xref: /netbsd-src/sys/dev/pci/if_cas.c (revision be6f2fcee7fefd8149c125c7283a8c03adc8149e)
1 /*	$NetBSD: if_cas.c,v 1.48 2024/06/29 12:11:11 riastradh Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.48 2024/06/29 12:11:11 riastradh Exp $");
48 
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/kernel.h>
59 #include <sys/socket.h>
60 #include <sys/ioctl.h>
61 #include <sys/errno.h>
62 #include <sys/device.h>
63 #include <sys/module.h>
64 
65 #include <machine/endian.h>
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80 
81 #include <net/bpf.h>
82 
83 #include <sys/bus.h>
84 #include <sys/intr.h>
85 #include <sys/rndsource.h>
86 
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 #include <dev/mii/mii_bitbang.h>
90 
91 #include <dev/pci/pcivar.h>
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcidevs.h>
94 #include <prop/proplib.h>
95 
96 #include <dev/pci/if_casreg.h>
97 #include <dev/pci/if_casvar.h>
98 
99 #define TRIES	10000
100 
101 static bool	cas_estintr(struct cas_softc *sc, int);
102 bool		cas_shutdown(device_t, int);
103 static bool	cas_suspend(device_t, const pmf_qual_t *);
104 static bool	cas_resume(device_t, const pmf_qual_t *);
105 static int	cas_detach(device_t, int);
106 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
107 
108 int		cas_match(device_t, cfdata_t, void *);
109 void		cas_attach(device_t, device_t, void *);
110 
111 
112 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
113     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
114     DVF_DETACH_SHUTDOWN);
115 
116 int	cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *);
117 
118 void		cas_config(struct cas_softc *, const uint8_t *);
119 void		cas_start(struct ifnet *);
120 void		cas_stop(struct ifnet *, int);
121 int		cas_ioctl(struct ifnet *, u_long, void *);
122 void		cas_tick(void *);
123 void		cas_watchdog(struct ifnet *);
124 int		cas_init(struct ifnet *);
125 void		cas_init_regs(struct cas_softc *);
126 int		cas_ringsize(int);
127 int		cas_cringsize(int);
128 int		cas_meminit(struct cas_softc *);
129 void		cas_mifinit(struct cas_softc *);
130 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
131 		    uint32_t, uint32_t);
132 void		cas_reset(struct cas_softc *);
133 int		cas_reset_rx(struct cas_softc *);
134 int		cas_reset_tx(struct cas_softc *);
135 int		cas_disable_rx(struct cas_softc *);
136 int		cas_disable_tx(struct cas_softc *);
137 void		cas_rxdrain(struct cas_softc *);
138 int		cas_add_rxbuf(struct cas_softc *, int);
139 void		cas_iff(struct cas_softc *);
140 int		cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
141 
142 /* MII methods & callbacks */
143 int		cas_mii_readreg(device_t, int, int, uint16_t*);
144 int		cas_mii_writereg(device_t, int, int, uint16_t);
145 void		cas_mii_statchg(struct ifnet *);
146 int		cas_pcs_readreg(device_t, int, int, uint16_t *);
147 int		cas_pcs_writereg(device_t, int, int, uint16_t);
148 
149 int		cas_mediachange(struct ifnet *);
150 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
151 
152 int		cas_eint(struct cas_softc *, u_int);
153 int		cas_rint(struct cas_softc *);
154 int		cas_tint(struct cas_softc *, uint32_t);
155 int		cas_pint(struct cas_softc *);
156 int		cas_intr(void *);
157 
158 #ifdef CAS_DEBUG
159 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
160 				printf x
161 #else
162 #define	DPRINTF(sc, x)	/* nothing */
163 #endif
164 
165 static const struct device_compatible_entry compat_data[] = {
166 	{ .id = PCI_ID_CODE(PCI_VENDOR_SUN,
167 		PCI_PRODUCT_SUN_CASSINI),
168 	  .value = CAS_CAS },
169 
170 	{ .id = PCI_ID_CODE(PCI_VENDOR_NS,
171 		PCI_PRODUCT_NS_SATURN),
172 	  .value = CAS_SATURN },
173 
174 	PCI_COMPAT_EOL
175 };
176 
177 #define	CAS_LOCAL_MAC_ADDRESS	"local-mac-address"
178 #define	CAS_PHY_INTERFACE	"phy-interface"
179 #define	CAS_PHY_TYPE		"phy-type"
180 #define	CAS_PHY_TYPE_PCS	"pcs"
181 
182 int
cas_match(device_t parent,cfdata_t cf,void * aux)183 cas_match(device_t parent, cfdata_t cf, void *aux)
184 {
185 	struct pci_attach_args *pa = aux;
186 
187 	return pci_compatible_match(pa, compat_data);
188 }
189 
190 #define	PROMHDR_PTR_DATA	0x18
191 #define	PROMDATA_PTR_VPD	0x08
192 #define	PROMDATA_DATA2		0x0a
193 
194 static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
195 static const uint8_t cas_promdat[] = {
196 	'P', 'C', 'I', 'R',
197 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
198 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
199 };
200 static const uint8_t cas_promdat_ns[] = {
201 	'P', 'C', 'I', 'R',
202 	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
203 	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
204 };
205 
206 static const uint8_t cas_promdat2[] = {
207 	0x18, 0x00,			/* structure length */
208 	0x00,				/* structure revision */
209 	0x00,				/* interface revision */
210 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
211 	PCI_CLASS_NETWORK		/* class code */
212 };
213 
214 #define CAS_LMA_MAXNUM	4
215 int
cas_pci_readvpd(struct cas_softc * sc,struct pci_attach_args * pa,uint8_t * enaddr)216 cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa,
217     uint8_t *enaddr)
218 {
219 	struct pci_vpd_largeres *res;
220 	struct pci_vpd *vpd;
221 	bus_space_handle_t romh;
222 	bus_space_tag_t romt;
223 	bus_size_t romsize = 0;
224 	uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
225 	bool pcs[4] = {false, false, false, false};
226 	uint8_t buf[32], *desc;
227 	pcireg_t address;
228 	int dataoff, vpdoff, len, lma = 0, phy = 0;
229 	int i, rv = -1;
230 
231 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
232 	    &romt, &romh, NULL, &romsize))
233 		return (-1);
234 
235 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
236 	address |= PCI_MAPREG_ROM_ENABLE;
237 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
238 
239 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
240 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
241 		goto fail;
242 
243 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
244 	if (dataoff < 0x1c)
245 		goto fail;
246 
247 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
248 	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
249 	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
250 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
251 		goto fail;
252 
253 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
254 	if (vpdoff < 0x1c)
255 		goto fail;
256 
257 next:
258 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
259 	if (!PCI_VPDRES_ISLARGE(buf[0]))
260 		goto fail;
261 
262 	res = (struct pci_vpd_largeres *)buf;
263 	vpdoff += sizeof(*res);
264 
265 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
266 	switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
267 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
268 		/* Skip identifier string. */
269 		vpdoff += len;
270 		goto next;
271 
272 	case PCI_VPDRES_TYPE_VPD:
273 #ifdef CAS_DEBUG
274 	printf("\n");
275 	for (i = 0; i < len; i++) {
276 		uint8_t byte;
277 		if (i % 16 == 0)
278 			printf("%04x :", i);
279 		byte = bus_space_read_1(romt, romh, vpdoff + i);
280 		printf(" %02x", byte);
281 		if (i % 16 == 15)
282 			printf("\n");
283 	}
284 	printf("\n");
285 #endif
286 
287 		while (len > 0) {
288 			bus_space_read_region_1(romt, romh, vpdoff,
289 			     buf, sizeof(buf));
290 
291 			vpd = (struct pci_vpd *)buf;
292 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
293 			len -= sizeof(*vpd) + vpd->vpd_len;
294 
295 			/*
296 			 * We're looking for an "Enhanced" VPD...
297 			 */
298 			if (vpd->vpd_key0 != 'Z')
299 				continue;
300 
301 			desc = buf + sizeof(*vpd);
302 
303 			/*
304 			 * ...which is an instance property...
305 			 */
306 			if (desc[0] != 'I')
307 				continue;
308 			desc += 3;
309 
310 			if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) {
311 				/*
312 				 * ...that's a byte array with the proper
313 				 * length for a MAC address...
314 				 */
315 				desc += 2;
316 
317 				/*
318 				 * ...named "local-mac-address".
319 				 */
320 				if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0)
321 					continue;
322 				desc += sizeof(CAS_LOCAL_MAC_ADDRESS);
323 
324 				if (lma == CAS_LMA_MAXNUM)
325 					continue;
326 
327 				memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
328 				lma++;
329 				rv = 0;
330 				continue;
331 			} else if (desc[0] == 'S') {
332 				size_t k;
333 
334 				/* String */
335 				desc += 2;
336 #ifdef CAS_DEBUG
337 				/* ...named "pcs". */
338 				printf("STR: \"%s\"\n", desc);
339 				if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0)
340 					continue;
341 				desc += sizeof(CAS_PHY_TYPE_PCS);
342 				printf("STR: \"%s\"\n", desc);
343 #endif
344 				/* ...named "phy-interface" or "phy-type". */
345 				if (strcmp(desc, CAS_PHY_INTERFACE) == 0)
346 					k = sizeof(CAS_PHY_INTERFACE);
347 				else if (strcmp(desc, CAS_PHY_TYPE) == 0)
348 					k = sizeof(CAS_PHY_TYPE);
349 				else
350 					continue;
351 
352 				desc += k;
353 #ifdef CAS_DEBUG
354 				printf("STR: \"%s\"\n", desc);
355 #endif
356 				if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0)
357 					pcs[phy] = true;
358 				phy++;
359 				continue;
360 			}
361 		}
362 		break;
363 
364 	default:
365 		goto fail;
366 	}
367 
368 	/*
369 	 * Multi port card has bridge chip. The device number is fixed:
370 	 * e.g.
371 	 * p0: 005:00:0
372 	 * p1: 005:01:0
373 	 * p2: 006:02:0
374 	 * p3: 006:03:0
375 	 */
376 	if (enaddr != 0) {
377 		i = 0;
378 		if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
379 		    && (pa->pa_device < lma))
380 			i = pa->pa_device;
381 		memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
382 	}
383 	if (pcs[pa->pa_device])
384 		sc->sc_flags |= CAS_SERDES;
385  fail:
386 	if (romsize != 0)
387 		bus_space_unmap(romt, romh, romsize);
388 
389 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
390 	address &= ~PCI_MAPREG_ROM_ENABLE;
391 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
392 
393 	return (rv);
394 }
395 
396 void
cas_attach(device_t parent,device_t self,void * aux)397 cas_attach(device_t parent, device_t self, void *aux)
398 {
399 	struct pci_attach_args *pa = aux;
400 	const struct device_compatible_entry *dce;
401 	struct cas_softc *sc = device_private(self);
402 	prop_data_t data;
403 	uint8_t enaddr[ETHER_ADDR_LEN];
404 
405 	sc->sc_dev = self;
406 	pci_aprint_devinfo(pa, NULL);
407 	sc->sc_rev = PCI_REVISION(pa->pa_class);
408 
409 	if (pci_dma64_available(pa))
410 		sc->sc_dmatag = pa->pa_dmat64;
411 	else
412 		sc->sc_dmatag = pa->pa_dmat;
413 
414 	dce = pci_compatible_lookup(pa, compat_data);
415 	KASSERT(dce != NULL);
416 	sc->sc_variant = (u_int)dce->value;
417 
418 	aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant);
419 
420 #define PCI_CAS_BASEADDR	0x10
421 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
422 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
423 		aprint_error_dev(sc->sc_dev,
424 		    "unable to map device registers\n");
425 		return;
426 	}
427 
428 	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
429 	    "mac-address")) != NULL)
430 		memcpy(enaddr, prop_data_value(data), ETHER_ADDR_LEN);
431 	if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) {
432 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
433 		memset(enaddr, 0, sizeof(enaddr));
434 	}
435 
436 	sc->sc_burst = 16;	/* XXX */
437 
438 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
439 
440 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
441 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
442 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
443 		return;
444 	}
445 	sc->sc_pc = pa->pa_pc;
446 	if (!cas_estintr(sc, CAS_INTR_PCI)) {
447 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
448 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
449 		return;
450 	}
451 
452 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
453 
454 	/*
455 	 * call the main configure
456 	 */
457 	cas_config(sc, enaddr);
458 
459 	if (pmf_device_register1(sc->sc_dev,
460 	    cas_suspend, cas_resume, cas_shutdown))
461 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
462 	else
463 		aprint_error_dev(sc->sc_dev,
464 		    "could not establish power handlers\n");
465 
466 	sc->sc_att_stage = CAS_ATT_FINISHED;
467 		/*FALLTHROUGH*/
468 }
469 
470 /*
471  * cas_config:
472  *
473  *	Attach a Cassini interface to the system.
474  */
475 void
cas_config(struct cas_softc * sc,const uint8_t * enaddr)476 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
477 {
478 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
479 	struct mii_data *mii = &sc->sc_mii;
480 	struct mii_softc *child;
481 	uint32_t reg;
482 	int i, error;
483 
484 	/* Make sure the chip is stopped. */
485 	ifp->if_softc = sc;
486 	cas_reset(sc);
487 
488 	/*
489 	 * Allocate the control data structures, and create and load the
490 	 * DMA map for it.
491 	 */
492 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
493 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
494 	    1, &sc->sc_cdnseg, 0)) != 0) {
495 		aprint_error_dev(sc->sc_dev,
496 		    "unable to allocate control data, error = %d\n",
497 		    error);
498 		cas_partial_detach(sc, CAS_ATT_0);
499 	}
500 
501 	/* XXX should map this in with correct endianness */
502 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
503 	    sc->sc_cdnseg, sizeof(struct cas_control_data),
504 	    (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
505 		aprint_error_dev(sc->sc_dev,
506 		    "unable to map control data, error = %d\n", error);
507 		cas_partial_detach(sc, CAS_ATT_1);
508 	}
509 
510 	if ((error = bus_dmamap_create(sc->sc_dmatag,
511 	    sizeof(struct cas_control_data), 1,
512 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
513 		aprint_error_dev(sc->sc_dev,
514 		    "unable to create control data DMA map, error = %d\n",
515 		    error);
516 		cas_partial_detach(sc, CAS_ATT_2);
517 	}
518 
519 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
520 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
521 	    0)) != 0) {
522 		aprint_error_dev(sc->sc_dev,
523 		    "unable to load control data DMA map, error = %d\n",
524 		    error);
525 		cas_partial_detach(sc, CAS_ATT_3);
526 	}
527 
528 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
529 
530 	/*
531 	 * Create the receive buffer DMA maps.
532 	 */
533 	for (i = 0; i < CAS_NRXDESC; i++) {
534 		bus_dma_segment_t seg;
535 		char *kva;
536 		int rseg;
537 
538 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
539 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
540 			aprint_error_dev(sc->sc_dev,
541 			    "unable to alloc rx DMA mem %d, error = %d\n",
542 			    i, error);
543 			cas_partial_detach(sc, CAS_ATT_5);
544 		}
545 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
546 
547 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
548 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
549 			aprint_error_dev(sc->sc_dev,
550 			    "unable to alloc rx DMA mem %d, error = %d\n",
551 			    i, error);
552 			cas_partial_detach(sc, CAS_ATT_5);
553 		}
554 		sc->sc_rxsoft[i].rxs_kva = kva;
555 
556 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
557 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
558 			aprint_error_dev(sc->sc_dev,
559 			    "unable to create rx DMA map %d, error = %d\n",
560 			    i, error);
561 			cas_partial_detach(sc, CAS_ATT_5);
562 		}
563 
564 		if ((error = bus_dmamap_load(sc->sc_dmatag,
565 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
566 		   BUS_DMA_NOWAIT)) != 0) {
567 			aprint_error_dev(sc->sc_dev,
568 			    "unable to load rx DMA map %d, error = %d\n",
569 			    i, error);
570 			cas_partial_detach(sc, CAS_ATT_5);
571 		}
572 	}
573 
574 	/*
575 	 * Create the transmit buffer DMA maps.
576 	 */
577 	for (i = 0; i < CAS_NTXDESC; i++) {
578 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
579 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
580 		    &sc->sc_txd[i].sd_map)) != 0) {
581 			aprint_error_dev(sc->sc_dev,
582 			    "unable to create tx DMA map %d, error = %d\n",
583 			    i, error);
584 			cas_partial_detach(sc, CAS_ATT_6);
585 		}
586 		sc->sc_txd[i].sd_mbuf = NULL;
587 	}
588 
589 	/*
590 	 * From this point forward, the attachment cannot fail.  A failure
591 	 * before this point releases all resources that may have been
592 	 * allocated.
593 	 */
594 
595 	/* Announce ourselves. */
596 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
597 	    ether_sprintf(enaddr));
598 	aprint_naive(": Ethernet controller\n");
599 
600 	/* Get RX FIFO size */
601 	sc->sc_rxfifosize = 16 * 1024;
602 
603 	/* Initialize ifnet structure. */
604 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
605 	ifp->if_softc = sc;
606 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
607 	ifp->if_start = cas_start;
608 	ifp->if_ioctl = cas_ioctl;
609 	ifp->if_watchdog = cas_watchdog;
610 	ifp->if_stop = cas_stop;
611 	ifp->if_init = cas_init;
612 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
613 	IFQ_SET_READY(&ifp->if_snd);
614 
615 	/* Initialize ifmedia structures and MII info */
616 	mii->mii_ifp = ifp;
617 	mii->mii_readreg = cas_mii_readreg;
618 	mii->mii_writereg = cas_mii_writereg;
619 	mii->mii_statchg = cas_mii_statchg;
620 
621 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
622 	sc->sc_ethercom.ec_mii = mii;
623 
624 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
625 
626 	cas_mifinit(sc);
627 
628 	if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) {
629 		if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
630 			sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
631 			bus_space_write_4(sc->sc_memt, sc->sc_memh,
632 			    CAS_MIF_CONFIG, sc->sc_mif_config);
633 		}
634 		/* Enable/unfreeze the GMII pins of Saturn. */
635 		if (sc->sc_variant == CAS_SATURN) {
636 			reg = bus_space_read_4(sc->sc_memt, sc->sc_memh,
637 			    CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI;
638 			if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0)
639 				reg |= CAS_SATURN_PCFG_FSI;
640 			bus_space_write_4(sc->sc_memt, sc->sc_memh,
641 			    CAS_SATURN_PCFG, reg);
642 			/* Read to flush */
643 			bus_space_read_4(sc->sc_memt, sc->sc_memh,
644 			    CAS_SATURN_PCFG);
645 			DELAY(10000);
646 		}
647 	}
648 
649 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
650 	    MII_OFFSET_ANY, 0);
651 
652 	child = LIST_FIRST(&mii->mii_phys);
653 	if (child == NULL &&
654 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
655 		/*
656 		 * Try the external PCS SERDES if we didn't find any
657 		 * MII devices.
658 		 */
659 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
660 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
661 
662 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
663 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
664 
665 		mii->mii_readreg = cas_pcs_readreg;
666 		mii->mii_writereg = cas_pcs_writereg;
667 
668 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
669 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
670 	}
671 
672 	child = LIST_FIRST(&mii->mii_phys);
673 	if (child == NULL) {
674 		/* No PHY attached */
675 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
676 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
677 	} else {
678 		/*
679 		 * Walk along the list of attached MII devices and
680 		 * establish an `MII instance' to `phy number'
681 		 * mapping. We'll use this mapping in media change
682 		 * requests to determine which phy to use to program
683 		 * the MIF configuration register.
684 		 */
685 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
686 			/*
687 			 * Note: we support just two PHYs: the built-in
688 			 * internal device and an external on the MII
689 			 * connector.
690 			 */
691 			if (child->mii_phy > 1 || child->mii_inst > 1) {
692 				aprint_error_dev(sc->sc_dev,
693 				    "cannot accommodate MII device %s"
694 				    " at phy %d, instance %d\n",
695 				    device_xname(child->mii_dev),
696 				    child->mii_phy, child->mii_inst);
697 				continue;
698 			}
699 
700 			sc->sc_phys[child->mii_inst] = child->mii_phy;
701 		}
702 
703 		/*
704 		 * XXX - we can really do the following ONLY if the
705 		 * phy indeed has the auto negotiation capability!!
706 		 */
707 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
708 	}
709 
710 	/* claim 802.1q capability */
711 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
712 
713 	/* Attach the interface. */
714 	if_attach(ifp);
715 	if_deferred_start_init(ifp, NULL);
716 	ether_ifattach(ifp, enaddr);
717 
718 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
719 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
720 
721 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
722 	    NULL, device_xname(sc->sc_dev), "interrupts");
723 
724 	callout_init(&sc->sc_tick_ch, 0);
725 	callout_setfunc(&sc->sc_tick_ch, cas_tick, sc);
726 
727 	return;
728 }
729 
730 int
cas_detach(device_t self,int flags)731 cas_detach(device_t self, int flags)
732 {
733 	int i;
734 	struct cas_softc *sc = device_private(self);
735 	bus_space_tag_t t = sc->sc_memt;
736 	bus_space_handle_t h = sc->sc_memh;
737 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
738 
739 	/*
740 	 * Free any resources we've allocated during the failed attach
741 	 * attempt.  Do this in reverse order and fall through.
742 	 */
743 	switch (sc->sc_att_stage) {
744 	case CAS_ATT_FINISHED:
745 		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
746 		pmf_device_deregister(self);
747 		cas_stop(&sc->sc_ethercom.ec_if, 1);
748 		evcnt_detach(&sc->sc_ev_intr);
749 
750 		rnd_detach_source(&sc->rnd_source);
751 
752 		ether_ifdetach(ifp);
753 		if_detach(ifp);
754 
755 		callout_destroy(&sc->sc_tick_ch);
756 
757 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
758 
759 		ifmedia_fini(&sc->sc_mii.mii_media);
760 
761 		/*FALLTHROUGH*/
762 	case CAS_ATT_MII:
763 	case CAS_ATT_7:
764 	case CAS_ATT_6:
765 		for (i = 0; i < CAS_NTXDESC; i++) {
766 			if (sc->sc_txd[i].sd_map != NULL)
767 				bus_dmamap_destroy(sc->sc_dmatag,
768 				    sc->sc_txd[i].sd_map);
769 		}
770 		/*FALLTHROUGH*/
771 	case CAS_ATT_5:
772 		for (i = 0; i < CAS_NRXDESC; i++) {
773 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
774 				bus_dmamap_unload(sc->sc_dmatag,
775 				    sc->sc_rxsoft[i].rxs_dmamap);
776 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
777 				bus_dmamap_destroy(sc->sc_dmatag,
778 				    sc->sc_rxsoft[i].rxs_dmamap);
779 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
780 				bus_dmamem_unmap(sc->sc_dmatag,
781 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
782 			/* XXX   need to check that bus_dmamem_alloc suceeded
783 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
784 			*/
785 			bus_dmamem_free(sc->sc_dmatag,
786 			    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
787 		}
788 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
789 		/*FALLTHROUGH*/
790 	case CAS_ATT_4:
791 	case CAS_ATT_3:
792 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
793 		/*FALLTHROUGH*/
794 	case CAS_ATT_2:
795 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
796 		    sizeof(struct cas_control_data));
797 		/*FALLTHROUGH*/
798 	case CAS_ATT_1:
799 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
800 		/*FALLTHROUGH*/
801 	case CAS_ATT_0:
802 		sc->sc_att_stage = CAS_ATT_0;
803 		/*FALLTHROUGH*/
804 	case CAS_ATT_BACKEND_2:
805 	case CAS_ATT_BACKEND_1:
806 		if (sc->sc_ih != NULL) {
807 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
808 			sc->sc_ih = NULL;
809 		}
810 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
811 		/*FALLTHROUGH*/
812 	case CAS_ATT_BACKEND_0:
813 		break;
814 	}
815 	return 0;
816 }
817 
818 static void
cas_partial_detach(struct cas_softc * sc,enum cas_attach_stage stage)819 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
820 {
821 	cfattach_t ca = device_cfattach(sc->sc_dev);
822 
823 	sc->sc_att_stage = stage;
824 	(*ca->ca_detach)(sc->sc_dev, 0);
825 }
826 
827 void
cas_tick(void * arg)828 cas_tick(void *arg)
829 {
830 	struct cas_softc *sc = arg;
831 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
832 	bus_space_tag_t t = sc->sc_memt;
833 	bus_space_handle_t mac = sc->sc_memh;
834 	int s;
835 	uint32_t v;
836 
837 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
838 
839 	/* unload collisions counters */
840 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
841 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
842 	if_statadd_ref(ifp, nsr, if_collisions, v +
843 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
844 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT));
845 	if_statadd_ref(ifp, nsr, if_oerrors, v);
846 
847 	/* read error counters */
848 	if_statadd_ref(ifp, nsr, if_ierrors,
849 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
850 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
851 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
852 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL));
853 
854 	IF_STAT_PUTREF(ifp);
855 
856 	/* clear the hardware counters */
857 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
858 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
859 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
860 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
861 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
862 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
863 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
864 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
865 
866 	s = splnet();
867 	mii_tick(&sc->sc_mii);
868 	splx(s);
869 
870 	callout_schedule(&sc->sc_tick_ch, hz);
871 }
872 
873 int
cas_bitwait(struct cas_softc * sc,bus_space_handle_t h,int r,uint32_t clr,uint32_t set)874 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
875     uint32_t clr, uint32_t set)
876 {
877 	int i;
878 	uint32_t reg;
879 
880 	for (i = TRIES; i--; DELAY(100)) {
881 		reg = bus_space_read_4(sc->sc_memt, h, r);
882 		if ((reg & clr) == 0 && (reg & set) == set)
883 			return (1);
884 	}
885 
886 	return (0);
887 }
888 
889 void
cas_reset(struct cas_softc * sc)890 cas_reset(struct cas_softc *sc)
891 {
892 	bus_space_tag_t t = sc->sc_memt;
893 	bus_space_handle_t h = sc->sc_memh;
894 	int s;
895 
896 	s = splnet();
897 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
898 	cas_reset_rx(sc);
899 	cas_reset_tx(sc);
900 
901 	/* Disable interrupts */
902 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
903 
904 	/* Do a full reset */
905 	bus_space_write_4(t, h, CAS_RESET,
906 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
907 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
908 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
909 	splx(s);
910 }
911 
912 
913 /*
914  * cas_rxdrain:
915  *
916  *	Drain the receive queue.
917  */
918 void
cas_rxdrain(struct cas_softc * sc)919 cas_rxdrain(struct cas_softc *sc)
920 {
921 	/* Nothing to do yet. */
922 }
923 
924 /*
925  * Reset the whole thing.
926  */
927 void
cas_stop(struct ifnet * ifp,int disable)928 cas_stop(struct ifnet *ifp, int disable)
929 {
930 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
931 	struct cas_sxd *sd;
932 	uint32_t i;
933 
934 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
935 
936 	callout_stop(&sc->sc_tick_ch);
937 
938 	/*
939 	 * Mark the interface down and cancel the watchdog timer.
940 	 */
941 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
942 	ifp->if_timer = 0;
943 
944 	mii_down(&sc->sc_mii);
945 
946 	cas_reset_rx(sc);
947 	cas_reset_tx(sc);
948 
949 	/*
950 	 * Release any queued transmit buffers.
951 	 */
952 	for (i = 0; i < CAS_NTXDESC; i++) {
953 		sd = &sc->sc_txd[i];
954 		if (sd->sd_mbuf != NULL) {
955 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
956 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
957 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
958 			m_freem(sd->sd_mbuf);
959 			sd->sd_mbuf = NULL;
960 		}
961 	}
962 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
963 
964 	if (disable)
965 		cas_rxdrain(sc);
966 }
967 
968 
969 /*
970  * Reset the receiver
971  */
972 int
cas_reset_rx(struct cas_softc * sc)973 cas_reset_rx(struct cas_softc *sc)
974 {
975 	bus_space_tag_t t = sc->sc_memt;
976 	bus_space_handle_t h = sc->sc_memh;
977 
978 	/*
979 	 * Resetting while DMA is in progress can cause a bus hang, so we
980 	 * disable DMA first.
981 	 */
982 	cas_disable_rx(sc);
983 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
984 	/* Wait till it finishes */
985 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
986 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
987 	/* Wait 5ms extra. */
988 	delay(5000);
989 
990 	/* Finally, reset the ERX */
991 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
992 	/* Wait till it finishes */
993 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
994 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
995 		return (1);
996 	}
997 	return (0);
998 }
999 
1000 
1001 /*
1002  * Reset the transmitter
1003  */
1004 int
cas_reset_tx(struct cas_softc * sc)1005 cas_reset_tx(struct cas_softc *sc)
1006 {
1007 	bus_space_tag_t t = sc->sc_memt;
1008 	bus_space_handle_t h = sc->sc_memh;
1009 
1010 	/*
1011 	 * Resetting while DMA is in progress can cause a bus hang, so we
1012 	 * disable DMA first.
1013 	 */
1014 	cas_disable_tx(sc);
1015 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
1016 	/* Wait till it finishes */
1017 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
1018 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
1019 	/* Wait 5ms extra. */
1020 	delay(5000);
1021 
1022 	/* Finally, reset the ETX */
1023 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
1024 	/* Wait till it finishes */
1025 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
1026 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
1027 		return (1);
1028 	}
1029 	return (0);
1030 }
1031 
1032 /*
1033  * Disable receiver.
1034  */
1035 int
cas_disable_rx(struct cas_softc * sc)1036 cas_disable_rx(struct cas_softc *sc)
1037 {
1038 	bus_space_tag_t t = sc->sc_memt;
1039 	bus_space_handle_t h = sc->sc_memh;
1040 	uint32_t cfg;
1041 
1042 	/* Flip the enable bit */
1043 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1044 	cfg &= ~CAS_MAC_RX_ENABLE;
1045 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
1046 
1047 	/* Wait for it to finish */
1048 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
1049 }
1050 
1051 /*
1052  * Disable transmitter.
1053  */
1054 int
cas_disable_tx(struct cas_softc * sc)1055 cas_disable_tx(struct cas_softc *sc)
1056 {
1057 	bus_space_tag_t t = sc->sc_memt;
1058 	bus_space_handle_t h = sc->sc_memh;
1059 	uint32_t cfg;
1060 
1061 	/* Flip the enable bit */
1062 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
1063 	cfg &= ~CAS_MAC_TX_ENABLE;
1064 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
1065 
1066 	/* Wait for it to finish */
1067 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
1068 }
1069 
1070 /*
1071  * Initialize interface.
1072  */
1073 int
cas_meminit(struct cas_softc * sc)1074 cas_meminit(struct cas_softc *sc)
1075 {
1076 	int i;
1077 
1078 	/*
1079 	 * Initialize the transmit descriptor ring.
1080 	 */
1081 	for (i = 0; i < CAS_NTXDESC; i++) {
1082 		sc->sc_txdescs[i].cd_flags = 0;
1083 		sc->sc_txdescs[i].cd_addr = 0;
1084 	}
1085 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1086 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1087 
1088 	/*
1089 	 * Initialize the receive descriptor and receive job
1090 	 * descriptor rings.
1091 	 */
1092 	for (i = 0; i < CAS_NRXDESC; i++)
1093 		CAS_INIT_RXDESC(sc, i, i);
1094 	sc->sc_rxdptr = 0;
1095 	sc->sc_rxptr = 0;
1096 
1097 	/*
1098 	 * Initialize the receive completion ring.
1099 	 */
1100 	for (i = 0; i < CAS_NRXCOMP; i++) {
1101 		sc->sc_rxcomps[i].cc_word[0] = 0;
1102 		sc->sc_rxcomps[i].cc_word[1] = 0;
1103 		sc->sc_rxcomps[i].cc_word[2] = 0;
1104 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1105 		CAS_CDRXCSYNC(sc, i,
1106 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1107 	}
1108 
1109 	return (0);
1110 }
1111 
1112 int
cas_ringsize(int sz)1113 cas_ringsize(int sz)
1114 {
1115 	switch (sz) {
1116 	case 32:
1117 		return CAS_RING_SZ_32;
1118 	case 64:
1119 		return CAS_RING_SZ_64;
1120 	case 128:
1121 		return CAS_RING_SZ_128;
1122 	case 256:
1123 		return CAS_RING_SZ_256;
1124 	case 512:
1125 		return CAS_RING_SZ_512;
1126 	case 1024:
1127 		return CAS_RING_SZ_1024;
1128 	case 2048:
1129 		return CAS_RING_SZ_2048;
1130 	case 4096:
1131 		return CAS_RING_SZ_4096;
1132 	case 8192:
1133 		return CAS_RING_SZ_8192;
1134 	default:
1135 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1136 		    sz);
1137 		return CAS_RING_SZ_32;
1138 	}
1139 }
1140 
1141 int
cas_cringsize(int sz)1142 cas_cringsize(int sz)
1143 {
1144 	int i;
1145 
1146 	for (i = 0; i < 9; i++)
1147 		if (sz == (128 << i))
1148 			return i;
1149 
1150 	aprint_error("cas: invalid completion ring size %d\n", sz);
1151 	return 128;
1152 }
1153 
1154 /*
1155  * Initialization of interface; set up initialization block
1156  * and transmit/receive descriptor rings.
1157  */
1158 int
cas_init(struct ifnet * ifp)1159 cas_init(struct ifnet *ifp)
1160 {
1161 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1162 	bus_space_tag_t t = sc->sc_memt;
1163 	bus_space_handle_t h = sc->sc_memh;
1164 	int s;
1165 	u_int max_frame_size;
1166 	uint32_t v;
1167 
1168 	s = splnet();
1169 
1170 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1171 	/*
1172 	 * Initialization sequence. The numbered steps below correspond
1173 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1174 	 * Channel Engine manual (part of the PCIO manual).
1175 	 * See also the STP2002-STQ document from Sun Microsystems.
1176 	 */
1177 
1178 	/* step 1 & 2. Reset the Ethernet Channel */
1179 	cas_stop(ifp, 0);
1180 	cas_reset(sc);
1181 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1182 
1183 	/* Re-initialize the MIF */
1184 	cas_mifinit(sc);
1185 
1186 	/* step 3. Setup data structures in host memory */
1187 	cas_meminit(sc);
1188 
1189 	/* step 4. TX MAC registers & counters */
1190 	cas_init_regs(sc);
1191 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1192 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1193 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1194 
1195 	/* step 5. RX MAC registers & counters */
1196 	cas_iff(sc);
1197 
1198 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1199 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1200 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1201 	    BUS_ADDR_HI32(CAS_CDTXADDR(sc, 0)));
1202 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO,
1203 	    BUS_ADDR_LO32(CAS_CDTXADDR(sc, 0)));
1204 
1205 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1206 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1207 	    BUS_ADDR_HI32(CAS_CDRXADDR(sc, 0)));
1208 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO,
1209 	    BUS_ADDR_LO32(CAS_CDRXADDR(sc, 0)));
1210 
1211 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1212 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1213 	    BUS_ADDR_HI32(CAS_CDRXCADDR(sc, 0)));
1214 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO,
1215 	    BUS_ADDR_LO32(CAS_CDRXCADDR(sc, 0)));
1216 
1217 	if (CAS_PLUS(sc)) {
1218 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1219 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1220 		    BUS_ADDR_HI32(CAS_CDRXADDR2(sc, 0)));
1221 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1222 		    BUS_ADDR_LO32(CAS_CDRXADDR2(sc, 0)));
1223 	}
1224 
1225 	/* step 8. Global Configuration & Interrupt Mask */
1226 	cas_estintr(sc, CAS_INTR_REG);
1227 
1228 	/* step 9. ETX Configuration: use mostly default values */
1229 
1230 	/* Enable DMA */
1231 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1232 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1233 	    v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
1234 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1235 
1236 	/* step 10. ERX Configuration */
1237 
1238 	/* Encode Receive Descriptor ring size */
1239 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1240 	if (CAS_PLUS(sc))
1241 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1242 
1243 	/* Encode Receive Completion ring size */
1244 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1245 
1246 	/* Enable DMA */
1247 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1248 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
1249 
1250 	/*
1251 	 * The following value is for an OFF Threshold of about 3/4 full
1252 	 * and an ON Threshold of 1/4 full.
1253 	 */
1254 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1255 	    (3 * sc->sc_rxfifosize / 256) |
1256 	    ((sc->sc_rxfifosize / 256) << 12));
1257 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1258 
1259 	/* step 11. Configure Media */
1260 	mii_ifmedia_change(&sc->sc_mii);
1261 
1262 	/* step 12. RX_MAC Configuration Register */
1263 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1264 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1265 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1266 
1267 	/* step 14. Issue Transmit Pending command */
1268 
1269 	/* step 15.  Give the receiver a swift kick */
1270 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1271 	if (CAS_PLUS(sc))
1272 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1273 
1274 	/* Start the one second timer. */
1275 	callout_schedule(&sc->sc_tick_ch, hz);
1276 
1277 	ifp->if_flags |= IFF_RUNNING;
1278 	ifp->if_flags &= ~IFF_OACTIVE;
1279 	ifp->if_timer = 0;
1280 	splx(s);
1281 
1282 	return (0);
1283 }
1284 
1285 void
cas_init_regs(struct cas_softc * sc)1286 cas_init_regs(struct cas_softc *sc)
1287 {
1288 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1289 	bus_space_tag_t t = sc->sc_memt;
1290 	bus_space_handle_t h = sc->sc_memh;
1291 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1292 	uint32_t v, r;
1293 
1294 	/* These regs are not cleared on reset */
1295 	sc->sc_inited = 0;
1296 	if (!sc->sc_inited) {
1297 		/* Load recommended values  */
1298 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1299 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1300 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1301 
1302 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1303 		/* Max frame and max burst size */
1304 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1305 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1306 
1307 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1308 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1309 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1310 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1311 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1312 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1313 
1314 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1315 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1316 			bus_space_write_4(t, h, r, 0);
1317 
1318 		/* MAC control addr set to 0:1:c2:0:1:80 */
1319 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1320 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1321 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1322 
1323 		/* MAC filter addr set to 0:0:0:0:0:0 */
1324 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1325 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1326 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1327 
1328 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1329 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1330 
1331 		/* Hash table initialized to 0 */
1332 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1333 			bus_space_write_4(t, h, r, 0);
1334 
1335 		sc->sc_inited = 1;
1336 	}
1337 
1338 	/* Counters need to be zeroed */
1339 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1340 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1341 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1342 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1343 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1344 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1345 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1346 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1347 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1348 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1349 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1350 
1351 	/* Un-pause stuff */
1352 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1353 
1354 	/*
1355 	 * Set the station address.
1356 	 */
1357 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1358 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1359 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1360 }
1361 
1362 /*
1363  * Receive interrupt.
1364  */
1365 int
cas_rint(struct cas_softc * sc)1366 cas_rint(struct cas_softc *sc)
1367 {
1368 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1369 	bus_space_tag_t t = sc->sc_memt;
1370 	bus_space_handle_t h = sc->sc_memh;
1371 	struct cas_rxsoft *rxs;
1372 	struct mbuf *m;
1373 	uint64_t word[4];
1374 	int len, off, idx;
1375 	int i, skip;
1376 	void *cp;
1377 
1378 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1379 		CAS_CDRXCSYNC(sc, i,
1380 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1381 
1382 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1383 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1384 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1385 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1386 
1387 		/* Stop if the hardware still owns the descriptor. */
1388 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1389 			break;
1390 
1391 		len = CAS_RC1_HDR_LEN(word[1]);
1392 		if (len > 0) {
1393 			off = CAS_RC1_HDR_OFF(word[1]);
1394 			idx = CAS_RC1_HDR_IDX(word[1]);
1395 			rxs = &sc->sc_rxsoft[idx];
1396 
1397 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1398 			    idx, off, len));
1399 
1400 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1401 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1402 
1403 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1404 			m = m_devget(cp, len, 0, ifp);
1405 
1406 			if (word[0] & CAS_RC0_RELEASE_HDR)
1407 				cas_add_rxbuf(sc, idx);
1408 
1409 			if (m != NULL) {
1410 
1411 				/*
1412 				 * Pass this up to any BPF listeners, but only
1413 				 * pass it up the stack if its for us.
1414 				 */
1415 				m->m_pkthdr.csum_flags = 0;
1416 				if_percpuq_enqueue(ifp->if_percpuq, m);
1417 			} else
1418 				if_statinc(ifp, if_ierrors);
1419 		}
1420 
1421 		len = CAS_RC0_DATA_LEN(word[0]);
1422 		if (len > 0) {
1423 			off = CAS_RC0_DATA_OFF(word[0]);
1424 			idx = CAS_RC0_DATA_IDX(word[0]);
1425 			rxs = &sc->sc_rxsoft[idx];
1426 
1427 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1428 			    idx, off, len));
1429 
1430 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1431 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1432 
1433 			/* XXX We should not be copying the packet here. */
1434 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1435 			m = m_devget(cp, len, 0, ifp);
1436 
1437 			if (word[0] & CAS_RC0_RELEASE_DATA)
1438 				cas_add_rxbuf(sc, idx);
1439 
1440 			if (m != NULL) {
1441 				/*
1442 				 * Pass this up to any BPF listeners, but only
1443 				 * pass it up the stack if its for us.
1444 				 */
1445 				m->m_pkthdr.csum_flags = 0;
1446 				if_percpuq_enqueue(ifp->if_percpuq, m);
1447 			} else
1448 				if_statinc(ifp, if_ierrors);
1449 		}
1450 
1451 		if (word[0] & CAS_RC0_SPLIT)
1452 			aprint_error_dev(sc->sc_dev, "split packet\n");
1453 
1454 		skip = CAS_RC0_SKIP(word[0]);
1455 	}
1456 
1457 	while (sc->sc_rxptr != i) {
1458 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1459 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1460 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1461 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1462 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1463 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1464 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1465 
1466 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1467 	}
1468 
1469 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1470 
1471 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1472 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1473 
1474 	return (1);
1475 }
1476 
1477 /*
1478  * cas_add_rxbuf:
1479  *
1480  *	Add a receive buffer to the indicated descriptor.
1481  */
1482 int
cas_add_rxbuf(struct cas_softc * sc,int idx)1483 cas_add_rxbuf(struct cas_softc *sc, int idx)
1484 {
1485 	bus_space_tag_t t = sc->sc_memt;
1486 	bus_space_handle_t h = sc->sc_memh;
1487 
1488 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1489 
1490 	if ((sc->sc_rxdptr % 4) == 0)
1491 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1492 
1493 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1494 		sc->sc_rxdptr = 0;
1495 
1496 	return (0);
1497 }
1498 
1499 int
cas_eint(struct cas_softc * sc,u_int status)1500 cas_eint(struct cas_softc *sc, u_int status)
1501 {
1502 	char bits[128];
1503 	if ((status & CAS_INTR_MIF) != 0) {
1504 		DPRINTF(sc, ("%s: link status changed\n",
1505 		    device_xname(sc->sc_dev)));
1506 		return (1);
1507 	}
1508 
1509 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1510 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1511 	return (1);
1512 }
1513 
1514 int
cas_pint(struct cas_softc * sc)1515 cas_pint(struct cas_softc *sc)
1516 {
1517 	bus_space_tag_t t = sc->sc_memt;
1518 	bus_space_handle_t seb = sc->sc_memh;
1519 	uint32_t status;
1520 
1521 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1522 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1523 #ifdef CAS_DEBUG
1524 	if (status)
1525 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1526 #endif
1527 	return (1);
1528 }
1529 
1530 int
cas_intr(void * v)1531 cas_intr(void *v)
1532 {
1533 	struct cas_softc *sc = (struct cas_softc *)v;
1534 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1535 	bus_space_tag_t t = sc->sc_memt;
1536 	bus_space_handle_t seb = sc->sc_memh;
1537 	uint32_t status;
1538 	int r = 0;
1539 #ifdef CAS_DEBUG
1540 	char bits[128];
1541 #endif
1542 
1543 	sc->sc_ev_intr.ev_count++;
1544 
1545 	status = bus_space_read_4(t, seb, CAS_STATUS);
1546 #ifdef CAS_DEBUG
1547 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1548 #endif
1549 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1550 		device_xname(sc->sc_dev), (status>>19), bits));
1551 
1552 	if ((status & CAS_INTR_PCS) != 0)
1553 		r |= cas_pint(sc);
1554 
1555 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1556 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1557 		r |= cas_eint(sc, status);
1558 
1559 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1560 		r |= cas_tint(sc, status);
1561 
1562 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1563 		r |= cas_rint(sc);
1564 
1565 	/* We should eventually do more than just print out error stats. */
1566 	if (status & CAS_INTR_TX_MAC) {
1567 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1568 #ifdef CAS_DEBUG
1569 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1570 			printf("%s: MAC tx fault, status %x\n",
1571 			    device_xname(sc->sc_dev), txstat);
1572 #endif
1573 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1574 			cas_init(ifp);
1575 	}
1576 	if (status & CAS_INTR_RX_MAC) {
1577 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1578 #ifdef CAS_DEBUG
1579 		if (rxstat & ~CAS_MAC_RX_DONE)
1580 			printf("%s: MAC rx fault, status %x\n",
1581 			    device_xname(sc->sc_dev), rxstat);
1582 #endif
1583 		/*
1584 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1585 		 * due to a silicon bug so handle them silently.
1586 		 */
1587 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1588 			if_statinc(ifp, if_ierrors);
1589 			cas_init(ifp);
1590 		}
1591 #ifdef CAS_DEBUG
1592 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1593 			printf("%s: MAC rx fault, status %x\n",
1594 			    device_xname(sc->sc_dev), rxstat);
1595 #endif
1596 	}
1597 	rnd_add_uint32(&sc->rnd_source, status);
1598 	return (r);
1599 }
1600 
1601 
1602 void
cas_watchdog(struct ifnet * ifp)1603 cas_watchdog(struct ifnet *ifp)
1604 {
1605 	struct cas_softc *sc = ifp->if_softc;
1606 
1607 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1608 		"CAS_MAC_RX_CONFIG %x\n",
1609 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1610 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1611 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1612 
1613 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1614 	if_statinc(ifp, if_oerrors);
1615 
1616 	/* Try to get more packets going. */
1617 	cas_init(ifp);
1618 }
1619 
1620 /*
1621  * Initialize the MII Management Interface
1622  */
1623 void
cas_mifinit(struct cas_softc * sc)1624 cas_mifinit(struct cas_softc *sc)
1625 {
1626 	bus_space_tag_t t = sc->sc_memt;
1627 	bus_space_handle_t mif = sc->sc_memh;
1628 
1629 	/* Configure the MIF in frame mode */
1630 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1631 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1632 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1633 }
1634 
1635 /*
1636  * MII interface
1637  *
1638  * The Cassini MII interface supports at least three different operating modes:
1639  *
1640  * Bitbang mode is implemented using data, clock and output enable registers.
1641  *
1642  * Frame mode is implemented by loading a complete frame into the frame
1643  * register and polling the valid bit for completion.
1644  *
1645  * Polling mode uses the frame register but completion is indicated by
1646  * an interrupt.
1647  *
1648  */
1649 int
cas_mii_readreg(device_t self,int phy,int reg,uint16_t * val)1650 cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1651 {
1652 	struct cas_softc *sc = device_private(self);
1653 	bus_space_tag_t t = sc->sc_memt;
1654 	bus_space_handle_t mif = sc->sc_memh;
1655 	int n;
1656 	uint32_t v;
1657 
1658 #ifdef CAS_DEBUG
1659 	if (sc->sc_debug)
1660 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1661 #endif
1662 
1663 	/* Construct the frame command */
1664 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1665 		CAS_MIF_FRAME_READ;
1666 
1667 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1668 	for (n = 0; n < 100; n++) {
1669 		DELAY(1);
1670 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1671 		if (v & CAS_MIF_FRAME_TA0) {
1672 			*val = v & CAS_MIF_FRAME_DATA;
1673 			return 0;
1674 		}
1675 	}
1676 
1677 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1678 	return ETIMEDOUT;
1679 }
1680 
1681 int
cas_mii_writereg(device_t self,int phy,int reg,uint16_t val)1682 cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1683 {
1684 	struct cas_softc *sc = device_private(self);
1685 	bus_space_tag_t t = sc->sc_memt;
1686 	bus_space_handle_t mif = sc->sc_memh;
1687 	int n;
1688 	uint32_t v;
1689 
1690 #ifdef CAS_DEBUG
1691 	if (sc->sc_debug)
1692 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1693 			phy, reg, val);
1694 #endif
1695 
1696 	/* Construct the frame command */
1697 	v = CAS_MIF_FRAME_WRITE			|
1698 	    (phy << CAS_MIF_PHY_SHIFT)		|
1699 	    (reg << CAS_MIF_REG_SHIFT)		|
1700 	    (val & CAS_MIF_FRAME_DATA);
1701 
1702 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1703 	for (n = 0; n < 100; n++) {
1704 		DELAY(1);
1705 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1706 		if (v & CAS_MIF_FRAME_TA0)
1707 			return 0;
1708 	}
1709 
1710 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1711 	return ETIMEDOUT;
1712 }
1713 
1714 void
cas_mii_statchg(struct ifnet * ifp)1715 cas_mii_statchg(struct ifnet *ifp)
1716 {
1717 	struct cas_softc *sc = ifp->if_softc;
1718 #ifdef CAS_DEBUG
1719 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1720 #endif
1721 	bus_space_tag_t t = sc->sc_memt;
1722 	bus_space_handle_t mac = sc->sc_memh;
1723 	uint32_t v;
1724 
1725 #ifdef CAS_DEBUG
1726 	if (sc->sc_debug)
1727 		printf("cas_mii_statchg: status change: phy = %d\n",
1728 		    sc->sc_phys[instance]);
1729 #endif
1730 
1731 	/* Set tx full duplex options */
1732 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1733 	delay(10000); /* reg must be cleared and delay before changing. */
1734 	v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
1735 		CAS_MAC_TX_ENABLE;
1736 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1737 		v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
1738 	}
1739 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1740 
1741 	/* XIF Configuration */
1742 	v = CAS_MAC_XIF_TX_MII_ENA;
1743 	v |= CAS_MAC_XIF_LINK_LED;
1744 
1745 	/* MII needs echo disable if half duplex. */
1746 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1747 		/* turn on full duplex LED */
1748 		v |= CAS_MAC_XIF_FDPLX_LED;
1749 	else
1750 		/* half duplex -- disable echo */
1751 		v |= CAS_MAC_XIF_ECHO_DISABL;
1752 
1753 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1754 	case IFM_1000_T:  /* Gigabit using GMII interface */
1755 	case IFM_1000_SX:
1756 		v |= CAS_MAC_XIF_GMII_MODE;
1757 		break;
1758 	default:
1759 		v &= ~CAS_MAC_XIF_GMII_MODE;
1760 	}
1761 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1762 }
1763 
1764 int
cas_pcs_readreg(device_t self,int phy,int reg,uint16_t * val)1765 cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1766 {
1767 	struct cas_softc *sc = device_private(self);
1768 	bus_space_tag_t t = sc->sc_memt;
1769 	bus_space_handle_t pcs = sc->sc_memh;
1770 
1771 #ifdef CAS_DEBUG
1772 	if (sc->sc_debug)
1773 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1774 #endif
1775 
1776 	if (phy != CAS_PHYAD_EXTERNAL)
1777 		return -1;
1778 
1779 	switch (reg) {
1780 	case MII_BMCR:
1781 		reg = CAS_MII_CONTROL;
1782 		break;
1783 	case MII_BMSR:
1784 		reg = CAS_MII_STATUS;
1785 		break;
1786 	case MII_ANAR:
1787 		reg = CAS_MII_ANAR;
1788 		break;
1789 	case MII_ANLPAR:
1790 		reg = CAS_MII_ANLPAR;
1791 		break;
1792 	case MII_EXTSR:
1793 		*val = EXTSR_1000XFDX | EXTSR_1000XHDX;
1794 		return 0;
1795 	default:
1796 		return (0);
1797 	}
1798 
1799 	*val = bus_space_read_4(t, pcs, reg) & 0xffff;
1800 	return 0;
1801 }
1802 
1803 int
cas_pcs_writereg(device_t self,int phy,int reg,uint16_t val)1804 cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
1805 {
1806 	struct cas_softc *sc = device_private(self);
1807 	bus_space_tag_t t = sc->sc_memt;
1808 	bus_space_handle_t pcs = sc->sc_memh;
1809 	int reset = 0;
1810 
1811 #ifdef CAS_DEBUG
1812 	if (sc->sc_debug)
1813 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1814 			phy, reg, val);
1815 #endif
1816 
1817 	if (phy != CAS_PHYAD_EXTERNAL)
1818 		return -1;
1819 
1820 	if (reg == MII_ANAR)
1821 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1822 
1823 	switch (reg) {
1824 	case MII_BMCR:
1825 		reset = (val & CAS_MII_CONTROL_RESET);
1826 		reg = CAS_MII_CONTROL;
1827 		break;
1828 	case MII_BMSR:
1829 		reg = CAS_MII_STATUS;
1830 		break;
1831 	case MII_ANAR:
1832 		reg = CAS_MII_ANAR;
1833 		break;
1834 	case MII_ANLPAR:
1835 		reg = CAS_MII_ANLPAR;
1836 		break;
1837 	default:
1838 		return 0;
1839 	}
1840 
1841 	bus_space_write_4(t, pcs, reg, val);
1842 
1843 	if (reset)
1844 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1845 
1846 	if (reg == CAS_MII_ANAR || reset)
1847 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1848 		    CAS_MII_CONFIG_ENABLE);
1849 
1850 	return 0;
1851 }
1852 
1853 int
cas_mediachange(struct ifnet * ifp)1854 cas_mediachange(struct ifnet *ifp)
1855 {
1856 	struct cas_softc *sc = ifp->if_softc;
1857 	struct mii_data *mii = &sc->sc_mii;
1858 
1859 	if (mii->mii_instance) {
1860 		struct mii_softc *miisc;
1861 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1862 			mii_phy_reset(miisc);
1863 	}
1864 
1865 	return (mii_mediachg(&sc->sc_mii));
1866 }
1867 
1868 void
cas_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)1869 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1870 {
1871 	struct cas_softc *sc = ifp->if_softc;
1872 
1873 	mii_pollstat(&sc->sc_mii);
1874 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1875 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1876 }
1877 
1878 /*
1879  * Process an ioctl request.
1880  */
1881 int
cas_ioctl(struct ifnet * ifp,u_long cmd,void * data)1882 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1883 {
1884 	struct cas_softc *sc = ifp->if_softc;
1885 	int s, error = 0;
1886 
1887 	s = splnet();
1888 
1889 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1890 		error = 0;
1891 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1892 			;
1893 		else if (ifp->if_flags & IFF_RUNNING) {
1894 			/*
1895 			 * Multicast list has changed; set the hardware filter
1896 			 * accordingly.
1897 			 */
1898 			cas_iff(sc);
1899 		}
1900 	}
1901 
1902 	splx(s);
1903 	return (error);
1904 }
1905 
1906 static bool
cas_suspend(device_t self,const pmf_qual_t * qual)1907 cas_suspend(device_t self, const pmf_qual_t *qual)
1908 {
1909 	struct cas_softc *sc = device_private(self);
1910 	bus_space_tag_t t = sc->sc_memt;
1911 	bus_space_handle_t h = sc->sc_memh;
1912 
1913 	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1914 	if (sc->sc_ih != NULL) {
1915 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1916 		sc->sc_ih = NULL;
1917 	}
1918 
1919 	return true;
1920 }
1921 
1922 static bool
cas_resume(device_t self,const pmf_qual_t * qual)1923 cas_resume(device_t self, const pmf_qual_t *qual)
1924 {
1925 	struct cas_softc *sc = device_private(self);
1926 
1927 	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1928 }
1929 
1930 static bool
cas_estintr(struct cas_softc * sc,int what)1931 cas_estintr(struct cas_softc *sc, int what)
1932 {
1933 	bus_space_tag_t t = sc->sc_memt;
1934 	bus_space_handle_t h = sc->sc_memh;
1935 	const char *intrstr = NULL;
1936 	char intrbuf[PCI_INTRSTR_LEN];
1937 
1938 	/* PCI interrupts */
1939 	if (what & CAS_INTR_PCI) {
1940 		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf,
1941 		    sizeof(intrbuf));
1942 		sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
1943 		    IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
1944 		if (sc->sc_ih == NULL) {
1945 			aprint_error_dev(sc->sc_dev,
1946 			    "unable to establish interrupt");
1947 			if (intrstr != NULL)
1948 				aprint_error(" at %s", intrstr);
1949 			aprint_error("\n");
1950 			return false;
1951 		}
1952 
1953 		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1954 	}
1955 
1956 	/* Interrupt register */
1957 	if (what & CAS_INTR_REG) {
1958 		bus_space_write_4(t, h, CAS_INTMASK,
1959 		    ~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY |
1960 		    CAS_INTR_TX_TAG_ERR |
1961 		    CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF |
1962 		    CAS_INTR_RX_TAG_ERR |
1963 		    CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS |
1964 		    CAS_INTR_MAC_CONTROL | CAS_INTR_MIF |
1965 		    CAS_INTR_BERR));
1966 		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1967 		    CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT);
1968 		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1969 		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1970 	}
1971 	return true;
1972 }
1973 
1974 bool
cas_shutdown(device_t self,int howto)1975 cas_shutdown(device_t self, int howto)
1976 {
1977 	struct cas_softc *sc = device_private(self);
1978 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1979 
1980 	cas_stop(ifp, 1);
1981 
1982 	return true;
1983 }
1984 
1985 void
cas_iff(struct cas_softc * sc)1986 cas_iff(struct cas_softc *sc)
1987 {
1988 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1989 	struct ethercom *ec = &sc->sc_ethercom;
1990 	struct ether_multi *enm;
1991 	struct ether_multistep step;
1992 	bus_space_tag_t t = sc->sc_memt;
1993 	bus_space_handle_t h = sc->sc_memh;
1994 	uint32_t crc, hash[16], rxcfg;
1995 	int i;
1996 
1997 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1998 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1999 	    CAS_MAC_RX_PROMISC_GRP);
2000 	ifp->if_flags &= ~IFF_ALLMULTI;
2001 
2002 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2003 		goto update;
2004 
2005 	/*
2006 	 * Set up multicast address filter by passing all multicast
2007 	 * addresses through a crc generator, and then using the
2008 	 * high order 8 bits as an index into the 256 bit logical
2009 	 * address filter.  The high order 4 bits selects the word,
2010 	 * while the other 4 bits select the bit within the word
2011 	 * (where bit 0 is the MSB).
2012 	 */
2013 
2014 	/* Clear hash table */
2015 	for (i = 0; i < 16; i++)
2016 		hash[i] = 0;
2017 
2018 	ETHER_LOCK(ec);
2019 	ETHER_FIRST_MULTI(step, ec, enm);
2020 	while (enm != NULL) {
2021 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2022 			/* XXX Use ETHER_F_ALLMULTI in future. */
2023 			ifp->if_flags |= IFF_ALLMULTI;
2024 			ETHER_UNLOCK(ec);
2025 			goto update;
2026 		}
2027 
2028 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2029 
2030 		/* Just want the 8 most significant bits. */
2031 		crc >>= 24;
2032 
2033 		/* Set the corresponding bit in the filter. */
2034 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2035 
2036 		ETHER_NEXT_MULTI(step, enm);
2037 	}
2038 	ETHER_UNLOCK(ec);
2039 
2040 	rxcfg |= CAS_MAC_RX_HASH_FILTER;
2041 
2042 	/* Now load the hash table into the chip (if we are using it) */
2043 	for (i = 0; i < 16; i++) {
2044 		bus_space_write_4(t, h,
2045 		    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2046 		    hash[i]);
2047 	}
2048 
2049 update:
2050 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2051 		if (ifp->if_flags & IFF_PROMISC) {
2052 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
2053 			/* XXX Use ETHER_F_ALLMULTI in future. */
2054 			ifp->if_flags |= IFF_ALLMULTI;
2055 		} else
2056 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
2057 	}
2058 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
2059 }
2060 
2061 int
cas_encap(struct cas_softc * sc,struct mbuf * mhead,uint32_t * bixp)2062 cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp)
2063 {
2064 	uint64_t flags;
2065 	uint32_t cur, frag, i;
2066 	bus_dmamap_t map;
2067 
2068 	cur = frag = *bixp;
2069 	map = sc->sc_txd[cur].sd_map;
2070 
2071 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
2072 	    BUS_DMA_NOWAIT) != 0) {
2073 		return (ENOBUFS);
2074 	}
2075 
2076 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
2077 		bus_dmamap_unload(sc->sc_dmatag, map);
2078 		return (ENOBUFS);
2079 	}
2080 
2081 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2082 	    BUS_DMASYNC_PREWRITE);
2083 
2084 	for (i = 0; i < map->dm_nsegs; i++) {
2085 		sc->sc_txdescs[frag].cd_addr =
2086 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
2087 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
2088 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
2089 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
2090 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
2091 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
2092 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
2093 		    BUS_DMASYNC_PREWRITE);
2094 		cur = frag;
2095 		if (++frag == CAS_NTXDESC)
2096 			frag = 0;
2097 	}
2098 
2099 	sc->sc_tx_cnt += map->dm_nsegs;
2100 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2101 	sc->sc_txd[cur].sd_map = map;
2102 	sc->sc_txd[cur].sd_mbuf = mhead;
2103 
2104 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2105 
2106 	*bixp = frag;
2107 
2108 	/* sync descriptors */
2109 
2110 	return (0);
2111 }
2112 
2113 /*
2114  * Transmit interrupt.
2115  */
2116 int
cas_tint(struct cas_softc * sc,uint32_t status)2117 cas_tint(struct cas_softc *sc, uint32_t status)
2118 {
2119 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2120 	struct cas_sxd *sd;
2121 	uint32_t cons, comp;
2122 
2123 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2124 	cons = sc->sc_tx_cons;
2125 	while (cons != comp) {
2126 		sd = &sc->sc_txd[cons];
2127 		if (sd->sd_mbuf != NULL) {
2128 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2129 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2130 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2131 			m_freem(sd->sd_mbuf);
2132 			sd->sd_mbuf = NULL;
2133 			if_statinc(ifp, if_opackets);
2134 		}
2135 		sc->sc_tx_cnt--;
2136 		if (++cons == CAS_NTXDESC)
2137 			cons = 0;
2138 	}
2139 	sc->sc_tx_cons = cons;
2140 
2141 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2142 		ifp->if_flags &= ~IFF_OACTIVE;
2143 	if (sc->sc_tx_cnt == 0)
2144 		ifp->if_timer = 0;
2145 
2146 	if_schedule_deferred_start(ifp);
2147 
2148 	return (1);
2149 }
2150 
2151 void
cas_start(struct ifnet * ifp)2152 cas_start(struct ifnet *ifp)
2153 {
2154 	struct cas_softc *sc = ifp->if_softc;
2155 	struct mbuf *m;
2156 	uint32_t bix;
2157 
2158 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2159 		return;
2160 
2161 	bix = sc->sc_tx_prod;
2162 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2163 		IFQ_POLL(&ifp->if_snd, m);
2164 		if (m == NULL)
2165 			break;
2166 
2167 		/*
2168 		 * If BPF is listening on this interface, let it see the
2169 		 * packet before we commit it to the wire.
2170 		 */
2171 		bpf_mtap(ifp, m, BPF_D_OUT);
2172 
2173 		/*
2174 		 * Encapsulate this packet and start it going...
2175 		 * or fail...
2176 		 */
2177 		if (cas_encap(sc, m, &bix)) {
2178 			ifp->if_flags |= IFF_OACTIVE;
2179 			break;
2180 		}
2181 
2182 		IFQ_DEQUEUE(&ifp->if_snd, m);
2183 		ifp->if_timer = 5;
2184 	}
2185 
2186 	sc->sc_tx_prod = bix;
2187 }
2188 
2189 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2190 
2191 #ifdef _MODULE
2192 #include "ioconf.c"
2193 #endif
2194 
2195 static int
if_cas_modcmd(modcmd_t cmd,void * opaque)2196 if_cas_modcmd(modcmd_t cmd, void *opaque)
2197 {
2198 	int error = 0;
2199 
2200 	switch (cmd) {
2201 	case MODULE_CMD_INIT:
2202 #ifdef _MODULE
2203 		error = config_init_component(cfdriver_ioconf_cas,
2204 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2205 #endif
2206 		return error;
2207 	case MODULE_CMD_FINI:
2208 #ifdef _MODULE
2209 		error = config_fini_component(cfdriver_ioconf_cas,
2210 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2211 #endif
2212 		return error;
2213 	default:
2214 		return ENOTTY;
2215 	}
2216 }
2217