1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to scf.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Async/Passes.h" 14 15 #include "PassDetail.h" 16 #include "mlir/Dialect/Arith/IR/Arith.h" 17 #include "mlir/Dialect/Async/IR/Async.h" 18 #include "mlir/Dialect/Async/Transforms.h" 19 #include "mlir/Dialect/Func/IR/FuncOps.h" 20 #include "mlir/Dialect/SCF/IR/SCF.h" 21 #include "mlir/IR/IRMapping.h" 22 #include "mlir/IR/ImplicitLocOpBuilder.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/PatternMatch.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27 #include "mlir/Transforms/RegionUtils.h" 28 #include <utility> 29 30 namespace mlir { 31 #define GEN_PASS_DEF_ASYNCPARALLELFOR 32 #include "mlir/Dialect/Async/Passes.h.inc" 33 } // namespace mlir 34 35 using namespace mlir; 36 using namespace mlir::async; 37 38 #define DEBUG_TYPE "async-parallel-for" 39 40 namespace { 41 42 // Rewrite scf.parallel operation into multiple concurrent async.execute 43 // operations over non overlapping subranges of the original loop. 44 // 45 // Example: 46 // 47 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 48 // "do_some_compute"(%i, %j): () -> () 49 // } 50 // 51 // Converted to: 52 // 53 // // Parallel compute function that executes the parallel body region for 54 // // a subset of the parallel iteration space defined by the one-dimensional 55 // // compute block index. 56 // func parallel_compute_function(%block_index : index, %block_size : index, 57 // <parallel operation properties>, ...) { 58 // // Compute multi-dimensional loop bounds for %block_index. 59 // %block_lbi, %block_lbj = ... 60 // %block_ubi, %block_ubj = ... 61 // 62 // // Clone parallel operation body into the scf.for loop nest. 63 // scf.for %i = %blockLbi to %blockUbi { 64 // scf.for %j = block_lbj to %block_ubj { 65 // "do_some_compute"(%i, %j): () -> () 66 // } 67 // } 68 // } 69 // 70 // And a dispatch function depending on the `asyncDispatch` option. 71 // 72 // When async dispatch is on: (pseudocode) 73 // 74 // %block_size = ... compute parallel compute block size 75 // %block_count = ... compute the number of compute blocks 76 // 77 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 78 // // Keep splitting block range until we reached a range of size 1. 79 // while (%block_end - %block_start > 1) { 80 // %mid_index = block_start + (block_end - block_start) / 2; 81 // async.execute { call @async_dispatch(%mid_index, %block_end); } 82 // %block_end = %mid_index 83 // } 84 // 85 // // Call parallel compute function for a single block. 86 // call @parallel_compute_fn(%block_start, %block_size, ...); 87 // } 88 // 89 // // Launch async dispatch for [0, block_count) range. 90 // call @async_dispatch(%c0, %block_count); 91 // 92 // When async dispatch is off: 93 // 94 // %block_size = ... compute parallel compute block size 95 // %block_count = ... compute the number of compute blocks 96 // 97 // scf.for %block_index = %c0 to %block_count { 98 // call @parallel_compute_fn(%block_index, %block_size, ...) 99 // } 100 // 101 struct AsyncParallelForPass 102 : public impl::AsyncParallelForBase<AsyncParallelForPass> { 103 AsyncParallelForPass() = default; 104 105 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 106 int32_t minTaskSize) { 107 this->asyncDispatch = asyncDispatch; 108 this->numWorkerThreads = numWorkerThreads; 109 this->minTaskSize = minTaskSize; 110 } 111 112 void runOnOperation() override; 113 }; 114 115 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 116 public: 117 AsyncParallelForRewrite( 118 MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads, 119 AsyncMinTaskSizeComputationFunction computeMinTaskSize) 120 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 121 numWorkerThreads(numWorkerThreads), 122 computeMinTaskSize(std::move(computeMinTaskSize)) {} 123 124 LogicalResult matchAndRewrite(scf::ParallelOp op, 125 PatternRewriter &rewriter) const override; 126 127 private: 128 bool asyncDispatch; 129 int32_t numWorkerThreads; 130 AsyncMinTaskSizeComputationFunction computeMinTaskSize; 131 }; 132 133 struct ParallelComputeFunctionType { 134 FunctionType type; 135 SmallVector<Value> captures; 136 }; 137 138 // Helper struct to parse parallel compute function argument list. 139 struct ParallelComputeFunctionArgs { 140 BlockArgument blockIndex(); 141 BlockArgument blockSize(); 142 ArrayRef<BlockArgument> tripCounts(); 143 ArrayRef<BlockArgument> lowerBounds(); 144 ArrayRef<BlockArgument> steps(); 145 ArrayRef<BlockArgument> captures(); 146 147 unsigned numLoops; 148 ArrayRef<BlockArgument> args; 149 }; 150 151 struct ParallelComputeFunctionBounds { 152 SmallVector<IntegerAttr> tripCounts; 153 SmallVector<IntegerAttr> lowerBounds; 154 SmallVector<IntegerAttr> upperBounds; 155 SmallVector<IntegerAttr> steps; 156 }; 157 158 struct ParallelComputeFunction { 159 unsigned numLoops; 160 func::FuncOp func; 161 llvm::SmallVector<Value> captures; 162 }; 163 164 } // namespace 165 166 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } 167 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } 168 169 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { 170 return args.drop_front(2).take_front(numLoops); 171 } 172 173 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { 174 return args.drop_front(2 + 1 * numLoops).take_front(numLoops); 175 } 176 177 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { 178 return args.drop_front(2 + 3 * numLoops).take_front(numLoops); 179 } 180 181 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { 182 return args.drop_front(2 + 4 * numLoops); 183 } 184 185 template <typename ValueRange> 186 static SmallVector<IntegerAttr> integerConstants(ValueRange values) { 187 SmallVector<IntegerAttr> attrs(values.size()); 188 for (unsigned i = 0; i < values.size(); ++i) 189 matchPattern(values[i], m_Constant(&attrs[i])); 190 return attrs; 191 } 192 193 // Converts one-dimensional iteration index in the [0, tripCount) interval 194 // into multidimensional iteration coordinate. 195 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 196 ArrayRef<Value> tripCounts) { 197 SmallVector<Value> coords(tripCounts.size()); 198 assert(!tripCounts.empty() && "tripCounts must be not empty"); 199 200 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 201 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 202 index = b.create<arith::DivSIOp>(index, tripCounts[i]); 203 } 204 205 return coords; 206 } 207 208 // Returns a function type and implicit captures for a parallel compute 209 // function. We'll need a list of implicit captures to setup block and value 210 // mapping when we'll clone the body of the parallel operation. 211 static ParallelComputeFunctionType 212 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 213 // Values implicitly captured by the parallel operation. 214 llvm::SetVector<Value> captures; 215 getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures); 216 217 SmallVector<Type> inputs; 218 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 219 220 Type indexTy = rewriter.getIndexType(); 221 222 // One-dimensional iteration space defined by the block index and size. 223 inputs.push_back(indexTy); // blockIndex 224 inputs.push_back(indexTy); // blockSize 225 226 // Multi-dimensional parallel iteration space defined by the loop trip counts. 227 for (unsigned i = 0; i < op.getNumLoops(); ++i) 228 inputs.push_back(indexTy); // loop tripCount 229 230 // Parallel operation lower bound, upper bound and step. Lower bound, upper 231 // bound and step passed as contiguous arguments: 232 // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) 233 for (unsigned i = 0; i < op.getNumLoops(); ++i) { 234 inputs.push_back(indexTy); // lower bound 235 inputs.push_back(indexTy); // upper bound 236 inputs.push_back(indexTy); // step 237 } 238 239 // Types of the implicit captures. 240 for (Value capture : captures) 241 inputs.push_back(capture.getType()); 242 243 // Convert captures to vector for later convenience. 244 SmallVector<Value> capturesVector(captures.begin(), captures.end()); 245 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 246 } 247 248 // Create a parallel compute fuction from the parallel operation. 249 static ParallelComputeFunction createParallelComputeFunction( 250 scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds, 251 unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) { 252 OpBuilder::InsertionGuard guard(rewriter); 253 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 254 255 ModuleOp module = op->getParentOfType<ModuleOp>(); 256 257 ParallelComputeFunctionType computeFuncType = 258 getParallelComputeFunctionType(op, rewriter); 259 260 FunctionType type = computeFuncType.type; 261 func::FuncOp func = func::FuncOp::create( 262 op.getLoc(), 263 numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops" 264 : "parallel_compute_fn", 265 type); 266 func.setPrivate(); 267 268 // Insert function into the module symbol table and assign it unique name. 269 SymbolTable symbolTable(module); 270 symbolTable.insert(func); 271 rewriter.getListener()->notifyOperationInserted(func, /*previous=*/{}); 272 273 // Create function entry block. 274 Block *block = 275 b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 276 SmallVector<Location>(type.getNumInputs(), op.getLoc())); 277 b.setInsertionPointToEnd(block); 278 279 ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; 280 281 // Block iteration position defined by the block index and size. 282 BlockArgument blockIndex = args.blockIndex(); 283 BlockArgument blockSize = args.blockSize(); 284 285 // Constants used below. 286 Value c0 = b.create<arith::ConstantIndexOp>(0); 287 Value c1 = b.create<arith::ConstantIndexOp>(1); 288 289 // Materialize known constants as constant operation in the function body. 290 auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { 291 return llvm::to_vector( 292 llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value { 293 if (IntegerAttr attr = std::get<1>(tuple)) 294 return b.create<arith::ConstantOp>(attr); 295 return std::get<0>(tuple); 296 })); 297 }; 298 299 // Multi-dimensional parallel iteration space defined by the loop trip counts. 300 auto tripCounts = values(args.tripCounts(), bounds.tripCounts); 301 302 // Parallel operation lower bound and step. 303 auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); 304 auto steps = values(args.steps(), bounds.steps); 305 306 // Remaining arguments are implicit captures of the parallel operation. 307 ArrayRef<BlockArgument> captures = args.captures(); 308 309 // Compute a product of trip counts to get the size of the flattened 310 // one-dimensional iteration space. 311 Value tripCount = tripCounts[0]; 312 for (unsigned i = 1; i < tripCounts.size(); ++i) 313 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 314 315 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 316 // blockFirstIndex = blockIndex * blockSize 317 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 318 319 // The last one-dimensional index in the block defined by the `blockIndex`: 320 // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 321 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 322 Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 323 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 324 325 // Convert one-dimensional indices to multi-dimensional coordinates. 326 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 327 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 328 329 // Compute loops upper bounds derived from the block last coordinates: 330 // blockEndCoord[i] = blockLastCoord[i] + 1 331 // 332 // Block first and last coordinates can be the same along the outer compute 333 // dimension when inner compute dimension contains multiple blocks. 334 SmallVector<Value> blockEndCoord(op.getNumLoops()); 335 for (size_t i = 0; i < blockLastCoord.size(); ++i) 336 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 337 338 // Construct a loop nest out of scf.for operations that will iterate over 339 // all coordinates in [blockFirstCoord, blockLastCoord] range. 340 using LoopBodyBuilder = 341 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 342 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 343 344 // Parallel region induction variables computed from the multi-dimensional 345 // iteration coordinate using parallel operation bounds and step: 346 // 347 // computeBlockInductionVars[loopIdx] = 348 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] 349 SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 350 351 // We need to know if we are in the first or last iteration of the 352 // multi-dimensional loop for each loop in the nest, so we can decide what 353 // loop bounds should we use for the nested loops: bounds defined by compute 354 // block interval, or bounds defined by the parallel operation. 355 // 356 // Example: 2d parallel operation 357 // i j 358 // loop sizes: [50, 50] 359 // first coord: [25, 25] 360 // last coord: [30, 30] 361 // 362 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 363 // is between 25 and 30 it should start at 0. The upper bound for `j` should 364 // be 50, except when `i` is equal to 30, then it should also be 30. 365 // 366 // Value at ith position specifies if all loops in [0, i) range of the loop 367 // nest are in the first/last iteration. 368 SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 369 SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 370 371 // Builds inner loop nest inside async.execute operation that does all the 372 // work concurrently. 373 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 374 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 375 ValueRange args) { 376 ImplicitLocOpBuilder b(loc, nestedBuilder); 377 378 // Compute induction variable for `loopIdx`. 379 computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>( 380 lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx])); 381 382 // Check if we are inside first or last iteration of the loop. 383 isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>( 384 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 385 isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>( 386 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 387 388 // Check if the previous loop is in its first or last iteration. 389 if (loopIdx > 0) { 390 isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>( 391 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 392 isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>( 393 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 394 } 395 396 // Keep building loop nest. 397 if (loopIdx < op.getNumLoops() - 1) { 398 if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) { 399 // For block aligned loops we always iterate starting from 0 up to 400 // the loop trip counts. 401 b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(), 402 workLoopBuilder(loopIdx + 1)); 403 404 } else { 405 // Select nested loop lower/upper bounds depending on our position in 406 // the multi-dimensional iteration space. 407 auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx], 408 blockFirstCoord[loopIdx + 1], c0); 409 410 auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx], 411 blockEndCoord[loopIdx + 1], 412 tripCounts[loopIdx + 1]); 413 414 b.create<scf::ForOp>(lb, ub, c1, ValueRange(), 415 workLoopBuilder(loopIdx + 1)); 416 } 417 418 b.create<scf::YieldOp>(loc); 419 return; 420 } 421 422 // Copy the body of the parallel op into the inner-most loop. 423 IRMapping mapping; 424 mapping.map(op.getInductionVars(), computeBlockInductionVars); 425 mapping.map(computeFuncType.captures, captures); 426 427 for (auto &bodyOp : op.getRegion().front().without_terminator()) 428 b.clone(bodyOp, mapping); 429 b.create<scf::YieldOp>(loc); 430 }; 431 }; 432 433 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 434 workLoopBuilder(0)); 435 b.create<func::ReturnOp>(ValueRange()); 436 437 return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; 438 } 439 440 // Creates recursive async dispatch function for the given parallel compute 441 // function. Dispatch function keeps splitting block range into halves until it 442 // reaches a single block, and then excecutes it inline. 443 // 444 // Function pseudocode (mix of C++ and MLIR): 445 // 446 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 447 // 448 // // Keep splitting block range until we reached a range of size 1. 449 // while (%block_end - %block_start > 1) { 450 // %mid_index = block_start + (block_end - block_start) / 2; 451 // async.execute { call @async_dispatch(%mid_index, %block_end); } 452 // %block_end = %mid_index 453 // } 454 // 455 // // Call parallel compute function for a single block. 456 // call @parallel_compute_fn(%block_start, %block_size, ...); 457 // } 458 // 459 static func::FuncOp 460 createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 461 PatternRewriter &rewriter) { 462 OpBuilder::InsertionGuard guard(rewriter); 463 Location loc = computeFunc.func.getLoc(); 464 ImplicitLocOpBuilder b(loc, rewriter); 465 466 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 467 468 ArrayRef<Type> computeFuncInputTypes = 469 computeFunc.func.getFunctionType().getInputs(); 470 471 // Compared to the parallel compute function async dispatch function takes 472 // additional !async.group argument. Also instead of a single `blockIndex` it 473 // takes `blockStart` and `blockEnd` arguments to define the range of 474 // dispatched blocks. 475 SmallVector<Type> inputTypes; 476 inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 477 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 478 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 479 480 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 481 func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn", type); 482 func.setPrivate(); 483 484 // Insert function into the module symbol table and assign it unique name. 485 SymbolTable symbolTable(module); 486 symbolTable.insert(func); 487 rewriter.getListener()->notifyOperationInserted(func, /*previous=*/{}); 488 489 // Create function entry block. 490 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 491 SmallVector<Location>(type.getNumInputs(), loc)); 492 b.setInsertionPointToEnd(block); 493 494 Type indexTy = b.getIndexType(); 495 Value c1 = b.create<arith::ConstantIndexOp>(1); 496 Value c2 = b.create<arith::ConstantIndexOp>(2); 497 498 // Get the async group that will track async dispatch completion. 499 Value group = block->getArgument(0); 500 501 // Get the block iteration range: [blockStart, blockEnd) 502 Value blockStart = block->getArgument(1); 503 Value blockEnd = block->getArgument(2); 504 505 // Create a work splitting while loop for the [blockStart, blockEnd) range. 506 SmallVector<Type> types = {indexTy, indexTy}; 507 SmallVector<Value> operands = {blockStart, blockEnd}; 508 SmallVector<Location> locations = {loc, loc}; 509 510 // Create a recursive dispatch loop. 511 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 512 Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations); 513 Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations); 514 515 // Setup dispatch loop condition block: decide if we need to go into the 516 // `after` block and launch one more async dispatch. 517 { 518 b.setInsertionPointToEnd(before); 519 Value start = before->getArgument(0); 520 Value end = before->getArgument(1); 521 Value distance = b.create<arith::SubIOp>(end, start); 522 Value dispatch = 523 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 524 b.create<scf::ConditionOp>(dispatch, before->getArguments()); 525 } 526 527 // Setup the async dispatch loop body: recursively call dispatch function 528 // for the seconds half of the original range and go to the next iteration. 529 { 530 b.setInsertionPointToEnd(after); 531 Value start = after->getArgument(0); 532 Value end = after->getArgument(1); 533 Value distance = b.create<arith::SubIOp>(end, start); 534 Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 535 Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 536 537 // Call parallel compute function inside the async.execute region. 538 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 539 Location executeLoc, ValueRange executeArgs) { 540 // Update the original `blockStart` and `blockEnd` with new range. 541 SmallVector<Value> operands{block->getArguments().begin(), 542 block->getArguments().end()}; 543 operands[1] = midIndex; 544 operands[2] = end; 545 546 executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(), 547 func.getResultTypes(), operands); 548 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 549 }; 550 551 // Create async.execute operation to dispatch half of the block range. 552 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 553 executeBodyBuilder); 554 b.create<AddToGroupOp>(indexTy, execute.getToken(), group); 555 b.create<scf::YieldOp>(ValueRange({start, midIndex})); 556 } 557 558 // After dispatching async operations to process the tail of the block range 559 // call the parallel compute function for the first block of the range. 560 b.setInsertionPointAfter(whileOp); 561 562 // Drop async dispatch specific arguments: async group, block start and end. 563 auto forwardedInputs = block->getArguments().drop_front(3); 564 SmallVector<Value> computeFuncOperands = {blockStart}; 565 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 566 567 b.create<func::CallOp>(computeFunc.func.getSymName(), 568 computeFunc.func.getResultTypes(), 569 computeFuncOperands); 570 b.create<func::ReturnOp>(ValueRange()); 571 572 return func; 573 } 574 575 // Launch async dispatch of the parallel compute function. 576 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 577 ParallelComputeFunction ¶llelComputeFunction, 578 scf::ParallelOp op, Value blockSize, 579 Value blockCount, 580 const SmallVector<Value> &tripCounts) { 581 MLIRContext *ctx = op->getContext(); 582 583 // Add one more level of indirection to dispatch parallel compute functions 584 // using async operations and recursive work splitting. 585 func::FuncOp asyncDispatchFunction = 586 createAsyncDispatchFunction(parallelComputeFunction, rewriter); 587 588 Value c0 = b.create<arith::ConstantIndexOp>(0); 589 Value c1 = b.create<arith::ConstantIndexOp>(1); 590 591 // Appends operands shared by async dispatch and parallel compute functions to 592 // the given operands vector. 593 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 594 operands.append(tripCounts); 595 operands.append(op.getLowerBound().begin(), op.getLowerBound().end()); 596 operands.append(op.getUpperBound().begin(), op.getUpperBound().end()); 597 operands.append(op.getStep().begin(), op.getStep().end()); 598 operands.append(parallelComputeFunction.captures); 599 }; 600 601 // Check if the block size is one, in this case we can skip the async dispatch 602 // completely. If this will be known statically, then canonicalization will 603 // erase async group operations. 604 Value isSingleBlock = 605 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 606 607 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 608 ImplicitLocOpBuilder b(loc, nestedBuilder); 609 610 // Call parallel compute function for the single block. 611 SmallVector<Value> operands = {c0, blockSize}; 612 appendBlockComputeOperands(operands); 613 614 b.create<func::CallOp>(parallelComputeFunction.func.getSymName(), 615 parallelComputeFunction.func.getResultTypes(), 616 operands); 617 b.create<scf::YieldOp>(); 618 }; 619 620 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 621 ImplicitLocOpBuilder b(loc, nestedBuilder); 622 623 // Create an async.group to wait on all async tokens from the concurrent 624 // execution of multiple parallel compute function. First block will be 625 // executed synchronously in the caller thread. 626 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 627 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 628 629 // Launch async dispatch function for [0, blockCount) range. 630 SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 631 appendBlockComputeOperands(operands); 632 633 b.create<func::CallOp>(asyncDispatchFunction.getSymName(), 634 asyncDispatchFunction.getResultTypes(), operands); 635 636 // Wait for the completion of all parallel compute operations. 637 b.create<AwaitAllOp>(group); 638 639 b.create<scf::YieldOp>(); 640 }; 641 642 // Dispatch either single block compute function, or launch async dispatch. 643 b.create<scf::IfOp>(isSingleBlock, syncDispatch, asyncDispatch); 644 } 645 646 // Dispatch parallel compute functions by submitting all async compute tasks 647 // from a simple for loop in the caller thread. 648 static void 649 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 650 ParallelComputeFunction ¶llelComputeFunction, 651 scf::ParallelOp op, Value blockSize, Value blockCount, 652 const SmallVector<Value> &tripCounts) { 653 MLIRContext *ctx = op->getContext(); 654 655 func::FuncOp compute = parallelComputeFunction.func; 656 657 Value c0 = b.create<arith::ConstantIndexOp>(0); 658 Value c1 = b.create<arith::ConstantIndexOp>(1); 659 660 // Create an async.group to wait on all async tokens from the concurrent 661 // execution of multiple parallel compute function. First block will be 662 // executed synchronously in the caller thread. 663 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 664 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 665 666 // Call parallel compute function for all blocks. 667 using LoopBodyBuilder = 668 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 669 670 // Returns parallel compute function operands to process the given block. 671 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 672 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 673 computeFuncOperands.append(tripCounts); 674 computeFuncOperands.append(op.getLowerBound().begin(), 675 op.getLowerBound().end()); 676 computeFuncOperands.append(op.getUpperBound().begin(), 677 op.getUpperBound().end()); 678 computeFuncOperands.append(op.getStep().begin(), op.getStep().end()); 679 computeFuncOperands.append(parallelComputeFunction.captures); 680 return computeFuncOperands; 681 }; 682 683 // Induction variable is the index of the block: [0, blockCount). 684 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 685 Value iv, ValueRange args) { 686 ImplicitLocOpBuilder b(loc, loopBuilder); 687 688 // Call parallel compute function inside the async.execute region. 689 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 690 Location executeLoc, ValueRange executeArgs) { 691 executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(), 692 compute.getResultTypes(), 693 computeFuncOperands(iv)); 694 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 695 }; 696 697 // Create async.execute operation to launch parallel computate function. 698 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 699 executeBodyBuilder); 700 b.create<AddToGroupOp>(rewriter.getIndexType(), execute.getToken(), group); 701 b.create<scf::YieldOp>(); 702 }; 703 704 // Iterate over all compute blocks and launch parallel compute operations. 705 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 706 707 // Call parallel compute function for the first block in the caller thread. 708 b.create<func::CallOp>(compute.getSymName(), compute.getResultTypes(), 709 computeFuncOperands(c0)); 710 711 // Wait for the completion of all async compute operations. 712 b.create<AwaitAllOp>(group); 713 } 714 715 LogicalResult 716 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 717 PatternRewriter &rewriter) const { 718 // We do not currently support rewrite for parallel op with reductions. 719 if (op.getNumReductions() != 0) 720 return failure(); 721 722 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 723 724 // Computing minTaskSize emits IR and can be implemented as executing a cost 725 // model on the body of the scf.parallel. Thus it needs to be computed before 726 // the body of the scf.parallel has been manipulated. 727 Value minTaskSize = computeMinTaskSize(b, op); 728 729 // Make sure that all constants will be inside the parallel operation body to 730 // reduce the number of parallel compute function arguments. 731 cloneConstantsIntoTheRegion(op.getRegion(), rewriter); 732 733 // Compute trip count for each loop induction variable: 734 // tripCount = ceil_div(upperBound - lowerBound, step); 735 SmallVector<Value> tripCounts(op.getNumLoops()); 736 for (size_t i = 0; i < op.getNumLoops(); ++i) { 737 auto lb = op.getLowerBound()[i]; 738 auto ub = op.getUpperBound()[i]; 739 auto step = op.getStep()[i]; 740 auto range = b.createOrFold<arith::SubIOp>(ub, lb); 741 tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); 742 } 743 744 // Compute a product of trip counts to get the 1-dimensional iteration space 745 // for the scf.parallel operation. 746 Value tripCount = tripCounts[0]; 747 for (size_t i = 1; i < tripCounts.size(); ++i) 748 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 749 750 // Short circuit no-op parallel loops (zero iterations) that can arise from 751 // the memrefs with dynamic dimension(s) equal to zero. 752 Value c0 = b.create<arith::ConstantIndexOp>(0); 753 Value isZeroIterations = 754 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 755 756 // Do absolutely nothing if the trip count is zero. 757 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 758 nestedBuilder.create<scf::YieldOp>(loc); 759 }; 760 761 // Compute the parallel block size and dispatch concurrent tasks computing 762 // results for each block. 763 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 764 ImplicitLocOpBuilder b(loc, nestedBuilder); 765 766 // Collect statically known constants defining the loop nest in the parallel 767 // compute function. LLVM can't always push constants across the non-trivial 768 // async dispatch call graph, by providing these values explicitly we can 769 // choose to build more efficient loop nest, and rely on a better constant 770 // folding, loop unrolling and vectorization. 771 ParallelComputeFunctionBounds staticBounds = { 772 integerConstants(tripCounts), 773 integerConstants(op.getLowerBound()), 774 integerConstants(op.getUpperBound()), 775 integerConstants(op.getStep()), 776 }; 777 778 // Find how many inner iteration dimensions are statically known, and their 779 // product is smaller than the `512`. We align the parallel compute block 780 // size by the product of statically known dimensions, so that we can 781 // guarantee that the inner loops executes from 0 to the loop trip counts 782 // and we can elide dynamic loop boundaries, and give LLVM an opportunity to 783 // unroll the loops. The constant `512` is arbitrary, it should depend on 784 // how many iterations LLVM will typically decide to unroll. 785 static constexpr int64_t maxUnrollableIterations = 512; 786 787 // The number of inner loops with statically known number of iterations less 788 // than the `maxUnrollableIterations` value. 789 int numUnrollableLoops = 0; 790 791 auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; }; 792 793 SmallVector<int64_t> numIterations(op.getNumLoops()); 794 numIterations.back() = getInt(staticBounds.tripCounts.back()); 795 796 for (int i = op.getNumLoops() - 2; i >= 0; --i) { 797 int64_t tripCount = getInt(staticBounds.tripCounts[i]); 798 int64_t innerIterations = numIterations[i + 1]; 799 numIterations[i] = tripCount * innerIterations; 800 801 // Update the number of inner loops that we can potentially unroll. 802 if (innerIterations > 0 && innerIterations <= maxUnrollableIterations) 803 numUnrollableLoops++; 804 } 805 806 Value numWorkerThreadsVal; 807 if (numWorkerThreads >= 0) 808 numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads); 809 else 810 numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>(); 811 812 // With large number of threads the value of creating many compute blocks 813 // is reduced because the problem typically becomes memory bound. For this 814 // reason we scale the number of workers using an equivalent to the 815 // following logic: 816 // float overshardingFactor = numWorkerThreads <= 4 ? 8.0 817 // : numWorkerThreads <= 8 ? 4.0 818 // : numWorkerThreads <= 16 ? 2.0 819 // : numWorkerThreads <= 32 ? 1.0 820 // : numWorkerThreads <= 64 ? 0.8 821 // : 0.6; 822 823 // Pairs of non-inclusive lower end of the bracket and factor that the 824 // number of workers needs to be scaled with if it falls in that bucket. 825 const SmallVector<std::pair<int, float>> overshardingBrackets = { 826 {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}}; 827 const float initialOvershardingFactor = 8.0f; 828 829 Value scalingFactor = b.create<arith::ConstantFloatOp>( 830 llvm::APFloat(initialOvershardingFactor), b.getF32Type()); 831 for (const std::pair<int, float> &p : overshardingBrackets) { 832 Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first); 833 Value inBracket = b.create<arith::CmpIOp>( 834 arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin); 835 Value bracketScalingFactor = b.create<arith::ConstantFloatOp>( 836 llvm::APFloat(p.second), b.getF32Type()); 837 scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor, 838 scalingFactor); 839 } 840 Value numWorkersIndex = 841 b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal); 842 Value numWorkersFloat = 843 b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex); 844 Value scaledNumWorkers = 845 b.create<arith::MulFOp>(scalingFactor, numWorkersFloat); 846 Value scaledNumInt = 847 b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers); 848 Value scaledWorkers = 849 b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt); 850 851 Value maxComputeBlocks = b.create<arith::MaxSIOp>( 852 b.create<arith::ConstantIndexOp>(1), scaledWorkers); 853 854 // Compute parallel block size from the parallel problem size: 855 // blockSize = min(tripCount, 856 // max(ceil_div(tripCount, maxComputeBlocks), 857 // minTaskSize)) 858 Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 859 Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize); 860 Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 861 862 // Dispatch parallel compute function using async recursive work splitting, 863 // or by submitting compute task sequentially from a caller thread. 864 auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch; 865 866 // Create a parallel compute function that takes a block id and computes 867 // the parallel operation body for a subset of iteration space. 868 869 // Compute the number of parallel compute blocks. 870 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 871 872 // Dispatch parallel compute function without hints to unroll inner loops. 873 auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) { 874 ParallelComputeFunction compute = 875 createParallelComputeFunction(op, staticBounds, 0, rewriter); 876 877 ImplicitLocOpBuilder b(loc, nestedBuilder); 878 doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts); 879 b.create<scf::YieldOp>(); 880 }; 881 882 // Dispatch parallel compute function with hints for unrolling inner loops. 883 auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) { 884 ParallelComputeFunction compute = createParallelComputeFunction( 885 op, staticBounds, numUnrollableLoops, rewriter); 886 887 ImplicitLocOpBuilder b(loc, nestedBuilder); 888 // Align the block size to be a multiple of the statically known 889 // number of iterations in the inner loops. 890 Value numIters = b.create<arith::ConstantIndexOp>( 891 numIterations[op.getNumLoops() - numUnrollableLoops]); 892 Value alignedBlockSize = b.create<arith::MulIOp>( 893 b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters); 894 doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount, 895 tripCounts); 896 b.create<scf::YieldOp>(); 897 }; 898 899 // Dispatch to block aligned compute function only if the computed block 900 // size is larger than the number of iterations in the unrollable inner 901 // loops, because otherwise it can reduce the available parallelism. 902 if (numUnrollableLoops > 0) { 903 Value numIters = b.create<arith::ConstantIndexOp>( 904 numIterations[op.getNumLoops() - numUnrollableLoops]); 905 Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>( 906 arith::CmpIPredicate::sge, blockSize, numIters); 907 908 b.create<scf::IfOp>(useBlockAlignedComputeFn, dispatchBlockAligned, 909 dispatchDefault); 910 b.create<scf::YieldOp>(); 911 } else { 912 dispatchDefault(b, loc); 913 } 914 }; 915 916 // Replace the `scf.parallel` operation with the parallel compute function. 917 b.create<scf::IfOp>(isZeroIterations, noOp, dispatch); 918 919 // Parallel operation was replaced with a block iteration loop. 920 rewriter.eraseOp(op); 921 922 return success(); 923 } 924 925 void AsyncParallelForPass::runOnOperation() { 926 MLIRContext *ctx = &getContext(); 927 928 RewritePatternSet patterns(ctx); 929 populateAsyncParallelForPatterns( 930 patterns, asyncDispatch, numWorkerThreads, 931 [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) { 932 return builder.create<arith::ConstantIndexOp>(minTaskSize); 933 }); 934 if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) 935 signalPassFailure(); 936 } 937 938 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 939 return std::make_unique<AsyncParallelForPass>(); 940 } 941 942 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 943 int32_t numWorkerThreads, 944 int32_t minTaskSize) { 945 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 946 minTaskSize); 947 } 948 949 void mlir::async::populateAsyncParallelForPatterns( 950 RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads, 951 const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) { 952 MLIRContext *ctx = patterns.getContext(); 953 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 954 computeMinTaskSize); 955 } 956