xref: /llvm-project/flang/lib/Optimizer/Transforms/PolymorphicOpConversion.cpp (revision a78359c2ed68489b2dde558c2660515e481ae60f)
1 //===-- PolymorphicOpConversion.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Lower/BuiltinModules.h"
10 #include "flang/Optimizer/Builder/Todo.h"
11 #include "flang/Optimizer/Dialect/FIRDialect.h"
12 #include "flang/Optimizer/Dialect/FIROps.h"
13 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
14 #include "flang/Optimizer/Dialect/FIRType.h"
15 #include "flang/Optimizer/Dialect/Support/FIRContext.h"
16 #include "flang/Optimizer/Dialect/Support/KindMapping.h"
17 #include "flang/Optimizer/Support/InternalNames.h"
18 #include "flang/Optimizer/Support/TypeCode.h"
19 #include "flang/Optimizer/Support/Utils.h"
20 #include "flang/Optimizer/Transforms/Passes.h"
21 #include "flang/Runtime/derived-api.h"
22 #include "flang/Semantics/runtime-type-info.h"
23 #include "mlir/Dialect/Affine/IR/AffineOps.h"
24 #include "mlir/Dialect/Arith/IR/Arith.h"
25 #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
26 #include "mlir/Dialect/Func/IR/FuncOps.h"
27 #include "mlir/IR/BuiltinOps.h"
28 #include "mlir/Pass/Pass.h"
29 #include "mlir/Transforms/DialectConversion.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/Support/CommandLine.h"
32 
33 namespace fir {
34 #define GEN_PASS_DEF_POLYMORPHICOPCONVERSION
35 #include "flang/Optimizer/Transforms/Passes.h.inc"
36 } // namespace fir
37 
38 using namespace fir;
39 using namespace mlir;
40 
41 namespace {
42 
43 /// SelectTypeOp converted to an if-then-else chain
44 ///
45 /// This lowers the test conditions to calls into the runtime.
46 class SelectTypeConv : public OpConversionPattern<fir::SelectTypeOp> {
47 public:
48   using OpConversionPattern<fir::SelectTypeOp>::OpConversionPattern;
49 
50   SelectTypeConv(mlir::MLIRContext *ctx)
51       : mlir::OpConversionPattern<fir::SelectTypeOp>(ctx) {}
52 
53   llvm::LogicalResult
54   matchAndRewrite(fir::SelectTypeOp selectType, OpAdaptor adaptor,
55                   mlir::ConversionPatternRewriter &rewriter) const override;
56 
57 private:
58   // Generate comparison of type descriptor addresses.
59   mlir::Value genTypeDescCompare(mlir::Location loc, mlir::Value selector,
60                                  mlir::Type ty, mlir::ModuleOp mod,
61                                  mlir::PatternRewriter &rewriter) const;
62 
63   llvm::LogicalResult genTypeLadderStep(mlir::Location loc,
64                                         mlir::Value selector,
65                                         mlir::Attribute attr, mlir::Block *dest,
66                                         std::optional<mlir::ValueRange> destOps,
67                                         mlir::ModuleOp mod,
68                                         mlir::PatternRewriter &rewriter,
69                                         fir::KindMapping &kindMap) const;
70 
71   llvm::SmallSet<llvm::StringRef, 4> collectAncestors(fir::TypeInfoOp dt,
72                                                       mlir::ModuleOp mod) const;
73 };
74 
75 /// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch
76 /// table.
77 struct DispatchOpConv : public OpConversionPattern<fir::DispatchOp> {
78   using OpConversionPattern<fir::DispatchOp>::OpConversionPattern;
79 
80   DispatchOpConv(mlir::MLIRContext *ctx, const BindingTables &bindingTables)
81       : mlir::OpConversionPattern<fir::DispatchOp>(ctx),
82         bindingTables(bindingTables) {}
83 
84   llvm::LogicalResult
85   matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor,
86                   mlir::ConversionPatternRewriter &rewriter) const override {
87     mlir::Location loc = dispatch.getLoc();
88 
89     if (bindingTables.empty())
90       return emitError(loc) << "no binding tables found";
91 
92     // Get derived type information.
93     mlir::Type declaredType =
94         fir::getDerivedType(dispatch.getObject().getType().getEleTy());
95     assert(mlir::isa<fir::RecordType>(declaredType) && "expecting fir.type");
96     auto recordType = mlir::dyn_cast<fir::RecordType>(declaredType);
97 
98     // Lookup for the binding table.
99     auto bindingsIter = bindingTables.find(recordType.getName());
100     if (bindingsIter == bindingTables.end())
101       return emitError(loc)
102              << "cannot find binding table for " << recordType.getName();
103 
104     // Lookup for the binding.
105     const BindingTable &bindingTable = bindingsIter->second;
106     auto bindingIter = bindingTable.find(dispatch.getMethod());
107     if (bindingIter == bindingTable.end())
108       return emitError(loc)
109              << "cannot find binding for " << dispatch.getMethod();
110     unsigned bindingIdx = bindingIter->second;
111 
112     mlir::Value passedObject = dispatch.getObject();
113 
114     auto module = dispatch.getOperation()->getParentOfType<mlir::ModuleOp>();
115     Type typeDescTy;
116     std::string typeDescName =
117         NameUniquer::getTypeDescriptorName(recordType.getName());
118     if (auto global = module.lookupSymbol<fir::GlobalOp>(typeDescName)) {
119       typeDescTy = global.getType();
120     }
121 
122     // clang-format off
123     // Before:
124     //   fir.dispatch "proc1"(%11 :
125     //   !fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>)
126 
127     // After:
128     //   %12 = fir.box_tdesc %11 : (!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>) -> !fir.tdesc<none>
129     //   %13 = fir.convert %12 : (!fir.tdesc<none>) -> !fir.ref<!fir.type<_QM__fortran_type_infoTderivedtype>>
130     //   %14 = fir.field_index binding, !fir.type<_QM__fortran_type_infoTderivedtype>
131     //   %15 = fir.coordinate_of %13, %14 : (!fir.ref<!fir.type<_QM__fortran_type_infoTderivedtype>>, !fir.field) -> !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>>
132     //   %bindings = fir.load %15 : !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>>
133     //   %16 = fir.box_addr %bindings : (!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>) -> !fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>
134     //   %17 = fir.coordinate_of %16, %c0 : (!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>, index) -> !fir.ref<!fir.type<_QM__fortran_type_infoTbinding>>
135     //   %18 = fir.field_index proc, !fir.type<_QM__fortran_type_infoTbinding>
136     //   %19 = fir.coordinate_of %17, %18 : (!fir.ref<!fir.type<_QM__fortran_type_infoTbinding>>, !fir.field) -> !fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_c_funptr>>
137     //   %20 = fir.field_index __address, !fir.type<_QM__fortran_builtinsT__builtin_c_funptr>
138     //   %21 = fir.coordinate_of %19, %20 : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_c_funptr>>, !fir.field) -> !fir.ref<i64>
139     //   %22 = fir.load %21 : !fir.ref<i64>
140     //   %23 = fir.convert %22 : (i64) -> (() -> ())
141     //   fir.call %23()  : () -> ()
142     // clang-format on
143 
144     // Load the descriptor.
145     mlir::Type fieldTy = fir::FieldType::get(rewriter.getContext());
146     mlir::Type tdescType =
147         fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext()));
148     mlir::Value boxDesc =
149         rewriter.create<fir::BoxTypeDescOp>(loc, tdescType, passedObject);
150     boxDesc = rewriter.create<fir::ConvertOp>(
151         loc, fir::ReferenceType::get(typeDescTy), boxDesc);
152 
153     // Load the bindings descriptor.
154     auto bindingsCompName = Fortran::semantics::bindingDescCompName;
155     fir::RecordType typeDescRecTy = mlir::cast<fir::RecordType>(typeDescTy);
156     mlir::Value field = rewriter.create<fir::FieldIndexOp>(
157         loc, fieldTy, bindingsCompName, typeDescRecTy, mlir::ValueRange{});
158     mlir::Type coorTy =
159         fir::ReferenceType::get(typeDescRecTy.getType(bindingsCompName));
160     mlir::Value bindingBoxAddr =
161         rewriter.create<fir::CoordinateOp>(loc, coorTy, boxDesc, field);
162     mlir::Value bindingBox = rewriter.create<fir::LoadOp>(loc, bindingBoxAddr);
163 
164     // Load the correct binding.
165     mlir::Value bindings = rewriter.create<fir::BoxAddrOp>(loc, bindingBox);
166     fir::RecordType bindingTy = fir::unwrapIfDerived(
167         mlir::cast<fir::BaseBoxType>(bindingBox.getType()));
168     mlir::Type bindingAddrTy = fir::ReferenceType::get(bindingTy);
169     mlir::Value bindingIdxVal = rewriter.create<mlir::arith::ConstantOp>(
170         loc, rewriter.getIndexType(), rewriter.getIndexAttr(bindingIdx));
171     mlir::Value bindingAddr = rewriter.create<fir::CoordinateOp>(
172         loc, bindingAddrTy, bindings, bindingIdxVal);
173 
174     // Get the function pointer.
175     auto procCompName = Fortran::semantics::procCompName;
176     mlir::Value procField = rewriter.create<fir::FieldIndexOp>(
177         loc, fieldTy, procCompName, bindingTy, mlir::ValueRange{});
178     fir::RecordType procTy =
179         mlir::cast<fir::RecordType>(bindingTy.getType(procCompName));
180     mlir::Type procRefTy = fir::ReferenceType::get(procTy);
181     mlir::Value procRef = rewriter.create<fir::CoordinateOp>(
182         loc, procRefTy, bindingAddr, procField);
183 
184     auto addressFieldName = Fortran::lower::builtin::cptrFieldName;
185     mlir::Value addressField = rewriter.create<fir::FieldIndexOp>(
186         loc, fieldTy, addressFieldName, procTy, mlir::ValueRange{});
187     mlir::Type addressTy = procTy.getType(addressFieldName);
188     mlir::Type addressRefTy = fir::ReferenceType::get(addressTy);
189     mlir::Value addressRef = rewriter.create<fir::CoordinateOp>(
190         loc, addressRefTy, procRef, addressField);
191     mlir::Value address = rewriter.create<fir::LoadOp>(loc, addressRef);
192 
193     // Get the function type.
194     llvm::SmallVector<mlir::Type> argTypes;
195     for (mlir::Value operand : dispatch.getArgs())
196       argTypes.push_back(operand.getType());
197     llvm::SmallVector<mlir::Type> resTypes;
198     if (!dispatch.getResults().empty())
199       resTypes.push_back(dispatch.getResults()[0].getType());
200 
201     mlir::Type funTy =
202         mlir::FunctionType::get(rewriter.getContext(), argTypes, resTypes);
203     mlir::Value funcPtr = rewriter.create<fir::ConvertOp>(loc, funTy, address);
204 
205     // Make the call.
206     llvm::SmallVector<mlir::Value> args{funcPtr};
207     args.append(dispatch.getArgs().begin(), dispatch.getArgs().end());
208     rewriter.replaceOpWithNewOp<fir::CallOp>(dispatch, resTypes, nullptr, args,
209                                              dispatch.getProcedureAttrsAttr());
210     return mlir::success();
211   }
212 
213 private:
214   BindingTables bindingTables;
215 };
216 
217 /// Convert FIR structured control flow ops to CFG ops.
218 class PolymorphicOpConversion
219     : public fir::impl::PolymorphicOpConversionBase<PolymorphicOpConversion> {
220 public:
221   llvm::LogicalResult initialize(mlir::MLIRContext *ctx) override {
222     return mlir::success();
223   }
224 
225   void runOnOperation() override {
226     auto *context = &getContext();
227     mlir::ModuleOp mod = getOperation();
228     mlir::RewritePatternSet patterns(context);
229 
230     BindingTables bindingTables;
231     buildBindingTables(bindingTables, mod);
232 
233     patterns.insert<SelectTypeConv>(context);
234     patterns.insert<DispatchOpConv>(context, bindingTables);
235     mlir::ConversionTarget target(*context);
236     target.addLegalDialect<mlir::affine::AffineDialect,
237                            mlir::cf::ControlFlowDialect, FIROpsDialect,
238                            mlir::func::FuncDialect>();
239 
240     // apply the patterns
241     target.addIllegalOp<SelectTypeOp>();
242     target.addIllegalOp<DispatchOp>();
243     target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
244     if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
245                                                   std::move(patterns)))) {
246       mlir::emitError(mlir::UnknownLoc::get(context),
247                       "error in converting to CFG\n");
248       signalPassFailure();
249     }
250   }
251 };
252 } // namespace
253 
254 llvm::LogicalResult SelectTypeConv::matchAndRewrite(
255     fir::SelectTypeOp selectType, OpAdaptor adaptor,
256     mlir::ConversionPatternRewriter &rewriter) const {
257   auto operands = adaptor.getOperands();
258   auto typeGuards = selectType.getCases();
259   unsigned typeGuardNum = typeGuards.size();
260   auto selector = selectType.getSelector();
261   auto loc = selectType.getLoc();
262   auto mod = selectType.getOperation()->getParentOfType<mlir::ModuleOp>();
263   fir::KindMapping kindMap = fir::getKindMapping(mod);
264 
265   // Order type guards so the condition and branches are done to respect the
266   // Execution of SELECT TYPE construct as described in the Fortran 2018
267   // standard 11.1.11.2 point 4.
268   // 1. If a TYPE IS type guard statement matches the selector, the block
269   //    following that statement is executed.
270   // 2. Otherwise, if exactly one CLASS IS type guard statement matches the
271   //    selector, the block following that statement is executed.
272   // 3. Otherwise, if several CLASS IS type guard statements match the
273   //    selector, one of these statements will inevitably specify a type that
274   //    is an extension of all the types specified in the others; the block
275   //    following that statement is executed.
276   // 4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block
277   //    following that statement is executed.
278   // 5. Otherwise, no block is executed.
279 
280   llvm::SmallVector<unsigned> orderedTypeGuards;
281   llvm::SmallVector<unsigned> orderedClassIsGuards;
282   unsigned defaultGuard = typeGuardNum - 1;
283 
284   // The following loop go through the type guards in the fir.select_type
285   // operation and sort them into two lists.
286   // - All the TYPE IS type guard are added in order to the orderedTypeGuards
287   //   list. This list is used at the end to generate the if-then-else ladder.
288   // - CLASS IS type guard are added in a separate list. If a CLASS IS type
289   //   guard type extends a type already present, the type guard is inserted
290   //   before in the list to respect point 3. above. Otherwise it is just
291   //   added in order at the end.
292   for (unsigned t = 0; t < typeGuardNum; ++t) {
293     if (auto a = mlir::dyn_cast<fir::ExactTypeAttr>(typeGuards[t])) {
294       orderedTypeGuards.push_back(t);
295       continue;
296     }
297 
298     if (auto a = mlir::dyn_cast<fir::SubclassAttr>(typeGuards[t])) {
299       if (auto recTy = mlir::dyn_cast<fir::RecordType>(a.getType())) {
300         auto dt = mod.lookupSymbol<fir::TypeInfoOp>(recTy.getName());
301         assert(dt && "dispatch table not found");
302         llvm::SmallSet<llvm::StringRef, 4> ancestors =
303             collectAncestors(dt, mod);
304         if (!ancestors.empty()) {
305           auto it = orderedClassIsGuards.begin();
306           while (it != orderedClassIsGuards.end()) {
307             fir::SubclassAttr sAttr =
308                 mlir::dyn_cast<fir::SubclassAttr>(typeGuards[*it]);
309             if (auto ty = mlir::dyn_cast<fir::RecordType>(sAttr.getType())) {
310               if (ancestors.contains(ty.getName()))
311                 break;
312             }
313             ++it;
314           }
315           if (it != orderedClassIsGuards.end()) {
316             // Parent type is present so place it before.
317             orderedClassIsGuards.insert(it, t);
318             continue;
319           }
320         }
321       }
322       orderedClassIsGuards.push_back(t);
323     }
324   }
325   orderedTypeGuards.append(orderedClassIsGuards);
326   orderedTypeGuards.push_back(defaultGuard);
327   assert(orderedTypeGuards.size() == typeGuardNum &&
328          "ordered type guard size doesn't match number of type guards");
329 
330   for (unsigned idx : orderedTypeGuards) {
331     auto *dest = selectType.getSuccessor(idx);
332     std::optional<mlir::ValueRange> destOps =
333         selectType.getSuccessorOperands(operands, idx);
334     if (mlir::dyn_cast<mlir::UnitAttr>(typeGuards[idx]))
335       rewriter.replaceOpWithNewOp<mlir::cf::BranchOp>(
336           selectType, dest, destOps.value_or(mlir::ValueRange{}));
337     else if (mlir::failed(genTypeLadderStep(loc, selector, typeGuards[idx],
338                                             dest, destOps, mod, rewriter,
339                                             kindMap)))
340       return mlir::failure();
341   }
342   return mlir::success();
343 }
344 
345 llvm::LogicalResult SelectTypeConv::genTypeLadderStep(
346     mlir::Location loc, mlir::Value selector, mlir::Attribute attr,
347     mlir::Block *dest, std::optional<mlir::ValueRange> destOps,
348     mlir::ModuleOp mod, mlir::PatternRewriter &rewriter,
349     fir::KindMapping &kindMap) const {
350   mlir::Value cmp;
351   // TYPE IS type guard comparison are all done inlined.
352   if (auto a = mlir::dyn_cast<fir::ExactTypeAttr>(attr)) {
353     if (fir::isa_trivial(a.getType()) ||
354         mlir::isa<fir::CharacterType>(a.getType())) {
355       // For type guard statement with Intrinsic type spec the type code of
356       // the descriptor is compared.
357       int code = fir::getTypeCode(a.getType(), kindMap);
358       if (code == 0)
359         return mlir::emitError(loc)
360                << "type code unavailable for " << a.getType();
361       mlir::Value typeCode = rewriter.create<mlir::arith::ConstantOp>(
362           loc, rewriter.getI8IntegerAttr(code));
363       mlir::Value selectorTypeCode = rewriter.create<fir::BoxTypeCodeOp>(
364           loc, rewriter.getI8Type(), selector);
365       cmp = rewriter.create<mlir::arith::CmpIOp>(
366           loc, mlir::arith::CmpIPredicate::eq, selectorTypeCode, typeCode);
367     } else {
368       // Flang inline the kind parameter in the type descriptor so we can
369       // directly check if the type descriptor addresses are identical for
370       // the TYPE IS type guard statement.
371       mlir::Value res =
372           genTypeDescCompare(loc, selector, a.getType(), mod, rewriter);
373       if (!res)
374         return mlir::failure();
375       cmp = res;
376     }
377     // CLASS IS type guard statement is done with a runtime call.
378   } else if (auto a = mlir::dyn_cast<fir::SubclassAttr>(attr)) {
379     // Retrieve the type descriptor from the type guard statement record type.
380     assert(mlir::isa<fir::RecordType>(a.getType()) && "expect fir.record type");
381     fir::RecordType recTy = mlir::dyn_cast<fir::RecordType>(a.getType());
382     std::string typeDescName =
383         fir::NameUniquer::getTypeDescriptorName(recTy.getName());
384     auto typeDescGlobal = mod.lookupSymbol<fir::GlobalOp>(typeDescName);
385     auto typeDescAddr = rewriter.create<fir::AddrOfOp>(
386         loc, fir::ReferenceType::get(typeDescGlobal.getType()),
387         typeDescGlobal.getSymbol());
388     mlir::Type typeDescTy = ReferenceType::get(rewriter.getNoneType());
389     mlir::Value typeDesc =
390         rewriter.create<ConvertOp>(loc, typeDescTy, typeDescAddr);
391 
392     // Prepare the selector descriptor for the runtime call.
393     mlir::Type descNoneTy = fir::BoxType::get(rewriter.getNoneType());
394     mlir::Value descSelector =
395         rewriter.create<ConvertOp>(loc, descNoneTy, selector);
396 
397     // Generate runtime call.
398     llvm::StringRef fctName = RTNAME_STRING(ClassIs);
399     mlir::func::FuncOp callee;
400     {
401       // Since conversion is done in parallel for each fir.select_type
402       // operation, the runtime function insertion must be threadsafe.
403       callee =
404           fir::createFuncOp(rewriter.getUnknownLoc(), mod, fctName,
405                             rewriter.getFunctionType({descNoneTy, typeDescTy},
406                                                      rewriter.getI1Type()));
407     }
408     cmp = rewriter
409               .create<fir::CallOp>(loc, callee,
410                                    mlir::ValueRange{descSelector, typeDesc})
411               .getResult(0);
412   }
413 
414   auto *thisBlock = rewriter.getInsertionBlock();
415   auto *newBlock =
416       rewriter.createBlock(dest->getParent(), mlir::Region::iterator(dest));
417   rewriter.setInsertionPointToEnd(thisBlock);
418   if (destOps.has_value())
419     rewriter.create<mlir::cf::CondBranchOp>(loc, cmp, dest, destOps.value(),
420                                             newBlock, std::nullopt);
421   else
422     rewriter.create<mlir::cf::CondBranchOp>(loc, cmp, dest, newBlock);
423   rewriter.setInsertionPointToEnd(newBlock);
424   return mlir::success();
425 }
426 
427 // Generate comparison of type descriptor addresses.
428 mlir::Value
429 SelectTypeConv::genTypeDescCompare(mlir::Location loc, mlir::Value selector,
430                                    mlir::Type ty, mlir::ModuleOp mod,
431                                    mlir::PatternRewriter &rewriter) const {
432   assert(mlir::isa<fir::RecordType>(ty) && "expect fir.record type");
433   fir::RecordType recTy = mlir::dyn_cast<fir::RecordType>(ty);
434   std::string typeDescName =
435       fir::NameUniquer::getTypeDescriptorName(recTy.getName());
436   auto typeDescGlobal = mod.lookupSymbol<fir::GlobalOp>(typeDescName);
437   if (!typeDescGlobal)
438     return {};
439   auto typeDescAddr = rewriter.create<fir::AddrOfOp>(
440       loc, fir::ReferenceType::get(typeDescGlobal.getType()),
441       typeDescGlobal.getSymbol());
442   auto intPtrTy = rewriter.getIndexType();
443   mlir::Type tdescType =
444       fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext()));
445   mlir::Value selectorTdescAddr =
446       rewriter.create<fir::BoxTypeDescOp>(loc, tdescType, selector);
447   auto typeDescInt =
448       rewriter.create<fir::ConvertOp>(loc, intPtrTy, typeDescAddr);
449   auto selectorTdescInt =
450       rewriter.create<fir::ConvertOp>(loc, intPtrTy, selectorTdescAddr);
451   return rewriter.create<mlir::arith::CmpIOp>(
452       loc, mlir::arith::CmpIPredicate::eq, typeDescInt, selectorTdescInt);
453 }
454 
455 llvm::SmallSet<llvm::StringRef, 4>
456 SelectTypeConv::collectAncestors(fir::TypeInfoOp dt, mlir::ModuleOp mod) const {
457   llvm::SmallSet<llvm::StringRef, 4> ancestors;
458   while (auto parentName = dt.getIfParentName()) {
459     ancestors.insert(*parentName);
460     dt = mod.lookupSymbol<fir::TypeInfoOp>(*parentName);
461     assert(dt && "parent type info not generated");
462   }
463   return ancestors;
464 }
465