xref: /openbsd-src/gnu/usr.bin/gcc/gcc/config/pa/pa.h (revision 4e43c760ad4cd5f644ec700462679d05749498d8)
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3    2001, 2002 Free Software Foundation, Inc.
4    Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5    and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6    Software Science at the University of Utah.
7 
8 This file is part of GNU CC.
9 
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14 
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 GNU General Public License for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING.  If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA.  */
24 
25 enum cmp_type				/* comparison type */
26 {
27   CMP_SI,				/* compare integers */
28   CMP_SF,				/* compare single precision floats */
29   CMP_DF,				/* compare double precision floats */
30   CMP_MAX				/* max comparison type */
31 };
32 
33 /* For long call handling.  */
34 extern unsigned long total_code_bytes;
35 
36 /* Which processor to schedule for.  */
37 
38 enum processor_type
39 {
40   PROCESSOR_700,
41   PROCESSOR_7100,
42   PROCESSOR_7100LC,
43   PROCESSOR_7200,
44   PROCESSOR_7300,
45   PROCESSOR_8000
46 };
47 
48 /* For -mschedule= option.  */
49 extern const char *pa_cpu_string;
50 extern enum processor_type pa_cpu;
51 
52 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
53 
54 /* Which architecture to generate code for.  */
55 
56 enum architecture_type
57 {
58   ARCHITECTURE_10,
59   ARCHITECTURE_11,
60   ARCHITECTURE_20
61 };
62 
63 struct rtx_def;
64 
65 /* For -march= option.  */
66 extern const char *pa_arch_string;
67 extern enum architecture_type pa_arch;
68 
69 /* Print subsidiary information on the compiler version in use.  */
70 
71 #define TARGET_VERSION fputs (" (hppa)", stderr);
72 
73 /* Run-time compilation parameters selecting different hardware subsets.  */
74 
75 extern int target_flags;
76 
77 /* compile code for HP-PA 1.1 ("Snake").  */
78 
79 #define MASK_PA_11 1
80 
81 /* Disable all FP registers (they all become fixed).  This may be necessary
82    for compiling kernels which perform lazy context switching of FP regs.
83    Note if you use this option and try to perform floating point operations
84    the compiler will abort!  */
85 
86 #define MASK_DISABLE_FPREGS 2
87 #define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
88 
89 /* Generate code which assumes that all space register are equivalent.
90    Triggers aggressive unscaled index addressing and faster
91    builtin_return_address.  */
92 #define MASK_NO_SPACE_REGS 4
93 #define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
94 
95 /* Allow unconditional jumps in the delay slots of call instructions.  */
96 #define MASK_JUMP_IN_DELAY 8
97 #define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
98 
99 /* Disable indexed addressing modes.  */
100 #define MASK_DISABLE_INDEXING 32
101 #define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
102 
103 /* Emit code which follows the new portable runtime calling conventions
104    HP wants everyone to use for ELF objects.  If at all possible you want
105    to avoid this since it's a performance loss for non-prototyped code.
106 
107    Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
108    long-call stubs which is quite expensive.  */
109 #define MASK_PORTABLE_RUNTIME 64
110 #define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
111 
112 /* Emit directives only understood by GAS.  This allows parameter
113    relocations to work for static functions.  There is no way
114    to make them work the HP assembler at this time.  */
115 #define MASK_GAS 128
116 #define TARGET_GAS (target_flags & MASK_GAS)
117 
118 /* Emit code for processors which do not have an FPU.  */
119 #define MASK_SOFT_FLOAT 256
120 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
121 
122 /* Use 3-insn load/store sequences for access to large data segments
123    in shared libraries on hpux10.  */
124 #define MASK_LONG_LOAD_STORE 512
125 #define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
126 
127 /* Use a faster sequence for indirect calls.  This assumes that calls
128    through function pointers will never cross a space boundary, and
129    that the executable is not dynamically linked.  Such assumptions
130    are generally safe for building kernels and statically linked
131    executables.  Code compiled with this option will fail miserably if
132    the executable is dynamically linked or uses nested functions!  */
133 #define MASK_FAST_INDIRECT_CALLS 1024
134 #define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
135 
136 /* Generate code with big switch statements to avoid out of range branches
137    occurring within the switch table.  */
138 #define MASK_BIG_SWITCH 2048
139 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
140 
141 /* Generate code for the HPPA 2.0 architecture.  TARGET_PA_11 should also be
142    true when this is true.  */
143 #define MASK_PA_20 4096
144 
145 /* Generate cpp defines for server I/O.  */
146 #define MASK_SIO 8192
147 #define TARGET_SIO (target_flags & MASK_SIO)
148 
149 /* Assume GNU linker by default.  */
150 #define MASK_GNU_LD 16384
151 #ifndef TARGET_GNU_LD
152 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
153 #endif
154 
155 /* Force generation of long calls.  */
156 #define MASK_LONG_CALLS 32768
157 #ifndef TARGET_LONG_CALLS
158 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
159 #endif
160 
161 #ifndef TARGET_PA_10
162 #define TARGET_PA_10 (target_flags & (MASK_PA_11 | MASK_PA_20) == 0)
163 #endif
164 
165 #ifndef TARGET_PA_11
166 #define TARGET_PA_11 (target_flags & MASK_PA_11)
167 #endif
168 
169 #ifndef TARGET_PA_20
170 #define TARGET_PA_20 (target_flags & MASK_PA_20)
171 #endif
172 
173 /* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
174 #ifndef TARGET_64BIT
175 #define TARGET_64BIT 0
176 #endif
177 
178 /* Generate code for ELF32 ABI.  */
179 #ifndef TARGET_ELF32
180 #define TARGET_ELF32 0
181 #endif
182 
183 /* Generate code for SOM 32bit ABI.  */
184 #ifndef TARGET_SOM
185 #define TARGET_SOM 0
186 #endif
187 
188 /* The following three defines are potential target switches.  The current
189    defines are optimal given the current capabilities of GAS and GNU ld.  */
190 
191 /* Define to a C expression evaluating to true to use long absolute calls.
192    Currently, only the HP assembler and SOM linker support long absolute
193    calls.  They are used only in non-pic code.  */
194 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
195 
196 /* Define to a C expression evaluating to true to use long pic symbol
197    difference calls.  This is a call variant similar to the long pic
198    pc-relative call.  Long pic symbol difference calls are only used with
199    the HP SOM linker.  Currently, only the HP assembler supports these
200    calls.  GAS doesn't allow an arbritrary difference of two symbols.  */
201 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
202 
203 /* Define to a C expression evaluating to true to use long pic
204    pc-relative calls.  Long pic pc-relative calls are only used with
205    GAS.  Currently, they are usable for calls within a module but
206    not for external calls.  */
207 #define TARGET_LONG_PIC_PCREL_CALL 0
208 
209 /* Define to a C expression evaluating to true to use SOM secondary
210    definition symbols for weak support.  Linker support for secondary
211    definition symbols is buggy prior to HP-UX 11.X.  */
212 #define TARGET_SOM_SDEF 0
213 
214 /* Define to a C expression evaluating to true to save the entry value
215    of SP in the current frame marker.  This is normally unnecessary.
216    However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
217    HP compilers don't use this flag but it is supported by the assembler.
218    We set this flag to indicate that register %r3 has been saved at the
219    start of the frame.  Thus, when the HP unwind library is used, we
220    need to generate additional code to save SP into the frame marker.  */
221 #define TARGET_HPUX_UNWIND_LIBRARY 0
222 
223 /* Macro to define tables used to set the flags.  This is a
224    list in braces of target switches with each switch being
225    { "NAME", VALUE, "HELP_STRING" }.  VALUE is the bits to set,
226    or minus the bits to clear.  An empty string NAME is used to
227    identify the default VALUE.  Do not mark empty strings for
228    translation.  */
229 
230 #define TARGET_SWITCHES \
231   {{ "snake",			 MASK_PA_11,				\
232      N_("Generate PA1.1 code") },					\
233    { "nosnake",			-(MASK_PA_11 | MASK_PA_20),		\
234      N_("Generate PA1.0 code") },					\
235    { "pa-risc-1-0",		-(MASK_PA_11 | MASK_PA_20),		\
236      N_("Generate PA1.0 code") },					\
237    { "pa-risc-1-1",		 MASK_PA_11,				\
238      N_("Generate PA1.1 code") },					\
239    { "pa-risc-2-0",		 MASK_PA_20,				\
240      N_("Generate PA2.0 code (requires binutils 2.10 or later)") },	\
241    { "disable-fpregs",		 MASK_DISABLE_FPREGS,			\
242      N_("Disable FP regs") },						\
243    { "no-disable-fpregs",	-MASK_DISABLE_FPREGS,			\
244      N_("Do not disable FP regs") },					\
245    { "no-space-regs",		 MASK_NO_SPACE_REGS,			\
246      N_("Disable space regs") },					\
247    { "space-regs",		-MASK_NO_SPACE_REGS,			\
248      N_("Do not disable space regs") },					\
249    { "jump-in-delay",		 MASK_JUMP_IN_DELAY,			\
250      N_("Put jumps in call delay slots") },				\
251    { "no-jump-in-delay",	-MASK_JUMP_IN_DELAY,			\
252      N_("Do not put jumps in call delay slots") },			\
253    { "disable-indexing",	 MASK_DISABLE_INDEXING,			\
254      N_("Disable indexed addressing") },				\
255    { "no-disable-indexing",	-MASK_DISABLE_INDEXING,			\
256      N_("Do not disable indexed addressing") },				\
257    { "portable-runtime",	 MASK_PORTABLE_RUNTIME,			\
258      N_("Use portable calling conventions") },				\
259    { "no-portable-runtime",	-MASK_PORTABLE_RUNTIME,			\
260      N_("Do not use portable calling conventions") },			\
261    { "gas",			 MASK_GAS,				\
262      N_("Assume code will be assembled by GAS") },			\
263    { "no-gas",			-MASK_GAS,				\
264      N_("Do not assume code will be assembled by GAS") },		\
265    { "soft-float",		 MASK_SOFT_FLOAT,			\
266      N_("Use software floating point") },				\
267    { "no-soft-float",		-MASK_SOFT_FLOAT,			\
268      N_("Do not use software floating point") },			\
269    { "long-load-store",		 MASK_LONG_LOAD_STORE,			\
270      N_("Emit long load/store sequences") },				\
271    { "no-long-load-store",	-MASK_LONG_LOAD_STORE,			\
272      N_("Do not emit long load/store sequences") },			\
273    { "fast-indirect-calls",	 MASK_FAST_INDIRECT_CALLS,		\
274      N_("Generate fast indirect calls") },				\
275    { "no-fast-indirect-calls",	-MASK_FAST_INDIRECT_CALLS,		\
276      N_("Do not generate fast indirect calls") },			\
277    { "big-switch",		 MASK_BIG_SWITCH,			\
278      N_("Generate code for huge switch statements") },			\
279    { "no-big-switch",		-MASK_BIG_SWITCH,			\
280      N_("Do not generate code for huge switch statements") },		\
281    { "long-calls",		 MASK_LONG_CALLS,			\
282      N_("Always generate long calls") },				\
283    { "no-long-calls",		-MASK_LONG_CALLS,			\
284      N_("Generate long calls only when needed") },			\
285    { "linker-opt",		 0,					\
286      N_("Enable linker optimizations") },				\
287    SUBTARGET_SWITCHES							\
288    { "",			 TARGET_DEFAULT | TARGET_CPU_DEFAULT,	\
289      NULL }}
290 
291 #ifndef TARGET_DEFAULT
292 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY)
293 #endif
294 
295 #ifndef TARGET_CPU_DEFAULT
296 #define TARGET_CPU_DEFAULT 0
297 #endif
298 
299 #ifndef SUBTARGET_SWITCHES
300 #define SUBTARGET_SWITCHES
301 #endif
302 
303 #ifndef TARGET_SCHED_DEFAULT
304 #define TARGET_SCHED_DEFAULT "8000"
305 #endif
306 
307 #define TARGET_OPTIONS							\
308 {									\
309   { "schedule=",		&pa_cpu_string,				\
310     N_("Specify CPU for scheduling purposes") },			\
311   { "arch=",			&pa_arch_string,			\
312     N_("Specify architecture for code generation.  Values are 1.0, 1.1, and 2.0.  2.0 requires gas snapshot 19990413 or later.") }\
313 }
314 
315 /* Specify the dialect of assembler to use.  New mnemonics is dialect one
316    and the old mnemonics are dialect zero.  */
317 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
318 
319 #define OVERRIDE_OPTIONS override_options ()
320 
321 /* stabs-in-som is nearly identical to stabs-in-elf.  To avoid useless
322    code duplication we simply include this file and override as needed.  */
323 #include "dbxelf.h"
324 
325 /* We do not have to be compatible with dbx, so we enable gdb extensions
326    by default.  */
327 #define DEFAULT_GDB_EXTENSIONS 1
328 
329 /* This used to be zero (no max length), but big enums and such can
330    cause huge strings which killed gas.
331 
332    We also have to avoid lossage in dbxout.c -- it does not compute the
333    string size accurately, so we are real conservative here.  */
334 #undef DBX_CONTIN_LENGTH
335 #define DBX_CONTIN_LENGTH 3000
336 
337 /* Only labels should ever begin in column zero.  */
338 #define ASM_STABS_OP "\t.stabs\t"
339 #define ASM_STABN_OP "\t.stabn\t"
340 
341 /* GDB always assumes the current function's frame begins at the value
342    of the stack pointer upon entry to the current function.  Accessing
343    local variables and parameters passed on the stack is done using the
344    base of the frame + an offset provided by GCC.
345 
346    For functions which have frame pointers this method works fine;
347    the (frame pointer) == (stack pointer at function entry) and GCC provides
348    an offset relative to the frame pointer.
349 
350    This loses for functions without a frame pointer; GCC provides an offset
351    which is relative to the stack pointer after adjusting for the function's
352    frame size.  GDB would prefer the offset to be relative to the value of
353    the stack pointer at the function's entry.  Yuk!  */
354 #define DEBUGGER_AUTO_OFFSET(X) \
355   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
356     + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
357 
358 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
359   ((GET_CODE (X) == PLUS ? OFFSET : 0) \
360     + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
361 
362 #define TARGET_CPU_CPP_BUILTINS()				\
363 do {								\
364      builtin_assert("cpu=hppa");				\
365      builtin_assert("machine=hppa");				\
366      builtin_define("__hppa");					\
367      builtin_define("__hppa__");				\
368      if (TARGET_64BIT)						\
369        {							\
370 	 builtin_define("_LP64");				\
371 	 builtin_define("__LP64__");				\
372        }							\
373      if (TARGET_PA_20)						\
374        builtin_define("_PA_RISC2_0");				\
375      else if (TARGET_PA_11)					\
376        builtin_define("_PA_RISC1_1");				\
377      else							\
378        builtin_define("_PA_RISC1_0");				\
379 } while (0)
380 
381 /* An old set of OS defines for various BSD-like systems.  */
382 #define TARGET_OS_CPP_BUILTINS()				\
383   do								\
384     {								\
385 	builtin_define_std ("REVARGV");				\
386 	builtin_define_std ("hp800");				\
387 	builtin_define_std ("hp9000");				\
388 	builtin_define_std ("hp9k8");				\
389 	if (c_language != clk_cplusplus				\
390 	    && !flag_iso)					\
391 	  builtin_define ("hppa");				\
392 	builtin_define_std ("spectrum");			\
393 	builtin_define_std ("unix");				\
394 	builtin_assert ("system=bsd");				\
395 	builtin_assert ("system=unix");				\
396     }								\
397   while (0)
398 
399 #define CC1_SPEC "%{pg:} %{p:}"
400 
401 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
402 
403 /* We don't want -lg.  */
404 #ifndef LIB_SPEC
405 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
406 #endif
407 
408 /* This macro defines command-line switches that modify the default
409    target name.
410 
411    The definition is be an initializer for an array of structures.  Each
412    array element has have three elements: the switch name, one of the
413    enumeration codes ADD or DELETE to indicate whether the string should be
414    inserted or deleted, and the string to be inserted or deleted.  */
415 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
416 
417 /* Make gcc agree with <machine/ansi.h> */
418 
419 #define SIZE_TYPE "unsigned int"
420 #define PTRDIFF_TYPE "int"
421 #define WCHAR_TYPE "unsigned int"
422 #define WCHAR_TYPE_SIZE 32
423 
424 /* Show we can debug even without a frame pointer.  */
425 #define CAN_DEBUG_WITHOUT_FP
426 
427 /* Machine dependent reorg pass.  */
428 #define MACHINE_DEPENDENT_REORG(X) pa_reorg(X)
429 
430 
431 /* target machine storage layout */
432 
433 /* Define this macro if it is advisable to hold scalars in registers
434    in a wider mode than that declared by the program.  In such cases,
435    the value is constrained to be within the bounds of the declared
436    type, but kept valid in the wider mode.  The signedness of the
437    extension may differ from that of the type.  */
438 
439 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
440   if (GET_MODE_CLASS (MODE) == MODE_INT	\
441       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)  	\
442     (MODE) = word_mode;
443 
444 /* Define this if most significant bit is lowest numbered
445    in instructions that operate on numbered bit-fields.  */
446 #define BITS_BIG_ENDIAN 1
447 
448 /* Define this if most significant byte of a word is the lowest numbered.  */
449 /* That is true on the HP-PA.  */
450 #define BYTES_BIG_ENDIAN 1
451 
452 /* Define this if most significant word of a multiword number is lowest
453    numbered.  */
454 #define WORDS_BIG_ENDIAN 1
455 
456 #define MAX_BITS_PER_WORD 64
457 #define MAX_LONG_TYPE_SIZE 32
458 
459 /* Width of a word, in units (bytes).  */
460 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
461 #define MIN_UNITS_PER_WORD 4
462 
463 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
464 #define PARM_BOUNDARY BITS_PER_WORD
465 
466 /* Largest alignment required for any stack parameter, in bits.
467    Don't define this if it is equal to PARM_BOUNDARY */
468 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
469 
470 /* Boundary (in *bits*) on which stack pointer is always aligned;
471    certain optimizations in combine depend on this.
472 
473    The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
474    the stack on the 32 and 64-bit ports, respectively.  However, we
475    are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
476    in main.  Thus, we treat the former as the preferred alignment.  */
477 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
478 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
479 
480 /* Allocation boundary (in *bits*) for the code of a function.  */
481 #define FUNCTION_BOUNDARY BITS_PER_WORD
482 
483 /* Alignment of field after `int : 0' in a structure.  */
484 #define EMPTY_FIELD_BOUNDARY 32
485 
486 /* Every structure's size must be a multiple of this.  */
487 #define STRUCTURE_SIZE_BOUNDARY 8
488 
489 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
490 #define PCC_BITFIELD_TYPE_MATTERS 1
491 
492 /* No data type wants to be aligned rounder than this.  */
493 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
494 
495 /* Get around hp-ux assembler bug, and make strcpy of constants fast.  */
496 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
497   ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
498 
499 /* Make arrays of chars word-aligned for the same reasons.  */
500 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
501   (TREE_CODE (TYPE) == ARRAY_TYPE		\
502    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
503    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
504 
505 /* Set this nonzero if move instructions will actually fail to work
506    when given unaligned data.  */
507 #define STRICT_ALIGNMENT 1
508 
509 /* Generate calls to memcpy, memcmp and memset.  */
510 #define TARGET_MEM_FUNCTIONS
511 
512 /* Value is 1 if it is a good idea to tie two pseudo registers
513    when one has mode MODE1 and one has mode MODE2.
514    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
515    for any hard reg, then this must be 0 for correct output.  */
516 #define MODES_TIEABLE_P(MODE1, MODE2) \
517   (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
518 
519 /* Specify the registers used for certain standard purposes.
520    The values of these macros are register numbers.  */
521 
522 /* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
523 /* #define PC_REGNUM  */
524 
525 /* Register to use for pushing function arguments.  */
526 #define STACK_POINTER_REGNUM 30
527 
528 /* Base register for access to local variables of the function.  */
529 #define FRAME_POINTER_REGNUM 3
530 
531 /* Value should be nonzero if functions must have frame pointers.  */
532 #define FRAME_POINTER_REQUIRED \
533   (current_function_calls_alloca)
534 
535 /* C statement to store the difference between the frame pointer
536    and the stack pointer values immediately after the function prologue.
537 
538    Note, we always pretend that this is a leaf function because if
539    it's not, there's no point in trying to eliminate the
540    frame pointer.  If it is a leaf function, we guessed right!  */
541 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
542   do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
543 
544 /* Base register for access to arguments of the function.  */
545 #define ARG_POINTER_REGNUM 3
546 
547 /* Register in which static-chain is passed to a function.  */
548 #define STATIC_CHAIN_REGNUM 29
549 
550 /* Register which holds offset table for position-independent
551    data references.  */
552 
553 #define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? 27 : 19)
554 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
555 
556 /* Function to return the rtx used to save the pic offset table register
557    across function calls.  */
558 extern struct rtx_def *hppa_pic_save_rtx PARAMS ((void));
559 
560 #define DEFAULT_PCC_STRUCT_RETURN 0
561 
562 /* SOM ABI says that objects larger than 64 bits are returned in memory.
563    PA64 ABI says that objects larger than 128 bits are returned in memory.
564    Note, int_size_in_bytes can return -1 if the size of the object is
565    variable or larger than the maximum value that can be expressed as
566    a HOST_WIDE_INT.   It can also return zero for an empty type.  The
567    simplest way to handle variable and empty types is to pass them in
568    memory.  This avoids problems in defining the boundaries of argument
569    slots, allocating registers, etc.  */
570 #define RETURN_IN_MEMORY(TYPE)	\
571   (int_size_in_bytes (TYPE) > (TARGET_64BIT ? 16 : 8)	\
572    || int_size_in_bytes (TYPE) <= 0)
573 
574 /* Register in which address to store a structure value
575    is passed to a function.  */
576 #define STRUCT_VALUE_REGNUM 28
577 
578 /* Describe how we implement __builtin_eh_return.  */
579 #define EH_RETURN_DATA_REGNO(N)	\
580   ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
581 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 29)
582 #define EH_RETURN_HANDLER_RTX \
583   gen_rtx_MEM (word_mode,						\
584 	       gen_rtx_PLUS (word_mode, frame_pointer_rtx,		\
585 			     TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
586 
587 
588 /* Offset from the argument pointer register value to the top of
589    stack.  This is different from FIRST_PARM_OFFSET because of the
590    frame marker.  */
591 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
592 
593 /* The letters I, J, K, L and M in a register constraint string
594    can be used to stand for particular ranges of immediate operands.
595    This macro defines what the ranges are.
596    C is the letter, and VALUE is a constant value.
597    Return 1 if VALUE is in the range specified by C.
598 
599    `I' is used for the 11 bit constants.
600    `J' is used for the 14 bit constants.
601    `K' is used for values that can be moved with a zdepi insn.
602    `L' is used for the 5 bit constants.
603    `M' is used for 0.
604    `N' is used for values with the least significant 11 bits equal to zero
605 	                  and when sign extended from 32 to 64 bits the
606 			  value does not change.
607    `O' is used for numbers n such that n+1 is a power of 2.
608    */
609 
610 #define CONST_OK_FOR_LETTER_P(VALUE, C)  \
611   ((C) == 'I' ? VAL_11_BITS_P (VALUE)					\
612    : (C) == 'J' ? VAL_14_BITS_P (VALUE)					\
613    : (C) == 'K' ? zdepi_cint_p (VALUE)					\
614    : (C) == 'L' ? VAL_5_BITS_P (VALUE)					\
615    : (C) == 'M' ? (VALUE) == 0						\
616    : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
617 		   || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff))	\
618 		       == (HOST_WIDE_INT) -1 << 31))			\
619    : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0)			\
620    : (C) == 'P' ? and_mask_p (VALUE)					\
621    : 0)
622 
623 /* Similar, but for floating or large integer constants, and defining letters
624    G and H.   Here VALUE is the CONST_DOUBLE rtx itself.
625 
626    For PA, `G' is the floating-point constant zero.  `H' is undefined.  */
627 
628 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  			\
629   ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT	\
630 		 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))		\
631    : 0)
632 
633 /* The class value for index registers, and the one for base regs.  */
634 #define INDEX_REG_CLASS GENERAL_REGS
635 #define BASE_REG_CLASS GENERAL_REGS
636 
637 #define FP_REG_CLASS_P(CLASS) \
638   ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
639 
640 /* True if register is floating-point.  */
641 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
642 
643 /* Given an rtx X being reloaded into a reg required to be
644    in class CLASS, return the class of reg to actually use.
645    In general this is just CLASS; but on some machines
646    in some cases it is preferable to use a more restrictive class.  */
647 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
648 
649 /* Return the register class of a scratch register needed to copy IN into
650    or out of a register in CLASS in MODE.  If it can be done directly
651    NO_REGS is returned.
652 
653   Avoid doing any work for the common case calls.  */
654 
655 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
656   ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG		\
657     && REGNO (IN) < FIRST_PSEUDO_REGISTER)			\
658    ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
659 
660 #define MAYBE_FP_REG_CLASS_P(CLASS) \
661   reg_classes_intersect_p ((CLASS), FP_REGS)
662 
663 /* On the PA it is not possible to directly move data between
664    GENERAL_REGS and FP_REGS.  */
665 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)		\
666   (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)	\
667    || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1))
668 
669 /* Return the stack location to use for secondary memory needed reloads.  */
670 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
671   gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
672 
673 
674 /* Stack layout; function entry, exit and calling.  */
675 
676 /* Define this if pushing a word on the stack
677    makes the stack pointer a smaller address.  */
678 /* #define STACK_GROWS_DOWNWARD */
679 
680 /* Believe it or not.  */
681 #define ARGS_GROW_DOWNWARD
682 
683 /* Define this if the nominal address of the stack frame
684    is at the high-address end of the local variables;
685    that is, each additional local variable allocated
686    goes at a more negative offset in the frame.  */
687 /* #define FRAME_GROWS_DOWNWARD */
688 
689 /* Offset within stack frame to start allocating local variables at.
690    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
691    first local allocated.  Otherwise, it is the offset to the BEGINNING
692    of the first local allocated.  The start of the locals must lie on
693    a STACK_BOUNDARY or else the frame size of leaf functions will not
694    be zero.  */
695 #define STARTING_FRAME_OFFSET (TARGET_64BIT ? 16 : 8)
696 
697 /* If we generate an insn to push BYTES bytes,
698    this says how many the stack pointer really advances by.
699    On the HP-PA, don't define this because there are no push insns.  */
700 /*  #define PUSH_ROUNDING(BYTES) */
701 
702 /* Offset of first parameter from the argument pointer register value.
703    This value will be negated because the arguments grow down.
704    Also note that on STACK_GROWS_UPWARD machines (such as this one)
705    this is the distance from the frame pointer to the end of the first
706    argument, not it's beginning.  To get the real offset of the first
707    argument, the size of the argument must be added.  */
708 
709 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
710 
711 /* When a parameter is passed in a register, stack space is still
712    allocated for it.  */
713 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
714 
715 /* Define this if the above stack space is to be considered part of the
716    space allocated by the caller.  */
717 #define OUTGOING_REG_PARM_STACK_SPACE
718 
719 /* Keep the stack pointer constant throughout the function.
720    This is both an optimization and a necessity: longjmp
721    doesn't behave itself when the stack pointer moves within
722    the function!  */
723 #define ACCUMULATE_OUTGOING_ARGS 1
724 
725 /* The weird HPPA calling conventions require a minimum of 48 bytes on
726    the stack: 16 bytes for register saves, and 32 bytes for magic.
727    This is the difference between the logical top of stack and the
728    actual sp.
729 
730    On the 64-bit port, the HP C compiler allocates a 48-byte frame
731    marker, although the runtime documentation only describes a 16
732    byte marker.  For compatibility, we allocate 48 bytes.  */
733 #define STACK_POINTER_OFFSET \
734   (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
735 
736 #define STACK_DYNAMIC_OFFSET(FNDECL)	\
737   (TARGET_64BIT				\
738    ? (STACK_POINTER_OFFSET)		\
739    : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
740 
741 /* Value is 1 if returning from a function call automatically
742    pops the arguments described by the number-of-args field in the call.
743    FUNDECL is the declaration node of the function (as a tree),
744    FUNTYPE is the data type of the function (as a tree),
745    or for a library call it is an identifier node for the subroutine name.  */
746 
747 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
748 
749 /* Define how to find the value returned by a function.
750    VALTYPE is the data type of the value (as a tree).
751    If the precise function being called is known, FUNC is its FUNCTION_DECL;
752    otherwise, FUNC is 0.  */
753 
754 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
755 
756 /* Define how to find the value returned by a library function
757    assuming the value has mode MODE.  */
758 
759 #define LIBCALL_VALUE(MODE)	\
760   gen_rtx_REG (MODE,							\
761 	       (! TARGET_SOFT_FLOAT					\
762 		&& ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
763 
764 /* 1 if N is a possible register number for a function value
765    as seen by the caller.  */
766 
767 #define FUNCTION_VALUE_REGNO_P(N) \
768   ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
769 
770 
771 /* Define a data type for recording info about an argument list
772    during the scan of that argument list.  This data type should
773    hold all necessary information about the function itself
774    and about the args processed so far, enough to enable macros
775    such as FUNCTION_ARG to determine where the next arg should go.
776 
777    On the HP-PA, the WORDS field holds the number of words
778    of arguments scanned so far (including the invisible argument,
779    if any, which holds the structure-value-address).  Thus, 4 or
780    more means all following args should go on the stack.
781 
782    The INCOMING field tracks whether this is an "incoming" or
783    "outgoing" argument.
784 
785    The INDIRECT field indicates whether this is is an indirect
786    call or not.
787 
788    The NARGS_PROTOTYPE field indicates that an argument does not
789    have a prototype when it less than or equal to 0.  */
790 
791 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
792 
793 #define CUMULATIVE_ARGS struct hppa_args
794 
795 /* Initialize a variable CUM of type CUMULATIVE_ARGS
796    for a call to a function whose data type is FNTYPE.
797    For a library call, FNTYPE is 0.  */
798 
799 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
800   (CUM).words = 0, 							\
801   (CUM).incoming = 0,							\
802   (CUM).indirect = INDIRECT,						\
803   (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE)		\
804 			   ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1	\
805 			      + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
806 				 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
807 			   : 0)
808 
809 
810 
811 /* Similar, but when scanning the definition of a procedure.  We always
812    set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
813 
814 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
815   (CUM).words = 0,				\
816   (CUM).incoming = 1,				\
817   (CUM).indirect = 0,				\
818   (CUM).nargs_prototype = 1000
819 
820 /* Figure out the size in words of the function argument.  The size
821    returned by this macro should always be greater than zero because
822    we pass variable and zero sized objects by reference.  */
823 
824 #define FUNCTION_ARG_SIZE(MODE, TYPE)	\
825   ((((MODE) != BLKmode \
826      ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
827      : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
828 
829 /* Update the data in CUM to advance over an argument
830    of mode MODE and data type TYPE.
831    (TYPE is null for libcalls where that information may not be available.)  */
832 
833 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
834 { (CUM).nargs_prototype--;						\
835   (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE)	 			\
836     + (((CUM).words & 01) && (TYPE) != 0				\
837 	&& FUNCTION_ARG_SIZE(MODE, TYPE) > 1);				\
838 }
839 
840 /* Determine where to put an argument to a function.
841    Value is zero to push the argument on the stack,
842    or a hard register in which to store the argument.
843 
844    MODE is the argument's machine mode.
845    TYPE is the data type of the argument (as a tree).
846     This is null for libcalls where that information may
847     not be available.
848    CUM is a variable of type CUMULATIVE_ARGS which gives info about
849     the preceding args and about the function being called.
850    NAMED is nonzero if this argument is a named parameter
851     (otherwise it is an extra parameter matching an ellipsis).
852 
853    On the HP-PA the first four words of args are normally in registers
854    and the rest are pushed.  But any arg that won't entirely fit in regs
855    is pushed.
856 
857    Arguments passed in registers are either 1 or 2 words long.
858 
859    The caller must make a distinction between calls to explicitly named
860    functions and calls through pointers to functions -- the conventions
861    are different!  Calls through pointers to functions only use general
862    registers for the first four argument words.
863 
864    Of course all this is different for the portable runtime model
865    HP wants everyone to use for ELF.  Ugh.  Here's a quick description
866    of how it's supposed to work.
867 
868    1) callee side remains unchanged.  It expects integer args to be
869    in the integer registers, float args in the float registers and
870    unnamed args in integer registers.
871 
872    2) caller side now depends on if the function being called has
873    a prototype in scope (rather than if it's being called indirectly).
874 
875       2a) If there is a prototype in scope, then arguments are passed
876       according to their type (ints in integer registers, floats in float
877       registers, unnamed args in integer registers.
878 
879       2b) If there is no prototype in scope, then floating point arguments
880       are passed in both integer and float registers.  egad.
881 
882   FYI: The portable parameter passing conventions are almost exactly like
883   the standard parameter passing conventions on the RS6000.  That's why
884   you'll see lots of similar code in rs6000.h.  */
885 
886 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
887 
888 /* Do not expect to understand this without reading it several times.  I'm
889    tempted to try and simply it, but I worry about breaking something.  */
890 
891 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
892   function_arg (&CUM, MODE, TYPE, NAMED)
893 
894 /* Nonzero if we do not know how to pass TYPE solely in registers.  */
895 #define MUST_PASS_IN_STACK(MODE,TYPE) \
896   ((TYPE) != 0							\
897    && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST		\
898        || TREE_ADDRESSABLE (TYPE)))
899 
900 /* For an arg passed partly in registers and partly in memory,
901    this is the number of registers used.
902    For args passed entirely in registers or entirely in memory, zero.  */
903 
904 /* For PA32 there are never split arguments. PA64, on the other hand, can
905    pass arguments partially in registers and partially in memory.  */
906 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
907   (TARGET_64BIT ? function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) : 0)
908 
909 /* If defined, a C expression that gives the alignment boundary, in
910    bits, of an argument with the specified mode and type.  If it is
911    not defined,  `PARM_BOUNDARY' is used for all arguments.  */
912 
913 /* Arguments larger than one word are double word aligned.  */
914 
915 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE)				\
916   (((TYPE)								\
917     ? (integer_zerop (TYPE_SIZE (TYPE))					\
918        || !TREE_CONSTANT (TYPE_SIZE (TYPE))				\
919        || int_size_in_bytes (TYPE) <= UNITS_PER_WORD)			\
920     : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD)				\
921    ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
922 
923 /* In the 32-bit runtime, arguments larger than eight bytes are passed
924    by invisible reference.  As a GCC extension, we also pass anything
925    with a zero or variable size by reference.
926 
927    The 64-bit runtime does not describe passing any types by invisible
928    reference.  The internals of GCC can't currently handle passing
929    empty structures, and zero or variable length arrays when they are
930    not passed entirely on the stack or by reference.  Thus, as a GCC
931    extension, we pass these types by reference.  The HP compiler doesn't
932    support these types, so hopefully there shouldn't be any compatibility
933    issues.  This may have to be revisited when HP releases a C99 compiler
934    or updates the ABI.  */
935 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED)		\
936   (TARGET_64BIT								\
937    ? ((TYPE) && int_size_in_bytes (TYPE) <= 0)				\
938    : (((TYPE) && (int_size_in_bytes (TYPE) > 8				\
939 		  || int_size_in_bytes (TYPE) <= 0))			\
940       || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
941 
942 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) 		\
943   FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED)
944 
945 
946 extern GTY(()) rtx hppa_compare_op0;
947 extern GTY(()) rtx hppa_compare_op1;
948 extern enum cmp_type hppa_branch_type;
949 
950 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
951    as assembly via FUNCTION_PROFILER.  Just output a local label.
952    We can't use the function label because the GAS SOM target can't
953    handle the difference of a global symbol and a local symbol.  */
954 
955 #ifndef FUNC_BEGIN_PROLOG_LABEL
956 #define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
957 #endif
958 
959 #define FUNCTION_PROFILER(FILE, LABEL) \
960   ASM_OUTPUT_INTERNAL_LABEL (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
961 
962 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
963 void hppa_profile_hook PARAMS ((int label_no));
964 
965 /* The profile counter if emitted must come before the prologue.  */
966 #define PROFILE_BEFORE_PROLOGUE 1
967 
968 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
969    the stack pointer does not matter.  The value is tested only in
970    functions that have frame pointers.
971    No definition is equivalent to always zero.  */
972 
973 extern int may_call_alloca;
974 
975 #define EXIT_IGNORE_STACK	\
976  (get_frame_size () != 0	\
977   || current_function_calls_alloca || current_function_outgoing_args_size)
978 
979 /* Output assembler code for a block containing the constant parts
980    of a trampoline, leaving space for the variable parts.\
981 
982    The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
983    and then branches to the specified routine.
984 
985    This code template is copied from text segment to stack location
986    and then patched with INITIALIZE_TRAMPOLINE to contain
987    valid values, and then entered as a subroutine.
988 
989    It is best to keep this as small as possible to avoid having to
990    flush multiple lines in the cache.  */
991 
992 #define TRAMPOLINE_TEMPLATE(FILE) 					\
993   {									\
994     if (!TARGET_64BIT)							\
995       {									\
996 	fputs ("\tldw	36(%r22),%r21\n", FILE);			\
997 	fputs ("\tbb,>=,n	%r21,30,.+16\n", FILE);			\
998 	if (ASSEMBLER_DIALECT == 0)					\
999 	  fputs ("\tdepi	0,31,2,%r21\n", FILE);			\
1000 	else								\
1001 	  fputs ("\tdepwi	0,31,2,%r21\n", FILE);			\
1002 	fputs ("\tldw	4(%r21),%r19\n", FILE);				\
1003 	fputs ("\tldw	0(%r21),%r21\n", FILE);				\
1004 	if (TARGET_PA_20)						\
1005 	  {								\
1006 	    fputs ("\tbve	(%r21)\n", FILE);			\
1007 	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
1008 	    fputs ("\t.word	0\n", FILE);				\
1009 	    fputs ("\t.word	0\n", FILE);				\
1010 	  }								\
1011 	else								\
1012 	  {								\
1013 	    fputs ("\tldsid	(%r21),%r1\n", FILE);			\
1014 	    fputs ("\tmtsp	%r1,%sr0\n", FILE);			\
1015 	    fputs ("\tbe	0(%sr0,%r21)\n", FILE);			\
1016 	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
1017 	  }								\
1018 	fputs ("\t.word	0\n", FILE);					\
1019 	fputs ("\t.word	0\n", FILE);					\
1020 	fputs ("\t.word	0\n", FILE);					\
1021 	fputs ("\t.word	0\n", FILE);					\
1022       }									\
1023     else								\
1024       {									\
1025 	fputs ("\t.dword 0\n", FILE);					\
1026 	fputs ("\t.dword 0\n", FILE);					\
1027 	fputs ("\t.dword 0\n", FILE);					\
1028 	fputs ("\t.dword 0\n", FILE);					\
1029 	fputs ("\tmfia	%r31\n", FILE);					\
1030 	fputs ("\tldd	24(%r31),%r1\n", FILE);				\
1031 	fputs ("\tldd	24(%r1),%r27\n", FILE);				\
1032 	fputs ("\tldd	16(%r1),%r1\n", FILE);				\
1033 	fputs ("\tbve	(%r1)\n", FILE);				\
1034 	fputs ("\tldd	32(%r31),%r31\n", FILE);			\
1035 	fputs ("\t.dword 0  ; fptr\n", FILE);				\
1036 	fputs ("\t.dword 0  ; static link\n", FILE);			\
1037       }									\
1038   }
1039 
1040 /* Length in units of the trampoline for entering a nested function.  */
1041 
1042 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
1043 
1044 /* Length in units of the trampoline instruction code.  */
1045 
1046 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
1047 
1048 /* Minimum length of a cache line.  A length of 16 will work on all
1049    PA-RISC processors.  All PA 1.1 processors have a cache line of
1050    32 bytes.  Most but not all PA 2.0 processors have a cache line
1051    of 64 bytes.  As cache flushes are expensive and we don't support
1052    PA 1.0, we use a minimum length of 32.  */
1053 
1054 #define MIN_CACHELINE_SIZE 32
1055 
1056 /* Emit RTL insns to initialize the variable parts of a trampoline.
1057    FNADDR is an RTX for the address of the function's pure code.
1058    CXT is an RTX for the static chain value for the function.
1059 
1060    Move the function address to the trampoline template at offset 36.
1061    Move the static chain value to trampoline template at offset 40.
1062    Move the trampoline address to trampoline template at offset 44.
1063    Move r19 to trampoline template at offset 48.  The latter two
1064    words create a plabel for the indirect call to the trampoline.
1065 
1066    A similar sequence is used for the 64-bit port but the plabel is
1067    at the beginning of the trampoline.
1068 
1069    Finally, the cache entries for the trampoline code are flushed.
1070    This is necessary to ensure that the trampoline instruction sequence
1071    is written to memory prior to any attempts at prefetching the code
1072    sequence.  */
1073 
1074 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) 			\
1075 {									\
1076   rtx start_addr = gen_reg_rtx (Pmode);					\
1077   rtx end_addr = gen_reg_rtx (Pmode);					\
1078   rtx line_length = gen_reg_rtx (Pmode);				\
1079   rtx tmp;								\
1080 									\
1081   if (!TARGET_64BIT)							\
1082     {									\
1083       tmp = memory_address (Pmode, plus_constant ((TRAMP), 36));	\
1084       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
1085       tmp = memory_address (Pmode, plus_constant ((TRAMP), 40));	\
1086       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
1087 									\
1088       /* Create a fat pointer for the trampoline.  */			\
1089       tmp = memory_address (Pmode, plus_constant ((TRAMP), 44));	\
1090       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP));		\
1091       tmp = memory_address (Pmode, plus_constant ((TRAMP), 48));	\
1092       emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
1093 		      gen_rtx_REG (Pmode, 19));				\
1094 									\
1095       /* fdc and fic only use registers for the address to flush,	\
1096 	 they do not accept integer displacements.  We align the	\
1097 	 start and end addresses to the beginning of their respective	\
1098 	 cache lines to minimize the number of lines flushed.  */	\
1099       tmp = force_reg (Pmode, (TRAMP));					\
1100       emit_insn (gen_andsi3 (start_addr, tmp,				\
1101 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1102       tmp = force_reg (Pmode,						\
1103 		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
1104       emit_insn (gen_andsi3 (end_addr, tmp,				\
1105 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1106       emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
1107       emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
1108       emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
1109 				  gen_reg_rtx (Pmode),			\
1110 				  gen_reg_rtx (Pmode)));		\
1111     }									\
1112   else									\
1113     {									\
1114       tmp = memory_address (Pmode, plus_constant ((TRAMP), 56));	\
1115       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
1116       tmp = memory_address (Pmode, plus_constant ((TRAMP), 64));	\
1117       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
1118 									\
1119       /* Create a fat pointer for the trampoline.  */			\
1120       tmp = memory_address (Pmode, plus_constant ((TRAMP), 16));	\
1121       emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
1122 		      force_reg (Pmode, plus_constant ((TRAMP), 32)));	\
1123       tmp = memory_address (Pmode, plus_constant ((TRAMP), 24));	\
1124       emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
1125 		      gen_rtx_REG (Pmode, 27));				\
1126 									\
1127       /* fdc and fic only use registers for the address to flush,	\
1128 	 they do not accept integer displacements.  We align the	\
1129 	 start and end addresses to the beginning of their respective	\
1130 	 cache lines to minimize the number of lines flushed.  */	\
1131       tmp = force_reg (Pmode, plus_constant ((TRAMP), 32));		\
1132       emit_insn (gen_anddi3 (start_addr, tmp,				\
1133 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1134       tmp = force_reg (Pmode,						\
1135 		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
1136       emit_insn (gen_anddi3 (end_addr, tmp,				\
1137 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1138       emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
1139       emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
1140       emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
1141 				  gen_reg_rtx (Pmode),			\
1142 				  gen_reg_rtx (Pmode)));		\
1143     }									\
1144 }
1145 
1146 /* Perform any machine-specific adjustment in the address of the trampoline.
1147    ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1148    Adjust the trampoline address to point to the plabel at offset 44.  */
1149 
1150 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1151   if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1152 
1153 /* Emit code for a call to builtin_saveregs.  We must emit USE insns which
1154    reference the 4 integer arg registers and 4 fp arg registers.
1155    Ordinarily they are not call used registers, but they are for
1156    _builtin_saveregs, so we must make this explicit.  */
1157 
1158 #define EXPAND_BUILTIN_SAVEREGS() hppa_builtin_saveregs ()
1159 
1160 /* Implement `va_start' for varargs and stdarg.  */
1161 
1162 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1163   hppa_va_start (valist, nextarg)
1164 
1165 /* Implement `va_arg'.  */
1166 
1167 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1168   hppa_va_arg (valist, type)
1169 
1170 /* Addressing modes, and classification of registers for them.
1171 
1172    Using autoincrement addressing modes on PA8000 class machines is
1173    not profitable.  */
1174 
1175 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1176 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1177 
1178 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1179 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1180 
1181 /* Macros to check register numbers against specific register classes.  */
1182 
1183 /* These assume that REGNO is a hard or pseudo reg number.
1184    They give nonzero only if REGNO is a hard reg of the suitable class
1185    or a pseudo reg currently allocated to a suitable hard reg.
1186    Since they use reg_renumber, they are safe only once reg_renumber
1187    has been allocated, which happens in local-alloc.c.  */
1188 
1189 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1190   ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1191 #define REGNO_OK_FOR_BASE_P(REGNO)  \
1192   ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1193 #define REGNO_OK_FOR_FP_P(REGNO) \
1194   (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
1195 
1196 /* Now macros that check whether X is a register and also,
1197    strictly, whether it is in a specified class.
1198 
1199    These macros are specific to the HP-PA, and may be used only
1200    in code for printing assembler insns and in conditions for
1201    define_optimization.  */
1202 
1203 /* 1 if X is an fp register.  */
1204 
1205 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1206 
1207 /* Maximum number of registers that can appear in a valid memory address.  */
1208 
1209 #define MAX_REGS_PER_ADDRESS 2
1210 
1211 /* Recognize any constant value that is a valid address except
1212    for symbolic addresses.  We get better CSE by rejecting them
1213    here and allowing hppa_legitimize_address to break them up.  We
1214    use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
1215 
1216 #define CONSTANT_ADDRESS_P(X) \
1217   ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1218    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1219    || GET_CODE (X) == HIGH) 						\
1220    && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1221 
1222 /* Include all constant integers and constant doubles, but not
1223    floating-point, except for floating-point zero.
1224 
1225    Reject LABEL_REFs if we're not using gas or the new HP assembler.
1226 
1227    ?!? For now also reject CONST_DOUBLES in 64bit mode.  This will need
1228    further work.  */
1229 #ifndef NEW_HP_ASSEMBLER
1230 #define NEW_HP_ASSEMBLER 0
1231 #endif
1232 #define LEGITIMATE_CONSTANT_P(X)				\
1233   ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT			\
1234     || (X) == CONST0_RTX (GET_MODE (X)))			\
1235    && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF)	\
1236    && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE)		\
1237    && !(TARGET_64BIT && GET_CODE (X) == CONST_INT		\
1238 	&& !(HOST_BITS_PER_WIDE_INT <= 32			\
1239 	     || (INTVAL (X) >= (HOST_WIDE_INT) -32 << 31	\
1240 		 && INTVAL (X) < (HOST_WIDE_INT) 32 << 31)	\
1241 	     || cint_ok_for_move (INTVAL (X))))			\
1242    && !function_label_operand (X, VOIDmode))
1243 
1244 /* Subroutine for EXTRA_CONSTRAINT.
1245 
1246    Return 1 iff OP is a pseudo which did not get a hard register and
1247    we are running the reload pass.  */
1248 
1249 #define IS_RELOADING_PSEUDO_P(OP) \
1250   ((reload_in_progress					\
1251     && GET_CODE (OP) == REG				\
1252     && REGNO (OP) >= FIRST_PSEUDO_REGISTER		\
1253     && reg_renumber [REGNO (OP)] < 0))
1254 
1255 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1256 
1257    For the HPPA, `Q' means that this is a memory operand but not a
1258    symbolic memory operand.  Note that an unassigned pseudo register
1259    is such a memory operand.  Needed because reload will generate
1260    these things in insns and then not re-recognize the insns, causing
1261    constrain_operands to fail.
1262 
1263    `R' is used for scaled indexed addresses.
1264 
1265    `S' is the constant 31.
1266 
1267    `T' is for floating-point loads and stores.  */
1268 #define EXTRA_CONSTRAINT(OP, C)				\
1269   ((C) == 'Q' ?						\
1270    (IS_RELOADING_PSEUDO_P (OP)				\
1271     || (GET_CODE (OP) == MEM				\
1272 	&& (memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1273 	    || reload_in_progress)			\
1274 	&& ! symbolic_memory_operand (OP, VOIDmode)	\
1275         && !(GET_CODE (XEXP (OP, 0)) == PLUS		\
1276 	     && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1277 		 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))))\
1278    : ((C) == 'R' ?					\
1279      (GET_CODE (OP) == MEM				\
1280       && GET_CODE (XEXP (OP, 0)) == PLUS		\
1281       && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT	\
1282 	  || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)	\
1283       && (move_operand (OP, GET_MODE (OP))		\
1284 	  || memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1285 	  || reload_in_progress))			\
1286    : ((C) == 'T' ?							\
1287       (GET_CODE (OP) == MEM						\
1288        /* Floating-point loads and stores are used to load		\
1289 	  integer values as well as floating-point values.		\
1290 	  They don't have the same set of REG+D address modes		\
1291 	  as integer loads and stores.  PA 1.x supports only		\
1292 	  short displacements.  PA 2.0 supports long displacements	\
1293 	  but the base register needs to be aligned.			\
1294 									\
1295 	  The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and		\
1296 	  DFmode test the validity of an address for use in a           \
1297 	  floating point load or store.  So, we use SFmode/DFmode       \
1298 	  to see if the address is valid for a floating-point           \
1299 	  load/store operation.  */                                     \
1300        && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4		\
1301 			     ? SFmode					\
1302 			     : DFmode),					\
1303 			    XEXP (OP, 0))				\
1304        && !(GET_CODE (XEXP (OP, 0)) == LO_SUM		\
1305 	    && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1306 	    && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0))\
1307 	    && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC\
1308 	    && GET_MODE (XEXP (OP, 0)) == Pmode)	\
1309        && !(GET_CODE (XEXP (OP, 0)) == PLUS		\
1310 	    && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1311 		|| GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)))\
1312    : ((C) == 'U' ?					\
1313       (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63)	\
1314    : ((C) == 'A' ?					\
1315       (GET_CODE (OP) == MEM				\
1316        && GET_CODE (XEXP (OP, 0)) == LO_SUM		\
1317        && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG	\
1318        && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0))	\
1319        && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC		\
1320        && GET_MODE (XEXP (OP, 0)) == Pmode)			\
1321    : ((C) == 'S' ?					\
1322       (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) : 0))))))
1323 
1324 
1325 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1326    and check its validity for a certain class.
1327    We have two alternate definitions for each of them.
1328    The usual definition accepts all pseudo regs; the other rejects
1329    them unless they have been allocated suitable hard regs.
1330    The symbol REG_OK_STRICT causes the latter definition to be used.
1331 
1332    Most source files want to accept pseudo regs in the hope that
1333    they will get allocated to the class that the insn wants them to be in.
1334    Source files for reload pass need to be strict.
1335    After reload, it makes no difference, since pseudo regs have
1336    been eliminated by then.  */
1337 
1338 #ifndef REG_OK_STRICT
1339 
1340 /* Nonzero if X is a hard reg that can be used as an index
1341    or if it is a pseudo reg.  */
1342 #define REG_OK_FOR_INDEX_P(X) \
1343 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1344 /* Nonzero if X is a hard reg that can be used as a base reg
1345    or if it is a pseudo reg.  */
1346 #define REG_OK_FOR_BASE_P(X) \
1347 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1348 
1349 #else
1350 
1351 /* Nonzero if X is a hard reg that can be used as an index.  */
1352 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1353 /* Nonzero if X is a hard reg that can be used as a base reg.  */
1354 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1355 
1356 #endif
1357 
1358 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1359    that is a valid memory address for an instruction.
1360    The MODE argument is the machine mode for the MEM expression
1361    that wants to use this address.
1362 
1363    On the HP-PA, the actual legitimate addresses must be
1364    REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
1365    But we can treat a SYMBOL_REF as legitimate if it is part of this
1366    function's constant-pool, because such addresses can actually
1367    be output as REG+SMALLINT.
1368 
1369    Note we only allow 5 bit immediates for access to a constant address;
1370    doing so avoids losing for loading/storing a FP register at an address
1371    which will not fit in 5 bits.  */
1372 
1373 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1374 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1375 
1376 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1377 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1378 
1379 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1380 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1381 
1382 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1383 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1384 
1385 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)  \
1386 {							\
1387   if ((REG_P (X) && REG_OK_FOR_BASE_P (X))		\
1388       || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC		\
1389 	   || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC)	\
1390 	  && REG_P (XEXP (X, 0))			\
1391 	  && REG_OK_FOR_BASE_P (XEXP (X, 0))))		\
1392     goto ADDR;						\
1393   else if (GET_CODE (X) == PLUS)			\
1394     {							\
1395       rtx base = 0, index = 0;				\
1396       if (REG_P (XEXP (X, 0))				\
1397 	  && REG_OK_FOR_BASE_P (XEXP (X, 0)))		\
1398 	base = XEXP (X, 0), index = XEXP (X, 1);	\
1399       else if (REG_P (XEXP (X, 1))			\
1400 	       && REG_OK_FOR_BASE_P (XEXP (X, 1)))	\
1401 	base = XEXP (X, 1), index = XEXP (X, 0);	\
1402       if (base != 0)					\
1403 	if (GET_CODE (index) == CONST_INT				\
1404 	    && ((INT_14_BITS (index)					\
1405 		 && (((MODE) != DImode					\
1406 		      && (MODE) != SFmode				\
1407 		      && (MODE) != DFmode)				\
1408 		     /* The base register for DImode loads and stores	\
1409 			with long displacements must be aligned because	\
1410 			the lower three bits in the displacement are	\
1411 			assumed to be zero.  */				\
1412 		     || ((MODE) == DImode				\
1413 			 && (!TARGET_64BIT				\
1414 			     || (INTVAL (index) % 8) == 0))		\
1415 		     /* Similarly, the base register for SFmode/DFmode	\
1416 			loads and stores with long displacements must	\
1417 			be aligned.					\
1418 									\
1419 			FIXME: the ELF32 linker clobbers the LSB of	\
1420 			the FP register number in PA 2.0 floating-point	\
1421 			insns with long displacements.  This is because	\
1422 			R_PARISC_DPREL14WR and other relocations like	\
1423 			it are not supported.  For now, we reject long	\
1424 			displacements on this target.  */		\
1425 		     || (((MODE) == SFmode || (MODE) == DFmode)		\
1426 			 && (TARGET_SOFT_FLOAT				\
1427 			     || (TARGET_PA_20				\
1428 				 && !TARGET_ELF32			\
1429 				 && (INTVAL (index)			\
1430 				     % GET_MODE_SIZE (MODE)) == 0)))))	\
1431 		|| INT_5_BITS (index)))					\
1432 	  goto ADDR;							\
1433       if (! TARGET_SOFT_FLOAT				\
1434 	  && ! TARGET_DISABLE_INDEXING			\
1435 	  && base					\
1436 	  && ((MODE) == SFmode || (MODE) == DFmode)	\
1437 	  && GET_CODE (index) == MULT			\
1438 	  && GET_CODE (XEXP (index, 0)) == REG		\
1439 	  && REG_OK_FOR_BASE_P (XEXP (index, 0))	\
1440 	  && GET_CODE (XEXP (index, 1)) == CONST_INT	\
1441 	  && INTVAL (XEXP (index, 1)) == ((MODE) == SFmode ? 4 : 8))\
1442 	goto ADDR;					\
1443     }							\
1444   else if (GET_CODE (X) == LO_SUM			\
1445 	   && GET_CODE (XEXP (X, 0)) == REG		\
1446 	   && REG_OK_FOR_BASE_P (XEXP (X, 0))		\
1447 	   && CONSTANT_P (XEXP (X, 1))			\
1448 	   && (TARGET_SOFT_FLOAT			\
1449 	       /* We can allow symbolic LO_SUM addresses\
1450 		  for PA2.0.  */			\
1451 	       || (TARGET_PA_20				\
1452 		   && !TARGET_ELF32			\
1453 	           && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1454 	       || ((MODE) != SFmode			\
1455 		   && (MODE) != DFmode)))		\
1456     goto ADDR;						\
1457   else if (GET_CODE (X) == LO_SUM			\
1458 	   && GET_CODE (XEXP (X, 0)) == SUBREG		\
1459 	   && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1460 	   && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1461 	   && CONSTANT_P (XEXP (X, 1))			\
1462 	   && (TARGET_SOFT_FLOAT			\
1463 	       /* We can allow symbolic LO_SUM addresses\
1464 		  for PA2.0.  */			\
1465 	       || (TARGET_PA_20				\
1466 		   && !TARGET_ELF32			\
1467 	           && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1468 	       || ((MODE) != SFmode			\
1469 		   && (MODE) != DFmode)))		\
1470     goto ADDR;						\
1471   else if (GET_CODE (X) == LABEL_REF			\
1472 	   || (GET_CODE (X) == CONST_INT		\
1473 	       && INT_5_BITS (X)))			\
1474     goto ADDR;						\
1475   /* Needed for -fPIC */				\
1476   else if (GET_CODE (X) == LO_SUM			\
1477 	   && GET_CODE (XEXP (X, 0)) == REG             \
1478 	   && REG_OK_FOR_BASE_P (XEXP (X, 0))		\
1479 	   && GET_CODE (XEXP (X, 1)) == UNSPEC		\
1480 	   && (TARGET_SOFT_FLOAT			\
1481 	       || (TARGET_PA_20	&& !TARGET_ELF32)	\
1482 	       || ((MODE) != SFmode			\
1483 		   && (MODE) != DFmode)))		\
1484     goto ADDR;						\
1485 }
1486 
1487 /* Look for machine dependent ways to make the invalid address AD a
1488    valid address.
1489 
1490    For the PA, transform:
1491 
1492         memory(X + <large int>)
1493 
1494    into:
1495 
1496         if (<large int> & mask) >= 16
1497           Y = (<large int> & ~mask) + mask + 1  Round up.
1498         else
1499           Y = (<large int> & ~mask)             Round down.
1500         Z = X + Y
1501         memory (Z + (<large int> - Y));
1502 
1503    This makes reload inheritance and reload_cse work better since Z
1504    can be reused.
1505 
1506    There may be more opportunities to improve code with this hook.  */
1507 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) 	\
1508 do { 									\
1509   int offset, newoffset, mask;						\
1510   rtx new, temp = NULL_RTX;						\
1511 									\
1512   mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1513 	  ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff);	\
1514 									\
1515   if (optimize								\
1516       && GET_CODE (AD) == PLUS)						\
1517     temp = simplify_binary_operation (PLUS, Pmode,			\
1518 				      XEXP (AD, 0), XEXP (AD, 1));	\
1519 									\
1520   new = temp ? temp : AD;						\
1521 									\
1522   if (optimize								\
1523       && GET_CODE (new) == PLUS						\
1524       && GET_CODE (XEXP (new, 0)) == REG				\
1525       && GET_CODE (XEXP (new, 1)) == CONST_INT)				\
1526     {									\
1527       offset = INTVAL (XEXP ((new), 1));				\
1528 									\
1529       /* Choose rounding direction.  Round up if we are >= halfway.  */	\
1530       if ((offset & mask) >= ((mask + 1) / 2))				\
1531 	newoffset = (offset & ~mask) + mask + 1;			\
1532       else								\
1533 	newoffset = offset & ~mask;					\
1534 									\
1535       /* Ensure that long displacements are aligned.  */		\
1536       if (!VAL_5_BITS_P (newoffset)					\
1537 	  && GET_MODE_CLASS (MODE) == MODE_FLOAT)			\
1538 	newoffset &= ~(GET_MODE_SIZE (MODE) -1);			\
1539 									\
1540       if (newoffset != 0						\
1541 	  && VAL_14_BITS_P (newoffset))					\
1542 	{								\
1543 									\
1544 	  temp = gen_rtx_PLUS (Pmode, XEXP (new, 0),			\
1545 			       GEN_INT (newoffset));			\
1546 	  AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1547 	  push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0,		\
1548 			     BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,	\
1549 			     (OPNUM), (TYPE));				\
1550 	  goto WIN;							\
1551 	}								\
1552     }									\
1553 } while (0)
1554 
1555 
1556 
1557 
1558 /* Try machine-dependent ways of modifying an illegitimate address
1559    to be legitimate.  If we find one, return the new, valid address.
1560    This macro is used in only one place: `memory_address' in explow.c.
1561 
1562    OLDX is the address as it was before break_out_memory_refs was called.
1563    In some cases it is useful to look at this to decide what needs to be done.
1564 
1565    MODE and WIN are passed so that this macro can use
1566    GO_IF_LEGITIMATE_ADDRESS.
1567 
1568    It is always safe for this macro to do nothing.  It exists to recognize
1569    opportunities to optimize the output.  */
1570 
1571 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)	\
1572 { rtx orig_x = (X);				\
1573   (X) = hppa_legitimize_address (X, OLDX, MODE);	\
1574   if ((X) != orig_x && memory_address_p (MODE, X)) \
1575     goto WIN; }
1576 
1577 /* Go to LABEL if ADDR (a legitimate address expression)
1578    has an effect that depends on the machine mode it is used for.  */
1579 
1580 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
1581   if (GET_CODE (ADDR) == PRE_DEC	\
1582       || GET_CODE (ADDR) == POST_DEC	\
1583       || GET_CODE (ADDR) == PRE_INC	\
1584       || GET_CODE (ADDR) == POST_INC)	\
1585     goto LABEL
1586 
1587 #define TARGET_ASM_SELECT_SECTION  pa_select_section
1588 
1589 /* Define this macro if references to a symbol must be treated
1590    differently depending on something about the variable or
1591    function named by the symbol (such as what section it is in).
1592 
1593    The macro definition, if any, is executed immediately after the
1594    rtl for DECL or other node is created.
1595    The value of the rtl will be a `mem' whose address is a
1596    `symbol_ref'.
1597 
1598    The usual thing for this macro to do is to a flag in the
1599    `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1600    name string in the `symbol_ref' (if one bit is not enough
1601    information).
1602 
1603    On the HP-PA we use this to indicate if a symbol is in text or
1604    data space.  Also, function labels need special treatment.  */
1605 
1606 #define TEXT_SPACE_P(DECL)\
1607   (TREE_CODE (DECL) == FUNCTION_DECL					\
1608    || (TREE_CODE (DECL) == VAR_DECL					\
1609        && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)		\
1610        && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1611        && !flag_pic)							\
1612    || (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c'			\
1613        && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1614 
1615 #define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
1616 
1617 /* Specify the machine mode that this machine uses
1618    for the index in the tablejump instruction.  */
1619 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? TImode : DImode)
1620 
1621 /* Jump tables must be 32 bit aligned, no matter the size of the element.  */
1622 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1623 
1624 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1625 #define DEFAULT_SIGNED_CHAR 1
1626 
1627 /* Max number of bytes we can move from memory to memory
1628    in one reasonably fast instruction.  */
1629 #define MOVE_MAX 8
1630 
1631 /* Higher than the default as we prefer to use simple move insns
1632    (better scheduling and delay slot filling) and because our
1633    built-in block move is really a 2X unrolled loop.
1634 
1635    Believe it or not, this has to be big enough to allow for copying all
1636    arguments passed in registers to avoid infinite recursion during argument
1637    setup for a function call.  Why?  Consider how we copy the stack slots
1638    reserved for parameters when they may be trashed by a call.  */
1639 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1640 
1641 /* Define if operations between registers always perform the operation
1642    on the full register even if a narrower mode is specified.  */
1643 #define WORD_REGISTER_OPERATIONS
1644 
1645 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1646    will either zero-extend or sign-extend.  The value of this macro should
1647    be the code that says which one of the two operations is implicitly
1648    done, NIL if none.  */
1649 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1650 
1651 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1652 #define SLOW_BYTE_ACCESS 1
1653 
1654 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1655    is done just by pretending it is already truncated.  */
1656 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1657 
1658 /* We assume that the store-condition-codes instructions store 0 for false
1659    and some other value for true.  This is the value stored for true.  */
1660 
1661 #define STORE_FLAG_VALUE 1
1662 
1663 /* When a prototype says `char' or `short', really pass an `int'.  */
1664 #define PROMOTE_PROTOTYPES 1
1665 #define PROMOTE_FUNCTION_RETURN 1
1666 
1667 /* Specify the machine mode that pointers have.
1668    After generation of rtl, the compiler makes no further distinction
1669    between pointers and any other objects of this machine mode.  */
1670 #define Pmode word_mode
1671 
1672 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1673    return the mode to be used for the comparison.  For floating-point, CCFPmode
1674    should be used.  CC_NOOVmode should be used when the first operand is a
1675    PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
1676    needed.  */
1677 #define SELECT_CC_MODE(OP,X,Y) \
1678   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
1679 
1680 /* A function address in a call instruction
1681    is a byte address (for indexing purposes)
1682    so give the MEM rtx a byte's mode.  */
1683 #define FUNCTION_MODE SImode
1684 
1685 /* Define this if addresses of constant functions
1686    shouldn't be put through pseudo regs where they can be cse'd.
1687    Desirable on machines where ordinary constants are expensive
1688    but a CALL with constant address is cheap.  */
1689 #define NO_FUNCTION_CSE
1690 
1691 /* Define this to be nonzero if shift instructions ignore all but the low-order
1692    few bits.  */
1693 #define SHIFT_COUNT_TRUNCATED 1
1694 
1695 /* Compute the cost of computing a constant rtl expression RTX
1696    whose rtx-code is CODE.  The body of this macro is a portion
1697    of a switch statement.  If the code is computed here,
1698    return it with a return statement.  Otherwise, break from the switch.  */
1699 
1700 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1701   case CONST_INT:							\
1702     if (INTVAL (RTX) == 0) return 0;					\
1703     if (INT_14_BITS (RTX)) return 1;					\
1704   case HIGH:								\
1705     return 2;								\
1706   case CONST:								\
1707   case LABEL_REF:							\
1708   case SYMBOL_REF:							\
1709     return 4;								\
1710   case CONST_DOUBLE:							\
1711     if ((RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode))	\
1712 	&& OUTER_CODE != SET)						\
1713       return 0;								\
1714     else								\
1715       return 8;
1716 
1717 #define ADDRESS_COST(RTX) \
1718   (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
1719 
1720 /* Compute extra cost of moving data between one register class
1721    and another.
1722 
1723    Make moves from SAR so expensive they should never happen.  We used to
1724    have 0xffff here, but that generates overflow in rare cases.
1725 
1726    Copies involving a FP register and a non-FP register are relatively
1727    expensive because they must go through memory.
1728 
1729    Other copies are reasonably cheap.  */
1730 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1731  (CLASS1 == SHIFT_REGS ? 0x100					\
1732   : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16	\
1733   : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16	\
1734   : 2)
1735 
1736 
1737 /* Provide the costs of a rtl expression.  This is in the body of a
1738    switch on CODE.  The purpose for the cost of MULT is to encourage
1739    `synth_mult' to find a synthetic multiply when reasonable.  */
1740 
1741 #define RTX_COSTS(X,CODE,OUTER_CODE)					\
1742   case MULT:								\
1743     if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)			\
1744       return COSTS_N_INSNS (3);						\
1745     return (TARGET_PA_11 && ! TARGET_DISABLE_FPREGS && ! TARGET_SOFT_FLOAT) \
1746 	    ? COSTS_N_INSNS (8) : COSTS_N_INSNS (20);	\
1747   case DIV:								\
1748     if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)			\
1749       return COSTS_N_INSNS (14);					\
1750   case UDIV:								\
1751   case MOD:								\
1752   case UMOD:								\
1753     return COSTS_N_INSNS (60);						\
1754   case PLUS: /* this includes shNadd insns */				\
1755   case MINUS:								\
1756     if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)			\
1757       return COSTS_N_INSNS (3);						\
1758     return COSTS_N_INSNS (1);						\
1759   case ASHIFT:								\
1760   case ASHIFTRT:							\
1761   case LSHIFTRT:							\
1762     return COSTS_N_INSNS (1);
1763 
1764 /* Adjust the cost of branches.  */
1765 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1766 
1767 /* Handling the special cases is going to get too complicated for a macro,
1768    just call `pa_adjust_insn_length' to do the real work.  */
1769 #define ADJUST_INSN_LENGTH(INSN, LENGTH)	\
1770   LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1771 
1772 /* Millicode insns are actually function calls with some special
1773    constraints on arguments and register usage.
1774 
1775    Millicode calls always expect their arguments in the integer argument
1776    registers, and always return their result in %r29 (ret1).  They
1777    are expected to clobber their arguments, %r1, %r29, and the return
1778    pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1779 
1780    This macro tells reorg that the references to arguments and
1781    millicode calls do not appear to happen until after the millicode call.
1782    This allows reorg to put insns which set the argument registers into the
1783    delay slot of the millicode call -- thus they act more like traditional
1784    CALL_INSNs.
1785 
1786    Note we can not consider side effects of the insn to be delayed because
1787    the branch and link insn will clobber the return pointer.  If we happened
1788    to use the return pointer in the delay slot of the call, then we lose.
1789 
1790    get_attr_type will try to recognize the given insn, so make sure to
1791    filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1792    in particular.  */
1793 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1794 
1795 
1796 /* Control the assembler format that we output.  */
1797 
1798 /* Output to assembler file text saying following lines
1799    may contain character constants, extra white space, comments, etc.  */
1800 
1801 #define ASM_APP_ON ""
1802 
1803 /* Output to assembler file text saying following lines
1804    no longer contain unusual constructs.  */
1805 
1806 #define ASM_APP_OFF ""
1807 
1808 /* Output deferred plabels at the end of the file.  */
1809 
1810 #define ASM_FILE_END(FILE) output_deferred_plabels (FILE)
1811 
1812 /* This is how to output the definition of a user-level label named NAME,
1813    such as the label on a static function or variable NAME.  */
1814 
1815 #define ASM_OUTPUT_LABEL(FILE, NAME)	\
1816   do { assemble_name (FILE, NAME); 	\
1817        fputc ('\n', FILE); } while (0)
1818 
1819 /* This is how to output a reference to a user-level label named NAME.
1820    `assemble_name' uses this.  */
1821 
1822 #define ASM_OUTPUT_LABELREF(FILE,NAME)	\
1823   do {					\
1824     const char *xname = (NAME);		\
1825     if (FUNCTION_NAME_P (NAME))		\
1826       xname += 1;			\
1827     if (xname[0] == '*')		\
1828       xname += 1;			\
1829     else				\
1830       fputs (user_label_prefix, FILE);	\
1831     fputs (xname, FILE);		\
1832   } while (0)
1833 
1834 /* This is how to output an internal numbered label where
1835    PREFIX is the class of label and NUM is the number within the class.  */
1836 
1837 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
1838   {fprintf (FILE, "%c$%s%04d\n", (PREFIX)[0], (PREFIX) + 1, NUM);}
1839 
1840 /* This is how to store into the string LABEL
1841    the symbol_ref name of an internal numbered label where
1842    PREFIX is the class of label and NUM is the number within the class.
1843    This is suitable for output with `assemble_name'.  */
1844 
1845 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1846   sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1847 
1848 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1849 
1850 #define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
1851   output_ascii ((FILE), (P), (SIZE))
1852 
1853 /* This is how to output an element of a case-vector that is absolute.
1854    Note that this method makes filling these branch delay slots
1855    impossible.  */
1856 
1857 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1858   if (TARGET_BIG_SWITCH)					\
1859     fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldil LR'L$%04d,%%r1\n\tbe RR'L$%04d(%%sr4,%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE, VALUE);		\
1860   else								\
1861     fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1862 
1863 /* Jump tables are executable code and live in the TEXT section on the PA.  */
1864 #define JUMP_TABLES_IN_TEXT_SECTION 1
1865 
1866 /* This is how to output an element of a case-vector that is relative.
1867    This must be defined correctly as it is used when generating PIC code.
1868 
1869    I believe it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT
1870    on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions
1871    rather than a table of absolute addresses.  */
1872 
1873 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1874   if (TARGET_BIG_SWITCH)					\
1875     fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldw T'L$%04d(%%r19),%%r1\n\tbv %%r0(%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE);				\
1876   else								\
1877     fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1878 
1879 /* This is how to output an assembler line
1880    that says to advance the location counter
1881    to a multiple of 2**LOG bytes.  */
1882 
1883 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1884     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1885 
1886 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1887   fprintf (FILE, "\t.blockz %d\n", (SIZE))
1888 
1889 /* This says how to output an assembler line to define a global common symbol
1890    with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1891 
1892 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED)  		\
1893 { bss_section ();							\
1894   assemble_name ((FILE), (NAME));					\
1895   fputs ("\t.comm ", (FILE));						\
1896   fprintf ((FILE), "%d\n", MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));}
1897 
1898 /* This says how to output an assembler line to define a local common symbol
1899    with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1900 
1901 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
1902 { bss_section ();							\
1903   fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT));	\
1904   assemble_name ((FILE), (NAME));				\
1905   fprintf ((FILE), "\n\t.block %d\n", (SIZE));}
1906 
1907 /* Store in OUTPUT a string (made with alloca) containing
1908    an assembler-name for a local static variable named NAME.
1909    LABELNO is an integer which is different for each call.  */
1910 
1911 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
1912 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12),	\
1913   sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1914 
1915 /* All HP assemblers use "!" to separate logical lines.  */
1916 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1917 
1918 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1919   ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1920 
1921 /* Print operand X (an rtx) in assembler syntax to file FILE.
1922    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1923    For `%' followed by punctuation, CODE is the punctuation and X is null.
1924 
1925    On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1926    and an immediate zero should be represented as `r0'.
1927 
1928    Several % codes are defined:
1929    O an operation
1930    C compare conditions
1931    N extract conditions
1932    M modifier to handle preincrement addressing for memory refs.
1933    F modifier to handle preincrement addressing for fp memory refs */
1934 
1935 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1936 
1937 
1938 /* Print a memory address as an operand to reference that memory location.  */
1939 
1940 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1941 { register rtx addr = ADDR;						\
1942   register rtx base;							\
1943   int offset;								\
1944   switch (GET_CODE (addr))						\
1945     {									\
1946     case REG:								\
1947       fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);		\
1948       break;								\
1949     case PLUS:								\
1950       if (GET_CODE (XEXP (addr, 0)) == CONST_INT)			\
1951 	offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);	\
1952       else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)			\
1953 	offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);	\
1954       else								\
1955 	abort ();							\
1956       fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]);	\
1957       break;								\
1958     case LO_SUM:							\
1959       if (!symbolic_operand (XEXP (addr, 1), VOIDmode))			\
1960 	fputs ("R'", FILE);						\
1961       else if (flag_pic == 0)						\
1962 	fputs ("RR'", FILE);						\
1963       else								\
1964 	fputs ("RT'", FILE);						\
1965       output_global_address (FILE, XEXP (addr, 1), 0);			\
1966       fputs ("(", FILE);						\
1967       output_operand (XEXP (addr, 0), 0);				\
1968       fputs (")", FILE);						\
1969       break;								\
1970     case CONST_INT:							\
1971       fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));		\
1972       fprintf (FILE, "(%%r0)");						\
1973       break;								\
1974     default:								\
1975       output_addr_const (FILE, addr);					\
1976     }}
1977 
1978 
1979 /* Find the return address associated with the frame given by
1980    FRAMEADDR.  */
1981 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR)				 \
1982   (return_addr_rtx (COUNT, FRAMEADDR))
1983 
1984 /* Used to mask out junk bits from the return address, such as
1985    processor state, interrupt status, condition codes and the like.  */
1986 #define MASK_RETURN_ADDR						\
1987   /* The privilege level is in the two low order bits, mask em out	\
1988      of the return address.  */						\
1989   (GEN_INT (-4))
1990 
1991 /* The number of Pmode words for the setjmp buffer.  */
1992 #define JMP_BUF_SIZE 50
1993 
1994 /* Only direct calls to static functions are allowed to be sibling (tail)
1995    call optimized.
1996 
1997    This restriction is necessary because some linker generated stubs will
1998    store return pointers into rp' in some cases which might clobber a
1999    live value already in rp'.
2000 
2001    In a sibcall the current function and the target function share stack
2002    space.  Thus if the path to the current function and the path to the
2003    target function save a value in rp', they save the value into the
2004    same stack slot, which has undesirable consequences.
2005 
2006    Because of the deferred binding nature of shared libraries any function
2007    with external scope could be in a different load module and thus require
2008    rp' to be saved when calling that function.  So sibcall optimizations
2009    can only be safe for static function.
2010 
2011    Note that GCC never needs return value relocations, so we don't have to
2012    worry about static calls with return value relocations (which require
2013    saving rp').
2014 
2015    It is safe to perform a sibcall optimization when the target function
2016    will never return.  */
2017 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
2018   (DECL \
2019    && ! TARGET_PORTABLE_RUNTIME \
2020    && ! TARGET_64BIT \
2021    && ! TREE_PUBLIC (DECL))
2022 
2023 #define PREDICATE_CODES							\
2024   {"reg_or_0_operand", {SUBREG, REG, CONST_INT}},			\
2025   {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT,		\
2026 			    CONST_DOUBLE, CONST, HIGH, CONSTANT_P_RTX}}, \
2027   {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
2028   {"symbolic_memory_operand", {SUBREG, MEM}},				\
2029   {"reg_before_reload_operand", {REG, MEM}},				\
2030   {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}},			\
2031   {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT,	\
2032 				       CONST_DOUBLE}},			\
2033   {"move_operand", {SUBREG, REG, CONSTANT_P_RTX, CONST_INT, MEM}},	\
2034   {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}},		\
2035   {"pic_label_operand", {LABEL_REF, CONST}},				\
2036   {"fp_reg_operand", {REG}},						\
2037   {"arith_operand", {SUBREG, REG, CONST_INT}},				\
2038   {"arith11_operand", {SUBREG, REG, CONST_INT}},			\
2039   {"pre_cint_operand", {CONST_INT}},					\
2040   {"post_cint_operand", {CONST_INT}},					\
2041   {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}},		\
2042   {"ireg_or_int5_operand", {CONST_INT, REG}},				\
2043   {"int5_operand", {CONST_INT}},					\
2044   {"uint5_operand", {CONST_INT}},					\
2045   {"int11_operand", {CONST_INT}},					\
2046   {"uint32_operand", {CONST_INT,					\
2047    HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}},			\
2048   {"arith5_operand", {SUBREG, REG, CONST_INT}},				\
2049   {"and_operand", {SUBREG, REG, CONST_INT}},				\
2050   {"ior_operand", {CONST_INT}},						\
2051   {"lhs_lshift_cint_operand", {CONST_INT}},				\
2052   {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}},			\
2053   {"arith32_operand", {SUBREG, REG, CONST_INT}},			\
2054   {"pc_or_label_operand", {PC, LABEL_REF}},				\
2055   {"plus_xor_ior_operator", {PLUS, XOR, IOR}},				\
2056   {"shadd_operand", {CONST_INT}},					\
2057   {"basereg_operand", {REG}},						\
2058   {"div_operand", {REG, CONST_INT}},					\
2059   {"ireg_operand", {REG}},						\
2060   {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU,			\
2061    GT, GTU, GE}},							\
2062   {"movb_comparison_operator", {EQ, NE, LT, GE}},
2063 
2064 /* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
2065 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
2066   "__canonicalize_funcptr_for_compare"
2067