1 /* Test mpz_perfect_square_p.
2
3 Copyright 2000-2002 Free Software Foundation, Inc.
4
5 This file is part of the GNU MP Library test suite.
6
7 The GNU MP Library test suite is free software; you can redistribute it
8 and/or modify it under the terms of the GNU General Public License as
9 published by the Free Software Foundation; either version 3 of the License,
10 or (at your option) any later version.
11
12 The GNU MP Library test suite is distributed in the hope that it will be
13 useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
15 Public License for more details.
16
17 You should have received a copy of the GNU General Public License along with
18 the GNU MP Library test suite. If not, see https://www.gnu.org/licenses/. */
19
20 #include <stdio.h>
21 #include <stdlib.h>
22
23 #include "gmp-impl.h"
24 #include "tests.h"
25
26 #include "mpn/perfsqr.h"
27
28
29 /* check_modulo() exercises mpz_perfect_square_p on squares which cover each
30 possible quadratic residue to each divisor used within
31 mpn_perfect_square_p, ensuring those residues aren't incorrectly claimed
32 to be non-residues.
33
34 Each divisor is taken separately. It's arranged that n is congruent to 0
35 modulo the other divisors, 0 of course being a quadratic residue to any
36 modulus.
37
38 The values "(j*others)^2" cover all quadratic residues mod divisor[i],
39 but in no particular order. j is run from 1<=j<=divisor[i] so that zero
40 is excluded. A literal n==0 doesn't reach the residue tests. */
41
42 void
check_modulo(void)43 check_modulo (void)
44 {
45 static const unsigned long divisor[] = PERFSQR_DIVISORS;
46 unsigned long i, j;
47
48 mpz_t alldiv, others, n;
49
50 mpz_init (alldiv);
51 mpz_init (others);
52 mpz_init (n);
53
54 /* product of all divisors */
55 mpz_set_ui (alldiv, 1L);
56 for (i = 0; i < numberof (divisor); i++)
57 mpz_mul_ui (alldiv, alldiv, divisor[i]);
58
59 for (i = 0; i < numberof (divisor); i++)
60 {
61 /* product of all divisors except i */
62 mpz_set_ui (others, 1L);
63 for (j = 0; j < numberof (divisor); j++)
64 if (i != j)
65 mpz_mul_ui (others, others, divisor[j]);
66
67 for (j = 1; j <= divisor[i]; j++)
68 {
69 /* square */
70 mpz_mul_ui (n, others, j);
71 mpz_mul (n, n, n);
72 if (! mpz_perfect_square_p (n))
73 {
74 printf ("mpz_perfect_square_p got 0, want 1\n");
75 mpz_trace (" n", n);
76 abort ();
77 }
78 }
79 }
80
81 mpz_clear (alldiv);
82 mpz_clear (others);
83 mpz_clear (n);
84 }
85
86
87 /* Exercise mpz_perfect_square_p compared to what mpz_sqrt says. */
88 void
check_sqrt(int reps)89 check_sqrt (int reps)
90 {
91 mpz_t x2, x2t, x;
92 mp_size_t x2n;
93 int res;
94 int i;
95 /* int cnt = 0; */
96 gmp_randstate_ptr rands = RANDS;
97 mpz_t bs;
98
99 mpz_init (bs);
100
101 mpz_init (x2);
102 mpz_init (x);
103 mpz_init (x2t);
104
105 for (i = 0; i < reps; i++)
106 {
107 mpz_urandomb (bs, rands, 9);
108 x2n = mpz_get_ui (bs);
109 mpz_rrandomb (x2, rands, x2n);
110 /* mpz_out_str (stdout, -16, x2); puts (""); */
111
112 res = mpz_perfect_square_p (x2);
113 mpz_sqrt (x, x2);
114 mpz_mul (x2t, x, x);
115
116 if (res != (mpz_cmp (x2, x2t) == 0))
117 {
118 printf ("mpz_perfect_square_p and mpz_sqrt differ\n");
119 mpz_trace (" x ", x);
120 mpz_trace (" x2 ", x2);
121 mpz_trace (" x2t", x2t);
122 printf (" mpz_perfect_square_p %d\n", res);
123 printf (" mpz_sqrt %d\n", mpz_cmp (x2, x2t) == 0);
124 abort ();
125 }
126
127 /* cnt += res != 0; */
128 }
129 /* printf ("%d/%d perfect squares\n", cnt, reps); */
130
131 mpz_clear (bs);
132 mpz_clear (x2);
133 mpz_clear (x);
134 mpz_clear (x2t);
135 }
136
137
138 int
main(int argc,char ** argv)139 main (int argc, char **argv)
140 {
141 int reps = 200000;
142
143 tests_start ();
144 mp_trace_base = -16;
145
146 if (argc == 2)
147 reps = atoi (argv[1]);
148
149 check_modulo ();
150 check_sqrt (reps);
151
152 tests_end ();
153 exit (0);
154 }
155