xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/display/dc/dce110/amdgpu_dce110_hw_sequencer.c (revision b0cb4d44dd18a4c2aa4f36aa96fd7726e1cf9bbb)
1 /*	$NetBSD: amdgpu_dce110_hw_sequencer.c,v 1.5 2021/12/19 11:59:30 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2015 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: AMD
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: amdgpu_dce110_hw_sequencer.c,v 1.5 2021/12/19 11:59:30 riastradh Exp $");
30 
31 #include <linux/delay.h>
32 
33 #include "dm_services.h"
34 #include "dc.h"
35 #include "dc_bios_types.h"
36 #include "core_types.h"
37 #include "core_status.h"
38 #include "resource.h"
39 #include "dm_helpers.h"
40 #include "dce110_hw_sequencer.h"
41 #include "dce110_timing_generator.h"
42 #include "dce/dce_hwseq.h"
43 #include "gpio_service_interface.h"
44 
45 #include "dce110_compressor.h"
46 
47 #include "bios/bios_parser_helper.h"
48 #include "timing_generator.h"
49 #include "mem_input.h"
50 #include "opp.h"
51 #include "ipp.h"
52 #include "transform.h"
53 #include "stream_encoder.h"
54 #include "link_encoder.h"
55 #include "link_hwss.h"
56 #include "clock_source.h"
57 #include "clk_mgr.h"
58 #include "abm.h"
59 #include "audio.h"
60 #include "reg_helper.h"
61 
62 /* include DCE11 register header files */
63 #include "dce/dce_11_0_d.h"
64 #include "dce/dce_11_0_sh_mask.h"
65 #include "custom_float.h"
66 
67 #include "atomfirmware.h"
68 
69 #define GAMMA_HW_POINTS_NUM 256
70 
71 /*
72  * All values are in milliseconds;
73  * For eDP, after power-up/power/down,
74  * 300/500 msec max. delay from LCDVCC to black video generation
75  */
76 #define PANEL_POWER_UP_TIMEOUT 300
77 #define PANEL_POWER_DOWN_TIMEOUT 500
78 #define HPD_CHECK_INTERVAL 10
79 
80 #define CTX \
81 	hws->ctx
82 
83 #define DC_LOGGER_INIT()
84 
85 #define REG(reg)\
86 	hws->regs->reg
87 
88 #undef FN
89 #define FN(reg_name, field_name) \
90 	hws->shifts->field_name, hws->masks->field_name
91 
92 struct dce110_hw_seq_reg_offsets {
93 	uint32_t crtc;
94 };
95 
96 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
97 {
98 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
99 },
100 {
101 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
102 },
103 {
104 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
105 },
106 {
107 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
108 }
109 };
110 
111 #define HW_REG_BLND(reg, id)\
112 	(reg + reg_offsets[id].blnd)
113 
114 #define HW_REG_CRTC(reg, id)\
115 	(reg + reg_offsets[id].crtc)
116 
117 #define MAX_WATERMARK 0xFFFF
118 #define SAFE_NBP_MARK 0x7FFF
119 
120 /*******************************************************************************
121  * Private definitions
122  ******************************************************************************/
123 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)124 static void dce110_init_pte(struct dc_context *ctx)
125 {
126 	uint32_t addr;
127 	uint32_t value = 0;
128 	uint32_t chunk_int = 0;
129 	uint32_t chunk_mul = 0;
130 
131 	addr = mmUNP_DVMM_PTE_CONTROL;
132 	value = dm_read_reg(ctx, addr);
133 
134 	set_reg_field_value(
135 		value,
136 		0,
137 		DVMM_PTE_CONTROL,
138 		DVMM_USE_SINGLE_PTE);
139 
140 	set_reg_field_value(
141 		value,
142 		1,
143 		DVMM_PTE_CONTROL,
144 		DVMM_PTE_BUFFER_MODE0);
145 
146 	set_reg_field_value(
147 		value,
148 		1,
149 		DVMM_PTE_CONTROL,
150 		DVMM_PTE_BUFFER_MODE1);
151 
152 	dm_write_reg(ctx, addr, value);
153 
154 	addr = mmDVMM_PTE_REQ;
155 	value = dm_read_reg(ctx, addr);
156 
157 	chunk_int = get_reg_field_value(
158 		value,
159 		DVMM_PTE_REQ,
160 		HFLIP_PTEREQ_PER_CHUNK_INT);
161 
162 	chunk_mul = get_reg_field_value(
163 		value,
164 		DVMM_PTE_REQ,
165 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
166 
167 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
168 
169 		set_reg_field_value(
170 			value,
171 			255,
172 			DVMM_PTE_REQ,
173 			MAX_PTEREQ_TO_ISSUE);
174 
175 		set_reg_field_value(
176 			value,
177 			4,
178 			DVMM_PTE_REQ,
179 			HFLIP_PTEREQ_PER_CHUNK_INT);
180 
181 		set_reg_field_value(
182 			value,
183 			4,
184 			DVMM_PTE_REQ,
185 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
186 
187 		dm_write_reg(ctx, addr, value);
188 	}
189 }
190 /**************************************************************************/
191 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)192 static void enable_display_pipe_clock_gating(
193 	struct dc_context *ctx,
194 	bool clock_gating)
195 {
196 	/*TODO*/
197 }
198 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)199 static bool dce110_enable_display_power_gating(
200 	struct dc *dc,
201 	uint8_t controller_id,
202 	struct dc_bios *dcb,
203 	enum pipe_gating_control power_gating)
204 {
205 	enum bp_result bp_result = BP_RESULT_OK;
206 	enum bp_pipe_control_action cntl;
207 	struct dc_context *ctx = dc->ctx;
208 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
209 
210 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
211 		return true;
212 
213 	if (power_gating == PIPE_GATING_CONTROL_INIT)
214 		cntl = ASIC_PIPE_INIT;
215 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
216 		cntl = ASIC_PIPE_ENABLE;
217 	else
218 		cntl = ASIC_PIPE_DISABLE;
219 
220 	if (controller_id == underlay_idx)
221 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
222 
223 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
224 
225 		bp_result = dcb->funcs->enable_disp_power_gating(
226 						dcb, controller_id + 1, cntl);
227 
228 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
229 		 * by default when command table is called
230 		 *
231 		 * Bios parser accepts controller_id = 6 as indicative of
232 		 * underlay pipe in dce110. But we do not support more
233 		 * than 3.
234 		 */
235 		if (controller_id < CONTROLLER_ID_MAX - 1)
236 			dm_write_reg(ctx,
237 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
238 				0);
239 	}
240 
241 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
242 		dce110_init_pte(ctx);
243 
244 	if (bp_result == BP_RESULT_OK)
245 		return true;
246 	else
247 		return false;
248 }
249 
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)250 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
251 		const struct dc_plane_state *plane_state)
252 {
253 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
254 
255 	switch (plane_state->format) {
256 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
257 		prescale_params->scale = 0x2082;
258 		break;
259 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
260 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
261 		prescale_params->scale = 0x2020;
262 		break;
263 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
264 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
265 		prescale_params->scale = 0x2008;
266 		break;
267 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
268 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
269 		prescale_params->scale = 0x2000;
270 		break;
271 	default:
272 		ASSERT(false);
273 		break;
274 	}
275 }
276 
277 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)278 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
279 			       const struct dc_plane_state *plane_state)
280 {
281 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
282 	const struct dc_transfer_func *tf = NULL;
283 	struct ipp_prescale_params prescale_params = { 0 };
284 	bool result = true;
285 
286 	if (ipp == NULL)
287 		return false;
288 
289 	if (plane_state->in_transfer_func)
290 		tf = plane_state->in_transfer_func;
291 
292 	build_prescale_params(&prescale_params, plane_state);
293 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
294 
295 	if (plane_state->gamma_correction &&
296 			!plane_state->gamma_correction->is_identity &&
297 			dce_use_lut(plane_state->format))
298 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
299 
300 	if (tf == NULL) {
301 		/* Default case if no input transfer function specified */
302 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
303 	} else if (tf->type == TF_TYPE_PREDEFINED) {
304 		switch (tf->tf) {
305 		case TRANSFER_FUNCTION_SRGB:
306 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 			break;
308 		case TRANSFER_FUNCTION_BT709:
309 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
310 			break;
311 		case TRANSFER_FUNCTION_LINEAR:
312 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
313 			break;
314 		case TRANSFER_FUNCTION_PQ:
315 		default:
316 			result = false;
317 			break;
318 		}
319 	} else if (tf->type == TF_TYPE_BYPASS) {
320 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
321 	} else {
322 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
323 		result = false;
324 	}
325 
326 	return result;
327 }
328 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)329 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
330 				    struct curve_points *arr_points,
331 				    uint32_t hw_points_num)
332 {
333 	struct custom_float_format fmt;
334 
335 	struct pwl_result_data *rgb = rgb_resulted;
336 
337 	uint32_t i = 0;
338 
339 	fmt.exponenta_bits = 6;
340 	fmt.mantissa_bits = 12;
341 	fmt.sign = true;
342 
343 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
344 					    &arr_points[0].custom_float_x)) {
345 		BREAK_TO_DEBUGGER();
346 		return false;
347 	}
348 
349 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
350 					    &arr_points[0].custom_float_offset)) {
351 		BREAK_TO_DEBUGGER();
352 		return false;
353 	}
354 
355 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
356 					    &arr_points[0].custom_float_slope)) {
357 		BREAK_TO_DEBUGGER();
358 		return false;
359 	}
360 
361 	fmt.mantissa_bits = 10;
362 	fmt.sign = false;
363 
364 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
365 					    &arr_points[1].custom_float_x)) {
366 		BREAK_TO_DEBUGGER();
367 		return false;
368 	}
369 
370 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
371 					    &arr_points[1].custom_float_y)) {
372 		BREAK_TO_DEBUGGER();
373 		return false;
374 	}
375 
376 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
377 					    &arr_points[1].custom_float_slope)) {
378 		BREAK_TO_DEBUGGER();
379 		return false;
380 	}
381 
382 	fmt.mantissa_bits = 12;
383 	fmt.sign = true;
384 
385 	while (i != hw_points_num) {
386 		if (!convert_to_custom_float_format(rgb->red, &fmt,
387 						    &rgb->red_reg)) {
388 			BREAK_TO_DEBUGGER();
389 			return false;
390 		}
391 
392 		if (!convert_to_custom_float_format(rgb->green, &fmt,
393 						    &rgb->green_reg)) {
394 			BREAK_TO_DEBUGGER();
395 			return false;
396 		}
397 
398 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
399 						    &rgb->blue_reg)) {
400 			BREAK_TO_DEBUGGER();
401 			return false;
402 		}
403 
404 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
405 						    &rgb->delta_red_reg)) {
406 			BREAK_TO_DEBUGGER();
407 			return false;
408 		}
409 
410 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
411 						    &rgb->delta_green_reg)) {
412 			BREAK_TO_DEBUGGER();
413 			return false;
414 		}
415 
416 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
417 						    &rgb->delta_blue_reg)) {
418 			BREAK_TO_DEBUGGER();
419 			return false;
420 		}
421 
422 		++rgb;
423 		++i;
424 	}
425 
426 	return true;
427 }
428 
429 #define MAX_LOW_POINT      25
430 #define NUMBER_REGIONS     16
431 #define NUMBER_SW_SEGMENTS 16
432 
433 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)434 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
435 				      struct pwl_params *regamma_params)
436 {
437 	struct curve_points *arr_points;
438 	struct pwl_result_data *rgb_resulted;
439 	struct pwl_result_data *rgb;
440 	struct pwl_result_data *rgb_plus_1;
441 	struct fixed31_32 y_r;
442 	struct fixed31_32 y_g;
443 	struct fixed31_32 y_b;
444 	struct fixed31_32 y1_min;
445 	struct fixed31_32 y3_max;
446 
447 	int32_t region_start, region_end;
448 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
449 
450 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
451 		return false;
452 
453 	arr_points = regamma_params->arr_points;
454 	rgb_resulted = regamma_params->rgb_resulted;
455 	hw_points = 0;
456 
457 	memset(regamma_params, 0, sizeof(struct pwl_params));
458 
459 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
460 		/* 16 segments
461 		 * segments are from 2^-11 to 2^5
462 		 */
463 		region_start = -11;
464 		region_end = region_start + NUMBER_REGIONS;
465 
466 		for (i = 0; i < NUMBER_REGIONS; i++)
467 			seg_distr[i] = 4;
468 
469 	} else {
470 		/* 10 segments
471 		 * segment is from 2^-10 to 2^1
472 		 * We include an extra segment for range [2^0, 2^1). This is to
473 		 * ensure that colors with normalized values of 1 don't miss the
474 		 * LUT.
475 		 */
476 		region_start = -10;
477 		region_end = 1;
478 
479 		seg_distr[0] = 4;
480 		seg_distr[1] = 4;
481 		seg_distr[2] = 4;
482 		seg_distr[3] = 4;
483 		seg_distr[4] = 4;
484 		seg_distr[5] = 4;
485 		seg_distr[6] = 4;
486 		seg_distr[7] = 4;
487 		seg_distr[8] = 4;
488 		seg_distr[9] = 4;
489 		seg_distr[10] = 0;
490 		seg_distr[11] = -1;
491 		seg_distr[12] = -1;
492 		seg_distr[13] = -1;
493 		seg_distr[14] = -1;
494 		seg_distr[15] = -1;
495 	}
496 
497 	for (k = 0; k < 16; k++) {
498 		if (seg_distr[k] != -1)
499 			hw_points += (1 << seg_distr[k]);
500 	}
501 
502 	j = 0;
503 	for (k = 0; k < (region_end - region_start); k++) {
504 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
505 		start_index = (region_start + k + MAX_LOW_POINT) *
506 				NUMBER_SW_SEGMENTS;
507 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
508 				i += increment) {
509 			if (j == hw_points - 1)
510 				break;
511 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
512 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
513 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
514 			j++;
515 		}
516 	}
517 
518 	/* last point */
519 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
520 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
521 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
522 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
523 
524 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 					     dc_fixpt_from_int(region_start));
526 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
527 					     dc_fixpt_from_int(region_end));
528 
529 	y_r = rgb_resulted[0].red;
530 	y_g = rgb_resulted[0].green;
531 	y_b = rgb_resulted[0].blue;
532 
533 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
534 
535 	arr_points[0].y = y1_min;
536 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
537 						 arr_points[0].x);
538 
539 	y_r = rgb_resulted[hw_points - 1].red;
540 	y_g = rgb_resulted[hw_points - 1].green;
541 	y_b = rgb_resulted[hw_points - 1].blue;
542 
543 	/* see comment above, m_arrPoints[1].y should be the Y value for the
544 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
545 	 */
546 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
547 
548 	arr_points[1].y = y3_max;
549 
550 	arr_points[1].slope = dc_fixpt_zero;
551 
552 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
553 		/* for PQ, we want to have a straight line from last HW X point,
554 		 * and the slope to be such that we hit 1.0 at 10000 nits.
555 		 */
556 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
557 
558 		arr_points[1].slope = dc_fixpt_div(
559 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
560 				dc_fixpt_sub(end_value, arr_points[1].x));
561 	}
562 
563 	regamma_params->hw_points_num = hw_points;
564 
565 	k = 0;
566 	for (i = 1; i < 16; i++) {
567 		if (seg_distr[k] != -1) {
568 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
569 			regamma_params->arr_curve_points[i].offset =
570 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
571 		}
572 		k++;
573 	}
574 
575 	if (seg_distr[k] != -1)
576 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
577 
578 	rgb = rgb_resulted;
579 	rgb_plus_1 = rgb_resulted + 1;
580 
581 	i = 1;
582 
583 	while (i != hw_points + 1) {
584 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
585 			rgb_plus_1->red = rgb->red;
586 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
587 			rgb_plus_1->green = rgb->green;
588 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
589 			rgb_plus_1->blue = rgb->blue;
590 
591 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
592 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
593 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
594 
595 		++rgb_plus_1;
596 		++rgb;
597 		++i;
598 	}
599 
600 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
601 
602 	return true;
603 }
604 
605 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)606 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
607 				const struct dc_stream_state *stream)
608 {
609 	struct transform *xfm = pipe_ctx->plane_res.xfm;
610 
611 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
612 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
613 
614 	if (stream->out_transfer_func &&
615 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
616 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
617 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
618 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
619 							 &xfm->regamma_params)) {
620 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
621 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
622 	} else {
623 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
624 	}
625 
626 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
627 
628 	return true;
629 }
630 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)631 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
632 {
633 	bool is_hdmi_tmds;
634 	bool is_dp;
635 
636 	ASSERT(pipe_ctx->stream);
637 
638 	if (pipe_ctx->stream_res.stream_enc == NULL)
639 		return;  /* this is not root pipe */
640 
641 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
642 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
643 
644 	if (!is_hdmi_tmds && !is_dp)
645 		return;
646 
647 	if (is_hdmi_tmds)
648 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
649 			pipe_ctx->stream_res.stream_enc,
650 			&pipe_ctx->stream_res.encoder_info_frame);
651 	else
652 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
653 			pipe_ctx->stream_res.stream_enc,
654 			&pipe_ctx->stream_res.encoder_info_frame);
655 }
656 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)657 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
658 {
659 	enum dc_lane_count lane_count =
660 		pipe_ctx->stream->link->cur_link_settings.lane_count;
661 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
662 	struct dc_link *link = pipe_ctx->stream->link;
663 	const struct dc *dc = link->dc;
664 
665 	uint32_t active_total_with_borders;
666 	uint32_t early_control = 0;
667 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
668 
669 	/* For MST, there are multiply stream go to only one link.
670 	 * connect DIG back_end to front_end while enable_stream and
671 	 * disconnect them during disable_stream
672 	 * BY this, it is logic clean to separate stream and link */
673 	link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
674 						    pipe_ctx->stream_res.stream_enc->id, true);
675 
676 	dc->hwss.update_info_frame(pipe_ctx);
677 
678 	/* enable early control to avoid corruption on DP monitor*/
679 	active_total_with_borders =
680 			timing->h_addressable
681 				+ timing->h_border_left
682 				+ timing->h_border_right;
683 
684 	if (lane_count != 0)
685 		early_control = active_total_with_borders % lane_count;
686 
687 	if (early_control == 0)
688 		early_control = lane_count;
689 
690 	tg->funcs->set_early_control(tg, early_control);
691 
692 	/* enable audio only within mode set */
693 	if (pipe_ctx->stream_res.audio != NULL) {
694 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
695 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
696 	}
697 
698 
699 
700 
701 }
702 
703 /*todo: cloned in stream enc, fix*/
is_panel_backlight_on(struct dce_hwseq * hws)704 static bool is_panel_backlight_on(struct dce_hwseq *hws)
705 {
706 	uint32_t value;
707 
708 	REG_GET(LVTMA_PWRSEQ_CNTL, LVTMA_BLON, &value);
709 
710 	return value;
711 }
712 
is_panel_powered_on(struct dce_hwseq * hws)713 static bool is_panel_powered_on(struct dce_hwseq *hws)
714 {
715 	uint32_t pwr_seq_state, dig_on, dig_on_ovrd;
716 
717 
718 	REG_GET(LVTMA_PWRSEQ_STATE, LVTMA_PWRSEQ_TARGET_STATE_R, &pwr_seq_state);
719 
720 	REG_GET_2(LVTMA_PWRSEQ_CNTL, LVTMA_DIGON, &dig_on, LVTMA_DIGON_OVRD, &dig_on_ovrd);
721 
722 	return (pwr_seq_state == 1) || (dig_on == 1 && dig_on_ovrd == 1);
723 }
724 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)725 static enum bp_result link_transmitter_control(
726 		struct dc_bios *bios,
727 	struct bp_transmitter_control *cntl)
728 {
729 	enum bp_result result;
730 
731 	result = bios->funcs->transmitter_control(bios, cntl);
732 
733 	return result;
734 }
735 
736 /*
737  * @brief
738  * eDP only.
739  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)740 void dce110_edp_wait_for_hpd_ready(
741 		struct dc_link *link,
742 		bool power_up)
743 {
744 	struct dc_context *ctx = link->ctx;
745 	struct graphics_object_id connector = link->link_enc->connector;
746 	struct gpio *hpd;
747 	bool edp_hpd_high = false;
748 	uint32_t time_elapsed = 0;
749 	uint32_t timeout = power_up ?
750 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
751 
752 	if (dal_graphics_object_id_get_connector_id(connector)
753 			!= CONNECTOR_ID_EDP) {
754 		BREAK_TO_DEBUGGER();
755 		return;
756 	}
757 
758 	if (!power_up)
759 		/*
760 		 * From KV, we will not HPD low after turning off VCC -
761 		 * instead, we will check the SW timer in power_up().
762 		 */
763 		return;
764 
765 	/*
766 	 * When we power on/off the eDP panel,
767 	 * we need to wait until SENSE bit is high/low.
768 	 */
769 
770 	/* obtain HPD */
771 	/* TODO what to do with this? */
772 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
773 
774 	if (!hpd) {
775 		BREAK_TO_DEBUGGER();
776 		return;
777 	}
778 
779 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
780 
781 	/* wait until timeout or panel detected */
782 
783 	do {
784 		uint32_t detected = 0;
785 
786 		dal_gpio_get_value(hpd, &detected);
787 
788 		if (!(detected ^ power_up)) {
789 			edp_hpd_high = true;
790 			break;
791 		}
792 
793 		msleep(HPD_CHECK_INTERVAL);
794 
795 		time_elapsed += HPD_CHECK_INTERVAL;
796 	} while (time_elapsed < timeout);
797 
798 	dal_gpio_close(hpd);
799 
800 	dal_gpio_destroy_irq(&hpd);
801 
802 	if (false == edp_hpd_high) {
803 		DC_LOG_ERROR(
804 				"%s: wait timed out!\n", __func__);
805 	}
806 }
807 
dce110_edp_power_control(struct dc_link * link,bool power_up)808 void dce110_edp_power_control(
809 		struct dc_link *link,
810 		bool power_up)
811 {
812 	struct dc_context *ctx = link->ctx;
813 	struct dce_hwseq *hwseq = ctx->dc->hwseq;
814 	struct bp_transmitter_control cntl = { 0 };
815 	enum bp_result bp_result;
816 
817 
818 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
819 			!= CONNECTOR_ID_EDP) {
820 		BREAK_TO_DEBUGGER();
821 		return;
822 	}
823 
824 	if (power_up != is_panel_powered_on(hwseq)) {
825 		/* Send VBIOS command to prompt eDP panel power */
826 		if (power_up) {
827 			unsigned long long current_ts = dm_get_timestamp(ctx);
828 			unsigned long long duration_in_ms =
829 					div64_u64(dm_get_elapse_time_in_ns(
830 							ctx,
831 							current_ts,
832 							link->link_trace.time_stamp.edp_poweroff), 1000000);
833 			unsigned long long wait_time_ms = 0;
834 
835 			/* max 500ms from LCDVDD off to on */
836 			unsigned long long edp_poweroff_time_ms = 500;
837 
838 			if (link->local_sink != NULL)
839 				edp_poweroff_time_ms =
840 						500 + link->local_sink->edid_caps.panel_patch.extra_t12_ms;
841 			if (link->link_trace.time_stamp.edp_poweroff == 0)
842 				wait_time_ms = edp_poweroff_time_ms;
843 			else if (duration_in_ms < edp_poweroff_time_ms)
844 				wait_time_ms = edp_poweroff_time_ms - duration_in_ms;
845 
846 			if (wait_time_ms) {
847 				msleep(wait_time_ms);
848 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
849 						__func__, wait_time_ms);
850 			}
851 
852 		}
853 
854 		DC_LOG_HW_RESUME_S3(
855 				"%s: Panel Power action: %s\n",
856 				__func__, (power_up ? "On":"Off"));
857 
858 		cntl.action = power_up ?
859 			TRANSMITTER_CONTROL_POWER_ON :
860 			TRANSMITTER_CONTROL_POWER_OFF;
861 		cntl.transmitter = link->link_enc->transmitter;
862 		cntl.connector_obj_id = link->link_enc->connector;
863 		cntl.coherent = false;
864 		cntl.lanes_number = LANE_COUNT_FOUR;
865 		cntl.hpd_sel = link->link_enc->hpd_source;
866 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
867 
868 		if (!power_up)
869 			/*save driver power off time stamp*/
870 			link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
871 		else
872 			link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
873 
874 		if (bp_result != BP_RESULT_OK)
875 			DC_LOG_ERROR(
876 					"%s: Panel Power bp_result: %d\n",
877 					__func__, bp_result);
878 	} else {
879 		DC_LOG_HW_RESUME_S3(
880 				"%s: Skipping Panel Power action: %s\n",
881 				__func__, (power_up ? "On":"Off"));
882 	}
883 }
884 
885 /*todo: cloned in stream enc, fix*/
886 /*
887  * @brief
888  * eDP only. Control the backlight of the eDP panel
889  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)890 void dce110_edp_backlight_control(
891 		struct dc_link *link,
892 		bool enable)
893 {
894 	struct dc_context *ctx = link->ctx;
895 	struct dce_hwseq *hws = ctx->dc->hwseq;
896 	struct bp_transmitter_control cntl = { 0 };
897 
898 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
899 		!= CONNECTOR_ID_EDP) {
900 		BREAK_TO_DEBUGGER();
901 		return;
902 	}
903 
904 	if (enable && is_panel_backlight_on(hws)) {
905 		DC_LOG_HW_RESUME_S3(
906 				"%s: panel already powered up. Do nothing.\n",
907 				__func__);
908 		return;
909 	}
910 
911 	/* Send VBIOS command to control eDP panel backlight */
912 
913 	DC_LOG_HW_RESUME_S3(
914 			"%s: backlight action: %s\n",
915 			__func__, (enable ? "On":"Off"));
916 
917 	cntl.action = enable ?
918 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
919 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
920 
921 	/*cntl.engine_id = ctx->engine;*/
922 	cntl.transmitter = link->link_enc->transmitter;
923 	cntl.connector_obj_id = link->link_enc->connector;
924 	/*todo: unhardcode*/
925 	cntl.lanes_number = LANE_COUNT_FOUR;
926 	cntl.hpd_sel = link->link_enc->hpd_source;
927 	cntl.signal = SIGNAL_TYPE_EDP;
928 
929 	/* For eDP, the following delays might need to be considered
930 	 * after link training completed:
931 	 * idle period - min. accounts for required BS-Idle pattern,
932 	 * max. allows for source frame synchronization);
933 	 * 50 msec max. delay from valid video data from source
934 	 * to video on dislpay or backlight enable.
935 	 *
936 	 * Disable the delay for now.
937 	 * Enable it in the future if necessary.
938 	 */
939 	/* dc_service_sleep_in_milliseconds(50); */
940 		/*edp 1.2*/
941 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
942 		edp_receiver_ready_T7(link);
943 	link_transmitter_control(ctx->dc_bios, &cntl);
944 	/*edp 1.2*/
945 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF)
946 		edp_receiver_ready_T9(link);
947 }
948 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)949 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
950 {
951 	/* notify audio driver for audio modes of monitor */
952 	struct dc *dc;
953 	struct clk_mgr *clk_mgr;
954 	unsigned int i, num_audio = 1;
955 
956 	if (!pipe_ctx->stream)
957 		return;
958 
959 	dc = pipe_ctx->stream->ctx->dc;
960 	clk_mgr = dc->clk_mgr;
961 
962 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
963 		return;
964 
965 	if (pipe_ctx->stream_res.audio) {
966 		for (i = 0; i < MAX_PIPES; i++) {
967 			/*current_state not updated yet*/
968 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
969 				num_audio++;
970 		}
971 
972 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
973 
974 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
975 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
976 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
977 		/* un-mute audio */
978 		/* TODO: audio should be per stream rather than per link */
979 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
980 					pipe_ctx->stream_res.stream_enc, false);
981 		if (pipe_ctx->stream_res.audio)
982 			pipe_ctx->stream_res.audio->enabled = true;
983 	}
984 }
985 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)986 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
987 {
988 	struct dc *dc;
989 	struct clk_mgr *clk_mgr;
990 
991 	if (!pipe_ctx || !pipe_ctx->stream)
992 		return;
993 
994 	dc = pipe_ctx->stream->ctx->dc;
995 	clk_mgr = dc->clk_mgr;
996 
997 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
998 		return;
999 
1000 	pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1001 			pipe_ctx->stream_res.stream_enc, true);
1002 	if (pipe_ctx->stream_res.audio) {
1003 		pipe_ctx->stream_res.audio->enabled = false;
1004 
1005 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1006 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1007 					pipe_ctx->stream_res.stream_enc);
1008 		else
1009 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1010 					pipe_ctx->stream_res.stream_enc);
1011 
1012 		if (clk_mgr->funcs->enable_pme_wa)
1013 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1014 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1015 
1016 		/* TODO: notify audio driver for if audio modes list changed
1017 		 * add audio mode list change flag */
1018 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1019 		 * stream->stream_engine_id);
1020 		 */
1021 	}
1022 }
1023 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1024 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1025 {
1026 	struct dc_stream_state *stream = pipe_ctx->stream;
1027 	struct dc_link *link = stream->link;
1028 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1029 
1030 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1031 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1032 			pipe_ctx->stream_res.stream_enc);
1033 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1034 			pipe_ctx->stream_res.stream_enc);
1035 	}
1036 
1037 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1038 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1039 			pipe_ctx->stream_res.stream_enc);
1040 
1041 	dc->hwss.disable_audio_stream(pipe_ctx);
1042 
1043 	link->link_enc->funcs->connect_dig_be_to_fe(
1044 			link->link_enc,
1045 			pipe_ctx->stream_res.stream_enc->id,
1046 			false);
1047 
1048 }
1049 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1050 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1051 		struct dc_link_settings *link_settings)
1052 {
1053 	struct encoder_unblank_param params = { { 0 } };
1054 	struct dc_stream_state *stream = pipe_ctx->stream;
1055 	struct dc_link *link = stream->link;
1056 	struct dce_hwseq *hws = link->dc->hwseq;
1057 
1058 	/* only 3 items below are used by unblank */
1059 	params.timing = pipe_ctx->stream->timing;
1060 	params.link_settings.link_rate = link_settings->link_rate;
1061 
1062 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1063 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
1064 
1065 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1066 		hws->funcs.edp_backlight_control(link, true);
1067 	}
1068 }
1069 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1070 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1071 {
1072 	struct dc_stream_state *stream = pipe_ctx->stream;
1073 	struct dc_link *link = stream->link;
1074 	struct dce_hwseq *hws = link->dc->hwseq;
1075 
1076 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1077 		hws->funcs.edp_backlight_control(link, false);
1078 		dc_link_set_abm_disable(link);
1079 	}
1080 
1081 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1082 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
1083 }
1084 
1085 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1086 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1087 {
1088 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1089 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1090 }
1091 
translate_to_dto_source(enum controller_id crtc_id)1092 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1093 {
1094 	switch (crtc_id) {
1095 	case CONTROLLER_ID_D0:
1096 		return DTO_SOURCE_ID0;
1097 	case CONTROLLER_ID_D1:
1098 		return DTO_SOURCE_ID1;
1099 	case CONTROLLER_ID_D2:
1100 		return DTO_SOURCE_ID2;
1101 	case CONTROLLER_ID_D3:
1102 		return DTO_SOURCE_ID3;
1103 	case CONTROLLER_ID_D4:
1104 		return DTO_SOURCE_ID4;
1105 	case CONTROLLER_ID_D5:
1106 		return DTO_SOURCE_ID5;
1107 	default:
1108 		return DTO_SOURCE_UNKNOWN;
1109 	}
1110 }
1111 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1112 static void build_audio_output(
1113 	struct dc_state *state,
1114 	const struct pipe_ctx *pipe_ctx,
1115 	struct audio_output *audio_output)
1116 {
1117 	const struct dc_stream_state *stream = pipe_ctx->stream;
1118 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1119 
1120 	audio_output->signal = pipe_ctx->stream->signal;
1121 
1122 	/* audio_crtc_info  */
1123 
1124 	audio_output->crtc_info.h_total =
1125 		stream->timing.h_total;
1126 
1127 	/*
1128 	 * Audio packets are sent during actual CRTC blank physical signal, we
1129 	 * need to specify actual active signal portion
1130 	 */
1131 	audio_output->crtc_info.h_active =
1132 			stream->timing.h_addressable
1133 			+ stream->timing.h_border_left
1134 			+ stream->timing.h_border_right;
1135 
1136 	audio_output->crtc_info.v_active =
1137 			stream->timing.v_addressable
1138 			+ stream->timing.v_border_top
1139 			+ stream->timing.v_border_bottom;
1140 
1141 	audio_output->crtc_info.pixel_repetition = 1;
1142 
1143 	audio_output->crtc_info.interlaced =
1144 			stream->timing.flags.INTERLACE;
1145 
1146 	audio_output->crtc_info.refresh_rate =
1147 		(stream->timing.pix_clk_100hz*100)/
1148 		(stream->timing.h_total*stream->timing.v_total);
1149 
1150 	audio_output->crtc_info.color_depth =
1151 		stream->timing.display_color_depth;
1152 
1153 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1154 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1155 
1156 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1157 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1158 
1159 /*for HDMI, audio ACR is with deep color ratio factor*/
1160 	if (dc_is_hdmi_signal(pipe_ctx->stream->signal) &&
1161 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1162 				(stream->timing.pix_clk_100hz)) {
1163 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1164 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1165 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1166 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1167 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1168 
1169 		}
1170 	}
1171 
1172 	if (state->clk_mgr &&
1173 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1174 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1175 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1176 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1177 						state->clk_mgr);
1178 	}
1179 
1180 	audio_output->pll_info.feed_back_divider =
1181 			pipe_ctx->pll_settings.feedback_divider;
1182 
1183 	audio_output->pll_info.dto_source =
1184 		translate_to_dto_source(
1185 			pipe_ctx->stream_res.tg->inst + 1);
1186 
1187 	/* TODO hard code to enable for now. Need get from stream */
1188 	audio_output->pll_info.ss_enabled = true;
1189 
1190 	audio_output->pll_info.ss_percentage =
1191 			pipe_ctx->pll_settings.ss_percentage;
1192 }
1193 
get_surface_visual_confirm_color(const struct pipe_ctx * pipe_ctx,struct tg_color * color)1194 static void get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
1195 		struct tg_color *color)
1196 {
1197 	uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->stream_res.tg->inst) / 4;
1198 
1199 	switch (pipe_ctx->plane_res.scl_data.format) {
1200 	case PIXEL_FORMAT_ARGB8888:
1201 		/* set boarder color to red */
1202 		color->color_r_cr = color_value;
1203 		break;
1204 
1205 	case PIXEL_FORMAT_ARGB2101010:
1206 		/* set boarder color to blue */
1207 		color->color_b_cb = color_value;
1208 		break;
1209 	case PIXEL_FORMAT_420BPP8:
1210 		/* set boarder color to green */
1211 		color->color_g_y = color_value;
1212 		break;
1213 	case PIXEL_FORMAT_420BPP10:
1214 		/* set boarder color to yellow */
1215 		color->color_g_y = color_value;
1216 		color->color_r_cr = color_value;
1217 		break;
1218 	case PIXEL_FORMAT_FP16:
1219 		/* set boarder color to white */
1220 		color->color_r_cr = color_value;
1221 		color->color_b_cb = color_value;
1222 		color->color_g_y = color_value;
1223 		break;
1224 	default:
1225 		break;
1226 	}
1227 }
1228 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1229 static void program_scaler(const struct dc *dc,
1230 		const struct pipe_ctx *pipe_ctx)
1231 {
1232 	struct tg_color color = {0};
1233 
1234 #if defined(CONFIG_DRM_AMD_DC_DCN)
1235 	/* TOFPGA */
1236 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1237 		return;
1238 #endif
1239 
1240 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1241 		get_surface_visual_confirm_color(pipe_ctx, &color);
1242 	else
1243 		color_space_to_black_color(dc,
1244 				pipe_ctx->stream->output_color_space,
1245 				&color);
1246 
1247 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1248 		pipe_ctx->plane_res.xfm,
1249 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1250 		&pipe_ctx->stream->bit_depth_params);
1251 
1252 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1253 		/*
1254 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1255 		 * alternate between Cb and Cr, so both channels need the pixel
1256 		 * value for Y
1257 		 */
1258 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1259 			color.color_r_cr = color.color_g_y;
1260 
1261 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1262 				pipe_ctx->stream_res.tg,
1263 				&color);
1264 	}
1265 
1266 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1267 		&pipe_ctx->plane_res.scl_data);
1268 }
1269 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1270 static enum dc_status dce110_enable_stream_timing(
1271 		struct pipe_ctx *pipe_ctx,
1272 		struct dc_state *context,
1273 		struct dc *dc)
1274 {
1275 	struct dc_stream_state *stream = pipe_ctx->stream;
1276 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1277 			pipe_ctx[pipe_ctx->pipe_idx];
1278 	struct tg_color black_color = {0};
1279 
1280 	if (!pipe_ctx_old->stream) {
1281 
1282 		/* program blank color */
1283 		color_space_to_black_color(dc,
1284 				stream->output_color_space, &black_color);
1285 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1286 				pipe_ctx->stream_res.tg,
1287 				&black_color);
1288 
1289 		/*
1290 		 * Must blank CRTC after disabling power gating and before any
1291 		 * programming, otherwise CRTC will be hung in bad state
1292 		 */
1293 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1294 
1295 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1296 				pipe_ctx->clock_source,
1297 				&pipe_ctx->stream_res.pix_clk_params,
1298 				&pipe_ctx->pll_settings)) {
1299 			BREAK_TO_DEBUGGER();
1300 			return DC_ERROR_UNEXPECTED;
1301 		}
1302 
1303 		pipe_ctx->stream_res.tg->funcs->program_timing(
1304 				pipe_ctx->stream_res.tg,
1305 				&stream->timing,
1306 				0,
1307 				0,
1308 				0,
1309 				0,
1310 				pipe_ctx->stream->signal,
1311 				true);
1312 	}
1313 
1314 	if (!pipe_ctx_old->stream) {
1315 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1316 				pipe_ctx->stream_res.tg)) {
1317 			BREAK_TO_DEBUGGER();
1318 			return DC_ERROR_UNEXPECTED;
1319 		}
1320 	}
1321 
1322 	return DC_OK;
1323 }
1324 
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1325 static enum dc_status apply_single_controller_ctx_to_hw(
1326 		struct pipe_ctx *pipe_ctx,
1327 		struct dc_state *context,
1328 		struct dc *dc)
1329 {
1330 	struct dc_stream_state *stream = pipe_ctx->stream;
1331 	struct drr_params params = {0};
1332 	unsigned int event_triggers = 0;
1333 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1334 	struct dce_hwseq *hws = dc->hwseq;
1335 
1336 	if (hws->funcs.disable_stream_gating) {
1337 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1338 	}
1339 
1340 	if (pipe_ctx->stream_res.audio != NULL) {
1341 		struct audio_output audio_output;
1342 
1343 		build_audio_output(context, pipe_ctx, &audio_output);
1344 
1345 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1346 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1347 					pipe_ctx->stream_res.stream_enc,
1348 					pipe_ctx->stream_res.audio->inst,
1349 					&pipe_ctx->stream->audio_info);
1350 		else
1351 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1352 					pipe_ctx->stream_res.stream_enc,
1353 					pipe_ctx->stream_res.audio->inst,
1354 					&pipe_ctx->stream->audio_info,
1355 					&audio_output.crtc_info);
1356 
1357 		pipe_ctx->stream_res.audio->funcs->az_configure(
1358 				pipe_ctx->stream_res.audio,
1359 				pipe_ctx->stream->signal,
1360 				&audio_output.crtc_info,
1361 				&pipe_ctx->stream->audio_info);
1362 	}
1363 
1364 	/*  */
1365 	/* Do not touch stream timing on seamless boot optimization. */
1366 	if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1367 		hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1368 
1369 	if (hws->funcs.setup_vupdate_interrupt)
1370 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1371 
1372 	params.vertical_total_min = stream->adjust.v_total_min;
1373 	params.vertical_total_max = stream->adjust.v_total_max;
1374 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1375 		pipe_ctx->stream_res.tg->funcs->set_drr(
1376 			pipe_ctx->stream_res.tg, &params);
1377 
1378 	// DRR should set trigger event to monitor surface update event
1379 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1380 		event_triggers = 0x80;
1381 	/* Event triggers and num frames initialized for DRR, but can be
1382 	 * later updated for PSR use. Note DRR trigger events are generated
1383 	 * regardless of whether num frames met.
1384 	 */
1385 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1386 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1387 				pipe_ctx->stream_res.tg, event_triggers, 2);
1388 
1389 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1390 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1391 			pipe_ctx->stream_res.stream_enc,
1392 			pipe_ctx->stream_res.tg->inst);
1393 
1394 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1395 			pipe_ctx->stream_res.opp,
1396 			COLOR_SPACE_YCBCR601,
1397 			stream->timing.display_color_depth,
1398 			stream->signal);
1399 
1400 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1401 		pipe_ctx->stream_res.opp,
1402 		&stream->bit_depth_params,
1403 		&stream->clamping);
1404 	while (odm_pipe) {
1405 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1406 				odm_pipe->stream_res.opp,
1407 				COLOR_SPACE_YCBCR601,
1408 				stream->timing.display_color_depth,
1409 				stream->signal);
1410 
1411 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1412 				odm_pipe->stream_res.opp,
1413 				&stream->bit_depth_params,
1414 				&stream->clamping);
1415 		odm_pipe = odm_pipe->next_odm_pipe;
1416 	}
1417 
1418 	if (!stream->dpms_off)
1419 		core_link_enable_stream(context, pipe_ctx);
1420 
1421 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1422 
1423 	pipe_ctx->stream->link->psr_feature_enabled = false;
1424 
1425 	return DC_OK;
1426 }
1427 
1428 /******************************************************************************/
1429 
power_down_encoders(struct dc * dc)1430 static void power_down_encoders(struct dc *dc)
1431 {
1432 	int i;
1433 
1434 	/* do not know BIOS back-front mapping, simply blank all. It will not
1435 	 * hurt for non-DP
1436 	 */
1437 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1438 		dc->res_pool->stream_enc[i]->funcs->dp_blank(
1439 					dc->res_pool->stream_enc[i]);
1440 	}
1441 
1442 	for (i = 0; i < dc->link_count; i++) {
1443 		enum signal_type signal = dc->links[i]->connector_signal;
1444 
1445 		if ((signal == SIGNAL_TYPE_EDP) ||
1446 			(signal == SIGNAL_TYPE_DISPLAY_PORT))
1447 			if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1448 				dp_receiver_power_ctrl(dc->links[i], false);
1449 
1450 		if (signal != SIGNAL_TYPE_EDP)
1451 			signal = SIGNAL_TYPE_NONE;
1452 
1453 		dc->links[i]->link_enc->funcs->disable_output(
1454 				dc->links[i]->link_enc, signal);
1455 	}
1456 }
1457 
power_down_controllers(struct dc * dc)1458 static void power_down_controllers(struct dc *dc)
1459 {
1460 	int i;
1461 
1462 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1463 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1464 				dc->res_pool->timing_generators[i]);
1465 	}
1466 }
1467 
power_down_clock_sources(struct dc * dc)1468 static void power_down_clock_sources(struct dc *dc)
1469 {
1470 	int i;
1471 
1472 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1473 		dc->res_pool->dp_clock_source) == false)
1474 		dm_error("Failed to power down pll! (dp clk src)\n");
1475 
1476 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1477 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1478 				dc->res_pool->clock_sources[i]) == false)
1479 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1480 	}
1481 }
1482 
power_down_all_hw_blocks(struct dc * dc)1483 static void power_down_all_hw_blocks(struct dc *dc)
1484 {
1485 	power_down_encoders(dc);
1486 
1487 	power_down_controllers(dc);
1488 
1489 	power_down_clock_sources(dc);
1490 
1491 	if (dc->fbc_compressor)
1492 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1493 }
1494 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1495 static void disable_vga_and_power_gate_all_controllers(
1496 		struct dc *dc)
1497 {
1498 	int i;
1499 	struct timing_generator *tg;
1500 	struct dc_context *ctx = dc->ctx;
1501 
1502 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1503 		tg = dc->res_pool->timing_generators[i];
1504 
1505 		if (tg->funcs->disable_vga)
1506 			tg->funcs->disable_vga(tg);
1507 	}
1508 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1509 		/* Enable CLOCK gating for each pipe BEFORE controller
1510 		 * powergating. */
1511 		enable_display_pipe_clock_gating(ctx,
1512 				true);
1513 
1514 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1515 		dc->hwss.disable_plane(dc,
1516 			&dc->current_state->res_ctx.pipe_ctx[i]);
1517 	}
1518 }
1519 
1520 
get_edp_stream(struct dc_state * context)1521 static struct dc_stream_state *get_edp_stream(struct dc_state *context)
1522 {
1523 	int i;
1524 
1525 	for (i = 0; i < context->stream_count; i++) {
1526 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP)
1527 			return context->streams[i];
1528 	}
1529 	return NULL;
1530 }
1531 
get_edp_link_with_sink(struct dc * dc,struct dc_state * context)1532 static struct dc_link *get_edp_link_with_sink(
1533 		struct dc *dc,
1534 		struct dc_state *context)
1535 {
1536 	int i;
1537 	struct dc_link *link = NULL;
1538 
1539 	/* check if there is an eDP panel not in use */
1540 	for (i = 0; i < dc->link_count; i++) {
1541 		if (dc->links[i]->local_sink &&
1542 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1543 			link = dc->links[i];
1544 			break;
1545 		}
1546 	}
1547 
1548 	return link;
1549 }
1550 
1551 /**
1552  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1553  *  1. Power down all DC HW blocks
1554  *  2. Disable VGA engine on all controllers
1555  *  3. Enable power gating for controller
1556  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1557  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1558 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1559 {
1560 	int i;
1561 	struct dc_link *edp_link_with_sink = get_edp_link_with_sink(dc, context);
1562 	struct dc_link *edp_link = get_edp_link(dc);
1563 	struct dc_stream_state *edp_stream = NULL;
1564 	bool can_apply_edp_fast_boot = false;
1565 	bool can_apply_seamless_boot = false;
1566 	bool keep_edp_vdd_on = false;
1567 	struct dce_hwseq *hws = dc->hwseq;
1568 
1569 	if (hws->funcs.init_pipes)
1570 		hws->funcs.init_pipes(dc, context);
1571 
1572 	edp_stream = get_edp_stream(context);
1573 
1574 	// Check fastboot support, disable on DCE8 because of blank screens
1575 	if (edp_link && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1576 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1577 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1578 
1579 		// enable fastboot if backend is enabled on eDP
1580 		if (edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc)) {
1581 			/* Set optimization flag on eDP stream*/
1582 			if (edp_stream) {
1583 				edp_stream->apply_edp_fast_boot_optimization = true;
1584 				can_apply_edp_fast_boot = true;
1585 			}
1586 		}
1587 
1588 		// We are trying to enable eDP, don't power down VDD
1589 		if (edp_stream)
1590 			keep_edp_vdd_on = true;
1591 	}
1592 
1593 	// Check seamless boot support
1594 	for (i = 0; i < context->stream_count; i++) {
1595 		if (context->streams[i]->apply_seamless_boot_optimization) {
1596 			can_apply_seamless_boot = true;
1597 			break;
1598 		}
1599 	}
1600 
1601 	/* eDP should not have stream in resume from S4 and so even with VBios post
1602 	 * it should get turned off
1603 	 */
1604 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1605 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1606 			/*turn off backlight before DP_blank and encoder powered down*/
1607 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1608 		}
1609 		/*resume from S3, no vbios posting, no need to power down again*/
1610 		power_down_all_hw_blocks(dc);
1611 		disable_vga_and_power_gate_all_controllers(dc);
1612 		if (edp_link_with_sink && !keep_edp_vdd_on)
1613 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1614 	}
1615 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios);
1616 }
1617 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1618 static uint32_t compute_pstate_blackout_duration(
1619 	struct bw_fixed blackout_duration,
1620 	const struct dc_stream_state *stream)
1621 {
1622 	uint32_t total_dest_line_time_ns;
1623 	uint32_t pstate_blackout_duration_ns;
1624 
1625 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1626 
1627 	total_dest_line_time_ns = 1000000UL *
1628 		(stream->timing.h_total * 10) /
1629 		stream->timing.pix_clk_100hz +
1630 		pstate_blackout_duration_ns;
1631 
1632 	return total_dest_line_time_ns;
1633 }
1634 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1635 static void dce110_set_displaymarks(
1636 	const struct dc *dc,
1637 	struct dc_state *context)
1638 {
1639 	uint8_t i, num_pipes;
1640 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1641 
1642 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1643 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1644 		uint32_t total_dest_line_time_ns;
1645 
1646 		if (pipe_ctx->stream == NULL)
1647 			continue;
1648 
1649 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1650 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1651 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1652 			pipe_ctx->plane_res.mi,
1653 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1654 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1655 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1656 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1657 			total_dest_line_time_ns);
1658 		if (i == underlay_idx) {
1659 			num_pipes++;
1660 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1661 				pipe_ctx->plane_res.mi,
1662 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1663 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1664 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1665 				total_dest_line_time_ns);
1666 		}
1667 		num_pipes++;
1668 	}
1669 }
1670 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1671 void dce110_set_safe_displaymarks(
1672 		struct resource_context *res_ctx,
1673 		const struct resource_pool *pool)
1674 {
1675 	int i;
1676 	int underlay_idx = pool->underlay_pipe_index;
1677 	struct dce_watermarks max_marks = {
1678 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1679 	struct dce_watermarks nbp_marks = {
1680 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1681 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1682 
1683 	for (i = 0; i < MAX_PIPES; i++) {
1684 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1685 			continue;
1686 
1687 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1688 				res_ctx->pipe_ctx[i].plane_res.mi,
1689 				nbp_marks,
1690 				max_marks,
1691 				min_marks,
1692 				max_marks,
1693 				MAX_WATERMARK);
1694 
1695 		if (i == underlay_idx)
1696 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1697 				res_ctx->pipe_ctx[i].plane_res.mi,
1698 				nbp_marks,
1699 				max_marks,
1700 				max_marks,
1701 				MAX_WATERMARK);
1702 
1703 	}
1704 }
1705 
1706 /*******************************************************************************
1707  * Public functions
1708  ******************************************************************************/
1709 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,unsigned int vmin,unsigned int vmax,unsigned int vmid,unsigned int vmid_frame_number)1710 static void set_drr(struct pipe_ctx **pipe_ctx,
1711 		int num_pipes, unsigned int vmin, unsigned int vmax,
1712 		unsigned int vmid, unsigned int vmid_frame_number)
1713 {
1714 	int i = 0;
1715 	struct drr_params params = {0};
1716 	// DRR should set trigger event to monitor surface update event
1717 	unsigned int event_triggers = 0x80;
1718 	// Note DRR trigger events are generated regardless of whether num frames met.
1719 	unsigned int num_frames = 2;
1720 
1721 	params.vertical_total_max = vmax;
1722 	params.vertical_total_min = vmin;
1723 
1724 	/* TODO: If multiple pipes are to be supported, you need
1725 	 * some GSL stuff. Static screen triggers may be programmed differently
1726 	 * as well.
1727 	 */
1728 	for (i = 0; i < num_pipes; i++) {
1729 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1730 			pipe_ctx[i]->stream_res.tg, &params);
1731 
1732 		if (vmax != 0 && vmin != 0)
1733 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1734 					pipe_ctx[i]->stream_res.tg,
1735 					event_triggers, num_frames);
1736 	}
1737 }
1738 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1739 static void get_position(struct pipe_ctx **pipe_ctx,
1740 		int num_pipes,
1741 		struct crtc_position *position)
1742 {
1743 	int i = 0;
1744 
1745 	/* TODO: handle pipes > 1
1746 	 */
1747 	for (i = 0; i < num_pipes; i++)
1748 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1749 }
1750 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1751 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1752 		int num_pipes, const struct dc_static_screen_params *params)
1753 {
1754 	unsigned int i;
1755 	unsigned int triggers = 0;
1756 
1757 	if (params->triggers.overlay_update)
1758 		triggers |= 0x100;
1759 	if (params->triggers.surface_update)
1760 		triggers |= 0x80;
1761 	if (params->triggers.cursor_update)
1762 		triggers |= 0x2;
1763 	if (params->triggers.force_trigger)
1764 		triggers |= 0x1;
1765 
1766 	if (num_pipes) {
1767 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1768 
1769 		if (dc->fbc_compressor)
1770 			triggers |= 0x84;
1771 	}
1772 
1773 	for (i = 0; i < num_pipes; i++)
1774 		pipe_ctx[i]->stream_res.tg->funcs->
1775 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1776 					triggers, params->num_frames);
1777 }
1778 
1779 /*
1780  *  Check if FBC can be enabled
1781  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1782 static bool should_enable_fbc(struct dc *dc,
1783 		struct dc_state *context,
1784 		uint32_t *pipe_idx)
1785 {
1786 	uint32_t i;
1787 	struct pipe_ctx *pipe_ctx = NULL;
1788 	struct resource_context *res_ctx = &context->res_ctx;
1789 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1790 
1791 
1792 	ASSERT(dc->fbc_compressor);
1793 
1794 	/* FBC memory should be allocated */
1795 	if (!dc->ctx->fbc_gpu_addr)
1796 		return false;
1797 
1798 	/* Only supports single display */
1799 	if (context->stream_count != 1)
1800 		return false;
1801 
1802 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1803 		if (res_ctx->pipe_ctx[i].stream) {
1804 
1805 			pipe_ctx = &res_ctx->pipe_ctx[i];
1806 
1807 			if (!pipe_ctx)
1808 				continue;
1809 
1810 			/* fbc not applicable on underlay pipe */
1811 			if (pipe_ctx->pipe_idx != underlay_idx) {
1812 				*pipe_idx = i;
1813 				break;
1814 			}
1815 		}
1816 	}
1817 
1818 	if (i == dc->res_pool->pipe_count)
1819 		return false;
1820 
1821 	if (!pipe_ctx->stream->link)
1822 		return false;
1823 
1824 	/* Only supports eDP */
1825 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
1826 		return false;
1827 
1828 	/* PSR should not be enabled */
1829 	if (pipe_ctx->stream->link->psr_feature_enabled)
1830 		return false;
1831 
1832 	/* Nothing to compress */
1833 	if (!pipe_ctx->plane_state)
1834 		return false;
1835 
1836 	/* Only for non-linear tiling */
1837 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
1838 		return false;
1839 
1840 	return true;
1841 }
1842 
1843 /*
1844  *  Enable FBC
1845  */
enable_fbc(struct dc * dc,struct dc_state * context)1846 static void enable_fbc(
1847 		struct dc *dc,
1848 		struct dc_state *context)
1849 {
1850 	uint32_t pipe_idx = 0;
1851 
1852 	if (should_enable_fbc(dc, context, &pipe_idx)) {
1853 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
1854 		struct compr_addr_and_pitch_params params = {0, 0, 0};
1855 		struct compressor *compr = dc->fbc_compressor;
1856 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1857 
1858 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
1859 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
1860 		params.inst = pipe_ctx->stream_res.tg->inst;
1861 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
1862 
1863 		compr->funcs->surface_address_and_pitch(compr, &params);
1864 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
1865 
1866 		compr->funcs->enable_fbc(compr, &params);
1867 	}
1868 }
1869 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)1870 static void dce110_reset_hw_ctx_wrap(
1871 		struct dc *dc,
1872 		struct dc_state *context)
1873 {
1874 	int i;
1875 
1876 	/* Reset old context */
1877 	/* look up the targets that have been removed since last commit */
1878 	for (i = 0; i < MAX_PIPES; i++) {
1879 		struct pipe_ctx *pipe_ctx_old =
1880 			&dc->current_state->res_ctx.pipe_ctx[i];
1881 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1882 
1883 		/* Note: We need to disable output if clock sources change,
1884 		 * since bios does optimization and doesn't apply if changing
1885 		 * PHY when not already disabled.
1886 		 */
1887 
1888 		/* Skip underlay pipe since it will be handled in commit surface*/
1889 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
1890 			continue;
1891 
1892 		if (!pipe_ctx->stream ||
1893 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1894 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
1895 
1896 			/* Disable if new stream is null. O/w, if stream is
1897 			 * disabled already, no need to disable again.
1898 			 */
1899 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
1900 				core_link_disable_stream(pipe_ctx_old);
1901 
1902 				/* free acquired resources*/
1903 				if (pipe_ctx_old->stream_res.audio) {
1904 					/*disable az_endpoint*/
1905 					pipe_ctx_old->stream_res.audio->funcs->
1906 							az_disable(pipe_ctx_old->stream_res.audio);
1907 
1908 					/*free audio*/
1909 					if (dc->caps.dynamic_audio == true) {
1910 						/*we have to dynamic arbitrate the audio endpoints*/
1911 						/*we free the resource, need reset is_audio_acquired*/
1912 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
1913 								pipe_ctx_old->stream_res.audio, false);
1914 						pipe_ctx_old->stream_res.audio = NULL;
1915 					}
1916 				}
1917 			}
1918 
1919 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
1920 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
1921 				dm_error("DC: failed to blank crtc!\n");
1922 				BREAK_TO_DEBUGGER();
1923 			}
1924 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
1925 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
1926 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
1927 
1928 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
1929 										dc->res_pool,
1930 										old_clk))
1931 				old_clk->funcs->cs_power_down(old_clk);
1932 
1933 			dc->hwss.disable_plane(dc, pipe_ctx_old);
1934 
1935 			pipe_ctx_old->stream = NULL;
1936 		}
1937 	}
1938 }
1939 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)1940 static void dce110_setup_audio_dto(
1941 		struct dc *dc,
1942 		struct dc_state *context)
1943 {
1944 	int i;
1945 
1946 	/* program audio wall clock. use HDMI as clock source if HDMI
1947 	 * audio active. Otherwise, use DP as clock source
1948 	 * first, loop to find any HDMI audio, if not, loop find DP audio
1949 	 */
1950 	/* Setup audio rate clock source */
1951 	/* Issue:
1952 	* Audio lag happened on DP monitor when unplug a HDMI monitor
1953 	*
1954 	* Cause:
1955 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
1956 	* is set to either dto0 or dto1, audio should work fine.
1957 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
1958 	* set to dto0 will cause audio lag.
1959 	*
1960 	* Solution:
1961 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
1962 	* find first available pipe with audio, setup audio wall DTO per topology
1963 	* instead of per pipe.
1964 	*/
1965 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1966 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1967 
1968 		if (pipe_ctx->stream == NULL)
1969 			continue;
1970 
1971 		if (pipe_ctx->top_pipe)
1972 			continue;
1973 
1974 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
1975 			continue;
1976 
1977 		if (pipe_ctx->stream_res.audio != NULL) {
1978 			struct audio_output audio_output;
1979 
1980 			build_audio_output(context, pipe_ctx, &audio_output);
1981 
1982 			pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
1983 				pipe_ctx->stream_res.audio,
1984 				pipe_ctx->stream->signal,
1985 				&audio_output.crtc_info,
1986 				&audio_output.pll_info);
1987 			break;
1988 		}
1989 	}
1990 
1991 	/* no HDMI audio is found, try DP audio */
1992 	if (i == dc->res_pool->pipe_count) {
1993 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1994 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1995 
1996 			if (pipe_ctx->stream == NULL)
1997 				continue;
1998 
1999 			if (pipe_ctx->top_pipe)
2000 				continue;
2001 
2002 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2003 				continue;
2004 
2005 			if (pipe_ctx->stream_res.audio != NULL) {
2006 				struct audio_output audio_output;
2007 
2008 				build_audio_output(context, pipe_ctx, &audio_output);
2009 
2010 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2011 					pipe_ctx->stream_res.audio,
2012 					pipe_ctx->stream->signal,
2013 					&audio_output.crtc_info,
2014 					&audio_output.pll_info);
2015 				break;
2016 			}
2017 		}
2018 	}
2019 }
2020 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2021 enum dc_status dce110_apply_ctx_to_hw(
2022 		struct dc *dc,
2023 		struct dc_state *context)
2024 {
2025 	struct dce_hwseq *hws = dc->hwseq;
2026 	struct dc_bios *dcb = dc->ctx->dc_bios;
2027 	enum dc_status status;
2028 	int i;
2029 
2030 	/* Reset old context */
2031 	/* look up the targets that have been removed since last commit */
2032 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2033 
2034 	/* Skip applying if no targets */
2035 	if (context->stream_count <= 0)
2036 		return DC_OK;
2037 
2038 	/* Apply new context */
2039 	dcb->funcs->set_scratch_critical_state(dcb, true);
2040 
2041 	/* below is for real asic only */
2042 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2043 		struct pipe_ctx *pipe_ctx_old =
2044 					&dc->current_state->res_ctx.pipe_ctx[i];
2045 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2046 
2047 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2048 			continue;
2049 
2050 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2051 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2052 				dce_crtc_switch_to_clk_src(dc->hwseq,
2053 						pipe_ctx->clock_source, i);
2054 			continue;
2055 		}
2056 
2057 		hws->funcs.enable_display_power_gating(
2058 				dc, i, dc->ctx->dc_bios,
2059 				PIPE_GATING_CONTROL_DISABLE);
2060 	}
2061 
2062 	if (dc->fbc_compressor)
2063 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2064 
2065 	dce110_setup_audio_dto(dc, context);
2066 
2067 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2068 		struct pipe_ctx *pipe_ctx_old =
2069 					&dc->current_state->res_ctx.pipe_ctx[i];
2070 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2071 
2072 		if (pipe_ctx->stream == NULL)
2073 			continue;
2074 
2075 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2076 			pipe_ctx->stream->link->link_state_valid) {
2077 			continue;
2078 		}
2079 
2080 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2081 			continue;
2082 
2083 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2084 			continue;
2085 
2086 		status = apply_single_controller_ctx_to_hw(
2087 				pipe_ctx,
2088 				context,
2089 				dc);
2090 
2091 		if (DC_OK != status)
2092 			return status;
2093 	}
2094 
2095 	if (dc->fbc_compressor)
2096 		enable_fbc(dc, dc->current_state);
2097 
2098 	dcb->funcs->set_scratch_critical_state(dcb, false);
2099 
2100 	return DC_OK;
2101 }
2102 
2103 /*******************************************************************************
2104  * Front End programming
2105  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2106 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2107 {
2108 	struct default_adjustment default_adjust = { 0 };
2109 
2110 	default_adjust.force_hw_default = false;
2111 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2112 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2113 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2114 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2115 
2116 	/* display color depth */
2117 	default_adjust.color_depth =
2118 		pipe_ctx->stream->timing.display_color_depth;
2119 
2120 	/* Lb color depth */
2121 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2122 
2123 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2124 					pipe_ctx->plane_res.xfm, &default_adjust);
2125 }
2126 
2127 
2128 /*******************************************************************************
2129  * In order to turn on/off specific surface we will program
2130  * Blender + CRTC
2131  *
2132  * In case that we have two surfaces and they have a different visibility
2133  * we can't turn off the CRTC since it will turn off the entire display
2134  *
2135  * |----------------------------------------------- |
2136  * |bottom pipe|curr pipe  |              |         |
2137  * |Surface    |Surface    | Blender      |  CRCT   |
2138  * |visibility |visibility | Configuration|         |
2139  * |------------------------------------------------|
2140  * |   off     |    off    | CURRENT_PIPE | blank   |
2141  * |   off     |    on     | CURRENT_PIPE | unblank |
2142  * |   on      |    off    | OTHER_PIPE   | unblank |
2143  * |   on      |    on     | BLENDING     | unblank |
2144  * -------------------------------------------------|
2145  *
2146  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2147 static void program_surface_visibility(const struct dc *dc,
2148 		struct pipe_ctx *pipe_ctx)
2149 {
2150 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2151 	bool blank_target = false;
2152 
2153 	if (pipe_ctx->bottom_pipe) {
2154 
2155 		/* For now we are supporting only two pipes */
2156 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2157 
2158 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2159 			if (pipe_ctx->plane_state->visible)
2160 				blender_mode = BLND_MODE_BLENDING;
2161 			else
2162 				blender_mode = BLND_MODE_OTHER_PIPE;
2163 
2164 		} else if (!pipe_ctx->plane_state->visible)
2165 			blank_target = true;
2166 
2167 	} else if (!pipe_ctx->plane_state->visible)
2168 		blank_target = true;
2169 
2170 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2171 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2172 
2173 }
2174 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2175 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2176 {
2177 	int i = 0;
2178 	struct xfm_grph_csc_adjustment adjust;
2179 	memset(&adjust, 0, sizeof(adjust));
2180 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2181 
2182 
2183 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2184 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2185 
2186 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2187 			adjust.temperature_matrix[i] =
2188 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2189 	}
2190 
2191 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2192 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2193 static void update_plane_addr(const struct dc *dc,
2194 		struct pipe_ctx *pipe_ctx)
2195 {
2196 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2197 
2198 	if (plane_state == NULL)
2199 		return;
2200 
2201 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2202 			pipe_ctx->plane_res.mi,
2203 			&plane_state->address,
2204 			plane_state->flip_immediate);
2205 
2206 	plane_state->status.requested_address = plane_state->address;
2207 }
2208 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2209 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2210 {
2211 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2212 
2213 	if (plane_state == NULL)
2214 		return;
2215 
2216 	plane_state->status.is_flip_pending =
2217 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2218 					pipe_ctx->plane_res.mi);
2219 
2220 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2221 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2222 
2223 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2224 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2225 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2226 		plane_state->status.is_right_eye =\
2227 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2228 	}
2229 }
2230 
dce110_power_down(struct dc * dc)2231 void dce110_power_down(struct dc *dc)
2232 {
2233 	power_down_all_hw_blocks(dc);
2234 	disable_vga_and_power_gate_all_controllers(dc);
2235 }
2236 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2237 static bool wait_for_reset_trigger_to_occur(
2238 	struct dc_context *dc_ctx,
2239 	struct timing_generator *tg)
2240 {
2241 	bool rc = false;
2242 
2243 	/* To avoid endless loop we wait at most
2244 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2245 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2246 	uint32_t i;
2247 
2248 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2249 
2250 		if (!tg->funcs->is_counter_moving(tg)) {
2251 			DC_ERROR("TG counter is not moving!\n");
2252 			break;
2253 		}
2254 
2255 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2256 			rc = true;
2257 			/* usually occurs at i=1 */
2258 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2259 					i);
2260 			break;
2261 		}
2262 
2263 		/* Wait for one frame. */
2264 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2265 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2266 	}
2267 
2268 	if (false == rc)
2269 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2270 
2271 	return rc;
2272 }
2273 
2274 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2275 static void dce110_enable_timing_synchronization(
2276 		struct dc *dc,
2277 		int group_index,
2278 		int group_size,
2279 		struct pipe_ctx *grouped_pipes[])
2280 {
2281 	struct dc_context *dc_ctx = dc->ctx;
2282 	struct dcp_gsl_params gsl_params = { 0 };
2283 	int i;
2284 
2285 	DC_SYNC_INFO("GSL: Setting-up...\n");
2286 
2287 	/* Designate a single TG in the group as a master.
2288 	 * Since HW doesn't care which one, we always assign
2289 	 * the 1st one in the group. */
2290 	gsl_params.gsl_group = 0;
2291 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2292 
2293 	for (i = 0; i < group_size; i++)
2294 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2295 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2296 
2297 	/* Reset slave controllers on master VSync */
2298 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2299 
2300 	for (i = 1 /* skip the master */; i < group_size; i++)
2301 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2302 				grouped_pipes[i]->stream_res.tg,
2303 				gsl_params.gsl_group);
2304 
2305 	for (i = 1 /* skip the master */; i < group_size; i++) {
2306 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2307 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2308 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2309 				grouped_pipes[i]->stream_res.tg);
2310 	}
2311 
2312 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2313 	 * is that the sync'ed displays will not drift out of sync over time*/
2314 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2315 	for (i = 0; i < group_size; i++)
2316 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2317 
2318 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2319 }
2320 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2321 static void dce110_enable_per_frame_crtc_position_reset(
2322 		struct dc *dc,
2323 		int group_size,
2324 		struct pipe_ctx *grouped_pipes[])
2325 {
2326 	struct dc_context *dc_ctx = dc->ctx;
2327 	struct dcp_gsl_params gsl_params = { 0 };
2328 	int i;
2329 
2330 	gsl_params.gsl_group = 0;
2331 	gsl_params.gsl_master = 0;
2332 
2333 	for (i = 0; i < group_size; i++)
2334 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2335 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2336 
2337 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2338 
2339 	for (i = 1; i < group_size; i++)
2340 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2341 				grouped_pipes[i]->stream_res.tg,
2342 				gsl_params.gsl_master,
2343 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2344 
2345 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2346 	for (i = 1; i < group_size; i++)
2347 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2348 
2349 	for (i = 0; i < group_size; i++)
2350 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2351 
2352 }
2353 
init_pipes(struct dc * dc,struct dc_state * context)2354 static void init_pipes(struct dc *dc, struct dc_state *context)
2355 {
2356 	// Do nothing
2357 }
2358 
init_hw(struct dc * dc)2359 static void init_hw(struct dc *dc)
2360 {
2361 	int i;
2362 	struct dc_bios *bp;
2363 	struct transform *xfm;
2364 	struct abm *abm;
2365 	struct dmcu *dmcu;
2366 	struct dce_hwseq *hws = dc->hwseq;
2367 
2368 	bp = dc->ctx->dc_bios;
2369 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2370 		xfm = dc->res_pool->transforms[i];
2371 		xfm->funcs->transform_reset(xfm);
2372 
2373 		hws->funcs.enable_display_power_gating(
2374 				dc, i, bp,
2375 				PIPE_GATING_CONTROL_INIT);
2376 		hws->funcs.enable_display_power_gating(
2377 				dc, i, bp,
2378 				PIPE_GATING_CONTROL_DISABLE);
2379 		hws->funcs.enable_display_pipe_clock_gating(
2380 			dc->ctx,
2381 			true);
2382 	}
2383 
2384 	dce_clock_gating_power_up(dc->hwseq, false);
2385 	/***************************************/
2386 
2387 	for (i = 0; i < dc->link_count; i++) {
2388 		/****************************************/
2389 		/* Power up AND update implementation according to the
2390 		 * required signal (which may be different from the
2391 		 * default signal on connector). */
2392 		struct dc_link *link = dc->links[i];
2393 
2394 		link->link_enc->funcs->hw_init(link->link_enc);
2395 	}
2396 
2397 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2398 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2399 
2400 		tg->funcs->disable_vga(tg);
2401 
2402 		/* Blank controller using driver code instead of
2403 		 * command table. */
2404 		tg->funcs->set_blank(tg, true);
2405 		hwss_wait_for_blank_complete(tg);
2406 	}
2407 
2408 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2409 		struct audio *audio = dc->res_pool->audios[i];
2410 		audio->funcs->hw_init(audio);
2411 	}
2412 
2413 	abm = dc->res_pool->abm;
2414 	if (abm != NULL) {
2415 		abm->funcs->init_backlight(abm);
2416 		abm->funcs->abm_init(abm);
2417 	}
2418 
2419 	dmcu = dc->res_pool->dmcu;
2420 	if (dmcu != NULL && abm != NULL)
2421 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2422 
2423 	if (dc->fbc_compressor)
2424 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2425 
2426 }
2427 
2428 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2429 void dce110_prepare_bandwidth(
2430 		struct dc *dc,
2431 		struct dc_state *context)
2432 {
2433 	struct clk_mgr *dccg = dc->clk_mgr;
2434 
2435 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2436 
2437 	dccg->funcs->update_clocks(
2438 			dccg,
2439 			context,
2440 			false);
2441 }
2442 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2443 void dce110_optimize_bandwidth(
2444 		struct dc *dc,
2445 		struct dc_state *context)
2446 {
2447 	struct clk_mgr *dccg = dc->clk_mgr;
2448 
2449 	dce110_set_displaymarks(dc, context);
2450 
2451 	dccg->funcs->update_clocks(
2452 			dccg,
2453 			context,
2454 			true);
2455 }
2456 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2457 static void dce110_program_front_end_for_pipe(
2458 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2459 {
2460 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2461 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2462 	struct xfm_grph_csc_adjustment adjust;
2463 	struct out_csc_color_matrix tbl_entry;
2464 	unsigned int i;
2465 	struct dce_hwseq *hws = dc->hwseq;
2466 
2467 	DC_LOGGER_INIT();
2468 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2469 
2470 	memset(&adjust, 0, sizeof(adjust));
2471 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2472 
2473 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2474 
2475 	set_default_colors(pipe_ctx);
2476 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2477 			== true) {
2478 		tbl_entry.color_space =
2479 			pipe_ctx->stream->output_color_space;
2480 
2481 		for (i = 0; i < 12; i++)
2482 			tbl_entry.regval[i] =
2483 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2484 
2485 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2486 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2487 	}
2488 
2489 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2490 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2491 
2492 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2493 			adjust.temperature_matrix[i] =
2494 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2495 	}
2496 
2497 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2498 
2499 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2500 
2501 	program_scaler(dc, pipe_ctx);
2502 
2503 	mi->funcs->mem_input_program_surface_config(
2504 			mi,
2505 			plane_state->format,
2506 			&plane_state->tiling_info,
2507 			&plane_state->plane_size,
2508 			plane_state->rotation,
2509 			NULL,
2510 			false);
2511 	if (mi->funcs->set_blank)
2512 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2513 
2514 	if (dc->config.gpu_vm_support)
2515 		mi->funcs->mem_input_program_pte_vm(
2516 				pipe_ctx->plane_res.mi,
2517 				plane_state->format,
2518 				&plane_state->tiling_info,
2519 				plane_state->rotation);
2520 
2521 	/* Moved programming gamma from dc to hwss */
2522 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2523 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2524 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2525 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2526 
2527 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2528 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2529 
2530 	DC_LOG_SURFACE(
2531 			"Pipe:%d %p: addr hi:0x%x, "
2532 			"addr low:0x%x, "
2533 			"src: %d, %d, %d,"
2534 			" %d; dst: %d, %d, %d, %d;"
2535 			"clip: %d, %d, %d, %d\n",
2536 			pipe_ctx->pipe_idx,
2537 			(void *) pipe_ctx->plane_state,
2538 			pipe_ctx->plane_state->address.grph.addr.high_part,
2539 			pipe_ctx->plane_state->address.grph.addr.low_part,
2540 			pipe_ctx->plane_state->src_rect.x,
2541 			pipe_ctx->plane_state->src_rect.y,
2542 			pipe_ctx->plane_state->src_rect.width,
2543 			pipe_ctx->plane_state->src_rect.height,
2544 			pipe_ctx->plane_state->dst_rect.x,
2545 			pipe_ctx->plane_state->dst_rect.y,
2546 			pipe_ctx->plane_state->dst_rect.width,
2547 			pipe_ctx->plane_state->dst_rect.height,
2548 			pipe_ctx->plane_state->clip_rect.x,
2549 			pipe_ctx->plane_state->clip_rect.y,
2550 			pipe_ctx->plane_state->clip_rect.width,
2551 			pipe_ctx->plane_state->clip_rect.height);
2552 
2553 	DC_LOG_SURFACE(
2554 			"Pipe %d: width, height, x, y\n"
2555 			"viewport:%d, %d, %d, %d\n"
2556 			"recout:  %d, %d, %d, %d\n",
2557 			pipe_ctx->pipe_idx,
2558 			pipe_ctx->plane_res.scl_data.viewport.width,
2559 			pipe_ctx->plane_res.scl_data.viewport.height,
2560 			pipe_ctx->plane_res.scl_data.viewport.x,
2561 			pipe_ctx->plane_res.scl_data.viewport.y,
2562 			pipe_ctx->plane_res.scl_data.recout.width,
2563 			pipe_ctx->plane_res.scl_data.recout.height,
2564 			pipe_ctx->plane_res.scl_data.recout.x,
2565 			pipe_ctx->plane_res.scl_data.recout.y);
2566 }
2567 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2568 static void dce110_apply_ctx_for_surface(
2569 		struct dc *dc,
2570 		const struct dc_stream_state *stream,
2571 		int num_planes,
2572 		struct dc_state *context)
2573 {
2574 	int i;
2575 
2576 	if (num_planes == 0)
2577 		return;
2578 
2579 	if (dc->fbc_compressor)
2580 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2581 
2582 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2583 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2584 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
2585 
2586 		if (stream == pipe_ctx->stream) {
2587 			if (!pipe_ctx->top_pipe &&
2588 				(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
2589 				dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
2590 		}
2591 	}
2592 
2593 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2594 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2595 
2596 		if (pipe_ctx->stream != stream)
2597 			continue;
2598 
2599 		/* Need to allocate mem before program front end for Fiji */
2600 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2601 				pipe_ctx->plane_res.mi,
2602 				pipe_ctx->stream->timing.h_total,
2603 				pipe_ctx->stream->timing.v_total,
2604 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2605 				context->stream_count);
2606 
2607 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2608 
2609 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2610 
2611 		program_surface_visibility(dc, pipe_ctx);
2612 
2613 	}
2614 
2615 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2616 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2617 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
2618 
2619 		if ((stream == pipe_ctx->stream) &&
2620 			(!pipe_ctx->top_pipe) &&
2621 			(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
2622 			dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
2623 	}
2624 
2625 	if (dc->fbc_compressor)
2626 		enable_fbc(dc, context);
2627 }
2628 
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2629 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2630 {
2631 	struct dce_hwseq *hws = dc->hwseq;
2632 	int fe_idx = pipe_ctx->plane_res.mi ?
2633 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2634 
2635 	/* Do not power down fe when stream is active on dce*/
2636 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2637 		return;
2638 
2639 	hws->funcs.enable_display_power_gating(
2640 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2641 
2642 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2643 				dc->res_pool->transforms[fe_idx]);
2644 }
2645 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2646 static void dce110_wait_for_mpcc_disconnect(
2647 		struct dc *dc,
2648 		struct resource_pool *res_pool,
2649 		struct pipe_ctx *pipe_ctx)
2650 {
2651 	/* do nothing*/
2652 }
2653 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2654 static void program_output_csc(struct dc *dc,
2655 		struct pipe_ctx *pipe_ctx,
2656 		enum dc_color_space colorspace,
2657 		uint16_t *matrix,
2658 		int opp_id)
2659 {
2660 	int i;
2661 	struct out_csc_color_matrix tbl_entry;
2662 
2663 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2664 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2665 
2666 		for (i = 0; i < 12; i++)
2667 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2668 
2669 		tbl_entry.color_space = color_space;
2670 
2671 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2672 				pipe_ctx->plane_res.xfm, &tbl_entry);
2673 	}
2674 }
2675 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2676 void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2677 {
2678 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2679 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2680 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2681 	struct dc_cursor_mi_param param = {
2682 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2683 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2684 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2685 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2686 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2687 		.rotation = pipe_ctx->plane_state->rotation,
2688 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2689 	};
2690 
2691 	if (pipe_ctx->plane_state->address.type
2692 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2693 		pos_cpy.enable = false;
2694 
2695 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2696 		pos_cpy.enable = false;
2697 
2698 	if (ipp->funcs->ipp_cursor_set_position)
2699 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2700 	if (mi->funcs->set_cursor_position)
2701 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2702 }
2703 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2704 void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2705 {
2706 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2707 
2708 	if (pipe_ctx->plane_res.ipp &&
2709 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2710 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2711 				pipe_ctx->plane_res.ipp, attributes);
2712 
2713 	if (pipe_ctx->plane_res.mi &&
2714 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2715 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2716 				pipe_ctx->plane_res.mi, attributes);
2717 
2718 	if (pipe_ctx->plane_res.xfm &&
2719 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2720 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2721 				pipe_ctx->plane_res.xfm, attributes);
2722 }
2723 
2724 static const struct hw_sequencer_funcs dce110_funcs = {
2725 	.program_gamut_remap = program_gamut_remap,
2726 	.program_output_csc = program_output_csc,
2727 	.init_hw = init_hw,
2728 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2729 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2730 	.update_plane_addr = update_plane_addr,
2731 	.update_pending_status = dce110_update_pending_status,
2732 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
2733 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
2734 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
2735 	.update_info_frame = dce110_update_info_frame,
2736 	.enable_stream = dce110_enable_stream,
2737 	.disable_stream = dce110_disable_stream,
2738 	.unblank_stream = dce110_unblank_stream,
2739 	.blank_stream = dce110_blank_stream,
2740 	.enable_audio_stream = dce110_enable_audio_stream,
2741 	.disable_audio_stream = dce110_disable_audio_stream,
2742 	.disable_plane = dce110_power_down_fe,
2743 	.pipe_control_lock = dce_pipe_control_lock,
2744 	.prepare_bandwidth = dce110_prepare_bandwidth,
2745 	.optimize_bandwidth = dce110_optimize_bandwidth,
2746 	.set_drr = set_drr,
2747 	.get_position = get_position,
2748 	.set_static_screen_control = set_static_screen_control,
2749 	.setup_stereo = NULL,
2750 	.set_avmute = dce110_set_avmute,
2751 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
2752 	.edp_power_control = dce110_edp_power_control,
2753 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
2754 	.set_cursor_position = dce110_set_cursor_position,
2755 	.set_cursor_attribute = dce110_set_cursor_attribute
2756 };
2757 
2758 static const struct hwseq_private_funcs dce110_private_funcs = {
2759 	.init_pipes = init_pipes,
2760 	.update_plane_addr = update_plane_addr,
2761 	.set_input_transfer_func = dce110_set_input_transfer_func,
2762 	.set_output_transfer_func = dce110_set_output_transfer_func,
2763 	.power_down = dce110_power_down,
2764 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2765 	.enable_display_power_gating = dce110_enable_display_power_gating,
2766 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
2767 	.enable_stream_timing = dce110_enable_stream_timing,
2768 	.disable_stream_gating = NULL,
2769 	.enable_stream_gating = NULL,
2770 	.edp_backlight_control = dce110_edp_backlight_control,
2771 };
2772 
dce110_hw_sequencer_construct(struct dc * dc)2773 void dce110_hw_sequencer_construct(struct dc *dc)
2774 {
2775 	dc->hwss = dce110_funcs;
2776 	dc->hwseq->funcs = dce110_private_funcs;
2777 }
2778 
2779