1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1982, 1986 The Regents of the University of California. 5 * Copyright (c) 1989, 1990 William Jolitz 6 * Copyright (c) 1994 John Dyson 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * the Systems Programming Group of the University of Utah Computer 11 * Science Department, and William Jolitz. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ 41 */ 42 43 #include <sys/cdefs.h> 44 #include "opt_isa.h" 45 #include "opt_cpu.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/bio.h> 50 #include <sys/buf.h> 51 #include <sys/kernel.h> 52 #include <sys/ktr.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/mutex.h> 57 #include <sys/priv.h> 58 #include <sys/proc.h> 59 #include <sys/procctl.h> 60 #include <sys/smp.h> 61 #include <sys/sysctl.h> 62 #include <sys/sysent.h> 63 #include <sys/unistd.h> 64 #include <sys/vnode.h> 65 #include <sys/vmmeter.h> 66 #include <sys/wait.h> 67 68 #include <machine/cpu.h> 69 #include <machine/md_var.h> 70 #include <machine/pcb.h> 71 #include <machine/smp.h> 72 #include <machine/specialreg.h> 73 #include <machine/tss.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_extern.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_page.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_param.h> 81 82 _Static_assert(OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf), 83 "OFFSETOF_MONITORBUF does not correspond with offset of pc_monitorbuf."); 84 85 void 86 set_top_of_stack_td(struct thread *td) 87 { 88 td->td_md.md_stack_base = td->td_kstack + 89 td->td_kstack_pages * PAGE_SIZE; 90 } 91 92 struct savefpu * 93 get_pcb_user_save_td(struct thread *td) 94 { 95 KASSERT(((vm_offset_t)td->td_md.md_usr_fpu_save % 96 XSAVE_AREA_ALIGN) == 0, 97 ("Unaligned pcb_user_save area ptr %p td %p", 98 td->td_md.md_usr_fpu_save, td)); 99 return (td->td_md.md_usr_fpu_save); 100 } 101 102 struct pcb * 103 get_pcb_td(struct thread *td) 104 { 105 106 return (&td->td_md.md_pcb); 107 } 108 109 struct savefpu * 110 get_pcb_user_save_pcb(struct pcb *pcb) 111 { 112 struct thread *td; 113 114 td = __containerof(pcb, struct thread, td_md.md_pcb); 115 return (get_pcb_user_save_td(td)); 116 } 117 118 void * 119 alloc_fpusave(int flags) 120 { 121 void *res; 122 struct savefpu_ymm *sf; 123 124 res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags); 125 if (use_xsave) { 126 sf = (struct savefpu_ymm *)res; 127 bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd)); 128 sf->sv_xstate.sx_hd.xstate_bv = xsave_mask; 129 } 130 return (res); 131 } 132 133 /* 134 * Common code shared between cpu_fork() and cpu_copy_thread() for 135 * initializing a thread. 136 */ 137 static void 138 copy_thread(struct thread *td1, struct thread *td2) 139 { 140 struct pcb *pcb2; 141 142 pcb2 = td2->td_pcb; 143 144 /* Ensure that td1's pcb is up to date for user threads. */ 145 if ((td2->td_pflags & TDP_KTHREAD) == 0) { 146 MPASS(td1 == curthread); 147 fpuexit(td1); 148 update_pcb_bases(td1->td_pcb); 149 } 150 151 /* Copy td1's pcb */ 152 bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); 153 154 /* Properly initialize pcb_save */ 155 pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); 156 157 /* Kernel threads start with clean FPU and segment bases. */ 158 if ((td2->td_pflags & TDP_KTHREAD) != 0) { 159 pcb2->pcb_fsbase = 0; 160 pcb2->pcb_gsbase = 0; 161 clear_pcb_flags(pcb2, PCB_FPUINITDONE | PCB_USERFPUINITDONE | 162 PCB_KERNFPU | PCB_KERNFPU_THR); 163 } else { 164 MPASS((pcb2->pcb_flags & (PCB_KERNFPU | PCB_KERNFPU_THR)) == 0); 165 bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2), 166 cpu_max_ext_state_size); 167 } 168 169 td2->td_frame = (struct trapframe *)td2->td_md.md_stack_base - 1; 170 171 /* 172 * Set registers for trampoline to user mode. Leave space for the 173 * return address on stack. These are the kernel mode register values. 174 */ 175 pcb2->pcb_r12 = (register_t)fork_return; /* fork_trampoline argument */ 176 pcb2->pcb_rbp = 0; 177 pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *); 178 pcb2->pcb_rbx = (register_t)td2; /* fork_trampoline argument */ 179 pcb2->pcb_rip = (register_t)fork_trampoline; 180 /*- 181 * pcb2->pcb_dr*: cloned above. 182 * pcb2->pcb_savefpu: cloned above. 183 * pcb2->pcb_flags: cloned above. 184 * pcb2->pcb_onfault: cloned above (always NULL here?). 185 * pcb2->pcb_[fg]sbase: cloned above 186 */ 187 188 pcb2->pcb_tssp = NULL; 189 190 /* Setup to release spin count in fork_exit(). */ 191 td2->td_md.md_spinlock_count = 1; 192 td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I; 193 pmap_thread_init_invl_gen(td2); 194 195 /* 196 * Copy the trap frame for the return to user mode as if from a syscall. 197 * This copies most of the user mode register values. Some of these 198 * registers are rewritten by cpu_set_upcall() and linux_set_upcall(). 199 */ 200 if ((td1->td_proc->p_flag & P_KPROC) == 0) { 201 bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe)); 202 203 /* 204 * If the current thread has the trap bit set (i.e. a debugger 205 * had single stepped the process to the system call), we need 206 * to clear the trap flag from the new frame. Otherwise, the new 207 * thread will receive a (likely unexpected) SIGTRAP when it 208 * executes the first instruction after returning to userland. 209 */ 210 td2->td_frame->tf_rflags &= ~PSL_T; 211 } 212 } 213 214 /* 215 * Finish a fork operation, with process p2 nearly set up. 216 * Copy and update the pcb, set up the stack so that the child 217 * ready to run and return to user mode. 218 */ 219 void 220 cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags) 221 { 222 struct proc *p1; 223 struct pcb *pcb2; 224 struct mdproc *mdp1, *mdp2; 225 struct proc_ldt *pldt; 226 227 p1 = td1->td_proc; 228 if ((flags & RFPROC) == 0) { 229 if ((flags & RFMEM) == 0) { 230 /* unshare user LDT */ 231 mdp1 = &p1->p_md; 232 mtx_lock(&dt_lock); 233 if ((pldt = mdp1->md_ldt) != NULL && 234 pldt->ldt_refcnt > 1 && 235 user_ldt_alloc(p1, 1) == NULL) 236 panic("could not copy LDT"); 237 mtx_unlock(&dt_lock); 238 } 239 return; 240 } 241 242 /* Point the stack and pcb to the actual location */ 243 set_top_of_stack_td(td2); 244 td2->td_pcb = pcb2 = get_pcb_td(td2); 245 246 copy_thread(td1, td2); 247 248 /* Reset debug registers in the new process */ 249 x86_clear_dbregs(pcb2); 250 251 /* Point mdproc and then copy over p1's contents */ 252 mdp2 = &p2->p_md; 253 bcopy(&p1->p_md, mdp2, sizeof(*mdp2)); 254 255 /* Set child return values. */ 256 p2->p_sysent->sv_set_fork_retval(td2); 257 258 /* As on i386, do not copy io permission bitmap. */ 259 pcb2->pcb_tssp = NULL; 260 261 /* New segment registers. */ 262 set_pcb_flags_raw(pcb2, PCB_FULL_IRET); 263 264 /* Copy the LDT, if necessary. */ 265 mdp1 = &td1->td_proc->p_md; 266 mdp2 = &p2->p_md; 267 if (mdp1->md_ldt == NULL) { 268 mdp2->md_ldt = NULL; 269 return; 270 } 271 mtx_lock(&dt_lock); 272 if (mdp1->md_ldt != NULL) { 273 if (flags & RFMEM) { 274 mdp1->md_ldt->ldt_refcnt++; 275 mdp2->md_ldt = mdp1->md_ldt; 276 bcopy(&mdp1->md_ldt_sd, &mdp2->md_ldt_sd, sizeof(struct 277 system_segment_descriptor)); 278 } else { 279 mdp2->md_ldt = NULL; 280 mdp2->md_ldt = user_ldt_alloc(p2, 0); 281 if (mdp2->md_ldt == NULL) 282 panic("could not copy LDT"); 283 amd64_set_ldt_data(td2, 0, max_ldt_segment, 284 (struct user_segment_descriptor *) 285 mdp1->md_ldt->ldt_base); 286 } 287 } else 288 mdp2->md_ldt = NULL; 289 mtx_unlock(&dt_lock); 290 291 /* 292 * Now, cpu_switch() can schedule the new process. 293 * pcb_rsp is loaded pointing to the cpu_switch() stack frame 294 * containing the return address when exiting cpu_switch. 295 * This will normally be to fork_trampoline(), which will have 296 * %rbx loaded with the new proc's pointer. fork_trampoline() 297 * will set up a stack to call fork_return(p, frame); to complete 298 * the return to user-mode. 299 */ 300 } 301 302 void 303 x86_set_fork_retval(struct thread *td) 304 { 305 struct trapframe *frame = td->td_frame; 306 307 frame->tf_rax = 0; /* Child returns zero */ 308 frame->tf_rflags &= ~PSL_C; /* success */ 309 frame->tf_rdx = 1; /* System V emulation */ 310 } 311 312 /* 313 * Intercept the return address from a freshly forked process that has NOT 314 * been scheduled yet. 315 * 316 * This is needed to make kernel threads stay in kernel mode. 317 */ 318 void 319 cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg) 320 { 321 /* 322 * Note that the trap frame follows the args, so the function 323 * is really called like this: func(arg, frame); 324 */ 325 td->td_pcb->pcb_r12 = (long) func; /* function */ 326 td->td_pcb->pcb_rbx = (long) arg; /* first arg */ 327 } 328 329 void 330 cpu_exit(struct thread *td) 331 { 332 333 /* 334 * If this process has a custom LDT, release it. 335 */ 336 if (td->td_proc->p_md.md_ldt != NULL) 337 user_ldt_free(td); 338 } 339 340 void 341 cpu_thread_exit(struct thread *td) 342 { 343 struct pcb *pcb; 344 345 critical_enter(); 346 if (td == PCPU_GET(fpcurthread)) 347 fpudrop(); 348 critical_exit(); 349 350 pcb = td->td_pcb; 351 352 /* Disable any hardware breakpoints. */ 353 if (pcb->pcb_flags & PCB_DBREGS) { 354 reset_dbregs(); 355 clear_pcb_flags(pcb, PCB_DBREGS); 356 } 357 } 358 359 void 360 cpu_thread_clean(struct thread *td) 361 { 362 struct pcb *pcb; 363 364 pcb = td->td_pcb; 365 366 /* 367 * Clean TSS/iomap 368 */ 369 if (pcb->pcb_tssp != NULL) { 370 pmap_pti_remove_kva((vm_offset_t)pcb->pcb_tssp, 371 (vm_offset_t)pcb->pcb_tssp + ctob(IOPAGES + 1)); 372 kmem_free(pcb->pcb_tssp, ctob(IOPAGES + 1)); 373 pcb->pcb_tssp = NULL; 374 } 375 } 376 377 void 378 cpu_thread_alloc(struct thread *td) 379 { 380 struct pcb *pcb; 381 struct xstate_hdr *xhdr; 382 383 set_top_of_stack_td(td); 384 td->td_pcb = pcb = get_pcb_td(td); 385 td->td_frame = (struct trapframe *)td->td_md.md_stack_base - 1; 386 td->td_md.md_usr_fpu_save = fpu_save_area_alloc(); 387 pcb->pcb_save = get_pcb_user_save_pcb(pcb); 388 if (use_xsave) { 389 xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1); 390 bzero(xhdr, sizeof(*xhdr)); 391 xhdr->xstate_bv = xsave_mask; 392 } 393 } 394 395 void 396 cpu_thread_free(struct thread *td) 397 { 398 cpu_thread_clean(td); 399 400 fpu_save_area_free(td->td_md.md_usr_fpu_save); 401 td->td_md.md_usr_fpu_save = NULL; 402 } 403 404 bool 405 cpu_exec_vmspace_reuse(struct proc *p, vm_map_t map) 406 { 407 408 return (((curproc->p_md.md_flags & P_MD_KPTI) != 0) == 409 (vm_map_pmap(map)->pm_ucr3 != PMAP_NO_CR3)); 410 } 411 412 static void 413 cpu_procctl_kpti_ctl(struct proc *p, int val) 414 { 415 416 if (pti && val == PROC_KPTI_CTL_ENABLE_ON_EXEC) 417 p->p_md.md_flags |= P_MD_KPTI; 418 if (val == PROC_KPTI_CTL_DISABLE_ON_EXEC) 419 p->p_md.md_flags &= ~P_MD_KPTI; 420 } 421 422 static void 423 cpu_procctl_kpti_status(struct proc *p, int *val) 424 { 425 *val = (p->p_md.md_flags & P_MD_KPTI) != 0 ? 426 PROC_KPTI_CTL_ENABLE_ON_EXEC: 427 PROC_KPTI_CTL_DISABLE_ON_EXEC; 428 if (vmspace_pmap(p->p_vmspace)->pm_ucr3 != PMAP_NO_CR3) 429 *val |= PROC_KPTI_STATUS_ACTIVE; 430 } 431 432 static int 433 cpu_procctl_la_ctl(struct proc *p, int val) 434 { 435 int error; 436 437 error = 0; 438 switch (val) { 439 case PROC_LA_CTL_LA48_ON_EXEC: 440 p->p_md.md_flags |= P_MD_LA48; 441 p->p_md.md_flags &= ~P_MD_LA57; 442 break; 443 case PROC_LA_CTL_LA57_ON_EXEC: 444 if (la57) { 445 p->p_md.md_flags &= ~P_MD_LA48; 446 p->p_md.md_flags |= P_MD_LA57; 447 } else { 448 error = ENOTSUP; 449 } 450 break; 451 case PROC_LA_CTL_DEFAULT_ON_EXEC: 452 p->p_md.md_flags &= ~(P_MD_LA48 | P_MD_LA57); 453 break; 454 } 455 return (error); 456 } 457 458 static void 459 cpu_procctl_la_status(struct proc *p, int *val) 460 { 461 int res; 462 463 if ((p->p_md.md_flags & P_MD_LA48) != 0) 464 res = PROC_LA_CTL_LA48_ON_EXEC; 465 else if ((p->p_md.md_flags & P_MD_LA57) != 0) 466 res = PROC_LA_CTL_LA57_ON_EXEC; 467 else 468 res = PROC_LA_CTL_DEFAULT_ON_EXEC; 469 if (p->p_sysent->sv_maxuser == VM_MAXUSER_ADDRESS_LA48) 470 res |= PROC_LA_STATUS_LA48; 471 else 472 res |= PROC_LA_STATUS_LA57; 473 *val = res; 474 } 475 476 int 477 cpu_procctl(struct thread *td, int idtype, id_t id, int com, void *data) 478 { 479 struct proc *p; 480 int error, val; 481 482 switch (com) { 483 case PROC_KPTI_CTL: 484 case PROC_KPTI_STATUS: 485 case PROC_LA_CTL: 486 case PROC_LA_STATUS: 487 if (idtype != P_PID) { 488 error = EINVAL; 489 break; 490 } 491 if (com == PROC_KPTI_CTL) { 492 /* sad but true and not a joke */ 493 error = priv_check(td, PRIV_IO); 494 if (error != 0) 495 break; 496 } 497 if (com == PROC_KPTI_CTL || com == PROC_LA_CTL) { 498 error = copyin(data, &val, sizeof(val)); 499 if (error != 0) 500 break; 501 } 502 if (com == PROC_KPTI_CTL && 503 val != PROC_KPTI_CTL_ENABLE_ON_EXEC && 504 val != PROC_KPTI_CTL_DISABLE_ON_EXEC) { 505 error = EINVAL; 506 break; 507 } 508 if (com == PROC_LA_CTL && 509 val != PROC_LA_CTL_LA48_ON_EXEC && 510 val != PROC_LA_CTL_LA57_ON_EXEC && 511 val != PROC_LA_CTL_DEFAULT_ON_EXEC) { 512 error = EINVAL; 513 break; 514 } 515 error = pget(id, PGET_CANSEE | PGET_NOTWEXIT | PGET_NOTID, &p); 516 if (error != 0) 517 break; 518 switch (com) { 519 case PROC_KPTI_CTL: 520 cpu_procctl_kpti_ctl(p, val); 521 break; 522 case PROC_KPTI_STATUS: 523 cpu_procctl_kpti_status(p, &val); 524 break; 525 case PROC_LA_CTL: 526 error = cpu_procctl_la_ctl(p, val); 527 break; 528 case PROC_LA_STATUS: 529 cpu_procctl_la_status(p, &val); 530 break; 531 } 532 PROC_UNLOCK(p); 533 if (com == PROC_KPTI_STATUS || com == PROC_LA_STATUS) 534 error = copyout(&val, data, sizeof(val)); 535 break; 536 default: 537 error = EINVAL; 538 break; 539 } 540 return (error); 541 } 542 543 void 544 cpu_set_syscall_retval(struct thread *td, int error) 545 { 546 struct trapframe *frame; 547 548 frame = td->td_frame; 549 if (__predict_true(error == 0)) { 550 frame->tf_rax = td->td_retval[0]; 551 frame->tf_rdx = td->td_retval[1]; 552 frame->tf_rflags &= ~PSL_C; 553 return; 554 } 555 556 switch (error) { 557 case ERESTART: 558 /* 559 * Reconstruct pc, we know that 'syscall' is 2 bytes, 560 * lcall $X,y is 7 bytes, int 0x80 is 2 bytes. 561 * We saved this in tf_err. 562 * %r10 (which was holding the value of %rcx) is restored 563 * for the next iteration. 564 * %r10 restore is only required for freebsd/amd64 processes, 565 * but shall be innocent for any ia32 ABI. 566 * 567 * Require full context restore to get the arguments 568 * in the registers reloaded at return to usermode. 569 */ 570 frame->tf_rip -= frame->tf_err; 571 frame->tf_r10 = frame->tf_rcx; 572 set_pcb_flags(td->td_pcb, PCB_FULL_IRET); 573 break; 574 575 case EJUSTRETURN: 576 break; 577 578 default: 579 frame->tf_rax = error; 580 frame->tf_rflags |= PSL_C; 581 break; 582 } 583 } 584 585 /* 586 * Initialize machine state, mostly pcb and trap frame for a new 587 * thread, about to return to userspace. Put enough state in the new 588 * thread's PCB to get it to go back to the fork_return(), which 589 * finalizes the thread state and handles peculiarities of the first 590 * return to userspace for the new thread. 591 */ 592 void 593 cpu_copy_thread(struct thread *td, struct thread *td0) 594 { 595 copy_thread(td0, td); 596 597 set_pcb_flags_raw(td->td_pcb, PCB_FULL_IRET); 598 } 599 600 /* 601 * Set that machine state for performing an upcall that starts 602 * the entry function with the given argument. 603 */ 604 int 605 cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg, 606 stack_t *stack) 607 { 608 #ifdef COMPAT_FREEBSD32 609 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 610 /* 611 * Set the trap frame to point at the beginning of the entry 612 * function. 613 */ 614 td->td_frame->tf_rbp = 0; 615 td->td_frame->tf_rsp = 616 (((uintptr_t)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4; 617 td->td_frame->tf_rip = (uintptr_t)entry; 618 619 /* Return address sentinel value to stop stack unwinding. */ 620 if (suword32((void *)td->td_frame->tf_rsp, 0) != 0) 621 return (EFAULT); 622 623 /* Pass the argument to the entry point. */ 624 if (suword32( 625 (void *)(td->td_frame->tf_rsp + sizeof(int32_t)), 626 (uint32_t)(uintptr_t)arg) != 0) 627 return (EFAULT); 628 return (0); 629 } 630 #endif 631 632 /* 633 * Set the trap frame to point at the beginning of the uts 634 * function. 635 */ 636 td->td_frame->tf_rbp = 0; 637 td->td_frame->tf_rsp = 638 ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f; 639 td->td_frame->tf_rsp -= 8; 640 td->td_frame->tf_rip = (register_t)entry; 641 td->td_frame->tf_ds = _udatasel; 642 td->td_frame->tf_es = _udatasel; 643 td->td_frame->tf_fs = _ufssel; 644 td->td_frame->tf_gs = _ugssel; 645 td->td_frame->tf_flags = TF_HASSEGS; 646 647 /* Return address sentinel value to stop stack unwinding. */ 648 if (suword((void *)td->td_frame->tf_rsp, 0) != 0) 649 return (EFAULT); 650 651 /* Pass the argument to the entry point. */ 652 td->td_frame->tf_rdi = (register_t)arg; 653 654 return (0); 655 } 656 657 int 658 cpu_set_user_tls(struct thread *td, void *tls_base) 659 { 660 struct pcb *pcb; 661 662 if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS) 663 return (EINVAL); 664 665 pcb = td->td_pcb; 666 set_pcb_flags(pcb, PCB_FULL_IRET); 667 #ifdef COMPAT_FREEBSD32 668 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 669 pcb->pcb_gsbase = (register_t)tls_base; 670 return (0); 671 } 672 #endif 673 pcb->pcb_fsbase = (register_t)tls_base; 674 return (0); 675 } 676