1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include "bge_impl.h"
27 #include <sys/sdt.h>
28 #include <sys/mac_provider.h>
29 #include <sys/mac.h>
30 #include <sys/mac_flow.h>
31
32 /*
33 * This is the string displayed by modinfo, etc.
34 */
35 static char bge_ident[] = "Broadcom Gb Ethernet";
36
37 /*
38 * Property names
39 */
40 static char debug_propname[] = "bge-debug-flags";
41 static char clsize_propname[] = "cache-line-size";
42 static char latency_propname[] = "latency-timer";
43 static char localmac_boolname[] = "local-mac-address?";
44 static char localmac_propname[] = "local-mac-address";
45 static char macaddr_propname[] = "mac-address";
46 static char subdev_propname[] = "subsystem-id";
47 static char subven_propname[] = "subsystem-vendor-id";
48 static char rxrings_propname[] = "bge-rx-rings";
49 static char txrings_propname[] = "bge-tx-rings";
50 static char fm_cap[] = "fm-capable";
51 static char default_mtu[] = "default_mtu";
52
53 static int bge_add_intrs(bge_t *, int);
54 static void bge_rem_intrs(bge_t *);
55 static int bge_unicst_set(void *, const uint8_t *, int);
56
57 /*
58 * Describes the chip's DMA engine
59 */
60 static ddi_dma_attr_t dma_attr = {
61 DMA_ATTR_V0, /* dma_attr version */
62 0x0000000000000000ull, /* dma_attr_addr_lo */
63 0xFFFFFFFFFFFFFFFFull, /* dma_attr_addr_hi */
64 0x00000000FFFFFFFFull, /* dma_attr_count_max */
65 0x0000000000000001ull, /* dma_attr_align */
66 0x00000FFF, /* dma_attr_burstsizes */
67 0x00000001, /* dma_attr_minxfer */
68 0x000000000000FFFFull, /* dma_attr_maxxfer */
69 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */
70 1, /* dma_attr_sgllen */
71 0x00000001, /* dma_attr_granular */
72 DDI_DMA_FLAGERR /* dma_attr_flags */
73 };
74
75 /*
76 * PIO access attributes for registers
77 */
78 static ddi_device_acc_attr_t bge_reg_accattr = {
79 DDI_DEVICE_ATTR_V1,
80 DDI_NEVERSWAP_ACC,
81 DDI_STRICTORDER_ACC,
82 DDI_FLAGERR_ACC
83 };
84
85 /*
86 * DMA access attributes for descriptors: NOT to be byte swapped.
87 */
88 static ddi_device_acc_attr_t bge_desc_accattr = {
89 DDI_DEVICE_ATTR_V0,
90 DDI_NEVERSWAP_ACC,
91 DDI_STRICTORDER_ACC
92 };
93
94 /*
95 * DMA access attributes for data: NOT to be byte swapped.
96 */
97 static ddi_device_acc_attr_t bge_data_accattr = {
98 DDI_DEVICE_ATTR_V0,
99 DDI_NEVERSWAP_ACC,
100 DDI_STRICTORDER_ACC
101 };
102
103 static int bge_m_start(void *);
104 static void bge_m_stop(void *);
105 static int bge_m_promisc(void *, boolean_t);
106 static int bge_m_multicst(void *, boolean_t, const uint8_t *);
107 static void bge_m_ioctl(void *, queue_t *, mblk_t *);
108 static boolean_t bge_m_getcapab(void *, mac_capab_t, void *);
109 static int bge_unicst_set(void *, const uint8_t *,
110 int);
111 static int bge_m_setprop(void *, const char *, mac_prop_id_t,
112 uint_t, const void *);
113 static int bge_m_getprop(void *, const char *, mac_prop_id_t,
114 uint_t, void *);
115 static void bge_m_propinfo(void *, const char *, mac_prop_id_t,
116 mac_prop_info_handle_t);
117 static int bge_set_priv_prop(bge_t *, const char *, uint_t,
118 const void *);
119 static int bge_get_priv_prop(bge_t *, const char *, uint_t,
120 void *);
121 static void bge_priv_propinfo(const char *,
122 mac_prop_info_handle_t);
123
124 #define BGE_M_CALLBACK_FLAGS (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | \
125 MC_GETPROP | MC_PROPINFO)
126
127 static mac_callbacks_t bge_m_callbacks = {
128 BGE_M_CALLBACK_FLAGS,
129 bge_m_stat,
130 bge_m_start,
131 bge_m_stop,
132 bge_m_promisc,
133 bge_m_multicst,
134 NULL,
135 bge_m_tx,
136 NULL,
137 bge_m_ioctl,
138 bge_m_getcapab,
139 NULL,
140 NULL,
141 bge_m_setprop,
142 bge_m_getprop,
143 bge_m_propinfo
144 };
145
146 char *bge_priv_prop[] = {
147 "_adv_asym_pause_cap",
148 "_adv_pause_cap",
149 "_drain_max",
150 "_msi_cnt",
151 "_rx_intr_coalesce_blank_time",
152 "_tx_intr_coalesce_blank_time",
153 "_rx_intr_coalesce_pkt_cnt",
154 "_tx_intr_coalesce_pkt_cnt",
155 NULL
156 };
157
158 uint8_t zero_addr[6] = {0, 0, 0, 0, 0, 0};
159 /*
160 * ========== Transmit and receive ring reinitialisation ==========
161 */
162
163 /*
164 * These <reinit> routines each reset the specified ring to an initial
165 * state, assuming that the corresponding <init> routine has already
166 * been called exactly once.
167 */
168
169 static void
bge_reinit_send_ring(send_ring_t * srp)170 bge_reinit_send_ring(send_ring_t *srp)
171 {
172 bge_queue_t *txbuf_queue;
173 bge_queue_item_t *txbuf_head;
174 sw_txbuf_t *txbuf;
175 sw_sbd_t *ssbdp;
176 uint32_t slot;
177
178 /*
179 * Reinitialise control variables ...
180 */
181 srp->tx_flow = 0;
182 srp->tx_next = 0;
183 srp->txfill_next = 0;
184 srp->tx_free = srp->desc.nslots;
185 ASSERT(mutex_owned(srp->tc_lock));
186 srp->tc_next = 0;
187 srp->txpkt_next = 0;
188 srp->tx_block = 0;
189 srp->tx_nobd = 0;
190 srp->tx_nobuf = 0;
191
192 /*
193 * Initialize the tx buffer push queue
194 */
195 mutex_enter(srp->freetxbuf_lock);
196 mutex_enter(srp->txbuf_lock);
197 txbuf_queue = &srp->freetxbuf_queue;
198 txbuf_queue->head = NULL;
199 txbuf_queue->count = 0;
200 txbuf_queue->lock = srp->freetxbuf_lock;
201 srp->txbuf_push_queue = txbuf_queue;
202
203 /*
204 * Initialize the tx buffer pop queue
205 */
206 txbuf_queue = &srp->txbuf_queue;
207 txbuf_queue->head = NULL;
208 txbuf_queue->count = 0;
209 txbuf_queue->lock = srp->txbuf_lock;
210 srp->txbuf_pop_queue = txbuf_queue;
211 txbuf_head = srp->txbuf_head;
212 txbuf = srp->txbuf;
213 for (slot = 0; slot < srp->tx_buffers; ++slot) {
214 txbuf_head->item = txbuf;
215 txbuf_head->next = txbuf_queue->head;
216 txbuf_queue->head = txbuf_head;
217 txbuf_queue->count++;
218 txbuf++;
219 txbuf_head++;
220 }
221 mutex_exit(srp->txbuf_lock);
222 mutex_exit(srp->freetxbuf_lock);
223
224 /*
225 * Zero and sync all the h/w Send Buffer Descriptors
226 */
227 DMA_ZERO(srp->desc);
228 DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
229 bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
230 ssbdp = srp->sw_sbds;
231 for (slot = 0; slot < srp->desc.nslots; ++ssbdp, ++slot)
232 ssbdp->pbuf = NULL;
233 }
234
235 static void
bge_reinit_recv_ring(recv_ring_t * rrp)236 bge_reinit_recv_ring(recv_ring_t *rrp)
237 {
238 /*
239 * Reinitialise control variables ...
240 */
241 rrp->rx_next = 0;
242 }
243
244 static void
bge_reinit_buff_ring(buff_ring_t * brp,uint32_t ring)245 bge_reinit_buff_ring(buff_ring_t *brp, uint32_t ring)
246 {
247 bge_rbd_t *hw_rbd_p;
248 sw_rbd_t *srbdp;
249 uint32_t bufsize;
250 uint32_t nslots;
251 uint32_t slot;
252
253 static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = {
254 RBD_FLAG_STD_RING,
255 RBD_FLAG_JUMBO_RING,
256 RBD_FLAG_MINI_RING
257 };
258
259 /*
260 * Zero, initialise and sync all the h/w Receive Buffer Descriptors
261 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>,
262 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>)
263 * should be zeroed, and so don't need to be set up specifically
264 * once the whole area has been cleared.
265 */
266 DMA_ZERO(brp->desc);
267
268 hw_rbd_p = DMA_VPTR(brp->desc);
269 nslots = brp->desc.nslots;
270 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
271 bufsize = brp->buf[0].size;
272 srbdp = brp->sw_rbds;
273 for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) {
274 hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress;
275 hw_rbd_p->index = (uint16_t)slot;
276 hw_rbd_p->len = (uint16_t)bufsize;
277 hw_rbd_p->opaque = srbdp->pbuf.token;
278 hw_rbd_p->flags |= ring_type_flag[ring];
279 }
280
281 DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV);
282
283 /*
284 * Finally, reinitialise the ring control variables ...
285 */
286 brp->rf_next = (nslots != 0) ? (nslots-1) : 0;
287 }
288
289 /*
290 * Reinitialize all rings
291 */
292 static void
bge_reinit_rings(bge_t * bgep)293 bge_reinit_rings(bge_t *bgep)
294 {
295 uint32_t ring;
296
297 ASSERT(mutex_owned(bgep->genlock));
298
299 /*
300 * Send Rings ...
301 */
302 for (ring = 0; ring < bgep->chipid.tx_rings; ++ring)
303 bge_reinit_send_ring(&bgep->send[ring]);
304
305 /*
306 * Receive Return Rings ...
307 */
308 for (ring = 0; ring < bgep->chipid.rx_rings; ++ring)
309 bge_reinit_recv_ring(&bgep->recv[ring]);
310
311 /*
312 * Receive Producer Rings ...
313 */
314 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
315 bge_reinit_buff_ring(&bgep->buff[ring], ring);
316 }
317
318 /*
319 * ========== Internal state management entry points ==========
320 */
321
322 #undef BGE_DBG
323 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */
324
325 /*
326 * These routines provide all the functionality required by the
327 * corresponding GLD entry points, but don't update the GLD state
328 * so they can be called internally without disturbing our record
329 * of what GLD thinks we should be doing ...
330 */
331
332 /*
333 * bge_reset() -- reset h/w & rings to initial state
334 */
335 static int
336 #ifdef BGE_IPMI_ASF
bge_reset(bge_t * bgep,uint_t asf_mode)337 bge_reset(bge_t *bgep, uint_t asf_mode)
338 #else
339 bge_reset(bge_t *bgep)
340 #endif
341 {
342 uint32_t ring;
343 int retval;
344
345 BGE_TRACE(("bge_reset($%p)", (void *)bgep));
346
347 ASSERT(mutex_owned(bgep->genlock));
348
349 /*
350 * Grab all the other mutexes in the world (this should
351 * ensure no other threads are manipulating driver state)
352 */
353 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
354 mutex_enter(bgep->recv[ring].rx_lock);
355 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
356 mutex_enter(bgep->buff[ring].rf_lock);
357 rw_enter(bgep->errlock, RW_WRITER);
358 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
359 mutex_enter(bgep->send[ring].tx_lock);
360 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
361 mutex_enter(bgep->send[ring].tc_lock);
362
363 #ifdef BGE_IPMI_ASF
364 retval = bge_chip_reset(bgep, B_TRUE, asf_mode);
365 #else
366 retval = bge_chip_reset(bgep, B_TRUE);
367 #endif
368 bge_reinit_rings(bgep);
369
370 /*
371 * Free the world ...
372 */
373 for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; )
374 mutex_exit(bgep->send[ring].tc_lock);
375 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
376 mutex_exit(bgep->send[ring].tx_lock);
377 rw_exit(bgep->errlock);
378 for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; )
379 mutex_exit(bgep->buff[ring].rf_lock);
380 for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; )
381 mutex_exit(bgep->recv[ring].rx_lock);
382
383 BGE_DEBUG(("bge_reset($%p) done", (void *)bgep));
384 return (retval);
385 }
386
387 /*
388 * bge_stop() -- stop processing, don't reset h/w or rings
389 */
390 static void
bge_stop(bge_t * bgep)391 bge_stop(bge_t *bgep)
392 {
393 BGE_TRACE(("bge_stop($%p)", (void *)bgep));
394
395 ASSERT(mutex_owned(bgep->genlock));
396
397 #ifdef BGE_IPMI_ASF
398 if (bgep->asf_enabled) {
399 bgep->asf_pseudostop = B_TRUE;
400 } else {
401 #endif
402 bge_chip_stop(bgep, B_FALSE);
403 #ifdef BGE_IPMI_ASF
404 }
405 #endif
406
407 BGE_DEBUG(("bge_stop($%p) done", (void *)bgep));
408 }
409
410 /*
411 * bge_start() -- start transmitting/receiving
412 */
413 static int
bge_start(bge_t * bgep,boolean_t reset_phys)414 bge_start(bge_t *bgep, boolean_t reset_phys)
415 {
416 int retval;
417
418 BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys));
419
420 ASSERT(mutex_owned(bgep->genlock));
421
422 /*
423 * Start chip processing, including enabling interrupts
424 */
425 retval = bge_chip_start(bgep, reset_phys);
426
427 BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys));
428 return (retval);
429 }
430
431 /*
432 * bge_restart - restart transmitting/receiving after error or suspend
433 */
434 int
bge_restart(bge_t * bgep,boolean_t reset_phys)435 bge_restart(bge_t *bgep, boolean_t reset_phys)
436 {
437 int retval = DDI_SUCCESS;
438 ASSERT(mutex_owned(bgep->genlock));
439
440 #ifdef BGE_IPMI_ASF
441 if (bgep->asf_enabled) {
442 if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS)
443 retval = DDI_FAILURE;
444 } else
445 if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS)
446 retval = DDI_FAILURE;
447 #else
448 if (bge_reset(bgep) != DDI_SUCCESS)
449 retval = DDI_FAILURE;
450 #endif
451 if (bgep->bge_mac_state == BGE_MAC_STARTED) {
452 if (bge_start(bgep, reset_phys) != DDI_SUCCESS)
453 retval = DDI_FAILURE;
454 bgep->watchdog = 0;
455 ddi_trigger_softintr(bgep->drain_id);
456 }
457
458 BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys));
459 return (retval);
460 }
461
462
463 /*
464 * ========== Nemo-required management entry points ==========
465 */
466
467 #undef BGE_DBG
468 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */
469
470 /*
471 * bge_m_stop() -- stop transmitting/receiving
472 */
473 static void
bge_m_stop(void * arg)474 bge_m_stop(void *arg)
475 {
476 bge_t *bgep = arg; /* private device info */
477 send_ring_t *srp;
478 uint32_t ring;
479
480 BGE_TRACE(("bge_m_stop($%p)", arg));
481
482 /*
483 * Just stop processing, then record new GLD state
484 */
485 mutex_enter(bgep->genlock);
486 if (!(bgep->progress & PROGRESS_INTR)) {
487 /* can happen during autorecovery */
488 bgep->bge_chip_state = BGE_CHIP_STOPPED;
489 } else
490 bge_stop(bgep);
491
492 bgep->link_update_timer = 0;
493 bgep->link_state = LINK_STATE_UNKNOWN;
494 mac_link_update(bgep->mh, bgep->link_state);
495
496 /*
497 * Free the possible tx buffers allocated in tx process.
498 */
499 #ifdef BGE_IPMI_ASF
500 if (!bgep->asf_pseudostop)
501 #endif
502 {
503 rw_enter(bgep->errlock, RW_WRITER);
504 for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) {
505 srp = &bgep->send[ring];
506 mutex_enter(srp->tx_lock);
507 if (srp->tx_array > 1)
508 bge_free_txbuf_arrays(srp);
509 mutex_exit(srp->tx_lock);
510 }
511 rw_exit(bgep->errlock);
512 }
513 bgep->bge_mac_state = BGE_MAC_STOPPED;
514 BGE_DEBUG(("bge_m_stop($%p) done", arg));
515 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
516 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
517 mutex_exit(bgep->genlock);
518 }
519
520 /*
521 * bge_m_start() -- start transmitting/receiving
522 */
523 static int
bge_m_start(void * arg)524 bge_m_start(void *arg)
525 {
526 bge_t *bgep = arg; /* private device info */
527
528 BGE_TRACE(("bge_m_start($%p)", arg));
529
530 /*
531 * Start processing and record new GLD state
532 */
533 mutex_enter(bgep->genlock);
534 if (!(bgep->progress & PROGRESS_INTR)) {
535 /* can happen during autorecovery */
536 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
537 mutex_exit(bgep->genlock);
538 return (EIO);
539 }
540 #ifdef BGE_IPMI_ASF
541 if (bgep->asf_enabled) {
542 if ((bgep->asf_status == ASF_STAT_RUN) &&
543 (bgep->asf_pseudostop)) {
544 bgep->bge_mac_state = BGE_MAC_STARTED;
545 mutex_exit(bgep->genlock);
546 return (0);
547 }
548 }
549 if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
550 #else
551 if (bge_reset(bgep) != DDI_SUCCESS) {
552 #endif
553 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
554 (void) bge_check_acc_handle(bgep, bgep->io_handle);
555 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
556 mutex_exit(bgep->genlock);
557 return (EIO);
558 }
559 if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) {
560 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
561 (void) bge_check_acc_handle(bgep, bgep->io_handle);
562 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
563 mutex_exit(bgep->genlock);
564 return (EIO);
565 }
566 bgep->watchdog = 0;
567 bgep->bge_mac_state = BGE_MAC_STARTED;
568 BGE_DEBUG(("bge_m_start($%p) done", arg));
569
570 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
571 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
572 mutex_exit(bgep->genlock);
573 return (EIO);
574 }
575 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
576 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
577 mutex_exit(bgep->genlock);
578 return (EIO);
579 }
580 #ifdef BGE_IPMI_ASF
581 if (bgep->asf_enabled) {
582 if (bgep->asf_status != ASF_STAT_RUN) {
583 /* start ASF heart beat */
584 bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
585 (void *)bgep,
586 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
587 bgep->asf_status = ASF_STAT_RUN;
588 }
589 }
590 #endif
591 mutex_exit(bgep->genlock);
592
593 return (0);
594 }
595
596 /*
597 * bge_unicst_set() -- set the physical network address
598 */
599 static int
600 bge_unicst_set(void *arg, const uint8_t *macaddr, int slot)
601 {
602 bge_t *bgep = arg; /* private device info */
603
604 BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg,
605 ether_sprintf((void *)macaddr)));
606 /*
607 * Remember the new current address in the driver state
608 * Sync the chip's idea of the address too ...
609 */
610 mutex_enter(bgep->genlock);
611 if (!(bgep->progress & PROGRESS_INTR)) {
612 /* can happen during autorecovery */
613 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
614 mutex_exit(bgep->genlock);
615 return (EIO);
616 }
617 ethaddr_copy(macaddr, bgep->curr_addr[slot].addr);
618 #ifdef BGE_IPMI_ASF
619 if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) {
620 #else
621 if (bge_chip_sync(bgep) == DDI_FAILURE) {
622 #endif
623 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
624 (void) bge_check_acc_handle(bgep, bgep->io_handle);
625 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
626 mutex_exit(bgep->genlock);
627 return (EIO);
628 }
629 #ifdef BGE_IPMI_ASF
630 if (bgep->asf_enabled) {
631 /*
632 * The above bge_chip_sync() function wrote the ethernet MAC
633 * addresses registers which destroyed the IPMI/ASF sideband.
634 * Here, we have to reset chip to make IPMI/ASF sideband work.
635 */
636 if (bgep->asf_status == ASF_STAT_RUN) {
637 /*
638 * We must stop ASF heart beat before bge_chip_stop(),
639 * otherwise some computers (ex. IBM HS20 blade server)
640 * may crash.
641 */
642 bge_asf_update_status(bgep);
643 bge_asf_stop_timer(bgep);
644 bgep->asf_status = ASF_STAT_STOP;
645
646 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
647 }
648 bge_chip_stop(bgep, B_FALSE);
649
650 if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) {
651 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
652 (void) bge_check_acc_handle(bgep, bgep->io_handle);
653 ddi_fm_service_impact(bgep->devinfo,
654 DDI_SERVICE_DEGRADED);
655 mutex_exit(bgep->genlock);
656 return (EIO);
657 }
658
659 /*
660 * Start our ASF heartbeat counter as soon as possible.
661 */
662 if (bgep->asf_status != ASF_STAT_RUN) {
663 /* start ASF heart beat */
664 bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
665 (void *)bgep,
666 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
667 bgep->asf_status = ASF_STAT_RUN;
668 }
669 }
670 #endif
671 BGE_DEBUG(("bge_m_unicst_set($%p) done", arg));
672 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
673 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
674 mutex_exit(bgep->genlock);
675 return (EIO);
676 }
677 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
678 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
679 mutex_exit(bgep->genlock);
680 return (EIO);
681 }
682 mutex_exit(bgep->genlock);
683
684 return (0);
685 }
686
687 extern void bge_wake_factotum(bge_t *);
688
689 static boolean_t
690 bge_param_locked(mac_prop_id_t pr_num)
691 {
692 /*
693 * All adv_* parameters are locked (read-only) while
694 * the device is in any sort of loopback mode ...
695 */
696 switch (pr_num) {
697 case MAC_PROP_ADV_1000FDX_CAP:
698 case MAC_PROP_EN_1000FDX_CAP:
699 case MAC_PROP_ADV_1000HDX_CAP:
700 case MAC_PROP_EN_1000HDX_CAP:
701 case MAC_PROP_ADV_100FDX_CAP:
702 case MAC_PROP_EN_100FDX_CAP:
703 case MAC_PROP_ADV_100HDX_CAP:
704 case MAC_PROP_EN_100HDX_CAP:
705 case MAC_PROP_ADV_10FDX_CAP:
706 case MAC_PROP_EN_10FDX_CAP:
707 case MAC_PROP_ADV_10HDX_CAP:
708 case MAC_PROP_EN_10HDX_CAP:
709 case MAC_PROP_AUTONEG:
710 case MAC_PROP_FLOWCTRL:
711 return (B_TRUE);
712 }
713 return (B_FALSE);
714 }
715 /*
716 * callback functions for set/get of properties
717 */
718 static int
719 bge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
720 uint_t pr_valsize, const void *pr_val)
721 {
722 bge_t *bgep = barg;
723 int err = 0;
724 uint32_t cur_mtu, new_mtu;
725 link_flowctrl_t fl;
726
727 mutex_enter(bgep->genlock);
728 if (bgep->param_loop_mode != BGE_LOOP_NONE &&
729 bge_param_locked(pr_num)) {
730 /*
731 * All adv_* parameters are locked (read-only)
732 * while the device is in any sort of loopback mode.
733 */
734 mutex_exit(bgep->genlock);
735 return (EBUSY);
736 }
737 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
738 ((pr_num == MAC_PROP_EN_100FDX_CAP) ||
739 (pr_num == MAC_PROP_EN_100HDX_CAP) ||
740 (pr_num == MAC_PROP_EN_10FDX_CAP) ||
741 (pr_num == MAC_PROP_EN_10HDX_CAP))) {
742 /*
743 * these properties are read/write on copper,
744 * read-only and 0 on serdes
745 */
746 mutex_exit(bgep->genlock);
747 return (ENOTSUP);
748 }
749 if (DEVICE_5906_SERIES_CHIPSETS(bgep) &&
750 ((pr_num == MAC_PROP_EN_1000FDX_CAP) ||
751 (pr_num == MAC_PROP_EN_1000HDX_CAP))) {
752 mutex_exit(bgep->genlock);
753 return (ENOTSUP);
754 }
755
756 switch (pr_num) {
757 case MAC_PROP_EN_1000FDX_CAP:
758 bgep->param_en_1000fdx = *(uint8_t *)pr_val;
759 bgep->param_adv_1000fdx = *(uint8_t *)pr_val;
760 goto reprogram;
761 case MAC_PROP_EN_1000HDX_CAP:
762 bgep->param_en_1000hdx = *(uint8_t *)pr_val;
763 bgep->param_adv_1000hdx = *(uint8_t *)pr_val;
764 goto reprogram;
765 case MAC_PROP_EN_100FDX_CAP:
766 bgep->param_en_100fdx = *(uint8_t *)pr_val;
767 bgep->param_adv_100fdx = *(uint8_t *)pr_val;
768 goto reprogram;
769 case MAC_PROP_EN_100HDX_CAP:
770 bgep->param_en_100hdx = *(uint8_t *)pr_val;
771 bgep->param_adv_100hdx = *(uint8_t *)pr_val;
772 goto reprogram;
773 case MAC_PROP_EN_10FDX_CAP:
774 bgep->param_en_10fdx = *(uint8_t *)pr_val;
775 bgep->param_adv_10fdx = *(uint8_t *)pr_val;
776 goto reprogram;
777 case MAC_PROP_EN_10HDX_CAP:
778 bgep->param_en_10hdx = *(uint8_t *)pr_val;
779 bgep->param_adv_10hdx = *(uint8_t *)pr_val;
780 reprogram:
781 if (err == 0 && bge_reprogram(bgep) == IOC_INVAL)
782 err = EINVAL;
783 break;
784 case MAC_PROP_ADV_1000FDX_CAP:
785 case MAC_PROP_ADV_1000HDX_CAP:
786 case MAC_PROP_ADV_100FDX_CAP:
787 case MAC_PROP_ADV_100HDX_CAP:
788 case MAC_PROP_ADV_10FDX_CAP:
789 case MAC_PROP_ADV_10HDX_CAP:
790 case MAC_PROP_STATUS:
791 case MAC_PROP_SPEED:
792 case MAC_PROP_DUPLEX:
793 err = ENOTSUP; /* read-only prop. Can't set this */
794 break;
795 case MAC_PROP_AUTONEG:
796 bgep->param_adv_autoneg = *(uint8_t *)pr_val;
797 if (bge_reprogram(bgep) == IOC_INVAL)
798 err = EINVAL;
799 break;
800 case MAC_PROP_MTU:
801 cur_mtu = bgep->chipid.default_mtu;
802 bcopy(pr_val, &new_mtu, sizeof (new_mtu));
803
804 if (new_mtu == cur_mtu) {
805 err = 0;
806 break;
807 }
808 if (new_mtu < BGE_DEFAULT_MTU ||
809 new_mtu > BGE_MAXIMUM_MTU) {
810 err = EINVAL;
811 break;
812 }
813 if ((new_mtu > BGE_DEFAULT_MTU) &&
814 (bgep->chipid.flags & CHIP_FLAG_NO_JUMBO)) {
815 err = EINVAL;
816 break;
817 }
818 if (bgep->bge_mac_state == BGE_MAC_STARTED) {
819 err = EBUSY;
820 break;
821 }
822 bgep->chipid.default_mtu = new_mtu;
823 if (bge_chip_id_init(bgep)) {
824 err = EINVAL;
825 break;
826 }
827 bgep->bge_dma_error = B_TRUE;
828 bgep->manual_reset = B_TRUE;
829 bge_chip_stop(bgep, B_TRUE);
830 bge_wake_factotum(bgep);
831 err = 0;
832 break;
833 case MAC_PROP_FLOWCTRL:
834 bcopy(pr_val, &fl, sizeof (fl));
835 switch (fl) {
836 default:
837 err = ENOTSUP;
838 break;
839 case LINK_FLOWCTRL_NONE:
840 bgep->param_adv_pause = 0;
841 bgep->param_adv_asym_pause = 0;
842
843 bgep->param_link_rx_pause = B_FALSE;
844 bgep->param_link_tx_pause = B_FALSE;
845 break;
846 case LINK_FLOWCTRL_RX:
847 bgep->param_adv_pause = 1;
848 bgep->param_adv_asym_pause = 1;
849
850 bgep->param_link_rx_pause = B_TRUE;
851 bgep->param_link_tx_pause = B_FALSE;
852 break;
853 case LINK_FLOWCTRL_TX:
854 bgep->param_adv_pause = 0;
855 bgep->param_adv_asym_pause = 1;
856
857 bgep->param_link_rx_pause = B_FALSE;
858 bgep->param_link_tx_pause = B_TRUE;
859 break;
860 case LINK_FLOWCTRL_BI:
861 bgep->param_adv_pause = 1;
862 bgep->param_adv_asym_pause = 0;
863
864 bgep->param_link_rx_pause = B_TRUE;
865 bgep->param_link_tx_pause = B_TRUE;
866 break;
867 }
868
869 if (err == 0) {
870 if (bge_reprogram(bgep) == IOC_INVAL)
871 err = EINVAL;
872 }
873
874 break;
875 case MAC_PROP_PRIVATE:
876 err = bge_set_priv_prop(bgep, pr_name, pr_valsize,
877 pr_val);
878 break;
879 default:
880 err = ENOTSUP;
881 break;
882 }
883 mutex_exit(bgep->genlock);
884 return (err);
885 }
886
887 /* ARGSUSED */
888 static int
889 bge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
890 uint_t pr_valsize, void *pr_val)
891 {
892 bge_t *bgep = barg;
893 int err = 0;
894
895 switch (pr_num) {
896 case MAC_PROP_DUPLEX:
897 ASSERT(pr_valsize >= sizeof (link_duplex_t));
898 bcopy(&bgep->param_link_duplex, pr_val,
899 sizeof (link_duplex_t));
900 break;
901 case MAC_PROP_SPEED: {
902 uint64_t speed = bgep->param_link_speed * 1000000ull;
903
904 ASSERT(pr_valsize >= sizeof (speed));
905 bcopy(&speed, pr_val, sizeof (speed));
906 break;
907 }
908 case MAC_PROP_STATUS:
909 ASSERT(pr_valsize >= sizeof (link_state_t));
910 bcopy(&bgep->link_state, pr_val,
911 sizeof (link_state_t));
912 break;
913 case MAC_PROP_AUTONEG:
914 *(uint8_t *)pr_val = bgep->param_adv_autoneg;
915 break;
916 case MAC_PROP_FLOWCTRL: {
917 link_flowctrl_t fl;
918
919 ASSERT(pr_valsize >= sizeof (fl));
920
921 if (bgep->param_link_rx_pause &&
922 !bgep->param_link_tx_pause)
923 fl = LINK_FLOWCTRL_RX;
924
925 if (!bgep->param_link_rx_pause &&
926 !bgep->param_link_tx_pause)
927 fl = LINK_FLOWCTRL_NONE;
928
929 if (!bgep->param_link_rx_pause &&
930 bgep->param_link_tx_pause)
931 fl = LINK_FLOWCTRL_TX;
932
933 if (bgep->param_link_rx_pause &&
934 bgep->param_link_tx_pause)
935 fl = LINK_FLOWCTRL_BI;
936 bcopy(&fl, pr_val, sizeof (fl));
937 break;
938 }
939 case MAC_PROP_ADV_1000FDX_CAP:
940 *(uint8_t *)pr_val = bgep->param_adv_1000fdx;
941 break;
942 case MAC_PROP_EN_1000FDX_CAP:
943 *(uint8_t *)pr_val = bgep->param_en_1000fdx;
944 break;
945 case MAC_PROP_ADV_1000HDX_CAP:
946 *(uint8_t *)pr_val = bgep->param_adv_1000hdx;
947 break;
948 case MAC_PROP_EN_1000HDX_CAP:
949 *(uint8_t *)pr_val = bgep->param_en_1000hdx;
950 break;
951 case MAC_PROP_ADV_100FDX_CAP:
952 *(uint8_t *)pr_val = bgep->param_adv_100fdx;
953 break;
954 case MAC_PROP_EN_100FDX_CAP:
955 *(uint8_t *)pr_val = bgep->param_en_100fdx;
956 break;
957 case MAC_PROP_ADV_100HDX_CAP:
958 *(uint8_t *)pr_val = bgep->param_adv_100hdx;
959 break;
960 case MAC_PROP_EN_100HDX_CAP:
961 *(uint8_t *)pr_val = bgep->param_en_100hdx;
962 break;
963 case MAC_PROP_ADV_10FDX_CAP:
964 *(uint8_t *)pr_val = bgep->param_adv_10fdx;
965 break;
966 case MAC_PROP_EN_10FDX_CAP:
967 *(uint8_t *)pr_val = bgep->param_en_10fdx;
968 break;
969 case MAC_PROP_ADV_10HDX_CAP:
970 *(uint8_t *)pr_val = bgep->param_adv_10hdx;
971 break;
972 case MAC_PROP_EN_10HDX_CAP:
973 *(uint8_t *)pr_val = bgep->param_en_10hdx;
974 break;
975 case MAC_PROP_ADV_100T4_CAP:
976 case MAC_PROP_EN_100T4_CAP:
977 *(uint8_t *)pr_val = 0;
978 break;
979 case MAC_PROP_PRIVATE:
980 err = bge_get_priv_prop(bgep, pr_name,
981 pr_valsize, pr_val);
982 return (err);
983 default:
984 return (ENOTSUP);
985 }
986 return (0);
987 }
988
989 static void
990 bge_m_propinfo(void *barg, const char *pr_name, mac_prop_id_t pr_num,
991 mac_prop_info_handle_t prh)
992 {
993 bge_t *bgep = barg;
994 int flags = bgep->chipid.flags;
995
996 /*
997 * By default permissions are read/write unless specified
998 * otherwise by the driver.
999 */
1000
1001 switch (pr_num) {
1002 case MAC_PROP_DUPLEX:
1003 case MAC_PROP_SPEED:
1004 case MAC_PROP_STATUS:
1005 case MAC_PROP_ADV_1000FDX_CAP:
1006 case MAC_PROP_ADV_1000HDX_CAP:
1007 case MAC_PROP_ADV_100FDX_CAP:
1008 case MAC_PROP_ADV_100HDX_CAP:
1009 case MAC_PROP_ADV_10FDX_CAP:
1010 case MAC_PROP_ADV_10HDX_CAP:
1011 case MAC_PROP_ADV_100T4_CAP:
1012 case MAC_PROP_EN_100T4_CAP:
1013 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1014 break;
1015
1016 case MAC_PROP_EN_1000FDX_CAP:
1017 case MAC_PROP_EN_1000HDX_CAP:
1018 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1019 mac_prop_info_set_default_uint8(prh, 0);
1020 else
1021 mac_prop_info_set_default_uint8(prh, 1);
1022 break;
1023
1024 case MAC_PROP_EN_100FDX_CAP:
1025 case MAC_PROP_EN_100HDX_CAP:
1026 case MAC_PROP_EN_10FDX_CAP:
1027 case MAC_PROP_EN_10HDX_CAP:
1028 mac_prop_info_set_default_uint8(prh,
1029 (flags & CHIP_FLAG_SERDES) ? 0 : 1);
1030 break;
1031
1032 case MAC_PROP_AUTONEG:
1033 mac_prop_info_set_default_uint8(prh, 1);
1034 break;
1035
1036 case MAC_PROP_FLOWCTRL:
1037 mac_prop_info_set_default_link_flowctrl(prh,
1038 LINK_FLOWCTRL_BI);
1039 break;
1040
1041 case MAC_PROP_MTU:
1042 mac_prop_info_set_range_uint32(prh, BGE_DEFAULT_MTU,
1043 (flags & CHIP_FLAG_NO_JUMBO) ?
1044 BGE_DEFAULT_MTU : BGE_MAXIMUM_MTU);
1045 break;
1046
1047 case MAC_PROP_PRIVATE:
1048 bge_priv_propinfo(pr_name, prh);
1049 break;
1050 }
1051
1052 mutex_enter(bgep->genlock);
1053 if ((bgep->param_loop_mode != BGE_LOOP_NONE &&
1054 bge_param_locked(pr_num)) ||
1055 ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
1056 ((pr_num == MAC_PROP_EN_100FDX_CAP) ||
1057 (pr_num == MAC_PROP_EN_100HDX_CAP) ||
1058 (pr_num == MAC_PROP_EN_10FDX_CAP) ||
1059 (pr_num == MAC_PROP_EN_10HDX_CAP))) ||
1060 (DEVICE_5906_SERIES_CHIPSETS(bgep) &&
1061 ((pr_num == MAC_PROP_EN_1000FDX_CAP) ||
1062 (pr_num == MAC_PROP_EN_1000HDX_CAP))))
1063 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1064 mutex_exit(bgep->genlock);
1065 }
1066
1067 /* ARGSUSED */
1068 static int
1069 bge_set_priv_prop(bge_t *bgep, const char *pr_name, uint_t pr_valsize,
1070 const void *pr_val)
1071 {
1072 int err = 0;
1073 long result;
1074
1075 if (strcmp(pr_name, "_adv_pause_cap") == 0) {
1076 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1077 if (result > 1 || result < 0) {
1078 err = EINVAL;
1079 } else {
1080 bgep->param_adv_pause = (uint32_t)result;
1081 if (bge_reprogram(bgep) == IOC_INVAL)
1082 err = EINVAL;
1083 }
1084 return (err);
1085 }
1086 if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
1087 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1088 if (result > 1 || result < 0) {
1089 err = EINVAL;
1090 } else {
1091 bgep->param_adv_asym_pause = (uint32_t)result;
1092 if (bge_reprogram(bgep) == IOC_INVAL)
1093 err = EINVAL;
1094 }
1095 return (err);
1096 }
1097 if (strcmp(pr_name, "_drain_max") == 0) {
1098
1099 /*
1100 * on the Tx side, we need to update the h/w register for
1101 * real packet transmission per packet. The drain_max parameter
1102 * is used to reduce the register access. This parameter
1103 * controls the max number of packets that we will hold before
1104 * updating the bge h/w to trigger h/w transmit. The bge
1105 * chipset usually has a max of 512 Tx descriptors, thus
1106 * the upper bound on drain_max is 512.
1107 */
1108 if (pr_val == NULL) {
1109 err = EINVAL;
1110 return (err);
1111 }
1112 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1113 if (result > 512 || result < 1)
1114 err = EINVAL;
1115 else {
1116 bgep->param_drain_max = (uint32_t)result;
1117 if (bge_reprogram(bgep) == IOC_INVAL)
1118 err = EINVAL;
1119 }
1120 return (err);
1121 }
1122 if (strcmp(pr_name, "_msi_cnt") == 0) {
1123
1124 if (pr_val == NULL) {
1125 err = EINVAL;
1126 return (err);
1127 }
1128 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1129 if (result > 7 || result < 0)
1130 err = EINVAL;
1131 else {
1132 bgep->param_msi_cnt = (uint32_t)result;
1133 if (bge_reprogram(bgep) == IOC_INVAL)
1134 err = EINVAL;
1135 }
1136 return (err);
1137 }
1138 if (strcmp(pr_name, "_rx_intr_coalesce_blank_time") == 0) {
1139 if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1140 return (EINVAL);
1141 if (result < 0)
1142 err = EINVAL;
1143 else {
1144 bgep->chipid.rx_ticks_norm = (uint32_t)result;
1145 bge_chip_coalesce_update(bgep);
1146 }
1147 return (err);
1148 }
1149
1150 if (strcmp(pr_name, "_rx_intr_coalesce_pkt_cnt") == 0) {
1151 if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1152 return (EINVAL);
1153
1154 if (result < 0)
1155 err = EINVAL;
1156 else {
1157 bgep->chipid.rx_count_norm = (uint32_t)result;
1158 bge_chip_coalesce_update(bgep);
1159 }
1160 return (err);
1161 }
1162 if (strcmp(pr_name, "_tx_intr_coalesce_blank_time") == 0) {
1163 if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1164 return (EINVAL);
1165 if (result < 0)
1166 err = EINVAL;
1167 else {
1168 bgep->chipid.tx_ticks_norm = (uint32_t)result;
1169 bge_chip_coalesce_update(bgep);
1170 }
1171 return (err);
1172 }
1173
1174 if (strcmp(pr_name, "_tx_intr_coalesce_pkt_cnt") == 0) {
1175 if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1176 return (EINVAL);
1177
1178 if (result < 0)
1179 err = EINVAL;
1180 else {
1181 bgep->chipid.tx_count_norm = (uint32_t)result;
1182 bge_chip_coalesce_update(bgep);
1183 }
1184 return (err);
1185 }
1186 return (ENOTSUP);
1187 }
1188
1189 static int
1190 bge_get_priv_prop(bge_t *bge, const char *pr_name, uint_t pr_valsize,
1191 void *pr_val)
1192 {
1193 int value;
1194
1195 if (strcmp(pr_name, "_adv_pause_cap") == 0)
1196 value = bge->param_adv_pause;
1197 else if (strcmp(pr_name, "_adv_asym_pause_cap") == 0)
1198 value = bge->param_adv_asym_pause;
1199 else if (strcmp(pr_name, "_drain_max") == 0)
1200 value = bge->param_drain_max;
1201 else if (strcmp(pr_name, "_msi_cnt") == 0)
1202 value = bge->param_msi_cnt;
1203 else if (strcmp(pr_name, "_rx_intr_coalesce_blank_time") == 0)
1204 value = bge->chipid.rx_ticks_norm;
1205 else if (strcmp(pr_name, "_tx_intr_coalesce_blank_time") == 0)
1206 value = bge->chipid.tx_ticks_norm;
1207 else if (strcmp(pr_name, "_rx_intr_coalesce_pkt_cnt") == 0)
1208 value = bge->chipid.rx_count_norm;
1209 else if (strcmp(pr_name, "_tx_intr_coalesce_pkt_cnt") == 0)
1210 value = bge->chipid.tx_count_norm;
1211 else
1212 return (ENOTSUP);
1213
1214 (void) snprintf(pr_val, pr_valsize, "%d", value);
1215 return (0);
1216 }
1217
1218 static void
1219 bge_priv_propinfo(const char *pr_name, mac_prop_info_handle_t mph)
1220 {
1221 char valstr[64];
1222 int value;
1223
1224 if (strcmp(pr_name, "_adv_pause_cap") == 0)
1225 value = 1;
1226 else if (strcmp(pr_name, "_adv_asym_pause_cap") == 0)
1227 value = 1;
1228 else if (strcmp(pr_name, "_drain_max") == 0)
1229 value = 64;
1230 else if (strcmp(pr_name, "_msi_cnt") == 0)
1231 value = 0;
1232 else if (strcmp(pr_name, "_rx_intr_coalesce_blank_time") == 0)
1233 value = bge_rx_ticks_norm;
1234 else if (strcmp(pr_name, "_tx_intr_coalesce_blank_time") == 0)
1235 value = bge_tx_ticks_norm;
1236 else if (strcmp(pr_name, "_rx_intr_coalesce_pkt_cnt") == 0)
1237 value = bge_rx_count_norm;
1238 else if (strcmp(pr_name, "_tx_intr_coalesce_pkt_cnt") == 0)
1239 value = bge_tx_count_norm;
1240 else
1241 return;
1242
1243 (void) snprintf(valstr, sizeof (valstr), "%d", value);
1244 mac_prop_info_set_default_str(mph, valstr);
1245 }
1246
1247 /*
1248 * Compute the index of the required bit in the multicast hash map.
1249 * This must mirror the way the hardware actually does it!
1250 * See Broadcom document 570X-PG102-R page 125.
1251 */
1252 static uint32_t
1253 bge_hash_index(const uint8_t *mca)
1254 {
1255 uint32_t hash;
1256
1257 CRC32(hash, mca, ETHERADDRL, -1U, crc32_table);
1258
1259 return (hash);
1260 }
1261
1262 /*
1263 * bge_m_multicst_add() -- enable/disable a multicast address
1264 */
1265 static int
1266 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1267 {
1268 bge_t *bgep = arg; /* private device info */
1269 uint32_t hash;
1270 uint32_t index;
1271 uint32_t word;
1272 uint32_t bit;
1273 uint8_t *refp;
1274
1275 BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg,
1276 (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1277
1278 /*
1279 * Precalculate all required masks, pointers etc ...
1280 */
1281 hash = bge_hash_index(mca);
1282 index = hash % BGE_HASH_TABLE_SIZE;
1283 word = index/32u;
1284 bit = 1 << (index % 32u);
1285 refp = &bgep->mcast_refs[index];
1286
1287 BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d",
1288 hash, index, word, bit, *refp));
1289
1290 /*
1291 * We must set the appropriate bit in the hash map (and the
1292 * corresponding h/w register) when the refcount goes from 0
1293 * to >0, and clear it when the last ref goes away (refcount
1294 * goes from >0 back to 0). If we change the hash map, we
1295 * must also update the chip's hardware map registers.
1296 */
1297 mutex_enter(bgep->genlock);
1298 if (!(bgep->progress & PROGRESS_INTR)) {
1299 /* can happen during autorecovery */
1300 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1301 mutex_exit(bgep->genlock);
1302 return (EIO);
1303 }
1304 if (add) {
1305 if ((*refp)++ == 0) {
1306 bgep->mcast_hash[word] |= bit;
1307 #ifdef BGE_IPMI_ASF
1308 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1309 #else
1310 if (bge_chip_sync(bgep) == DDI_FAILURE) {
1311 #endif
1312 (void) bge_check_acc_handle(bgep,
1313 bgep->cfg_handle);
1314 (void) bge_check_acc_handle(bgep,
1315 bgep->io_handle);
1316 ddi_fm_service_impact(bgep->devinfo,
1317 DDI_SERVICE_DEGRADED);
1318 mutex_exit(bgep->genlock);
1319 return (EIO);
1320 }
1321 }
1322 } else {
1323 if (--(*refp) == 0) {
1324 bgep->mcast_hash[word] &= ~bit;
1325 #ifdef BGE_IPMI_ASF
1326 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1327 #else
1328 if (bge_chip_sync(bgep) == DDI_FAILURE) {
1329 #endif
1330 (void) bge_check_acc_handle(bgep,
1331 bgep->cfg_handle);
1332 (void) bge_check_acc_handle(bgep,
1333 bgep->io_handle);
1334 ddi_fm_service_impact(bgep->devinfo,
1335 DDI_SERVICE_DEGRADED);
1336 mutex_exit(bgep->genlock);
1337 return (EIO);
1338 }
1339 }
1340 }
1341 BGE_DEBUG(("bge_m_multicst($%p) done", arg));
1342 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1343 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1344 mutex_exit(bgep->genlock);
1345 return (EIO);
1346 }
1347 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1348 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1349 mutex_exit(bgep->genlock);
1350 return (EIO);
1351 }
1352 mutex_exit(bgep->genlock);
1353
1354 return (0);
1355 }
1356
1357 /*
1358 * bge_m_promisc() -- set or reset promiscuous mode on the board
1359 *
1360 * Program the hardware to enable/disable promiscuous and/or
1361 * receive-all-multicast modes.
1362 */
1363 static int
1364 bge_m_promisc(void *arg, boolean_t on)
1365 {
1366 bge_t *bgep = arg;
1367
1368 BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on));
1369
1370 /*
1371 * Store MAC layer specified mode and pass to chip layer to update h/w
1372 */
1373 mutex_enter(bgep->genlock);
1374 if (!(bgep->progress & PROGRESS_INTR)) {
1375 /* can happen during autorecovery */
1376 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1377 mutex_exit(bgep->genlock);
1378 return (EIO);
1379 }
1380 bgep->promisc = on;
1381 #ifdef BGE_IPMI_ASF
1382 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1383 #else
1384 if (bge_chip_sync(bgep) == DDI_FAILURE) {
1385 #endif
1386 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
1387 (void) bge_check_acc_handle(bgep, bgep->io_handle);
1388 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1389 mutex_exit(bgep->genlock);
1390 return (EIO);
1391 }
1392 BGE_DEBUG(("bge_m_promisc_set($%p) done", arg));
1393 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1394 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1395 mutex_exit(bgep->genlock);
1396 return (EIO);
1397 }
1398 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1399 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1400 mutex_exit(bgep->genlock);
1401 return (EIO);
1402 }
1403 mutex_exit(bgep->genlock);
1404 return (0);
1405 }
1406
1407 /*
1408 * Find the slot for the specified unicast address
1409 */
1410 int
1411 bge_unicst_find(bge_t *bgep, const uint8_t *mac_addr)
1412 {
1413 int slot;
1414
1415 ASSERT(mutex_owned(bgep->genlock));
1416
1417 for (slot = 0; slot < bgep->unicst_addr_total; slot++) {
1418 if (bcmp(bgep->curr_addr[slot].addr, mac_addr, ETHERADDRL) == 0)
1419 return (slot);
1420 }
1421
1422 return (-1);
1423 }
1424
1425 /*
1426 * Programs the classifier to start steering packets matching 'mac_addr' to the
1427 * specified ring 'arg'.
1428 */
1429 static int
1430 bge_addmac(void *arg, const uint8_t *mac_addr)
1431 {
1432 recv_ring_t *rrp = (recv_ring_t *)arg;
1433 bge_t *bgep = rrp->bgep;
1434 bge_recv_rule_t *rulep = bgep->recv_rules;
1435 bge_rule_info_t *rinfop = NULL;
1436 uint8_t ring = (uint8_t)(rrp - bgep->recv) + 1;
1437 int i;
1438 uint16_t tmp16;
1439 uint32_t tmp32;
1440 int slot;
1441 int err;
1442
1443 mutex_enter(bgep->genlock);
1444 if (bgep->unicst_addr_avail == 0) {
1445 mutex_exit(bgep->genlock);
1446 return (ENOSPC);
1447 }
1448
1449 /*
1450 * First add the unicast address to a available slot.
1451 */
1452 slot = bge_unicst_find(bgep, mac_addr);
1453 ASSERT(slot == -1);
1454
1455 for (slot = 0; slot < bgep->unicst_addr_total; slot++) {
1456 if (!bgep->curr_addr[slot].set) {
1457 bgep->curr_addr[slot].set = B_TRUE;
1458 break;
1459 }
1460 }
1461
1462 ASSERT(slot < bgep->unicst_addr_total);
1463 bgep->unicst_addr_avail--;
1464 mutex_exit(bgep->genlock);
1465
1466 if ((err = bge_unicst_set(bgep, mac_addr, slot)) != 0)
1467 goto fail;
1468
1469 /* A rule is already here. Deny this. */
1470 if (rrp->mac_addr_rule != NULL) {
1471 err = ether_cmp(mac_addr, rrp->mac_addr_val) ? EEXIST : EBUSY;
1472 goto fail;
1473 }
1474
1475 /*
1476 * Allocate a bge_rule_info_t to keep track of which rule slots
1477 * are being used.
1478 */
1479 rinfop = kmem_zalloc(sizeof (bge_rule_info_t), KM_NOSLEEP);
1480 if (rinfop == NULL) {
1481 err = ENOMEM;
1482 goto fail;
1483 }
1484
1485 /*
1486 * Look for the starting slot to place the rules.
1487 * The two slots we reserve must be contiguous.
1488 */
1489 for (i = 0; i + 1 < RECV_RULES_NUM_MAX; i++)
1490 if ((rulep[i].control & RECV_RULE_CTL_ENABLE) == 0 &&
1491 (rulep[i+1].control & RECV_RULE_CTL_ENABLE) == 0)
1492 break;
1493
1494 ASSERT(i + 1 < RECV_RULES_NUM_MAX);
1495
1496 bcopy(mac_addr, &tmp32, sizeof (tmp32));
1497 rulep[i].mask_value = ntohl(tmp32);
1498 rulep[i].control = RULE_DEST_MAC_1(ring) | RECV_RULE_CTL_AND;
1499 bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep[i].mask_value);
1500 bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep[i].control);
1501
1502 bcopy(mac_addr + 4, &tmp16, sizeof (tmp16));
1503 rulep[i+1].mask_value = 0xffff0000 | ntohs(tmp16);
1504 rulep[i+1].control = RULE_DEST_MAC_2(ring);
1505 bge_reg_put32(bgep, RECV_RULE_MASK_REG(i+1), rulep[i+1].mask_value);
1506 bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i+1), rulep[i+1].control);
1507 rinfop->start = i;
1508 rinfop->count = 2;
1509
1510 rrp->mac_addr_rule = rinfop;
1511 bcopy(mac_addr, rrp->mac_addr_val, ETHERADDRL);
1512
1513 return (0);
1514
1515 fail:
1516 /* Clear the address just set */
1517 (void) bge_unicst_set(bgep, zero_addr, slot);
1518 mutex_enter(bgep->genlock);
1519 bgep->curr_addr[slot].set = B_FALSE;
1520 bgep->unicst_addr_avail++;
1521 mutex_exit(bgep->genlock);
1522
1523 return (err);
1524 }
1525
1526 /*
1527 * Stop classifying packets matching the MAC address to the specified ring.
1528 */
1529 static int
1530 bge_remmac(void *arg, const uint8_t *mac_addr)
1531 {
1532 recv_ring_t *rrp = (recv_ring_t *)arg;
1533 bge_t *bgep = rrp->bgep;
1534 bge_recv_rule_t *rulep = bgep->recv_rules;
1535 bge_rule_info_t *rinfop = rrp->mac_addr_rule;
1536 int start;
1537 int slot;
1538 int err;
1539
1540 /*
1541 * Remove the MAC address from its slot.
1542 */
1543 mutex_enter(bgep->genlock);
1544 slot = bge_unicst_find(bgep, mac_addr);
1545 if (slot == -1) {
1546 mutex_exit(bgep->genlock);
1547 return (EINVAL);
1548 }
1549
1550 ASSERT(bgep->curr_addr[slot].set);
1551 mutex_exit(bgep->genlock);
1552
1553 if ((err = bge_unicst_set(bgep, zero_addr, slot)) != 0)
1554 return (err);
1555
1556 if (rinfop == NULL || ether_cmp(mac_addr, rrp->mac_addr_val) != 0)
1557 return (EINVAL);
1558
1559 start = rinfop->start;
1560 rulep[start].mask_value = 0;
1561 rulep[start].control = 0;
1562 bge_reg_put32(bgep, RECV_RULE_MASK_REG(start), rulep[start].mask_value);
1563 bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(start), rulep[start].control);
1564 start++;
1565 rulep[start].mask_value = 0;
1566 rulep[start].control = 0;
1567 bge_reg_put32(bgep, RECV_RULE_MASK_REG(start), rulep[start].mask_value);
1568 bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(start), rulep[start].control);
1569
1570 kmem_free(rinfop, sizeof (bge_rule_info_t));
1571 rrp->mac_addr_rule = NULL;
1572 bzero(rrp->mac_addr_val, ETHERADDRL);
1573
1574 mutex_enter(bgep->genlock);
1575 bgep->curr_addr[slot].set = B_FALSE;
1576 bgep->unicst_addr_avail++;
1577 mutex_exit(bgep->genlock);
1578
1579 return (0);
1580 }
1581
1582 static int
1583 bge_flag_intr_enable(mac_intr_handle_t ih)
1584 {
1585 recv_ring_t *rrp = (recv_ring_t *)ih;
1586 bge_t *bgep = rrp->bgep;
1587
1588 mutex_enter(bgep->genlock);
1589 rrp->poll_flag = 0;
1590 mutex_exit(bgep->genlock);
1591
1592 return (0);
1593 }
1594
1595 static int
1596 bge_flag_intr_disable(mac_intr_handle_t ih)
1597 {
1598 recv_ring_t *rrp = (recv_ring_t *)ih;
1599 bge_t *bgep = rrp->bgep;
1600
1601 mutex_enter(bgep->genlock);
1602 rrp->poll_flag = 1;
1603 mutex_exit(bgep->genlock);
1604
1605 return (0);
1606 }
1607
1608 static int
1609 bge_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
1610 {
1611 recv_ring_t *rx_ring;
1612
1613 rx_ring = (recv_ring_t *)rh;
1614 mutex_enter(rx_ring->rx_lock);
1615 rx_ring->ring_gen_num = mr_gen_num;
1616 mutex_exit(rx_ring->rx_lock);
1617 return (0);
1618 }
1619
1620
1621 /*
1622 * Callback funtion for MAC layer to register all rings
1623 * for given ring_group, noted by rg_index.
1624 */
1625 void
1626 bge_fill_ring(void *arg, mac_ring_type_t rtype, const int rg_index,
1627 const int index, mac_ring_info_t *infop, mac_ring_handle_t rh)
1628 {
1629 bge_t *bgep = arg;
1630 mac_intr_t *mintr;
1631
1632 switch (rtype) {
1633 case MAC_RING_TYPE_RX: {
1634 recv_ring_t *rx_ring;
1635 ASSERT(rg_index >= 0 && rg_index < MIN(bgep->chipid.rx_rings,
1636 MAC_ADDRESS_REGS_MAX) && index == 0);
1637
1638 rx_ring = &bgep->recv[rg_index];
1639 rx_ring->ring_handle = rh;
1640
1641 infop->mri_driver = (mac_ring_driver_t)rx_ring;
1642 infop->mri_start = bge_ring_start;
1643 infop->mri_stop = NULL;
1644 infop->mri_poll = bge_poll_ring;
1645 infop->mri_stat = bge_rx_ring_stat;
1646
1647 mintr = &infop->mri_intr;
1648 mintr->mi_handle = (mac_intr_handle_t)rx_ring;
1649 mintr->mi_enable = bge_flag_intr_enable;
1650 mintr->mi_disable = bge_flag_intr_disable;
1651
1652 break;
1653 }
1654 case MAC_RING_TYPE_TX:
1655 default:
1656 ASSERT(0);
1657 break;
1658 }
1659 }
1660
1661 /*
1662 * Fill infop passed as argument
1663 * fill in respective ring_group info
1664 * Each group has a single ring in it. We keep it simple
1665 * and use the same internal handle for rings and groups.
1666 */
1667 void
1668 bge_fill_group(void *arg, mac_ring_type_t rtype, const int rg_index,
1669 mac_group_info_t *infop, mac_group_handle_t gh)
1670 {
1671 bge_t *bgep = arg;
1672
1673 switch (rtype) {
1674 case MAC_RING_TYPE_RX: {
1675 recv_ring_t *rx_ring;
1676
1677 ASSERT(rg_index >= 0 && rg_index < MIN(bgep->chipid.rx_rings,
1678 MAC_ADDRESS_REGS_MAX));
1679 rx_ring = &bgep->recv[rg_index];
1680 rx_ring->ring_group_handle = gh;
1681
1682 infop->mgi_driver = (mac_group_driver_t)rx_ring;
1683 infop->mgi_start = NULL;
1684 infop->mgi_stop = NULL;
1685 infop->mgi_addmac = bge_addmac;
1686 infop->mgi_remmac = bge_remmac;
1687 infop->mgi_count = 1;
1688 break;
1689 }
1690 case MAC_RING_TYPE_TX:
1691 default:
1692 ASSERT(0);
1693 break;
1694 }
1695 }
1696
1697 /*ARGSUSED*/
1698 static boolean_t
1699 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1700 {
1701 bge_t *bgep = arg;
1702
1703 switch (cap) {
1704 case MAC_CAPAB_HCKSUM: {
1705 uint32_t *txflags = cap_data;
1706
1707 *txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;
1708 break;
1709 }
1710 case MAC_CAPAB_RINGS: {
1711 mac_capab_rings_t *cap_rings = cap_data;
1712
1713 /* Temporarily disable multiple tx rings. */
1714 if (cap_rings->mr_type != MAC_RING_TYPE_RX)
1715 return (B_FALSE);
1716
1717 cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
1718 cap_rings->mr_rnum = cap_rings->mr_gnum =
1719 MIN(bgep->chipid.rx_rings, MAC_ADDRESS_REGS_MAX);
1720 cap_rings->mr_rget = bge_fill_ring;
1721 cap_rings->mr_gget = bge_fill_group;
1722 break;
1723 }
1724 default:
1725 return (B_FALSE);
1726 }
1727 return (B_TRUE);
1728 }
1729
1730 /*
1731 * Loopback ioctl code
1732 */
1733
1734 static lb_property_t loopmodes[] = {
1735 { normal, "normal", BGE_LOOP_NONE },
1736 { external, "1000Mbps", BGE_LOOP_EXTERNAL_1000 },
1737 { external, "100Mbps", BGE_LOOP_EXTERNAL_100 },
1738 { external, "10Mbps", BGE_LOOP_EXTERNAL_10 },
1739 { internal, "PHY", BGE_LOOP_INTERNAL_PHY },
1740 { internal, "MAC", BGE_LOOP_INTERNAL_MAC }
1741 };
1742
1743 static enum ioc_reply
1744 bge_set_loop_mode(bge_t *bgep, uint32_t mode)
1745 {
1746 /*
1747 * If the mode isn't being changed, there's nothing to do ...
1748 */
1749 if (mode == bgep->param_loop_mode)
1750 return (IOC_ACK);
1751
1752 /*
1753 * Validate the requested mode and prepare a suitable message
1754 * to explain the link down/up cycle that the change will
1755 * probably induce ...
1756 */
1757 switch (mode) {
1758 default:
1759 return (IOC_INVAL);
1760
1761 case BGE_LOOP_NONE:
1762 case BGE_LOOP_EXTERNAL_1000:
1763 case BGE_LOOP_EXTERNAL_100:
1764 case BGE_LOOP_EXTERNAL_10:
1765 case BGE_LOOP_INTERNAL_PHY:
1766 case BGE_LOOP_INTERNAL_MAC:
1767 break;
1768 }
1769
1770 /*
1771 * All OK; tell the caller to reprogram
1772 * the PHY and/or MAC for the new mode ...
1773 */
1774 bgep->param_loop_mode = mode;
1775 return (IOC_RESTART_ACK);
1776 }
1777
1778 static enum ioc_reply
1779 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
1780 {
1781 lb_info_sz_t *lbsp;
1782 lb_property_t *lbpp;
1783 uint32_t *lbmp;
1784 int cmd;
1785
1786 _NOTE(ARGUNUSED(wq))
1787
1788 /*
1789 * Validate format of ioctl
1790 */
1791 if (mp->b_cont == NULL)
1792 return (IOC_INVAL);
1793
1794 cmd = iocp->ioc_cmd;
1795 switch (cmd) {
1796 default:
1797 /* NOTREACHED */
1798 bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd);
1799 return (IOC_INVAL);
1800
1801 case LB_GET_INFO_SIZE:
1802 if (iocp->ioc_count != sizeof (lb_info_sz_t))
1803 return (IOC_INVAL);
1804 lbsp = (void *)mp->b_cont->b_rptr;
1805 *lbsp = sizeof (loopmodes);
1806 return (IOC_REPLY);
1807
1808 case LB_GET_INFO:
1809 if (iocp->ioc_count != sizeof (loopmodes))
1810 return (IOC_INVAL);
1811 lbpp = (void *)mp->b_cont->b_rptr;
1812 bcopy(loopmodes, lbpp, sizeof (loopmodes));
1813 return (IOC_REPLY);
1814
1815 case LB_GET_MODE:
1816 if (iocp->ioc_count != sizeof (uint32_t))
1817 return (IOC_INVAL);
1818 lbmp = (void *)mp->b_cont->b_rptr;
1819 *lbmp = bgep->param_loop_mode;
1820 return (IOC_REPLY);
1821
1822 case LB_SET_MODE:
1823 if (iocp->ioc_count != sizeof (uint32_t))
1824 return (IOC_INVAL);
1825 lbmp = (void *)mp->b_cont->b_rptr;
1826 return (bge_set_loop_mode(bgep, *lbmp));
1827 }
1828 }
1829
1830 /*
1831 * Specific bge IOCTLs, the gld module handles the generic ones.
1832 */
1833 static void
1834 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1835 {
1836 bge_t *bgep = arg;
1837 struct iocblk *iocp;
1838 enum ioc_reply status;
1839 boolean_t need_privilege;
1840 int err;
1841 int cmd;
1842
1843 /*
1844 * Validate the command before bothering with the mutex ...
1845 */
1846 iocp = (void *)mp->b_rptr;
1847 iocp->ioc_error = 0;
1848 need_privilege = B_TRUE;
1849 cmd = iocp->ioc_cmd;
1850 switch (cmd) {
1851 default:
1852 miocnak(wq, mp, 0, EINVAL);
1853 return;
1854
1855 case BGE_MII_READ:
1856 case BGE_MII_WRITE:
1857 case BGE_SEE_READ:
1858 case BGE_SEE_WRITE:
1859 case BGE_FLASH_READ:
1860 case BGE_FLASH_WRITE:
1861 case BGE_DIAG:
1862 case BGE_PEEK:
1863 case BGE_POKE:
1864 case BGE_PHY_RESET:
1865 case BGE_SOFT_RESET:
1866 case BGE_HARD_RESET:
1867 break;
1868
1869 case LB_GET_INFO_SIZE:
1870 case LB_GET_INFO:
1871 case LB_GET_MODE:
1872 need_privilege = B_FALSE;
1873 /* FALLTHRU */
1874 case LB_SET_MODE:
1875 break;
1876
1877 }
1878
1879 if (need_privilege) {
1880 /*
1881 * Check for specific net_config privilege on Solaris 10+.
1882 */
1883 err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1884 if (err != 0) {
1885 miocnak(wq, mp, 0, err);
1886 return;
1887 }
1888 }
1889
1890 mutex_enter(bgep->genlock);
1891 if (!(bgep->progress & PROGRESS_INTR)) {
1892 /* can happen during autorecovery */
1893 mutex_exit(bgep->genlock);
1894 miocnak(wq, mp, 0, EIO);
1895 return;
1896 }
1897
1898 switch (cmd) {
1899 default:
1900 _NOTE(NOTREACHED)
1901 status = IOC_INVAL;
1902 break;
1903
1904 case BGE_MII_READ:
1905 case BGE_MII_WRITE:
1906 case BGE_SEE_READ:
1907 case BGE_SEE_WRITE:
1908 case BGE_FLASH_READ:
1909 case BGE_FLASH_WRITE:
1910 case BGE_DIAG:
1911 case BGE_PEEK:
1912 case BGE_POKE:
1913 case BGE_PHY_RESET:
1914 case BGE_SOFT_RESET:
1915 case BGE_HARD_RESET:
1916 status = bge_chip_ioctl(bgep, wq, mp, iocp);
1917 break;
1918
1919 case LB_GET_INFO_SIZE:
1920 case LB_GET_INFO:
1921 case LB_GET_MODE:
1922 case LB_SET_MODE:
1923 status = bge_loop_ioctl(bgep, wq, mp, iocp);
1924 break;
1925
1926 }
1927
1928 /*
1929 * Do we need to reprogram the PHY and/or the MAC?
1930 * Do it now, while we still have the mutex.
1931 *
1932 * Note: update the PHY first, 'cos it controls the
1933 * speed/duplex parameters that the MAC code uses.
1934 */
1935 switch (status) {
1936 case IOC_RESTART_REPLY:
1937 case IOC_RESTART_ACK:
1938 if (bge_reprogram(bgep) == IOC_INVAL)
1939 status = IOC_INVAL;
1940 break;
1941 }
1942
1943 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1944 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1945 status = IOC_INVAL;
1946 }
1947 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1948 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1949 status = IOC_INVAL;
1950 }
1951 mutex_exit(bgep->genlock);
1952
1953 /*
1954 * Finally, decide how to reply
1955 */
1956 switch (status) {
1957 default:
1958 case IOC_INVAL:
1959 /*
1960 * Error, reply with a NAK and EINVAL or the specified error
1961 */
1962 miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1963 EINVAL : iocp->ioc_error);
1964 break;
1965
1966 case IOC_DONE:
1967 /*
1968 * OK, reply already sent
1969 */
1970 break;
1971
1972 case IOC_RESTART_ACK:
1973 case IOC_ACK:
1974 /*
1975 * OK, reply with an ACK
1976 */
1977 miocack(wq, mp, 0, 0);
1978 break;
1979
1980 case IOC_RESTART_REPLY:
1981 case IOC_REPLY:
1982 /*
1983 * OK, send prepared reply as ACK or NAK
1984 */
1985 mp->b_datap->db_type = iocp->ioc_error == 0 ?
1986 M_IOCACK : M_IOCNAK;
1987 qreply(wq, mp);
1988 break;
1989 }
1990 }
1991
1992 /*
1993 * ========== Per-instance setup/teardown code ==========
1994 */
1995
1996 #undef BGE_DBG
1997 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */
1998 /*
1999 * Allocate an area of memory and a DMA handle for accessing it
2000 */
2001 static int
2002 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p,
2003 uint_t dma_flags, dma_area_t *dma_p)
2004 {
2005 caddr_t va;
2006 int err;
2007
2008 BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
2009 (void *)bgep, memsize, attr_p, dma_flags, dma_p));
2010
2011 /*
2012 * Allocate handle
2013 */
2014 err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr,
2015 DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
2016 if (err != DDI_SUCCESS)
2017 return (DDI_FAILURE);
2018
2019 /*
2020 * Allocate memory
2021 */
2022 err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
2023 dma_flags, DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength,
2024 &dma_p->acc_hdl);
2025 if (err != DDI_SUCCESS)
2026 return (DDI_FAILURE);
2027
2028 /*
2029 * Bind the two together
2030 */
2031 dma_p->mem_va = va;
2032 err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
2033 va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
2034 &dma_p->cookie, &dma_p->ncookies);
2035
2036 BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies",
2037 dma_p->alength, err, dma_p->ncookies));
2038
2039 if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
2040 return (DDI_FAILURE);
2041
2042 dma_p->nslots = ~0U;
2043 dma_p->size = ~0U;
2044 dma_p->token = ~0U;
2045 dma_p->offset = 0;
2046 return (DDI_SUCCESS);
2047 }
2048
2049 /*
2050 * Free one allocated area of DMAable memory
2051 */
2052 static void
2053 bge_free_dma_mem(dma_area_t *dma_p)
2054 {
2055 if (dma_p->dma_hdl != NULL) {
2056 if (dma_p->ncookies) {
2057 (void) ddi_dma_unbind_handle(dma_p->dma_hdl);
2058 dma_p->ncookies = 0;
2059 }
2060 ddi_dma_free_handle(&dma_p->dma_hdl);
2061 dma_p->dma_hdl = NULL;
2062 }
2063
2064 if (dma_p->acc_hdl != NULL) {
2065 ddi_dma_mem_free(&dma_p->acc_hdl);
2066 dma_p->acc_hdl = NULL;
2067 }
2068 }
2069 /*
2070 * Utility routine to carve a slice off a chunk of allocated memory,
2071 * updating the chunk descriptor accordingly. The size of the slice
2072 * is given by the product of the <qty> and <size> parameters.
2073 */
2074 static void
2075 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
2076 uint32_t qty, uint32_t size)
2077 {
2078 static uint32_t sequence = 0xbcd5704a;
2079 size_t totsize;
2080
2081 totsize = qty*size;
2082 ASSERT(totsize <= chunk->alength);
2083
2084 *slice = *chunk;
2085 slice->nslots = qty;
2086 slice->size = size;
2087 slice->alength = totsize;
2088 slice->token = ++sequence;
2089
2090 chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
2091 chunk->alength -= totsize;
2092 chunk->offset += totsize;
2093 chunk->cookie.dmac_laddress += totsize;
2094 chunk->cookie.dmac_size -= totsize;
2095 }
2096
2097 /*
2098 * Initialise the specified Receive Producer (Buffer) Ring, using
2099 * the information in the <dma_area> descriptors that it contains
2100 * to set up all the other fields. This routine should be called
2101 * only once for each ring.
2102 */
2103 static void
2104 bge_init_buff_ring(bge_t *bgep, uint64_t ring)
2105 {
2106 buff_ring_t *brp;
2107 bge_status_t *bsp;
2108 sw_rbd_t *srbdp;
2109 dma_area_t pbuf;
2110 uint32_t bufsize;
2111 uint32_t nslots;
2112 uint32_t slot;
2113 uint32_t split;
2114
2115 static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = {
2116 NIC_MEM_SHADOW_BUFF_STD,
2117 NIC_MEM_SHADOW_BUFF_JUMBO,
2118 NIC_MEM_SHADOW_BUFF_MINI
2119 };
2120 static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = {
2121 RECV_STD_PROD_INDEX_REG,
2122 RECV_JUMBO_PROD_INDEX_REG,
2123 RECV_MINI_PROD_INDEX_REG
2124 };
2125 static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = {
2126 STATUS_STD_BUFF_CONS_INDEX,
2127 STATUS_JUMBO_BUFF_CONS_INDEX,
2128 STATUS_MINI_BUFF_CONS_INDEX
2129 };
2130
2131 BGE_TRACE(("bge_init_buff_ring($%p, %d)",
2132 (void *)bgep, ring));
2133
2134 brp = &bgep->buff[ring];
2135 nslots = brp->desc.nslots;
2136 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
2137 bufsize = brp->buf[0].size;
2138
2139 /*
2140 * Set up the copy of the h/w RCB
2141 *
2142 * Note: unlike Send & Receive Return Rings, (where the max_len
2143 * field holds the number of slots), in a Receive Buffer Ring
2144 * this field indicates the size of each buffer in the ring.
2145 */
2146 brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress;
2147 brp->hw_rcb.max_len = (uint16_t)bufsize;
2148 brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2149 brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring];
2150
2151 /*
2152 * Other one-off initialisation of per-ring data
2153 */
2154 brp->bgep = bgep;
2155 bsp = DMA_VPTR(bgep->status_block);
2156 brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]];
2157 brp->chip_mbx_reg = mailbox_regs[ring];
2158 mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER,
2159 DDI_INTR_PRI(bgep->intr_pri));
2160
2161 /*
2162 * Allocate the array of s/w Receive Buffer Descriptors
2163 */
2164 srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP);
2165 brp->sw_rbds = srbdp;
2166
2167 /*
2168 * Now initialise each array element once and for all
2169 */
2170 for (split = 0; split < BGE_SPLIT; ++split) {
2171 pbuf = brp->buf[split];
2172 for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot)
2173 bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize);
2174 ASSERT(pbuf.alength == 0);
2175 }
2176 }
2177
2178 /*
2179 * Clean up initialisation done above before the memory is freed
2180 */
2181 static void
2182 bge_fini_buff_ring(bge_t *bgep, uint64_t ring)
2183 {
2184 buff_ring_t *brp;
2185 sw_rbd_t *srbdp;
2186
2187 BGE_TRACE(("bge_fini_buff_ring($%p, %d)",
2188 (void *)bgep, ring));
2189
2190 brp = &bgep->buff[ring];
2191 srbdp = brp->sw_rbds;
2192 kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp));
2193
2194 mutex_destroy(brp->rf_lock);
2195 }
2196
2197 /*
2198 * Initialise the specified Receive (Return) Ring, using the
2199 * information in the <dma_area> descriptors that it contains
2200 * to set up all the other fields. This routine should be called
2201 * only once for each ring.
2202 */
2203 static void
2204 bge_init_recv_ring(bge_t *bgep, uint64_t ring)
2205 {
2206 recv_ring_t *rrp;
2207 bge_status_t *bsp;
2208 uint32_t nslots;
2209
2210 BGE_TRACE(("bge_init_recv_ring($%p, %d)",
2211 (void *)bgep, ring));
2212
2213 /*
2214 * The chip architecture requires that receive return rings have
2215 * 512 or 1024 or 2048 elements per ring. See 570X-PG108-R page 103.
2216 */
2217 rrp = &bgep->recv[ring];
2218 nslots = rrp->desc.nslots;
2219 ASSERT(nslots == 0 || nslots == 512 ||
2220 nslots == 1024 || nslots == 2048);
2221
2222 /*
2223 * Set up the copy of the h/w RCB
2224 */
2225 rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress;
2226 rrp->hw_rcb.max_len = (uint16_t)nslots;
2227 rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2228 rrp->hw_rcb.nic_ring_addr = 0;
2229
2230 /*
2231 * Other one-off initialisation of per-ring data
2232 */
2233 rrp->bgep = bgep;
2234 bsp = DMA_VPTR(bgep->status_block);
2235 rrp->prod_index_p = RECV_INDEX_P(bsp, ring);
2236 rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring);
2237 mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER,
2238 DDI_INTR_PRI(bgep->intr_pri));
2239 }
2240
2241
2242 /*
2243 * Clean up initialisation done above before the memory is freed
2244 */
2245 static void
2246 bge_fini_recv_ring(bge_t *bgep, uint64_t ring)
2247 {
2248 recv_ring_t *rrp;
2249
2250 BGE_TRACE(("bge_fini_recv_ring($%p, %d)",
2251 (void *)bgep, ring));
2252
2253 rrp = &bgep->recv[ring];
2254 if (rrp->rx_softint)
2255 ddi_remove_softintr(rrp->rx_softint);
2256 mutex_destroy(rrp->rx_lock);
2257 }
2258
2259 /*
2260 * Initialise the specified Send Ring, using the information in the
2261 * <dma_area> descriptors that it contains to set up all the other
2262 * fields. This routine should be called only once for each ring.
2263 */
2264 static void
2265 bge_init_send_ring(bge_t *bgep, uint64_t ring)
2266 {
2267 send_ring_t *srp;
2268 bge_status_t *bsp;
2269 sw_sbd_t *ssbdp;
2270 dma_area_t desc;
2271 dma_area_t pbuf;
2272 uint32_t nslots;
2273 uint32_t slot;
2274 uint32_t split;
2275 sw_txbuf_t *txbuf;
2276
2277 BGE_TRACE(("bge_init_send_ring($%p, %d)",
2278 (void *)bgep, ring));
2279
2280 /*
2281 * The chip architecture requires that host-based send rings
2282 * have 512 elements per ring. See 570X-PG102-R page 56.
2283 */
2284 srp = &bgep->send[ring];
2285 nslots = srp->desc.nslots;
2286 ASSERT(nslots == 0 || nslots == 512);
2287
2288 /*
2289 * Set up the copy of the h/w RCB
2290 */
2291 srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress;
2292 srp->hw_rcb.max_len = (uint16_t)nslots;
2293 srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2294 srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots);
2295
2296 /*
2297 * Other one-off initialisation of per-ring data
2298 */
2299 srp->bgep = bgep;
2300 bsp = DMA_VPTR(bgep->status_block);
2301 srp->cons_index_p = SEND_INDEX_P(bsp, ring);
2302 srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring);
2303 mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
2304 DDI_INTR_PRI(bgep->intr_pri));
2305 mutex_init(srp->txbuf_lock, NULL, MUTEX_DRIVER,
2306 DDI_INTR_PRI(bgep->intr_pri));
2307 mutex_init(srp->freetxbuf_lock, NULL, MUTEX_DRIVER,
2308 DDI_INTR_PRI(bgep->intr_pri));
2309 mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
2310 DDI_INTR_PRI(bgep->intr_pri));
2311 if (nslots == 0)
2312 return;
2313
2314 /*
2315 * Allocate the array of s/w Send Buffer Descriptors
2316 */
2317 ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
2318 txbuf = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (*txbuf), KM_SLEEP);
2319 srp->txbuf_head =
2320 kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (bge_queue_item_t), KM_SLEEP);
2321 srp->pktp = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (send_pkt_t), KM_SLEEP);
2322 srp->sw_sbds = ssbdp;
2323 srp->txbuf = txbuf;
2324 srp->tx_buffers = BGE_SEND_BUF_NUM;
2325 srp->tx_buffers_low = srp->tx_buffers / 4;
2326 if (bgep->chipid.snd_buff_size > BGE_SEND_BUFF_SIZE_DEFAULT)
2327 srp->tx_array_max = BGE_SEND_BUF_ARRAY_JUMBO;
2328 else
2329 srp->tx_array_max = BGE_SEND_BUF_ARRAY;
2330 srp->tx_array = 1;
2331
2332 /*
2333 * Chunk tx desc area
2334 */
2335 desc = srp->desc;
2336 for (slot = 0; slot < nslots; ++ssbdp, ++slot) {
2337 bge_slice_chunk(&ssbdp->desc, &desc, 1,
2338 sizeof (bge_sbd_t));
2339 }
2340 ASSERT(desc.alength == 0);
2341
2342 /*
2343 * Chunk tx buffer area
2344 */
2345 for (split = 0; split < BGE_SPLIT; ++split) {
2346 pbuf = srp->buf[0][split];
2347 for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2348 bge_slice_chunk(&txbuf->buf, &pbuf, 1,
2349 bgep->chipid.snd_buff_size);
2350 txbuf++;
2351 }
2352 ASSERT(pbuf.alength == 0);
2353 }
2354 }
2355
2356 /*
2357 * Clean up initialisation done above before the memory is freed
2358 */
2359 static void
2360 bge_fini_send_ring(bge_t *bgep, uint64_t ring)
2361 {
2362 send_ring_t *srp;
2363 uint32_t array;
2364 uint32_t split;
2365 uint32_t nslots;
2366
2367 BGE_TRACE(("bge_fini_send_ring($%p, %d)",
2368 (void *)bgep, ring));
2369
2370 srp = &bgep->send[ring];
2371 mutex_destroy(srp->tc_lock);
2372 mutex_destroy(srp->freetxbuf_lock);
2373 mutex_destroy(srp->txbuf_lock);
2374 mutex_destroy(srp->tx_lock);
2375 nslots = srp->desc.nslots;
2376 if (nslots == 0)
2377 return;
2378
2379 for (array = 1; array < srp->tx_array; ++array)
2380 for (split = 0; split < BGE_SPLIT; ++split)
2381 bge_free_dma_mem(&srp->buf[array][split]);
2382 kmem_free(srp->sw_sbds, nslots*sizeof (*srp->sw_sbds));
2383 kmem_free(srp->txbuf_head, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf_head));
2384 kmem_free(srp->txbuf, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf));
2385 kmem_free(srp->pktp, BGE_SEND_BUF_MAX*sizeof (*srp->pktp));
2386 srp->sw_sbds = NULL;
2387 srp->txbuf_head = NULL;
2388 srp->txbuf = NULL;
2389 srp->pktp = NULL;
2390 }
2391
2392 /*
2393 * Initialise all transmit, receive, and buffer rings.
2394 */
2395 void
2396 bge_init_rings(bge_t *bgep)
2397 {
2398 uint32_t ring;
2399
2400 BGE_TRACE(("bge_init_rings($%p)", (void *)bgep));
2401
2402 /*
2403 * Perform one-off initialisation of each ring ...
2404 */
2405 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2406 bge_init_send_ring(bgep, ring);
2407 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2408 bge_init_recv_ring(bgep, ring);
2409 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2410 bge_init_buff_ring(bgep, ring);
2411 }
2412
2413 /*
2414 * Undo the work of bge_init_rings() above before the memory is freed
2415 */
2416 void
2417 bge_fini_rings(bge_t *bgep)
2418 {
2419 uint32_t ring;
2420
2421 BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep));
2422
2423 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2424 bge_fini_buff_ring(bgep, ring);
2425 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2426 bge_fini_recv_ring(bgep, ring);
2427 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2428 bge_fini_send_ring(bgep, ring);
2429 }
2430
2431 /*
2432 * Called from the bge_m_stop() to free the tx buffers which are
2433 * allocated from the tx process.
2434 */
2435 void
2436 bge_free_txbuf_arrays(send_ring_t *srp)
2437 {
2438 uint32_t array;
2439 uint32_t split;
2440
2441 ASSERT(mutex_owned(srp->tx_lock));
2442
2443 /*
2444 * Free the extra tx buffer DMA area
2445 */
2446 for (array = 1; array < srp->tx_array; ++array)
2447 for (split = 0; split < BGE_SPLIT; ++split)
2448 bge_free_dma_mem(&srp->buf[array][split]);
2449
2450 /*
2451 * Restore initial tx buffer numbers
2452 */
2453 srp->tx_array = 1;
2454 srp->tx_buffers = BGE_SEND_BUF_NUM;
2455 srp->tx_buffers_low = srp->tx_buffers / 4;
2456 srp->tx_flow = 0;
2457 bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
2458 }
2459
2460 /*
2461 * Called from tx process to allocate more tx buffers
2462 */
2463 bge_queue_item_t *
2464 bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp)
2465 {
2466 bge_queue_t *txbuf_queue;
2467 bge_queue_item_t *txbuf_item_last;
2468 bge_queue_item_t *txbuf_item;
2469 bge_queue_item_t *txbuf_item_rtn;
2470 sw_txbuf_t *txbuf;
2471 dma_area_t area;
2472 size_t txbuffsize;
2473 uint32_t slot;
2474 uint32_t array;
2475 uint32_t split;
2476 uint32_t err;
2477
2478 ASSERT(mutex_owned(srp->tx_lock));
2479
2480 array = srp->tx_array;
2481 if (array >= srp->tx_array_max)
2482 return (NULL);
2483
2484 /*
2485 * Allocate memory & handles for TX buffers
2486 */
2487 txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2488 ASSERT((txbuffsize % BGE_SPLIT) == 0);
2489 for (split = 0; split < BGE_SPLIT; ++split) {
2490 err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2491 &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2492 &srp->buf[array][split]);
2493 if (err != DDI_SUCCESS) {
2494 /* Free the last already allocated OK chunks */
2495 for (slot = 0; slot <= split; ++slot)
2496 bge_free_dma_mem(&srp->buf[array][slot]);
2497 srp->tx_alloc_fail++;
2498 return (NULL);
2499 }
2500 }
2501
2502 /*
2503 * Chunk tx buffer area
2504 */
2505 txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2506 for (split = 0; split < BGE_SPLIT; ++split) {
2507 area = srp->buf[array][split];
2508 for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2509 bge_slice_chunk(&txbuf->buf, &area, 1,
2510 bgep->chipid.snd_buff_size);
2511 txbuf++;
2512 }
2513 }
2514
2515 /*
2516 * Add above buffers to the tx buffer pop queue
2517 */
2518 txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2519 txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2520 txbuf_item_last = NULL;
2521 for (slot = 0; slot < BGE_SEND_BUF_NUM; ++slot) {
2522 txbuf_item->item = txbuf;
2523 txbuf_item->next = txbuf_item_last;
2524 txbuf_item_last = txbuf_item;
2525 txbuf++;
2526 txbuf_item++;
2527 }
2528 txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2529 txbuf_item_rtn = txbuf_item;
2530 txbuf_item++;
2531 txbuf_queue = srp->txbuf_pop_queue;
2532 mutex_enter(txbuf_queue->lock);
2533 txbuf_item->next = txbuf_queue->head;
2534 txbuf_queue->head = txbuf_item_last;
2535 txbuf_queue->count += BGE_SEND_BUF_NUM - 1;
2536 mutex_exit(txbuf_queue->lock);
2537
2538 srp->tx_array++;
2539 srp->tx_buffers += BGE_SEND_BUF_NUM;
2540 srp->tx_buffers_low = srp->tx_buffers / 4;
2541
2542 return (txbuf_item_rtn);
2543 }
2544
2545 /*
2546 * This function allocates all the transmit and receive buffers
2547 * and descriptors, in four chunks.
2548 */
2549 int
2550 bge_alloc_bufs(bge_t *bgep)
2551 {
2552 dma_area_t area;
2553 size_t rxbuffsize;
2554 size_t txbuffsize;
2555 size_t rxbuffdescsize;
2556 size_t rxdescsize;
2557 size_t txdescsize;
2558 uint32_t ring;
2559 uint32_t rx_rings = bgep->chipid.rx_rings;
2560 uint32_t tx_rings = bgep->chipid.tx_rings;
2561 int split;
2562 int err;
2563
2564 BGE_TRACE(("bge_alloc_bufs($%p)",
2565 (void *)bgep));
2566
2567 rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size;
2568 rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size;
2569 rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE;
2570
2571 txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2572 txbuffsize *= tx_rings;
2573
2574 rxdescsize = rx_rings*bgep->chipid.recv_slots;
2575 rxdescsize *= sizeof (bge_rbd_t);
2576
2577 rxbuffdescsize = BGE_STD_SLOTS_USED;
2578 rxbuffdescsize += bgep->chipid.jumbo_slots;
2579 rxbuffdescsize += BGE_MINI_SLOTS_USED;
2580 rxbuffdescsize *= sizeof (bge_rbd_t);
2581
2582 txdescsize = tx_rings*BGE_SEND_SLOTS_USED;
2583 txdescsize *= sizeof (bge_sbd_t);
2584 txdescsize += sizeof (bge_statistics_t);
2585 txdescsize += sizeof (bge_status_t);
2586 txdescsize += BGE_STATUS_PADDING;
2587
2588 /*
2589 * Enable PCI relaxed ordering only for RX/TX data buffers
2590 */
2591 if (bge_relaxed_ordering)
2592 dma_attr.dma_attr_flags |= DDI_DMA_RELAXED_ORDERING;
2593
2594 /*
2595 * Allocate memory & handles for RX buffers
2596 */
2597 ASSERT((rxbuffsize % BGE_SPLIT) == 0);
2598 for (split = 0; split < BGE_SPLIT; ++split) {
2599 err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT,
2600 &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE,
2601 &bgep->rx_buff[split]);
2602 if (err != DDI_SUCCESS)
2603 return (DDI_FAILURE);
2604 }
2605
2606 /*
2607 * Allocate memory & handles for TX buffers
2608 */
2609 ASSERT((txbuffsize % BGE_SPLIT) == 0);
2610 for (split = 0; split < BGE_SPLIT; ++split) {
2611 err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2612 &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2613 &bgep->tx_buff[split]);
2614 if (err != DDI_SUCCESS)
2615 return (DDI_FAILURE);
2616 }
2617
2618 dma_attr.dma_attr_flags &= ~DDI_DMA_RELAXED_ORDERING;
2619
2620 /*
2621 * Allocate memory & handles for receive return rings
2622 */
2623 ASSERT((rxdescsize % rx_rings) == 0);
2624 for (split = 0; split < rx_rings; ++split) {
2625 err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings,
2626 &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2627 &bgep->rx_desc[split]);
2628 if (err != DDI_SUCCESS)
2629 return (DDI_FAILURE);
2630 }
2631
2632 /*
2633 * Allocate memory & handles for buffer (producer) descriptor rings
2634 */
2635 err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr,
2636 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]);
2637 if (err != DDI_SUCCESS)
2638 return (DDI_FAILURE);
2639
2640 /*
2641 * Allocate memory & handles for TX descriptor rings,
2642 * status block, and statistics area
2643 */
2644 err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr,
2645 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc);
2646 if (err != DDI_SUCCESS)
2647 return (DDI_FAILURE);
2648
2649 /*
2650 * Now carve up each of the allocated areas ...
2651 */
2652 for (split = 0; split < BGE_SPLIT; ++split) {
2653 area = bgep->rx_buff[split];
2654 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split],
2655 &area, BGE_STD_SLOTS_USED/BGE_SPLIT,
2656 bgep->chipid.std_buf_size);
2657 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split],
2658 &area, bgep->chipid.jumbo_slots/BGE_SPLIT,
2659 bgep->chipid.recv_jumbo_size);
2660 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split],
2661 &area, BGE_MINI_SLOTS_USED/BGE_SPLIT,
2662 BGE_MINI_BUFF_SIZE);
2663 }
2664
2665 for (split = 0; split < BGE_SPLIT; ++split) {
2666 area = bgep->tx_buff[split];
2667 for (ring = 0; ring < tx_rings; ++ring)
2668 bge_slice_chunk(&bgep->send[ring].buf[0][split],
2669 &area, BGE_SEND_BUF_NUM/BGE_SPLIT,
2670 bgep->chipid.snd_buff_size);
2671 for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2672 bge_slice_chunk(&bgep->send[ring].buf[0][split],
2673 &area, 0, bgep->chipid.snd_buff_size);
2674 }
2675
2676 for (ring = 0; ring < rx_rings; ++ring)
2677 bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring],
2678 bgep->chipid.recv_slots, sizeof (bge_rbd_t));
2679
2680 area = bgep->rx_desc[rx_rings];
2681 for (; ring < BGE_RECV_RINGS_MAX; ++ring)
2682 bge_slice_chunk(&bgep->recv[ring].desc, &area,
2683 0, sizeof (bge_rbd_t));
2684 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area,
2685 BGE_STD_SLOTS_USED, sizeof (bge_rbd_t));
2686 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area,
2687 bgep->chipid.jumbo_slots, sizeof (bge_rbd_t));
2688 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area,
2689 BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t));
2690 ASSERT(area.alength == 0);
2691
2692 area = bgep->tx_desc;
2693 for (ring = 0; ring < tx_rings; ++ring)
2694 bge_slice_chunk(&bgep->send[ring].desc, &area,
2695 BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t));
2696 for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2697 bge_slice_chunk(&bgep->send[ring].desc, &area,
2698 0, sizeof (bge_sbd_t));
2699 bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t));
2700 bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t));
2701 ASSERT(area.alength == BGE_STATUS_PADDING);
2702 DMA_ZERO(bgep->status_block);
2703
2704 return (DDI_SUCCESS);
2705 }
2706
2707 /*
2708 * This routine frees the transmit and receive buffers and descriptors.
2709 * Make sure the chip is stopped before calling it!
2710 */
2711 void
2712 bge_free_bufs(bge_t *bgep)
2713 {
2714 int split;
2715
2716 BGE_TRACE(("bge_free_bufs($%p)",
2717 (void *)bgep));
2718
2719 bge_free_dma_mem(&bgep->tx_desc);
2720 for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split)
2721 bge_free_dma_mem(&bgep->rx_desc[split]);
2722 for (split = 0; split < BGE_SPLIT; ++split)
2723 bge_free_dma_mem(&bgep->tx_buff[split]);
2724 for (split = 0; split < BGE_SPLIT; ++split)
2725 bge_free_dma_mem(&bgep->rx_buff[split]);
2726 }
2727
2728 /*
2729 * Determine (initial) MAC address ("BIA") to use for this interface
2730 */
2731
2732 static void
2733 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp)
2734 {
2735 struct ether_addr sysaddr;
2736 char propbuf[8]; /* "true" or "false", plus NUL */
2737 uchar_t *bytes;
2738 int *ints;
2739 uint_t nelts;
2740 int err;
2741
2742 BGE_TRACE(("bge_find_mac_address($%p)",
2743 (void *)bgep));
2744
2745 BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)",
2746 cidp->hw_mac_addr,
2747 ether_sprintf((void *)cidp->vendor_addr.addr),
2748 cidp->vendor_addr.set ? "" : "not "));
2749
2750 /*
2751 * The "vendor's factory-set address" may already have
2752 * been extracted from the chip, but if the property
2753 * "local-mac-address" is set we use that instead. It
2754 * will normally be set by OBP, but it could also be
2755 * specified in a .conf file(!)
2756 *
2757 * There doesn't seem to be a way to define byte-array
2758 * properties in a .conf, so we check whether it looks
2759 * like an array of 6 ints instead.
2760 *
2761 * Then, we check whether it looks like an array of 6
2762 * bytes (which it should, if OBP set it). If we can't
2763 * make sense of it either way, we'll ignore it.
2764 */
2765 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2766 DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts);
2767 if (err == DDI_PROP_SUCCESS) {
2768 if (nelts == ETHERADDRL) {
2769 while (nelts--)
2770 cidp->vendor_addr.addr[nelts] = ints[nelts];
2771 cidp->vendor_addr.set = B_TRUE;
2772 }
2773 ddi_prop_free(ints);
2774 }
2775
2776 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2777 DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts);
2778 if (err == DDI_PROP_SUCCESS) {
2779 if (nelts == ETHERADDRL) {
2780 while (nelts--)
2781 cidp->vendor_addr.addr[nelts] = bytes[nelts];
2782 cidp->vendor_addr.set = B_TRUE;
2783 }
2784 ddi_prop_free(bytes);
2785 }
2786
2787 BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)",
2788 ether_sprintf((void *)cidp->vendor_addr.addr),
2789 cidp->vendor_addr.set ? "" : "not "));
2790
2791 /*
2792 * Look up the OBP property "local-mac-address?". Note that even
2793 * though its value is a string (which should be "true" or "false"),
2794 * it can't be decoded by ddi_prop_lookup_string(9F). So, we zero
2795 * the buffer first and then fetch the property as an untyped array;
2796 * this may or may not include a final NUL, but since there will
2797 * always be one left at the end of the buffer we can now treat it
2798 * as a string anyway.
2799 */
2800 nelts = sizeof (propbuf);
2801 bzero(propbuf, nelts--);
2802 err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo,
2803 DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts);
2804
2805 /*
2806 * Now, if the address still isn't set from the hardware (SEEPROM)
2807 * or the OBP or .conf property, OR if the user has foolishly set
2808 * 'local-mac-address? = false', use "the system address" instead
2809 * (but only if it's non-null i.e. has been set from the IDPROM).
2810 */
2811 if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0)
2812 if (localetheraddr(NULL, &sysaddr) != 0) {
2813 ethaddr_copy(&sysaddr, cidp->vendor_addr.addr);
2814 cidp->vendor_addr.set = B_TRUE;
2815 }
2816
2817 BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)",
2818 ether_sprintf((void *)cidp->vendor_addr.addr),
2819 cidp->vendor_addr.set ? "" : "not "));
2820
2821 /*
2822 * Finally(!), if there's a valid "mac-address" property (created
2823 * if we netbooted from this interface), we must use this instead
2824 * of any of the above to ensure that the NFS/install server doesn't
2825 * get confused by the address changing as Solaris takes over!
2826 */
2827 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2828 DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts);
2829 if (err == DDI_PROP_SUCCESS) {
2830 if (nelts == ETHERADDRL) {
2831 while (nelts--)
2832 cidp->vendor_addr.addr[nelts] = bytes[nelts];
2833 cidp->vendor_addr.set = B_TRUE;
2834 }
2835 ddi_prop_free(bytes);
2836 }
2837
2838 BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)",
2839 ether_sprintf((void *)cidp->vendor_addr.addr),
2840 cidp->vendor_addr.set ? "" : "not "));
2841 }
2842
2843
2844 /*ARGSUSED*/
2845 int
2846 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle)
2847 {
2848 ddi_fm_error_t de;
2849
2850 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
2851 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
2852 return (de.fme_status);
2853 }
2854
2855 /*ARGSUSED*/
2856 int
2857 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle)
2858 {
2859 ddi_fm_error_t de;
2860
2861 ASSERT(bgep->progress & PROGRESS_BUFS);
2862 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
2863 return (de.fme_status);
2864 }
2865
2866 /*
2867 * The IO fault service error handling callback function
2868 */
2869 /*ARGSUSED*/
2870 static int
2871 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
2872 {
2873 /*
2874 * as the driver can always deal with an error in any dma or
2875 * access handle, we can just return the fme_status value.
2876 */
2877 pci_ereport_post(dip, err, NULL);
2878 return (err->fme_status);
2879 }
2880
2881 static void
2882 bge_fm_init(bge_t *bgep)
2883 {
2884 ddi_iblock_cookie_t iblk;
2885
2886 /* Only register with IO Fault Services if we have some capability */
2887 if (bgep->fm_capabilities) {
2888 bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2889 dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
2890
2891 /* Register capabilities with IO Fault Services */
2892 ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);
2893
2894 /*
2895 * Initialize pci ereport capabilities if ereport capable
2896 */
2897 if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2898 DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2899 pci_ereport_setup(bgep->devinfo);
2900
2901 /*
2902 * Register error callback if error callback capable
2903 */
2904 if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2905 ddi_fm_handler_register(bgep->devinfo,
2906 bge_fm_error_cb, (void*) bgep);
2907 } else {
2908 /*
2909 * These fields have to be cleared of FMA if there are no
2910 * FMA capabilities at runtime.
2911 */
2912 bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2913 dma_attr.dma_attr_flags = 0;
2914 }
2915 }
2916
2917 static void
2918 bge_fm_fini(bge_t *bgep)
2919 {
2920 /* Only unregister FMA capabilities if we registered some */
2921 if (bgep->fm_capabilities) {
2922
2923 /*
2924 * Release any resources allocated by pci_ereport_setup()
2925 */
2926 if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2927 DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2928 pci_ereport_teardown(bgep->devinfo);
2929
2930 /*
2931 * Un-register error callback if error callback capable
2932 */
2933 if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2934 ddi_fm_handler_unregister(bgep->devinfo);
2935
2936 /* Unregister from IO Fault Services */
2937 ddi_fm_fini(bgep->devinfo);
2938 }
2939 }
2940
2941 static void
2942 #ifdef BGE_IPMI_ASF
2943 bge_unattach(bge_t *bgep, uint_t asf_mode)
2944 #else
2945 bge_unattach(bge_t *bgep)
2946 #endif
2947 {
2948 BGE_TRACE(("bge_unattach($%p)",
2949 (void *)bgep));
2950
2951 /*
2952 * Flag that no more activity may be initiated
2953 */
2954 bgep->progress &= ~PROGRESS_READY;
2955
2956 /*
2957 * Quiesce the PHY and MAC (leave it reset but still powered).
2958 * Clean up and free all BGE data structures
2959 */
2960 if (bgep->periodic_id != NULL) {
2961 ddi_periodic_delete(bgep->periodic_id);
2962 bgep->periodic_id = NULL;
2963 }
2964 if (bgep->progress & PROGRESS_KSTATS)
2965 bge_fini_kstats(bgep);
2966 if (bgep->progress & PROGRESS_PHY)
2967 bge_phys_reset(bgep);
2968 if (bgep->progress & PROGRESS_HWINT) {
2969 mutex_enter(bgep->genlock);
2970 #ifdef BGE_IPMI_ASF
2971 if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS)
2972 #else
2973 if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS)
2974 #endif
2975 ddi_fm_service_impact(bgep->devinfo,
2976 DDI_SERVICE_UNAFFECTED);
2977 #ifdef BGE_IPMI_ASF
2978 if (bgep->asf_enabled) {
2979 /*
2980 * This register has been overlaid. We restore its
2981 * initial value here.
2982 */
2983 bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR,
2984 BGE_NIC_DATA_SIG);
2985 }
2986 #endif
2987 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
2988 ddi_fm_service_impact(bgep->devinfo,
2989 DDI_SERVICE_UNAFFECTED);
2990 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2991 ddi_fm_service_impact(bgep->devinfo,
2992 DDI_SERVICE_UNAFFECTED);
2993 mutex_exit(bgep->genlock);
2994 }
2995 if (bgep->progress & PROGRESS_INTR) {
2996 bge_intr_disable(bgep);
2997 bge_fini_rings(bgep);
2998 }
2999 if (bgep->progress & PROGRESS_HWINT) {
3000 bge_rem_intrs(bgep);
3001 rw_destroy(bgep->errlock);
3002 mutex_destroy(bgep->softintrlock);
3003 mutex_destroy(bgep->genlock);
3004 }
3005 if (bgep->progress & PROGRESS_FACTOTUM)
3006 ddi_remove_softintr(bgep->factotum_id);
3007 if (bgep->progress & PROGRESS_RESCHED)
3008 ddi_remove_softintr(bgep->drain_id);
3009 if (bgep->progress & PROGRESS_BUFS)
3010 bge_free_bufs(bgep);
3011 if (bgep->progress & PROGRESS_REGS)
3012 ddi_regs_map_free(&bgep->io_handle);
3013 if (bgep->progress & PROGRESS_CFG)
3014 pci_config_teardown(&bgep->cfg_handle);
3015
3016 bge_fm_fini(bgep);
3017
3018 ddi_remove_minor_node(bgep->devinfo, NULL);
3019 kmem_free(bgep->pstats, sizeof (bge_statistics_reg_t));
3020 kmem_free(bgep, sizeof (*bgep));
3021 }
3022
3023 static int
3024 bge_resume(dev_info_t *devinfo)
3025 {
3026 bge_t *bgep; /* Our private data */
3027 chip_id_t *cidp;
3028 chip_id_t chipid;
3029
3030 bgep = ddi_get_driver_private(devinfo);
3031 if (bgep == NULL)
3032 return (DDI_FAILURE);
3033
3034 /*
3035 * Refuse to resume if the data structures aren't consistent
3036 */
3037 if (bgep->devinfo != devinfo)
3038 return (DDI_FAILURE);
3039
3040 #ifdef BGE_IPMI_ASF
3041 /*
3042 * Power management hasn't been supported in BGE now. If you
3043 * want to implement it, please add the ASF/IPMI related
3044 * code here.
3045 */
3046
3047 #endif
3048
3049 /*
3050 * Read chip ID & set up config space command register(s)
3051 * Refuse to resume if the chip has changed its identity!
3052 */
3053 cidp = &bgep->chipid;
3054 mutex_enter(bgep->genlock);
3055 bge_chip_cfg_init(bgep, &chipid, B_FALSE);
3056 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3057 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3058 mutex_exit(bgep->genlock);
3059 return (DDI_FAILURE);
3060 }
3061 mutex_exit(bgep->genlock);
3062 if (chipid.vendor != cidp->vendor)
3063 return (DDI_FAILURE);
3064 if (chipid.device != cidp->device)
3065 return (DDI_FAILURE);
3066 if (chipid.revision != cidp->revision)
3067 return (DDI_FAILURE);
3068 if (chipid.asic_rev != cidp->asic_rev)
3069 return (DDI_FAILURE);
3070
3071 /*
3072 * All OK, reinitialise h/w & kick off GLD scheduling
3073 */
3074 mutex_enter(bgep->genlock);
3075 if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {
3076 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3077 (void) bge_check_acc_handle(bgep, bgep->io_handle);
3078 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3079 mutex_exit(bgep->genlock);
3080 return (DDI_FAILURE);
3081 }
3082 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3083 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3084 mutex_exit(bgep->genlock);
3085 return (DDI_FAILURE);
3086 }
3087 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3088 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3089 mutex_exit(bgep->genlock);
3090 return (DDI_FAILURE);
3091 }
3092 mutex_exit(bgep->genlock);
3093 return (DDI_SUCCESS);
3094 }
3095
3096 /*
3097 * attach(9E) -- Attach a device to the system
3098 *
3099 * Called once for each board successfully probed.
3100 */
3101 static int
3102 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3103 {
3104 bge_t *bgep; /* Our private data */
3105 mac_register_t *macp;
3106 chip_id_t *cidp;
3107 caddr_t regs;
3108 int instance;
3109 int err;
3110 int intr_types;
3111 #ifdef BGE_IPMI_ASF
3112 uint32_t mhcrValue;
3113 #ifdef __sparc
3114 uint16_t value16;
3115 #endif
3116 #ifdef BGE_NETCONSOLE
3117 int retval;
3118 #endif
3119 #endif
3120
3121 instance = ddi_get_instance(devinfo);
3122
3123 BGE_GTRACE(("bge_attach($%p, %d) instance %d",
3124 (void *)devinfo, cmd, instance));
3125 BGE_BRKPT(NULL, "bge_attach");
3126
3127 switch (cmd) {
3128 default:
3129 return (DDI_FAILURE);
3130
3131 case DDI_RESUME:
3132 return (bge_resume(devinfo));
3133
3134 case DDI_ATTACH:
3135 break;
3136 }
3137
3138 bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP);
3139 bgep->pstats = kmem_zalloc(sizeof (bge_statistics_reg_t), KM_SLEEP);
3140 ddi_set_driver_private(devinfo, bgep);
3141 bgep->bge_guard = BGE_GUARD;
3142 bgep->devinfo = devinfo;
3143 bgep->param_drain_max = 64;
3144 bgep->param_msi_cnt = 0;
3145 bgep->param_loop_mode = 0;
3146
3147 /*
3148 * Initialize more fields in BGE private data
3149 */
3150 bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3151 DDI_PROP_DONTPASS, debug_propname, bge_debug);
3152 (void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d",
3153 BGE_DRIVER_NAME, instance);
3154
3155 /*
3156 * Initialize for fma support
3157 */
3158 bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3159 DDI_PROP_DONTPASS, fm_cap,
3160 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3161 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3162 BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities));
3163 bge_fm_init(bgep);
3164
3165 /*
3166 * Look up the IOMMU's page size for DVMA mappings (must be
3167 * a power of 2) and convert to a mask. This can be used to
3168 * determine whether a message buffer crosses a page boundary.
3169 * Note: in 2s complement binary notation, if X is a power of
3170 * 2, then -X has the representation "11...1100...00".
3171 */
3172 bgep->pagemask = dvma_pagesize(devinfo);
3173 ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask));
3174 bgep->pagemask = -bgep->pagemask;
3175
3176 /*
3177 * Map config space registers
3178 * Read chip ID & set up config space command register(s)
3179 *
3180 * Note: this leaves the chip accessible by Memory Space
3181 * accesses, but with interrupts and Bus Mastering off.
3182 * This should ensure that nothing untoward will happen
3183 * if it has been left active by the (net-)bootloader.
3184 * We'll re-enable Bus Mastering once we've reset the chip,
3185 * and allow interrupts only when everything else is set up.
3186 */
3187 err = pci_config_setup(devinfo, &bgep->cfg_handle);
3188 #ifdef BGE_IPMI_ASF
3189 #ifdef __sparc
3190 /*
3191 * We need to determine the type of chipset for accessing some configure
3192 * registers. (This information will be used by bge_ind_put32,
3193 * bge_ind_get32 and bge_nic_read32)
3194 */
3195 bgep->chipid.device = pci_config_get16(bgep->cfg_handle,
3196 PCI_CONF_DEVID);
3197 value16 = pci_config_get16(bgep->cfg_handle, PCI_CONF_COMM);
3198 value16 = value16 | (PCI_COMM_MAE | PCI_COMM_ME);
3199 pci_config_put16(bgep->cfg_handle, PCI_CONF_COMM, value16);
3200 mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS |
3201 MHCR_ENABLE_TAGGED_STATUS_MODE |
3202 MHCR_MASK_INTERRUPT_MODE |
3203 MHCR_MASK_PCI_INT_OUTPUT |
3204 MHCR_CLEAR_INTERRUPT_INTA |
3205 MHCR_ENABLE_ENDIAN_WORD_SWAP |
3206 MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3207 /*
3208 * For some chipsets (e.g., BCM5718), if MHCR_ENABLE_ENDIAN_BYTE_SWAP
3209 * has been set in PCI_CONF_COMM already, we need to write the
3210 * byte-swapped value to it. So we just write zero first for simplicity.
3211 */
3212 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
3213 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, 0);
3214 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcrValue);
3215 bge_ind_put32(bgep, MEMORY_ARBITER_MODE_REG,
3216 bge_ind_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3217 MEMORY_ARBITER_ENABLE);
3218 #else
3219 mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3220 #endif
3221 if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) {
3222 bgep->asf_wordswapped = B_TRUE;
3223 } else {
3224 bgep->asf_wordswapped = B_FALSE;
3225 }
3226 bge_asf_get_config(bgep);
3227 #endif
3228 if (err != DDI_SUCCESS) {
3229 bge_problem(bgep, "pci_config_setup() failed");
3230 goto attach_fail;
3231 }
3232 bgep->progress |= PROGRESS_CFG;
3233 cidp = &bgep->chipid;
3234 bzero(cidp, sizeof (*cidp));
3235 bge_chip_cfg_init(bgep, cidp, B_FALSE);
3236 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3237 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3238 goto attach_fail;
3239 }
3240
3241 #ifdef BGE_IPMI_ASF
3242 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3243 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
3244 bgep->asf_newhandshake = B_TRUE;
3245 } else {
3246 bgep->asf_newhandshake = B_FALSE;
3247 }
3248 #endif
3249
3250 /*
3251 * Update those parts of the chip ID derived from volatile
3252 * registers with the values seen by OBP (in case the chip
3253 * has been reset externally and therefore lost them).
3254 */
3255 cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3256 DDI_PROP_DONTPASS, subven_propname, cidp->subven);
3257 cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3258 DDI_PROP_DONTPASS, subdev_propname, cidp->subdev);
3259 cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3260 DDI_PROP_DONTPASS, clsize_propname, cidp->clsize);
3261 cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3262 DDI_PROP_DONTPASS, latency_propname, cidp->latency);
3263 cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3264 DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings);
3265 cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3266 DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings);
3267
3268 cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3269 DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU);
3270 if ((cidp->default_mtu < BGE_DEFAULT_MTU) ||
3271 (cidp->default_mtu > BGE_MAXIMUM_MTU)) {
3272 cidp->default_mtu = BGE_DEFAULT_MTU;
3273 }
3274
3275 /*
3276 * Map operating registers
3277 */
3278 err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER,
3279 ®s, 0, 0, &bge_reg_accattr, &bgep->io_handle);
3280 if (err != DDI_SUCCESS) {
3281 bge_problem(bgep, "ddi_regs_map_setup() failed");
3282 goto attach_fail;
3283 }
3284 bgep->io_regs = regs;
3285 bgep->progress |= PROGRESS_REGS;
3286
3287 /*
3288 * Characterise the device, so we know its requirements.
3289 * Then allocate the appropriate TX and RX descriptors & buffers.
3290 */
3291 if (bge_chip_id_init(bgep) == EIO) {
3292 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3293 goto attach_fail;
3294 }
3295
3296 err = bge_alloc_bufs(bgep);
3297 if (err != DDI_SUCCESS) {
3298 bge_problem(bgep, "DMA buffer allocation failed");
3299 goto attach_fail;
3300 }
3301 bgep->progress |= PROGRESS_BUFS;
3302
3303 /*
3304 * Add the softint handlers:
3305 *
3306 * Both of these handlers are used to avoid restrictions on the
3307 * context and/or mutexes required for some operations. In
3308 * particular, the hardware interrupt handler and its subfunctions
3309 * can detect a number of conditions that we don't want to handle
3310 * in that context or with that set of mutexes held. So, these
3311 * softints are triggered instead:
3312 *
3313 * the <resched> softint is triggered if we have previously
3314 * had to refuse to send a packet because of resource shortage
3315 * (we've run out of transmit buffers), but the send completion
3316 * interrupt handler has now detected that more buffers have
3317 * become available.
3318 *
3319 * the <factotum> is triggered if the h/w interrupt handler
3320 * sees the <link state changed> or <error> bits in the status
3321 * block. It's also triggered periodically to poll the link
3322 * state, just in case we aren't getting link status change
3323 * interrupts ...
3324 */
3325 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->drain_id,
3326 NULL, NULL, bge_send_drain, (caddr_t)bgep);
3327 if (err != DDI_SUCCESS) {
3328 bge_problem(bgep, "ddi_add_softintr() failed");
3329 goto attach_fail;
3330 }
3331 bgep->progress |= PROGRESS_RESCHED;
3332 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id,
3333 NULL, NULL, bge_chip_factotum, (caddr_t)bgep);
3334 if (err != DDI_SUCCESS) {
3335 bge_problem(bgep, "ddi_add_softintr() failed");
3336 goto attach_fail;
3337 }
3338 bgep->progress |= PROGRESS_FACTOTUM;
3339
3340 /* Get supported interrupt types */
3341 if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {
3342 bge_error(bgep, "ddi_intr_get_supported_types failed\n");
3343
3344 goto attach_fail;
3345 }
3346
3347 BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x",
3348 bgep->ifname, intr_types));
3349
3350 if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) {
3351 if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
3352 bge_error(bgep, "MSI registration failed, "
3353 "trying FIXED interrupt type\n");
3354 } else {
3355 BGE_DEBUG(("%s: Using MSI interrupt type",
3356 bgep->ifname));
3357 bgep->intr_type = DDI_INTR_TYPE_MSI;
3358 bgep->progress |= PROGRESS_HWINT;
3359 }
3360 }
3361
3362 if (!(bgep->progress & PROGRESS_HWINT) &&
3363 (intr_types & DDI_INTR_TYPE_FIXED)) {
3364 if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
3365 bge_error(bgep, "FIXED interrupt "
3366 "registration failed\n");
3367 goto attach_fail;
3368 }
3369
3370 BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname));
3371
3372 bgep->intr_type = DDI_INTR_TYPE_FIXED;
3373 bgep->progress |= PROGRESS_HWINT;
3374 }
3375
3376 if (!(bgep->progress & PROGRESS_HWINT)) {
3377 bge_error(bgep, "No interrupts registered\n");
3378 goto attach_fail;
3379 }
3380
3381 /*
3382 * Note that interrupts are not enabled yet as
3383 * mutex locks are not initialized. Initialize mutex locks.
3384 */
3385 mutex_init(bgep->genlock, NULL, MUTEX_DRIVER,
3386 DDI_INTR_PRI(bgep->intr_pri));
3387 mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER,
3388 DDI_INTR_PRI(bgep->intr_pri));
3389 rw_init(bgep->errlock, NULL, RW_DRIVER,
3390 DDI_INTR_PRI(bgep->intr_pri));
3391
3392 /*
3393 * Initialize rings.
3394 */
3395 bge_init_rings(bgep);
3396
3397 /*
3398 * Now that mutex locks are initialized, enable interrupts.
3399 */
3400 bge_intr_enable(bgep);
3401 bgep->progress |= PROGRESS_INTR;
3402
3403 /*
3404 * Initialise link state variables
3405 * Stop, reset & reinitialise the chip.
3406 * Initialise the (internal) PHY.
3407 */
3408 bgep->link_state = LINK_STATE_UNKNOWN;
3409
3410 mutex_enter(bgep->genlock);
3411
3412 /*
3413 * Reset chip & rings to initial state; also reset address
3414 * filtering, promiscuity, loopback mode.
3415 */
3416 #ifdef BGE_IPMI_ASF
3417 #ifdef BGE_NETCONSOLE
3418 if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
3419 #else
3420 if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) {
3421 #endif
3422 #else
3423 if (bge_reset(bgep) != DDI_SUCCESS) {
3424 #endif
3425 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3426 (void) bge_check_acc_handle(bgep, bgep->io_handle);
3427 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3428 mutex_exit(bgep->genlock);
3429 goto attach_fail;
3430 }
3431
3432 #ifdef BGE_IPMI_ASF
3433 if (bgep->asf_enabled) {
3434 bgep->asf_status = ASF_STAT_RUN_INIT;
3435 }
3436 #endif
3437
3438 bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash));
3439 bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs));
3440 bgep->promisc = B_FALSE;
3441 bgep->param_loop_mode = BGE_LOOP_NONE;
3442 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3443 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3444 mutex_exit(bgep->genlock);
3445 goto attach_fail;
3446 }
3447 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3448 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3449 mutex_exit(bgep->genlock);
3450 goto attach_fail;
3451 }
3452
3453 mutex_exit(bgep->genlock);
3454
3455 if (bge_phys_init(bgep) == EIO) {
3456 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3457 goto attach_fail;
3458 }
3459 bgep->progress |= PROGRESS_PHY;
3460
3461 /*
3462 * initialize NDD-tweakable parameters
3463 */
3464 if (bge_nd_init(bgep)) {
3465 bge_problem(bgep, "bge_nd_init() failed");
3466 goto attach_fail;
3467 }
3468 bgep->progress |= PROGRESS_NDD;
3469
3470 /*
3471 * Create & initialise named kstats
3472 */
3473 bge_init_kstats(bgep, instance);
3474 bgep->progress |= PROGRESS_KSTATS;
3475
3476 /*
3477 * Determine whether to override the chip's own MAC address
3478 */
3479 bge_find_mac_address(bgep, cidp);
3480
3481 bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX;
3482 bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX;
3483
3484 if ((macp = mac_alloc(MAC_VERSION)) == NULL)
3485 goto attach_fail;
3486 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
3487 macp->m_driver = bgep;
3488 macp->m_dip = devinfo;
3489 macp->m_src_addr = cidp->vendor_addr.addr;
3490 macp->m_callbacks = &bge_m_callbacks;
3491 macp->m_min_sdu = 0;
3492 macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header);
3493 macp->m_margin = VLAN_TAGSZ;
3494 macp->m_priv_props = bge_priv_prop;
3495 macp->m_v12n = MAC_VIRT_LEVEL1;
3496
3497 /*
3498 * Finally, we're ready to register ourselves with the MAC layer
3499 * interface; if this succeeds, we're all ready to start()
3500 */
3501 err = mac_register(macp, &bgep->mh);
3502 mac_free(macp);
3503 if (err != 0)
3504 goto attach_fail;
3505
3506 mac_link_update(bgep->mh, LINK_STATE_UNKNOWN);
3507
3508 /*
3509 * Register a periodical handler.
3510 * bge_chip_cyclic() is invoked in kernel context.
3511 */
3512 bgep->periodic_id = ddi_periodic_add(bge_chip_cyclic, bgep,
3513 BGE_CYCLIC_PERIOD, DDI_IPL_0);
3514
3515 bgep->progress |= PROGRESS_READY;
3516 ASSERT(bgep->bge_guard == BGE_GUARD);
3517 #ifdef BGE_IPMI_ASF
3518 #ifdef BGE_NETCONSOLE
3519 if (bgep->asf_enabled) {
3520 mutex_enter(bgep->genlock);
3521 retval = bge_chip_start(bgep, B_TRUE);
3522 mutex_exit(bgep->genlock);
3523 if (retval != DDI_SUCCESS)
3524 goto attach_fail;
3525 }
3526 #endif
3527 #endif
3528
3529 ddi_report_dev(devinfo);
3530
3531 return (DDI_SUCCESS);
3532
3533 attach_fail:
3534 #ifdef BGE_IPMI_ASF
3535 bge_unattach(bgep, ASF_MODE_SHUTDOWN);
3536 #else
3537 bge_unattach(bgep);
3538 #endif
3539 return (DDI_FAILURE);
3540 }
3541
3542 /*
3543 * bge_suspend() -- suspend transmit/receive for powerdown
3544 */
3545 static int
3546 bge_suspend(bge_t *bgep)
3547 {
3548 /*
3549 * Stop processing and idle (powerdown) the PHY ...
3550 */
3551 mutex_enter(bgep->genlock);
3552 #ifdef BGE_IPMI_ASF
3553 /*
3554 * Power management hasn't been supported in BGE now. If you
3555 * want to implement it, please add the ASF/IPMI related
3556 * code here.
3557 */
3558 #endif
3559 bge_stop(bgep);
3560 if (bge_phys_idle(bgep) != DDI_SUCCESS) {
3561 (void) bge_check_acc_handle(bgep, bgep->io_handle);
3562 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3563 mutex_exit(bgep->genlock);
3564 return (DDI_FAILURE);
3565 }
3566 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3567 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3568 mutex_exit(bgep->genlock);
3569 return (DDI_FAILURE);
3570 }
3571 mutex_exit(bgep->genlock);
3572
3573 return (DDI_SUCCESS);
3574 }
3575
3576 /*
3577 * quiesce(9E) entry point.
3578 *
3579 * This function is called when the system is single-threaded at high
3580 * PIL with preemption disabled. Therefore, this function must not be
3581 * blocked.
3582 *
3583 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
3584 * DDI_FAILURE indicates an error condition and should almost never happen.
3585 */
3586 #ifdef __sparc
3587 #define bge_quiesce ddi_quiesce_not_supported
3588 #else
3589 static int
3590 bge_quiesce(dev_info_t *devinfo)
3591 {
3592 bge_t *bgep = ddi_get_driver_private(devinfo);
3593
3594 if (bgep == NULL)
3595 return (DDI_FAILURE);
3596
3597 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3598 bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
3599 MHCR_MASK_PCI_INT_OUTPUT);
3600 } else {
3601 bge_reg_clr32(bgep, MSI_MODE_REG, MSI_MSI_ENABLE);
3602 }
3603
3604 /* Stop the chip */
3605 bge_chip_stop_nonblocking(bgep);
3606
3607 return (DDI_SUCCESS);
3608 }
3609 #endif
3610
3611 /*
3612 * detach(9E) -- Detach a device from the system
3613 */
3614 static int
3615 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3616 {
3617 bge_t *bgep;
3618 #ifdef BGE_IPMI_ASF
3619 uint_t asf_mode;
3620 asf_mode = ASF_MODE_NONE;
3621 #endif
3622
3623 BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd));
3624
3625 bgep = ddi_get_driver_private(devinfo);
3626
3627 switch (cmd) {
3628 default:
3629 return (DDI_FAILURE);
3630
3631 case DDI_SUSPEND:
3632 return (bge_suspend(bgep));
3633
3634 case DDI_DETACH:
3635 break;
3636 }
3637
3638 #ifdef BGE_IPMI_ASF
3639 mutex_enter(bgep->genlock);
3640 if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) ||
3641 (bgep->asf_status == ASF_STAT_RUN_INIT))) {
3642
3643 bge_asf_update_status(bgep);
3644 if (bgep->asf_status == ASF_STAT_RUN) {
3645 bge_asf_stop_timer(bgep);
3646 }
3647 bgep->asf_status = ASF_STAT_STOP;
3648
3649 bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3650
3651 if (bgep->asf_pseudostop) {
3652 bge_chip_stop(bgep, B_FALSE);
3653 bgep->bge_mac_state = BGE_MAC_STOPPED;
3654 bgep->asf_pseudostop = B_FALSE;
3655 }
3656
3657 asf_mode = ASF_MODE_POST_SHUTDOWN;
3658
3659 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
3660 ddi_fm_service_impact(bgep->devinfo,
3661 DDI_SERVICE_UNAFFECTED);
3662 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3663 ddi_fm_service_impact(bgep->devinfo,
3664 DDI_SERVICE_UNAFFECTED);
3665 }
3666 mutex_exit(bgep->genlock);
3667 #endif
3668
3669 /*
3670 * Unregister from the GLD subsystem. This can fail, in
3671 * particular if there are DLPI style-2 streams still open -
3672 * in which case we just return failure without shutting
3673 * down chip operations.
3674 */
3675 if (mac_unregister(bgep->mh) != 0)
3676 return (DDI_FAILURE);
3677
3678 /*
3679 * All activity stopped, so we can clean up & exit
3680 */
3681 #ifdef BGE_IPMI_ASF
3682 bge_unattach(bgep, asf_mode);
3683 #else
3684 bge_unattach(bgep);
3685 #endif
3686 return (DDI_SUCCESS);
3687 }
3688
3689
3690 /*
3691 * ========== Module Loading Data & Entry Points ==========
3692 */
3693
3694 #undef BGE_DBG
3695 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */
3696
3697 DDI_DEFINE_STREAM_OPS(bge_dev_ops,
3698 nulldev, /* identify */
3699 nulldev, /* probe */
3700 bge_attach, /* attach */
3701 bge_detach, /* detach */
3702 nodev, /* reset */
3703 NULL, /* cb_ops */
3704 D_MP, /* bus_ops */
3705 NULL, /* power */
3706 bge_quiesce /* quiesce */
3707 );
3708
3709 static struct modldrv bge_modldrv = {
3710 &mod_driverops, /* Type of module. This one is a driver */
3711 bge_ident, /* short description */
3712 &bge_dev_ops /* driver specific ops */
3713 };
3714
3715 static struct modlinkage modlinkage = {
3716 MODREV_1, (void *)&bge_modldrv, NULL
3717 };
3718
3719
3720 int
3721 _info(struct modinfo *modinfop)
3722 {
3723 return (mod_info(&modlinkage, modinfop));
3724 }
3725
3726 int
3727 _init(void)
3728 {
3729 int status;
3730
3731 mac_init_ops(&bge_dev_ops, "bge");
3732 status = mod_install(&modlinkage);
3733 if (status == DDI_SUCCESS)
3734 mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL);
3735 else
3736 mac_fini_ops(&bge_dev_ops);
3737 return (status);
3738 }
3739
3740 int
3741 _fini(void)
3742 {
3743 int status;
3744
3745 status = mod_remove(&modlinkage);
3746 if (status == DDI_SUCCESS) {
3747 mac_fini_ops(&bge_dev_ops);
3748 mutex_destroy(bge_log_mutex);
3749 }
3750 return (status);
3751 }
3752
3753
3754 /*
3755 * bge_add_intrs:
3756 *
3757 * Register FIXED or MSI interrupts.
3758 */
3759 static int
3760 bge_add_intrs(bge_t *bgep, int intr_type)
3761 {
3762 dev_info_t *dip = bgep->devinfo;
3763 int avail, actual, intr_size, count = 0;
3764 int i, flag, ret;
3765
3766 BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type));
3767
3768 /* Get number of interrupts */
3769 ret = ddi_intr_get_nintrs(dip, intr_type, &count);
3770 if ((ret != DDI_SUCCESS) || (count == 0)) {
3771 bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, "
3772 "count: %d", ret, count);
3773
3774 return (DDI_FAILURE);
3775 }
3776
3777 /* Get number of available interrupts */
3778 ret = ddi_intr_get_navail(dip, intr_type, &avail);
3779 if ((ret != DDI_SUCCESS) || (avail == 0)) {
3780 bge_error(bgep, "ddi_intr_get_navail() failure, "
3781 "ret: %d, avail: %d\n", ret, avail);
3782
3783 return (DDI_FAILURE);
3784 }
3785
3786 if (avail < count) {
3787 BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d",
3788 bgep->ifname, count, avail));
3789 }
3790
3791 /*
3792 * BGE hardware generates only single MSI even though it claims
3793 * to support multiple MSIs. So, hard code MSI count value to 1.
3794 */
3795 if (intr_type == DDI_INTR_TYPE_MSI) {
3796 count = 1;
3797 flag = DDI_INTR_ALLOC_STRICT;
3798 } else {
3799 flag = DDI_INTR_ALLOC_NORMAL;
3800 }
3801
3802 /* Allocate an array of interrupt handles */
3803 intr_size = count * sizeof (ddi_intr_handle_t);
3804 bgep->htable = kmem_alloc(intr_size, KM_SLEEP);
3805
3806 /* Call ddi_intr_alloc() */
3807 ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0,
3808 count, &actual, flag);
3809
3810 if ((ret != DDI_SUCCESS) || (actual == 0)) {
3811 bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret);
3812
3813 kmem_free(bgep->htable, intr_size);
3814 return (DDI_FAILURE);
3815 }
3816
3817 if (actual < count) {
3818 BGE_DEBUG(("%s: Requested: %d, Received: %d",
3819 bgep->ifname, count, actual));
3820 }
3821
3822 bgep->intr_cnt = actual;
3823
3824 /*
3825 * Get priority for first msi, assume remaining are all the same
3826 */
3827 if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) !=
3828 DDI_SUCCESS) {
3829 bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret);
3830
3831 /* Free already allocated intr */
3832 for (i = 0; i < actual; i++) {
3833 (void) ddi_intr_free(bgep->htable[i]);
3834 }
3835
3836 kmem_free(bgep->htable, intr_size);
3837 return (DDI_FAILURE);
3838 }
3839
3840 /* Call ddi_intr_add_handler() */
3841 for (i = 0; i < actual; i++) {
3842 if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr,
3843 (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
3844 bge_error(bgep, "ddi_intr_add_handler() "
3845 "failed %d\n", ret);
3846
3847 /* Free already allocated intr */
3848 for (i = 0; i < actual; i++) {
3849 (void) ddi_intr_free(bgep->htable[i]);
3850 }
3851
3852 kmem_free(bgep->htable, intr_size);
3853 return (DDI_FAILURE);
3854 }
3855 }
3856
3857 if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap))
3858 != DDI_SUCCESS) {
3859 bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret);
3860
3861 for (i = 0; i < actual; i++) {
3862 (void) ddi_intr_remove_handler(bgep->htable[i]);
3863 (void) ddi_intr_free(bgep->htable[i]);
3864 }
3865
3866 kmem_free(bgep->htable, intr_size);
3867 return (DDI_FAILURE);
3868 }
3869
3870 return (DDI_SUCCESS);
3871 }
3872
3873 /*
3874 * bge_rem_intrs:
3875 *
3876 * Unregister FIXED or MSI interrupts
3877 */
3878 static void
3879 bge_rem_intrs(bge_t *bgep)
3880 {
3881 int i;
3882
3883 BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep));
3884
3885 /* Call ddi_intr_remove_handler() */
3886 for (i = 0; i < bgep->intr_cnt; i++) {
3887 (void) ddi_intr_remove_handler(bgep->htable[i]);
3888 (void) ddi_intr_free(bgep->htable[i]);
3889 }
3890
3891 kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t));
3892 }
3893
3894
3895 void
3896 bge_intr_enable(bge_t *bgep)
3897 {
3898 int i;
3899
3900 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3901 /* Call ddi_intr_block_enable() for MSI interrupts */
3902 (void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt);
3903 } else {
3904 /* Call ddi_intr_enable for MSI or FIXED interrupts */
3905 for (i = 0; i < bgep->intr_cnt; i++) {
3906 (void) ddi_intr_enable(bgep->htable[i]);
3907 }
3908 }
3909 }
3910
3911
3912 void
3913 bge_intr_disable(bge_t *bgep)
3914 {
3915 int i;
3916
3917 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3918 /* Call ddi_intr_block_disable() */
3919 (void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt);
3920 } else {
3921 for (i = 0; i < bgep->intr_cnt; i++) {
3922 (void) ddi_intr_disable(bgep->htable[i]);
3923 }
3924 }
3925 }
3926
3927 int
3928 bge_reprogram(bge_t *bgep)
3929 {
3930 int status = 0;
3931
3932 ASSERT(mutex_owned(bgep->genlock));
3933
3934 if (bge_phys_update(bgep) != DDI_SUCCESS) {
3935 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3936 status = IOC_INVAL;
3937 }
3938 #ifdef BGE_IPMI_ASF
3939 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
3940 #else
3941 if (bge_chip_sync(bgep) == DDI_FAILURE) {
3942 #endif
3943 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3944 status = IOC_INVAL;
3945 }
3946 if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3947 bge_chip_msi_trig(bgep);
3948 return (status);
3949 }
3950