1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "MVETailPredUtils.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/CodeGen/DFAPacketizer.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachinePipeliner.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/MachineScheduler.h" 41 #include "llvm/CodeGen/MultiHazardRecognizer.h" 42 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 43 #include "llvm/CodeGen/SelectionDAGNodes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSchedule.h" 47 #include "llvm/IR/Attributes.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/MC/MCAsmInfo.h" 53 #include "llvm/MC/MCInstrDesc.h" 54 #include "llvm/MC/MCInstrItineraries.h" 55 #include "llvm/Support/BranchProbability.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetMachine.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <iterator> 67 #include <new> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-instrinfo" 74 75 #define GET_INSTRINFO_CTOR_DTOR 76 #include "ARMGenInstrInfo.inc" 77 78 static cl::opt<bool> 79 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 80 cl::desc("Enable ARM 2-addr to 3-addr conv")); 81 82 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 83 struct ARM_MLxEntry { 84 uint16_t MLxOpc; // MLA / MLS opcode 85 uint16_t MulOpc; // Expanded multiplication opcode 86 uint16_t AddSubOpc; // Expanded add / sub opcode 87 bool NegAcc; // True if the acc is negated before the add / sub. 88 bool HasLane; // True if instruction has an extra "lane" operand. 89 }; 90 91 static const ARM_MLxEntry ARM_MLxTable[] = { 92 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 93 // fp scalar ops 94 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 95 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 96 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 97 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 98 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 99 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 100 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 101 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 102 103 // fp SIMD ops 104 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 105 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 106 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 107 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 108 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 109 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 110 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 111 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 112 }; 113 114 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 115 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 116 Subtarget(STI) { 117 for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) { 118 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 119 llvm_unreachable("Duplicated entries?"); 120 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 121 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 122 } 123 } 124 125 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 126 // currently defaults to no prepass hazard recognizer. 127 ScheduleHazardRecognizer * 128 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 129 const ScheduleDAG *DAG) const { 130 if (usePreRAHazardRecognizer()) { 131 const InstrItineraryData *II = 132 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 133 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 134 } 135 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 136 } 137 138 // Called during: 139 // - pre-RA scheduling 140 // - post-RA scheduling when FeatureUseMISched is set 141 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( 142 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 143 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 144 145 // We would like to restrict this hazard recognizer to only 146 // post-RA scheduling; we can tell that we're post-RA because we don't 147 // track VRegLiveness. 148 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM 149 // banks banked on bit 2. Assume that TCMs are in use. 150 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) 151 MHR->AddHazardRecognizer( 152 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); 153 154 // Not inserting ARMHazardRecognizerFPMLx because that would change 155 // legacy behavior 156 157 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 158 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 159 return MHR; 160 } 161 162 // Called during post-RA scheduling when FeatureUseMISched is not set 163 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 164 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 165 const ScheduleDAG *DAG) const { 166 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 167 168 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 169 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); 170 171 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 172 if (BHR) 173 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 174 return MHR; 175 } 176 177 MachineInstr * 178 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, 179 LiveIntervals *LIS) const { 180 // FIXME: Thumb2 support. 181 182 if (!EnableARM3Addr) 183 return nullptr; 184 185 MachineFunction &MF = *MI.getParent()->getParent(); 186 uint64_t TSFlags = MI.getDesc().TSFlags; 187 bool isPre = false; 188 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 189 default: return nullptr; 190 case ARMII::IndexModePre: 191 isPre = true; 192 break; 193 case ARMII::IndexModePost: 194 break; 195 } 196 197 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 198 // operation. 199 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 200 if (MemOpc == 0) 201 return nullptr; 202 203 MachineInstr *UpdateMI = nullptr; 204 MachineInstr *MemMI = nullptr; 205 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 206 const MCInstrDesc &MCID = MI.getDesc(); 207 unsigned NumOps = MCID.getNumOperands(); 208 bool isLoad = !MI.mayStore(); 209 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 210 const MachineOperand &Base = MI.getOperand(2); 211 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 212 Register WBReg = WB.getReg(); 213 Register BaseReg = Base.getReg(); 214 Register OffReg = Offset.getReg(); 215 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 216 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 217 switch (AddrMode) { 218 default: llvm_unreachable("Unknown indexed op!"); 219 case ARMII::AddrMode2: { 220 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 221 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 222 if (OffReg == 0) { 223 if (ARM_AM::getSOImmVal(Amt) == -1) 224 // Can't encode it in a so_imm operand. This transformation will 225 // add more than 1 instruction. Abandon! 226 return nullptr; 227 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 228 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 229 .addReg(BaseReg) 230 .addImm(Amt) 231 .add(predOps(Pred)) 232 .add(condCodeOp()); 233 } else if (Amt != 0) { 234 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 235 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 236 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 237 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 238 .addReg(BaseReg) 239 .addReg(OffReg) 240 .addReg(0) 241 .addImm(SOOpc) 242 .add(predOps(Pred)) 243 .add(condCodeOp()); 244 } else 245 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 246 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 247 .addReg(BaseReg) 248 .addReg(OffReg) 249 .add(predOps(Pred)) 250 .add(condCodeOp()); 251 break; 252 } 253 case ARMII::AddrMode3 : { 254 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 255 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 256 if (OffReg == 0) 257 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 258 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 259 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 260 .addReg(BaseReg) 261 .addImm(Amt) 262 .add(predOps(Pred)) 263 .add(condCodeOp()); 264 else 265 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 266 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 267 .addReg(BaseReg) 268 .addReg(OffReg) 269 .add(predOps(Pred)) 270 .add(condCodeOp()); 271 break; 272 } 273 } 274 275 std::vector<MachineInstr*> NewMIs; 276 if (isPre) { 277 if (isLoad) 278 MemMI = 279 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 280 .addReg(WBReg) 281 .addImm(0) 282 .addImm(Pred); 283 else 284 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 285 .addReg(MI.getOperand(1).getReg()) 286 .addReg(WBReg) 287 .addReg(0) 288 .addImm(0) 289 .addImm(Pred); 290 NewMIs.push_back(MemMI); 291 NewMIs.push_back(UpdateMI); 292 } else { 293 if (isLoad) 294 MemMI = 295 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 296 .addReg(BaseReg) 297 .addImm(0) 298 .addImm(Pred); 299 else 300 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 301 .addReg(MI.getOperand(1).getReg()) 302 .addReg(BaseReg) 303 .addReg(0) 304 .addImm(0) 305 .addImm(Pred); 306 if (WB.isDead()) 307 UpdateMI->getOperand(0).setIsDead(); 308 NewMIs.push_back(UpdateMI); 309 NewMIs.push_back(MemMI); 310 } 311 312 // Transfer LiveVariables states, kill / dead info. 313 if (LV) { 314 for (const MachineOperand &MO : MI.operands()) { 315 if (MO.isReg() && MO.getReg().isVirtual()) { 316 Register Reg = MO.getReg(); 317 318 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 319 if (MO.isDef()) { 320 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 321 if (MO.isDead()) 322 LV->addVirtualRegisterDead(Reg, *NewMI); 323 } 324 if (MO.isUse() && MO.isKill()) { 325 for (unsigned j = 0; j < 2; ++j) { 326 // Look at the two new MI's in reverse order. 327 MachineInstr *NewMI = NewMIs[j]; 328 if (!NewMI->readsRegister(Reg, /*TRI=*/nullptr)) 329 continue; 330 LV->addVirtualRegisterKilled(Reg, *NewMI); 331 if (VI.removeKill(MI)) 332 VI.Kills.push_back(NewMI); 333 break; 334 } 335 } 336 } 337 } 338 } 339 340 MachineBasicBlock &MBB = *MI.getParent(); 341 MBB.insert(MI, NewMIs[1]); 342 MBB.insert(MI, NewMIs[0]); 343 return NewMIs[0]; 344 } 345 346 // Branch analysis. 347 // Cond vector output format: 348 // 0 elements indicates an unconditional branch 349 // 2 elements indicates a conditional branch; the elements are 350 // the condition to check and the CPSR. 351 // 3 elements indicates a hardware loop end; the elements 352 // are the opcode, the operand value to test, and a dummy 353 // operand used to pad out to 3 operands. 354 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 355 MachineBasicBlock *&TBB, 356 MachineBasicBlock *&FBB, 357 SmallVectorImpl<MachineOperand> &Cond, 358 bool AllowModify) const { 359 TBB = nullptr; 360 FBB = nullptr; 361 362 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 363 if (I == MBB.instr_begin()) 364 return false; // Empty blocks are easy. 365 --I; 366 367 // Walk backwards from the end of the basic block until the branch is 368 // analyzed or we give up. 369 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 370 // Flag to be raised on unanalyzeable instructions. This is useful in cases 371 // where we want to clean up on the end of the basic block before we bail 372 // out. 373 bool CantAnalyze = false; 374 375 // Skip over DEBUG values, predicated nonterminators and speculation 376 // barrier terminators. 377 while (I->isDebugInstr() || !I->isTerminator() || 378 isSpeculationBarrierEndBBOpcode(I->getOpcode()) || 379 I->getOpcode() == ARM::t2DoLoopStartTP){ 380 if (I == MBB.instr_begin()) 381 return false; 382 --I; 383 } 384 385 if (isIndirectBranchOpcode(I->getOpcode()) || 386 isJumpTableBranchOpcode(I->getOpcode())) { 387 // Indirect branches and jump tables can't be analyzed, but we still want 388 // to clean up any instructions at the tail of the basic block. 389 CantAnalyze = true; 390 } else if (isUncondBranchOpcode(I->getOpcode())) { 391 TBB = I->getOperand(0).getMBB(); 392 } else if (isCondBranchOpcode(I->getOpcode())) { 393 // Bail out if we encounter multiple conditional branches. 394 if (!Cond.empty()) 395 return true; 396 397 assert(!FBB && "FBB should have been null."); 398 FBB = TBB; 399 TBB = I->getOperand(0).getMBB(); 400 Cond.push_back(I->getOperand(1)); 401 Cond.push_back(I->getOperand(2)); 402 } else if (I->isReturn()) { 403 // Returns can't be analyzed, but we should run cleanup. 404 CantAnalyze = true; 405 } else if (I->getOpcode() == ARM::t2LoopEnd && 406 MBB.getParent() 407 ->getSubtarget<ARMSubtarget>() 408 .enableMachinePipeliner()) { 409 if (!Cond.empty()) 410 return true; 411 FBB = TBB; 412 TBB = I->getOperand(1).getMBB(); 413 Cond.push_back(MachineOperand::CreateImm(I->getOpcode())); 414 Cond.push_back(I->getOperand(0)); 415 Cond.push_back(MachineOperand::CreateImm(0)); 416 } else { 417 // We encountered other unrecognized terminator. Bail out immediately. 418 return true; 419 } 420 421 // Cleanup code - to be run for unpredicated unconditional branches and 422 // returns. 423 if (!isPredicated(*I) && 424 (isUncondBranchOpcode(I->getOpcode()) || 425 isIndirectBranchOpcode(I->getOpcode()) || 426 isJumpTableBranchOpcode(I->getOpcode()) || 427 I->isReturn())) { 428 // Forget any previous condition branch information - it no longer applies. 429 Cond.clear(); 430 FBB = nullptr; 431 432 // If we can modify the function, delete everything below this 433 // unconditional branch. 434 if (AllowModify) { 435 MachineBasicBlock::iterator DI = std::next(I); 436 while (DI != MBB.instr_end()) { 437 MachineInstr &InstToDelete = *DI; 438 ++DI; 439 // Speculation barriers must not be deleted. 440 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) 441 continue; 442 InstToDelete.eraseFromParent(); 443 } 444 } 445 } 446 447 if (CantAnalyze) { 448 // We may not be able to analyze the block, but we could still have 449 // an unconditional branch as the last instruction in the block, which 450 // just branches to layout successor. If this is the case, then just 451 // remove it if we're allowed to make modifications. 452 if (AllowModify && !isPredicated(MBB.back()) && 453 isUncondBranchOpcode(MBB.back().getOpcode()) && 454 TBB && MBB.isLayoutSuccessor(TBB)) 455 removeBranch(MBB); 456 return true; 457 } 458 459 if (I == MBB.instr_begin()) 460 return false; 461 462 --I; 463 } 464 465 // We made it past the terminators without bailing out - we must have 466 // analyzed this branch successfully. 467 return false; 468 } 469 470 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 471 int *BytesRemoved) const { 472 assert(!BytesRemoved && "code size not handled"); 473 474 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 475 if (I == MBB.end()) 476 return 0; 477 478 if (!isUncondBranchOpcode(I->getOpcode()) && 479 !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) 480 return 0; 481 482 // Remove the branch. 483 I->eraseFromParent(); 484 485 I = MBB.end(); 486 487 if (I == MBB.begin()) return 1; 488 --I; 489 if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) 490 return 1; 491 492 // Remove the branch. 493 I->eraseFromParent(); 494 return 2; 495 } 496 497 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 498 MachineBasicBlock *TBB, 499 MachineBasicBlock *FBB, 500 ArrayRef<MachineOperand> Cond, 501 const DebugLoc &DL, 502 int *BytesAdded) const { 503 assert(!BytesAdded && "code size not handled"); 504 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 505 int BOpc = !AFI->isThumbFunction() 506 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 507 int BccOpc = !AFI->isThumbFunction() 508 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 509 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 510 511 // Shouldn't be a fall through. 512 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 513 assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) && 514 "ARM branch conditions have two or three components!"); 515 516 // For conditional branches, we use addOperand to preserve CPSR flags. 517 518 if (!FBB) { 519 if (Cond.empty()) { // Unconditional branch? 520 if (isThumb) 521 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 522 else 523 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 524 } else if (Cond.size() == 2) { 525 BuildMI(&MBB, DL, get(BccOpc)) 526 .addMBB(TBB) 527 .addImm(Cond[0].getImm()) 528 .add(Cond[1]); 529 } else 530 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); 531 return 1; 532 } 533 534 // Two-way conditional branch. 535 if (Cond.size() == 2) 536 BuildMI(&MBB, DL, get(BccOpc)) 537 .addMBB(TBB) 538 .addImm(Cond[0].getImm()) 539 .add(Cond[1]); 540 else if (Cond.size() == 3) 541 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); 542 if (isThumb) 543 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 544 else 545 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 546 return 2; 547 } 548 549 bool ARMBaseInstrInfo:: 550 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 551 if (Cond.size() == 2) { 552 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 553 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 554 return false; 555 } 556 return true; 557 } 558 559 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 560 if (MI.isBundle()) { 561 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 562 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 563 while (++I != E && I->isInsideBundle()) { 564 int PIdx = I->findFirstPredOperandIdx(); 565 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 566 return true; 567 } 568 return false; 569 } 570 571 int PIdx = MI.findFirstPredOperandIdx(); 572 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 573 } 574 575 std::string ARMBaseInstrInfo::createMIROperandComment( 576 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 577 const TargetRegisterInfo *TRI) const { 578 579 // First, let's see if there is a generic comment for this operand 580 std::string GenericComment = 581 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); 582 if (!GenericComment.empty()) 583 return GenericComment; 584 585 // If not, check if we have an immediate operand. 586 if (!Op.isImm()) 587 return std::string(); 588 589 // And print its corresponding condition code if the immediate is a 590 // predicate. 591 int FirstPredOp = MI.findFirstPredOperandIdx(); 592 if (FirstPredOp != (int) OpIdx) 593 return std::string(); 594 595 std::string CC = "CC::"; 596 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); 597 return CC; 598 } 599 600 bool ARMBaseInstrInfo::PredicateInstruction( 601 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 602 unsigned Opc = MI.getOpcode(); 603 if (isUncondBranchOpcode(Opc)) { 604 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 605 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 606 .addImm(Pred[0].getImm()) 607 .addReg(Pred[1].getReg()); 608 return true; 609 } 610 611 int PIdx = MI.findFirstPredOperandIdx(); 612 if (PIdx != -1) { 613 MachineOperand &PMO = MI.getOperand(PIdx); 614 PMO.setImm(Pred[0].getImm()); 615 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 616 617 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an 618 // IT block. This affects how they are printed. 619 const MCInstrDesc &MCID = MI.getDesc(); 620 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 621 assert(MCID.operands()[1].isOptionalDef() && 622 "CPSR def isn't expected operand"); 623 assert((MI.getOperand(1).isDead() || 624 MI.getOperand(1).getReg() != ARM::CPSR) && 625 "if conversion tried to stop defining used CPSR"); 626 MI.getOperand(1).setReg(ARM::NoRegister); 627 } 628 629 return true; 630 } 631 return false; 632 } 633 634 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 635 ArrayRef<MachineOperand> Pred2) const { 636 if (Pred1.size() > 2 || Pred2.size() > 2) 637 return false; 638 639 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 640 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 641 if (CC1 == CC2) 642 return true; 643 644 switch (CC1) { 645 default: 646 return false; 647 case ARMCC::AL: 648 return true; 649 case ARMCC::HS: 650 return CC2 == ARMCC::HI; 651 case ARMCC::LS: 652 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 653 case ARMCC::GE: 654 return CC2 == ARMCC::GT; 655 case ARMCC::LE: 656 return CC2 == ARMCC::LT; 657 } 658 } 659 660 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, 661 std::vector<MachineOperand> &Pred, 662 bool SkipDead) const { 663 bool Found = false; 664 for (const MachineOperand &MO : MI.operands()) { 665 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); 666 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; 667 if (ClobbersCPSR || IsCPSR) { 668 669 // Filter out T1 instructions that have a dead CPSR, 670 // allowing IT blocks to be generated containing T1 instructions 671 const MCInstrDesc &MCID = MI.getDesc(); 672 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && 673 SkipDead) 674 continue; 675 676 Pred.push_back(MO); 677 Found = true; 678 } 679 } 680 681 return Found; 682 } 683 684 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 685 for (const auto &MO : MI.operands()) 686 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 687 return true; 688 return false; 689 } 690 691 static bool isEligibleForITBlock(const MachineInstr *MI) { 692 switch (MI->getOpcode()) { 693 default: return true; 694 case ARM::tADC: // ADC (register) T1 695 case ARM::tADDi3: // ADD (immediate) T1 696 case ARM::tADDi8: // ADD (immediate) T2 697 case ARM::tADDrr: // ADD (register) T1 698 case ARM::tAND: // AND (register) T1 699 case ARM::tASRri: // ASR (immediate) T1 700 case ARM::tASRrr: // ASR (register) T1 701 case ARM::tBIC: // BIC (register) T1 702 case ARM::tEOR: // EOR (register) T1 703 case ARM::tLSLri: // LSL (immediate) T1 704 case ARM::tLSLrr: // LSL (register) T1 705 case ARM::tLSRri: // LSR (immediate) T1 706 case ARM::tLSRrr: // LSR (register) T1 707 case ARM::tMUL: // MUL T1 708 case ARM::tMVN: // MVN (register) T1 709 case ARM::tORR: // ORR (register) T1 710 case ARM::tROR: // ROR (register) T1 711 case ARM::tRSB: // RSB (immediate) T1 712 case ARM::tSBC: // SBC (register) T1 713 case ARM::tSUBi3: // SUB (immediate) T1 714 case ARM::tSUBi8: // SUB (immediate) T2 715 case ARM::tSUBrr: // SUB (register) T1 716 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 717 } 718 } 719 720 /// isPredicable - Return true if the specified instruction can be predicated. 721 /// By default, this returns true for every instruction with a 722 /// PredicateOperand. 723 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 724 if (!MI.isPredicable()) 725 return false; 726 727 if (MI.isBundle()) 728 return false; 729 730 if (!isEligibleForITBlock(&MI)) 731 return false; 732 733 const MachineFunction *MF = MI.getParent()->getParent(); 734 const ARMFunctionInfo *AFI = 735 MF->getInfo<ARMFunctionInfo>(); 736 737 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 738 // In their ARM encoding, they can't be encoded in a conditional form. 739 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 740 return false; 741 742 // Make indirect control flow changes unpredicable when SLS mitigation is 743 // enabled. 744 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); 745 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) 746 return false; 747 if (ST.hardenSlsBlr() && isIndirectCall(MI)) 748 return false; 749 750 if (AFI->isThumb2Function()) { 751 if (getSubtarget().restrictIT()) 752 return isV8EligibleForIT(&MI); 753 } 754 755 return true; 756 } 757 758 namespace llvm { 759 760 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 761 for (const MachineOperand &MO : MI->operands()) { 762 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 763 continue; 764 if (MO.getReg() != ARM::CPSR) 765 continue; 766 if (!MO.isDead()) 767 return false; 768 } 769 // all definitions of CPSR are dead 770 return true; 771 } 772 773 } // end namespace llvm 774 775 /// GetInstSize - Return the size of the specified MachineInstr. 776 /// 777 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 778 const MachineBasicBlock &MBB = *MI.getParent(); 779 const MachineFunction *MF = MBB.getParent(); 780 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 781 782 const MCInstrDesc &MCID = MI.getDesc(); 783 784 switch (MI.getOpcode()) { 785 default: 786 // Return the size specified in .td file. If there's none, return 0, as we 787 // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2 788 // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in 789 // contrast to AArch64 instructions which have a default size of 4 bytes for 790 // example. 791 return MCID.getSize(); 792 case TargetOpcode::BUNDLE: 793 return getInstBundleLength(MI); 794 case ARM::CONSTPOOL_ENTRY: 795 case ARM::JUMPTABLE_INSTS: 796 case ARM::JUMPTABLE_ADDRS: 797 case ARM::JUMPTABLE_TBB: 798 case ARM::JUMPTABLE_TBH: 799 // If this machine instr is a constant pool entry, its size is recorded as 800 // operand #2. 801 return MI.getOperand(2).getImm(); 802 case ARM::SPACE: 803 return MI.getOperand(1).getImm(); 804 case ARM::INLINEASM: 805 case ARM::INLINEASM_BR: { 806 // If this machine instr is an inline asm, measure it. 807 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 808 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 809 Size = alignTo(Size, 4); 810 return Size; 811 } 812 } 813 } 814 815 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 816 unsigned Size = 0; 817 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 818 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 819 while (++I != E && I->isInsideBundle()) { 820 assert(!I->isBundle() && "No nested bundle!"); 821 Size += getInstSizeInBytes(*I); 822 } 823 return Size; 824 } 825 826 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 827 MachineBasicBlock::iterator I, 828 MCRegister DestReg, bool KillSrc, 829 const ARMSubtarget &Subtarget) const { 830 unsigned Opc = Subtarget.isThumb() 831 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 832 : ARM::MRS; 833 834 MachineInstrBuilder MIB = 835 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 836 837 // There is only 1 A/R class MRS instruction, and it always refers to 838 // APSR. However, there are lots of other possibilities on M-class cores. 839 if (Subtarget.isMClass()) 840 MIB.addImm(0x800); 841 842 MIB.add(predOps(ARMCC::AL)) 843 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 844 } 845 846 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 847 MachineBasicBlock::iterator I, 848 MCRegister SrcReg, bool KillSrc, 849 const ARMSubtarget &Subtarget) const { 850 unsigned Opc = Subtarget.isThumb() 851 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 852 : ARM::MSR; 853 854 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 855 856 if (Subtarget.isMClass()) 857 MIB.addImm(0x800); 858 else 859 MIB.addImm(8); 860 861 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 862 .add(predOps(ARMCC::AL)) 863 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 864 } 865 866 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 867 MIB.addImm(ARMVCC::None); 868 MIB.addReg(0); 869 MIB.addReg(0); // tp_reg 870 } 871 872 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 873 Register DestReg) { 874 addUnpredicatedMveVpredNOp(MIB); 875 MIB.addReg(DestReg, RegState::Undef); 876 } 877 878 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 879 MIB.addImm(Cond); 880 MIB.addReg(ARM::VPR, RegState::Implicit); 881 MIB.addReg(0); // tp_reg 882 } 883 884 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 885 unsigned Cond, unsigned Inactive) { 886 addPredicatedMveVpredNOp(MIB, Cond); 887 MIB.addReg(Inactive); 888 } 889 890 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 891 MachineBasicBlock::iterator I, 892 const DebugLoc &DL, MCRegister DestReg, 893 MCRegister SrcReg, bool KillSrc, 894 bool RenamableDest, 895 bool RenamableSrc) const { 896 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 897 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 898 899 if (GPRDest && GPRSrc) { 900 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 901 .addReg(SrcReg, getKillRegState(KillSrc)) 902 .add(predOps(ARMCC::AL)) 903 .add(condCodeOp()); 904 return; 905 } 906 907 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 908 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 909 910 unsigned Opc = 0; 911 if (SPRDest && SPRSrc) 912 Opc = ARM::VMOVS; 913 else if (GPRDest && SPRSrc) 914 Opc = ARM::VMOVRS; 915 else if (SPRDest && GPRSrc) 916 Opc = ARM::VMOVSR; 917 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 918 Opc = ARM::VMOVD; 919 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 920 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy; 921 922 if (Opc) { 923 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 924 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 925 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 926 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 927 if (Opc == ARM::MVE_VORR) 928 addUnpredicatedMveVpredROp(MIB, DestReg); 929 else if (Opc != ARM::MQPRCopy) 930 MIB.add(predOps(ARMCC::AL)); 931 return; 932 } 933 934 // Handle register classes that require multiple instructions. 935 unsigned BeginIdx = 0; 936 unsigned SubRegs = 0; 937 int Spacing = 1; 938 939 // Use VORRq when possible. 940 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 941 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 942 BeginIdx = ARM::qsub_0; 943 SubRegs = 2; 944 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 945 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 946 BeginIdx = ARM::qsub_0; 947 SubRegs = 4; 948 // Fall back to VMOVD. 949 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 950 Opc = ARM::VMOVD; 951 BeginIdx = ARM::dsub_0; 952 SubRegs = 2; 953 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 954 Opc = ARM::VMOVD; 955 BeginIdx = ARM::dsub_0; 956 SubRegs = 3; 957 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 958 Opc = ARM::VMOVD; 959 BeginIdx = ARM::dsub_0; 960 SubRegs = 4; 961 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 962 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 963 BeginIdx = ARM::gsub_0; 964 SubRegs = 2; 965 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 966 Opc = ARM::VMOVD; 967 BeginIdx = ARM::dsub_0; 968 SubRegs = 2; 969 Spacing = 2; 970 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 971 Opc = ARM::VMOVD; 972 BeginIdx = ARM::dsub_0; 973 SubRegs = 3; 974 Spacing = 2; 975 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 976 Opc = ARM::VMOVD; 977 BeginIdx = ARM::dsub_0; 978 SubRegs = 4; 979 Spacing = 2; 980 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 981 !Subtarget.hasFP64()) { 982 Opc = ARM::VMOVS; 983 BeginIdx = ARM::ssub_0; 984 SubRegs = 2; 985 } else if (SrcReg == ARM::CPSR) { 986 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 987 return; 988 } else if (DestReg == ARM::CPSR) { 989 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 990 return; 991 } else if (DestReg == ARM::VPR) { 992 assert(ARM::GPRRegClass.contains(SrcReg)); 993 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 994 .addReg(SrcReg, getKillRegState(KillSrc)) 995 .add(predOps(ARMCC::AL)); 996 return; 997 } else if (SrcReg == ARM::VPR) { 998 assert(ARM::GPRRegClass.contains(DestReg)); 999 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 1000 .addReg(SrcReg, getKillRegState(KillSrc)) 1001 .add(predOps(ARMCC::AL)); 1002 return; 1003 } else if (DestReg == ARM::FPSCR_NZCV) { 1004 assert(ARM::GPRRegClass.contains(SrcReg)); 1005 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 1006 .addReg(SrcReg, getKillRegState(KillSrc)) 1007 .add(predOps(ARMCC::AL)); 1008 return; 1009 } else if (SrcReg == ARM::FPSCR_NZCV) { 1010 assert(ARM::GPRRegClass.contains(DestReg)); 1011 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 1012 .addReg(SrcReg, getKillRegState(KillSrc)) 1013 .add(predOps(ARMCC::AL)); 1014 return; 1015 } 1016 1017 assert(Opc && "Impossible reg-to-reg copy"); 1018 1019 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1020 MachineInstrBuilder Mov; 1021 1022 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 1023 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 1024 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 1025 Spacing = -Spacing; 1026 } 1027 #ifndef NDEBUG 1028 SmallSet<unsigned, 4> DstRegs; 1029 #endif 1030 for (unsigned i = 0; i != SubRegs; ++i) { 1031 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 1032 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 1033 assert(Dst && Src && "Bad sub-register"); 1034 #ifndef NDEBUG 1035 assert(!DstRegs.count(Src) && "destructive vector copy"); 1036 DstRegs.insert(Dst); 1037 #endif 1038 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 1039 // VORR (NEON or MVE) takes two source operands. 1040 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 1041 Mov.addReg(Src); 1042 } 1043 // MVE VORR takes predicate operands in place of an ordinary condition. 1044 if (Opc == ARM::MVE_VORR) 1045 addUnpredicatedMveVpredROp(Mov, Dst); 1046 else 1047 Mov = Mov.add(predOps(ARMCC::AL)); 1048 // MOVr can set CC. 1049 if (Opc == ARM::MOVr) 1050 Mov = Mov.add(condCodeOp()); 1051 } 1052 // Add implicit super-register defs and kills to the last instruction. 1053 Mov->addRegisterDefined(DestReg, TRI); 1054 if (KillSrc) 1055 Mov->addRegisterKilled(SrcReg, TRI); 1056 } 1057 1058 std::optional<DestSourcePair> 1059 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 1060 // VMOVRRD is also a copy instruction but it requires 1061 // special way of handling. It is more complex copy version 1062 // and since that we are not considering it. For recognition 1063 // of such instruction isExtractSubregLike MI interface fuction 1064 // could be used. 1065 // VORRq is considered as a move only if two inputs are 1066 // the same register. 1067 if (!MI.isMoveReg() || 1068 (MI.getOpcode() == ARM::VORRq && 1069 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1070 return std::nullopt; 1071 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1072 } 1073 1074 std::optional<ParamLoadedValue> 1075 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, 1076 Register Reg) const { 1077 if (auto DstSrcPair = isCopyInstrImpl(MI)) { 1078 Register DstReg = DstSrcPair->Destination->getReg(); 1079 1080 // TODO: We don't handle cases where the forwarding reg is narrower/wider 1081 // than the copy registers. Consider for example: 1082 // 1083 // s16 = VMOVS s0 1084 // s17 = VMOVS s1 1085 // call @callee(d0) 1086 // 1087 // We'd like to describe the call site value of d0 as d8, but this requires 1088 // gathering and merging the descriptions for the two VMOVS instructions. 1089 // 1090 // We also don't handle the reverse situation, where the forwarding reg is 1091 // narrower than the copy destination: 1092 // 1093 // d8 = VMOVD d0 1094 // call @callee(s1) 1095 // 1096 // We need to produce a fragment description (the call site value of s1 is 1097 // /not/ just d8). 1098 if (DstReg != Reg) 1099 return std::nullopt; 1100 } 1101 return TargetInstrInfo::describeLoadedValue(MI, Reg); 1102 } 1103 1104 const MachineInstrBuilder & 1105 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1106 unsigned SubIdx, unsigned State, 1107 const TargetRegisterInfo *TRI) const { 1108 if (!SubIdx) 1109 return MIB.addReg(Reg, State); 1110 1111 if (Register::isPhysicalRegister(Reg)) 1112 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1113 return MIB.addReg(Reg, State, SubIdx); 1114 } 1115 1116 void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1117 MachineBasicBlock::iterator I, 1118 Register SrcReg, bool isKill, int FI, 1119 const TargetRegisterClass *RC, 1120 const TargetRegisterInfo *TRI, 1121 Register VReg, 1122 MachineInstr::MIFlag Flags) const { 1123 MachineFunction &MF = *MBB.getParent(); 1124 MachineFrameInfo &MFI = MF.getFrameInfo(); 1125 Align Alignment = MFI.getObjectAlign(FI); 1126 1127 MachineMemOperand *MMO = MF.getMachineMemOperand( 1128 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1129 MFI.getObjectSize(FI), Alignment); 1130 1131 switch (TRI->getSpillSize(*RC)) { 1132 case 2: 1133 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1134 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1135 .addReg(SrcReg, getKillRegState(isKill)) 1136 .addFrameIndex(FI) 1137 .addImm(0) 1138 .addMemOperand(MMO) 1139 .add(predOps(ARMCC::AL)); 1140 } else 1141 llvm_unreachable("Unknown reg class!"); 1142 break; 1143 case 4: 1144 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1145 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1146 .addReg(SrcReg, getKillRegState(isKill)) 1147 .addFrameIndex(FI) 1148 .addImm(0) 1149 .addMemOperand(MMO) 1150 .add(predOps(ARMCC::AL)); 1151 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1152 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1153 .addReg(SrcReg, getKillRegState(isKill)) 1154 .addFrameIndex(FI) 1155 .addImm(0) 1156 .addMemOperand(MMO) 1157 .add(predOps(ARMCC::AL)); 1158 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1159 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1160 .addReg(SrcReg, getKillRegState(isKill)) 1161 .addFrameIndex(FI) 1162 .addImm(0) 1163 .addMemOperand(MMO) 1164 .add(predOps(ARMCC::AL)); 1165 } else if (ARM::cl_FPSCR_NZCVRegClass.hasSubClassEq(RC)) { 1166 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_FPSCR_NZCVQC_off)) 1167 .addReg(SrcReg, getKillRegState(isKill)) 1168 .addFrameIndex(FI) 1169 .addImm(0) 1170 .addMemOperand(MMO) 1171 .add(predOps(ARMCC::AL)); 1172 } else 1173 llvm_unreachable("Unknown reg class!"); 1174 break; 1175 case 8: 1176 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1177 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1178 .addReg(SrcReg, getKillRegState(isKill)) 1179 .addFrameIndex(FI) 1180 .addImm(0) 1181 .addMemOperand(MMO) 1182 .add(predOps(ARMCC::AL)); 1183 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1184 if (Subtarget.hasV5TEOps()) { 1185 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1186 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1187 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1188 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1189 .add(predOps(ARMCC::AL)); 1190 } else { 1191 // Fallback to STM instruction, which has existed since the dawn of 1192 // time. 1193 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1194 .addFrameIndex(FI) 1195 .addMemOperand(MMO) 1196 .add(predOps(ARMCC::AL)); 1197 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1198 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1199 } 1200 } else 1201 llvm_unreachable("Unknown reg class!"); 1202 break; 1203 case 16: 1204 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1205 // Use aligned spills if the stack can be realigned. 1206 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1207 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1208 .addFrameIndex(FI) 1209 .addImm(16) 1210 .addReg(SrcReg, getKillRegState(isKill)) 1211 .addMemOperand(MMO) 1212 .add(predOps(ARMCC::AL)); 1213 } else { 1214 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1215 .addReg(SrcReg, getKillRegState(isKill)) 1216 .addFrameIndex(FI) 1217 .addMemOperand(MMO) 1218 .add(predOps(ARMCC::AL)); 1219 } 1220 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1221 Subtarget.hasMVEIntegerOps()) { 1222 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1223 MIB.addReg(SrcReg, getKillRegState(isKill)) 1224 .addFrameIndex(FI) 1225 .addImm(0) 1226 .addMemOperand(MMO); 1227 addUnpredicatedMveVpredNOp(MIB); 1228 } else 1229 llvm_unreachable("Unknown reg class!"); 1230 break; 1231 case 24: 1232 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1233 // Use aligned spills if the stack can be realigned. 1234 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1235 Subtarget.hasNEON()) { 1236 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1237 .addFrameIndex(FI) 1238 .addImm(16) 1239 .addReg(SrcReg, getKillRegState(isKill)) 1240 .addMemOperand(MMO) 1241 .add(predOps(ARMCC::AL)); 1242 } else { 1243 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1244 get(ARM::VSTMDIA)) 1245 .addFrameIndex(FI) 1246 .add(predOps(ARMCC::AL)) 1247 .addMemOperand(MMO); 1248 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1249 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1250 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1251 } 1252 } else 1253 llvm_unreachable("Unknown reg class!"); 1254 break; 1255 case 32: 1256 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1257 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1258 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1259 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1260 Subtarget.hasNEON()) { 1261 // FIXME: It's possible to only store part of the QQ register if the 1262 // spilled def has a sub-register index. 1263 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1264 .addFrameIndex(FI) 1265 .addImm(16) 1266 .addReg(SrcReg, getKillRegState(isKill)) 1267 .addMemOperand(MMO) 1268 .add(predOps(ARMCC::AL)); 1269 } else if (Subtarget.hasMVEIntegerOps()) { 1270 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore)) 1271 .addReg(SrcReg, getKillRegState(isKill)) 1272 .addFrameIndex(FI) 1273 .addMemOperand(MMO); 1274 } else { 1275 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1276 get(ARM::VSTMDIA)) 1277 .addFrameIndex(FI) 1278 .add(predOps(ARMCC::AL)) 1279 .addMemOperand(MMO); 1280 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1281 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1282 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1283 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1284 } 1285 } else 1286 llvm_unreachable("Unknown reg class!"); 1287 break; 1288 case 64: 1289 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1290 Subtarget.hasMVEIntegerOps()) { 1291 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore)) 1292 .addReg(SrcReg, getKillRegState(isKill)) 1293 .addFrameIndex(FI) 1294 .addMemOperand(MMO); 1295 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1296 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1297 .addFrameIndex(FI) 1298 .add(predOps(ARMCC::AL)) 1299 .addMemOperand(MMO); 1300 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1301 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1302 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1303 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1304 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1305 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1306 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1307 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1308 } else 1309 llvm_unreachable("Unknown reg class!"); 1310 break; 1311 default: 1312 llvm_unreachable("Unknown reg class!"); 1313 } 1314 } 1315 1316 Register ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1317 int &FrameIndex) const { 1318 switch (MI.getOpcode()) { 1319 default: break; 1320 case ARM::STRrs: 1321 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1322 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1323 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1324 MI.getOperand(3).getImm() == 0) { 1325 FrameIndex = MI.getOperand(1).getIndex(); 1326 return MI.getOperand(0).getReg(); 1327 } 1328 break; 1329 case ARM::STRi12: 1330 case ARM::t2STRi12: 1331 case ARM::tSTRspi: 1332 case ARM::VSTRD: 1333 case ARM::VSTRS: 1334 case ARM::VSTRH: 1335 case ARM::VSTR_P0_off: 1336 case ARM::VSTR_FPSCR_NZCVQC_off: 1337 case ARM::MVE_VSTRWU32: 1338 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1339 MI.getOperand(2).getImm() == 0) { 1340 FrameIndex = MI.getOperand(1).getIndex(); 1341 return MI.getOperand(0).getReg(); 1342 } 1343 break; 1344 case ARM::VST1q64: 1345 case ARM::VST1d64TPseudo: 1346 case ARM::VST1d64QPseudo: 1347 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1348 FrameIndex = MI.getOperand(0).getIndex(); 1349 return MI.getOperand(2).getReg(); 1350 } 1351 break; 1352 case ARM::VSTMQIA: 1353 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1354 FrameIndex = MI.getOperand(1).getIndex(); 1355 return MI.getOperand(0).getReg(); 1356 } 1357 break; 1358 case ARM::MQQPRStore: 1359 case ARM::MQQQQPRStore: 1360 if (MI.getOperand(1).isFI()) { 1361 FrameIndex = MI.getOperand(1).getIndex(); 1362 return MI.getOperand(0).getReg(); 1363 } 1364 break; 1365 } 1366 1367 return 0; 1368 } 1369 1370 Register ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1371 int &FrameIndex) const { 1372 SmallVector<const MachineMemOperand *, 1> Accesses; 1373 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1374 Accesses.size() == 1) { 1375 FrameIndex = 1376 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1377 ->getFrameIndex(); 1378 return true; 1379 } 1380 return false; 1381 } 1382 1383 void ARMBaseInstrInfo::loadRegFromStackSlot( 1384 MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, 1385 int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, 1386 Register VReg, MachineInstr::MIFlag Flags) const { 1387 DebugLoc DL; 1388 if (I != MBB.end()) DL = I->getDebugLoc(); 1389 MachineFunction &MF = *MBB.getParent(); 1390 MachineFrameInfo &MFI = MF.getFrameInfo(); 1391 const Align Alignment = MFI.getObjectAlign(FI); 1392 MachineMemOperand *MMO = MF.getMachineMemOperand( 1393 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1394 MFI.getObjectSize(FI), Alignment); 1395 1396 switch (TRI->getSpillSize(*RC)) { 1397 case 2: 1398 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1399 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1400 .addFrameIndex(FI) 1401 .addImm(0) 1402 .addMemOperand(MMO) 1403 .add(predOps(ARMCC::AL)); 1404 } else 1405 llvm_unreachable("Unknown reg class!"); 1406 break; 1407 case 4: 1408 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1409 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1410 .addFrameIndex(FI) 1411 .addImm(0) 1412 .addMemOperand(MMO) 1413 .add(predOps(ARMCC::AL)); 1414 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1415 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1416 .addFrameIndex(FI) 1417 .addImm(0) 1418 .addMemOperand(MMO) 1419 .add(predOps(ARMCC::AL)); 1420 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1421 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1422 .addFrameIndex(FI) 1423 .addImm(0) 1424 .addMemOperand(MMO) 1425 .add(predOps(ARMCC::AL)); 1426 } else if (ARM::cl_FPSCR_NZCVRegClass.hasSubClassEq(RC)) { 1427 BuildMI(MBB, I, DL, get(ARM::VLDR_FPSCR_NZCVQC_off), DestReg) 1428 .addFrameIndex(FI) 1429 .addImm(0) 1430 .addMemOperand(MMO) 1431 .add(predOps(ARMCC::AL)); 1432 } else 1433 llvm_unreachable("Unknown reg class!"); 1434 break; 1435 case 8: 1436 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1437 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1438 .addFrameIndex(FI) 1439 .addImm(0) 1440 .addMemOperand(MMO) 1441 .add(predOps(ARMCC::AL)); 1442 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1443 MachineInstrBuilder MIB; 1444 1445 if (Subtarget.hasV5TEOps()) { 1446 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1447 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1448 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1449 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1450 .add(predOps(ARMCC::AL)); 1451 } else { 1452 // Fallback to LDM instruction, which has existed since the dawn of 1453 // time. 1454 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1455 .addFrameIndex(FI) 1456 .addMemOperand(MMO) 1457 .add(predOps(ARMCC::AL)); 1458 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1459 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1460 } 1461 1462 if (DestReg.isPhysical()) 1463 MIB.addReg(DestReg, RegState::ImplicitDefine); 1464 } else 1465 llvm_unreachable("Unknown reg class!"); 1466 break; 1467 case 16: 1468 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1469 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1470 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1471 .addFrameIndex(FI) 1472 .addImm(16) 1473 .addMemOperand(MMO) 1474 .add(predOps(ARMCC::AL)); 1475 } else { 1476 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1477 .addFrameIndex(FI) 1478 .addMemOperand(MMO) 1479 .add(predOps(ARMCC::AL)); 1480 } 1481 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1482 Subtarget.hasMVEIntegerOps()) { 1483 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1484 MIB.addFrameIndex(FI) 1485 .addImm(0) 1486 .addMemOperand(MMO); 1487 addUnpredicatedMveVpredNOp(MIB); 1488 } else 1489 llvm_unreachable("Unknown reg class!"); 1490 break; 1491 case 24: 1492 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1493 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1494 Subtarget.hasNEON()) { 1495 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1496 .addFrameIndex(FI) 1497 .addImm(16) 1498 .addMemOperand(MMO) 1499 .add(predOps(ARMCC::AL)); 1500 } else { 1501 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1502 .addFrameIndex(FI) 1503 .addMemOperand(MMO) 1504 .add(predOps(ARMCC::AL)); 1505 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1506 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1507 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1508 if (DestReg.isPhysical()) 1509 MIB.addReg(DestReg, RegState::ImplicitDefine); 1510 } 1511 } else 1512 llvm_unreachable("Unknown reg class!"); 1513 break; 1514 case 32: 1515 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1516 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1517 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1518 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1519 Subtarget.hasNEON()) { 1520 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1521 .addFrameIndex(FI) 1522 .addImm(16) 1523 .addMemOperand(MMO) 1524 .add(predOps(ARMCC::AL)); 1525 } else if (Subtarget.hasMVEIntegerOps()) { 1526 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg) 1527 .addFrameIndex(FI) 1528 .addMemOperand(MMO); 1529 } else { 1530 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1531 .addFrameIndex(FI) 1532 .add(predOps(ARMCC::AL)) 1533 .addMemOperand(MMO); 1534 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1535 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1536 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1537 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1538 if (DestReg.isPhysical()) 1539 MIB.addReg(DestReg, RegState::ImplicitDefine); 1540 } 1541 } else 1542 llvm_unreachable("Unknown reg class!"); 1543 break; 1544 case 64: 1545 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1546 Subtarget.hasMVEIntegerOps()) { 1547 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg) 1548 .addFrameIndex(FI) 1549 .addMemOperand(MMO); 1550 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1551 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1552 .addFrameIndex(FI) 1553 .add(predOps(ARMCC::AL)) 1554 .addMemOperand(MMO); 1555 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1556 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1557 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1558 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1559 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1560 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1561 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1562 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1563 if (DestReg.isPhysical()) 1564 MIB.addReg(DestReg, RegState::ImplicitDefine); 1565 } else 1566 llvm_unreachable("Unknown reg class!"); 1567 break; 1568 default: 1569 llvm_unreachable("Unknown regclass!"); 1570 } 1571 } 1572 1573 Register ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1574 int &FrameIndex) const { 1575 switch (MI.getOpcode()) { 1576 default: break; 1577 case ARM::LDRrs: 1578 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1579 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1580 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1581 MI.getOperand(3).getImm() == 0) { 1582 FrameIndex = MI.getOperand(1).getIndex(); 1583 return MI.getOperand(0).getReg(); 1584 } 1585 break; 1586 case ARM::LDRi12: 1587 case ARM::t2LDRi12: 1588 case ARM::tLDRspi: 1589 case ARM::VLDRD: 1590 case ARM::VLDRS: 1591 case ARM::VLDRH: 1592 case ARM::VLDR_P0_off: 1593 case ARM::VLDR_FPSCR_NZCVQC_off: 1594 case ARM::MVE_VLDRWU32: 1595 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1596 MI.getOperand(2).getImm() == 0) { 1597 FrameIndex = MI.getOperand(1).getIndex(); 1598 return MI.getOperand(0).getReg(); 1599 } 1600 break; 1601 case ARM::VLD1q64: 1602 case ARM::VLD1d8TPseudo: 1603 case ARM::VLD1d16TPseudo: 1604 case ARM::VLD1d32TPseudo: 1605 case ARM::VLD1d64TPseudo: 1606 case ARM::VLD1d8QPseudo: 1607 case ARM::VLD1d16QPseudo: 1608 case ARM::VLD1d32QPseudo: 1609 case ARM::VLD1d64QPseudo: 1610 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1611 FrameIndex = MI.getOperand(1).getIndex(); 1612 return MI.getOperand(0).getReg(); 1613 } 1614 break; 1615 case ARM::VLDMQIA: 1616 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1617 FrameIndex = MI.getOperand(1).getIndex(); 1618 return MI.getOperand(0).getReg(); 1619 } 1620 break; 1621 case ARM::MQQPRLoad: 1622 case ARM::MQQQQPRLoad: 1623 if (MI.getOperand(1).isFI()) { 1624 FrameIndex = MI.getOperand(1).getIndex(); 1625 return MI.getOperand(0).getReg(); 1626 } 1627 break; 1628 } 1629 1630 return 0; 1631 } 1632 1633 Register ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1634 int &FrameIndex) const { 1635 SmallVector<const MachineMemOperand *, 1> Accesses; 1636 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1637 Accesses.size() == 1) { 1638 FrameIndex = 1639 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1640 ->getFrameIndex(); 1641 return true; 1642 } 1643 return false; 1644 } 1645 1646 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1647 /// depending on whether the result is used. 1648 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1649 bool isThumb1 = Subtarget.isThumb1Only(); 1650 bool isThumb2 = Subtarget.isThumb2(); 1651 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1652 1653 DebugLoc dl = MI->getDebugLoc(); 1654 MachineBasicBlock *BB = MI->getParent(); 1655 1656 MachineInstrBuilder LDM, STM; 1657 if (isThumb1 || !MI->getOperand(1).isDead()) { 1658 MachineOperand LDWb(MI->getOperand(1)); 1659 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1660 : isThumb1 ? ARM::tLDMIA_UPD 1661 : ARM::LDMIA_UPD)) 1662 .add(LDWb); 1663 } else { 1664 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1665 } 1666 1667 if (isThumb1 || !MI->getOperand(0).isDead()) { 1668 MachineOperand STWb(MI->getOperand(0)); 1669 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1670 : isThumb1 ? ARM::tSTMIA_UPD 1671 : ARM::STMIA_UPD)) 1672 .add(STWb); 1673 } else { 1674 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1675 } 1676 1677 MachineOperand LDBase(MI->getOperand(3)); 1678 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1679 1680 MachineOperand STBase(MI->getOperand(2)); 1681 STM.add(STBase).add(predOps(ARMCC::AL)); 1682 1683 // Sort the scratch registers into ascending order. 1684 const TargetRegisterInfo &TRI = getRegisterInfo(); 1685 SmallVector<unsigned, 6> ScratchRegs; 1686 for (MachineOperand &MO : llvm::drop_begin(MI->operands(), 5)) 1687 ScratchRegs.push_back(MO.getReg()); 1688 llvm::sort(ScratchRegs, 1689 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1690 return TRI.getEncodingValue(Reg1) < 1691 TRI.getEncodingValue(Reg2); 1692 }); 1693 1694 for (const auto &Reg : ScratchRegs) { 1695 LDM.addReg(Reg, RegState::Define); 1696 STM.addReg(Reg, RegState::Kill); 1697 } 1698 1699 BB->erase(MI); 1700 } 1701 1702 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1703 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1704 expandLoadStackGuard(MI); 1705 MI.getParent()->erase(MI); 1706 return true; 1707 } 1708 1709 if (MI.getOpcode() == ARM::MEMCPY) { 1710 expandMEMCPY(MI); 1711 return true; 1712 } 1713 1714 // This hook gets to expand COPY instructions before they become 1715 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1716 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1717 // changed into a VORR that can go down the NEON pipeline. 1718 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1719 return false; 1720 1721 // Look for a copy between even S-registers. That is where we keep floats 1722 // when using NEON v2f32 instructions for f32 arithmetic. 1723 Register DstRegS = MI.getOperand(0).getReg(); 1724 Register SrcRegS = MI.getOperand(1).getReg(); 1725 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1726 return false; 1727 1728 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1729 MCRegister DstRegD = 1730 TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, &ARM::DPRRegClass); 1731 MCRegister SrcRegD = 1732 TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, &ARM::DPRRegClass); 1733 if (!DstRegD || !SrcRegD) 1734 return false; 1735 1736 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1737 // legal if the COPY already defines the full DstRegD, and it isn't a 1738 // sub-register insertion. 1739 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1740 return false; 1741 1742 // A dead copy shouldn't show up here, but reject it just in case. 1743 if (MI.getOperand(0).isDead()) 1744 return false; 1745 1746 // All clear, widen the COPY. 1747 LLVM_DEBUG(dbgs() << "widening: " << MI); 1748 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1749 1750 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1751 // or some other super-register. 1752 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD, /*TRI=*/nullptr); 1753 if (ImpDefIdx != -1) 1754 MI.removeOperand(ImpDefIdx); 1755 1756 // Change the opcode and operands. 1757 MI.setDesc(get(ARM::VMOVD)); 1758 MI.getOperand(0).setReg(DstRegD); 1759 MI.getOperand(1).setReg(SrcRegD); 1760 MIB.add(predOps(ARMCC::AL)); 1761 1762 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1763 // register scavenger and machine verifier, so we need to indicate that we 1764 // are reading an undefined value from SrcRegD, but a proper value from 1765 // SrcRegS. 1766 MI.getOperand(1).setIsUndef(); 1767 MIB.addReg(SrcRegS, RegState::Implicit); 1768 1769 // SrcRegD may actually contain an unrelated value in the ssub_1 1770 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1771 if (MI.getOperand(1).isKill()) { 1772 MI.getOperand(1).setIsKill(false); 1773 MI.addRegisterKilled(SrcRegS, TRI, true); 1774 } 1775 1776 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1777 return true; 1778 } 1779 1780 /// Create a copy of a const pool value. Update CPI to the new index and return 1781 /// the label UID. 1782 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1783 MachineConstantPool *MCP = MF.getConstantPool(); 1784 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1785 1786 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1787 assert(MCPE.isMachineConstantPoolEntry() && 1788 "Expecting a machine constantpool entry!"); 1789 ARMConstantPoolValue *ACPV = 1790 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1791 1792 unsigned PCLabelId = AFI->createPICLabelUId(); 1793 ARMConstantPoolValue *NewCPV = nullptr; 1794 1795 // FIXME: The below assumes PIC relocation model and that the function 1796 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1797 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1798 // instructions, so that's probably OK, but is PIC always correct when 1799 // we get here? 1800 if (ACPV->isGlobalValue()) 1801 NewCPV = ARMConstantPoolConstant::Create( 1802 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1803 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1804 else if (ACPV->isExtSymbol()) 1805 NewCPV = ARMConstantPoolSymbol:: 1806 Create(MF.getFunction().getContext(), 1807 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1808 else if (ACPV->isBlockAddress()) 1809 NewCPV = ARMConstantPoolConstant:: 1810 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1811 ARMCP::CPBlockAddress, 4); 1812 else if (ACPV->isLSDA()) 1813 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1814 ARMCP::CPLSDA, 4); 1815 else if (ACPV->isMachineBasicBlock()) 1816 NewCPV = ARMConstantPoolMBB:: 1817 Create(MF.getFunction().getContext(), 1818 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1819 else 1820 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1821 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); 1822 return PCLabelId; 1823 } 1824 1825 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1826 MachineBasicBlock::iterator I, 1827 Register DestReg, unsigned SubIdx, 1828 const MachineInstr &Orig, 1829 const TargetRegisterInfo &TRI) const { 1830 unsigned Opcode = Orig.getOpcode(); 1831 switch (Opcode) { 1832 default: { 1833 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1834 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1835 MBB.insert(I, MI); 1836 break; 1837 } 1838 case ARM::tLDRpci_pic: 1839 case ARM::t2LDRpci_pic: { 1840 MachineFunction &MF = *MBB.getParent(); 1841 unsigned CPI = Orig.getOperand(1).getIndex(); 1842 unsigned PCLabelId = duplicateCPV(MF, CPI); 1843 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1844 .addConstantPoolIndex(CPI) 1845 .addImm(PCLabelId) 1846 .cloneMemRefs(Orig); 1847 break; 1848 } 1849 } 1850 } 1851 1852 MachineInstr & 1853 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1854 MachineBasicBlock::iterator InsertBefore, 1855 const MachineInstr &Orig) const { 1856 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1857 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1858 for (;;) { 1859 switch (I->getOpcode()) { 1860 case ARM::tLDRpci_pic: 1861 case ARM::t2LDRpci_pic: { 1862 MachineFunction &MF = *MBB.getParent(); 1863 unsigned CPI = I->getOperand(1).getIndex(); 1864 unsigned PCLabelId = duplicateCPV(MF, CPI); 1865 I->getOperand(1).setIndex(CPI); 1866 I->getOperand(2).setImm(PCLabelId); 1867 break; 1868 } 1869 } 1870 if (!I->isBundledWithSucc()) 1871 break; 1872 ++I; 1873 } 1874 return Cloned; 1875 } 1876 1877 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1878 const MachineInstr &MI1, 1879 const MachineRegisterInfo *MRI) const { 1880 unsigned Opcode = MI0.getOpcode(); 1881 if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic || 1882 Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic || 1883 Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1884 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1885 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1886 Opcode == ARM::t2MOV_ga_pcrel) { 1887 if (MI1.getOpcode() != Opcode) 1888 return false; 1889 if (MI0.getNumOperands() != MI1.getNumOperands()) 1890 return false; 1891 1892 const MachineOperand &MO0 = MI0.getOperand(1); 1893 const MachineOperand &MO1 = MI1.getOperand(1); 1894 if (MO0.getOffset() != MO1.getOffset()) 1895 return false; 1896 1897 if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1898 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1899 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1900 Opcode == ARM::t2MOV_ga_pcrel) 1901 // Ignore the PC labels. 1902 return MO0.getGlobal() == MO1.getGlobal(); 1903 1904 const MachineFunction *MF = MI0.getParent()->getParent(); 1905 const MachineConstantPool *MCP = MF->getConstantPool(); 1906 int CPI0 = MO0.getIndex(); 1907 int CPI1 = MO1.getIndex(); 1908 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1909 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1910 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1911 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1912 if (isARMCP0 && isARMCP1) { 1913 ARMConstantPoolValue *ACPV0 = 1914 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1915 ARMConstantPoolValue *ACPV1 = 1916 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1917 return ACPV0->hasSameValue(ACPV1); 1918 } else if (!isARMCP0 && !isARMCP1) { 1919 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1920 } 1921 return false; 1922 } else if (Opcode == ARM::PICLDR) { 1923 if (MI1.getOpcode() != Opcode) 1924 return false; 1925 if (MI0.getNumOperands() != MI1.getNumOperands()) 1926 return false; 1927 1928 Register Addr0 = MI0.getOperand(1).getReg(); 1929 Register Addr1 = MI1.getOperand(1).getReg(); 1930 if (Addr0 != Addr1) { 1931 if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual()) 1932 return false; 1933 1934 // This assumes SSA form. 1935 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1936 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1937 // Check if the loaded value, e.g. a constantpool of a global address, are 1938 // the same. 1939 if (!produceSameValue(*Def0, *Def1, MRI)) 1940 return false; 1941 } 1942 1943 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1944 // %12 = PICLDR %11, 0, 14, %noreg 1945 const MachineOperand &MO0 = MI0.getOperand(i); 1946 const MachineOperand &MO1 = MI1.getOperand(i); 1947 if (!MO0.isIdenticalTo(MO1)) 1948 return false; 1949 } 1950 return true; 1951 } 1952 1953 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1954 } 1955 1956 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1957 /// determine if two loads are loading from the same base address. It should 1958 /// only return true if the base pointers are the same and the only differences 1959 /// between the two addresses is the offset. It also returns the offsets by 1960 /// reference. 1961 /// 1962 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1963 /// is permanently disabled. 1964 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1965 int64_t &Offset1, 1966 int64_t &Offset2) const { 1967 // Don't worry about Thumb: just ARM and Thumb2. 1968 if (Subtarget.isThumb1Only()) return false; 1969 1970 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1971 return false; 1972 1973 auto IsLoadOpcode = [&](unsigned Opcode) { 1974 switch (Opcode) { 1975 default: 1976 return false; 1977 case ARM::LDRi12: 1978 case ARM::LDRBi12: 1979 case ARM::LDRD: 1980 case ARM::LDRH: 1981 case ARM::LDRSB: 1982 case ARM::LDRSH: 1983 case ARM::VLDRD: 1984 case ARM::VLDRS: 1985 case ARM::t2LDRi8: 1986 case ARM::t2LDRBi8: 1987 case ARM::t2LDRDi8: 1988 case ARM::t2LDRSHi8: 1989 case ARM::t2LDRi12: 1990 case ARM::t2LDRBi12: 1991 case ARM::t2LDRSHi12: 1992 return true; 1993 } 1994 }; 1995 1996 if (!IsLoadOpcode(Load1->getMachineOpcode()) || 1997 !IsLoadOpcode(Load2->getMachineOpcode())) 1998 return false; 1999 2000 // Check if base addresses and chain operands match. 2001 if (Load1->getOperand(0) != Load2->getOperand(0) || 2002 Load1->getOperand(4) != Load2->getOperand(4)) 2003 return false; 2004 2005 // Index should be Reg0. 2006 if (Load1->getOperand(3) != Load2->getOperand(3)) 2007 return false; 2008 2009 // Determine the offsets. 2010 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 2011 isa<ConstantSDNode>(Load2->getOperand(1))) { 2012 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 2013 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 2014 return true; 2015 } 2016 2017 return false; 2018 } 2019 2020 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 2021 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 2022 /// be scheduled togther. On some targets if two loads are loading from 2023 /// addresses in the same cache line, it's better if they are scheduled 2024 /// together. This function takes two integers that represent the load offsets 2025 /// from the common base address. It returns true if it decides it's desirable 2026 /// to schedule the two loads together. "NumLoads" is the number of loads that 2027 /// have already been scheduled after Load1. 2028 /// 2029 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 2030 /// is permanently disabled. 2031 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 2032 int64_t Offset1, int64_t Offset2, 2033 unsigned NumLoads) const { 2034 // Don't worry about Thumb: just ARM and Thumb2. 2035 if (Subtarget.isThumb1Only()) return false; 2036 2037 assert(Offset2 > Offset1); 2038 2039 if ((Offset2 - Offset1) / 8 > 64) 2040 return false; 2041 2042 // Check if the machine opcodes are different. If they are different 2043 // then we consider them to not be of the same base address, 2044 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 2045 // In this case, they are considered to be the same because they are different 2046 // encoding forms of the same basic instruction. 2047 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 2048 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 2049 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 2050 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 2051 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 2052 return false; // FIXME: overly conservative? 2053 2054 // Four loads in a row should be sufficient. 2055 if (NumLoads >= 3) 2056 return false; 2057 2058 return true; 2059 } 2060 2061 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2062 const MachineBasicBlock *MBB, 2063 const MachineFunction &MF) const { 2064 // Debug info is never a scheduling boundary. It's necessary to be explicit 2065 // due to the special treatment of IT instructions below, otherwise a 2066 // dbg_value followed by an IT will result in the IT instruction being 2067 // considered a scheduling hazard, which is wrong. It should be the actual 2068 // instruction preceding the dbg_value instruction(s), just like it is 2069 // when debug info is not present. 2070 if (MI.isDebugInstr()) 2071 return false; 2072 2073 // Terminators and labels can't be scheduled around. 2074 if (MI.isTerminator() || MI.isPosition()) 2075 return true; 2076 2077 // INLINEASM_BR can jump to another block 2078 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2079 return true; 2080 2081 if (isSEHInstruction(MI)) 2082 return true; 2083 2084 // Treat the start of the IT block as a scheduling boundary, but schedule 2085 // t2IT along with all instructions following it. 2086 // FIXME: This is a big hammer. But the alternative is to add all potential 2087 // true and anti dependencies to IT block instructions as implicit operands 2088 // to the t2IT instruction. The added compile time and complexity does not 2089 // seem worth it. 2090 MachineBasicBlock::const_iterator I = MI; 2091 // Make sure to skip any debug instructions 2092 while (++I != MBB->end() && I->isDebugInstr()) 2093 ; 2094 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 2095 return true; 2096 2097 // Don't attempt to schedule around any instruction that defines 2098 // a stack-oriented pointer, as it's unlikely to be profitable. This 2099 // saves compile time, because it doesn't require every single 2100 // stack slot reference to depend on the instruction that does the 2101 // modification. 2102 // Calls don't actually change the stack pointer, even if they have imp-defs. 2103 // No ARM calling conventions change the stack pointer. (X86 calling 2104 // conventions sometimes do). 2105 if (!MI.isCall() && MI.definesRegister(ARM::SP, /*TRI=*/nullptr)) 2106 return true; 2107 2108 return false; 2109 } 2110 2111 bool ARMBaseInstrInfo:: 2112 isProfitableToIfCvt(MachineBasicBlock &MBB, 2113 unsigned NumCycles, unsigned ExtraPredCycles, 2114 BranchProbability Probability) const { 2115 if (!NumCycles) 2116 return false; 2117 2118 // If we are optimizing for size, see if the branch in the predecessor can be 2119 // lowered to cbn?z by the constant island lowering pass, and return false if 2120 // so. This results in a shorter instruction sequence. 2121 if (MBB.getParent()->getFunction().hasOptSize()) { 2122 MachineBasicBlock *Pred = *MBB.pred_begin(); 2123 if (!Pred->empty()) { 2124 MachineInstr *LastMI = &*Pred->rbegin(); 2125 if (LastMI->getOpcode() == ARM::t2Bcc) { 2126 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2127 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2128 if (CmpMI) 2129 return false; 2130 } 2131 } 2132 } 2133 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2134 MBB, 0, 0, Probability); 2135 } 2136 2137 bool ARMBaseInstrInfo:: 2138 isProfitableToIfCvt(MachineBasicBlock &TBB, 2139 unsigned TCycles, unsigned TExtra, 2140 MachineBasicBlock &FBB, 2141 unsigned FCycles, unsigned FExtra, 2142 BranchProbability Probability) const { 2143 if (!TCycles) 2144 return false; 2145 2146 // In thumb code we often end up trading one branch for a IT block, and 2147 // if we are cloning the instruction can increase code size. Prevent 2148 // blocks with multiple predecesors from being ifcvted to prevent this 2149 // cloning. 2150 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2151 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2152 return false; 2153 } 2154 2155 // Attempt to estimate the relative costs of predication versus branching. 2156 // Here we scale up each component of UnpredCost to avoid precision issue when 2157 // scaling TCycles/FCycles by Probability. 2158 const unsigned ScalingUpFactor = 1024; 2159 2160 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2161 unsigned UnpredCost; 2162 if (!Subtarget.hasBranchPredictor()) { 2163 // When we don't have a branch predictor it's always cheaper to not take a 2164 // branch than take it, so we have to take that into account. 2165 unsigned NotTakenBranchCost = 1; 2166 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2167 unsigned TUnpredCycles, FUnpredCycles; 2168 if (!FCycles) { 2169 // Triangle: TBB is the fallthrough 2170 TUnpredCycles = TCycles + NotTakenBranchCost; 2171 FUnpredCycles = TakenBranchCost; 2172 } else { 2173 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2174 TUnpredCycles = TCycles + TakenBranchCost; 2175 FUnpredCycles = FCycles + NotTakenBranchCost; 2176 // The branch at the end of FBB will disappear when it's predicated, so 2177 // discount it from PredCost. 2178 PredCost -= 1 * ScalingUpFactor; 2179 } 2180 // The total cost is the cost of each path scaled by their probabilites 2181 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2182 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2183 UnpredCost = TUnpredCost + FUnpredCost; 2184 // When predicating assume that the first IT can be folded away but later 2185 // ones cost one cycle each 2186 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2187 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2188 } 2189 } else { 2190 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2191 unsigned FUnpredCost = 2192 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2193 UnpredCost = TUnpredCost + FUnpredCost; 2194 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2195 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2196 } 2197 2198 return PredCost <= UnpredCost; 2199 } 2200 2201 unsigned 2202 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2203 unsigned NumInsts) const { 2204 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2205 // ARM has a condition code field in every predicable instruction, using it 2206 // doesn't change code size. 2207 if (!Subtarget.isThumb2()) 2208 return 0; 2209 2210 // It's possible that the size of the IT is restricted to a single block. 2211 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; 2212 return divideCeil(NumInsts, MaxInsts) * 2; 2213 } 2214 2215 unsigned 2216 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2217 // If this branch is likely to be folded into the comparison to form a 2218 // CB(N)Z, then removing it won't reduce code size at all, because that will 2219 // just replace the CB(N)Z with a CMP. 2220 if (MI.getOpcode() == ARM::t2Bcc && 2221 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2222 return 0; 2223 2224 unsigned Size = getInstSizeInBytes(MI); 2225 2226 // For Thumb2, all branches are 32-bit instructions during the if conversion 2227 // pass, but may be replaced with 16-bit instructions during size reduction. 2228 // Since the branches considered by if conversion tend to be forward branches 2229 // over small basic blocks, they are very likely to be in range for the 2230 // narrow instructions, so we assume the final code size will be half what it 2231 // currently is. 2232 if (Subtarget.isThumb2()) 2233 Size /= 2; 2234 2235 return Size; 2236 } 2237 2238 bool 2239 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2240 MachineBasicBlock &FMBB) const { 2241 // Reduce false anti-dependencies to let the target's out-of-order execution 2242 // engine do its thing. 2243 return Subtarget.isProfitableToUnpredicate(); 2244 } 2245 2246 /// getInstrPredicate - If instruction is predicated, returns its predicate 2247 /// condition, otherwise returns AL. It also returns the condition code 2248 /// register by reference. 2249 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2250 Register &PredReg) { 2251 int PIdx = MI.findFirstPredOperandIdx(); 2252 if (PIdx == -1) { 2253 PredReg = 0; 2254 return ARMCC::AL; 2255 } 2256 2257 PredReg = MI.getOperand(PIdx+1).getReg(); 2258 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2259 } 2260 2261 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2262 if (Opc == ARM::B) 2263 return ARM::Bcc; 2264 if (Opc == ARM::tB) 2265 return ARM::tBcc; 2266 if (Opc == ARM::t2B) 2267 return ARM::t2Bcc; 2268 2269 llvm_unreachable("Unknown unconditional branch opcode!"); 2270 } 2271 2272 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2273 bool NewMI, 2274 unsigned OpIdx1, 2275 unsigned OpIdx2) const { 2276 switch (MI.getOpcode()) { 2277 case ARM::MOVCCr: 2278 case ARM::t2MOVCCr: { 2279 // MOVCC can be commuted by inverting the condition. 2280 Register PredReg; 2281 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2282 // MOVCC AL can't be inverted. Shouldn't happen. 2283 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2284 return nullptr; 2285 MachineInstr *CommutedMI = 2286 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2287 if (!CommutedMI) 2288 return nullptr; 2289 // After swapping the MOVCC operands, also invert the condition. 2290 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2291 .setImm(ARMCC::getOppositeCondition(CC)); 2292 return CommutedMI; 2293 } 2294 } 2295 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2296 } 2297 2298 /// Identify instructions that can be folded into a MOVCC instruction, and 2299 /// return the defining instruction. 2300 MachineInstr * 2301 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, 2302 const TargetInstrInfo *TII) const { 2303 if (!Reg.isVirtual()) 2304 return nullptr; 2305 if (!MRI.hasOneNonDBGUse(Reg)) 2306 return nullptr; 2307 MachineInstr *MI = MRI.getVRegDef(Reg); 2308 if (!MI) 2309 return nullptr; 2310 // Check if MI can be predicated and folded into the MOVCC. 2311 if (!isPredicable(*MI)) 2312 return nullptr; 2313 // Check if MI has any non-dead defs or physreg uses. This also detects 2314 // predicated instructions which will be reading CPSR. 2315 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) { 2316 // Reject frame index operands, PEI can't handle the predicated pseudos. 2317 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2318 return nullptr; 2319 if (!MO.isReg()) 2320 continue; 2321 // MI can't have any tied operands, that would conflict with predication. 2322 if (MO.isTied()) 2323 return nullptr; 2324 if (MO.getReg().isPhysical()) 2325 return nullptr; 2326 if (MO.isDef() && !MO.isDead()) 2327 return nullptr; 2328 } 2329 bool DontMoveAcrossStores = true; 2330 if (!MI->isSafeToMove(DontMoveAcrossStores)) 2331 return nullptr; 2332 return MI; 2333 } 2334 2335 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2336 SmallVectorImpl<MachineOperand> &Cond, 2337 unsigned &TrueOp, unsigned &FalseOp, 2338 bool &Optimizable) const { 2339 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2340 "Unknown select instruction"); 2341 // MOVCC operands: 2342 // 0: Def. 2343 // 1: True use. 2344 // 2: False use. 2345 // 3: Condition code. 2346 // 4: CPSR use. 2347 TrueOp = 1; 2348 FalseOp = 2; 2349 Cond.push_back(MI.getOperand(3)); 2350 Cond.push_back(MI.getOperand(4)); 2351 // We can always fold a def. 2352 Optimizable = true; 2353 return false; 2354 } 2355 2356 MachineInstr * 2357 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2358 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2359 bool PreferFalse) const { 2360 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2361 "Unknown select instruction"); 2362 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2363 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2364 bool Invert = !DefMI; 2365 if (!DefMI) 2366 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2367 if (!DefMI) 2368 return nullptr; 2369 2370 // Find new register class to use. 2371 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2372 MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2); 2373 Register DestReg = MI.getOperand(0).getReg(); 2374 const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg()); 2375 const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg()); 2376 if (!MRI.constrainRegClass(DestReg, FalseClass)) 2377 return nullptr; 2378 if (!MRI.constrainRegClass(DestReg, TrueClass)) 2379 return nullptr; 2380 2381 // Create a new predicated version of DefMI. 2382 // Rfalse is the first use. 2383 MachineInstrBuilder NewMI = 2384 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2385 2386 // Copy all the DefMI operands, excluding its (null) predicate. 2387 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2388 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2389 i != e && !DefDesc.operands()[i].isPredicate(); ++i) 2390 NewMI.add(DefMI->getOperand(i)); 2391 2392 unsigned CondCode = MI.getOperand(3).getImm(); 2393 if (Invert) 2394 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2395 else 2396 NewMI.addImm(CondCode); 2397 NewMI.add(MI.getOperand(4)); 2398 2399 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2400 if (NewMI->hasOptionalDef()) 2401 NewMI.add(condCodeOp()); 2402 2403 // The output register value when the predicate is false is an implicit 2404 // register operand tied to the first def. 2405 // The tie makes the register allocator ensure the FalseReg is allocated the 2406 // same register as operand 0. 2407 FalseReg.setImplicit(); 2408 NewMI.add(FalseReg); 2409 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2410 2411 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2412 SeenMIs.insert(NewMI); 2413 SeenMIs.erase(DefMI); 2414 2415 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2416 // DefMI would be invalid when tranferred inside the loop. Checking for a 2417 // loop is expensive, but at least remove kill flags if they are in different 2418 // BBs. 2419 if (DefMI->getParent() != MI.getParent()) 2420 NewMI->clearKillInfo(); 2421 2422 // The caller will erase MI, but not DefMI. 2423 DefMI->eraseFromParent(); 2424 return NewMI; 2425 } 2426 2427 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2428 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2429 /// def operand. 2430 /// 2431 /// This will go away once we can teach tblgen how to set the optional CPSR def 2432 /// operand itself. 2433 struct AddSubFlagsOpcodePair { 2434 uint16_t PseudoOpc; 2435 uint16_t MachineOpc; 2436 }; 2437 2438 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2439 {ARM::ADDSri, ARM::ADDri}, 2440 {ARM::ADDSrr, ARM::ADDrr}, 2441 {ARM::ADDSrsi, ARM::ADDrsi}, 2442 {ARM::ADDSrsr, ARM::ADDrsr}, 2443 2444 {ARM::SUBSri, ARM::SUBri}, 2445 {ARM::SUBSrr, ARM::SUBrr}, 2446 {ARM::SUBSrsi, ARM::SUBrsi}, 2447 {ARM::SUBSrsr, ARM::SUBrsr}, 2448 2449 {ARM::RSBSri, ARM::RSBri}, 2450 {ARM::RSBSrsi, ARM::RSBrsi}, 2451 {ARM::RSBSrsr, ARM::RSBrsr}, 2452 2453 {ARM::tADDSi3, ARM::tADDi3}, 2454 {ARM::tADDSi8, ARM::tADDi8}, 2455 {ARM::tADDSrr, ARM::tADDrr}, 2456 {ARM::tADCS, ARM::tADC}, 2457 2458 {ARM::tSUBSi3, ARM::tSUBi3}, 2459 {ARM::tSUBSi8, ARM::tSUBi8}, 2460 {ARM::tSUBSrr, ARM::tSUBrr}, 2461 {ARM::tSBCS, ARM::tSBC}, 2462 {ARM::tRSBS, ARM::tRSB}, 2463 {ARM::tLSLSri, ARM::tLSLri}, 2464 2465 {ARM::t2ADDSri, ARM::t2ADDri}, 2466 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2467 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2468 2469 {ARM::t2SUBSri, ARM::t2SUBri}, 2470 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2471 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2472 2473 {ARM::t2RSBSri, ARM::t2RSBri}, 2474 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2475 }; 2476 2477 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2478 for (const auto &Entry : AddSubFlagsOpcodeMap) 2479 if (OldOpc == Entry.PseudoOpc) 2480 return Entry.MachineOpc; 2481 return 0; 2482 } 2483 2484 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2485 MachineBasicBlock::iterator &MBBI, 2486 const DebugLoc &dl, Register DestReg, 2487 Register BaseReg, int NumBytes, 2488 ARMCC::CondCodes Pred, Register PredReg, 2489 const ARMBaseInstrInfo &TII, 2490 unsigned MIFlags) { 2491 if (NumBytes == 0 && DestReg != BaseReg) { 2492 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2493 .addReg(BaseReg, RegState::Kill) 2494 .add(predOps(Pred, PredReg)) 2495 .add(condCodeOp()) 2496 .setMIFlags(MIFlags); 2497 return; 2498 } 2499 2500 bool isSub = NumBytes < 0; 2501 if (isSub) NumBytes = -NumBytes; 2502 2503 while (NumBytes) { 2504 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2505 unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(0xFF, RotAmt); 2506 assert(ThisVal && "Didn't extract field correctly"); 2507 2508 // We will handle these bits from offset, clear them. 2509 NumBytes &= ~ThisVal; 2510 2511 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2512 2513 // Build the new ADD / SUB. 2514 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2515 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2516 .addReg(BaseReg, RegState::Kill) 2517 .addImm(ThisVal) 2518 .add(predOps(Pred, PredReg)) 2519 .add(condCodeOp()) 2520 .setMIFlags(MIFlags); 2521 BaseReg = DestReg; 2522 } 2523 } 2524 2525 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2526 MachineFunction &MF, MachineInstr *MI, 2527 unsigned NumBytes) { 2528 // This optimisation potentially adds lots of load and store 2529 // micro-operations, it's only really a great benefit to code-size. 2530 if (!Subtarget.hasMinSize()) 2531 return false; 2532 2533 // If only one register is pushed/popped, LLVM can use an LDR/STR 2534 // instead. We can't modify those so make sure we're dealing with an 2535 // instruction we understand. 2536 bool IsPop = isPopOpcode(MI->getOpcode()); 2537 bool IsPush = isPushOpcode(MI->getOpcode()); 2538 if (!IsPush && !IsPop) 2539 return false; 2540 2541 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2542 MI->getOpcode() == ARM::VLDMDIA_UPD; 2543 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2544 MI->getOpcode() == ARM::tPOP || 2545 MI->getOpcode() == ARM::tPOP_RET; 2546 2547 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2548 MI->getOperand(1).getReg() == ARM::SP)) && 2549 "trying to fold sp update into non-sp-updating push/pop"); 2550 2551 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2552 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2553 // if this is violated. 2554 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2555 return false; 2556 2557 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2558 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2559 int RegListIdx = IsT1PushPop ? 2 : 4; 2560 2561 // Calculate the space we'll need in terms of registers. 2562 unsigned RegsNeeded; 2563 const TargetRegisterClass *RegClass; 2564 if (IsVFPPushPop) { 2565 RegsNeeded = NumBytes / 8; 2566 RegClass = &ARM::DPRRegClass; 2567 } else { 2568 RegsNeeded = NumBytes / 4; 2569 RegClass = &ARM::GPRRegClass; 2570 } 2571 2572 // We're going to have to strip all list operands off before 2573 // re-adding them since the order matters, so save the existing ones 2574 // for later. 2575 SmallVector<MachineOperand, 4> RegList; 2576 2577 // We're also going to need the first register transferred by this 2578 // instruction, which won't necessarily be the first register in the list. 2579 unsigned FirstRegEnc = -1; 2580 2581 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2582 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2583 MachineOperand &MO = MI->getOperand(i); 2584 RegList.push_back(MO); 2585 2586 if (MO.isReg() && !MO.isImplicit() && 2587 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2588 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2589 } 2590 2591 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2592 2593 // Now try to find enough space in the reglist to allocate NumBytes. 2594 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2595 --CurRegEnc) { 2596 MCRegister CurReg = RegClass->getRegister(CurRegEnc); 2597 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2598 continue; 2599 if (!IsPop) { 2600 // Pushing any register is completely harmless, mark the register involved 2601 // as undef since we don't care about its value and must not restore it 2602 // during stack unwinding. 2603 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2604 false, false, true)); 2605 --RegsNeeded; 2606 continue; 2607 } 2608 2609 // However, we can only pop an extra register if it's not live. For 2610 // registers live within the function we might clobber a return value 2611 // register; the other way a register can be live here is if it's 2612 // callee-saved. 2613 if (isCalleeSavedRegister(CurReg, CSRegs) || 2614 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2615 MachineBasicBlock::LQR_Dead) { 2616 // VFP pops don't allow holes in the register list, so any skip is fatal 2617 // for our transformation. GPR pops do, so we should just keep looking. 2618 if (IsVFPPushPop) 2619 return false; 2620 else 2621 continue; 2622 } 2623 2624 // Mark the unimportant registers as <def,dead> in the POP. 2625 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2626 true)); 2627 --RegsNeeded; 2628 } 2629 2630 if (RegsNeeded > 0) 2631 return false; 2632 2633 // Finally we know we can profitably perform the optimisation so go 2634 // ahead: strip all existing registers off and add them back again 2635 // in the right order. 2636 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2637 MI->removeOperand(i); 2638 2639 // Add the complete list back in. 2640 MachineInstrBuilder MIB(MF, &*MI); 2641 for (const MachineOperand &MO : llvm::reverse(RegList)) 2642 MIB.add(MO); 2643 2644 return true; 2645 } 2646 2647 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2648 Register FrameReg, int &Offset, 2649 const ARMBaseInstrInfo &TII) { 2650 unsigned Opcode = MI.getOpcode(); 2651 const MCInstrDesc &Desc = MI.getDesc(); 2652 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2653 bool isSub = false; 2654 2655 // Memory operands in inline assembly always use AddrMode2. 2656 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2657 AddrMode = ARMII::AddrMode2; 2658 2659 if (Opcode == ARM::ADDri) { 2660 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2661 if (Offset == 0) { 2662 // Turn it into a move. 2663 MI.setDesc(TII.get(ARM::MOVr)); 2664 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2665 MI.removeOperand(FrameRegIdx+1); 2666 Offset = 0; 2667 return true; 2668 } else if (Offset < 0) { 2669 Offset = -Offset; 2670 isSub = true; 2671 MI.setDesc(TII.get(ARM::SUBri)); 2672 } 2673 2674 // Common case: small offset, fits into instruction. 2675 if (ARM_AM::getSOImmVal(Offset) != -1) { 2676 // Replace the FrameIndex with sp / fp 2677 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2678 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2679 Offset = 0; 2680 return true; 2681 } 2682 2683 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2684 // as possible. 2685 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2686 unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(0xFF, RotAmt); 2687 2688 // We will handle these bits from offset, clear them. 2689 Offset &= ~ThisImmVal; 2690 2691 // Get the properly encoded SOImmVal field. 2692 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2693 "Bit extraction didn't work?"); 2694 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2695 } else { 2696 unsigned ImmIdx = 0; 2697 int InstrOffs = 0; 2698 unsigned NumBits = 0; 2699 unsigned Scale = 1; 2700 switch (AddrMode) { 2701 case ARMII::AddrMode_i12: 2702 ImmIdx = FrameRegIdx + 1; 2703 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2704 NumBits = 12; 2705 break; 2706 case ARMII::AddrMode2: 2707 ImmIdx = FrameRegIdx+2; 2708 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2709 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2710 InstrOffs *= -1; 2711 NumBits = 12; 2712 break; 2713 case ARMII::AddrMode3: 2714 ImmIdx = FrameRegIdx+2; 2715 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2716 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2717 InstrOffs *= -1; 2718 NumBits = 8; 2719 break; 2720 case ARMII::AddrMode4: 2721 case ARMII::AddrMode6: 2722 // Can't fold any offset even if it's zero. 2723 return false; 2724 case ARMII::AddrMode5: 2725 ImmIdx = FrameRegIdx+1; 2726 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2727 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2728 InstrOffs *= -1; 2729 NumBits = 8; 2730 Scale = 4; 2731 break; 2732 case ARMII::AddrMode5FP16: 2733 ImmIdx = FrameRegIdx+1; 2734 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2735 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2736 InstrOffs *= -1; 2737 NumBits = 8; 2738 Scale = 2; 2739 break; 2740 case ARMII::AddrModeT2_i7: 2741 case ARMII::AddrModeT2_i7s2: 2742 case ARMII::AddrModeT2_i7s4: 2743 ImmIdx = FrameRegIdx+1; 2744 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2745 NumBits = 7; 2746 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2747 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2748 break; 2749 default: 2750 llvm_unreachable("Unsupported addressing mode!"); 2751 } 2752 2753 Offset += InstrOffs * Scale; 2754 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2755 if (Offset < 0) { 2756 Offset = -Offset; 2757 isSub = true; 2758 } 2759 2760 // Attempt to fold address comp. if opcode has offset bits 2761 if (NumBits > 0) { 2762 // Common case: small offset, fits into instruction. 2763 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2764 int ImmedOffset = Offset / Scale; 2765 unsigned Mask = (1 << NumBits) - 1; 2766 if ((unsigned)Offset <= Mask * Scale) { 2767 // Replace the FrameIndex with sp 2768 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2769 // FIXME: When addrmode2 goes away, this will simplify (like the 2770 // T2 version), as the LDR.i12 versions don't need the encoding 2771 // tricks for the offset value. 2772 if (isSub) { 2773 if (AddrMode == ARMII::AddrMode_i12) 2774 ImmedOffset = -ImmedOffset; 2775 else 2776 ImmedOffset |= 1 << NumBits; 2777 } 2778 ImmOp.ChangeToImmediate(ImmedOffset); 2779 Offset = 0; 2780 return true; 2781 } 2782 2783 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2784 ImmedOffset = ImmedOffset & Mask; 2785 if (isSub) { 2786 if (AddrMode == ARMII::AddrMode_i12) 2787 ImmedOffset = -ImmedOffset; 2788 else 2789 ImmedOffset |= 1 << NumBits; 2790 } 2791 ImmOp.ChangeToImmediate(ImmedOffset); 2792 Offset &= ~(Mask*Scale); 2793 } 2794 } 2795 2796 Offset = (isSub) ? -Offset : Offset; 2797 return Offset == 0; 2798 } 2799 2800 /// analyzeCompare - For a comparison instruction, return the source registers 2801 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2802 /// compares against in CmpValue. Return true if the comparison instruction 2803 /// can be analyzed. 2804 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2805 Register &SrcReg2, int64_t &CmpMask, 2806 int64_t &CmpValue) const { 2807 switch (MI.getOpcode()) { 2808 default: break; 2809 case ARM::CMPri: 2810 case ARM::t2CMPri: 2811 case ARM::tCMPi8: 2812 SrcReg = MI.getOperand(0).getReg(); 2813 SrcReg2 = 0; 2814 CmpMask = ~0; 2815 CmpValue = MI.getOperand(1).getImm(); 2816 return true; 2817 case ARM::CMPrr: 2818 case ARM::t2CMPrr: 2819 case ARM::tCMPr: 2820 SrcReg = MI.getOperand(0).getReg(); 2821 SrcReg2 = MI.getOperand(1).getReg(); 2822 CmpMask = ~0; 2823 CmpValue = 0; 2824 return true; 2825 case ARM::TSTri: 2826 case ARM::t2TSTri: 2827 SrcReg = MI.getOperand(0).getReg(); 2828 SrcReg2 = 0; 2829 CmpMask = MI.getOperand(1).getImm(); 2830 CmpValue = 0; 2831 return true; 2832 } 2833 2834 return false; 2835 } 2836 2837 /// isSuitableForMask - Identify a suitable 'and' instruction that 2838 /// operates on the given source register and applies the same mask 2839 /// as a 'tst' instruction. Provide a limited look-through for copies. 2840 /// When successful, MI will hold the found instruction. 2841 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, 2842 int CmpMask, bool CommonUse) { 2843 switch (MI->getOpcode()) { 2844 case ARM::ANDri: 2845 case ARM::t2ANDri: 2846 if (CmpMask != MI->getOperand(2).getImm()) 2847 return false; 2848 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2849 return true; 2850 break; 2851 } 2852 2853 return false; 2854 } 2855 2856 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2857 /// the condition code if we modify the instructions such that flags are 2858 /// set by ADD(a,b,X). 2859 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2860 switch (CC) { 2861 default: return ARMCC::AL; 2862 case ARMCC::HS: return ARMCC::LO; 2863 case ARMCC::LO: return ARMCC::HS; 2864 case ARMCC::VS: return ARMCC::VS; 2865 case ARMCC::VC: return ARMCC::VC; 2866 } 2867 } 2868 2869 /// isRedundantFlagInstr - check whether the first instruction, whose only 2870 /// purpose is to update flags, can be made redundant. 2871 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2872 /// CMPri can be made redundant by SUBri if the operands are the same. 2873 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2874 /// This function can be extended later on. 2875 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2876 Register SrcReg, Register SrcReg2, 2877 int64_t ImmValue, 2878 const MachineInstr *OI, 2879 bool &IsThumb1) { 2880 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2881 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2882 ((OI->getOperand(1).getReg() == SrcReg && 2883 OI->getOperand(2).getReg() == SrcReg2) || 2884 (OI->getOperand(1).getReg() == SrcReg2 && 2885 OI->getOperand(2).getReg() == SrcReg))) { 2886 IsThumb1 = false; 2887 return true; 2888 } 2889 2890 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2891 ((OI->getOperand(2).getReg() == SrcReg && 2892 OI->getOperand(3).getReg() == SrcReg2) || 2893 (OI->getOperand(2).getReg() == SrcReg2 && 2894 OI->getOperand(3).getReg() == SrcReg))) { 2895 IsThumb1 = true; 2896 return true; 2897 } 2898 2899 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2900 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2901 OI->getOperand(1).getReg() == SrcReg && 2902 OI->getOperand(2).getImm() == ImmValue) { 2903 IsThumb1 = false; 2904 return true; 2905 } 2906 2907 if (CmpI->getOpcode() == ARM::tCMPi8 && 2908 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2909 OI->getOperand(2).getReg() == SrcReg && 2910 OI->getOperand(3).getImm() == ImmValue) { 2911 IsThumb1 = true; 2912 return true; 2913 } 2914 2915 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2916 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2917 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2918 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2919 OI->getOperand(0).getReg() == SrcReg && 2920 OI->getOperand(1).getReg() == SrcReg2) { 2921 IsThumb1 = false; 2922 return true; 2923 } 2924 2925 if (CmpI->getOpcode() == ARM::tCMPr && 2926 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2927 OI->getOpcode() == ARM::tADDrr) && 2928 OI->getOperand(0).getReg() == SrcReg && 2929 OI->getOperand(2).getReg() == SrcReg2) { 2930 IsThumb1 = true; 2931 return true; 2932 } 2933 2934 return false; 2935 } 2936 2937 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2938 switch (MI->getOpcode()) { 2939 default: return false; 2940 case ARM::tLSLri: 2941 case ARM::tLSRri: 2942 case ARM::tLSLrr: 2943 case ARM::tLSRrr: 2944 case ARM::tSUBrr: 2945 case ARM::tADDrr: 2946 case ARM::tADDi3: 2947 case ARM::tADDi8: 2948 case ARM::tSUBi3: 2949 case ARM::tSUBi8: 2950 case ARM::tMUL: 2951 case ARM::tADC: 2952 case ARM::tSBC: 2953 case ARM::tRSB: 2954 case ARM::tAND: 2955 case ARM::tORR: 2956 case ARM::tEOR: 2957 case ARM::tBIC: 2958 case ARM::tMVN: 2959 case ARM::tASRri: 2960 case ARM::tASRrr: 2961 case ARM::tROR: 2962 IsThumb1 = true; 2963 [[fallthrough]]; 2964 case ARM::RSBrr: 2965 case ARM::RSBri: 2966 case ARM::RSCrr: 2967 case ARM::RSCri: 2968 case ARM::ADDrr: 2969 case ARM::ADDri: 2970 case ARM::ADCrr: 2971 case ARM::ADCri: 2972 case ARM::SUBrr: 2973 case ARM::SUBri: 2974 case ARM::SBCrr: 2975 case ARM::SBCri: 2976 case ARM::t2RSBri: 2977 case ARM::t2ADDrr: 2978 case ARM::t2ADDri: 2979 case ARM::t2ADCrr: 2980 case ARM::t2ADCri: 2981 case ARM::t2SUBrr: 2982 case ARM::t2SUBri: 2983 case ARM::t2SBCrr: 2984 case ARM::t2SBCri: 2985 case ARM::ANDrr: 2986 case ARM::ANDri: 2987 case ARM::ANDrsr: 2988 case ARM::ANDrsi: 2989 case ARM::t2ANDrr: 2990 case ARM::t2ANDri: 2991 case ARM::t2ANDrs: 2992 case ARM::ORRrr: 2993 case ARM::ORRri: 2994 case ARM::ORRrsr: 2995 case ARM::ORRrsi: 2996 case ARM::t2ORRrr: 2997 case ARM::t2ORRri: 2998 case ARM::t2ORRrs: 2999 case ARM::EORrr: 3000 case ARM::EORri: 3001 case ARM::EORrsr: 3002 case ARM::EORrsi: 3003 case ARM::t2EORrr: 3004 case ARM::t2EORri: 3005 case ARM::t2EORrs: 3006 case ARM::BICri: 3007 case ARM::BICrr: 3008 case ARM::BICrsi: 3009 case ARM::BICrsr: 3010 case ARM::t2BICri: 3011 case ARM::t2BICrr: 3012 case ARM::t2BICrs: 3013 case ARM::t2LSRri: 3014 case ARM::t2LSRrr: 3015 case ARM::t2LSLri: 3016 case ARM::t2LSLrr: 3017 case ARM::MOVsr: 3018 case ARM::MOVsi: 3019 return true; 3020 } 3021 } 3022 3023 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 3024 /// comparison into one that sets the zero bit in the flags register; 3025 /// Remove a redundant Compare instruction if an earlier instruction can set the 3026 /// flags in the same way as Compare. 3027 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 3028 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 3029 /// condition code of instructions which use the flags. 3030 bool ARMBaseInstrInfo::optimizeCompareInstr( 3031 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, 3032 int64_t CmpValue, const MachineRegisterInfo *MRI) const { 3033 // Get the unique definition of SrcReg. 3034 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 3035 if (!MI) return false; 3036 3037 // Masked compares sometimes use the same register as the corresponding 'and'. 3038 if (CmpMask != ~0) { 3039 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 3040 MI = nullptr; 3041 for (MachineRegisterInfo::use_instr_iterator 3042 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 3043 UI != UE; ++UI) { 3044 if (UI->getParent() != CmpInstr.getParent()) 3045 continue; 3046 MachineInstr *PotentialAND = &*UI; 3047 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 3048 isPredicated(*PotentialAND)) 3049 continue; 3050 MI = PotentialAND; 3051 break; 3052 } 3053 if (!MI) return false; 3054 } 3055 } 3056 3057 // Get ready to iterate backward from CmpInstr. 3058 MachineBasicBlock::iterator I = CmpInstr, E = MI, 3059 B = CmpInstr.getParent()->begin(); 3060 3061 // Early exit if CmpInstr is at the beginning of the BB. 3062 if (I == B) return false; 3063 3064 // There are two possible candidates which can be changed to set CPSR: 3065 // One is MI, the other is a SUB or ADD instruction. 3066 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 3067 // ADDr[ri](r1, r2, X). 3068 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 3069 MachineInstr *SubAdd = nullptr; 3070 if (SrcReg2 != 0) 3071 // MI is not a candidate for CMPrr. 3072 MI = nullptr; 3073 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 3074 // Conservatively refuse to convert an instruction which isn't in the same 3075 // BB as the comparison. 3076 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 3077 // Thus we cannot return here. 3078 if (CmpInstr.getOpcode() == ARM::CMPri || 3079 CmpInstr.getOpcode() == ARM::t2CMPri || 3080 CmpInstr.getOpcode() == ARM::tCMPi8) 3081 MI = nullptr; 3082 else 3083 return false; 3084 } 3085 3086 bool IsThumb1 = false; 3087 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 3088 return false; 3089 3090 // We also want to do this peephole for cases like this: if (a*b == 0), 3091 // and optimise away the CMP instruction from the generated code sequence: 3092 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 3093 // resulting from the select instruction, but these MOVS instructions for 3094 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 3095 // However, if we only have MOVS instructions in between the CMP and the 3096 // other instruction (the MULS in this example), then the CPSR is dead so we 3097 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 3098 // reordering and then continue the analysis hoping we can eliminate the 3099 // CMP. This peephole works on the vregs, so is still in SSA form. As a 3100 // consequence, the movs won't redefine/kill the MUL operands which would 3101 // make this reordering illegal. 3102 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3103 if (MI && IsThumb1) { 3104 --I; 3105 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 3106 bool CanReorder = true; 3107 for (; I != E; --I) { 3108 if (I->getOpcode() != ARM::tMOVi8) { 3109 CanReorder = false; 3110 break; 3111 } 3112 } 3113 if (CanReorder) { 3114 MI = MI->removeFromParent(); 3115 E = CmpInstr; 3116 CmpInstr.getParent()->insert(E, MI); 3117 } 3118 } 3119 I = CmpInstr; 3120 E = MI; 3121 } 3122 3123 // Check that CPSR isn't set between the comparison instruction and the one we 3124 // want to change. At the same time, search for SubAdd. 3125 bool SubAddIsThumb1 = false; 3126 do { 3127 const MachineInstr &Instr = *--I; 3128 3129 // Check whether CmpInstr can be made redundant by the current instruction. 3130 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 3131 SubAddIsThumb1)) { 3132 SubAdd = &*I; 3133 break; 3134 } 3135 3136 // Allow E (which was initially MI) to be SubAdd but do not search before E. 3137 if (I == E) 3138 break; 3139 3140 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 3141 Instr.readsRegister(ARM::CPSR, TRI)) 3142 // This instruction modifies or uses CPSR after the one we want to 3143 // change. We can't do this transformation. 3144 return false; 3145 3146 if (I == B) { 3147 // In some cases, we scan the use-list of an instruction for an AND; 3148 // that AND is in the same BB, but may not be scheduled before the 3149 // corresponding TST. In that case, bail out. 3150 // 3151 // FIXME: We could try to reschedule the AND. 3152 return false; 3153 } 3154 } while (true); 3155 3156 // Return false if no candidates exist. 3157 if (!MI && !SubAdd) 3158 return false; 3159 3160 // If we found a SubAdd, use it as it will be closer to the CMP 3161 if (SubAdd) { 3162 MI = SubAdd; 3163 IsThumb1 = SubAddIsThumb1; 3164 } 3165 3166 // We can't use a predicated instruction - it doesn't always write the flags. 3167 if (isPredicated(*MI)) 3168 return false; 3169 3170 // Scan forward for the use of CPSR 3171 // When checking against MI: if it's a conditional code that requires 3172 // checking of the V bit or C bit, then this is not safe to do. 3173 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3174 // If we are done with the basic block, we need to check whether CPSR is 3175 // live-out. 3176 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3177 OperandsToUpdate; 3178 bool isSafe = false; 3179 I = CmpInstr; 3180 E = CmpInstr.getParent()->end(); 3181 while (!isSafe && ++I != E) { 3182 const MachineInstr &Instr = *I; 3183 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3184 !isSafe && IO != EO; ++IO) { 3185 const MachineOperand &MO = Instr.getOperand(IO); 3186 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3187 isSafe = true; 3188 break; 3189 } 3190 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3191 continue; 3192 if (MO.isDef()) { 3193 isSafe = true; 3194 break; 3195 } 3196 // Condition code is after the operand before CPSR except for VSELs. 3197 ARMCC::CondCodes CC; 3198 bool IsInstrVSel = true; 3199 switch (Instr.getOpcode()) { 3200 default: 3201 IsInstrVSel = false; 3202 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3203 break; 3204 case ARM::VSELEQD: 3205 case ARM::VSELEQS: 3206 case ARM::VSELEQH: 3207 CC = ARMCC::EQ; 3208 break; 3209 case ARM::VSELGTD: 3210 case ARM::VSELGTS: 3211 case ARM::VSELGTH: 3212 CC = ARMCC::GT; 3213 break; 3214 case ARM::VSELGED: 3215 case ARM::VSELGES: 3216 case ARM::VSELGEH: 3217 CC = ARMCC::GE; 3218 break; 3219 case ARM::VSELVSD: 3220 case ARM::VSELVSS: 3221 case ARM::VSELVSH: 3222 CC = ARMCC::VS; 3223 break; 3224 } 3225 3226 if (SubAdd) { 3227 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3228 // on CMP needs to be updated to be based on SUB. 3229 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3230 // needs to be modified. 3231 // Push the condition code operands to OperandsToUpdate. 3232 // If it is safe to remove CmpInstr, the condition code of these 3233 // operands will be modified. 3234 unsigned Opc = SubAdd->getOpcode(); 3235 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3236 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3237 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3238 Opc == ARM::tSUBi8; 3239 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3240 if (!IsSub || 3241 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3242 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3243 // VSel doesn't support condition code update. 3244 if (IsInstrVSel) 3245 return false; 3246 // Ensure we can swap the condition. 3247 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3248 if (NewCC == ARMCC::AL) 3249 return false; 3250 OperandsToUpdate.push_back( 3251 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3252 } 3253 } else { 3254 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3255 switch (CC) { 3256 case ARMCC::EQ: // Z 3257 case ARMCC::NE: // Z 3258 case ARMCC::MI: // N 3259 case ARMCC::PL: // N 3260 case ARMCC::AL: // none 3261 // CPSR can be used multiple times, we should continue. 3262 break; 3263 case ARMCC::HS: // C 3264 case ARMCC::LO: // C 3265 case ARMCC::VS: // V 3266 case ARMCC::VC: // V 3267 case ARMCC::HI: // C Z 3268 case ARMCC::LS: // C Z 3269 case ARMCC::GE: // N V 3270 case ARMCC::LT: // N V 3271 case ARMCC::GT: // Z N V 3272 case ARMCC::LE: // Z N V 3273 // The instruction uses the V bit or C bit which is not safe. 3274 return false; 3275 } 3276 } 3277 } 3278 } 3279 3280 // If CPSR is not killed nor re-defined, we should check whether it is 3281 // live-out. If it is live-out, do not optimize. 3282 if (!isSafe) { 3283 MachineBasicBlock *MBB = CmpInstr.getParent(); 3284 for (MachineBasicBlock *Succ : MBB->successors()) 3285 if (Succ->isLiveIn(ARM::CPSR)) 3286 return false; 3287 } 3288 3289 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3290 // set CPSR so this is represented as an explicit output) 3291 if (!IsThumb1) { 3292 unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1; 3293 MI->getOperand(CPSRRegNum).setReg(ARM::CPSR); 3294 MI->getOperand(CPSRRegNum).setIsDef(true); 3295 } 3296 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3297 CmpInstr.eraseFromParent(); 3298 3299 // Modify the condition code of operands in OperandsToUpdate. 3300 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3301 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3302 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3303 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3304 3305 MI->clearRegisterDeads(ARM::CPSR); 3306 3307 return true; 3308 } 3309 3310 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3311 // Do not sink MI if it might be used to optimize a redundant compare. 3312 // We heuristically only look at the instruction immediately following MI to 3313 // avoid potentially searching the entire basic block. 3314 if (isPredicated(MI)) 3315 return true; 3316 MachineBasicBlock::const_iterator Next = &MI; 3317 ++Next; 3318 Register SrcReg, SrcReg2; 3319 int64_t CmpMask, CmpValue; 3320 bool IsThumb1; 3321 if (Next != MI.getParent()->end() && 3322 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3323 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3324 return false; 3325 return true; 3326 } 3327 3328 bool ARMBaseInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3329 Register Reg, 3330 MachineRegisterInfo *MRI) const { 3331 // Fold large immediates into add, sub, or, xor. 3332 unsigned DefOpc = DefMI.getOpcode(); 3333 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm && 3334 DefOpc != ARM::tMOVi32imm) 3335 return false; 3336 if (!DefMI.getOperand(1).isImm()) 3337 // Could be t2MOVi32imm @xx 3338 return false; 3339 3340 if (!MRI->hasOneNonDBGUse(Reg)) 3341 return false; 3342 3343 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3344 if (DefMCID.hasOptionalDef()) { 3345 unsigned NumOps = DefMCID.getNumOperands(); 3346 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3347 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3348 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3349 // to delete DefMI. 3350 return false; 3351 } 3352 3353 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3354 if (UseMCID.hasOptionalDef()) { 3355 unsigned NumOps = UseMCID.getNumOperands(); 3356 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3357 // If the instruction sets the flag, do not attempt this optimization 3358 // since it may change the semantics of the code. 3359 return false; 3360 } 3361 3362 unsigned UseOpc = UseMI.getOpcode(); 3363 unsigned NewUseOpc = 0; 3364 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3365 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3366 bool Commute = false; 3367 switch (UseOpc) { 3368 default: return false; 3369 case ARM::SUBrr: 3370 case ARM::ADDrr: 3371 case ARM::ORRrr: 3372 case ARM::EORrr: 3373 case ARM::t2SUBrr: 3374 case ARM::t2ADDrr: 3375 case ARM::t2ORRrr: 3376 case ARM::t2EORrr: { 3377 Commute = UseMI.getOperand(2).getReg() != Reg; 3378 switch (UseOpc) { 3379 default: break; 3380 case ARM::ADDrr: 3381 case ARM::SUBrr: 3382 if (UseOpc == ARM::SUBrr && Commute) 3383 return false; 3384 3385 // ADD/SUB are special because they're essentially the same operation, so 3386 // we can handle a larger range of immediates. 3387 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3388 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3389 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3390 ImmVal = -ImmVal; 3391 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3392 } else 3393 return false; 3394 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3395 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3396 break; 3397 case ARM::ORRrr: 3398 case ARM::EORrr: 3399 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3400 return false; 3401 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3402 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3403 switch (UseOpc) { 3404 default: break; 3405 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3406 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3407 } 3408 break; 3409 case ARM::t2ADDrr: 3410 case ARM::t2SUBrr: { 3411 if (UseOpc == ARM::t2SUBrr && Commute) 3412 return false; 3413 3414 // ADD/SUB are special because they're essentially the same operation, so 3415 // we can handle a larger range of immediates. 3416 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3417 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3418 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3419 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3420 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3421 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3422 ImmVal = -ImmVal; 3423 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3424 } else 3425 return false; 3426 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3427 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3428 break; 3429 } 3430 case ARM::t2ORRrr: 3431 case ARM::t2EORrr: 3432 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3433 return false; 3434 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3435 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3436 switch (UseOpc) { 3437 default: break; 3438 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3439 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3440 } 3441 break; 3442 } 3443 } 3444 } 3445 3446 unsigned OpIdx = Commute ? 2 : 1; 3447 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3448 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3449 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3450 Register NewReg = MRI->createVirtualRegister(TRC); 3451 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3452 NewReg) 3453 .addReg(Reg1, getKillRegState(isKill)) 3454 .addImm(SOImmValV1) 3455 .add(predOps(ARMCC::AL)) 3456 .add(condCodeOp()); 3457 UseMI.setDesc(get(NewUseOpc)); 3458 UseMI.getOperand(1).setReg(NewReg); 3459 UseMI.getOperand(1).setIsKill(); 3460 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3461 DefMI.eraseFromParent(); 3462 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3463 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3464 // Then the below code will not be needed, as the input/output register 3465 // classes will be rgpr or gprSP. 3466 // For now, we fix the UseMI operand explicitly here: 3467 switch(NewUseOpc){ 3468 case ARM::t2ADDspImm: 3469 case ARM::t2SUBspImm: 3470 case ARM::t2ADDri: 3471 case ARM::t2SUBri: 3472 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); 3473 } 3474 return true; 3475 } 3476 3477 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3478 const MachineInstr &MI) { 3479 switch (MI.getOpcode()) { 3480 default: { 3481 const MCInstrDesc &Desc = MI.getDesc(); 3482 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3483 assert(UOps >= 0 && "bad # UOps"); 3484 return UOps; 3485 } 3486 3487 case ARM::LDRrs: 3488 case ARM::LDRBrs: 3489 case ARM::STRrs: 3490 case ARM::STRBrs: { 3491 unsigned ShOpVal = MI.getOperand(3).getImm(); 3492 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3493 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3494 if (!isSub && 3495 (ShImm == 0 || 3496 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3497 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3498 return 1; 3499 return 2; 3500 } 3501 3502 case ARM::LDRH: 3503 case ARM::STRH: { 3504 if (!MI.getOperand(2).getReg()) 3505 return 1; 3506 3507 unsigned ShOpVal = MI.getOperand(3).getImm(); 3508 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3509 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3510 if (!isSub && 3511 (ShImm == 0 || 3512 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3513 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3514 return 1; 3515 return 2; 3516 } 3517 3518 case ARM::LDRSB: 3519 case ARM::LDRSH: 3520 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3521 3522 case ARM::LDRSB_POST: 3523 case ARM::LDRSH_POST: { 3524 Register Rt = MI.getOperand(0).getReg(); 3525 Register Rm = MI.getOperand(3).getReg(); 3526 return (Rt == Rm) ? 4 : 3; 3527 } 3528 3529 case ARM::LDR_PRE_REG: 3530 case ARM::LDRB_PRE_REG: { 3531 Register Rt = MI.getOperand(0).getReg(); 3532 Register Rm = MI.getOperand(3).getReg(); 3533 if (Rt == Rm) 3534 return 3; 3535 unsigned ShOpVal = MI.getOperand(4).getImm(); 3536 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3537 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3538 if (!isSub && 3539 (ShImm == 0 || 3540 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3541 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3542 return 2; 3543 return 3; 3544 } 3545 3546 case ARM::STR_PRE_REG: 3547 case ARM::STRB_PRE_REG: { 3548 unsigned ShOpVal = MI.getOperand(4).getImm(); 3549 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3550 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3551 if (!isSub && 3552 (ShImm == 0 || 3553 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3554 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3555 return 2; 3556 return 3; 3557 } 3558 3559 case ARM::LDRH_PRE: 3560 case ARM::STRH_PRE: { 3561 Register Rt = MI.getOperand(0).getReg(); 3562 Register Rm = MI.getOperand(3).getReg(); 3563 if (!Rm) 3564 return 2; 3565 if (Rt == Rm) 3566 return 3; 3567 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3568 } 3569 3570 case ARM::LDR_POST_REG: 3571 case ARM::LDRB_POST_REG: 3572 case ARM::LDRH_POST: { 3573 Register Rt = MI.getOperand(0).getReg(); 3574 Register Rm = MI.getOperand(3).getReg(); 3575 return (Rt == Rm) ? 3 : 2; 3576 } 3577 3578 case ARM::LDR_PRE_IMM: 3579 case ARM::LDRB_PRE_IMM: 3580 case ARM::LDR_POST_IMM: 3581 case ARM::LDRB_POST_IMM: 3582 case ARM::STRB_POST_IMM: 3583 case ARM::STRB_POST_REG: 3584 case ARM::STRB_PRE_IMM: 3585 case ARM::STRH_POST: 3586 case ARM::STR_POST_IMM: 3587 case ARM::STR_POST_REG: 3588 case ARM::STR_PRE_IMM: 3589 return 2; 3590 3591 case ARM::LDRSB_PRE: 3592 case ARM::LDRSH_PRE: { 3593 Register Rm = MI.getOperand(3).getReg(); 3594 if (Rm == 0) 3595 return 3; 3596 Register Rt = MI.getOperand(0).getReg(); 3597 if (Rt == Rm) 3598 return 4; 3599 unsigned ShOpVal = MI.getOperand(4).getImm(); 3600 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3601 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3602 if (!isSub && 3603 (ShImm == 0 || 3604 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3605 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3606 return 3; 3607 return 4; 3608 } 3609 3610 case ARM::LDRD: { 3611 Register Rt = MI.getOperand(0).getReg(); 3612 Register Rn = MI.getOperand(2).getReg(); 3613 Register Rm = MI.getOperand(3).getReg(); 3614 if (Rm) 3615 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3616 : 3; 3617 return (Rt == Rn) ? 3 : 2; 3618 } 3619 3620 case ARM::STRD: { 3621 Register Rm = MI.getOperand(3).getReg(); 3622 if (Rm) 3623 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3624 : 3; 3625 return 2; 3626 } 3627 3628 case ARM::LDRD_POST: 3629 case ARM::t2LDRD_POST: 3630 return 3; 3631 3632 case ARM::STRD_POST: 3633 case ARM::t2STRD_POST: 3634 return 4; 3635 3636 case ARM::LDRD_PRE: { 3637 Register Rt = MI.getOperand(0).getReg(); 3638 Register Rn = MI.getOperand(3).getReg(); 3639 Register Rm = MI.getOperand(4).getReg(); 3640 if (Rm) 3641 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3642 : 4; 3643 return (Rt == Rn) ? 4 : 3; 3644 } 3645 3646 case ARM::t2LDRD_PRE: { 3647 Register Rt = MI.getOperand(0).getReg(); 3648 Register Rn = MI.getOperand(3).getReg(); 3649 return (Rt == Rn) ? 4 : 3; 3650 } 3651 3652 case ARM::STRD_PRE: { 3653 Register Rm = MI.getOperand(4).getReg(); 3654 if (Rm) 3655 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3656 : 4; 3657 return 3; 3658 } 3659 3660 case ARM::t2STRD_PRE: 3661 return 3; 3662 3663 case ARM::t2LDR_POST: 3664 case ARM::t2LDRB_POST: 3665 case ARM::t2LDRB_PRE: 3666 case ARM::t2LDRSBi12: 3667 case ARM::t2LDRSBi8: 3668 case ARM::t2LDRSBpci: 3669 case ARM::t2LDRSBs: 3670 case ARM::t2LDRH_POST: 3671 case ARM::t2LDRH_PRE: 3672 case ARM::t2LDRSBT: 3673 case ARM::t2LDRSB_POST: 3674 case ARM::t2LDRSB_PRE: 3675 case ARM::t2LDRSH_POST: 3676 case ARM::t2LDRSH_PRE: 3677 case ARM::t2LDRSHi12: 3678 case ARM::t2LDRSHi8: 3679 case ARM::t2LDRSHpci: 3680 case ARM::t2LDRSHs: 3681 return 2; 3682 3683 case ARM::t2LDRDi8: { 3684 Register Rt = MI.getOperand(0).getReg(); 3685 Register Rn = MI.getOperand(2).getReg(); 3686 return (Rt == Rn) ? 3 : 2; 3687 } 3688 3689 case ARM::t2STRB_POST: 3690 case ARM::t2STRB_PRE: 3691 case ARM::t2STRBs: 3692 case ARM::t2STRDi8: 3693 case ARM::t2STRH_POST: 3694 case ARM::t2STRH_PRE: 3695 case ARM::t2STRHs: 3696 case ARM::t2STR_POST: 3697 case ARM::t2STR_PRE: 3698 case ARM::t2STRs: 3699 return 2; 3700 } 3701 } 3702 3703 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3704 // can't be easily determined return 0 (missing MachineMemOperand). 3705 // 3706 // FIXME: The current MachineInstr design does not support relying on machine 3707 // mem operands to determine the width of a memory access. Instead, we expect 3708 // the target to provide this information based on the instruction opcode and 3709 // operands. However, using MachineMemOperand is the best solution now for 3710 // two reasons: 3711 // 3712 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3713 // operands. This is much more dangerous than using the MachineMemOperand 3714 // sizes because CodeGen passes can insert/remove optional machine operands. In 3715 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3716 // postRA passes as well. 3717 // 3718 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3719 // machine model that calls this should handle the unknown (zero size) case. 3720 // 3721 // Long term, we should require a target hook that verifies MachineMemOperand 3722 // sizes during MC lowering. That target hook should be local to MC lowering 3723 // because we can't ensure that it is aware of other MI forms. Doing this will 3724 // ensure that MachineMemOperands are correctly propagated through all passes. 3725 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3726 unsigned Size = 0; 3727 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3728 E = MI.memoperands_end(); 3729 I != E; ++I) { 3730 Size += (*I)->getSize().getValue(); 3731 } 3732 // FIXME: The scheduler currently can't handle values larger than 16. But 3733 // the values can actually go up to 32 for floating-point load/store 3734 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3735 // operations isn't right; we could end up with "extra" memory operands for 3736 // various reasons, like tail merge merging two memory operations. 3737 return std::min(Size / 4, 16U); 3738 } 3739 3740 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3741 unsigned NumRegs) { 3742 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3743 switch (Opc) { 3744 default: 3745 break; 3746 case ARM::VLDMDIA_UPD: 3747 case ARM::VLDMDDB_UPD: 3748 case ARM::VLDMSIA_UPD: 3749 case ARM::VLDMSDB_UPD: 3750 case ARM::VSTMDIA_UPD: 3751 case ARM::VSTMDDB_UPD: 3752 case ARM::VSTMSIA_UPD: 3753 case ARM::VSTMSDB_UPD: 3754 case ARM::LDMIA_UPD: 3755 case ARM::LDMDA_UPD: 3756 case ARM::LDMDB_UPD: 3757 case ARM::LDMIB_UPD: 3758 case ARM::STMIA_UPD: 3759 case ARM::STMDA_UPD: 3760 case ARM::STMDB_UPD: 3761 case ARM::STMIB_UPD: 3762 case ARM::tLDMIA_UPD: 3763 case ARM::tSTMIA_UPD: 3764 case ARM::t2LDMIA_UPD: 3765 case ARM::t2LDMDB_UPD: 3766 case ARM::t2STMIA_UPD: 3767 case ARM::t2STMDB_UPD: 3768 ++UOps; // One for base register writeback. 3769 break; 3770 case ARM::LDMIA_RET: 3771 case ARM::tPOP_RET: 3772 case ARM::t2LDMIA_RET: 3773 UOps += 2; // One for base reg wb, one for write to pc. 3774 break; 3775 } 3776 return UOps; 3777 } 3778 3779 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3780 const MachineInstr &MI) const { 3781 if (!ItinData || ItinData->isEmpty()) 3782 return 1; 3783 3784 const MCInstrDesc &Desc = MI.getDesc(); 3785 unsigned Class = Desc.getSchedClass(); 3786 int ItinUOps = ItinData->getNumMicroOps(Class); 3787 if (ItinUOps >= 0) { 3788 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3789 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3790 3791 return ItinUOps; 3792 } 3793 3794 unsigned Opc = MI.getOpcode(); 3795 switch (Opc) { 3796 default: 3797 llvm_unreachable("Unexpected multi-uops instruction!"); 3798 case ARM::VLDMQIA: 3799 case ARM::VSTMQIA: 3800 return 2; 3801 3802 // The number of uOps for load / store multiple are determined by the number 3803 // registers. 3804 // 3805 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3806 // same cycle. The scheduling for the first load / store must be done 3807 // separately by assuming the address is not 64-bit aligned. 3808 // 3809 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3810 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3811 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3812 case ARM::VLDMDIA: 3813 case ARM::VLDMDIA_UPD: 3814 case ARM::VLDMDDB_UPD: 3815 case ARM::VLDMSIA: 3816 case ARM::VLDMSIA_UPD: 3817 case ARM::VLDMSDB_UPD: 3818 case ARM::VSTMDIA: 3819 case ARM::VSTMDIA_UPD: 3820 case ARM::VSTMDDB_UPD: 3821 case ARM::VSTMSIA: 3822 case ARM::VSTMSIA_UPD: 3823 case ARM::VSTMSDB_UPD: { 3824 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3825 return (NumRegs / 2) + (NumRegs % 2) + 1; 3826 } 3827 3828 case ARM::LDMIA_RET: 3829 case ARM::LDMIA: 3830 case ARM::LDMDA: 3831 case ARM::LDMDB: 3832 case ARM::LDMIB: 3833 case ARM::LDMIA_UPD: 3834 case ARM::LDMDA_UPD: 3835 case ARM::LDMDB_UPD: 3836 case ARM::LDMIB_UPD: 3837 case ARM::STMIA: 3838 case ARM::STMDA: 3839 case ARM::STMDB: 3840 case ARM::STMIB: 3841 case ARM::STMIA_UPD: 3842 case ARM::STMDA_UPD: 3843 case ARM::STMDB_UPD: 3844 case ARM::STMIB_UPD: 3845 case ARM::tLDMIA: 3846 case ARM::tLDMIA_UPD: 3847 case ARM::tSTMIA_UPD: 3848 case ARM::tPOP_RET: 3849 case ARM::tPOP: 3850 case ARM::tPUSH: 3851 case ARM::t2LDMIA_RET: 3852 case ARM::t2LDMIA: 3853 case ARM::t2LDMDB: 3854 case ARM::t2LDMIA_UPD: 3855 case ARM::t2LDMDB_UPD: 3856 case ARM::t2STMIA: 3857 case ARM::t2STMDB: 3858 case ARM::t2STMIA_UPD: 3859 case ARM::t2STMDB_UPD: { 3860 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3861 switch (Subtarget.getLdStMultipleTiming()) { 3862 case ARMSubtarget::SingleIssuePlusExtras: 3863 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3864 case ARMSubtarget::SingleIssue: 3865 // Assume the worst. 3866 return NumRegs; 3867 case ARMSubtarget::DoubleIssue: { 3868 if (NumRegs < 4) 3869 return 2; 3870 // 4 registers would be issued: 2, 2. 3871 // 5 registers would be issued: 2, 2, 1. 3872 unsigned UOps = (NumRegs / 2); 3873 if (NumRegs % 2) 3874 ++UOps; 3875 return UOps; 3876 } 3877 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3878 unsigned UOps = (NumRegs / 2); 3879 // If there are odd number of registers or if it's not 64-bit aligned, 3880 // then it takes an extra AGU (Address Generation Unit) cycle. 3881 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3882 (*MI.memoperands_begin())->getAlign() < Align(8)) 3883 ++UOps; 3884 return UOps; 3885 } 3886 } 3887 } 3888 } 3889 llvm_unreachable("Didn't find the number of microops"); 3890 } 3891 3892 std::optional<unsigned> 3893 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3894 const MCInstrDesc &DefMCID, unsigned DefClass, 3895 unsigned DefIdx, unsigned DefAlign) const { 3896 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3897 if (RegNo <= 0) 3898 // Def is the address writeback. 3899 return ItinData->getOperandCycle(DefClass, DefIdx); 3900 3901 unsigned DefCycle; 3902 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3903 // (regno / 2) + (regno % 2) + 1 3904 DefCycle = RegNo / 2 + 1; 3905 if (RegNo % 2) 3906 ++DefCycle; 3907 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3908 DefCycle = RegNo; 3909 bool isSLoad = false; 3910 3911 switch (DefMCID.getOpcode()) { 3912 default: break; 3913 case ARM::VLDMSIA: 3914 case ARM::VLDMSIA_UPD: 3915 case ARM::VLDMSDB_UPD: 3916 isSLoad = true; 3917 break; 3918 } 3919 3920 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3921 // then it takes an extra cycle. 3922 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3923 ++DefCycle; 3924 } else { 3925 // Assume the worst. 3926 DefCycle = RegNo + 2; 3927 } 3928 3929 return DefCycle; 3930 } 3931 3932 std::optional<unsigned> 3933 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3934 const MCInstrDesc &DefMCID, unsigned DefClass, 3935 unsigned DefIdx, unsigned DefAlign) const { 3936 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3937 if (RegNo <= 0) 3938 // Def is the address writeback. 3939 return ItinData->getOperandCycle(DefClass, DefIdx); 3940 3941 unsigned DefCycle; 3942 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3943 // 4 registers would be issued: 1, 2, 1. 3944 // 5 registers would be issued: 1, 2, 2. 3945 DefCycle = RegNo / 2; 3946 if (DefCycle < 1) 3947 DefCycle = 1; 3948 // Result latency is issue cycle + 2: E2. 3949 DefCycle += 2; 3950 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3951 DefCycle = (RegNo / 2); 3952 // If there are odd number of registers or if it's not 64-bit aligned, 3953 // then it takes an extra AGU (Address Generation Unit) cycle. 3954 if ((RegNo % 2) || DefAlign < 8) 3955 ++DefCycle; 3956 // Result latency is AGU cycles + 2. 3957 DefCycle += 2; 3958 } else { 3959 // Assume the worst. 3960 DefCycle = RegNo + 2; 3961 } 3962 3963 return DefCycle; 3964 } 3965 3966 std::optional<unsigned> 3967 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3968 const MCInstrDesc &UseMCID, unsigned UseClass, 3969 unsigned UseIdx, unsigned UseAlign) const { 3970 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3971 if (RegNo <= 0) 3972 return ItinData->getOperandCycle(UseClass, UseIdx); 3973 3974 unsigned UseCycle; 3975 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3976 // (regno / 2) + (regno % 2) + 1 3977 UseCycle = RegNo / 2 + 1; 3978 if (RegNo % 2) 3979 ++UseCycle; 3980 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3981 UseCycle = RegNo; 3982 bool isSStore = false; 3983 3984 switch (UseMCID.getOpcode()) { 3985 default: break; 3986 case ARM::VSTMSIA: 3987 case ARM::VSTMSIA_UPD: 3988 case ARM::VSTMSDB_UPD: 3989 isSStore = true; 3990 break; 3991 } 3992 3993 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3994 // then it takes an extra cycle. 3995 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3996 ++UseCycle; 3997 } else { 3998 // Assume the worst. 3999 UseCycle = RegNo + 2; 4000 } 4001 4002 return UseCycle; 4003 } 4004 4005 std::optional<unsigned> 4006 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 4007 const MCInstrDesc &UseMCID, unsigned UseClass, 4008 unsigned UseIdx, unsigned UseAlign) const { 4009 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 4010 if (RegNo <= 0) 4011 return ItinData->getOperandCycle(UseClass, UseIdx); 4012 4013 unsigned UseCycle; 4014 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 4015 UseCycle = RegNo / 2; 4016 if (UseCycle < 2) 4017 UseCycle = 2; 4018 // Read in E3. 4019 UseCycle += 2; 4020 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 4021 UseCycle = (RegNo / 2); 4022 // If there are odd number of registers or if it's not 64-bit aligned, 4023 // then it takes an extra AGU (Address Generation Unit) cycle. 4024 if ((RegNo % 2) || UseAlign < 8) 4025 ++UseCycle; 4026 } else { 4027 // Assume the worst. 4028 UseCycle = 1; 4029 } 4030 return UseCycle; 4031 } 4032 4033 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency( 4034 const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, 4035 unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID, 4036 unsigned UseIdx, unsigned UseAlign) const { 4037 unsigned DefClass = DefMCID.getSchedClass(); 4038 unsigned UseClass = UseMCID.getSchedClass(); 4039 4040 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 4041 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 4042 4043 // This may be a def / use of a variable_ops instruction, the operand 4044 // latency might be determinable dynamically. Let the target try to 4045 // figure it out. 4046 std::optional<unsigned> DefCycle; 4047 bool LdmBypass = false; 4048 switch (DefMCID.getOpcode()) { 4049 default: 4050 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4051 break; 4052 4053 case ARM::VLDMDIA: 4054 case ARM::VLDMDIA_UPD: 4055 case ARM::VLDMDDB_UPD: 4056 case ARM::VLDMSIA: 4057 case ARM::VLDMSIA_UPD: 4058 case ARM::VLDMSDB_UPD: 4059 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4060 break; 4061 4062 case ARM::LDMIA_RET: 4063 case ARM::LDMIA: 4064 case ARM::LDMDA: 4065 case ARM::LDMDB: 4066 case ARM::LDMIB: 4067 case ARM::LDMIA_UPD: 4068 case ARM::LDMDA_UPD: 4069 case ARM::LDMDB_UPD: 4070 case ARM::LDMIB_UPD: 4071 case ARM::tLDMIA: 4072 case ARM::tLDMIA_UPD: 4073 case ARM::tPUSH: 4074 case ARM::t2LDMIA_RET: 4075 case ARM::t2LDMIA: 4076 case ARM::t2LDMDB: 4077 case ARM::t2LDMIA_UPD: 4078 case ARM::t2LDMDB_UPD: 4079 LdmBypass = true; 4080 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4081 break; 4082 } 4083 4084 if (!DefCycle) 4085 // We can't seem to determine the result latency of the def, assume it's 2. 4086 DefCycle = 2; 4087 4088 std::optional<unsigned> UseCycle; 4089 switch (UseMCID.getOpcode()) { 4090 default: 4091 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 4092 break; 4093 4094 case ARM::VSTMDIA: 4095 case ARM::VSTMDIA_UPD: 4096 case ARM::VSTMDDB_UPD: 4097 case ARM::VSTMSIA: 4098 case ARM::VSTMSIA_UPD: 4099 case ARM::VSTMSDB_UPD: 4100 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4101 break; 4102 4103 case ARM::STMIA: 4104 case ARM::STMDA: 4105 case ARM::STMDB: 4106 case ARM::STMIB: 4107 case ARM::STMIA_UPD: 4108 case ARM::STMDA_UPD: 4109 case ARM::STMDB_UPD: 4110 case ARM::STMIB_UPD: 4111 case ARM::tSTMIA_UPD: 4112 case ARM::tPOP_RET: 4113 case ARM::tPOP: 4114 case ARM::t2STMIA: 4115 case ARM::t2STMDB: 4116 case ARM::t2STMIA_UPD: 4117 case ARM::t2STMDB_UPD: 4118 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4119 break; 4120 } 4121 4122 if (!UseCycle) 4123 // Assume it's read in the first stage. 4124 UseCycle = 1; 4125 4126 if (UseCycle > *DefCycle + 1) 4127 return std::nullopt; 4128 4129 UseCycle = *DefCycle - *UseCycle + 1; 4130 if (UseCycle > 0u) { 4131 if (LdmBypass) { 4132 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4133 // first def operand. 4134 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4135 UseClass, UseIdx)) 4136 UseCycle = *UseCycle - 1; 4137 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4138 UseClass, UseIdx)) { 4139 UseCycle = *UseCycle - 1; 4140 } 4141 } 4142 4143 return UseCycle; 4144 } 4145 4146 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4147 const MachineInstr *MI, unsigned Reg, 4148 unsigned &DefIdx, unsigned &Dist) { 4149 Dist = 0; 4150 4151 MachineBasicBlock::const_iterator I = MI; ++I; 4152 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4153 assert(II->isInsideBundle() && "Empty bundle?"); 4154 4155 int Idx = -1; 4156 while (II->isInsideBundle()) { 4157 Idx = II->findRegisterDefOperandIdx(Reg, TRI, false, true); 4158 if (Idx != -1) 4159 break; 4160 --II; 4161 ++Dist; 4162 } 4163 4164 assert(Idx != -1 && "Cannot find bundled definition!"); 4165 DefIdx = Idx; 4166 return &*II; 4167 } 4168 4169 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4170 const MachineInstr &MI, unsigned Reg, 4171 unsigned &UseIdx, unsigned &Dist) { 4172 Dist = 0; 4173 4174 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4175 assert(II->isInsideBundle() && "Empty bundle?"); 4176 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4177 4178 // FIXME: This doesn't properly handle multiple uses. 4179 int Idx = -1; 4180 while (II != E && II->isInsideBundle()) { 4181 Idx = II->findRegisterUseOperandIdx(Reg, TRI, false); 4182 if (Idx != -1) 4183 break; 4184 if (II->getOpcode() != ARM::t2IT) 4185 ++Dist; 4186 ++II; 4187 } 4188 4189 if (Idx == -1) { 4190 Dist = 0; 4191 return nullptr; 4192 } 4193 4194 UseIdx = Idx; 4195 return &*II; 4196 } 4197 4198 /// Return the number of cycles to add to (or subtract from) the static 4199 /// itinerary based on the def opcode and alignment. The caller will ensure that 4200 /// adjusted latency is at least one cycle. 4201 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4202 const MachineInstr &DefMI, 4203 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4204 int Adjust = 0; 4205 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4206 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4207 // variants are one cycle cheaper. 4208 switch (DefMCID.getOpcode()) { 4209 default: break; 4210 case ARM::LDRrs: 4211 case ARM::LDRBrs: { 4212 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4213 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4214 if (ShImm == 0 || 4215 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4216 --Adjust; 4217 break; 4218 } 4219 case ARM::t2LDRs: 4220 case ARM::t2LDRBs: 4221 case ARM::t2LDRHs: 4222 case ARM::t2LDRSHs: { 4223 // Thumb2 mode: lsl only. 4224 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4225 if (ShAmt == 0 || ShAmt == 2) 4226 --Adjust; 4227 break; 4228 } 4229 } 4230 } else if (Subtarget.isSwift()) { 4231 // FIXME: Properly handle all of the latency adjustments for address 4232 // writeback. 4233 switch (DefMCID.getOpcode()) { 4234 default: break; 4235 case ARM::LDRrs: 4236 case ARM::LDRBrs: { 4237 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4238 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4239 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4240 if (!isSub && 4241 (ShImm == 0 || 4242 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4243 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4244 Adjust -= 2; 4245 else if (!isSub && 4246 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4247 --Adjust; 4248 break; 4249 } 4250 case ARM::t2LDRs: 4251 case ARM::t2LDRBs: 4252 case ARM::t2LDRHs: 4253 case ARM::t2LDRSHs: { 4254 // Thumb2 mode: lsl only. 4255 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4256 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4257 Adjust -= 2; 4258 break; 4259 } 4260 } 4261 } 4262 4263 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4264 switch (DefMCID.getOpcode()) { 4265 default: break; 4266 case ARM::VLD1q8: 4267 case ARM::VLD1q16: 4268 case ARM::VLD1q32: 4269 case ARM::VLD1q64: 4270 case ARM::VLD1q8wb_fixed: 4271 case ARM::VLD1q16wb_fixed: 4272 case ARM::VLD1q32wb_fixed: 4273 case ARM::VLD1q64wb_fixed: 4274 case ARM::VLD1q8wb_register: 4275 case ARM::VLD1q16wb_register: 4276 case ARM::VLD1q32wb_register: 4277 case ARM::VLD1q64wb_register: 4278 case ARM::VLD2d8: 4279 case ARM::VLD2d16: 4280 case ARM::VLD2d32: 4281 case ARM::VLD2q8: 4282 case ARM::VLD2q16: 4283 case ARM::VLD2q32: 4284 case ARM::VLD2d8wb_fixed: 4285 case ARM::VLD2d16wb_fixed: 4286 case ARM::VLD2d32wb_fixed: 4287 case ARM::VLD2q8wb_fixed: 4288 case ARM::VLD2q16wb_fixed: 4289 case ARM::VLD2q32wb_fixed: 4290 case ARM::VLD2d8wb_register: 4291 case ARM::VLD2d16wb_register: 4292 case ARM::VLD2d32wb_register: 4293 case ARM::VLD2q8wb_register: 4294 case ARM::VLD2q16wb_register: 4295 case ARM::VLD2q32wb_register: 4296 case ARM::VLD3d8: 4297 case ARM::VLD3d16: 4298 case ARM::VLD3d32: 4299 case ARM::VLD1d64T: 4300 case ARM::VLD3d8_UPD: 4301 case ARM::VLD3d16_UPD: 4302 case ARM::VLD3d32_UPD: 4303 case ARM::VLD1d64Twb_fixed: 4304 case ARM::VLD1d64Twb_register: 4305 case ARM::VLD3q8_UPD: 4306 case ARM::VLD3q16_UPD: 4307 case ARM::VLD3q32_UPD: 4308 case ARM::VLD4d8: 4309 case ARM::VLD4d16: 4310 case ARM::VLD4d32: 4311 case ARM::VLD1d64Q: 4312 case ARM::VLD4d8_UPD: 4313 case ARM::VLD4d16_UPD: 4314 case ARM::VLD4d32_UPD: 4315 case ARM::VLD1d64Qwb_fixed: 4316 case ARM::VLD1d64Qwb_register: 4317 case ARM::VLD4q8_UPD: 4318 case ARM::VLD4q16_UPD: 4319 case ARM::VLD4q32_UPD: 4320 case ARM::VLD1DUPq8: 4321 case ARM::VLD1DUPq16: 4322 case ARM::VLD1DUPq32: 4323 case ARM::VLD1DUPq8wb_fixed: 4324 case ARM::VLD1DUPq16wb_fixed: 4325 case ARM::VLD1DUPq32wb_fixed: 4326 case ARM::VLD1DUPq8wb_register: 4327 case ARM::VLD1DUPq16wb_register: 4328 case ARM::VLD1DUPq32wb_register: 4329 case ARM::VLD2DUPd8: 4330 case ARM::VLD2DUPd16: 4331 case ARM::VLD2DUPd32: 4332 case ARM::VLD2DUPd8wb_fixed: 4333 case ARM::VLD2DUPd16wb_fixed: 4334 case ARM::VLD2DUPd32wb_fixed: 4335 case ARM::VLD2DUPd8wb_register: 4336 case ARM::VLD2DUPd16wb_register: 4337 case ARM::VLD2DUPd32wb_register: 4338 case ARM::VLD4DUPd8: 4339 case ARM::VLD4DUPd16: 4340 case ARM::VLD4DUPd32: 4341 case ARM::VLD4DUPd8_UPD: 4342 case ARM::VLD4DUPd16_UPD: 4343 case ARM::VLD4DUPd32_UPD: 4344 case ARM::VLD1LNd8: 4345 case ARM::VLD1LNd16: 4346 case ARM::VLD1LNd32: 4347 case ARM::VLD1LNd8_UPD: 4348 case ARM::VLD1LNd16_UPD: 4349 case ARM::VLD1LNd32_UPD: 4350 case ARM::VLD2LNd8: 4351 case ARM::VLD2LNd16: 4352 case ARM::VLD2LNd32: 4353 case ARM::VLD2LNq16: 4354 case ARM::VLD2LNq32: 4355 case ARM::VLD2LNd8_UPD: 4356 case ARM::VLD2LNd16_UPD: 4357 case ARM::VLD2LNd32_UPD: 4358 case ARM::VLD2LNq16_UPD: 4359 case ARM::VLD2LNq32_UPD: 4360 case ARM::VLD4LNd8: 4361 case ARM::VLD4LNd16: 4362 case ARM::VLD4LNd32: 4363 case ARM::VLD4LNq16: 4364 case ARM::VLD4LNq32: 4365 case ARM::VLD4LNd8_UPD: 4366 case ARM::VLD4LNd16_UPD: 4367 case ARM::VLD4LNd32_UPD: 4368 case ARM::VLD4LNq16_UPD: 4369 case ARM::VLD4LNq32_UPD: 4370 // If the address is not 64-bit aligned, the latencies of these 4371 // instructions increases by one. 4372 ++Adjust; 4373 break; 4374 } 4375 } 4376 return Adjust; 4377 } 4378 4379 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency( 4380 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4381 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { 4382 // No operand latency. The caller may fall back to getInstrLatency. 4383 if (!ItinData || ItinData->isEmpty()) 4384 return std::nullopt; 4385 4386 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4387 Register Reg = DefMO.getReg(); 4388 4389 const MachineInstr *ResolvedDefMI = &DefMI; 4390 unsigned DefAdj = 0; 4391 if (DefMI.isBundle()) 4392 ResolvedDefMI = 4393 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4394 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4395 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4396 return 1; 4397 } 4398 4399 const MachineInstr *ResolvedUseMI = &UseMI; 4400 unsigned UseAdj = 0; 4401 if (UseMI.isBundle()) { 4402 ResolvedUseMI = 4403 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4404 if (!ResolvedUseMI) 4405 return std::nullopt; 4406 } 4407 4408 return getOperandLatencyImpl( 4409 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4410 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4411 } 4412 4413 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatencyImpl( 4414 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4415 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4416 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4417 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4418 if (Reg == ARM::CPSR) { 4419 if (DefMI.getOpcode() == ARM::FMSTAT) { 4420 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4421 return Subtarget.isLikeA9() ? 1 : 20; 4422 } 4423 4424 // CPSR set and branch can be paired in the same cycle. 4425 if (UseMI.isBranch()) 4426 return 0; 4427 4428 // Otherwise it takes the instruction latency (generally one). 4429 unsigned Latency = getInstrLatency(ItinData, DefMI); 4430 4431 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4432 // its uses. Instructions which are otherwise scheduled between them may 4433 // incur a code size penalty (not able to use the CPSR setting 16-bit 4434 // instructions). 4435 if (Latency > 0 && Subtarget.isThumb2()) { 4436 const MachineFunction *MF = DefMI.getParent()->getParent(); 4437 // FIXME: Use Function::hasOptSize(). 4438 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4439 --Latency; 4440 } 4441 return Latency; 4442 } 4443 4444 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4445 return std::nullopt; 4446 4447 unsigned DefAlign = DefMI.hasOneMemOperand() 4448 ? (*DefMI.memoperands_begin())->getAlign().value() 4449 : 0; 4450 unsigned UseAlign = UseMI.hasOneMemOperand() 4451 ? (*UseMI.memoperands_begin())->getAlign().value() 4452 : 0; 4453 4454 // Get the itinerary's latency if possible, and handle variable_ops. 4455 std::optional<unsigned> Latency = getOperandLatency( 4456 ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign); 4457 // Unable to find operand latency. The caller may resort to getInstrLatency. 4458 if (!Latency) 4459 return std::nullopt; 4460 4461 // Adjust for IT block position. 4462 int Adj = DefAdj + UseAdj; 4463 4464 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4465 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4466 if (Adj >= 0 || (int)*Latency > -Adj) { 4467 return *Latency + Adj; 4468 } 4469 // Return the itinerary latency, which may be zero but not less than zero. 4470 return Latency; 4471 } 4472 4473 std::optional<unsigned> 4474 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4475 SDNode *DefNode, unsigned DefIdx, 4476 SDNode *UseNode, unsigned UseIdx) const { 4477 if (!DefNode->isMachineOpcode()) 4478 return 1; 4479 4480 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4481 4482 if (isZeroCost(DefMCID.Opcode)) 4483 return 0; 4484 4485 if (!ItinData || ItinData->isEmpty()) 4486 return DefMCID.mayLoad() ? 3 : 1; 4487 4488 if (!UseNode->isMachineOpcode()) { 4489 std::optional<unsigned> Latency = 4490 ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4491 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4492 int Threshold = 1 + Adj; 4493 return !Latency || Latency <= (unsigned)Threshold ? 1 : *Latency - Adj; 4494 } 4495 4496 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4497 auto *DefMN = cast<MachineSDNode>(DefNode); 4498 unsigned DefAlign = !DefMN->memoperands_empty() 4499 ? (*DefMN->memoperands_begin())->getAlign().value() 4500 : 0; 4501 auto *UseMN = cast<MachineSDNode>(UseNode); 4502 unsigned UseAlign = !UseMN->memoperands_empty() 4503 ? (*UseMN->memoperands_begin())->getAlign().value() 4504 : 0; 4505 std::optional<unsigned> Latency = getOperandLatency( 4506 ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign); 4507 if (!Latency) 4508 return std::nullopt; 4509 4510 if (Latency > 1U && 4511 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4512 Subtarget.isCortexA7())) { 4513 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4514 // variants are one cycle cheaper. 4515 switch (DefMCID.getOpcode()) { 4516 default: break; 4517 case ARM::LDRrs: 4518 case ARM::LDRBrs: { 4519 unsigned ShOpVal = DefNode->getConstantOperandVal(2); 4520 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4521 if (ShImm == 0 || 4522 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4523 Latency = *Latency - 1; 4524 break; 4525 } 4526 case ARM::t2LDRs: 4527 case ARM::t2LDRBs: 4528 case ARM::t2LDRHs: 4529 case ARM::t2LDRSHs: { 4530 // Thumb2 mode: lsl only. 4531 unsigned ShAmt = DefNode->getConstantOperandVal(2); 4532 if (ShAmt == 0 || ShAmt == 2) 4533 Latency = *Latency - 1; 4534 break; 4535 } 4536 } 4537 } else if (DefIdx == 0 && Latency > 2U && Subtarget.isSwift()) { 4538 // FIXME: Properly handle all of the latency adjustments for address 4539 // writeback. 4540 switch (DefMCID.getOpcode()) { 4541 default: break; 4542 case ARM::LDRrs: 4543 case ARM::LDRBrs: { 4544 unsigned ShOpVal = DefNode->getConstantOperandVal(2); 4545 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4546 if (ShImm == 0 || 4547 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4548 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4549 Latency = *Latency - 2; 4550 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4551 Latency = *Latency - 1; 4552 break; 4553 } 4554 case ARM::t2LDRs: 4555 case ARM::t2LDRBs: 4556 case ARM::t2LDRHs: 4557 case ARM::t2LDRSHs: 4558 // Thumb2 mode: lsl 0-3 only. 4559 Latency = *Latency - 2; 4560 break; 4561 } 4562 } 4563 4564 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4565 switch (DefMCID.getOpcode()) { 4566 default: break; 4567 case ARM::VLD1q8: 4568 case ARM::VLD1q16: 4569 case ARM::VLD1q32: 4570 case ARM::VLD1q64: 4571 case ARM::VLD1q8wb_register: 4572 case ARM::VLD1q16wb_register: 4573 case ARM::VLD1q32wb_register: 4574 case ARM::VLD1q64wb_register: 4575 case ARM::VLD1q8wb_fixed: 4576 case ARM::VLD1q16wb_fixed: 4577 case ARM::VLD1q32wb_fixed: 4578 case ARM::VLD1q64wb_fixed: 4579 case ARM::VLD2d8: 4580 case ARM::VLD2d16: 4581 case ARM::VLD2d32: 4582 case ARM::VLD2q8Pseudo: 4583 case ARM::VLD2q16Pseudo: 4584 case ARM::VLD2q32Pseudo: 4585 case ARM::VLD2d8wb_fixed: 4586 case ARM::VLD2d16wb_fixed: 4587 case ARM::VLD2d32wb_fixed: 4588 case ARM::VLD2q8PseudoWB_fixed: 4589 case ARM::VLD2q16PseudoWB_fixed: 4590 case ARM::VLD2q32PseudoWB_fixed: 4591 case ARM::VLD2d8wb_register: 4592 case ARM::VLD2d16wb_register: 4593 case ARM::VLD2d32wb_register: 4594 case ARM::VLD2q8PseudoWB_register: 4595 case ARM::VLD2q16PseudoWB_register: 4596 case ARM::VLD2q32PseudoWB_register: 4597 case ARM::VLD3d8Pseudo: 4598 case ARM::VLD3d16Pseudo: 4599 case ARM::VLD3d32Pseudo: 4600 case ARM::VLD1d8TPseudo: 4601 case ARM::VLD1d16TPseudo: 4602 case ARM::VLD1d32TPseudo: 4603 case ARM::VLD1d64TPseudo: 4604 case ARM::VLD1d64TPseudoWB_fixed: 4605 case ARM::VLD1d64TPseudoWB_register: 4606 case ARM::VLD3d8Pseudo_UPD: 4607 case ARM::VLD3d16Pseudo_UPD: 4608 case ARM::VLD3d32Pseudo_UPD: 4609 case ARM::VLD3q8Pseudo_UPD: 4610 case ARM::VLD3q16Pseudo_UPD: 4611 case ARM::VLD3q32Pseudo_UPD: 4612 case ARM::VLD3q8oddPseudo: 4613 case ARM::VLD3q16oddPseudo: 4614 case ARM::VLD3q32oddPseudo: 4615 case ARM::VLD3q8oddPseudo_UPD: 4616 case ARM::VLD3q16oddPseudo_UPD: 4617 case ARM::VLD3q32oddPseudo_UPD: 4618 case ARM::VLD4d8Pseudo: 4619 case ARM::VLD4d16Pseudo: 4620 case ARM::VLD4d32Pseudo: 4621 case ARM::VLD1d8QPseudo: 4622 case ARM::VLD1d16QPseudo: 4623 case ARM::VLD1d32QPseudo: 4624 case ARM::VLD1d64QPseudo: 4625 case ARM::VLD1d64QPseudoWB_fixed: 4626 case ARM::VLD1d64QPseudoWB_register: 4627 case ARM::VLD1q8HighQPseudo: 4628 case ARM::VLD1q8LowQPseudo_UPD: 4629 case ARM::VLD1q8HighTPseudo: 4630 case ARM::VLD1q8LowTPseudo_UPD: 4631 case ARM::VLD1q16HighQPseudo: 4632 case ARM::VLD1q16LowQPseudo_UPD: 4633 case ARM::VLD1q16HighTPseudo: 4634 case ARM::VLD1q16LowTPseudo_UPD: 4635 case ARM::VLD1q32HighQPseudo: 4636 case ARM::VLD1q32LowQPseudo_UPD: 4637 case ARM::VLD1q32HighTPseudo: 4638 case ARM::VLD1q32LowTPseudo_UPD: 4639 case ARM::VLD1q64HighQPseudo: 4640 case ARM::VLD1q64LowQPseudo_UPD: 4641 case ARM::VLD1q64HighTPseudo: 4642 case ARM::VLD1q64LowTPseudo_UPD: 4643 case ARM::VLD4d8Pseudo_UPD: 4644 case ARM::VLD4d16Pseudo_UPD: 4645 case ARM::VLD4d32Pseudo_UPD: 4646 case ARM::VLD4q8Pseudo_UPD: 4647 case ARM::VLD4q16Pseudo_UPD: 4648 case ARM::VLD4q32Pseudo_UPD: 4649 case ARM::VLD4q8oddPseudo: 4650 case ARM::VLD4q16oddPseudo: 4651 case ARM::VLD4q32oddPseudo: 4652 case ARM::VLD4q8oddPseudo_UPD: 4653 case ARM::VLD4q16oddPseudo_UPD: 4654 case ARM::VLD4q32oddPseudo_UPD: 4655 case ARM::VLD1DUPq8: 4656 case ARM::VLD1DUPq16: 4657 case ARM::VLD1DUPq32: 4658 case ARM::VLD1DUPq8wb_fixed: 4659 case ARM::VLD1DUPq16wb_fixed: 4660 case ARM::VLD1DUPq32wb_fixed: 4661 case ARM::VLD1DUPq8wb_register: 4662 case ARM::VLD1DUPq16wb_register: 4663 case ARM::VLD1DUPq32wb_register: 4664 case ARM::VLD2DUPd8: 4665 case ARM::VLD2DUPd16: 4666 case ARM::VLD2DUPd32: 4667 case ARM::VLD2DUPd8wb_fixed: 4668 case ARM::VLD2DUPd16wb_fixed: 4669 case ARM::VLD2DUPd32wb_fixed: 4670 case ARM::VLD2DUPd8wb_register: 4671 case ARM::VLD2DUPd16wb_register: 4672 case ARM::VLD2DUPd32wb_register: 4673 case ARM::VLD2DUPq8EvenPseudo: 4674 case ARM::VLD2DUPq8OddPseudo: 4675 case ARM::VLD2DUPq16EvenPseudo: 4676 case ARM::VLD2DUPq16OddPseudo: 4677 case ARM::VLD2DUPq32EvenPseudo: 4678 case ARM::VLD2DUPq32OddPseudo: 4679 case ARM::VLD3DUPq8EvenPseudo: 4680 case ARM::VLD3DUPq8OddPseudo: 4681 case ARM::VLD3DUPq16EvenPseudo: 4682 case ARM::VLD3DUPq16OddPseudo: 4683 case ARM::VLD3DUPq32EvenPseudo: 4684 case ARM::VLD3DUPq32OddPseudo: 4685 case ARM::VLD4DUPd8Pseudo: 4686 case ARM::VLD4DUPd16Pseudo: 4687 case ARM::VLD4DUPd32Pseudo: 4688 case ARM::VLD4DUPd8Pseudo_UPD: 4689 case ARM::VLD4DUPd16Pseudo_UPD: 4690 case ARM::VLD4DUPd32Pseudo_UPD: 4691 case ARM::VLD4DUPq8EvenPseudo: 4692 case ARM::VLD4DUPq8OddPseudo: 4693 case ARM::VLD4DUPq16EvenPseudo: 4694 case ARM::VLD4DUPq16OddPseudo: 4695 case ARM::VLD4DUPq32EvenPseudo: 4696 case ARM::VLD4DUPq32OddPseudo: 4697 case ARM::VLD1LNq8Pseudo: 4698 case ARM::VLD1LNq16Pseudo: 4699 case ARM::VLD1LNq32Pseudo: 4700 case ARM::VLD1LNq8Pseudo_UPD: 4701 case ARM::VLD1LNq16Pseudo_UPD: 4702 case ARM::VLD1LNq32Pseudo_UPD: 4703 case ARM::VLD2LNd8Pseudo: 4704 case ARM::VLD2LNd16Pseudo: 4705 case ARM::VLD2LNd32Pseudo: 4706 case ARM::VLD2LNq16Pseudo: 4707 case ARM::VLD2LNq32Pseudo: 4708 case ARM::VLD2LNd8Pseudo_UPD: 4709 case ARM::VLD2LNd16Pseudo_UPD: 4710 case ARM::VLD2LNd32Pseudo_UPD: 4711 case ARM::VLD2LNq16Pseudo_UPD: 4712 case ARM::VLD2LNq32Pseudo_UPD: 4713 case ARM::VLD4LNd8Pseudo: 4714 case ARM::VLD4LNd16Pseudo: 4715 case ARM::VLD4LNd32Pseudo: 4716 case ARM::VLD4LNq16Pseudo: 4717 case ARM::VLD4LNq32Pseudo: 4718 case ARM::VLD4LNd8Pseudo_UPD: 4719 case ARM::VLD4LNd16Pseudo_UPD: 4720 case ARM::VLD4LNd32Pseudo_UPD: 4721 case ARM::VLD4LNq16Pseudo_UPD: 4722 case ARM::VLD4LNq32Pseudo_UPD: 4723 // If the address is not 64-bit aligned, the latencies of these 4724 // instructions increases by one. 4725 Latency = *Latency + 1; 4726 break; 4727 } 4728 4729 return Latency; 4730 } 4731 4732 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4733 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4734 MI.isImplicitDef()) 4735 return 0; 4736 4737 if (MI.isBundle()) 4738 return 0; 4739 4740 const MCInstrDesc &MCID = MI.getDesc(); 4741 4742 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4743 !Subtarget.cheapPredicableCPSRDef())) { 4744 // When predicated, CPSR is an additional source operand for CPSR updating 4745 // instructions, this apparently increases their latencies. 4746 return 1; 4747 } 4748 return 0; 4749 } 4750 4751 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4752 const MachineInstr &MI, 4753 unsigned *PredCost) const { 4754 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4755 MI.isImplicitDef()) 4756 return 1; 4757 4758 // An instruction scheduler typically runs on unbundled instructions, however 4759 // other passes may query the latency of a bundled instruction. 4760 if (MI.isBundle()) { 4761 unsigned Latency = 0; 4762 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4763 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4764 while (++I != E && I->isInsideBundle()) { 4765 if (I->getOpcode() != ARM::t2IT) 4766 Latency += getInstrLatency(ItinData, *I, PredCost); 4767 } 4768 return Latency; 4769 } 4770 4771 const MCInstrDesc &MCID = MI.getDesc(); 4772 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4773 !Subtarget.cheapPredicableCPSRDef()))) { 4774 // When predicated, CPSR is an additional source operand for CPSR updating 4775 // instructions, this apparently increases their latencies. 4776 *PredCost = 1; 4777 } 4778 // Be sure to call getStageLatency for an empty itinerary in case it has a 4779 // valid MinLatency property. 4780 if (!ItinData) 4781 return MI.mayLoad() ? 3 : 1; 4782 4783 unsigned Class = MCID.getSchedClass(); 4784 4785 // For instructions with variable uops, use uops as latency. 4786 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4787 return getNumMicroOps(ItinData, MI); 4788 4789 // For the common case, fall back on the itinerary's latency. 4790 unsigned Latency = ItinData->getStageLatency(Class); 4791 4792 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4793 unsigned DefAlign = 4794 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; 4795 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4796 if (Adj >= 0 || (int)Latency > -Adj) { 4797 return Latency + Adj; 4798 } 4799 return Latency; 4800 } 4801 4802 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4803 SDNode *Node) const { 4804 if (!Node->isMachineOpcode()) 4805 return 1; 4806 4807 if (!ItinData || ItinData->isEmpty()) 4808 return 1; 4809 4810 unsigned Opcode = Node->getMachineOpcode(); 4811 switch (Opcode) { 4812 default: 4813 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4814 case ARM::VLDMQIA: 4815 case ARM::VSTMQIA: 4816 return 2; 4817 } 4818 } 4819 4820 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4821 const MachineRegisterInfo *MRI, 4822 const MachineInstr &DefMI, 4823 unsigned DefIdx, 4824 const MachineInstr &UseMI, 4825 unsigned UseIdx) const { 4826 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4827 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4828 if (Subtarget.nonpipelinedVFP() && 4829 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4830 return true; 4831 4832 // Hoist VFP / NEON instructions with 4 or higher latency. 4833 unsigned Latency = 4834 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4835 if (Latency <= 3) 4836 return false; 4837 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4838 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4839 } 4840 4841 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4842 const MachineInstr &DefMI, 4843 unsigned DefIdx) const { 4844 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4845 if (!ItinData || ItinData->isEmpty()) 4846 return false; 4847 4848 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4849 if (DDomain == ARMII::DomainGeneral) { 4850 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4851 std::optional<unsigned> DefCycle = 4852 ItinData->getOperandCycle(DefClass, DefIdx); 4853 return DefCycle && DefCycle <= 2U; 4854 } 4855 return false; 4856 } 4857 4858 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4859 StringRef &ErrInfo) const { 4860 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4861 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4862 return false; 4863 } 4864 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4865 // Make sure we don't generate a lo-lo mov that isn't supported. 4866 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4867 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4868 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4869 return false; 4870 } 4871 } 4872 if (MI.getOpcode() == ARM::tPUSH || 4873 MI.getOpcode() == ARM::tPOP || 4874 MI.getOpcode() == ARM::tPOP_RET) { 4875 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) { 4876 if (MO.isImplicit() || !MO.isReg()) 4877 continue; 4878 Register Reg = MO.getReg(); 4879 if (Reg < ARM::R0 || Reg > ARM::R7) { 4880 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4881 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4882 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4883 return false; 4884 } 4885 } 4886 } 4887 } 4888 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { 4889 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); 4890 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || 4891 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { 4892 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; 4893 return false; 4894 } 4895 } 4896 4897 // Check the address model by taking the first Imm operand and checking it is 4898 // legal for that addressing mode. 4899 ARMII::AddrMode AddrMode = 4900 (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask); 4901 switch (AddrMode) { 4902 default: 4903 break; 4904 case ARMII::AddrModeT2_i7: 4905 case ARMII::AddrModeT2_i7s2: 4906 case ARMII::AddrModeT2_i7s4: 4907 case ARMII::AddrModeT2_i8: 4908 case ARMII::AddrModeT2_i8pos: 4909 case ARMII::AddrModeT2_i8neg: 4910 case ARMII::AddrModeT2_i8s4: 4911 case ARMII::AddrModeT2_i12: { 4912 uint32_t Imm = 0; 4913 for (auto Op : MI.operands()) { 4914 if (Op.isImm()) { 4915 Imm = Op.getImm(); 4916 break; 4917 } 4918 } 4919 if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) { 4920 ErrInfo = "Incorrect AddrMode Imm for instruction"; 4921 return false; 4922 } 4923 break; 4924 } 4925 } 4926 return true; 4927 } 4928 4929 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4930 unsigned LoadImmOpc, 4931 unsigned LoadOpc) const { 4932 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4933 "ROPI/RWPI not currently supported with stack guard"); 4934 4935 MachineBasicBlock &MBB = *MI->getParent(); 4936 DebugLoc DL = MI->getDebugLoc(); 4937 Register Reg = MI->getOperand(0).getReg(); 4938 MachineInstrBuilder MIB; 4939 unsigned int Offset = 0; 4940 4941 if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) { 4942 assert(!Subtarget.isReadTPSoft() && 4943 "TLS stack protector requires hardware TLS register"); 4944 4945 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4946 .addImm(15) 4947 .addImm(0) 4948 .addImm(13) 4949 .addImm(0) 4950 .addImm(3) 4951 .add(predOps(ARMCC::AL)); 4952 4953 Module &M = *MBB.getParent()->getFunction().getParent(); 4954 Offset = M.getStackProtectorGuardOffset(); 4955 if (Offset & ~0xfffU) { 4956 // The offset won't fit in the LDR's 12-bit immediate field, so emit an 4957 // extra ADD to cover the delta. This gives us a guaranteed 8 additional 4958 // bits, resulting in a range of 0 to +1 MiB for the guard offset. 4959 unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri; 4960 BuildMI(MBB, MI, DL, get(AddOpc), Reg) 4961 .addReg(Reg, RegState::Kill) 4962 .addImm(Offset & ~0xfffU) 4963 .add(predOps(ARMCC::AL)) 4964 .addReg(0); 4965 Offset &= 0xfffU; 4966 } 4967 } else { 4968 const GlobalValue *GV = 4969 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4970 bool IsIndirect = Subtarget.isGVIndirectSymbol(GV); 4971 4972 unsigned TargetFlags = ARMII::MO_NO_FLAG; 4973 if (Subtarget.isTargetMachO()) { 4974 TargetFlags |= ARMII::MO_NONLAZY; 4975 } else if (Subtarget.isTargetCOFF()) { 4976 if (GV->hasDLLImportStorageClass()) 4977 TargetFlags |= ARMII::MO_DLLIMPORT; 4978 else if (IsIndirect) 4979 TargetFlags |= ARMII::MO_COFFSTUB; 4980 } else if (IsIndirect) { 4981 TargetFlags |= ARMII::MO_GOT; 4982 } 4983 4984 if (LoadImmOpc == ARM::tMOVi32imm) { // Thumb-1 execute-only 4985 Register CPSRSaveReg = ARM::R12; // Use R12 as scratch register 4986 auto APSREncoding = 4987 ARMSysReg::lookupMClassSysRegByName("apsr_nzcvq")->Encoding; 4988 BuildMI(MBB, MI, DL, get(ARM::t2MRS_M), CPSRSaveReg) 4989 .addImm(APSREncoding) 4990 .add(predOps(ARMCC::AL)); 4991 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4992 .addGlobalAddress(GV, 0, TargetFlags); 4993 BuildMI(MBB, MI, DL, get(ARM::t2MSR_M)) 4994 .addImm(APSREncoding) 4995 .addReg(CPSRSaveReg, RegState::Kill) 4996 .add(predOps(ARMCC::AL)); 4997 } else { 4998 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4999 .addGlobalAddress(GV, 0, TargetFlags); 5000 } 5001 5002 if (IsIndirect) { 5003 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 5004 MIB.addReg(Reg, RegState::Kill).addImm(0); 5005 auto Flags = MachineMemOperand::MOLoad | 5006 MachineMemOperand::MODereferenceable | 5007 MachineMemOperand::MOInvariant; 5008 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 5009 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); 5010 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 5011 } 5012 } 5013 5014 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 5015 MIB.addReg(Reg, RegState::Kill) 5016 .addImm(Offset) 5017 .cloneMemRefs(*MI) 5018 .add(predOps(ARMCC::AL)); 5019 } 5020 5021 bool 5022 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 5023 unsigned &AddSubOpc, 5024 bool &NegAcc, bool &HasLane) const { 5025 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 5026 if (I == MLxEntryMap.end()) 5027 return false; 5028 5029 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 5030 MulOpc = Entry.MulOpc; 5031 AddSubOpc = Entry.AddSubOpc; 5032 NegAcc = Entry.NegAcc; 5033 HasLane = Entry.HasLane; 5034 return true; 5035 } 5036 5037 //===----------------------------------------------------------------------===// 5038 // Execution domains. 5039 //===----------------------------------------------------------------------===// 5040 // 5041 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 5042 // and some can go down both. The vmov instructions go down the VFP pipeline, 5043 // but they can be changed to vorr equivalents that are executed by the NEON 5044 // pipeline. 5045 // 5046 // We use the following execution domain numbering: 5047 // 5048 enum ARMExeDomain { 5049 ExeGeneric = 0, 5050 ExeVFP = 1, 5051 ExeNEON = 2 5052 }; 5053 5054 // 5055 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 5056 // 5057 std::pair<uint16_t, uint16_t> 5058 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 5059 // If we don't have access to NEON instructions then we won't be able 5060 // to swizzle anything to the NEON domain. Check to make sure. 5061 if (Subtarget.hasNEON()) { 5062 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 5063 // if they are not predicated. 5064 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 5065 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5066 5067 // CortexA9 is particularly picky about mixing the two and wants these 5068 // converted. 5069 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 5070 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 5071 MI.getOpcode() == ARM::VMOVS)) 5072 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5073 } 5074 // No other instructions can be swizzled, so just determine their domain. 5075 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 5076 5077 if (Domain & ARMII::DomainNEON) 5078 return std::make_pair(ExeNEON, 0); 5079 5080 // Certain instructions can go either way on Cortex-A8. 5081 // Treat them as NEON instructions. 5082 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 5083 return std::make_pair(ExeNEON, 0); 5084 5085 if (Domain & ARMII::DomainVFP) 5086 return std::make_pair(ExeVFP, 0); 5087 5088 return std::make_pair(ExeGeneric, 0); 5089 } 5090 5091 static MCRegister getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 5092 unsigned SReg, unsigned &Lane) { 5093 MCRegister DReg = 5094 TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 5095 Lane = 0; 5096 5097 if (DReg) 5098 return DReg; 5099 5100 Lane = 1; 5101 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 5102 5103 assert(DReg && "S-register with no D super-register?"); 5104 return DReg; 5105 } 5106 5107 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 5108 /// set ImplicitSReg to a register number that must be marked as implicit-use or 5109 /// zero if no register needs to be defined as implicit-use. 5110 /// 5111 /// If the function cannot determine if an SPR should be marked implicit use or 5112 /// not, it returns false. 5113 /// 5114 /// This function handles cases where an instruction is being modified from taking 5115 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 5116 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 5117 /// lane of the DPR). 5118 /// 5119 /// If the other SPR is defined, an implicit-use of it should be added. Else, 5120 /// (including the case where the DPR itself is defined), it should not. 5121 /// 5122 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 5123 MachineInstr &MI, MCRegister DReg, 5124 unsigned Lane, 5125 MCRegister &ImplicitSReg) { 5126 // If the DPR is defined or used already, the other SPR lane will be chained 5127 // correctly, so there is nothing to be done. 5128 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 5129 ImplicitSReg = MCRegister(); 5130 return true; 5131 } 5132 5133 // Otherwise we need to go searching to see if the SPR is set explicitly. 5134 ImplicitSReg = TRI->getSubReg(DReg, 5135 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 5136 MachineBasicBlock::LivenessQueryResult LQR = 5137 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 5138 5139 if (LQR == MachineBasicBlock::LQR_Live) 5140 return true; 5141 else if (LQR == MachineBasicBlock::LQR_Unknown) 5142 return false; 5143 5144 // If the register is known not to be live, there is no need to add an 5145 // implicit-use. 5146 ImplicitSReg = MCRegister(); 5147 return true; 5148 } 5149 5150 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 5151 unsigned Domain) const { 5152 unsigned DstReg, SrcReg; 5153 MCRegister DReg; 5154 unsigned Lane; 5155 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 5156 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5157 switch (MI.getOpcode()) { 5158 default: 5159 llvm_unreachable("cannot handle opcode!"); 5160 break; 5161 case ARM::VMOVD: 5162 if (Domain != ExeNEON) 5163 break; 5164 5165 // Zap the predicate operands. 5166 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 5167 5168 // Make sure we've got NEON instructions. 5169 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 5170 5171 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 5172 DstReg = MI.getOperand(0).getReg(); 5173 SrcReg = MI.getOperand(1).getReg(); 5174 5175 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5176 MI.removeOperand(i - 1); 5177 5178 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 5179 MI.setDesc(get(ARM::VORRd)); 5180 MIB.addReg(DstReg, RegState::Define) 5181 .addReg(SrcReg) 5182 .addReg(SrcReg) 5183 .add(predOps(ARMCC::AL)); 5184 break; 5185 case ARM::VMOVRS: 5186 if (Domain != ExeNEON) 5187 break; 5188 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 5189 5190 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 5191 DstReg = MI.getOperand(0).getReg(); 5192 SrcReg = MI.getOperand(1).getReg(); 5193 5194 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5195 MI.removeOperand(i - 1); 5196 5197 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 5198 5199 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 5200 // Note that DSrc has been widened and the other lane may be undef, which 5201 // contaminates the entire register. 5202 MI.setDesc(get(ARM::VGETLNi32)); 5203 MIB.addReg(DstReg, RegState::Define) 5204 .addReg(DReg, RegState::Undef) 5205 .addImm(Lane) 5206 .add(predOps(ARMCC::AL)); 5207 5208 // The old source should be an implicit use, otherwise we might think it 5209 // was dead before here. 5210 MIB.addReg(SrcReg, RegState::Implicit); 5211 break; 5212 case ARM::VMOVSR: { 5213 if (Domain != ExeNEON) 5214 break; 5215 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 5216 5217 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 5218 DstReg = MI.getOperand(0).getReg(); 5219 SrcReg = MI.getOperand(1).getReg(); 5220 5221 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 5222 5223 MCRegister ImplicitSReg; 5224 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 5225 break; 5226 5227 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5228 MI.removeOperand(i - 1); 5229 5230 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5231 // Again DDst may be undefined at the beginning of this instruction. 5232 MI.setDesc(get(ARM::VSETLNi32)); 5233 MIB.addReg(DReg, RegState::Define) 5234 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5235 .addReg(SrcReg) 5236 .addImm(Lane) 5237 .add(predOps(ARMCC::AL)); 5238 5239 // The narrower destination must be marked as set to keep previous chains 5240 // in place. 5241 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5242 if (ImplicitSReg) 5243 MIB.addReg(ImplicitSReg, RegState::Implicit); 5244 break; 5245 } 5246 case ARM::VMOVS: { 5247 if (Domain != ExeNEON) 5248 break; 5249 5250 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5251 DstReg = MI.getOperand(0).getReg(); 5252 SrcReg = MI.getOperand(1).getReg(); 5253 5254 unsigned DstLane = 0, SrcLane = 0; 5255 MCRegister DDst, DSrc; 5256 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5257 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5258 5259 MCRegister ImplicitSReg; 5260 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5261 break; 5262 5263 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5264 MI.removeOperand(i - 1); 5265 5266 if (DSrc == DDst) { 5267 // Destination can be: 5268 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5269 MI.setDesc(get(ARM::VDUPLN32d)); 5270 MIB.addReg(DDst, RegState::Define) 5271 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5272 .addImm(SrcLane) 5273 .add(predOps(ARMCC::AL)); 5274 5275 // Neither the source or the destination are naturally represented any 5276 // more, so add them in manually. 5277 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5278 MIB.addReg(SrcReg, RegState::Implicit); 5279 if (ImplicitSReg) 5280 MIB.addReg(ImplicitSReg, RegState::Implicit); 5281 break; 5282 } 5283 5284 // In general there's no single instruction that can perform an S <-> S 5285 // move in NEON space, but a pair of VEXT instructions *can* do the 5286 // job. It turns out that the VEXTs needed will only use DSrc once, with 5287 // the position based purely on the combination of lane-0 and lane-1 5288 // involved. For example 5289 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5290 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5291 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5292 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5293 // 5294 // Pattern of the MachineInstrs is: 5295 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5296 MachineInstrBuilder NewMIB; 5297 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5298 DDst); 5299 5300 // On the first instruction, both DSrc and DDst may be undef if present. 5301 // Specifically when the original instruction didn't have them as an 5302 // <imp-use>. 5303 MCRegister CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5304 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5305 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5306 5307 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5308 CurUndef = !MI.readsRegister(CurReg, TRI); 5309 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5310 .addImm(1) 5311 .add(predOps(ARMCC::AL)); 5312 5313 if (SrcLane == DstLane) 5314 NewMIB.addReg(SrcReg, RegState::Implicit); 5315 5316 MI.setDesc(get(ARM::VEXTd32)); 5317 MIB.addReg(DDst, RegState::Define); 5318 5319 // On the second instruction, DDst has definitely been defined above, so 5320 // it is not undef. DSrc, if present, can be undef as above. 5321 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5322 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5323 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5324 5325 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5326 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5327 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5328 .addImm(1) 5329 .add(predOps(ARMCC::AL)); 5330 5331 if (SrcLane != DstLane) 5332 MIB.addReg(SrcReg, RegState::Implicit); 5333 5334 // As before, the original destination is no longer represented, add it 5335 // implicitly. 5336 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5337 if (ImplicitSReg != 0) 5338 MIB.addReg(ImplicitSReg, RegState::Implicit); 5339 break; 5340 } 5341 } 5342 } 5343 5344 //===----------------------------------------------------------------------===// 5345 // Partial register updates 5346 //===----------------------------------------------------------------------===// 5347 // 5348 // Swift renames NEON registers with 64-bit granularity. That means any 5349 // instruction writing an S-reg implicitly reads the containing D-reg. The 5350 // problem is mostly avoided by translating f32 operations to v2f32 operations 5351 // on D-registers, but f32 loads are still a problem. 5352 // 5353 // These instructions can load an f32 into a NEON register: 5354 // 5355 // VLDRS - Only writes S, partial D update. 5356 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5357 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5358 // 5359 // FCONSTD can be used as a dependency-breaking instruction. 5360 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5361 const MachineInstr &MI, unsigned OpNum, 5362 const TargetRegisterInfo *TRI) const { 5363 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5364 if (!PartialUpdateClearance) 5365 return 0; 5366 5367 assert(TRI && "Need TRI instance"); 5368 5369 const MachineOperand &MO = MI.getOperand(OpNum); 5370 if (MO.readsReg()) 5371 return 0; 5372 Register Reg = MO.getReg(); 5373 int UseOp = -1; 5374 5375 switch (MI.getOpcode()) { 5376 // Normal instructions writing only an S-register. 5377 case ARM::VLDRS: 5378 case ARM::FCONSTS: 5379 case ARM::VMOVSR: 5380 case ARM::VMOVv8i8: 5381 case ARM::VMOVv4i16: 5382 case ARM::VMOVv2i32: 5383 case ARM::VMOVv2f32: 5384 case ARM::VMOVv1i64: 5385 UseOp = MI.findRegisterUseOperandIdx(Reg, TRI, false); 5386 break; 5387 5388 // Explicitly reads the dependency. 5389 case ARM::VLD1LNd32: 5390 UseOp = 3; 5391 break; 5392 default: 5393 return 0; 5394 } 5395 5396 // If this instruction actually reads a value from Reg, there is no unwanted 5397 // dependency. 5398 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5399 return 0; 5400 5401 // We must be able to clobber the whole D-reg. 5402 if (Reg.isVirtual()) { 5403 // Virtual register must be a def undef foo:ssub_0 operand. 5404 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5405 return 0; 5406 } else if (ARM::SPRRegClass.contains(Reg)) { 5407 // Physical register: MI must define the full D-reg. 5408 MCRegister DReg = 5409 TRI->getMatchingSuperReg(Reg, ARM::ssub_0, &ARM::DPRRegClass); 5410 if (!DReg || !MI.definesRegister(DReg, TRI)) 5411 return 0; 5412 } 5413 5414 // MI has an unwanted D-register dependency. 5415 // Avoid defs in the previous N instructrions. 5416 return PartialUpdateClearance; 5417 } 5418 5419 // Break a partial register dependency after getPartialRegUpdateClearance 5420 // returned non-zero. 5421 void ARMBaseInstrInfo::breakPartialRegDependency( 5422 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5423 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5424 assert(TRI && "Need TRI instance"); 5425 5426 const MachineOperand &MO = MI.getOperand(OpNum); 5427 Register Reg = MO.getReg(); 5428 assert(Reg.isPhysical() && "Can't break virtual register dependencies."); 5429 unsigned DReg = Reg; 5430 5431 // If MI defines an S-reg, find the corresponding D super-register. 5432 if (ARM::SPRRegClass.contains(Reg)) { 5433 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5434 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5435 } 5436 5437 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5438 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5439 5440 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5441 // the full D-register by loading the same value to both lanes. The 5442 // instruction is micro-coded with 2 uops, so don't do this until we can 5443 // properly schedule micro-coded instructions. The dispatcher stalls cause 5444 // too big regressions. 5445 5446 // Insert the dependency-breaking FCONSTD before MI. 5447 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5448 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5449 .addImm(96) 5450 .add(predOps(ARMCC::AL)); 5451 MI.addRegisterKilled(DReg, TRI, true); 5452 } 5453 5454 bool ARMBaseInstrInfo::hasNOP() const { 5455 return Subtarget.hasFeature(ARM::HasV6KOps); 5456 } 5457 5458 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5459 if (MI->getNumOperands() < 4) 5460 return true; 5461 unsigned ShOpVal = MI->getOperand(3).getImm(); 5462 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5463 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5464 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5465 ((ShImm == 1 || ShImm == 2) && 5466 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5467 return true; 5468 5469 return false; 5470 } 5471 5472 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5473 const MachineInstr &MI, unsigned DefIdx, 5474 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5475 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5476 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5477 5478 switch (MI.getOpcode()) { 5479 case ARM::VMOVDRR: 5480 // dX = VMOVDRR rY, rZ 5481 // is the same as: 5482 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5483 // Populate the InputRegs accordingly. 5484 // rY 5485 const MachineOperand *MOReg = &MI.getOperand(1); 5486 if (!MOReg->isUndef()) 5487 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5488 MOReg->getSubReg(), ARM::ssub_0)); 5489 // rZ 5490 MOReg = &MI.getOperand(2); 5491 if (!MOReg->isUndef()) 5492 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5493 MOReg->getSubReg(), ARM::ssub_1)); 5494 return true; 5495 } 5496 llvm_unreachable("Target dependent opcode missing"); 5497 } 5498 5499 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5500 const MachineInstr &MI, unsigned DefIdx, 5501 RegSubRegPairAndIdx &InputReg) const { 5502 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5503 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5504 5505 switch (MI.getOpcode()) { 5506 case ARM::VMOVRRD: 5507 // rX, rY = VMOVRRD dZ 5508 // is the same as: 5509 // rX = EXTRACT_SUBREG dZ, ssub_0 5510 // rY = EXTRACT_SUBREG dZ, ssub_1 5511 const MachineOperand &MOReg = MI.getOperand(2); 5512 if (MOReg.isUndef()) 5513 return false; 5514 InputReg.Reg = MOReg.getReg(); 5515 InputReg.SubReg = MOReg.getSubReg(); 5516 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5517 return true; 5518 } 5519 llvm_unreachable("Target dependent opcode missing"); 5520 } 5521 5522 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5523 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5524 RegSubRegPairAndIdx &InsertedReg) const { 5525 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5526 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5527 5528 switch (MI.getOpcode()) { 5529 case ARM::VSETLNi32: 5530 case ARM::MVE_VMOV_to_lane_32: 5531 // dX = VSETLNi32 dY, rZ, imm 5532 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm 5533 const MachineOperand &MOBaseReg = MI.getOperand(1); 5534 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5535 if (MOInsertedReg.isUndef()) 5536 return false; 5537 const MachineOperand &MOIndex = MI.getOperand(3); 5538 BaseReg.Reg = MOBaseReg.getReg(); 5539 BaseReg.SubReg = MOBaseReg.getSubReg(); 5540 5541 InsertedReg.Reg = MOInsertedReg.getReg(); 5542 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5543 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm(); 5544 return true; 5545 } 5546 llvm_unreachable("Target dependent opcode missing"); 5547 } 5548 5549 std::pair<unsigned, unsigned> 5550 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5551 const unsigned Mask = ARMII::MO_OPTION_MASK; 5552 return std::make_pair(TF & Mask, TF & ~Mask); 5553 } 5554 5555 ArrayRef<std::pair<unsigned, const char *>> 5556 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5557 using namespace ARMII; 5558 5559 static const std::pair<unsigned, const char *> TargetFlags[] = { 5560 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}, 5561 {MO_LO_0_7, "arm-lo-0-7"}, {MO_HI_0_7, "arm-hi-0-7"}, 5562 {MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"}, 5563 }; 5564 return ArrayRef(TargetFlags); 5565 } 5566 5567 ArrayRef<std::pair<unsigned, const char *>> 5568 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5569 using namespace ARMII; 5570 5571 static const std::pair<unsigned, const char *> TargetFlags[] = { 5572 {MO_COFFSTUB, "arm-coffstub"}, 5573 {MO_GOT, "arm-got"}, 5574 {MO_SBREL, "arm-sbrel"}, 5575 {MO_DLLIMPORT, "arm-dllimport"}, 5576 {MO_SECREL, "arm-secrel"}, 5577 {MO_NONLAZY, "arm-nonlazy"}}; 5578 return ArrayRef(TargetFlags); 5579 } 5580 5581 std::optional<RegImmPair> 5582 ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const { 5583 int Sign = 1; 5584 unsigned Opcode = MI.getOpcode(); 5585 int64_t Offset = 0; 5586 5587 // TODO: Handle cases where Reg is a super- or sub-register of the 5588 // destination register. 5589 const MachineOperand &Op0 = MI.getOperand(0); 5590 if (!Op0.isReg() || Reg != Op0.getReg()) 5591 return std::nullopt; 5592 5593 // We describe SUBri or ADDri instructions. 5594 if (Opcode == ARM::SUBri) 5595 Sign = -1; 5596 else if (Opcode != ARM::ADDri) 5597 return std::nullopt; 5598 5599 // TODO: Third operand can be global address (usually some string). Since 5600 // strings can be relocated we cannot calculate their offsets for 5601 // now. 5602 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) 5603 return std::nullopt; 5604 5605 Offset = MI.getOperand(2).getImm() * Sign; 5606 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5607 } 5608 5609 bool llvm::registerDefinedBetween(unsigned Reg, 5610 MachineBasicBlock::iterator From, 5611 MachineBasicBlock::iterator To, 5612 const TargetRegisterInfo *TRI) { 5613 for (auto I = From; I != To; ++I) 5614 if (I->modifiesRegister(Reg, TRI)) 5615 return true; 5616 return false; 5617 } 5618 5619 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5620 const TargetRegisterInfo *TRI) { 5621 // Search backwards to the instruction that defines CSPR. This may or not 5622 // be a CMP, we check that after this loop. If we find another instruction 5623 // that reads cpsr, we return nullptr. 5624 MachineBasicBlock::iterator CmpMI = Br; 5625 while (CmpMI != Br->getParent()->begin()) { 5626 --CmpMI; 5627 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5628 break; 5629 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5630 break; 5631 } 5632 5633 // Check that this inst is a CMP r[0-7], #0 and that the register 5634 // is not redefined between the cmp and the br. 5635 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5636 return nullptr; 5637 Register Reg = CmpMI->getOperand(0).getReg(); 5638 Register PredReg; 5639 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5640 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5641 return nullptr; 5642 if (!isARMLowRegister(Reg)) 5643 return nullptr; 5644 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5645 return nullptr; 5646 5647 return &*CmpMI; 5648 } 5649 5650 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5651 const ARMSubtarget *Subtarget, 5652 bool ForCodesize) { 5653 if (Subtarget->isThumb()) { 5654 if (Val <= 255) // MOV 5655 return ForCodesize ? 2 : 1; 5656 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5657 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5658 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5659 return ForCodesize ? 4 : 1; 5660 if (Val <= 510) // MOV + ADDi8 5661 return ForCodesize ? 4 : 2; 5662 if (~Val <= 255) // MOV + MVN 5663 return ForCodesize ? 4 : 2; 5664 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5665 return ForCodesize ? 4 : 2; 5666 } else { 5667 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5668 return ForCodesize ? 4 : 1; 5669 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5670 return ForCodesize ? 4 : 1; 5671 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5672 return ForCodesize ? 4 : 1; 5673 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5674 return ForCodesize ? 8 : 2; 5675 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs 5676 return ForCodesize ? 8 : 2; 5677 } 5678 if (Subtarget->useMovt()) // MOVW + MOVT 5679 return ForCodesize ? 8 : 2; 5680 return ForCodesize ? 8 : 3; // Literal pool load 5681 } 5682 5683 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5684 const ARMSubtarget *Subtarget, 5685 bool ForCodesize) { 5686 // Check with ForCodesize 5687 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5688 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5689 if (Cost1 < Cost2) 5690 return true; 5691 if (Cost1 > Cost2) 5692 return false; 5693 5694 // If they are equal, try with !ForCodesize 5695 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5696 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5697 } 5698 5699 /// Constants defining how certain sequences should be outlined. 5700 /// This encompasses how an outlined function should be called, and what kind of 5701 /// frame should be emitted for that outlined function. 5702 /// 5703 /// \p MachineOutlinerTailCall implies that the function is being created from 5704 /// a sequence of instructions ending in a return. 5705 /// 5706 /// That is, 5707 /// 5708 /// I1 OUTLINED_FUNCTION: 5709 /// I2 --> B OUTLINED_FUNCTION I1 5710 /// BX LR I2 5711 /// BX LR 5712 /// 5713 /// +-------------------------+--------+-----+ 5714 /// | | Thumb2 | ARM | 5715 /// +-------------------------+--------+-----+ 5716 /// | Call overhead in Bytes | 4 | 4 | 5717 /// | Frame overhead in Bytes | 0 | 0 | 5718 /// | Stack fixup required | No | No | 5719 /// +-------------------------+--------+-----+ 5720 /// 5721 /// \p MachineOutlinerThunk implies that the function is being created from 5722 /// a sequence of instructions ending in a call. The outlined function is 5723 /// called with a BL instruction, and the outlined function tail-calls the 5724 /// original call destination. 5725 /// 5726 /// That is, 5727 /// 5728 /// I1 OUTLINED_FUNCTION: 5729 /// I2 --> BL OUTLINED_FUNCTION I1 5730 /// BL f I2 5731 /// B f 5732 /// 5733 /// +-------------------------+--------+-----+ 5734 /// | | Thumb2 | ARM | 5735 /// +-------------------------+--------+-----+ 5736 /// | Call overhead in Bytes | 4 | 4 | 5737 /// | Frame overhead in Bytes | 0 | 0 | 5738 /// | Stack fixup required | No | No | 5739 /// +-------------------------+--------+-----+ 5740 /// 5741 /// \p MachineOutlinerNoLRSave implies that the function should be called using 5742 /// a BL instruction, but doesn't require LR to be saved and restored. This 5743 /// happens when LR is known to be dead. 5744 /// 5745 /// That is, 5746 /// 5747 /// I1 OUTLINED_FUNCTION: 5748 /// I2 --> BL OUTLINED_FUNCTION I1 5749 /// I3 I2 5750 /// I3 5751 /// BX LR 5752 /// 5753 /// +-------------------------+--------+-----+ 5754 /// | | Thumb2 | ARM | 5755 /// +-------------------------+--------+-----+ 5756 /// | Call overhead in Bytes | 4 | 4 | 5757 /// | Frame overhead in Bytes | 2 | 4 | 5758 /// | Stack fixup required | No | No | 5759 /// +-------------------------+--------+-----+ 5760 /// 5761 /// \p MachineOutlinerRegSave implies that the function should be called with a 5762 /// save and restore of LR to an available register. This allows us to avoid 5763 /// stack fixups. Note that this outlining variant is compatible with the 5764 /// NoLRSave case. 5765 /// 5766 /// That is, 5767 /// 5768 /// I1 Save LR OUTLINED_FUNCTION: 5769 /// I2 --> BL OUTLINED_FUNCTION I1 5770 /// I3 Restore LR I2 5771 /// I3 5772 /// BX LR 5773 /// 5774 /// +-------------------------+--------+-----+ 5775 /// | | Thumb2 | ARM | 5776 /// +-------------------------+--------+-----+ 5777 /// | Call overhead in Bytes | 8 | 12 | 5778 /// | Frame overhead in Bytes | 2 | 4 | 5779 /// | Stack fixup required | No | No | 5780 /// +-------------------------+--------+-----+ 5781 /// 5782 /// \p MachineOutlinerDefault implies that the function should be called with 5783 /// a save and restore of LR to the stack. 5784 /// 5785 /// That is, 5786 /// 5787 /// I1 Save LR OUTLINED_FUNCTION: 5788 /// I2 --> BL OUTLINED_FUNCTION I1 5789 /// I3 Restore LR I2 5790 /// I3 5791 /// BX LR 5792 /// 5793 /// +-------------------------+--------+-----+ 5794 /// | | Thumb2 | ARM | 5795 /// +-------------------------+--------+-----+ 5796 /// | Call overhead in Bytes | 8 | 12 | 5797 /// | Frame overhead in Bytes | 2 | 4 | 5798 /// | Stack fixup required | Yes | Yes | 5799 /// +-------------------------+--------+-----+ 5800 5801 enum MachineOutlinerClass { 5802 MachineOutlinerTailCall, 5803 MachineOutlinerThunk, 5804 MachineOutlinerNoLRSave, 5805 MachineOutlinerRegSave, 5806 MachineOutlinerDefault 5807 }; 5808 5809 enum MachineOutlinerMBBFlags { 5810 LRUnavailableSomewhere = 0x2, 5811 HasCalls = 0x4, 5812 UnsafeRegsDead = 0x8 5813 }; 5814 5815 struct OutlinerCosts { 5816 int CallTailCall; 5817 int FrameTailCall; 5818 int CallThunk; 5819 int FrameThunk; 5820 int CallNoLRSave; 5821 int FrameNoLRSave; 5822 int CallRegSave; 5823 int FrameRegSave; 5824 int CallDefault; 5825 int FrameDefault; 5826 int SaveRestoreLROnStack; 5827 5828 OutlinerCosts(const ARMSubtarget &target) 5829 : CallTailCall(target.isThumb() ? 4 : 4), 5830 FrameTailCall(target.isThumb() ? 0 : 0), 5831 CallThunk(target.isThumb() ? 4 : 4), 5832 FrameThunk(target.isThumb() ? 0 : 0), 5833 CallNoLRSave(target.isThumb() ? 4 : 4), 5834 FrameNoLRSave(target.isThumb() ? 2 : 4), 5835 CallRegSave(target.isThumb() ? 8 : 12), 5836 FrameRegSave(target.isThumb() ? 2 : 4), 5837 CallDefault(target.isThumb() ? 8 : 12), 5838 FrameDefault(target.isThumb() ? 2 : 4), 5839 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} 5840 }; 5841 5842 Register 5843 ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const { 5844 MachineFunction *MF = C.getMF(); 5845 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 5846 const ARMBaseRegisterInfo *ARI = 5847 static_cast<const ARMBaseRegisterInfo *>(&TRI); 5848 5849 BitVector regsReserved = ARI->getReservedRegs(*MF); 5850 // Check if there is an available register across the sequence that we can 5851 // use. 5852 for (Register Reg : ARM::rGPRRegClass) { 5853 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && 5854 Reg != ARM::LR && // LR is not reserved, but don't use it. 5855 Reg != ARM::R12 && // R12 is not guaranteed to be preserved. 5856 C.isAvailableAcrossAndOutOfSeq(Reg, TRI) && 5857 C.isAvailableInsideSeq(Reg, TRI)) 5858 return Reg; 5859 } 5860 return Register(); 5861 } 5862 5863 // Compute liveness of LR at the point after the interval [I, E), which 5864 // denotes a *backward* iteration through instructions. Used only for return 5865 // basic blocks, which do not end with a tail call. 5866 static bool isLRAvailable(const TargetRegisterInfo &TRI, 5867 MachineBasicBlock::reverse_iterator I, 5868 MachineBasicBlock::reverse_iterator E) { 5869 // At the end of the function LR dead. 5870 bool Live = false; 5871 for (; I != E; ++I) { 5872 const MachineInstr &MI = *I; 5873 5874 // Check defs of LR. 5875 if (MI.modifiesRegister(ARM::LR, &TRI)) 5876 Live = false; 5877 5878 // Check uses of LR. 5879 unsigned Opcode = MI.getOpcode(); 5880 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || 5881 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || 5882 Opcode == ARM::tBXNS_RET) { 5883 // These instructions use LR, but it's not an (explicit or implicit) 5884 // operand. 5885 Live = true; 5886 continue; 5887 } 5888 if (MI.readsRegister(ARM::LR, &TRI)) 5889 Live = true; 5890 } 5891 return !Live; 5892 } 5893 5894 std::optional<std::unique_ptr<outliner::OutlinedFunction>> 5895 ARMBaseInstrInfo::getOutliningCandidateInfo( 5896 const MachineModuleInfo &MMI, 5897 std::vector<outliner::Candidate> &RepeatedSequenceLocs, 5898 unsigned MinRepeats) const { 5899 unsigned SequenceSize = 0; 5900 for (auto &MI : RepeatedSequenceLocs[0]) 5901 SequenceSize += getInstSizeInBytes(MI); 5902 5903 // Properties about candidate MBBs that hold for all of them. 5904 unsigned FlagsSetInAll = 0xF; 5905 5906 // Compute liveness information for each candidate, and set FlagsSetInAll. 5907 const TargetRegisterInfo &TRI = getRegisterInfo(); 5908 for (outliner::Candidate &C : RepeatedSequenceLocs) 5909 FlagsSetInAll &= C.Flags; 5910 5911 // According to the ARM Procedure Call Standard, the following are 5912 // undefined on entry/exit from a function call: 5913 // 5914 // * Register R12(IP), 5915 // * Condition codes (and thus the CPSR register) 5916 // 5917 // Since we control the instructions which are part of the outlined regions 5918 // we don't need to be fully compliant with the AAPCS, but we have to 5919 // guarantee that if a veneer is inserted at link time the code is still 5920 // correct. Because of this, we can't outline any sequence of instructions 5921 // where one of these registers is live into/across it. Thus, we need to 5922 // delete those candidates. 5923 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 5924 // If the unsafe registers in this block are all dead, then we don't need 5925 // to compute liveness here. 5926 if (C.Flags & UnsafeRegsDead) 5927 return false; 5928 return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI); 5929 }; 5930 5931 // Are there any candidates where those registers are live? 5932 if (!(FlagsSetInAll & UnsafeRegsDead)) { 5933 // Erase every candidate that violates the restrictions above. (It could be 5934 // true that we have viable candidates, so it's not worth bailing out in 5935 // the case that, say, 1 out of 20 candidates violate the restructions.) 5936 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); 5937 5938 // If the sequence doesn't have enough candidates left, then we're done. 5939 if (RepeatedSequenceLocs.size() < MinRepeats) 5940 return std::nullopt; 5941 } 5942 5943 // We expect the majority of the outlining candidates to be in consensus with 5944 // regard to return address sign and authentication, and branch target 5945 // enforcement, in other words, partitioning according to all the four 5946 // possible combinations of PAC-RET and BTI is going to yield one big subset 5947 // and three small (likely empty) subsets. That allows us to cull incompatible 5948 // candidates separately for PAC-RET and BTI. 5949 5950 // Partition the candidates in two sets: one with BTI enabled and one with BTI 5951 // disabled. Remove the candidates from the smaller set. If they are the same 5952 // number prefer the non-BTI ones for outlining, since they have less 5953 // overhead. 5954 auto NoBTI = 5955 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5956 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5957 return AFI.branchTargetEnforcement(); 5958 }); 5959 if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) > 5960 std::distance(NoBTI, RepeatedSequenceLocs.end())) 5961 RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end()); 5962 else 5963 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI); 5964 5965 if (RepeatedSequenceLocs.size() < MinRepeats) 5966 return std::nullopt; 5967 5968 // Likewise, partition the candidates according to PAC-RET enablement. 5969 auto NoPAC = 5970 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5971 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5972 // If the function happens to not spill the LR, do not disqualify it 5973 // from the outlining. 5974 return AFI.shouldSignReturnAddress(true); 5975 }); 5976 if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) > 5977 std::distance(NoPAC, RepeatedSequenceLocs.end())) 5978 RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end()); 5979 else 5980 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC); 5981 5982 if (RepeatedSequenceLocs.size() < MinRepeats) 5983 return std::nullopt; 5984 5985 // At this point, we have only "safe" candidates to outline. Figure out 5986 // frame + call instruction information. 5987 5988 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back().getOpcode(); 5989 5990 // Helper lambda which sets call information for every candidate. 5991 auto SetCandidateCallInfo = 5992 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 5993 for (outliner::Candidate &C : RepeatedSequenceLocs) 5994 C.setCallInfo(CallID, NumBytesForCall); 5995 }; 5996 5997 OutlinerCosts Costs(Subtarget); 5998 5999 const auto &SomeMFI = 6000 *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>(); 6001 // Adjust costs to account for the BTI instructions. 6002 if (SomeMFI.branchTargetEnforcement()) { 6003 Costs.FrameDefault += 4; 6004 Costs.FrameNoLRSave += 4; 6005 Costs.FrameRegSave += 4; 6006 Costs.FrameTailCall += 4; 6007 Costs.FrameThunk += 4; 6008 } 6009 6010 // Adjust costs to account for sign and authentication instructions. 6011 if (SomeMFI.shouldSignReturnAddress(true)) { 6012 Costs.CallDefault += 8; // +PAC instr, +AUT instr 6013 Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr 6014 } 6015 6016 unsigned FrameID = MachineOutlinerDefault; 6017 unsigned NumBytesToCreateFrame = Costs.FrameDefault; 6018 6019 // If the last instruction in any candidate is a terminator, then we should 6020 // tail call all of the candidates. 6021 if (RepeatedSequenceLocs[0].back().isTerminator()) { 6022 FrameID = MachineOutlinerTailCall; 6023 NumBytesToCreateFrame = Costs.FrameTailCall; 6024 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); 6025 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || 6026 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || 6027 LastInstrOpcode == ARM::tBLXr || 6028 LastInstrOpcode == ARM::tBLXr_noip || 6029 LastInstrOpcode == ARM::tBLXi) { 6030 FrameID = MachineOutlinerThunk; 6031 NumBytesToCreateFrame = Costs.FrameThunk; 6032 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); 6033 } else { 6034 // We need to decide how to emit calls + frames. We can always emit the same 6035 // frame if we don't need to save to the stack. If we have to save to the 6036 // stack, then we need a different frame. 6037 unsigned NumBytesNoStackCalls = 0; 6038 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 6039 6040 for (outliner::Candidate &C : RepeatedSequenceLocs) { 6041 // LR liveness is overestimated in return blocks, unless they end with a 6042 // tail call. 6043 const auto Last = C.getMBB()->rbegin(); 6044 const bool LRIsAvailable = 6045 C.getMBB()->isReturnBlock() && !Last->isCall() 6046 ? isLRAvailable(TRI, Last, 6047 (MachineBasicBlock::reverse_iterator)C.begin()) 6048 : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI); 6049 if (LRIsAvailable) { 6050 FrameID = MachineOutlinerNoLRSave; 6051 NumBytesNoStackCalls += Costs.CallNoLRSave; 6052 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); 6053 CandidatesWithoutStackFixups.push_back(C); 6054 } 6055 6056 // Is an unused register available? If so, we won't modify the stack, so 6057 // we can outline with the same frame type as those that don't save LR. 6058 else if (findRegisterToSaveLRTo(C)) { 6059 FrameID = MachineOutlinerRegSave; 6060 NumBytesNoStackCalls += Costs.CallRegSave; 6061 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); 6062 CandidatesWithoutStackFixups.push_back(C); 6063 } 6064 6065 // Is SP used in the sequence at all? If not, we don't have to modify 6066 // the stack, so we are guaranteed to get the same frame. 6067 else if (C.isAvailableInsideSeq(ARM::SP, TRI)) { 6068 NumBytesNoStackCalls += Costs.CallDefault; 6069 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); 6070 CandidatesWithoutStackFixups.push_back(C); 6071 } 6072 6073 // If we outline this, we need to modify the stack. Pretend we don't 6074 // outline this by saving all of its bytes. 6075 else 6076 NumBytesNoStackCalls += SequenceSize; 6077 } 6078 6079 // If there are no places where we have to save LR, then note that we don't 6080 // have to update the stack. Otherwise, give every candidate the default 6081 // call type 6082 if (NumBytesNoStackCalls <= 6083 RepeatedSequenceLocs.size() * Costs.CallDefault) { 6084 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 6085 FrameID = MachineOutlinerNoLRSave; 6086 if (RepeatedSequenceLocs.size() < MinRepeats) 6087 return std::nullopt; 6088 } else 6089 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); 6090 } 6091 6092 // Does every candidate's MBB contain a call? If so, then we might have a 6093 // call in the range. 6094 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 6095 // check if the range contains a call. These require a save + restore of 6096 // the link register. 6097 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 6098 if (any_of(drop_end(FirstCand), 6099 [](const MachineInstr &MI) { return MI.isCall(); })) 6100 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6101 6102 // Handle the last instruction separately. If it is tail call, then the 6103 // last instruction is a call, we don't want to save + restore in this 6104 // case. However, it could be possible that the last instruction is a 6105 // call without it being valid to tail call this sequence. We should 6106 // consider this as well. 6107 else if (FrameID != MachineOutlinerThunk && 6108 FrameID != MachineOutlinerTailCall && FirstCand.back().isCall()) 6109 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6110 } 6111 6112 return std::make_unique<outliner::OutlinedFunction>( 6113 RepeatedSequenceLocs, SequenceSize, NumBytesToCreateFrame, FrameID); 6114 } 6115 6116 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI, 6117 int64_t Fixup, 6118 bool Updt) const { 6119 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP, /*TRI=*/nullptr); 6120 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask); 6121 if (SPIdx < 0) 6122 // No SP operand 6123 return true; 6124 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2)) 6125 // If SP is not the base register we can't do much 6126 return false; 6127 6128 // Stack might be involved but addressing mode doesn't handle any offset. 6129 // Rq: AddrModeT1_[1|2|4] don't operate on SP 6130 if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions 6131 AddrMode == ARMII::AddrMode4 || // Load/Store Multiple 6132 AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple 6133 AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register 6134 AddrMode == ARMII::AddrModeT2_pc || // PCrel access 6135 AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST 6136 AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE 6137 AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE 6138 AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR 6139 AddrMode == ARMII::AddrModeNone || 6140 AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions 6141 AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm 6142 return false; 6143 6144 unsigned NumOps = MI->getDesc().getNumOperands(); 6145 unsigned ImmIdx = NumOps - 3; 6146 6147 const MachineOperand &Offset = MI->getOperand(ImmIdx); 6148 assert(Offset.isImm() && "Is not an immediate"); 6149 int64_t OffVal = Offset.getImm(); 6150 6151 if (OffVal < 0) 6152 // Don't override data if the are below SP. 6153 return false; 6154 6155 unsigned NumBits = 0; 6156 unsigned Scale = 1; 6157 6158 switch (AddrMode) { 6159 case ARMII::AddrMode3: 6160 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub) 6161 return false; 6162 OffVal = ARM_AM::getAM3Offset(OffVal); 6163 NumBits = 8; 6164 break; 6165 case ARMII::AddrMode5: 6166 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub) 6167 return false; 6168 OffVal = ARM_AM::getAM5Offset(OffVal); 6169 NumBits = 8; 6170 Scale = 4; 6171 break; 6172 case ARMII::AddrMode5FP16: 6173 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub) 6174 return false; 6175 OffVal = ARM_AM::getAM5FP16Offset(OffVal); 6176 NumBits = 8; 6177 Scale = 2; 6178 break; 6179 case ARMII::AddrModeT2_i8pos: 6180 NumBits = 8; 6181 break; 6182 case ARMII::AddrModeT2_i8s4: 6183 // FIXME: Values are already scaled in this addressing mode. 6184 assert((Fixup & 3) == 0 && "Can't encode this offset!"); 6185 NumBits = 10; 6186 break; 6187 case ARMII::AddrModeT2_ldrex: 6188 NumBits = 8; 6189 Scale = 4; 6190 break; 6191 case ARMII::AddrModeT2_i12: 6192 case ARMII::AddrMode_i12: 6193 NumBits = 12; 6194 break; 6195 case ARMII::AddrModeT1_s: // SP-relative LD/ST 6196 NumBits = 8; 6197 Scale = 4; 6198 break; 6199 default: 6200 llvm_unreachable("Unsupported addressing mode!"); 6201 } 6202 // Make sure the offset is encodable for instructions that scale the 6203 // immediate. 6204 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 && 6205 "Can't encode this offset!"); 6206 OffVal += Fixup / Scale; 6207 6208 unsigned Mask = (1 << NumBits) - 1; 6209 6210 if (OffVal <= Mask) { 6211 if (Updt) 6212 MI->getOperand(ImmIdx).setImm(OffVal); 6213 return true; 6214 } 6215 6216 return false; 6217 } 6218 6219 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes( 6220 Function &F, std::vector<outliner::Candidate> &Candidates) const { 6221 outliner::Candidate &C = Candidates.front(); 6222 // branch-target-enforcement is guaranteed to be consistent between all 6223 // candidates, so we only need to look at one. 6224 const Function &CFn = C.getMF()->getFunction(); 6225 if (CFn.hasFnAttribute("branch-target-enforcement")) 6226 F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement")); 6227 6228 if (CFn.hasFnAttribute("sign-return-address")) 6229 F.addFnAttr(CFn.getFnAttribute("sign-return-address")); 6230 6231 ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates); 6232 } 6233 6234 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( 6235 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 6236 const Function &F = MF.getFunction(); 6237 6238 // Can F be deduplicated by the linker? If it can, don't outline from it. 6239 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 6240 return false; 6241 6242 // Don't outline from functions with section markings; the program could 6243 // expect that all the code is in the named section. 6244 // FIXME: Allow outlining from multiple functions with the same section 6245 // marking. 6246 if (F.hasSection()) 6247 return false; 6248 6249 // FIXME: Thumb1 outlining is not handled 6250 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) 6251 return false; 6252 6253 // It's safe to outline from MF. 6254 return true; 6255 } 6256 6257 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 6258 unsigned &Flags) const { 6259 // Check if LR is available through all of the MBB. If it's not, then set 6260 // a flag. 6261 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 6262 "Suitable Machine Function for outlining must track liveness"); 6263 6264 LiveRegUnits LRU(getRegisterInfo()); 6265 6266 for (MachineInstr &MI : llvm::reverse(MBB)) 6267 LRU.accumulate(MI); 6268 6269 // Check if each of the unsafe registers are available... 6270 bool R12AvailableInBlock = LRU.available(ARM::R12); 6271 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); 6272 6273 // If all of these are dead (and not live out), we know we don't have to check 6274 // them later. 6275 if (R12AvailableInBlock && CPSRAvailableInBlock) 6276 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 6277 6278 // Now, add the live outs to the set. 6279 LRU.addLiveOuts(MBB); 6280 6281 // If any of these registers is available in the MBB, but also a live out of 6282 // the block, then we know outlining is unsafe. 6283 if (R12AvailableInBlock && !LRU.available(ARM::R12)) 6284 return false; 6285 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) 6286 return false; 6287 6288 // Check if there's a call inside this MachineBasicBlock. If there is, then 6289 // set a flag. 6290 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 6291 Flags |= MachineOutlinerMBBFlags::HasCalls; 6292 6293 // LR liveness is overestimated in return blocks. 6294 6295 bool LRIsAvailable = 6296 MBB.isReturnBlock() && !MBB.back().isCall() 6297 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) 6298 : LRU.available(ARM::LR); 6299 if (!LRIsAvailable) 6300 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 6301 6302 return true; 6303 } 6304 6305 outliner::InstrType 6306 ARMBaseInstrInfo::getOutliningTypeImpl(const MachineModuleInfo &MMI, 6307 MachineBasicBlock::iterator &MIT, 6308 unsigned Flags) const { 6309 MachineInstr &MI = *MIT; 6310 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6311 6312 // PIC instructions contain labels, outlining them would break offset 6313 // computing. unsigned Opc = MI.getOpcode(); 6314 unsigned Opc = MI.getOpcode(); 6315 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || 6316 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || 6317 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || 6318 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || 6319 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || 6320 Opc == ARM::t2MOV_ga_pcrel) 6321 return outliner::InstrType::Illegal; 6322 6323 // Be conservative with ARMv8.1 MVE instructions. 6324 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || 6325 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || 6326 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP || 6327 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || 6328 Opc == ARM::t2LoopEndDec) 6329 return outliner::InstrType::Illegal; 6330 6331 const MCInstrDesc &MCID = MI.getDesc(); 6332 uint64_t MIFlags = MCID.TSFlags; 6333 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) 6334 return outliner::InstrType::Illegal; 6335 6336 // Is this a terminator for a basic block? 6337 if (MI.isTerminator()) 6338 // TargetInstrInfo::getOutliningType has already filtered out anything 6339 // that would break this, so we can allow it here. 6340 return outliner::InstrType::Legal; 6341 6342 // Don't outline if link register or program counter value are used. 6343 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) 6344 return outliner::InstrType::Illegal; 6345 6346 if (MI.isCall()) { 6347 // Get the function associated with the call. Look at each operand and find 6348 // the one that represents the calle and get its name. 6349 const Function *Callee = nullptr; 6350 for (const MachineOperand &MOP : MI.operands()) { 6351 if (MOP.isGlobal()) { 6352 Callee = dyn_cast<Function>(MOP.getGlobal()); 6353 break; 6354 } 6355 } 6356 6357 // Dont't outline calls to "mcount" like functions, in particular Linux 6358 // kernel function tracing relies on it. 6359 if (Callee && 6360 (Callee->getName() == "\01__gnu_mcount_nc" || 6361 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) 6362 return outliner::InstrType::Illegal; 6363 6364 // If we don't know anything about the callee, assume it depends on the 6365 // stack layout of the caller. In that case, it's only legal to outline 6366 // as a tail-call. Explicitly list the call instructions we know about so 6367 // we don't get unexpected results with call pseudo-instructions. 6368 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 6369 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || 6370 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || 6371 Opc == ARM::tBLXi) 6372 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 6373 6374 if (!Callee) 6375 return UnknownCallOutlineType; 6376 6377 // We have a function we have information about. Check if it's something we 6378 // can safely outline. 6379 MachineFunction *CalleeMF = MMI.getMachineFunction(*Callee); 6380 6381 // We don't know what's going on with the callee at all. Don't touch it. 6382 if (!CalleeMF) 6383 return UnknownCallOutlineType; 6384 6385 // Check if we know anything about the callee saves on the function. If we 6386 // don't, then don't touch it, since that implies that we haven't computed 6387 // anything about its stack frame yet. 6388 MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); 6389 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || 6390 MFI.getNumObjects() > 0) 6391 return UnknownCallOutlineType; 6392 6393 // At this point, we can say that CalleeMF ought to not pass anything on the 6394 // stack. Therefore, we can outline it. 6395 return outliner::InstrType::Legal; 6396 } 6397 6398 // Since calls are handled, don't touch LR or PC 6399 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) 6400 return outliner::InstrType::Illegal; 6401 6402 // Does this use the stack? 6403 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { 6404 // True if there is no chance that any outlined candidate from this range 6405 // could require stack fixups. That is, both 6406 // * LR is available in the range (No save/restore around call) 6407 // * The range doesn't include calls (No save/restore in outlined frame) 6408 // are true. 6409 // These conditions also ensure correctness of the return address 6410 // authentication - we insert sign and authentication instructions only if 6411 // we save/restore LR on stack, but then this condition ensures that the 6412 // outlined range does not modify the SP, therefore the SP value used for 6413 // signing is the same as the one used for authentication. 6414 // FIXME: This is very restrictive; the flags check the whole block, 6415 // not just the bit we will try to outline. 6416 bool MightNeedStackFixUp = 6417 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | 6418 MachineOutlinerMBBFlags::HasCalls)); 6419 6420 if (!MightNeedStackFixUp) 6421 return outliner::InstrType::Legal; 6422 6423 // Any modification of SP will break our code to save/restore LR. 6424 // FIXME: We could handle some instructions which add a constant offset to 6425 // SP, with a bit more work. 6426 if (MI.modifiesRegister(ARM::SP, TRI)) 6427 return outliner::InstrType::Illegal; 6428 6429 // At this point, we have a stack instruction that we might need to fix up. 6430 // up. We'll handle it if it's a load or store. 6431 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), 6432 false)) 6433 return outliner::InstrType::Legal; 6434 6435 // We can't fix it up, so don't outline it. 6436 return outliner::InstrType::Illegal; 6437 } 6438 6439 // Be conservative with IT blocks. 6440 if (MI.readsRegister(ARM::ITSTATE, TRI) || 6441 MI.modifiesRegister(ARM::ITSTATE, TRI)) 6442 return outliner::InstrType::Illegal; 6443 6444 // Don't outline CFI instructions. 6445 if (MI.isCFIInstruction()) 6446 return outliner::InstrType::Illegal; 6447 6448 return outliner::InstrType::Legal; 6449 } 6450 6451 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { 6452 for (MachineInstr &MI : MBB) { 6453 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true); 6454 } 6455 } 6456 6457 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, 6458 MachineBasicBlock::iterator It, bool CFI, 6459 bool Auth) const { 6460 int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8)); 6461 unsigned MIFlags = CFI ? MachineInstr::FrameSetup : 0; 6462 assert(Align >= 8 && Align <= 256); 6463 if (Auth) { 6464 assert(Subtarget.isThumb2()); 6465 // Compute PAC in R12. Outlining ensures R12 is dead across the outlined 6466 // sequence. 6467 BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)).setMIFlags(MIFlags); 6468 BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP) 6469 .addReg(ARM::R12, RegState::Kill) 6470 .addReg(ARM::LR, RegState::Kill) 6471 .addReg(ARM::SP) 6472 .addImm(-Align) 6473 .add(predOps(ARMCC::AL)) 6474 .setMIFlags(MIFlags); 6475 } else { 6476 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; 6477 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) 6478 .addReg(ARM::LR, RegState::Kill) 6479 .addReg(ARM::SP) 6480 .addImm(-Align) 6481 .add(predOps(ARMCC::AL)) 6482 .setMIFlags(MIFlags); 6483 } 6484 6485 if (!CFI) 6486 return; 6487 6488 MachineFunction &MF = *MBB.getParent(); 6489 6490 // Add a CFI, saying CFA is offset by Align bytes from SP. 6491 int64_t StackPosEntry = 6492 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); 6493 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6494 .addCFIIndex(StackPosEntry) 6495 .setMIFlags(MachineInstr::FrameSetup); 6496 6497 // Add a CFI saying that the LR that we want to find is now higher than 6498 // before. 6499 int LROffset = Auth ? Align - 4 : Align; 6500 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6501 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6502 int64_t LRPosEntry = MF.addFrameInst( 6503 MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset)); 6504 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6505 .addCFIIndex(LRPosEntry) 6506 .setMIFlags(MachineInstr::FrameSetup); 6507 if (Auth) { 6508 // Add a CFI for the location of the return adddress PAC. 6509 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); 6510 int64_t RACPosEntry = MF.addFrameInst( 6511 MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align)); 6512 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6513 .addCFIIndex(RACPosEntry) 6514 .setMIFlags(MachineInstr::FrameSetup); 6515 } 6516 } 6517 6518 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, 6519 MachineBasicBlock::iterator It, 6520 Register Reg) const { 6521 MachineFunction &MF = *MBB.getParent(); 6522 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6523 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6524 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 6525 6526 int64_t LRPosEntry = MF.addFrameInst( 6527 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); 6528 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6529 .addCFIIndex(LRPosEntry) 6530 .setMIFlags(MachineInstr::FrameSetup); 6531 } 6532 6533 void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB, 6534 MachineBasicBlock::iterator It, 6535 bool CFI, bool Auth) const { 6536 int Align = Subtarget.getStackAlignment().value(); 6537 unsigned MIFlags = CFI ? MachineInstr::FrameDestroy : 0; 6538 if (Auth) { 6539 assert(Subtarget.isThumb2()); 6540 // Restore return address PAC and LR. 6541 BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST)) 6542 .addReg(ARM::R12, RegState::Define) 6543 .addReg(ARM::LR, RegState::Define) 6544 .addReg(ARM::SP, RegState::Define) 6545 .addReg(ARM::SP) 6546 .addImm(Align) 6547 .add(predOps(ARMCC::AL)) 6548 .setMIFlags(MIFlags); 6549 // LR authentication is after the CFI instructions, below. 6550 } else { 6551 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 6552 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) 6553 .addReg(ARM::SP, RegState::Define) 6554 .addReg(ARM::SP); 6555 if (!Subtarget.isThumb()) 6556 MIB.addReg(0); 6557 MIB.addImm(Subtarget.getStackAlignment().value()) 6558 .add(predOps(ARMCC::AL)) 6559 .setMIFlags(MIFlags); 6560 } 6561 6562 if (CFI) { 6563 // Now stack has moved back up... 6564 MachineFunction &MF = *MBB.getParent(); 6565 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6566 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6567 int64_t StackPosEntry = 6568 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 6569 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6570 .addCFIIndex(StackPosEntry) 6571 .setMIFlags(MachineInstr::FrameDestroy); 6572 6573 // ... and we have restored LR. 6574 int64_t LRPosEntry = 6575 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6576 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6577 .addCFIIndex(LRPosEntry) 6578 .setMIFlags(MachineInstr::FrameDestroy); 6579 6580 if (Auth) { 6581 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); 6582 int64_t Entry = 6583 MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC)); 6584 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6585 .addCFIIndex(Entry) 6586 .setMIFlags(MachineInstr::FrameDestroy); 6587 } 6588 } 6589 6590 if (Auth) 6591 BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT)); 6592 } 6593 6594 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( 6595 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6596 MachineFunction &MF = *MBB.getParent(); 6597 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6598 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6599 6600 int64_t LRPosEntry = 6601 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6602 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6603 .addCFIIndex(LRPosEntry) 6604 .setMIFlags(MachineInstr::FrameDestroy); 6605 } 6606 6607 void ARMBaseInstrInfo::buildOutlinedFrame( 6608 MachineBasicBlock &MBB, MachineFunction &MF, 6609 const outliner::OutlinedFunction &OF) const { 6610 // For thunk outlining, rewrite the last instruction from a call to a 6611 // tail-call. 6612 if (OF.FrameConstructionID == MachineOutlinerThunk) { 6613 MachineInstr *Call = &*--MBB.instr_end(); 6614 bool isThumb = Subtarget.isThumb(); 6615 unsigned FuncOp = isThumb ? 2 : 0; 6616 unsigned Opc = Call->getOperand(FuncOp).isReg() 6617 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr 6618 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd 6619 : ARM::tTAILJMPdND 6620 : ARM::TAILJMPd; 6621 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) 6622 .add(Call->getOperand(FuncOp)); 6623 if (isThumb && !Call->getOperand(FuncOp).isReg()) 6624 MIB.add(predOps(ARMCC::AL)); 6625 Call->eraseFromParent(); 6626 } 6627 6628 // Is there a call in the outlined range? 6629 auto IsNonTailCall = [](MachineInstr &MI) { 6630 return MI.isCall() && !MI.isReturn(); 6631 }; 6632 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { 6633 MachineBasicBlock::iterator It = MBB.begin(); 6634 MachineBasicBlock::iterator Et = MBB.end(); 6635 6636 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6637 OF.FrameConstructionID == MachineOutlinerThunk) 6638 Et = std::prev(MBB.end()); 6639 6640 // We have to save and restore LR, we need to add it to the liveins if it 6641 // is not already part of the set. This is suffient since outlined 6642 // functions only have one block. 6643 if (!MBB.isLiveIn(ARM::LR)) 6644 MBB.addLiveIn(ARM::LR); 6645 6646 // Insert a save before the outlined region 6647 bool Auth = MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(true); 6648 saveLROnStack(MBB, It, true, Auth); 6649 6650 // Fix up the instructions in the range, since we're going to modify the 6651 // stack. 6652 assert(OF.FrameConstructionID != MachineOutlinerDefault && 6653 "Can only fix up stack references once"); 6654 fixupPostOutline(MBB); 6655 6656 // Insert a restore before the terminator for the function. Restore LR. 6657 restoreLRFromStack(MBB, Et, true, Auth); 6658 } 6659 6660 // If this is a tail call outlined function, then there's already a return. 6661 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6662 OF.FrameConstructionID == MachineOutlinerThunk) 6663 return; 6664 6665 // Here we have to insert the return ourselves. Get the correct opcode from 6666 // current feature set. 6667 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) 6668 .add(predOps(ARMCC::AL)); 6669 6670 // Did we have to modify the stack by saving the link register? 6671 if (OF.FrameConstructionID != MachineOutlinerDefault && 6672 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault) 6673 return; 6674 6675 // We modified the stack. 6676 // Walk over the basic block and fix up all the stack accesses. 6677 fixupPostOutline(MBB); 6678 } 6679 6680 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( 6681 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 6682 MachineFunction &MF, outliner::Candidate &C) const { 6683 MachineInstrBuilder MIB; 6684 MachineBasicBlock::iterator CallPt; 6685 unsigned Opc; 6686 bool isThumb = Subtarget.isThumb(); 6687 6688 // Are we tail calling? 6689 if (C.CallConstructionID == MachineOutlinerTailCall) { 6690 // If yes, then we can just branch to the label. 6691 Opc = isThumb 6692 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND 6693 : ARM::TAILJMPd; 6694 MIB = BuildMI(MF, DebugLoc(), get(Opc)) 6695 .addGlobalAddress(M.getNamedValue(MF.getName())); 6696 if (isThumb) 6697 MIB.add(predOps(ARMCC::AL)); 6698 It = MBB.insert(It, MIB); 6699 return It; 6700 } 6701 6702 // Create the call instruction. 6703 Opc = isThumb ? ARM::tBL : ARM::BL; 6704 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); 6705 if (isThumb) 6706 CallMIB.add(predOps(ARMCC::AL)); 6707 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); 6708 6709 if (C.CallConstructionID == MachineOutlinerNoLRSave || 6710 C.CallConstructionID == MachineOutlinerThunk) { 6711 // No, so just insert the call. 6712 It = MBB.insert(It, CallMIB); 6713 return It; 6714 } 6715 6716 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 6717 // Can we save to a register? 6718 if (C.CallConstructionID == MachineOutlinerRegSave) { 6719 Register Reg = findRegisterToSaveLRTo(C); 6720 assert(Reg != 0 && "No callee-saved register available?"); 6721 6722 // Save and restore LR from that register. 6723 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); 6724 if (!AFI.isLRSpilled()) 6725 emitCFIForLRSaveToReg(MBB, It, Reg); 6726 CallPt = MBB.insert(It, CallMIB); 6727 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); 6728 if (!AFI.isLRSpilled()) 6729 emitCFIForLRRestoreFromReg(MBB, It); 6730 It--; 6731 return CallPt; 6732 } 6733 // We have the default case. Save and restore from SP. 6734 if (!MBB.isLiveIn(ARM::LR)) 6735 MBB.addLiveIn(ARM::LR); 6736 bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true); 6737 saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth); 6738 CallPt = MBB.insert(It, CallMIB); 6739 restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth); 6740 It--; 6741 return CallPt; 6742 } 6743 6744 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( 6745 MachineFunction &MF) const { 6746 return Subtarget.isMClass() && MF.getFunction().hasMinSize(); 6747 } 6748 6749 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable( 6750 const MachineInstr &MI) const { 6751 // Try hard to rematerialize any VCTPs because if we spill P0, it will block 6752 // the tail predication conversion. This means that the element count 6753 // register has to be live for longer, but that has to be better than 6754 // spill/restore and VPT predication. 6755 return (isVCTP(&MI) && !isPredicated(MI)) || 6756 TargetInstrInfo::isReallyTriviallyReMaterializable(MI); 6757 } 6758 6759 unsigned llvm::getBLXOpcode(const MachineFunction &MF) { 6760 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip 6761 : ARM::BLX; 6762 } 6763 6764 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { 6765 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip 6766 : ARM::tBLXr; 6767 } 6768 6769 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { 6770 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip 6771 : ARM::BLX_pred; 6772 } 6773 6774 namespace { 6775 class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 6776 MachineInstr *EndLoop, *LoopCount; 6777 MachineFunction *MF; 6778 const TargetInstrInfo *TII; 6779 6780 // Bitset[0 .. MAX_STAGES-1] ... iterations needed 6781 // [LAST_IS_USE] : last reference to register in schedule is a use 6782 // [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live 6783 static int constexpr MAX_STAGES = 30; 6784 static int constexpr LAST_IS_USE = MAX_STAGES; 6785 static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1; 6786 typedef std::bitset<MAX_STAGES + 2> IterNeed; 6787 typedef std::map<unsigned, IterNeed> IterNeeds; 6788 6789 void bumpCrossIterationPressure(RegPressureTracker &RPT, 6790 const IterNeeds &CIN); 6791 bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS); 6792 6793 // Meanings of the various stuff with loop types: 6794 // t2Bcc: 6795 // EndLoop = branch at end of original BB that will become a kernel 6796 // LoopCount = CC setter live into branch 6797 // t2LoopEnd: 6798 // EndLoop = branch at end of original BB 6799 // LoopCount = t2LoopDec 6800 public: 6801 ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount) 6802 : EndLoop(EndLoop), LoopCount(LoopCount), 6803 MF(EndLoop->getParent()->getParent()), 6804 TII(MF->getSubtarget().getInstrInfo()) {} 6805 6806 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 6807 // Only ignore the terminator. 6808 return MI == EndLoop || MI == LoopCount; 6809 } 6810 6811 bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override { 6812 if (tooMuchRegisterPressure(SSD, SMS)) 6813 return false; 6814 6815 return true; 6816 } 6817 6818 std::optional<bool> createTripCountGreaterCondition( 6819 int TC, MachineBasicBlock &MBB, 6820 SmallVectorImpl<MachineOperand> &Cond) override { 6821 6822 if (isCondBranchOpcode(EndLoop->getOpcode())) { 6823 Cond.push_back(EndLoop->getOperand(1)); 6824 Cond.push_back(EndLoop->getOperand(2)); 6825 if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) { 6826 TII->reverseBranchCondition(Cond); 6827 } 6828 return {}; 6829 } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) { 6830 // General case just lets the unrolled t2LoopDec do the subtraction and 6831 // therefore just needs to check if zero has been reached. 6832 MachineInstr *LoopDec = nullptr; 6833 for (auto &I : MBB.instrs()) 6834 if (I.getOpcode() == ARM::t2LoopDec) 6835 LoopDec = &I; 6836 assert(LoopDec && "Unable to find copied LoopDec"); 6837 // Check if we're done with the loop. 6838 BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri)) 6839 .addReg(LoopDec->getOperand(0).getReg()) 6840 .addImm(0) 6841 .addImm(ARMCC::AL) 6842 .addReg(ARM::NoRegister); 6843 Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ)); 6844 Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false)); 6845 return {}; 6846 } else 6847 llvm_unreachable("Unknown EndLoop"); 6848 } 6849 6850 void setPreheader(MachineBasicBlock *NewPreheader) override {} 6851 6852 void adjustTripCount(int TripCountAdjust) override {} 6853 }; 6854 6855 void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT, 6856 const IterNeeds &CIN) { 6857 // Increase pressure by the amounts in CrossIterationNeeds 6858 for (const auto &N : CIN) { 6859 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; 6860 for (int I = 0; I < Cnt; ++I) 6861 RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(), 6862 LaneBitmask::getAll()); 6863 } 6864 // Decrease pressure by the amounts in CrossIterationNeeds 6865 for (const auto &N : CIN) { 6866 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; 6867 for (int I = 0; I < Cnt; ++I) 6868 RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(), 6869 LaneBitmask::getNone()); 6870 } 6871 } 6872 6873 bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD, 6874 SMSchedule &SMS) { 6875 IterNeeds CrossIterationNeeds; 6876 6877 // Determine which values will be loop-carried after the schedule is 6878 // applied 6879 6880 for (auto &SU : SSD.SUnits) { 6881 const MachineInstr *MI = SU.getInstr(); 6882 int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU)); 6883 for (auto &S : SU.Succs) 6884 if (MI->isPHI() && S.getKind() == SDep::Anti) { 6885 Register Reg = S.getReg(); 6886 if (Reg.isVirtual()) 6887 CrossIterationNeeds[Reg.id()].set(0); 6888 } else if (S.isAssignedRegDep()) { 6889 int OStg = SMS.stageScheduled(S.getSUnit()); 6890 if (OStg >= 0 && OStg != Stg) { 6891 Register Reg = S.getReg(); 6892 if (Reg.isVirtual()) 6893 CrossIterationNeeds[Reg.id()] |= ((1 << (OStg - Stg)) - 1); 6894 } 6895 } 6896 } 6897 6898 // Determine more-or-less what the proposed schedule (reversed) is going to 6899 // be; it might not be quite the same because the within-cycle ordering 6900 // created by SMSchedule depends upon changes to help with address offsets and 6901 // the like. 6902 std::vector<SUnit *> ProposedSchedule; 6903 for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle) 6904 for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd; 6905 ++Stage) { 6906 std::deque<SUnit *> Instrs = 6907 SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval()); 6908 std::sort(Instrs.begin(), Instrs.end(), 6909 [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; }); 6910 for (SUnit *SU : Instrs) 6911 ProposedSchedule.push_back(SU); 6912 } 6913 6914 // Learn whether the last use/def of each cross-iteration register is a use or 6915 // def. If it is a def, RegisterPressure will implicitly increase max pressure 6916 // and we do not have to add the pressure. 6917 for (auto *SU : ProposedSchedule) 6918 for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid(); 6919 ++OperI) { 6920 auto MO = *OperI; 6921 if (!MO.isReg() || !MO.getReg()) 6922 continue; 6923 Register Reg = MO.getReg(); 6924 auto CIter = CrossIterationNeeds.find(Reg.id()); 6925 if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] || 6926 CIter->second[SEEN_AS_LIVE]) 6927 continue; 6928 if (MO.isDef() && !MO.isDead()) 6929 CIter->second.set(SEEN_AS_LIVE); 6930 else if (MO.isUse()) 6931 CIter->second.set(LAST_IS_USE); 6932 } 6933 for (auto &CI : CrossIterationNeeds) 6934 CI.second.reset(LAST_IS_USE); 6935 6936 RegionPressure RecRegPressure; 6937 RegPressureTracker RPTracker(RecRegPressure); 6938 RegisterClassInfo RegClassInfo; 6939 RegClassInfo.runOnMachineFunction(*MF); 6940 RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(), 6941 EndLoop->getParent()->end(), false, false); 6942 6943 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); 6944 6945 for (auto *SU : ProposedSchedule) { 6946 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 6947 RPTracker.setPos(std::next(CurInstI)); 6948 RPTracker.recede(); 6949 6950 // Track what cross-iteration registers would be seen as live 6951 for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) { 6952 auto MO = *OperI; 6953 if (!MO.isReg() || !MO.getReg()) 6954 continue; 6955 Register Reg = MO.getReg(); 6956 if (MO.isDef() && !MO.isDead()) { 6957 auto CIter = CrossIterationNeeds.find(Reg.id()); 6958 if (CIter != CrossIterationNeeds.end()) { 6959 CIter->second.reset(0); 6960 CIter->second.reset(SEEN_AS_LIVE); 6961 } 6962 } 6963 } 6964 for (auto &S : SU->Preds) { 6965 auto Stg = SMS.stageScheduled(SU); 6966 if (S.isAssignedRegDep()) { 6967 Register Reg = S.getReg(); 6968 auto CIter = CrossIterationNeeds.find(Reg.id()); 6969 if (CIter != CrossIterationNeeds.end()) { 6970 auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit())); 6971 assert(Stg2 <= Stg && "Data dependence upon earlier stage"); 6972 if (Stg - Stg2 < MAX_STAGES) 6973 CIter->second.set(Stg - Stg2); 6974 CIter->second.set(SEEN_AS_LIVE); 6975 } 6976 } 6977 } 6978 6979 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); 6980 } 6981 6982 auto &P = RPTracker.getPressure().MaxSetPressure; 6983 for (unsigned I = 0, E = P.size(); I < E; ++I) { 6984 // Exclude some Neon register classes. 6985 if (I == ARM::DQuad_with_ssub_0 || I == ARM::DTripleSpc_with_ssub_0 || 6986 I == ARM::DTriple_with_qsub_0_in_QPR) 6987 continue; 6988 6989 if (P[I] > RegClassInfo.getRegPressureSetLimit(I)) { 6990 return true; 6991 } 6992 } 6993 return false; 6994 } 6995 6996 } // namespace 6997 6998 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 6999 ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 7000 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 7001 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 7002 if (Preheader == LoopBB) 7003 Preheader = *std::next(LoopBB->pred_begin()); 7004 7005 if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) { 7006 // If the branch is a Bcc, then the CPSR should be set somewhere within the 7007 // block. We need to determine the reaching definition of CPSR so that 7008 // it can be marked as non-pipelineable, allowing the pipeliner to force 7009 // it into stage 0 or give up if it cannot or will not do so. 7010 MachineInstr *CCSetter = nullptr; 7011 for (auto &L : LoopBB->instrs()) { 7012 if (L.isCall()) 7013 return nullptr; 7014 if (isCPSRDefined(L)) 7015 CCSetter = &L; 7016 } 7017 if (CCSetter) 7018 return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter); 7019 else 7020 return nullptr; // Unable to find the CC setter, so unable to guarantee 7021 // that pipeline will work 7022 } 7023 7024 // Recognize: 7025 // preheader: 7026 // %1 = t2DoopLoopStart %0 7027 // loop: 7028 // %2 = phi %1, <not loop>, %..., %loop 7029 // %3 = t2LoopDec %2, <imm> 7030 // t2LoopEnd %3, %loop 7031 7032 if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) { 7033 for (auto &L : LoopBB->instrs()) 7034 if (L.isCall()) 7035 return nullptr; 7036 else if (isVCTP(&L)) 7037 return nullptr; 7038 Register LoopDecResult = I->getOperand(0).getReg(); 7039 MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo(); 7040 MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult); 7041 if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) 7042 return nullptr; 7043 MachineInstr *LoopStart = nullptr; 7044 for (auto &J : Preheader->instrs()) 7045 if (J.getOpcode() == ARM::t2DoLoopStart) 7046 LoopStart = &J; 7047 if (!LoopStart) 7048 return nullptr; 7049 return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec); 7050 } 7051 return nullptr; 7052 } 7053