1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
28 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
29 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
30 * PSMI 1.5 extensions are supported in Solaris Nevada.
31 * PSMI 1.6 extensions are supported in Solaris Nevada.
32 * PSMI 1.7 extensions are supported in Solaris Nevada.
33 */
34 #define PSMI_1_7
35
36 #include <sys/processor.h>
37 #include <sys/time.h>
38 #include <sys/psm.h>
39 #include <sys/smp_impldefs.h>
40 #include <sys/cram.h>
41 #include <sys/acpi/acpi.h>
42 #include <sys/acpica.h>
43 #include <sys/psm_common.h>
44 #include <sys/apic.h>
45 #include <sys/pit.h>
46 #include <sys/ddi.h>
47 #include <sys/sunddi.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/pci.h>
50 #include <sys/promif.h>
51 #include <sys/x86_archext.h>
52 #include <sys/cpc_impl.h>
53 #include <sys/uadmin.h>
54 #include <sys/panic.h>
55 #include <sys/debug.h>
56 #include <sys/archsystm.h>
57 #include <sys/trap.h>
58 #include <sys/machsystm.h>
59 #include <sys/sysmacros.h>
60 #include <sys/cpuvar.h>
61 #include <sys/rm_platter.h>
62 #include <sys/privregs.h>
63 #include <sys/note.h>
64 #include <sys/pci_intr_lib.h>
65 #include <sys/spl.h>
66 #include <sys/clock.h>
67 #include <sys/dditypes.h>
68 #include <sys/sunddi.h>
69 #include <sys/x_call.h>
70 #include <sys/reboot.h>
71 #include <sys/hpet.h>
72 #include <sys/apic_common.h>
73 #include <sys/apic_timer.h>
74
75 static void apic_record_ioapic_rdt(void *intrmap_private,
76 ioapic_rdt_t *irdt);
77 static void apic_record_msi(void *intrmap_private, msi_regs_t *mregs);
78
79 /*
80 * Common routines between pcplusmp & apix (taken from apic.c).
81 */
82
83 int apic_clkinit(int);
84 hrtime_t apic_gethrtime(void);
85 void apic_send_ipi(int, int);
86 void apic_set_idlecpu(processorid_t);
87 void apic_unset_idlecpu(processorid_t);
88 void apic_shutdown(int, int);
89 void apic_preshutdown(int, int);
90 processorid_t apic_get_next_processorid(processorid_t);
91
92 hrtime_t apic_gettime();
93
94 enum apic_ioapic_method_type apix_mul_ioapic_method = APIC_MUL_IOAPIC_PCPLUSMP;
95
96 /* Now the ones for Dynamic Interrupt distribution */
97 int apic_enable_dynamic_migration = 0;
98
99 /* maximum loop count when sending Start IPIs. */
100 int apic_sipi_max_loop_count = 0x1000;
101
102 /*
103 * These variables are frequently accessed in apic_intr_enter(),
104 * apic_intr_exit and apic_setspl, so group them together
105 */
106 volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */
107 int apic_setspl_delay = 1; /* apic_setspl - delay enable */
108 int apic_clkvect;
109
110 /* vector at which error interrupts come in */
111 int apic_errvect;
112 int apic_enable_error_intr = 1;
113 int apic_error_display_delay = 100;
114
115 /* vector at which performance counter overflow interrupts come in */
116 int apic_cpcovf_vect;
117 int apic_enable_cpcovf_intr = 1;
118
119 /* vector at which CMCI interrupts come in */
120 int apic_cmci_vect;
121 extern int cmi_enable_cmci;
122 extern void cmi_cmci_trap(void);
123
124 kmutex_t cmci_cpu_setup_lock; /* protects cmci_cpu_setup_registered */
125 int cmci_cpu_setup_registered;
126
127 /* number of CPUs in power-on transition state */
128 static int apic_poweron_cnt = 0;
129 lock_t apic_mode_switch_lock;
130
131 /*
132 * Patchable global variables.
133 */
134 int apic_forceload = 0;
135
136 int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */
137
138 int apic_flat_model = 0; /* 0 - clustered. 1 - flat */
139 int apic_panic_on_nmi = 0;
140 int apic_panic_on_apic_error = 0;
141
142 int apic_verbose = 0; /* 0x1ff */
143
144 #ifdef DEBUG
145 int apic_debug = 0;
146 int apic_restrict_vector = 0;
147
148 int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE];
149 int apic_debug_msgbufindex = 0;
150
151 #endif /* DEBUG */
152
153 uint_t apic_nticks = 0;
154 uint_t apic_skipped_redistribute = 0;
155
156 uint_t last_count_read = 0;
157 lock_t apic_gethrtime_lock;
158 volatile int apic_hrtime_stamp = 0;
159 volatile hrtime_t apic_nsec_since_boot = 0;
160
161 static hrtime_t apic_last_hrtime = 0;
162 int apic_hrtime_error = 0;
163 int apic_remote_hrterr = 0;
164 int apic_num_nmis = 0;
165 int apic_apic_error = 0;
166 int apic_num_apic_errors = 0;
167 int apic_num_cksum_errors = 0;
168
169 int apic_error = 0;
170
171 static int apic_cmos_ssb_set = 0;
172
173 /* use to make sure only one cpu handles the nmi */
174 lock_t apic_nmi_lock;
175 /* use to make sure only one cpu handles the error interrupt */
176 lock_t apic_error_lock;
177
178 static struct {
179 uchar_t cntl;
180 uchar_t data;
181 } aspen_bmc[] = {
182 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */
183 { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */
184 { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */
185 { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */
186 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */
187 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */
188 { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */
189 { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */
190
191 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */
192 { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */
193 };
194
195 static struct {
196 int port;
197 uchar_t data;
198 } sitka_bmc[] = {
199 { SMS_COMMAND_REGISTER, SMS_WRITE_START },
200 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */
201 { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */
202 { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */
203 { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */
204 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */
205 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */
206 { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */
207 { SMS_COMMAND_REGISTER, SMS_WRITE_END },
208 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */
209
210 { SMS_COMMAND_REGISTER, SMS_WRITE_START },
211 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */
212 { SMS_COMMAND_REGISTER, SMS_WRITE_END },
213 { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */
214 };
215
216 /* Patchable global variables. */
217 int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */
218 uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */
219
220 /* default apic ops without interrupt remapping */
221 static apic_intrmap_ops_t apic_nointrmap_ops = {
222 (int (*)(int))return_instr,
223 (void (*)(int))return_instr,
224 (void (*)(void **, dev_info_t *, uint16_t, int, uchar_t))return_instr,
225 (void (*)(void *, void *, uint16_t, int))return_instr,
226 (void (*)(void **))return_instr,
227 apic_record_ioapic_rdt,
228 apic_record_msi,
229 };
230
231 apic_intrmap_ops_t *apic_vt_ops = &apic_nointrmap_ops;
232 apic_cpus_info_t *apic_cpus = NULL;
233 cpuset_t apic_cpumask;
234 uint_t apic_picinit_called;
235
236 /* Flag to indicate that we need to shut down all processors */
237 static uint_t apic_shutdown_processors;
238
239 /*
240 * Probe the ioapic method for apix module. Called in apic_probe_common()
241 */
242 int
apic_ioapic_method_probe()243 apic_ioapic_method_probe()
244 {
245 if (apix_enable == 0)
246 return (PSM_SUCCESS);
247
248 /*
249 * Set IOAPIC EOI handling method. The priority from low to high is:
250 * 1. IOxAPIC: with EOI register
251 * 2. IOMMU interrupt mapping
252 * 3. Mask-Before-EOI method for systems without boot
253 * interrupt routing, such as systems with only one IOAPIC;
254 * NVIDIA CK8-04/MCP55 systems; systems with bridge solution
255 * which disables the boot interrupt routing already.
256 * 4. Directed EOI
257 */
258 if (apic_io_ver[0] >= 0x20)
259 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IOXAPIC;
260 if ((apic_io_max == 1) || (apic_nvidia_io_max == apic_io_max))
261 apix_mul_ioapic_method = APIC_MUL_IOAPIC_MASK;
262 if (apic_directed_EOI_supported())
263 apix_mul_ioapic_method = APIC_MUL_IOAPIC_DEOI;
264
265 /* fall back to pcplusmp */
266 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_PCPLUSMP) {
267 /* make sure apix is after pcplusmp in /etc/mach */
268 apix_enable = 0; /* go ahead with pcplusmp install next */
269 return (PSM_FAILURE);
270 }
271
272 return (PSM_SUCCESS);
273 }
274
275 /*
276 * handler for APIC Error interrupt. Just print a warning and continue
277 */
278 int
apic_error_intr()279 apic_error_intr()
280 {
281 uint_t error0, error1, error;
282 uint_t i;
283
284 /*
285 * We need to write before read as per 7.4.17 of system prog manual.
286 * We do both and or the results to be safe
287 */
288 error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS);
289 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
290 error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS);
291 error = error0 | error1;
292
293 /*
294 * Clear the APIC error status (do this on all cpus that enter here)
295 * (two writes are required due to the semantics of accessing the
296 * error status register.)
297 */
298 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
299 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
300
301 /*
302 * Prevent more than 1 CPU from handling error interrupt causing
303 * double printing (interleave of characters from multiple
304 * CPU's when using prom_printf)
305 */
306 if (lock_try(&apic_error_lock) == 0)
307 return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
308 if (error) {
309 #if DEBUG
310 if (apic_debug)
311 debug_enter("pcplusmp: APIC Error interrupt received");
312 #endif /* DEBUG */
313 if (apic_panic_on_apic_error)
314 cmn_err(CE_PANIC,
315 "APIC Error interrupt on CPU %d. Status = %x",
316 psm_get_cpu_id(), error);
317 else {
318 if ((error & ~APIC_CS_ERRORS) == 0) {
319 /* cksum error only */
320 apic_error |= APIC_ERR_APIC_ERROR;
321 apic_apic_error |= error;
322 apic_num_apic_errors++;
323 apic_num_cksum_errors++;
324 } else {
325 /*
326 * prom_printf is the best shot we have of
327 * something which is problem free from
328 * high level/NMI type of interrupts
329 */
330 prom_printf("APIC Error interrupt on CPU %d. "
331 "Status 0 = %x, Status 1 = %x\n",
332 psm_get_cpu_id(), error0, error1);
333 apic_error |= APIC_ERR_APIC_ERROR;
334 apic_apic_error |= error;
335 apic_num_apic_errors++;
336 for (i = 0; i < apic_error_display_delay; i++) {
337 tenmicrosec();
338 }
339 /*
340 * provide more delay next time limited to
341 * roughly 1 clock tick time
342 */
343 if (apic_error_display_delay < 500)
344 apic_error_display_delay *= 2;
345 }
346 }
347 lock_clear(&apic_error_lock);
348 return (DDI_INTR_CLAIMED);
349 } else {
350 lock_clear(&apic_error_lock);
351 return (DDI_INTR_UNCLAIMED);
352 }
353 }
354
355 /*
356 * Turn off the mask bit in the performance counter Local Vector Table entry.
357 */
358 void
apic_cpcovf_mask_clear(void)359 apic_cpcovf_mask_clear(void)
360 {
361 apic_reg_ops->apic_write(APIC_PCINT_VECT,
362 (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK));
363 }
364
365 /*ARGSUSED*/
366 static int
apic_cmci_enable(xc_arg_t arg1,xc_arg_t arg2,xc_arg_t arg3)367 apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
368 {
369 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
370 return (0);
371 }
372
373 /*ARGSUSED*/
374 static int
apic_cmci_disable(xc_arg_t arg1,xc_arg_t arg2,xc_arg_t arg3)375 apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
376 {
377 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK);
378 return (0);
379 }
380
381 /*ARGSUSED*/
382 int
cmci_cpu_setup(cpu_setup_t what,int cpuid,void * arg)383 cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
384 {
385 cpuset_t cpu_set;
386
387 CPUSET_ONLY(cpu_set, cpuid);
388
389 switch (what) {
390 case CPU_ON:
391 xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set),
392 (xc_func_t)apic_cmci_enable);
393 break;
394
395 case CPU_OFF:
396 xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set),
397 (xc_func_t)apic_cmci_disable);
398 break;
399
400 default:
401 break;
402 }
403
404 return (0);
405 }
406
407 static void
apic_disable_local_apic(void)408 apic_disable_local_apic(void)
409 {
410 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
411 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK);
412
413 /* local intr reg 0 */
414 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK);
415
416 /* disable NMI */
417 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK);
418
419 /* and error interrupt */
420 apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK);
421
422 /* and perf counter intr */
423 apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK);
424
425 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR);
426 }
427
428 static void
apic_cpu_send_SIPI(processorid_t cpun,boolean_t start)429 apic_cpu_send_SIPI(processorid_t cpun, boolean_t start)
430 {
431 int loop_count;
432 uint32_t vector;
433 uint_t apicid;
434 ulong_t iflag;
435
436 apicid = apic_cpus[cpun].aci_local_id;
437
438 /*
439 * Interrupts on current CPU will be disabled during the
440 * steps in order to avoid unwanted side effects from
441 * executing interrupt handlers on a problematic BIOS.
442 */
443 iflag = intr_clear();
444
445 if (start) {
446 outb(CMOS_ADDR, SSB);
447 outb(CMOS_DATA, BIOS_SHUTDOWN);
448 }
449
450 /*
451 * According to X2APIC specification in section '2.3.5.1' of
452 * Interrupt Command Register Semantics, the semantics of
453 * programming the Interrupt Command Register to dispatch an interrupt
454 * is simplified. A single MSR write to the 64-bit ICR is required
455 * for dispatching an interrupt. Specifically, with the 64-bit MSR
456 * interface to ICR, system software is not required to check the
457 * status of the delivery status bit prior to writing to the ICR
458 * to send an IPI. With the removal of the Delivery Status bit,
459 * system software no longer has a reason to read the ICR. It remains
460 * readable only to aid in debugging.
461 */
462 #ifdef DEBUG
463 APIC_AV_PENDING_SET();
464 #else
465 if (apic_mode == LOCAL_APIC) {
466 APIC_AV_PENDING_SET();
467 }
468 #endif /* DEBUG */
469
470 /* for integrated - make sure there is one INIT IPI in buffer */
471 /* for external - it will wake up the cpu */
472 apic_reg_ops->apic_write_int_cmd(apicid, AV_ASSERT | AV_RESET);
473
474 /* If only 1 CPU is installed, PENDING bit will not go low */
475 for (loop_count = apic_sipi_max_loop_count; loop_count; loop_count--) {
476 if (apic_mode == LOCAL_APIC &&
477 apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING)
478 apic_ret();
479 else
480 break;
481 }
482
483 apic_reg_ops->apic_write_int_cmd(apicid, AV_DEASSERT | AV_RESET);
484 drv_usecwait(20000); /* 20 milli sec */
485
486 if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) {
487 /* integrated apic */
488
489 vector = (rm_platter_pa >> MMU_PAGESHIFT) &
490 (APIC_VECTOR_MASK | APIC_IPL_MASK);
491
492 /* to offset the INIT IPI queue up in the buffer */
493 apic_reg_ops->apic_write_int_cmd(apicid, vector | AV_STARTUP);
494 drv_usecwait(200); /* 20 micro sec */
495
496 /*
497 * send the second SIPI (Startup IPI) as recommended by Intel
498 * software development manual.
499 */
500 apic_reg_ops->apic_write_int_cmd(apicid, vector | AV_STARTUP);
501 drv_usecwait(200); /* 20 micro sec */
502 }
503
504 intr_restore(iflag);
505 }
506
507 /*ARGSUSED1*/
508 int
apic_cpu_start(processorid_t cpun,caddr_t arg)509 apic_cpu_start(processorid_t cpun, caddr_t arg)
510 {
511 ASSERT(MUTEX_HELD(&cpu_lock));
512
513 if (!apic_cpu_in_range(cpun)) {
514 return (EINVAL);
515 }
516
517 /*
518 * Switch to apic_common_send_ipi for safety during starting other CPUs.
519 */
520 if (apic_mode == LOCAL_X2APIC) {
521 apic_switch_ipi_callback(B_TRUE);
522 }
523
524 apic_cmos_ssb_set = 1;
525 apic_cpu_send_SIPI(cpun, B_TRUE);
526
527 return (0);
528 }
529
530 /*
531 * Put CPU into halted state with interrupts disabled.
532 */
533 /*ARGSUSED1*/
534 int
apic_cpu_stop(processorid_t cpun,caddr_t arg)535 apic_cpu_stop(processorid_t cpun, caddr_t arg)
536 {
537 int rc;
538 cpu_t *cp;
539 extern cpuset_t cpu_ready_set;
540 extern void cpu_idle_intercept_cpu(cpu_t *cp);
541
542 ASSERT(MUTEX_HELD(&cpu_lock));
543
544 if (!apic_cpu_in_range(cpun)) {
545 return (EINVAL);
546 }
547 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
548 return (ENOTSUP);
549 }
550
551 cp = cpu_get(cpun);
552 ASSERT(cp != NULL);
553 ASSERT((cp->cpu_flags & CPU_OFFLINE) != 0);
554 ASSERT((cp->cpu_flags & CPU_QUIESCED) != 0);
555 ASSERT((cp->cpu_flags & CPU_ENABLE) == 0);
556
557 /* Clear CPU_READY flag to disable cross calls. */
558 cp->cpu_flags &= ~CPU_READY;
559 CPUSET_ATOMIC_DEL(cpu_ready_set, cpun);
560 rc = xc_flush_cpu(cp);
561 if (rc != 0) {
562 CPUSET_ATOMIC_ADD(cpu_ready_set, cpun);
563 cp->cpu_flags |= CPU_READY;
564 return (rc);
565 }
566
567 /* Intercept target CPU at a safe point before powering it off. */
568 cpu_idle_intercept_cpu(cp);
569
570 apic_cpu_send_SIPI(cpun, B_FALSE);
571 cp->cpu_flags &= ~CPU_RUNNING;
572
573 return (0);
574 }
575
576 int
apic_cpu_ops(psm_cpu_request_t * reqp)577 apic_cpu_ops(psm_cpu_request_t *reqp)
578 {
579 if (reqp == NULL) {
580 return (EINVAL);
581 }
582
583 switch (reqp->pcr_cmd) {
584 case PSM_CPU_ADD:
585 return (apic_cpu_add(reqp));
586
587 case PSM_CPU_REMOVE:
588 return (apic_cpu_remove(reqp));
589
590 case PSM_CPU_STOP:
591 return (apic_cpu_stop(reqp->req.cpu_stop.cpuid,
592 reqp->req.cpu_stop.ctx));
593
594 default:
595 return (ENOTSUP);
596 }
597 }
598
599 #ifdef DEBUG
600 int apic_break_on_cpu = 9;
601 int apic_stretch_interrupts = 0;
602 int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */
603 #endif /* DEBUG */
604
605 /*
606 * generates an interprocessor interrupt to another CPU. Any changes made to
607 * this routine must be accompanied by similar changes to
608 * apic_common_send_ipi().
609 */
610 void
apic_send_ipi(int cpun,int ipl)611 apic_send_ipi(int cpun, int ipl)
612 {
613 int vector;
614 ulong_t flag;
615
616 vector = apic_resv_vector[ipl];
617
618 ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR));
619
620 flag = intr_clear();
621
622 APIC_AV_PENDING_SET();
623
624 apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id,
625 vector);
626
627 intr_restore(flag);
628 }
629
630
631 /*ARGSUSED*/
632 void
apic_set_idlecpu(processorid_t cpun)633 apic_set_idlecpu(processorid_t cpun)
634 {
635 }
636
637 /*ARGSUSED*/
638 void
apic_unset_idlecpu(processorid_t cpun)639 apic_unset_idlecpu(processorid_t cpun)
640 {
641 }
642
643
644 void
apic_ret()645 apic_ret()
646 {
647 }
648
649 /*
650 * If apic_coarse_time == 1, then apic_gettime() is used instead of
651 * apic_gethrtime(). This is used for performance instead of accuracy.
652 */
653
654 hrtime_t
apic_gettime()655 apic_gettime()
656 {
657 int old_hrtime_stamp;
658 hrtime_t temp;
659
660 /*
661 * In one-shot mode, we do not keep time, so if anyone
662 * calls psm_gettime() directly, we vector over to
663 * gethrtime().
664 * one-shot mode MUST NOT be enabled if this psm is the source of
665 * hrtime.
666 */
667
668 if (apic_oneshot)
669 return (gethrtime());
670
671
672 gettime_again:
673 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
674 apic_ret();
675
676 temp = apic_nsec_since_boot;
677
678 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */
679 goto gettime_again;
680 }
681 return (temp);
682 }
683
684 /*
685 * Here we return the number of nanoseconds since booting. Note every
686 * clock interrupt increments apic_nsec_since_boot by the appropriate
687 * amount.
688 */
689 hrtime_t
apic_gethrtime(void)690 apic_gethrtime(void)
691 {
692 int curr_timeval, countval, elapsed_ticks;
693 int old_hrtime_stamp, status;
694 hrtime_t temp;
695 uint32_t cpun;
696 ulong_t oflags;
697
698 /*
699 * In one-shot mode, we do not keep time, so if anyone
700 * calls psm_gethrtime() directly, we vector over to
701 * gethrtime().
702 * one-shot mode MUST NOT be enabled if this psm is the source of
703 * hrtime.
704 */
705
706 if (apic_oneshot)
707 return (gethrtime());
708
709 oflags = intr_clear(); /* prevent migration */
710
711 cpun = apic_reg_ops->apic_read(APIC_LID_REG);
712 if (apic_mode == LOCAL_APIC)
713 cpun >>= APIC_ID_BIT_OFFSET;
714
715 lock_set(&apic_gethrtime_lock);
716
717 gethrtime_again:
718 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
719 apic_ret();
720
721 /*
722 * Check to see which CPU we are on. Note the time is kept on
723 * the local APIC of CPU 0. If on CPU 0, simply read the current
724 * counter. If on another CPU, issue a remote read command to CPU 0.
725 */
726 if (cpun == apic_cpus[0].aci_local_id) {
727 countval = apic_reg_ops->apic_read(APIC_CURR_COUNT);
728 } else {
729 #ifdef DEBUG
730 APIC_AV_PENDING_SET();
731 #else
732 if (apic_mode == LOCAL_APIC)
733 APIC_AV_PENDING_SET();
734 #endif /* DEBUG */
735
736 apic_reg_ops->apic_write_int_cmd(
737 apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE);
738
739 while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1))
740 & AV_READ_PENDING) {
741 apic_ret();
742 }
743
744 if (status & AV_REMOTE_STATUS) /* 1 = valid */
745 countval = apic_reg_ops->apic_read(APIC_REMOTE_READ);
746 else { /* 0 = invalid */
747 apic_remote_hrterr++;
748 /*
749 * return last hrtime right now, will need more
750 * testing if change to retry
751 */
752 temp = apic_last_hrtime;
753
754 lock_clear(&apic_gethrtime_lock);
755
756 intr_restore(oflags);
757
758 return (temp);
759 }
760 }
761 if (countval > last_count_read)
762 countval = 0;
763 else
764 last_count_read = countval;
765
766 elapsed_ticks = apic_hertz_count - countval;
767
768 curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks);
769 temp = apic_nsec_since_boot + curr_timeval;
770
771 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */
772 /* we might have clobbered last_count_read. Restore it */
773 last_count_read = apic_hertz_count;
774 goto gethrtime_again;
775 }
776
777 if (temp < apic_last_hrtime) {
778 /* return last hrtime if error occurs */
779 apic_hrtime_error++;
780 temp = apic_last_hrtime;
781 }
782 else
783 apic_last_hrtime = temp;
784
785 lock_clear(&apic_gethrtime_lock);
786 intr_restore(oflags);
787
788 return (temp);
789 }
790
791 /* apic NMI handler */
792 /*ARGSUSED*/
793 void
apic_nmi_intr(caddr_t arg,struct regs * rp)794 apic_nmi_intr(caddr_t arg, struct regs *rp)
795 {
796 if (apic_shutdown_processors) {
797 apic_disable_local_apic();
798 return;
799 }
800
801 apic_error |= APIC_ERR_NMI;
802
803 if (!lock_try(&apic_nmi_lock))
804 return;
805 apic_num_nmis++;
806
807 if (apic_kmdb_on_nmi && psm_debugger()) {
808 debug_enter("NMI received: entering kmdb\n");
809 } else if (apic_panic_on_nmi) {
810 /* Keep panic from entering kmdb. */
811 nopanicdebug = 1;
812 panic("NMI received\n");
813 } else {
814 /*
815 * prom_printf is the best shot we have of something which is
816 * problem free from high level/NMI type of interrupts
817 */
818 prom_printf("NMI received\n");
819 }
820
821 lock_clear(&apic_nmi_lock);
822 }
823
824 processorid_t
apic_get_next_processorid(processorid_t cpu_id)825 apic_get_next_processorid(processorid_t cpu_id)
826 {
827
828 int i;
829
830 if (cpu_id == -1)
831 return ((processorid_t)0);
832
833 for (i = cpu_id + 1; i < NCPU; i++) {
834 if (apic_cpu_in_range(i))
835 return (i);
836 }
837
838 return ((processorid_t)-1);
839 }
840
841 int
apic_cpu_add(psm_cpu_request_t * reqp)842 apic_cpu_add(psm_cpu_request_t *reqp)
843 {
844 int i, rv = 0;
845 ulong_t iflag;
846 boolean_t first = B_TRUE;
847 uchar_t localver;
848 uint32_t localid, procid;
849 processorid_t cpuid = (processorid_t)-1;
850 mach_cpu_add_arg_t *ap;
851
852 ASSERT(reqp != NULL);
853 reqp->req.cpu_add.cpuid = (processorid_t)-1;
854
855 /* Check whether CPU hotplug is supported. */
856 if (!plat_dr_support_cpu() || apic_max_nproc == -1) {
857 return (ENOTSUP);
858 }
859
860 ap = (mach_cpu_add_arg_t *)reqp->req.cpu_add.argp;
861 switch (ap->type) {
862 case MACH_CPU_ARG_LOCAL_APIC:
863 localid = ap->arg.apic.apic_id;
864 procid = ap->arg.apic.proc_id;
865 if (localid >= 255 || procid > 255) {
866 cmn_err(CE_WARN,
867 "!apic: apicid(%u) or procid(%u) is invalid.",
868 localid, procid);
869 return (EINVAL);
870 }
871 break;
872
873 case MACH_CPU_ARG_LOCAL_X2APIC:
874 localid = ap->arg.apic.apic_id;
875 procid = ap->arg.apic.proc_id;
876 if (localid >= UINT32_MAX) {
877 cmn_err(CE_WARN,
878 "!apic: x2apicid(%u) is invalid.", localid);
879 return (EINVAL);
880 } else if (localid >= 255 && apic_mode == LOCAL_APIC) {
881 cmn_err(CE_WARN, "!apic: system is in APIC mode, "
882 "can't support x2APIC processor.");
883 return (ENOTSUP);
884 }
885 break;
886
887 default:
888 cmn_err(CE_WARN,
889 "!apic: unknown argument type %d to apic_cpu_add().",
890 ap->type);
891 return (EINVAL);
892 }
893
894 /* Use apic_ioapic_lock to sync with apic_get_next_bind_cpu. */
895 iflag = intr_clear();
896 lock_set(&apic_ioapic_lock);
897
898 /* Check whether local APIC id already exists. */
899 for (i = 0; i < apic_nproc; i++) {
900 if (!CPU_IN_SET(apic_cpumask, i))
901 continue;
902 if (apic_cpus[i].aci_local_id == localid) {
903 lock_clear(&apic_ioapic_lock);
904 intr_restore(iflag);
905 cmn_err(CE_WARN,
906 "!apic: local apic id %u already exists.",
907 localid);
908 return (EEXIST);
909 } else if (apic_cpus[i].aci_processor_id == procid) {
910 lock_clear(&apic_ioapic_lock);
911 intr_restore(iflag);
912 cmn_err(CE_WARN,
913 "!apic: processor id %u already exists.",
914 (int)procid);
915 return (EEXIST);
916 }
917
918 /*
919 * There's no local APIC version number available in MADT table,
920 * so assume that all CPUs are homogeneous and use local APIC
921 * version number of the first existing CPU.
922 */
923 if (first) {
924 first = B_FALSE;
925 localver = apic_cpus[i].aci_local_ver;
926 }
927 }
928 ASSERT(first == B_FALSE);
929
930 /*
931 * Try to assign the same cpuid if APIC id exists in the dirty cache.
932 */
933 for (i = 0; i < apic_max_nproc; i++) {
934 if (CPU_IN_SET(apic_cpumask, i)) {
935 ASSERT((apic_cpus[i].aci_status & APIC_CPU_FREE) == 0);
936 continue;
937 }
938 ASSERT(apic_cpus[i].aci_status & APIC_CPU_FREE);
939 if ((apic_cpus[i].aci_status & APIC_CPU_DIRTY) &&
940 apic_cpus[i].aci_local_id == localid &&
941 apic_cpus[i].aci_processor_id == procid) {
942 cpuid = i;
943 break;
944 }
945 }
946
947 /* Avoid the dirty cache and allocate fresh slot if possible. */
948 if (cpuid == (processorid_t)-1) {
949 for (i = 0; i < apic_max_nproc; i++) {
950 if ((apic_cpus[i].aci_status & APIC_CPU_FREE) &&
951 (apic_cpus[i].aci_status & APIC_CPU_DIRTY) == 0) {
952 cpuid = i;
953 break;
954 }
955 }
956 }
957
958 /* Try to find any free slot as last resort. */
959 if (cpuid == (processorid_t)-1) {
960 for (i = 0; i < apic_max_nproc; i++) {
961 if (apic_cpus[i].aci_status & APIC_CPU_FREE) {
962 cpuid = i;
963 break;
964 }
965 }
966 }
967
968 if (cpuid == (processorid_t)-1) {
969 lock_clear(&apic_ioapic_lock);
970 intr_restore(iflag);
971 cmn_err(CE_NOTE,
972 "!apic: failed to allocate cpu id for processor %u.",
973 procid);
974 rv = EAGAIN;
975 } else if (ACPI_FAILURE(acpica_map_cpu(cpuid, procid))) {
976 lock_clear(&apic_ioapic_lock);
977 intr_restore(iflag);
978 cmn_err(CE_NOTE,
979 "!apic: failed to build mapping for processor %u.",
980 procid);
981 rv = EBUSY;
982 } else {
983 ASSERT(cpuid >= 0 && cpuid < NCPU);
984 ASSERT(cpuid < apic_max_nproc && cpuid < max_ncpus);
985 bzero(&apic_cpus[cpuid], sizeof (apic_cpus[0]));
986 apic_cpus[cpuid].aci_processor_id = procid;
987 apic_cpus[cpuid].aci_local_id = localid;
988 apic_cpus[cpuid].aci_local_ver = localver;
989 CPUSET_ATOMIC_ADD(apic_cpumask, cpuid);
990 if (cpuid >= apic_nproc) {
991 apic_nproc = cpuid + 1;
992 }
993 lock_clear(&apic_ioapic_lock);
994 intr_restore(iflag);
995 reqp->req.cpu_add.cpuid = cpuid;
996 }
997
998 return (rv);
999 }
1000
1001 int
apic_cpu_remove(psm_cpu_request_t * reqp)1002 apic_cpu_remove(psm_cpu_request_t *reqp)
1003 {
1004 int i;
1005 ulong_t iflag;
1006 processorid_t cpuid;
1007
1008 /* Check whether CPU hotplug is supported. */
1009 if (!plat_dr_support_cpu() || apic_max_nproc == -1) {
1010 return (ENOTSUP);
1011 }
1012
1013 cpuid = reqp->req.cpu_remove.cpuid;
1014
1015 /* Use apic_ioapic_lock to sync with apic_get_next_bind_cpu. */
1016 iflag = intr_clear();
1017 lock_set(&apic_ioapic_lock);
1018
1019 if (!apic_cpu_in_range(cpuid)) {
1020 lock_clear(&apic_ioapic_lock);
1021 intr_restore(iflag);
1022 cmn_err(CE_WARN,
1023 "!apic: cpuid %d doesn't exist in apic_cpus array.",
1024 cpuid);
1025 return (ENODEV);
1026 }
1027 ASSERT((apic_cpus[cpuid].aci_status & APIC_CPU_FREE) == 0);
1028
1029 if (ACPI_FAILURE(acpica_unmap_cpu(cpuid))) {
1030 lock_clear(&apic_ioapic_lock);
1031 intr_restore(iflag);
1032 return (ENOENT);
1033 }
1034
1035 if (cpuid == apic_nproc - 1) {
1036 /*
1037 * We are removing the highest numbered cpuid so we need to
1038 * find the next highest cpuid as the new value for apic_nproc.
1039 */
1040 for (i = apic_nproc; i > 0; i--) {
1041 if (CPU_IN_SET(apic_cpumask, i - 1)) {
1042 apic_nproc = i;
1043 break;
1044 }
1045 }
1046 /* at least one CPU left */
1047 ASSERT(i > 0);
1048 }
1049 CPUSET_ATOMIC_DEL(apic_cpumask, cpuid);
1050 /* mark slot as free and keep it in the dirty cache */
1051 apic_cpus[cpuid].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
1052
1053 lock_clear(&apic_ioapic_lock);
1054 intr_restore(iflag);
1055
1056 return (0);
1057 }
1058
1059 /*
1060 * Return the number of APIC clock ticks elapsed for 8245 to decrement
1061 * (APIC_TIME_COUNT + pit_ticks_adj) ticks.
1062 */
1063 uint_t
apic_calibrate(volatile uint32_t * addr,uint16_t * pit_ticks_adj)1064 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj)
1065 {
1066 uint8_t pit_tick_lo;
1067 uint16_t pit_tick, target_pit_tick;
1068 uint32_t start_apic_tick, end_apic_tick;
1069 ulong_t iflag;
1070 uint32_t reg;
1071
1072 reg = addr + APIC_CURR_COUNT - apicadr;
1073
1074 iflag = intr_clear();
1075
1076 do {
1077 pit_tick_lo = inb(PITCTR0_PORT);
1078 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1079 } while (pit_tick < APIC_TIME_MIN ||
1080 pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX);
1081
1082 /*
1083 * Wait for the 8254 to decrement by 5 ticks to ensure
1084 * we didn't start in the middle of a tick.
1085 * Compare with 0x10 for the wrap around case.
1086 */
1087 target_pit_tick = pit_tick - 5;
1088 do {
1089 pit_tick_lo = inb(PITCTR0_PORT);
1090 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1091 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1092
1093 start_apic_tick = apic_reg_ops->apic_read(reg);
1094
1095 /*
1096 * Wait for the 8254 to decrement by
1097 * (APIC_TIME_COUNT + pit_ticks_adj) ticks
1098 */
1099 target_pit_tick = pit_tick - APIC_TIME_COUNT;
1100 do {
1101 pit_tick_lo = inb(PITCTR0_PORT);
1102 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1103 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1104
1105 end_apic_tick = apic_reg_ops->apic_read(reg);
1106
1107 *pit_ticks_adj = target_pit_tick - pit_tick;
1108
1109 intr_restore(iflag);
1110
1111 return (start_apic_tick - end_apic_tick);
1112 }
1113
1114 /*
1115 * Initialise the APIC timer on the local APIC of CPU 0 to the desired
1116 * frequency. Note at this stage in the boot sequence, the boot processor
1117 * is the only active processor.
1118 * hertz value of 0 indicates a one-shot mode request. In this case
1119 * the function returns the resolution (in nanoseconds) for the hardware
1120 * timer interrupt. If one-shot mode capability is not available,
1121 * the return value will be 0. apic_enable_oneshot is a global switch
1122 * for disabling the functionality.
1123 * A non-zero positive value for hertz indicates a periodic mode request.
1124 * In this case the hardware will be programmed to generate clock interrupts
1125 * at hertz frequency and returns the resolution of interrupts in
1126 * nanosecond.
1127 */
1128
1129 int
apic_clkinit(int hertz)1130 apic_clkinit(int hertz)
1131 {
1132 int ret;
1133
1134 apic_int_busy_mark = (apic_int_busy_mark *
1135 apic_sample_factor_redistribution) / 100;
1136 apic_int_free_mark = (apic_int_free_mark *
1137 apic_sample_factor_redistribution) / 100;
1138 apic_diff_for_redistribution = (apic_diff_for_redistribution *
1139 apic_sample_factor_redistribution) / 100;
1140
1141 ret = apic_timer_init(hertz);
1142 return (ret);
1143
1144 }
1145
1146 /*
1147 * apic_preshutdown:
1148 * Called early in shutdown whilst we can still access filesystems to do
1149 * things like loading modules which will be required to complete shutdown
1150 * after filesystems are all unmounted.
1151 */
1152 void
apic_preshutdown(int cmd,int fcn)1153 apic_preshutdown(int cmd, int fcn)
1154 {
1155 APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n",
1156 cmd, fcn, apic_poweroff_method, apic_enable_acpi));
1157 }
1158
1159 void
apic_shutdown(int cmd,int fcn)1160 apic_shutdown(int cmd, int fcn)
1161 {
1162 int restarts, attempts;
1163 int i;
1164 uchar_t byte;
1165 ulong_t iflag;
1166
1167 hpet_acpi_fini();
1168
1169 /* Send NMI to all CPUs except self to do per processor shutdown */
1170 iflag = intr_clear();
1171 #ifdef DEBUG
1172 APIC_AV_PENDING_SET();
1173 #else
1174 if (apic_mode == LOCAL_APIC)
1175 APIC_AV_PENDING_SET();
1176 #endif /* DEBUG */
1177 apic_shutdown_processors = 1;
1178 apic_reg_ops->apic_write(APIC_INT_CMD1,
1179 AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF);
1180
1181 /* restore cmos shutdown byte before reboot */
1182 if (apic_cmos_ssb_set) {
1183 outb(CMOS_ADDR, SSB);
1184 outb(CMOS_DATA, 0);
1185 }
1186
1187 ioapic_disable_redirection();
1188
1189 /* disable apic mode if imcr present */
1190 if (apic_imcrp) {
1191 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
1192 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC);
1193 }
1194
1195 apic_disable_local_apic();
1196
1197 intr_restore(iflag);
1198
1199 /* remainder of function is for shutdown cases only */
1200 if (cmd != A_SHUTDOWN)
1201 return;
1202
1203 /*
1204 * Switch system back into Legacy-Mode if using ACPI and
1205 * not powering-off. Some BIOSes need to remain in ACPI-mode
1206 * for power-off to succeed (Dell Dimension 4600)
1207 * Do not disable ACPI while doing fastreboot
1208 */
1209 if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT)
1210 (void) AcpiDisable();
1211
1212 if (fcn == AD_FASTREBOOT) {
1213 apic_reg_ops->apic_write(APIC_INT_CMD1,
1214 AV_ASSERT | AV_RESET | AV_SH_ALL_EXCSELF);
1215 }
1216
1217 /* remainder of function is for shutdown+poweroff case only */
1218 if (fcn != AD_POWEROFF)
1219 return;
1220
1221 switch (apic_poweroff_method) {
1222 case APIC_POWEROFF_VIA_RTC:
1223
1224 /* select the extended NVRAM bank in the RTC */
1225 outb(CMOS_ADDR, RTC_REGA);
1226 byte = inb(CMOS_DATA);
1227 outb(CMOS_DATA, (byte | EXT_BANK));
1228
1229 outb(CMOS_ADDR, PFR_REG);
1230
1231 /* for Predator must toggle the PAB bit */
1232 byte = inb(CMOS_DATA);
1233
1234 /*
1235 * clear power active bar, wakeup alarm and
1236 * kickstart
1237 */
1238 byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG);
1239 outb(CMOS_DATA, byte);
1240
1241 /* delay before next write */
1242 drv_usecwait(1000);
1243
1244 /* for S40 the following would suffice */
1245 byte = inb(CMOS_DATA);
1246
1247 /* power active bar control bit */
1248 byte |= PAB_CBIT;
1249 outb(CMOS_DATA, byte);
1250
1251 break;
1252
1253 case APIC_POWEROFF_VIA_ASPEN_BMC:
1254 restarts = 0;
1255 restart_aspen_bmc:
1256 if (++restarts == 3)
1257 break;
1258 attempts = 0;
1259 do {
1260 byte = inb(MISMIC_FLAG_REGISTER);
1261 byte &= MISMIC_BUSY_MASK;
1262 if (byte != 0) {
1263 drv_usecwait(1000);
1264 if (attempts >= 3)
1265 goto restart_aspen_bmc;
1266 ++attempts;
1267 }
1268 } while (byte != 0);
1269 outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS);
1270 byte = inb(MISMIC_FLAG_REGISTER);
1271 byte |= 0x1;
1272 outb(MISMIC_FLAG_REGISTER, byte);
1273 i = 0;
1274 for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0]));
1275 i++) {
1276 attempts = 0;
1277 do {
1278 byte = inb(MISMIC_FLAG_REGISTER);
1279 byte &= MISMIC_BUSY_MASK;
1280 if (byte != 0) {
1281 drv_usecwait(1000);
1282 if (attempts >= 3)
1283 goto restart_aspen_bmc;
1284 ++attempts;
1285 }
1286 } while (byte != 0);
1287 outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl);
1288 outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data);
1289 byte = inb(MISMIC_FLAG_REGISTER);
1290 byte |= 0x1;
1291 outb(MISMIC_FLAG_REGISTER, byte);
1292 }
1293 break;
1294
1295 case APIC_POWEROFF_VIA_SITKA_BMC:
1296 restarts = 0;
1297 restart_sitka_bmc:
1298 if (++restarts == 3)
1299 break;
1300 attempts = 0;
1301 do {
1302 byte = inb(SMS_STATUS_REGISTER);
1303 byte &= SMS_STATE_MASK;
1304 if ((byte == SMS_READ_STATE) ||
1305 (byte == SMS_WRITE_STATE)) {
1306 drv_usecwait(1000);
1307 if (attempts >= 3)
1308 goto restart_sitka_bmc;
1309 ++attempts;
1310 }
1311 } while ((byte == SMS_READ_STATE) ||
1312 (byte == SMS_WRITE_STATE));
1313 outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS);
1314 i = 0;
1315 for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0]));
1316 i++) {
1317 attempts = 0;
1318 do {
1319 byte = inb(SMS_STATUS_REGISTER);
1320 byte &= SMS_IBF_MASK;
1321 if (byte != 0) {
1322 drv_usecwait(1000);
1323 if (attempts >= 3)
1324 goto restart_sitka_bmc;
1325 ++attempts;
1326 }
1327 } while (byte != 0);
1328 outb(sitka_bmc[i].port, sitka_bmc[i].data);
1329 }
1330 break;
1331
1332 case APIC_POWEROFF_NONE:
1333
1334 /* If no APIC direct method, we will try using ACPI */
1335 if (apic_enable_acpi) {
1336 if (acpi_poweroff() == 1)
1337 return;
1338 } else
1339 return;
1340
1341 break;
1342 }
1343 /*
1344 * Wait a limited time here for power to go off.
1345 * If the power does not go off, then there was a
1346 * problem and we should continue to the halt which
1347 * prints a message for the user to press a key to
1348 * reboot.
1349 */
1350 drv_usecwait(7000000); /* wait seven seconds */
1351
1352 }
1353
1354 ddi_periodic_t apic_periodic_id;
1355
1356 /*
1357 * The following functions are in the platform specific file so that they
1358 * can be different functions depending on whether we are running on
1359 * bare metal or a hypervisor.
1360 */
1361
1362 /*
1363 * map an apic for memory-mapped access
1364 */
1365 uint32_t *
mapin_apic(uint32_t addr,size_t len,int flags)1366 mapin_apic(uint32_t addr, size_t len, int flags)
1367 {
1368 return ((void *)psm_map_phys(addr, len, flags));
1369 }
1370
1371 uint32_t *
mapin_ioapic(uint32_t addr,size_t len,int flags)1372 mapin_ioapic(uint32_t addr, size_t len, int flags)
1373 {
1374 return (mapin_apic(addr, len, flags));
1375 }
1376
1377 /*
1378 * unmap an apic
1379 */
1380 void
mapout_apic(caddr_t addr,size_t len)1381 mapout_apic(caddr_t addr, size_t len)
1382 {
1383 psm_unmap_phys(addr, len);
1384 }
1385
1386 void
mapout_ioapic(caddr_t addr,size_t len)1387 mapout_ioapic(caddr_t addr, size_t len)
1388 {
1389 mapout_apic(addr, len);
1390 }
1391
1392 uint32_t
ioapic_read(int ioapic_ix,uint32_t reg)1393 ioapic_read(int ioapic_ix, uint32_t reg)
1394 {
1395 volatile uint32_t *ioapic;
1396
1397 ioapic = apicioadr[ioapic_ix];
1398 ioapic[APIC_IO_REG] = reg;
1399 return (ioapic[APIC_IO_DATA]);
1400 }
1401
1402 void
ioapic_write(int ioapic_ix,uint32_t reg,uint32_t value)1403 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value)
1404 {
1405 volatile uint32_t *ioapic;
1406
1407 ioapic = apicioadr[ioapic_ix];
1408 ioapic[APIC_IO_REG] = reg;
1409 ioapic[APIC_IO_DATA] = value;
1410 }
1411
1412 void
ioapic_write_eoi(int ioapic_ix,uint32_t value)1413 ioapic_write_eoi(int ioapic_ix, uint32_t value)
1414 {
1415 volatile uint32_t *ioapic;
1416
1417 ioapic = apicioadr[ioapic_ix];
1418 ioapic[APIC_IO_EOI] = value;
1419 }
1420
1421 /*
1422 * Round-robin algorithm to find the next CPU with interrupts enabled.
1423 * It can't share the same static variable apic_next_bind_cpu with
1424 * apic_get_next_bind_cpu(), since that will cause all interrupts to be
1425 * bound to CPU1 at boot time. During boot, only CPU0 is online with
1426 * interrupts enabled when apic_get_next_bind_cpu() and apic_find_cpu()
1427 * are called. However, the pcplusmp driver assumes that there will be
1428 * boot_ncpus CPUs configured eventually so it tries to distribute all
1429 * interrupts among CPU0 - CPU[boot_ncpus - 1]. Thus to prevent all
1430 * interrupts being targetted at CPU1, we need to use a dedicated static
1431 * variable for find_next_cpu() instead of sharing apic_next_bind_cpu.
1432 */
1433
1434 processorid_t
apic_find_cpu(int flag)1435 apic_find_cpu(int flag)
1436 {
1437 int i;
1438 static processorid_t acid = 0;
1439
1440 /* Find the first CPU with the passed-in flag set */
1441 for (i = 0; i < apic_nproc; i++) {
1442 if (++acid >= apic_nproc) {
1443 acid = 0;
1444 }
1445 if (apic_cpu_in_range(acid) &&
1446 (apic_cpus[acid].aci_status & flag)) {
1447 break;
1448 }
1449 }
1450
1451 ASSERT((apic_cpus[acid].aci_status & flag) != 0);
1452 return (acid);
1453 }
1454
1455 /*
1456 * Switch between safe and x2APIC IPI sending method.
1457 * CPU may power on in xapic mode or x2apic mode. If CPU needs to send IPI to
1458 * other CPUs before entering x2APIC mode, it still needs to xAPIC method.
1459 * Before sending StartIPI to target CPU, psm_send_ipi will be changed to
1460 * apic_common_send_ipi, which detects current local APIC mode and use right
1461 * method to send IPI. If some CPUs fail to start up, apic_poweron_cnt
1462 * won't return to zero, so apic_common_send_ipi will always be used.
1463 * psm_send_ipi can't be simply changed back to x2apic_send_ipi if some CPUs
1464 * failed to start up because those failed CPUs may recover itself later at
1465 * unpredictable time.
1466 */
1467 void
apic_switch_ipi_callback(boolean_t enter)1468 apic_switch_ipi_callback(boolean_t enter)
1469 {
1470 ulong_t iflag;
1471 struct psm_ops *pops = psmops;
1472
1473 iflag = intr_clear();
1474 lock_set(&apic_mode_switch_lock);
1475 if (enter) {
1476 ASSERT(apic_poweron_cnt >= 0);
1477 if (apic_poweron_cnt == 0) {
1478 pops->psm_send_ipi = apic_common_send_ipi;
1479 send_dirintf = pops->psm_send_ipi;
1480 }
1481 apic_poweron_cnt++;
1482 } else {
1483 ASSERT(apic_poweron_cnt > 0);
1484 apic_poweron_cnt--;
1485 if (apic_poweron_cnt == 0) {
1486 pops->psm_send_ipi = x2apic_send_ipi;
1487 send_dirintf = pops->psm_send_ipi;
1488 }
1489 }
1490 lock_clear(&apic_mode_switch_lock);
1491 intr_restore(iflag);
1492 }
1493
1494 void
apic_intrmap_init(int apic_mode)1495 apic_intrmap_init(int apic_mode)
1496 {
1497 int suppress_brdcst_eoi = 0;
1498
1499 if (psm_vt_ops != NULL) {
1500 /*
1501 * Since X2APIC requires the use of interrupt remapping
1502 * (though this is not documented explicitly in the Intel
1503 * documentation (yet)), initialize interrupt remapping
1504 * support before initializing the X2APIC unit.
1505 */
1506 if (((apic_intrmap_ops_t *)psm_vt_ops)->
1507 apic_intrmap_init(apic_mode) == DDI_SUCCESS) {
1508
1509 apic_vt_ops = psm_vt_ops;
1510
1511 /*
1512 * We leverage the interrupt remapping engine to
1513 * suppress broadcast EOI; thus we must send the
1514 * directed EOI with the directed-EOI handler.
1515 */
1516 if (apic_directed_EOI_supported() == 0) {
1517 suppress_brdcst_eoi = 1;
1518 }
1519
1520 apic_vt_ops->apic_intrmap_enable(suppress_brdcst_eoi);
1521
1522 if (apic_detect_x2apic()) {
1523 apic_enable_x2apic();
1524 }
1525
1526 if (apic_directed_EOI_supported() == 0) {
1527 apic_set_directed_EOI_handler();
1528 }
1529 }
1530 }
1531 }
1532
1533 /*ARGSUSED*/
1534 static void
apic_record_ioapic_rdt(void * intrmap_private,ioapic_rdt_t * irdt)1535 apic_record_ioapic_rdt(void *intrmap_private, ioapic_rdt_t *irdt)
1536 {
1537 irdt->ir_hi <<= APIC_ID_BIT_OFFSET;
1538 }
1539
1540 /*ARGSUSED*/
1541 static void
apic_record_msi(void * intrmap_private,msi_regs_t * mregs)1542 apic_record_msi(void *intrmap_private, msi_regs_t *mregs)
1543 {
1544 mregs->mr_addr = MSI_ADDR_HDR |
1545 (MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) |
1546 (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT) |
1547 (mregs->mr_addr << MSI_ADDR_DEST_SHIFT);
1548 mregs->mr_data = (MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) |
1549 mregs->mr_data;
1550 }
1551
1552 /*
1553 * Functions from apic_introp.c
1554 *
1555 * Those functions are used by apic_intr_ops().
1556 */
1557
1558 /*
1559 * MSI support flag:
1560 * reflects whether MSI is supported at APIC level
1561 * it can also be patched through /etc/system
1562 *
1563 * 0 = default value - don't know and need to call apic_check_msi_support()
1564 * to find out then set it accordingly
1565 * 1 = supported
1566 * -1 = not supported
1567 */
1568 int apic_support_msi = 0;
1569
1570 /* Multiple vector support for MSI-X */
1571 int apic_msix_enable = 1;
1572
1573 /* Multiple vector support for MSI */
1574 int apic_multi_msi_enable = 1;
1575
1576 /*
1577 * check whether the system supports MSI
1578 *
1579 * If PCI-E capability is found, then this must be a PCI-E system.
1580 * Since MSI is required for PCI-E system, it returns PSM_SUCCESS
1581 * to indicate this system supports MSI.
1582 */
1583 int
apic_check_msi_support()1584 apic_check_msi_support()
1585 {
1586 dev_info_t *cdip;
1587 char dev_type[16];
1588 int dev_len;
1589
1590 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n"));
1591
1592 /*
1593 * check whether the first level children of root_node have
1594 * PCI-E capability
1595 */
1596 for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL;
1597 cdip = ddi_get_next_sibling(cdip)) {
1598
1599 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p,"
1600 " driver: %s, binding: %s, nodename: %s\n", (void *)cdip,
1601 ddi_driver_name(cdip), ddi_binding_name(cdip),
1602 ddi_node_name(cdip)));
1603 dev_len = sizeof (dev_type);
1604 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1605 "device_type", (caddr_t)dev_type, &dev_len)
1606 != DDI_PROP_SUCCESS)
1607 continue;
1608 if (strcmp(dev_type, "pciex") == 0)
1609 return (PSM_SUCCESS);
1610 }
1611
1612 /* MSI is not supported on this system */
1613 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' "
1614 "device_type found\n"));
1615 return (PSM_FAILURE);
1616 }
1617
1618 /*
1619 * apic_pci_msi_unconfigure:
1620 *
1621 * This and next two interfaces are copied from pci_intr_lib.c
1622 * Do ensure that these two files stay in sync.
1623 * These needed to be copied over here to avoid a deadlock situation on
1624 * certain mp systems that use MSI interrupts.
1625 *
1626 * IMPORTANT regards next three interfaces:
1627 * i) are called only for MSI/X interrupts.
1628 * ii) called with interrupts disabled, and must not block
1629 */
1630 void
apic_pci_msi_unconfigure(dev_info_t * rdip,int type,int inum)1631 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum)
1632 {
1633 ushort_t msi_ctrl;
1634 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
1635 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip);
1636
1637 ASSERT((handle != NULL) && (cap_ptr != 0));
1638
1639 if (type == DDI_INTR_TYPE_MSI) {
1640 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
1641 msi_ctrl &= (~PCI_MSI_MME_MASK);
1642 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
1643 pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0);
1644
1645 if (msi_ctrl & PCI_MSI_64BIT_MASK) {
1646 pci_config_put16(handle,
1647 cap_ptr + PCI_MSI_64BIT_DATA, 0);
1648 pci_config_put32(handle,
1649 cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0);
1650 } else {
1651 pci_config_put16(handle,
1652 cap_ptr + PCI_MSI_32BIT_DATA, 0);
1653 }
1654
1655 } else if (type == DDI_INTR_TYPE_MSIX) {
1656 uintptr_t off;
1657 uint32_t mask;
1658 ddi_intr_msix_t *msix_p = i_ddi_get_msix(rdip);
1659
1660 ASSERT(msix_p != NULL);
1661
1662 /* Offset into "inum"th entry in the MSI-X table & mask it */
1663 off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
1664 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
1665
1666 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
1667
1668 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask | 1));
1669
1670 /* Offset into the "inum"th entry in the MSI-X table */
1671 off = (uintptr_t)msix_p->msix_tbl_addr +
1672 (inum * PCI_MSIX_VECTOR_SIZE);
1673
1674 /* Reset the "data" and "addr" bits */
1675 ddi_put32(msix_p->msix_tbl_hdl,
1676 (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0);
1677 ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0);
1678 }
1679 }
1680
1681 /*
1682 * apic_pci_msi_disable_mode:
1683 */
1684 void
apic_pci_msi_disable_mode(dev_info_t * rdip,int type)1685 apic_pci_msi_disable_mode(dev_info_t *rdip, int type)
1686 {
1687 ushort_t msi_ctrl;
1688 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
1689 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip);
1690
1691 ASSERT((handle != NULL) && (cap_ptr != 0));
1692
1693 if (type == DDI_INTR_TYPE_MSI) {
1694 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
1695 if (!(msi_ctrl & PCI_MSI_ENABLE_BIT))
1696 return;
1697
1698 msi_ctrl &= ~PCI_MSI_ENABLE_BIT; /* MSI disable */
1699 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
1700
1701 } else if (type == DDI_INTR_TYPE_MSIX) {
1702 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
1703 if (msi_ctrl & PCI_MSIX_ENABLE_BIT) {
1704 msi_ctrl &= ~PCI_MSIX_ENABLE_BIT;
1705 pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL,
1706 msi_ctrl);
1707 }
1708 }
1709 }
1710
1711 uint32_t
apic_get_localapicid(uint32_t cpuid)1712 apic_get_localapicid(uint32_t cpuid)
1713 {
1714 ASSERT(cpuid < apic_nproc && apic_cpus != NULL);
1715
1716 return (apic_cpus[cpuid].aci_local_id);
1717 }
1718
1719 uchar_t
apic_get_ioapicid(uchar_t ioapicindex)1720 apic_get_ioapicid(uchar_t ioapicindex)
1721 {
1722 ASSERT(ioapicindex < MAX_IO_APIC);
1723
1724 return (apic_io_id[ioapicindex]);
1725 }
1726