xref: /netbsd-src/external/gpl3/gcc/dist/gcc/tree-data-ref.h (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Data references and dependences detectors.
2    Copyright (C) 2003-2022 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
23 
24 #include "graphds.h"
25 #include "tree-chrec.h"
26 #include "opt-problem.h"
27 
28 /*
29   innermost_loop_behavior describes the evolution of the address of the memory
30   reference in the innermost enclosing loop.  The address is expressed as
31   BASE + STEP * # of iteration, and base is further decomposed as the base
32   pointer (BASE_ADDRESS),  loop invariant offset (OFFSET) and
33   constant offset (INIT).  Examples, in loop nest
34 
35   for (i = 0; i < 100; i++)
36     for (j = 3; j < 100; j++)
37 
38                        Example 1                      Example 2
39       data-ref         a[j].b[i][j]                   *(p + x + 16B + 4B * j)
40 
41 
42   innermost_loop_behavior
43       base_address     &a                             p
44       offset           i * D_i			      x
45       init             3 * D_j + offsetof (b)         28
46       step             D_j                            4
47 
48   */
49 struct innermost_loop_behavior
50 {
51   tree base_address;
52   tree offset;
53   tree init;
54   tree step;
55 
56   /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes
57      from an alignment boundary of BASE_ALIGNMENT bytes.  For example,
58      if we had:
59 
60        struct S __attribute__((aligned(16))) { ... };
61 
62        char *ptr;
63        ... *(struct S *) (ptr - 4) ...;
64 
65      the information would be:
66 
67        base_address:      ptr
68        base_aligment:      16
69        base_misalignment:   4
70        init:               -4
71 
72      where init cancels the base misalignment.  If instead we had a
73      reference to a particular field:
74 
75        struct S __attribute__((aligned(16))) { ... int f; ... };
76 
77        char *ptr;
78        ... ((struct S *) (ptr - 4))->f ...;
79 
80      the information would be:
81 
82        base_address:      ptr
83        base_aligment:      16
84        base_misalignment:   4
85        init:               -4 + offsetof (S, f)
86 
87      where base_address + init might also be misaligned, and by a different
88      amount from base_address.  */
89   unsigned int base_alignment;
90   unsigned int base_misalignment;
91 
92   /* The largest power of two that divides OFFSET, capped to a suitably
93      high value if the offset is zero.  This is a byte rather than a bit
94      quantity.  */
95   unsigned int offset_alignment;
96 
97   /* Likewise for STEP.  */
98   unsigned int step_alignment;
99 };
100 
101 /* Describes the evolutions of indices of the memory reference.  The indices
102    are indices of the ARRAY_REFs, indexes in artificial dimensions
103    added for member selection of records and the operands of MEM_REFs.
104    BASE_OBJECT is the part of the reference that is loop-invariant
105    (note that this reference does not have to cover the whole object
106    being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
107    not recommended to use BASE_OBJECT in any code generation).
108    For the examples above,
109 
110    base_object:        a                              *(p + x + 4B * j_0)
111    indices:            {j_0, +, 1}_2                  {16, +, 4}_2
112 		       4
113 		       {i_0, +, 1}_1
114 		       {j_0, +, 1}_2
115 */
116 
117 struct indices
118 {
119   /* The object.  */
120   tree base_object;
121 
122   /* A list of chrecs.  Access functions of the indices.  */
123   vec<tree> access_fns;
124 
125   /* Whether BASE_OBJECT is an access representing the whole object
126      or whether the access could not be constrained.  */
127   bool unconstrained_base;
128 };
129 
130 struct dr_alias
131 {
132   /* The alias information that should be used for new pointers to this
133      location.  */
134   struct ptr_info_def *ptr_info;
135 };
136 
137 /* An integer vector.  A vector formally consists of an element of a vector
138    space. A vector space is a set that is closed under vector addition
139    and scalar multiplication.  In this vector space, an element is a list of
140    integers.  */
141 typedef HOST_WIDE_INT lambda_int;
142 typedef lambda_int *lambda_vector;
143 
144 /* An integer matrix.  A matrix consists of m vectors of length n (IE
145    all vectors are the same length).  */
146 typedef lambda_vector *lambda_matrix;
147 
148 
149 
150 struct data_reference
151 {
152   /* A pointer to the statement that contains this DR.  */
153   gimple *stmt;
154 
155   /* A pointer to the memory reference.  */
156   tree ref;
157 
158   /* Auxiliary info specific to a pass.  */
159   void *aux;
160 
161   /* True when the data reference is in RHS of a stmt.  */
162   bool is_read;
163 
164   /* True when the data reference is conditional within STMT,
165      i.e. if it might not occur even when the statement is executed
166      and runs to completion.  */
167   bool is_conditional_in_stmt;
168 
169   /* Alias information for the data reference.  */
170   struct dr_alias alias;
171 
172   /* Behavior of the memory reference in the innermost loop.  */
173   struct innermost_loop_behavior innermost;
174 
175   /* Subscripts of this data reference.  */
176   struct indices indices;
177 
178   /* Alternate subscripts initialized lazily and used by data-dependence
179      analysis only when the main indices of two DRs are not comparable.
180      Keep last to keep vec_info_shared::check_datarefs happy.  */
181   struct indices alt_indices;
182 };
183 
184 #define DR_STMT(DR)                (DR)->stmt
185 #define DR_REF(DR)                 (DR)->ref
186 #define DR_BASE_OBJECT(DR)         (DR)->indices.base_object
187 #define DR_UNCONSTRAINED_BASE(DR)  (DR)->indices.unconstrained_base
188 #define DR_ACCESS_FNS(DR)	   (DR)->indices.access_fns
189 #define DR_ACCESS_FN(DR, I)        DR_ACCESS_FNS (DR)[I]
190 #define DR_NUM_DIMENSIONS(DR)      DR_ACCESS_FNS (DR).length ()
191 #define DR_IS_READ(DR)             (DR)->is_read
192 #define DR_IS_WRITE(DR)            (!DR_IS_READ (DR))
193 #define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt
194 #define DR_BASE_ADDRESS(DR)        (DR)->innermost.base_address
195 #define DR_OFFSET(DR)              (DR)->innermost.offset
196 #define DR_INIT(DR)                (DR)->innermost.init
197 #define DR_STEP(DR)                (DR)->innermost.step
198 #define DR_PTR_INFO(DR)            (DR)->alias.ptr_info
199 #define DR_BASE_ALIGNMENT(DR)      (DR)->innermost.base_alignment
200 #define DR_BASE_MISALIGNMENT(DR)   (DR)->innermost.base_misalignment
201 #define DR_OFFSET_ALIGNMENT(DR)    (DR)->innermost.offset_alignment
202 #define DR_STEP_ALIGNMENT(DR)      (DR)->innermost.step_alignment
203 #define DR_INNERMOST(DR)           (DR)->innermost
204 
205 typedef struct data_reference *data_reference_p;
206 
207 /* This struct is used to store the information of a data reference,
208    including the data ref itself and the segment length for aliasing
209    checks.  This is used to merge alias checks.  */
210 
211 class dr_with_seg_len
212 {
213 public:
dr_with_seg_len(data_reference_p d,tree len,unsigned HOST_WIDE_INT size,unsigned int a)214   dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size,
215 		   unsigned int a)
216     : dr (d), seg_len (len), access_size (size), align (a) {}
217 
218   data_reference_p dr;
219   /* The offset of the last access that needs to be checked minus
220      the offset of the first.  */
221   tree seg_len;
222   /* A value that, when added to abs (SEG_LEN), gives the total number of
223      bytes in the segment.  */
224   poly_uint64 access_size;
225   /* The minimum common alignment of DR's start address, SEG_LEN and
226      ACCESS_SIZE.  */
227   unsigned int align;
228 };
229 
230 /* Flags that describe a potential alias between two dr_with_seg_lens.
231    In general, each pair of dr_with_seg_lens represents a composite of
232    multiple access pairs P, so testing flags like DR_IS_READ on the DRs
233    does not give meaningful information.
234 
235    DR_ALIAS_RAW:
236 	There is a pair in P for which the second reference is a read
237 	and the first is a write.
238 
239    DR_ALIAS_WAR:
240 	There is a pair in P for which the second reference is a write
241 	and the first is a read.
242 
243    DR_ALIAS_WAW:
244 	There is a pair in P for which both references are writes.
245 
246    DR_ALIAS_ARBITRARY:
247 	Either
248 	(a) it isn't possible to classify one pair in P as RAW, WAW or WAR; or
249 	(b) there is a pair in P that breaks the ordering assumption below.
250 
251 	This flag overrides the RAW, WAR and WAW flags above.
252 
253    DR_ALIAS_UNSWAPPED:
254    DR_ALIAS_SWAPPED:
255 	Temporary flags that indicate whether there is a pair P whose
256 	DRs have or haven't been swapped around.
257 
258    DR_ALIAS_MIXED_STEPS:
259 	The DR_STEP for one of the data references in the pair does not
260 	accurately describe that reference for all members of P.  (Note
261 	that the flag does not say anything about whether the DR_STEPs
262 	of the two references in the pair are the same.)
263 
264    The ordering assumption mentioned above is that for every pair
265    (DR_A, DR_B) in P:
266 
267    (1) The original code accesses n elements for DR_A and n elements for DR_B,
268        interleaved as follows:
269 
270 	 one access of size DR_A.access_size at DR_A.dr
271 	 one access of size DR_B.access_size at DR_B.dr
272 	 one access of size DR_A.access_size at DR_A.dr + STEP_A
273 	 one access of size DR_B.access_size at DR_B.dr + STEP_B
274 	 one access of size DR_A.access_size at DR_A.dr + STEP_A * 2
275 	 one access of size DR_B.access_size at DR_B.dr + STEP_B * 2
276 	 ...
277 
278    (2) The new code accesses the same data in exactly two chunks:
279 
280 	 one group of accesses spanning |DR_A.seg_len| + DR_A.access_size
281 	 one group of accesses spanning |DR_B.seg_len| + DR_B.access_size
282 
283    A pair might break this assumption if the DR_A and DR_B accesses
284    in the original or the new code are mingled in some way.  For example,
285    if DR_A.access_size represents the effect of two individual writes
286    to nearby locations, the pair breaks the assumption if those writes
287    occur either side of the access for DR_B.
288 
289    Note that DR_ALIAS_ARBITRARY describes whether the ordering assumption
290    fails to hold for any individual pair in P.  If the assumption *does*
291    hold for every pair in P, it doesn't matter whether it holds for the
292    composite pair or not.  In other words, P should represent the complete
293    set of pairs that the composite pair is testing, so only the ordering
294    of two accesses in the same member of P matters.  */
295 const unsigned int DR_ALIAS_RAW = 1U << 0;
296 const unsigned int DR_ALIAS_WAR = 1U << 1;
297 const unsigned int DR_ALIAS_WAW = 1U << 2;
298 const unsigned int DR_ALIAS_ARBITRARY = 1U << 3;
299 const unsigned int DR_ALIAS_SWAPPED = 1U << 4;
300 const unsigned int DR_ALIAS_UNSWAPPED = 1U << 5;
301 const unsigned int DR_ALIAS_MIXED_STEPS = 1U << 6;
302 
303 /* This struct contains two dr_with_seg_len objects with aliasing data
304    refs.  Two comparisons are generated from them.  */
305 
306 class dr_with_seg_len_pair_t
307 {
308 public:
309   /* WELL_ORDERED indicates that the ordering assumption described above
310      DR_ALIAS_ARBITRARY holds.  REORDERED indicates that it doesn't.  */
311   enum sequencing { WELL_ORDERED, REORDERED };
312 
313   dr_with_seg_len_pair_t (const dr_with_seg_len &,
314 			  const dr_with_seg_len &, sequencing);
315 
316   dr_with_seg_len first;
317   dr_with_seg_len second;
318   unsigned int flags;
319 };
320 
321 inline dr_with_seg_len_pair_t::
dr_with_seg_len_pair_t(const dr_with_seg_len & d1,const dr_with_seg_len & d2,sequencing seq)322 dr_with_seg_len_pair_t (const dr_with_seg_len &d1, const dr_with_seg_len &d2,
323 			sequencing seq)
324   : first (d1), second (d2), flags (0)
325 {
326   if (DR_IS_READ (d1.dr) && DR_IS_WRITE (d2.dr))
327     flags |= DR_ALIAS_WAR;
328   else if (DR_IS_WRITE (d1.dr) && DR_IS_READ (d2.dr))
329     flags |= DR_ALIAS_RAW;
330   else if (DR_IS_WRITE (d1.dr) && DR_IS_WRITE (d2.dr))
331     flags |= DR_ALIAS_WAW;
332   else
333     gcc_unreachable ();
334   if (seq == REORDERED)
335     flags |= DR_ALIAS_ARBITRARY;
336 }
337 
338 enum data_dependence_direction {
339   dir_positive,
340   dir_negative,
341   dir_equal,
342   dir_positive_or_negative,
343   dir_positive_or_equal,
344   dir_negative_or_equal,
345   dir_star,
346   dir_independent
347 };
348 
349 /* The description of the grid of iterations that overlap.  At most
350    two loops are considered at the same time just now, hence at most
351    two functions are needed.  For each of the functions, we store
352    the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
353    where x, y, ... are variables.  */
354 
355 #define MAX_DIM 2
356 
357 /* Special values of N.  */
358 #define NO_DEPENDENCE 0
359 #define NOT_KNOWN (MAX_DIM + 1)
360 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
361 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
362 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
363 
364 typedef vec<tree> affine_fn;
365 
366 struct conflict_function
367 {
368   unsigned n;
369   affine_fn fns[MAX_DIM];
370 };
371 
372 /* What is a subscript?  Given two array accesses a subscript is the
373    tuple composed of the access functions for a given dimension.
374    Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
375    subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
376    are stored in the data_dependence_relation structure under the form
377    of an array of subscripts.  */
378 
379 struct subscript
380 {
381   /* The access functions of the two references.  */
382   tree access_fn[2];
383 
384   /* A description of the iterations for which the elements are
385      accessed twice.  */
386   conflict_function *conflicting_iterations_in_a;
387   conflict_function *conflicting_iterations_in_b;
388 
389   /* This field stores the information about the iteration domain
390      validity of the dependence relation.  */
391   tree last_conflict;
392 
393   /* Distance from the iteration that access a conflicting element in
394      A to the iteration that access this same conflicting element in
395      B.  The distance is a tree scalar expression, i.e. a constant or a
396      symbolic expression, but certainly not a chrec function.  */
397   tree distance;
398 };
399 
400 typedef struct subscript *subscript_p;
401 
402 #define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
403 #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
404 #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
405 #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
406 #define SUB_DISTANCE(SUB) (SUB)->distance
407 
408 /* A data_dependence_relation represents a relation between two
409    data_references A and B.  */
410 
411 struct data_dependence_relation
412 {
413 
414   struct data_reference *a;
415   struct data_reference *b;
416 
417   /* A "yes/no/maybe" field for the dependence relation:
418 
419      - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
420        relation between A and B, and the description of this relation
421        is given in the SUBSCRIPTS array,
422 
423      - when "ARE_DEPENDENT == chrec_known", there is no dependence and
424        SUBSCRIPTS is empty,
425 
426      - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
427        but the analyzer cannot be more specific.  */
428   tree are_dependent;
429 
430   /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are
431      independent when the runtime addresses of OBJECT_A and OBJECT_B
432      are different.  The addresses of both objects are invariant in the
433      loop nest.  */
434   tree object_a;
435   tree object_b;
436 
437   /* For each subscript in the dependence test, there is an element in
438      this array.  This is the attribute that labels the edge A->B of
439      the data_dependence_relation.  */
440   vec<subscript_p> subscripts;
441 
442   /* The analyzed loop nest.  */
443   vec<loop_p> loop_nest;
444 
445   /* The classic direction vector.  */
446   vec<lambda_vector> dir_vects;
447 
448   /* The classic distance vector.  */
449   vec<lambda_vector> dist_vects;
450 
451   /* Is the dependence reversed with respect to the lexicographic order?  */
452   bool reversed_p;
453 
454   /* When the dependence relation is affine, it can be represented by
455      a distance vector.  */
456   bool affine_p;
457 
458   /* Set to true when the dependence relation is on the same data
459      access.  */
460   bool self_reference_p;
461 
462   /* True if the dependence described is conservatively correct rather
463      than exact, and if it is still possible for the accesses to be
464      conditionally independent.  For example, the a and b references in:
465 
466        struct s *a, *b;
467        for (int i = 0; i < n; ++i)
468          a->f[i] += b->f[i];
469 
470      conservatively have a distance vector of (0), for the case in which
471      a == b, but the accesses are independent if a != b.  Similarly,
472      the a and b references in:
473 
474        struct s *a, *b;
475        for (int i = 0; i < n; ++i)
476          a[0].f[i] += b[i].f[i];
477 
478      conservatively have a distance vector of (0), but they are indepenent
479      when a != b + i.  In contrast, the references in:
480 
481        struct s *a;
482        for (int i = 0; i < n; ++i)
483          a->f[i] += a->f[i];
484 
485      have the same distance vector of (0), but the accesses can never be
486      independent.  */
487   bool could_be_independent_p;
488 };
489 
490 typedef struct data_dependence_relation *ddr_p;
491 
492 #define DDR_A(DDR) (DDR)->a
493 #define DDR_B(DDR) (DDR)->b
494 #define DDR_AFFINE_P(DDR) (DDR)->affine_p
495 #define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
496 #define DDR_OBJECT_A(DDR) (DDR)->object_a
497 #define DDR_OBJECT_B(DDR) (DDR)->object_b
498 #define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
499 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
500 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
501 
502 #define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
503 /* The size of the direction/distance vectors: the number of loops in
504    the loop nest.  */
505 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
506 #define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
507 
508 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
509 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
510 #define DDR_NUM_DIST_VECTS(DDR) \
511   (DDR_DIST_VECTS (DDR).length ())
512 #define DDR_NUM_DIR_VECTS(DDR) \
513   (DDR_DIR_VECTS (DDR).length ())
514 #define DDR_DIR_VECT(DDR, I) \
515   DDR_DIR_VECTS (DDR)[I]
516 #define DDR_DIST_VECT(DDR, I) \
517   DDR_DIST_VECTS (DDR)[I]
518 #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
519 #define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
520 
521 
522 opt_result dr_analyze_innermost (innermost_loop_behavior *, tree,
523 				 class loop *, const gimple *);
524 extern bool compute_data_dependences_for_loop (class loop *, bool,
525 					       vec<loop_p> *,
526 					       vec<data_reference_p> *,
527 					       vec<ddr_p> *);
528 extern void debug_ddrs (vec<ddr_p> );
529 extern void dump_data_reference (FILE *, struct data_reference *);
530 extern void debug (data_reference &ref);
531 extern void debug (data_reference *ptr);
532 extern void debug_data_reference (struct data_reference *);
533 extern void debug_data_references (vec<data_reference_p> );
534 extern void debug (vec<data_reference_p> &ref);
535 extern void debug (vec<data_reference_p> *ptr);
536 extern void debug_data_dependence_relation (const data_dependence_relation *);
537 extern void dump_data_dependence_relations (FILE *, const vec<ddr_p> &);
538 extern void debug (vec<ddr_p> &ref);
539 extern void debug (vec<ddr_p> *ptr);
540 extern void debug_data_dependence_relations (vec<ddr_p> );
541 extern void free_dependence_relation (struct data_dependence_relation *);
542 extern void free_dependence_relations (vec<ddr_p>& );
543 extern void free_data_ref (data_reference_p);
544 extern void free_data_refs (vec<data_reference_p>& );
545 extern opt_result find_data_references_in_stmt (class loop *, gimple *,
546 						vec<data_reference_p> *);
547 extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *,
548 						   vec<data_reference_p> *);
549 tree find_data_references_in_loop (class loop *, vec<data_reference_p> *);
550 bool loop_nest_has_data_refs (loop_p loop);
551 struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool,
552 					bool);
553 extern bool find_loop_nest (class loop *, vec<loop_p> *);
554 extern struct data_dependence_relation *initialize_data_dependence_relation
555      (struct data_reference *, struct data_reference *, vec<loop_p>);
556 extern void compute_affine_dependence (struct data_dependence_relation *,
557 				       loop_p);
558 extern void compute_self_dependence (struct data_dependence_relation *);
559 extern bool compute_all_dependences (const vec<data_reference_p> &,
560 				     vec<ddr_p> *,
561 				     const vec<loop_p> &, bool);
562 extern tree find_data_references_in_bb (class loop *, basic_block,
563                                         vec<data_reference_p> *);
564 extern unsigned int dr_alignment (innermost_loop_behavior *);
565 extern tree get_base_for_alignment (tree, unsigned int *);
566 
567 /* Return the alignment in bytes that DR is guaranteed to have at all
568    times.  */
569 
570 inline unsigned int
dr_alignment(data_reference * dr)571 dr_alignment (data_reference *dr)
572 {
573   return dr_alignment (&DR_INNERMOST (dr));
574 }
575 
576 extern bool dr_may_alias_p (const struct data_reference *,
577 			    const struct data_reference *, class loop *);
578 extern bool dr_equal_offsets_p (struct data_reference *,
579                                 struct data_reference *);
580 
581 extern opt_result runtime_alias_check_p (ddr_p, class loop *, bool);
582 extern int data_ref_compare_tree (tree, tree);
583 extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
584 					   poly_uint64);
585 extern void create_runtime_alias_checks (class loop *,
586 					 const vec<dr_with_seg_len_pair_t> *,
587 					 tree*);
588 extern tree dr_direction_indicator (struct data_reference *);
589 extern tree dr_zero_step_indicator (struct data_reference *);
590 extern bool dr_known_forward_stride_p (struct data_reference *);
591 
592 /* Return true when the base objects of data references A and B are
593    the same memory object.  */
594 
595 static inline bool
same_data_refs_base_objects(data_reference_p a,data_reference_p b)596 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
597 {
598   return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
599     && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
600 }
601 
602 /* Return true when the data references A and B are accessing the same
603    memory object with the same access functions.  Optionally skip the
604    last OFFSET dimensions in the data reference.  */
605 
606 static inline bool
607 same_data_refs (data_reference_p a, data_reference_p b, int offset = 0)
608 {
609   unsigned int i;
610 
611   /* The references are exactly the same.  */
612   if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
613     return true;
614 
615   if (!same_data_refs_base_objects (a, b))
616     return false;
617 
618   for (i = offset; i < DR_NUM_DIMENSIONS (a); i++)
619     if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
620       return false;
621 
622   return true;
623 }
624 
625 /* Returns true when all the dependences are computable.  */
626 
627 inline bool
known_dependences_p(vec<ddr_p> dependence_relations)628 known_dependences_p (vec<ddr_p> dependence_relations)
629 {
630   ddr_p ddr;
631   unsigned int i;
632 
633   FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
634     if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
635       return false;
636 
637   return true;
638 }
639 
640 /* Returns the dependence level for a vector DIST of size LENGTH.
641    LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
642    to the sequence of statements, not carried by any loop.  */
643 
644 static inline unsigned
dependence_level(lambda_vector dist_vect,int length)645 dependence_level (lambda_vector dist_vect, int length)
646 {
647   int i;
648 
649   for (i = 0; i < length; i++)
650     if (dist_vect[i] != 0)
651       return i + 1;
652 
653   return 0;
654 }
655 
656 /* Return the dependence level for the DDR relation.  */
657 
658 static inline unsigned
ddr_dependence_level(ddr_p ddr)659 ddr_dependence_level (ddr_p ddr)
660 {
661   unsigned vector;
662   unsigned level = 0;
663 
664   if (DDR_DIST_VECTS (ddr).exists ())
665     level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
666 
667   for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
668     level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
669 					  DDR_NB_LOOPS (ddr)));
670   return level;
671 }
672 
673 /* Return the index of the variable VAR in the LOOP_NEST array.  */
674 
675 static inline int
index_in_loop_nest(int var,const vec<loop_p> & loop_nest)676 index_in_loop_nest (int var, const vec<loop_p> &loop_nest)
677 {
678   class loop *loopi;
679   int var_index;
680 
681   for (var_index = 0; loop_nest.iterate (var_index, &loopi); var_index++)
682     if (loopi->num == var)
683       return var_index;
684 
685   gcc_unreachable ();
686 }
687 
688 /* Returns true when the data reference DR the form "A[i] = ..."
689    with a stride equal to its unit type size.  */
690 
691 static inline bool
adjacent_dr_p(struct data_reference * dr)692 adjacent_dr_p (struct data_reference *dr)
693 {
694   /* If this is a bitfield store bail out.  */
695   if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
696       && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
697     return false;
698 
699   if (!DR_STEP (dr)
700       || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
701     return false;
702 
703   return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
704 					 DR_STEP (dr)),
705 			     TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
706 }
707 
708 void split_constant_offset (tree , tree *, tree *);
709 
710 /* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
711 
712 static inline lambda_int
lambda_vector_gcd(lambda_vector vector,int size)713 lambda_vector_gcd (lambda_vector vector, int size)
714 {
715   int i;
716   lambda_int gcd1 = 0;
717 
718   if (size > 0)
719     {
720       gcd1 = vector[0];
721       for (i = 1; i < size; i++)
722 	gcd1 = gcd (gcd1, vector[i]);
723     }
724   return gcd1;
725 }
726 
727 /* Allocate a new vector of given SIZE.  */
728 
729 static inline lambda_vector
lambda_vector_new(int size)730 lambda_vector_new (int size)
731 {
732   /* ???  We shouldn't abuse the GC allocator here.  */
733   return ggc_cleared_vec_alloc<lambda_int> (size);
734 }
735 
736 /* Clear out vector VEC1 of length SIZE.  */
737 
738 static inline void
lambda_vector_clear(lambda_vector vec1,int size)739 lambda_vector_clear (lambda_vector vec1, int size)
740 {
741   memset (vec1, 0, size * sizeof (*vec1));
742 }
743 
744 /* Returns true when the vector V is lexicographically positive, in
745    other words, when the first nonzero element is positive.  */
746 
747 static inline bool
lambda_vector_lexico_pos(lambda_vector v,unsigned n)748 lambda_vector_lexico_pos (lambda_vector v,
749 			  unsigned n)
750 {
751   unsigned i;
752   for (i = 0; i < n; i++)
753     {
754       if (v[i] == 0)
755 	continue;
756       if (v[i] < 0)
757 	return false;
758       if (v[i] > 0)
759 	return true;
760     }
761   return true;
762 }
763 
764 /* Return true if vector VEC1 of length SIZE is the zero vector.  */
765 
766 static inline bool
lambda_vector_zerop(lambda_vector vec1,int size)767 lambda_vector_zerop (lambda_vector vec1, int size)
768 {
769   int i;
770   for (i = 0; i < size; i++)
771     if (vec1[i] != 0)
772       return false;
773   return true;
774 }
775 
776 /* Allocate a matrix of M rows x  N cols.  */
777 
778 static inline lambda_matrix
lambda_matrix_new(int m,int n,struct obstack * lambda_obstack)779 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
780 {
781   lambda_matrix mat;
782   int i;
783 
784   mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
785 
786   for (i = 0; i < m; i++)
787     mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n);
788 
789   return mat;
790 }
791 
792 #endif  /* GCC_TREE_DATA_REF_H  */
793