1 //===- OutputSections.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "OutputSections.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "LinkerScript.h" 13 #include "Symbols.h" 14 #include "SyntheticSections.h" 15 #include "Target.h" 16 #include "lld/Common/Arrays.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/BinaryFormat/Dwarf.h" 19 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB, LLVM_ENABLE_ZSTD 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/LEB128.h" 22 #include "llvm/Support/Parallel.h" 23 #include "llvm/Support/Path.h" 24 #include "llvm/Support/TimeProfiler.h" 25 #undef in 26 #if LLVM_ENABLE_ZLIB 27 // Avoid introducing max as a macro from Windows headers. 28 #define NOMINMAX 29 #include <zlib.h> 30 #endif 31 #if LLVM_ENABLE_ZSTD 32 #include <zstd.h> 33 #endif 34 35 using namespace llvm; 36 using namespace llvm::dwarf; 37 using namespace llvm::object; 38 using namespace llvm::support::endian; 39 using namespace llvm::ELF; 40 using namespace lld; 41 using namespace lld::elf; 42 43 uint32_t OutputSection::getPhdrFlags() const { 44 uint32_t ret = 0; 45 if (ctx.arg.emachine != EM_ARM || !(flags & SHF_ARM_PURECODE)) 46 ret |= PF_R; 47 if (flags & SHF_WRITE) 48 ret |= PF_W; 49 if (flags & SHF_EXECINSTR) 50 ret |= PF_X; 51 return ret; 52 } 53 54 template <class ELFT> 55 void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) { 56 shdr->sh_entsize = entsize; 57 shdr->sh_addralign = addralign; 58 shdr->sh_type = type; 59 shdr->sh_offset = offset; 60 shdr->sh_flags = flags; 61 shdr->sh_info = info; 62 shdr->sh_link = link; 63 shdr->sh_addr = addr; 64 shdr->sh_size = size; 65 shdr->sh_name = shName; 66 } 67 68 OutputSection::OutputSection(Ctx &ctx, StringRef name, uint32_t type, 69 uint64_t flags) 70 : SectionBase(Output, ctx.internalFile, name, type, flags, /*link=*/0, 71 /*info=*/0, /*addralign=*/1, /*entsize=*/0), 72 ctx(ctx) {} 73 74 uint64_t OutputSection::getLMA() const { 75 return ptLoad ? addr + ptLoad->lmaOffset : addr; 76 } 77 78 // We allow sections of types listed below to merged into a 79 // single progbits section. This is typically done by linker 80 // scripts. Merging nobits and progbits will force disk space 81 // to be allocated for nobits sections. Other ones don't require 82 // any special treatment on top of progbits, so there doesn't 83 // seem to be a harm in merging them. 84 // 85 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow 86 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*). 87 static bool canMergeToProgbits(Ctx &ctx, unsigned type) { 88 return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY || 89 type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY || 90 type == SHT_NOTE || 91 (type == SHT_X86_64_UNWIND && ctx.arg.emachine == EM_X86_64); 92 } 93 94 // Record that isec will be placed in the OutputSection. isec does not become 95 // permanent until finalizeInputSections() is called. The function should not be 96 // used after finalizeInputSections() is called. If you need to add an 97 // InputSection post finalizeInputSections(), then you must do the following: 98 // 99 // 1. Find or create an InputSectionDescription to hold InputSection. 100 // 2. Add the InputSection to the InputSectionDescription::sections. 101 // 3. Call commitSection(isec). 102 void OutputSection::recordSection(InputSectionBase *isec) { 103 partition = isec->partition; 104 isec->parent = this; 105 if (commands.empty() || !isa<InputSectionDescription>(commands.back())) 106 commands.push_back(make<InputSectionDescription>("")); 107 auto *isd = cast<InputSectionDescription>(commands.back()); 108 isd->sectionBases.push_back(isec); 109 } 110 111 // Update fields (type, flags, alignment, etc) according to the InputSection 112 // isec. Also check whether the InputSection flags and type are consistent with 113 // other InputSections. 114 void OutputSection::commitSection(InputSection *isec) { 115 if (LLVM_UNLIKELY(type != isec->type)) { 116 if (!hasInputSections && !typeIsSet) { 117 type = isec->type; 118 } else if (isStaticRelSecType(type) && isStaticRelSecType(isec->type) && 119 (type == SHT_CREL) != (isec->type == SHT_CREL)) { 120 // Combine mixed SHT_REL[A] and SHT_CREL to SHT_CREL. 121 type = SHT_CREL; 122 if (type == SHT_REL) { 123 if (name.consume_front(".rel")) 124 name = ctx.saver.save(".crel" + name); 125 } else if (name.consume_front(".rela")) { 126 name = ctx.saver.save(".crel" + name); 127 } 128 } else { 129 if (typeIsSet || !canMergeToProgbits(ctx, type) || 130 !canMergeToProgbits(ctx, isec->type)) { 131 // The (NOLOAD) changes the section type to SHT_NOBITS, the intention is 132 // that the contents at that address is provided by some other means. 133 // Some projects (e.g. 134 // https://github.com/ClangBuiltLinux/linux/issues/1597) rely on the 135 // behavior. Other types get an error. 136 if (type != SHT_NOBITS) { 137 Err(ctx) << "section type mismatch for " << isec->name << "\n>>> " 138 << isec << ": " 139 << getELFSectionTypeName(ctx.arg.emachine, isec->type) 140 << "\n>>> output section " << name << ": " 141 << getELFSectionTypeName(ctx.arg.emachine, type); 142 } 143 } 144 if (!typeIsSet) 145 type = SHT_PROGBITS; 146 } 147 } 148 if (!hasInputSections) { 149 // If IS is the first section to be added to this section, 150 // initialize type, entsize and flags from isec. 151 hasInputSections = true; 152 entsize = isec->entsize; 153 flags = isec->flags; 154 } else { 155 // Otherwise, check if new type or flags are compatible with existing ones. 156 if ((flags ^ isec->flags) & SHF_TLS) 157 ErrAlways(ctx) << "incompatible section flags for " << name << "\n>>> " 158 << isec << ": 0x" << utohexstr(isec->flags, true) 159 << "\n>>> output section " << name << ": 0x" 160 << utohexstr(flags, true); 161 } 162 163 isec->parent = this; 164 uint64_t andMask = 165 ctx.arg.emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0; 166 uint64_t orMask = ~andMask; 167 uint64_t andFlags = (flags & isec->flags) & andMask; 168 uint64_t orFlags = (flags | isec->flags) & orMask; 169 flags = andFlags | orFlags; 170 if (nonAlloc) 171 flags &= ~(uint64_t)SHF_ALLOC; 172 173 addralign = std::max(addralign, isec->addralign); 174 175 // If this section contains a table of fixed-size entries, sh_entsize 176 // holds the element size. If it contains elements of different size we 177 // set sh_entsize to 0. 178 if (entsize != isec->entsize) 179 entsize = 0; 180 } 181 182 static MergeSyntheticSection *createMergeSynthetic(Ctx &ctx, StringRef name, 183 uint32_t type, 184 uint64_t flags, 185 uint32_t addralign) { 186 if ((flags & SHF_STRINGS) && ctx.arg.optimize >= 2) 187 return make<MergeTailSection>(ctx, name, type, flags, addralign); 188 return make<MergeNoTailSection>(ctx, name, type, flags, addralign); 189 } 190 191 // This function scans over the InputSectionBase list sectionBases to create 192 // InputSectionDescription::sections. 193 // 194 // It removes MergeInputSections from the input section array and adds 195 // new synthetic sections at the location of the first input section 196 // that it replaces. It then finalizes each synthetic section in order 197 // to compute an output offset for each piece of each input section. 198 void OutputSection::finalizeInputSections() { 199 auto *script = ctx.script; 200 std::vector<MergeSyntheticSection *> mergeSections; 201 for (SectionCommand *cmd : commands) { 202 auto *isd = dyn_cast<InputSectionDescription>(cmd); 203 if (!isd) 204 continue; 205 isd->sections.reserve(isd->sectionBases.size()); 206 for (InputSectionBase *s : isd->sectionBases) { 207 MergeInputSection *ms = dyn_cast<MergeInputSection>(s); 208 if (!ms) { 209 isd->sections.push_back(cast<InputSection>(s)); 210 continue; 211 } 212 213 // We do not want to handle sections that are not alive, so just remove 214 // them instead of trying to merge. 215 if (!ms->isLive()) 216 continue; 217 218 auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) { 219 // While we could create a single synthetic section for two different 220 // values of Entsize, it is better to take Entsize into consideration. 221 // 222 // With a single synthetic section no two pieces with different Entsize 223 // could be equal, so we may as well have two sections. 224 // 225 // Using Entsize in here also allows us to propagate it to the synthetic 226 // section. 227 // 228 // SHF_STRINGS section with different alignments should not be merged. 229 return sec->flags == ms->flags && sec->entsize == ms->entsize && 230 (sec->addralign == ms->addralign || !(sec->flags & SHF_STRINGS)); 231 }); 232 if (i == mergeSections.end()) { 233 MergeSyntheticSection *syn = createMergeSynthetic( 234 ctx, s->name, ms->type, ms->flags, ms->addralign); 235 mergeSections.push_back(syn); 236 i = std::prev(mergeSections.end()); 237 syn->entsize = ms->entsize; 238 isd->sections.push_back(syn); 239 // The merge synthetic section inherits the potential spill locations of 240 // its first contained section. 241 auto it = script->potentialSpillLists.find(ms); 242 if (it != script->potentialSpillLists.end()) 243 script->potentialSpillLists.try_emplace(syn, it->second); 244 } 245 (*i)->addSection(ms); 246 } 247 248 // sectionBases should not be used from this point onwards. Clear it to 249 // catch misuses. 250 isd->sectionBases.clear(); 251 252 // Some input sections may be removed from the list after ICF. 253 for (InputSection *s : isd->sections) 254 commitSection(s); 255 } 256 for (auto *ms : mergeSections) { 257 // Merging may have increased the alignment of a spillable section. Update 258 // the alignment of potential spill sections and their containing output 259 // sections. 260 if (auto it = script->potentialSpillLists.find(ms); 261 it != script->potentialSpillLists.end()) { 262 for (PotentialSpillSection *s = it->second.head; s; s = s->next) { 263 s->addralign = std::max(s->addralign, ms->addralign); 264 s->parent->addralign = std::max(s->parent->addralign, s->addralign); 265 } 266 } 267 268 ms->finalizeContents(); 269 } 270 } 271 272 static void sortByOrder(MutableArrayRef<InputSection *> in, 273 llvm::function_ref<int(InputSectionBase *s)> order) { 274 std::vector<std::pair<int, InputSection *>> v; 275 for (InputSection *s : in) 276 v.emplace_back(order(s), s); 277 llvm::stable_sort(v, less_first()); 278 279 for (size_t i = 0; i < v.size(); ++i) 280 in[i] = v[i].second; 281 } 282 283 uint64_t elf::getHeaderSize(Ctx &ctx) { 284 if (ctx.arg.oFormatBinary) 285 return 0; 286 return ctx.out.elfHeader->size + ctx.out.programHeaders->size; 287 } 288 289 void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) { 290 assert(isLive()); 291 for (SectionCommand *b : commands) 292 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 293 sortByOrder(isd->sections, order); 294 } 295 296 static void nopInstrFill(Ctx &ctx, uint8_t *buf, size_t size) { 297 if (size == 0) 298 return; 299 unsigned i = 0; 300 if (size == 0) 301 return; 302 std::vector<std::vector<uint8_t>> nopFiller = *ctx.target->nopInstrs; 303 unsigned num = size / nopFiller.back().size(); 304 for (unsigned c = 0; c < num; ++c) { 305 memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size()); 306 i += nopFiller.back().size(); 307 } 308 unsigned remaining = size - i; 309 if (!remaining) 310 return; 311 assert(nopFiller[remaining - 1].size() == remaining); 312 memcpy(buf + i, nopFiller[remaining - 1].data(), remaining); 313 } 314 315 // Fill [Buf, Buf + Size) with Filler. 316 // This is used for linker script "=fillexp" command. 317 static void fill(uint8_t *buf, size_t size, 318 const std::array<uint8_t, 4> &filler) { 319 size_t i = 0; 320 for (; i + 4 < size; i += 4) 321 memcpy(buf + i, filler.data(), 4); 322 memcpy(buf + i, filler.data(), size - i); 323 } 324 325 #if LLVM_ENABLE_ZLIB 326 static SmallVector<uint8_t, 0> deflateShard(Ctx &ctx, ArrayRef<uint8_t> in, 327 int level, int flush) { 328 // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate 329 // data with no zlib header or trailer. 330 z_stream s = {}; 331 auto res = deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY); 332 if (res != 0) { 333 Err(ctx) << "--compress-sections: deflateInit2 returned " << res; 334 return {}; 335 } 336 s.next_in = const_cast<uint8_t *>(in.data()); 337 s.avail_in = in.size(); 338 339 // Allocate a buffer of half of the input size, and grow it by 1.5x if 340 // insufficient. 341 SmallVector<uint8_t, 0> out; 342 size_t pos = 0; 343 out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64)); 344 do { 345 if (pos == out.size()) 346 out.resize_for_overwrite(out.size() * 3 / 2); 347 s.next_out = out.data() + pos; 348 s.avail_out = out.size() - pos; 349 (void)deflate(&s, flush); 350 pos = s.next_out - out.data(); 351 } while (s.avail_out == 0); 352 assert(s.avail_in == 0); 353 354 out.truncate(pos); 355 deflateEnd(&s); 356 return out; 357 } 358 #endif 359 360 // Compress certain non-SHF_ALLOC sections: 361 // 362 // * (if --compress-debug-sections is specified) non-empty .debug_* sections 363 // * (if --compress-sections is specified) matched sections 364 template <class ELFT> void OutputSection::maybeCompress(Ctx &ctx) { 365 using Elf_Chdr = typename ELFT::Chdr; 366 (void)sizeof(Elf_Chdr); 367 368 DebugCompressionType ctype = DebugCompressionType::None; 369 size_t compressedSize = sizeof(Elf_Chdr); 370 unsigned level = 0; // default compression level 371 if (!(flags & SHF_ALLOC) && ctx.arg.compressDebugSections && 372 name.starts_with(".debug_")) 373 ctype = *ctx.arg.compressDebugSections; 374 for (auto &[glob, t, l] : ctx.arg.compressSections) 375 if (glob.match(name)) 376 std::tie(ctype, level) = {t, l}; 377 if (ctype == DebugCompressionType::None) 378 return; 379 if (flags & SHF_ALLOC) { 380 Err(ctx) << "--compress-sections: section '" << name 381 << "' with the SHF_ALLOC flag cannot be compressed"; 382 return; 383 } 384 385 llvm::TimeTraceScope timeScope("Compress sections"); 386 auto buf = std::make_unique<uint8_t[]>(size); 387 // Write uncompressed data to a temporary zero-initialized buffer. 388 { 389 parallel::TaskGroup tg; 390 writeTo<ELFT>(ctx, buf.get(), tg); 391 } 392 // The generic ABI specifies "The sh_size and sh_addralign fields of the 393 // section header for a compressed section reflect the requirements of the 394 // compressed section." However, 1-byte alignment has been wildly accepted 395 // and utilized for a long time. Removing alignment padding is particularly 396 // useful when there are many compressed output sections. 397 addralign = 1; 398 399 // Split input into 1-MiB shards. 400 [[maybe_unused]] constexpr size_t shardSize = 1 << 20; 401 auto shardsIn = split(ArrayRef<uint8_t>(buf.get(), size), shardSize); 402 const size_t numShards = shardsIn.size(); 403 auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards); 404 405 #if LLVM_ENABLE_ZSTD 406 // Use ZSTD's streaming compression API. See 407 // http://facebook.github.io/zstd/zstd_manual.html "Streaming compression - 408 // HowTo". 409 if (ctype == DebugCompressionType::Zstd) { 410 parallelFor(0, numShards, [&](size_t i) { 411 SmallVector<uint8_t, 0> out; 412 ZSTD_CCtx *cctx = ZSTD_createCCtx(); 413 ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, level); 414 ZSTD_inBuffer zib = {shardsIn[i].data(), shardsIn[i].size(), 0}; 415 ZSTD_outBuffer zob = {nullptr, 0, 0}; 416 size_t size; 417 do { 418 // Allocate a buffer of half of the input size, and grow it by 1.5x if 419 // insufficient. 420 if (zob.pos == zob.size) { 421 out.resize_for_overwrite( 422 zob.size ? zob.size * 3 / 2 : std::max<size_t>(zib.size / 4, 64)); 423 zob = {out.data(), out.size(), zob.pos}; 424 } 425 size = ZSTD_compressStream2(cctx, &zob, &zib, ZSTD_e_end); 426 assert(!ZSTD_isError(size)); 427 } while (size != 0); 428 out.truncate(zob.pos); 429 ZSTD_freeCCtx(cctx); 430 shardsOut[i] = std::move(out); 431 }); 432 compressed.type = ELFCOMPRESS_ZSTD; 433 for (size_t i = 0; i != numShards; ++i) 434 compressedSize += shardsOut[i].size(); 435 } 436 #endif 437 438 #if LLVM_ENABLE_ZLIB 439 // We chose 1 (Z_BEST_SPEED) as the default compression level because it is 440 // fast and provides decent compression ratios. 441 if (ctype == DebugCompressionType::Zlib) { 442 if (!level) 443 level = Z_BEST_SPEED; 444 445 // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all 446 // shards but the last to flush the output to a byte boundary to be 447 // concatenated with the next shard. 448 auto shardsAdler = std::make_unique<uint32_t[]>(numShards); 449 parallelFor(0, numShards, [&](size_t i) { 450 shardsOut[i] = deflateShard(ctx, shardsIn[i], level, 451 i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH); 452 shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size()); 453 }); 454 455 // Update section size and combine Alder-32 checksums. 456 uint32_t checksum = 1; // Initial Adler-32 value 457 compressedSize += 2; // Elf_Chdir and zlib header 458 for (size_t i = 0; i != numShards; ++i) { 459 compressedSize += shardsOut[i].size(); 460 checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size()); 461 } 462 compressedSize += 4; // checksum 463 compressed.type = ELFCOMPRESS_ZLIB; 464 compressed.checksum = checksum; 465 } 466 #endif 467 468 if (compressedSize >= size) 469 return; 470 compressed.uncompressedSize = size; 471 compressed.shards = std::move(shardsOut); 472 compressed.numShards = numShards; 473 size = compressedSize; 474 flags |= SHF_COMPRESSED; 475 } 476 477 static void writeInt(Ctx &ctx, uint8_t *buf, uint64_t data, uint64_t size) { 478 if (size == 1) 479 *buf = data; 480 else if (size == 2) 481 write16(ctx, buf, data); 482 else if (size == 4) 483 write32(ctx, buf, data); 484 else if (size == 8) 485 write64(ctx, buf, data); 486 else 487 llvm_unreachable("unsupported Size argument"); 488 } 489 490 template <class ELFT> 491 void OutputSection::writeTo(Ctx &ctx, uint8_t *buf, parallel::TaskGroup &tg) { 492 llvm::TimeTraceScope timeScope("Write sections", name); 493 if (type == SHT_NOBITS) 494 return; 495 if (type == SHT_CREL && !(flags & SHF_ALLOC)) { 496 buf += encodeULEB128(crelHeader, buf); 497 memcpy(buf, crelBody.data(), crelBody.size()); 498 return; 499 } 500 501 // If the section is compressed due to 502 // --compress-debug-section/--compress-sections, the content is already known. 503 if (compressed.shards) { 504 auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf); 505 chdr->ch_type = compressed.type; 506 chdr->ch_size = compressed.uncompressedSize; 507 chdr->ch_addralign = addralign; 508 buf += sizeof(*chdr); 509 510 auto offsets = std::make_unique<size_t[]>(compressed.numShards); 511 if (compressed.type == ELFCOMPRESS_ZLIB) { 512 buf[0] = 0x78; // CMF 513 buf[1] = 0x01; // FLG: best speed 514 offsets[0] = 2; // zlib header 515 write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum); 516 } 517 518 // Compute shard offsets. 519 for (size_t i = 1; i != compressed.numShards; ++i) 520 offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size(); 521 parallelFor(0, compressed.numShards, [&](size_t i) { 522 memcpy(buf + offsets[i], compressed.shards[i].data(), 523 compressed.shards[i].size()); 524 }); 525 return; 526 } 527 528 // Write leading padding. 529 ArrayRef<InputSection *> sections = getInputSections(*this, storage); 530 std::array<uint8_t, 4> filler = getFiller(ctx); 531 bool nonZeroFiller = read32(ctx, filler.data()) != 0; 532 if (nonZeroFiller) 533 fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler); 534 535 if (type == SHT_CREL && !(flags & SHF_ALLOC)) { 536 buf += encodeULEB128(crelHeader, buf); 537 memcpy(buf, crelBody.data(), crelBody.size()); 538 return; 539 } 540 541 auto fn = [=, &ctx](size_t begin, size_t end) { 542 size_t numSections = sections.size(); 543 for (size_t i = begin; i != end; ++i) { 544 InputSection *isec = sections[i]; 545 if (auto *s = dyn_cast<SyntheticSection>(isec)) 546 s->writeTo(buf + isec->outSecOff); 547 else 548 isec->writeTo<ELFT>(ctx, buf + isec->outSecOff); 549 550 // When in Arm BE8 mode, the linker has to convert the big-endian 551 // instructions to little-endian, leaving the data big-endian. 552 if (ctx.arg.emachine == EM_ARM && !ctx.arg.isLE && ctx.arg.armBe8 && 553 (flags & SHF_EXECINSTR)) 554 convertArmInstructionstoBE8(ctx, isec, buf + isec->outSecOff); 555 556 // Fill gaps between sections. 557 if (nonZeroFiller) { 558 uint8_t *start = buf + isec->outSecOff + isec->getSize(); 559 uint8_t *end; 560 if (i + 1 == numSections) 561 end = buf + size; 562 else 563 end = buf + sections[i + 1]->outSecOff; 564 if (isec->nopFiller) { 565 assert(ctx.target->nopInstrs); 566 nopInstrFill(ctx, start, end - start); 567 } else 568 fill(start, end - start, filler); 569 } 570 } 571 }; 572 573 // If there is any BYTE()-family command (rare), write the section content 574 // first then process BYTE to overwrite the filler content. The write is 575 // serial due to the limitation of llvm/Support/Parallel.h. 576 bool written = false; 577 size_t numSections = sections.size(); 578 for (SectionCommand *cmd : commands) 579 if (auto *data = dyn_cast<ByteCommand>(cmd)) { 580 if (!std::exchange(written, true)) 581 fn(0, numSections); 582 writeInt(ctx, buf + data->offset, data->expression().getValue(), 583 data->size); 584 } 585 if (written || !numSections) 586 return; 587 588 // There is no data command. Write content asynchronously to overlap the write 589 // time with other output sections. Note, if a linker script specifies 590 // overlapping output sections (needs --noinhibit-exec or --no-check-sections 591 // to supress the error), the output may be non-deterministic. 592 const size_t taskSizeLimit = 4 << 20; 593 for (size_t begin = 0, i = 0, taskSize = 0;;) { 594 taskSize += sections[i]->getSize(); 595 bool done = ++i == numSections; 596 if (done || taskSize >= taskSizeLimit) { 597 tg.spawn([=] { fn(begin, i); }); 598 if (done) 599 break; 600 begin = i; 601 taskSize = 0; 602 } 603 } 604 } 605 606 static void finalizeShtGroup(Ctx &ctx, OutputSection *os, 607 InputSection *section) { 608 // sh_link field for SHT_GROUP sections should contain the section index of 609 // the symbol table. 610 os->link = ctx.in.symTab->getParent()->sectionIndex; 611 612 if (!section) 613 return; 614 615 // sh_info then contain index of an entry in symbol table section which 616 // provides signature of the section group. 617 ArrayRef<Symbol *> symbols = section->file->getSymbols(); 618 os->info = ctx.in.symTab->getSymbolIndex(*symbols[section->info]); 619 620 // Some group members may be combined or discarded, so we need to compute the 621 // new size. The content will be rewritten in InputSection::copyShtGroup. 622 DenseSet<uint32_t> seen; 623 ArrayRef<InputSectionBase *> sections = section->file->getSections(); 624 for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1)) 625 if (OutputSection *osec = sections[read32(ctx, &idx)]->getOutputSection()) 626 seen.insert(osec->sectionIndex); 627 os->size = (1 + seen.size()) * sizeof(uint32_t); 628 } 629 630 template <class uint> 631 LLVM_ATTRIBUTE_ALWAYS_INLINE static void 632 encodeOneCrel(Ctx &ctx, raw_svector_ostream &os, 633 Elf_Crel<sizeof(uint) == 8> &out, uint offset, const Symbol &sym, 634 uint32_t type, uint addend) { 635 const auto deltaOffset = static_cast<uint64_t>(offset - out.r_offset); 636 out.r_offset = offset; 637 int64_t symidx = ctx.in.symTab->getSymbolIndex(sym); 638 if (sym.type == STT_SECTION) { 639 auto *d = dyn_cast<Defined>(&sym); 640 if (d) { 641 SectionBase *section = d->section; 642 assert(section->isLive()); 643 addend = sym.getVA(ctx, addend) - section->getOutputSection()->addr; 644 } else { 645 // Encode R_*_NONE(symidx=0). 646 symidx = type = addend = 0; 647 } 648 } 649 650 // Similar to llvm::ELF::encodeCrel. 651 uint8_t b = deltaOffset * 8 + (out.r_symidx != symidx) + 652 (out.r_type != type ? 2 : 0) + 653 (uint(out.r_addend) != addend ? 4 : 0); 654 if (deltaOffset < 0x10) { 655 os << char(b); 656 } else { 657 os << char(b | 0x80); 658 encodeULEB128(deltaOffset >> 4, os); 659 } 660 if (b & 1) { 661 encodeSLEB128(static_cast<int32_t>(symidx - out.r_symidx), os); 662 out.r_symidx = symidx; 663 } 664 if (b & 2) { 665 encodeSLEB128(static_cast<int32_t>(type - out.r_type), os); 666 out.r_type = type; 667 } 668 if (b & 4) { 669 encodeSLEB128(std::make_signed_t<uint>(addend - out.r_addend), os); 670 out.r_addend = addend; 671 } 672 } 673 674 template <class ELFT> 675 static size_t relToCrel(Ctx &ctx, raw_svector_ostream &os, 676 Elf_Crel<ELFT::Is64Bits> &out, InputSection *relSec, 677 InputSectionBase *sec) { 678 const auto &file = *cast<ELFFileBase>(relSec->file); 679 if (relSec->type == SHT_REL) { 680 // REL conversion is complex and unsupported yet. 681 Err(ctx) << relSec << ": REL cannot be converted to CREL"; 682 return 0; 683 } 684 auto rels = relSec->getDataAs<typename ELFT::Rela>(); 685 for (auto rel : rels) { 686 encodeOneCrel<typename ELFT::uint>( 687 ctx, os, out, sec->getVA(rel.r_offset), file.getRelocTargetSym(rel), 688 rel.getType(ctx.arg.isMips64EL), getAddend<ELFT>(rel)); 689 } 690 return rels.size(); 691 } 692 693 // Compute the content of a non-alloc CREL section due to -r or --emit-relocs. 694 // Input CREL sections are decoded while REL[A] need to be converted. 695 template <bool is64> void OutputSection::finalizeNonAllocCrel(Ctx &ctx) { 696 using uint = typename Elf_Crel_Impl<is64>::uint; 697 raw_svector_ostream os(crelBody); 698 uint64_t totalCount = 0; 699 Elf_Crel<is64> out{}; 700 assert(commands.size() == 1); 701 auto *isd = cast<InputSectionDescription>(commands[0]); 702 for (InputSection *relSec : isd->sections) { 703 const auto &file = *cast<ELFFileBase>(relSec->file); 704 InputSectionBase *sec = relSec->getRelocatedSection(); 705 if (relSec->type == SHT_CREL) { 706 RelocsCrel<is64> entries(relSec->content_); 707 totalCount += entries.size(); 708 for (Elf_Crel_Impl<is64> r : entries) { 709 encodeOneCrel<uint>(ctx, os, out, uint(sec->getVA(r.r_offset)), 710 file.getSymbol(r.r_symidx), r.r_type, r.r_addend); 711 } 712 continue; 713 } 714 715 // Convert REL[A] to CREL. 716 if constexpr (is64) { 717 totalCount += ctx.arg.isLE 718 ? relToCrel<ELF64LE>(ctx, os, out, relSec, sec) 719 : relToCrel<ELF64BE>(ctx, os, out, relSec, sec); 720 } else { 721 totalCount += ctx.arg.isLE 722 ? relToCrel<ELF32LE>(ctx, os, out, relSec, sec) 723 : relToCrel<ELF32BE>(ctx, os, out, relSec, sec); 724 } 725 } 726 727 crelHeader = totalCount * 8 + 4; 728 size = getULEB128Size(crelHeader) + crelBody.size(); 729 } 730 731 void OutputSection::finalize(Ctx &ctx) { 732 InputSection *first = getFirstInputSection(this); 733 734 if (flags & SHF_LINK_ORDER) { 735 // We must preserve the link order dependency of sections with the 736 // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We 737 // need to translate the InputSection sh_link to the OutputSection sh_link, 738 // all InputSections in the OutputSection have the same dependency. 739 if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first)) 740 link = ex->getLinkOrderDep()->getParent()->sectionIndex; 741 else if (first->flags & SHF_LINK_ORDER) 742 if (auto *d = first->getLinkOrderDep()) 743 link = d->getParent()->sectionIndex; 744 } 745 746 if (type == SHT_GROUP) { 747 finalizeShtGroup(ctx, this, first); 748 return; 749 } 750 751 if (!ctx.arg.copyRelocs || !isStaticRelSecType(type)) 752 return; 753 754 // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs. 755 // Normally 'type' was changed by 'first' so 'first' should be non-null. 756 // However, if the output section is .rela.dyn, 'type' can be set by the empty 757 // synthetic .rela.plt and first can be null. 758 if (!first || isa<SyntheticSection>(first)) 759 return; 760 761 link = ctx.in.symTab->getParent()->sectionIndex; 762 // sh_info for SHT_REL[A] sections should contain the section header index of 763 // the section to which the relocation applies. 764 InputSectionBase *s = first->getRelocatedSection(); 765 info = s->getOutputSection()->sectionIndex; 766 flags |= SHF_INFO_LINK; 767 // Finalize the content of non-alloc CREL. 768 if (type == SHT_CREL) { 769 if (ctx.arg.is64) 770 finalizeNonAllocCrel<true>(ctx); 771 else 772 finalizeNonAllocCrel<false>(ctx); 773 } 774 } 775 776 // Returns true if S is in one of the many forms the compiler driver may pass 777 // crtbegin files. 778 // 779 // Gcc uses any of crtbegin[<empty>|S|T].o. 780 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o. 781 782 static bool isCrt(StringRef s, StringRef beginEnd) { 783 s = sys::path::filename(s); 784 if (!s.consume_back(".o")) 785 return false; 786 if (s.consume_front("clang_rt.")) 787 return s.consume_front(beginEnd); 788 return s.consume_front(beginEnd) && s.size() <= 1; 789 } 790 791 // .ctors and .dtors are sorted by this order: 792 // 793 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1). 794 // 2. The section is named ".ctors" or ".dtors" (priority: 65536). 795 // 3. The section has an optional priority value in the form of ".ctors.N" or 796 // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N). 797 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0). 798 // 799 // For 2 and 3, the sections are sorted by priority from high to low, e.g. 800 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's 801 // internal linker scripts, the sorting is by string comparison which can 802 // achieve the same goal given the optional priority values are of the same 803 // length. 804 // 805 // In an ideal world, we don't need this function because .init_array and 806 // .ctors are duplicate features (and .init_array is newer.) However, there 807 // are too many real-world use cases of .ctors, so we had no choice to 808 // support that with this rather ad-hoc semantics. 809 static bool compCtors(const InputSection *a, const InputSection *b) { 810 bool beginA = isCrt(a->file->getName(), "crtbegin"); 811 bool beginB = isCrt(b->file->getName(), "crtbegin"); 812 if (beginA != beginB) 813 return beginA; 814 bool endA = isCrt(a->file->getName(), "crtend"); 815 bool endB = isCrt(b->file->getName(), "crtend"); 816 if (endA != endB) 817 return endB; 818 return getPriority(a->name) > getPriority(b->name); 819 } 820 821 // Sorts input sections by the special rules for .ctors and .dtors. 822 // Unfortunately, the rules are different from the one for .{init,fini}_array. 823 // Read the comment above. 824 void OutputSection::sortCtorsDtors() { 825 assert(commands.size() == 1); 826 auto *isd = cast<InputSectionDescription>(commands[0]); 827 llvm::stable_sort(isd->sections, compCtors); 828 } 829 830 // If an input string is in the form of "foo.N" where N is a number, return N 831 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one 832 // greater than the lowest priority. 833 int elf::getPriority(StringRef s) { 834 size_t pos = s.rfind('.'); 835 if (pos == StringRef::npos) 836 return 65536; 837 int v = 65536; 838 if (to_integer(s.substr(pos + 1), v, 10) && 839 (pos == 6 && (s.starts_with(".ctors") || s.starts_with(".dtors")))) 840 v = 65535 - v; 841 return v; 842 } 843 844 InputSection *elf::getFirstInputSection(const OutputSection *os) { 845 for (SectionCommand *cmd : os->commands) 846 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 847 if (!isd->sections.empty()) 848 return isd->sections[0]; 849 return nullptr; 850 } 851 852 ArrayRef<InputSection *> 853 elf::getInputSections(const OutputSection &os, 854 SmallVector<InputSection *, 0> &storage) { 855 ArrayRef<InputSection *> ret; 856 storage.clear(); 857 for (SectionCommand *cmd : os.commands) { 858 auto *isd = dyn_cast<InputSectionDescription>(cmd); 859 if (!isd) 860 continue; 861 if (ret.empty()) { 862 ret = isd->sections; 863 } else { 864 if (storage.empty()) 865 storage.assign(ret.begin(), ret.end()); 866 storage.insert(storage.end(), isd->sections.begin(), isd->sections.end()); 867 } 868 } 869 return storage.empty() ? ret : ArrayRef(storage); 870 } 871 872 // Sorts input sections by section name suffixes, so that .foo.N comes 873 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. 874 // We want to keep the original order if the priorities are the same 875 // because the compiler keeps the original initialization order in a 876 // translation unit and we need to respect that. 877 // For more detail, read the section of the GCC's manual about init_priority. 878 void OutputSection::sortInitFini() { 879 // Sort sections by priority. 880 sort([](InputSectionBase *s) { return getPriority(s->name); }); 881 } 882 883 std::array<uint8_t, 4> OutputSection::getFiller(Ctx &ctx) { 884 if (filler) 885 return *filler; 886 if (flags & SHF_EXECINSTR) 887 return ctx.target->trapInstr; 888 return {0, 0, 0, 0}; 889 } 890 891 void OutputSection::checkDynRelAddends(Ctx &ctx) { 892 assert(ctx.arg.writeAddends && ctx.arg.checkDynamicRelocs); 893 assert(isStaticRelSecType(type)); 894 SmallVector<InputSection *, 0> storage; 895 ArrayRef<InputSection *> sections = getInputSections(*this, storage); 896 parallelFor(0, sections.size(), [&](size_t i) { 897 // When linking with -r or --emit-relocs we might also call this function 898 // for input .rel[a].<sec> sections which we simply pass through to the 899 // output. We skip over those and only look at the synthetic relocation 900 // sections created during linking. 901 if (!SyntheticSection::classof(sections[i]) || 902 !is_contained({ELF::SHT_REL, ELF::SHT_RELA, ELF::SHT_RELR}, 903 sections[i]->type)) 904 return; 905 const auto *sec = cast<RelocationBaseSection>(sections[i]); 906 if (!sec) 907 return; 908 for (const DynamicReloc &rel : sec->relocs) { 909 int64_t addend = rel.addend; 910 const OutputSection *relOsec = rel.inputSec->getOutputSection(); 911 assert(relOsec != nullptr && "missing output section for relocation"); 912 // Some targets have NOBITS synthetic sections with dynamic relocations 913 // with non-zero addends. Skip such sections. 914 if (is_contained({EM_PPC, EM_PPC64}, ctx.arg.emachine) && 915 (rel.inputSec == ctx.in.ppc64LongBranchTarget.get() || 916 rel.inputSec == ctx.in.igotPlt.get())) 917 continue; 918 const uint8_t *relocTarget = ctx.bufferStart + relOsec->offset + 919 rel.inputSec->getOffset(rel.offsetInSec); 920 // For SHT_NOBITS the written addend is always zero. 921 int64_t writtenAddend = 922 relOsec->type == SHT_NOBITS 923 ? 0 924 : ctx.target->getImplicitAddend(relocTarget, rel.type); 925 if (addend != writtenAddend) 926 InternalErr(ctx, relocTarget) 927 << "wrote incorrect addend value 0x" << utohexstr(writtenAddend) 928 << " instead of 0x" << utohexstr(addend) 929 << " for dynamic relocation " << rel.type << " at offset 0x" 930 << utohexstr(rel.getOffset()) 931 << (rel.sym ? " against symbol " + rel.sym->getName() : ""); 932 } 933 }); 934 } 935 936 template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr); 937 template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr); 938 template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr); 939 template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr); 940 941 template void OutputSection::writeTo<ELF32LE>(Ctx &, uint8_t *, 942 llvm::parallel::TaskGroup &); 943 template void OutputSection::writeTo<ELF32BE>(Ctx &, uint8_t *, 944 llvm::parallel::TaskGroup &); 945 template void OutputSection::writeTo<ELF64LE>(Ctx &, uint8_t *, 946 llvm::parallel::TaskGroup &); 947 template void OutputSection::writeTo<ELF64BE>(Ctx &, uint8_t *, 948 llvm::parallel::TaskGroup &); 949 950 template void OutputSection::maybeCompress<ELF32LE>(Ctx &); 951 template void OutputSection::maybeCompress<ELF32BE>(Ctx &); 952 template void OutputSection::maybeCompress<ELF64LE>(Ctx &); 953 template void OutputSection::maybeCompress<ELF64BE>(Ctx &); 954