurs
937   if (!AddrMapsOrErr && PGOAnalyses)
938     PGOAnalyses->resize(OriginalPGOSize);
939   return std::move(AddrMapsOrErr);
940 }
941 
942 template <class ELFT>
943 Expected<
944     MapVector<const typename ELFT::Shdr *, const typename ELFT::Shdr *>>
945 ELFFile<ELFT>::getSectionAndRelocations(
946     std::function<Expected<bool>(const Elf_Shdr &)> IsMatch) const {
947   MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
948   Error Errors = Error::success();
949   for (const Elf_Shdr &Sec : cantFail(this->sections())) {
950     Expected<bool> DoesSectionMatch = IsMatch(Sec);
951     if (!DoesSectionMatch) {
952       Errors = joinErrors(std::move(Errors), DoesSectionMatch.takeError());
953       continue;
954     }
955     if (*DoesSectionMatch) {
956       if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
957               .second)
958         continue;
959     }
960 
961     if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
962       continue;
963 
964     Expected<const Elf_Shdr *> RelSecOrErr = this->getSection(Sec.sh_info);
965     if (!RelSecOrErr) {
966       Errors = joinErrors(std::move(Errors),
967                           createError(describe(*this, Sec) +
968                                       ": failed to get a relocated section: " +
969                                       toString(RelSecOrErr.takeError())));
970       continue;
971     }
972     const Elf_Shdr *ContentsSec = *RelSecOrErr;
973     Expected<bool> DoesRelTargetMatch = IsMatch(*ContentsSec);
974     if (!DoesRelTargetMatch) {
975       Errors = joinErrors(std::move(Errors), DoesRelTargetMatch.takeError());
976       continue;
977     }
978     if (*DoesRelTargetMatch)
979       SecToRelocMap[ContentsSec] = &Sec;
980   }
981   if(Errors)
982     return std::move(Errors);
983   return SecToRelocMap;
984 }
985 
986 template class LLVM_EXPORT_TEMPLATE llvm::object::ELFFile<ELF32LE>;
987 template class LLVM_EXPORT_TEMPLATE llvm::object::ELFFile<ELF32BE>;
988 template class LLVM_EXPORT_TEMPLATE llvm::object::ELFFile<ELF64LE>;
989 template class LLVM_EXPORT_TEMPLATE llvm::object::ELFFile<ELF64BE>;
990