1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/Support/BlockFrequency.h"
22 #include "llvm/Support/BranchProbability.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ScaledNumber.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <iterator>
33 #include <list>
34 #include <numeric>
35 #include <utility>
36 #include <vector>
37
38 using namespace llvm;
39 using namespace llvm::bfi_detail;
40
41 #define DEBUG_TYPE "block-freq"
42
43 namespace llvm {
44 cl::opt<bool> CheckBFIUnknownBlockQueries(
45 "check-bfi-unknown-block-queries",
46 cl::init(false), cl::Hidden,
47 cl::desc("Check if block frequency is queried for an unknown block "
48 "for debugging missed BFI updates"));
49 }
50
toScaled() const51 ScaledNumber<uint64_t> BlockMass::toScaled() const {
52 if (isFull())
53 return ScaledNumber<uint64_t>(1, 0);
54 return ScaledNumber<uint64_t>(getMass() + 1, -64);
55 }
56
57 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const58 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
59 #endif
60
getHexDigit(int N)61 static char getHexDigit(int N) {
62 assert(N < 16);
63 if (N < 10)
64 return '0' + N;
65 return 'a' + N - 10;
66 }
67
print(raw_ostream & OS) const68 raw_ostream &BlockMass::print(raw_ostream &OS) const {
69 for (int Digits = 0; Digits < 16; ++Digits)
70 OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
71 return OS;
72 }
73
74 namespace {
75
76 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
77 using Distribution = BlockFrequencyInfoImplBase::Distribution;
78 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
79 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
80 using LoopData = BlockFrequencyInfoImplBase::LoopData;
81 using Weight = BlockFrequencyInfoImplBase::Weight;
82 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
83
84 /// Dithering mass distributer.
85 ///
86 /// This class splits up a single mass into portions by weight, dithering to
87 /// spread out error. No mass is lost. The dithering precision depends on the
88 /// precision of the product of \a BlockMass and \a BranchProbability.
89 ///
90 /// The distribution algorithm follows.
91 ///
92 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the
93 /// mass to distribute in \a RemMass.
94 ///
95 /// 2. For each portion:
96 ///
97 /// 1. Construct a branch probability, P, as the portion's weight divided
98 /// by the current value of \a RemWeight.
99 /// 2. Calculate the portion's mass as \a RemMass times P.
100 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
101 /// the current portion's weight and mass.
102 struct DitheringDistributer {
103 uint32_t RemWeight;
104 BlockMass RemMass;
105
106 DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
107
108 BlockMass takeMass(uint32_t Weight);
109 };
110
111 } // end anonymous namespace
112
DitheringDistributer(Distribution & Dist,const BlockMass & Mass)113 DitheringDistributer::DitheringDistributer(Distribution &Dist,
114 const BlockMass &Mass) {
115 Dist.normalize();
116 RemWeight = Dist.Total;
117 RemMass = Mass;
118 }
119
takeMass(uint32_t Weight)120 BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
121 assert(Weight && "invalid weight");
122 assert(Weight <= RemWeight);
123 BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
124
125 // Decrement totals (dither).
126 RemWeight -= Weight;
127 RemMass -= Mass;
128 return Mass;
129 }
130
add(const BlockNode & Node,uint64_t Amount,Weight::DistType Type)131 void Distribution::add(const BlockNode &Node, uint64_t Amount,
132 Weight::DistType Type) {
133 assert(Amount && "invalid weight of 0");
134 uint64_t NewTotal = Total + Amount;
135
136 // Check for overflow. It should be impossible to overflow twice.
137 bool IsOverflow = NewTotal < Total;
138 assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
139 DidOverflow |= IsOverflow;
140
141 // Update the total.
142 Total = NewTotal;
143
144 // Save the weight.
145 Weights.push_back(Weight(Type, Node, Amount));
146 }
147
combineWeight(Weight & W,const Weight & OtherW)148 static void combineWeight(Weight &W, const Weight &OtherW) {
149 assert(OtherW.TargetNode.isValid());
150 if (!W.Amount) {
151 W = OtherW;
152 return;
153 }
154 assert(W.Type == OtherW.Type);
155 assert(W.TargetNode == OtherW.TargetNode);
156 assert(OtherW.Amount && "Expected non-zero weight");
157 if (W.Amount > W.Amount + OtherW.Amount)
158 // Saturate on overflow.
159 W.Amount = UINT64_MAX;
160 else
161 W.Amount += OtherW.Amount;
162 }
163
combineWeightsBySorting(WeightList & Weights)164 static void combineWeightsBySorting(WeightList &Weights) {
165 // Sort so edges to the same node are adjacent.
166 llvm::sort(Weights, [](const Weight &L, const Weight &R) {
167 return L.TargetNode < R.TargetNode;
168 });
169
170 // Combine adjacent edges.
171 WeightList::iterator O = Weights.begin();
172 for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
173 ++O, (I = L)) {
174 *O = *I;
175
176 // Find the adjacent weights to the same node.
177 for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
178 combineWeight(*O, *L);
179 }
180
181 // Erase extra entries.
182 Weights.erase(O, Weights.end());
183 }
184
combineWeightsByHashing(WeightList & Weights)185 static void combineWeightsByHashing(WeightList &Weights) {
186 // Collect weights into a DenseMap.
187 using HashTable = DenseMap<BlockNode::IndexType, Weight>;
188
189 HashTable Combined(NextPowerOf2(2 * Weights.size()));
190 for (const Weight &W : Weights)
191 combineWeight(Combined[W.TargetNode.Index], W);
192
193 // Check whether anything changed.
194 if (Weights.size() == Combined.size())
195 return;
196
197 // Fill in the new weights.
198 Weights.clear();
199 Weights.reserve(Combined.size());
200 for (const auto &I : Combined)
201 Weights.push_back(I.second);
202 }
203
combineWeights(WeightList & Weights)204 static void combineWeights(WeightList &Weights) {
205 // Use a hash table for many successors to keep this linear.
206 if (Weights.size() > 128) {
207 combineWeightsByHashing(Weights);
208 return;
209 }
210
211 combineWeightsBySorting(Weights);
212 }
213
shiftRightAndRound(uint64_t N,int Shift)214 static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
215 assert(Shift >= 0);
216 assert(Shift < 64);
217 if (!Shift)
218 return N;
219 return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
220 }
221
normalize()222 void Distribution::normalize() {
223 // Early exit for termination nodes.
224 if (Weights.empty())
225 return;
226
227 // Only bother if there are multiple successors.
228 if (Weights.size() > 1)
229 combineWeights(Weights);
230
231 // Early exit when combined into a single successor.
232 if (Weights.size() == 1) {
233 Total = 1;
234 Weights.front().Amount = 1;
235 return;
236 }
237
238 // Determine how much to shift right so that the total fits into 32-bits.
239 //
240 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
241 // for each weight can cause a 32-bit overflow.
242 int Shift = 0;
243 if (DidOverflow)
244 Shift = 33;
245 else if (Total > UINT32_MAX)
246 Shift = 33 - countLeadingZeros(Total);
247
248 // Early exit if nothing needs to be scaled.
249 if (!Shift) {
250 // If we didn't overflow then combineWeights() shouldn't have changed the
251 // sum of the weights, but let's double-check.
252 assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
253 [](uint64_t Sum, const Weight &W) {
254 return Sum + W.Amount;
255 }) &&
256 "Expected total to be correct");
257 return;
258 }
259
260 // Recompute the total through accumulation (rather than shifting it) so that
261 // it's accurate after shifting and any changes combineWeights() made above.
262 Total = 0;
263
264 // Sum the weights to each node and shift right if necessary.
265 for (Weight &W : Weights) {
266 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
267 // can round here without concern about overflow.
268 assert(W.TargetNode.isValid());
269 W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
270 assert(W.Amount <= UINT32_MAX);
271
272 // Update the total.
273 Total += W.Amount;
274 }
275 assert(Total <= UINT32_MAX);
276 }
277
clear()278 void BlockFrequencyInfoImplBase::clear() {
279 // Swap with a default-constructed std::vector, since std::vector<>::clear()
280 // does not actually clear heap storage.
281 std::vector<FrequencyData>().swap(Freqs);
282 IsIrrLoopHeader.clear();
283 std::vector<WorkingData>().swap(Working);
284 Loops.clear();
285 }
286
287 /// Clear all memory not needed downstream.
288 ///
289 /// Releases all memory not used downstream. In particular, saves Freqs.
cleanup(BlockFrequencyInfoImplBase & BFI)290 static void cleanup(BlockFrequencyInfoImplBase &BFI) {
291 std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
292 SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
293 BFI.clear();
294 BFI.Freqs = std::move(SavedFreqs);
295 BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
296 }
297
addToDist(Distribution & Dist,const LoopData * OuterLoop,const BlockNode & Pred,const BlockNode & Succ,uint64_t Weight)298 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
299 const LoopData *OuterLoop,
300 const BlockNode &Pred,
301 const BlockNode &Succ,
302 uint64_t Weight) {
303 if (!Weight)
304 Weight = 1;
305
306 auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
307 return OuterLoop && OuterLoop->isHeader(Node);
308 };
309
310 BlockNode Resolved = Working[Succ.Index].getResolvedNode();
311
312 #ifndef NDEBUG
313 auto debugSuccessor = [&](const char *Type) {
314 dbgs() << " =>"
315 << " [" << Type << "] weight = " << Weight;
316 if (!isLoopHeader(Resolved))
317 dbgs() << ", succ = " << getBlockName(Succ);
318 if (Resolved != Succ)
319 dbgs() << ", resolved = " << getBlockName(Resolved);
320 dbgs() << "\n";
321 };
322 (void)debugSuccessor;
323 #endif
324
325 if (isLoopHeader(Resolved)) {
326 LLVM_DEBUG(debugSuccessor("backedge"));
327 Dist.addBackedge(Resolved, Weight);
328 return true;
329 }
330
331 if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
332 LLVM_DEBUG(debugSuccessor(" exit "));
333 Dist.addExit(Resolved, Weight);
334 return true;
335 }
336
337 if (Resolved < Pred) {
338 if (!isLoopHeader(Pred)) {
339 // If OuterLoop is an irreducible loop, we can't actually handle this.
340 assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
341 "unhandled irreducible control flow");
342
343 // Irreducible backedge. Abort.
344 LLVM_DEBUG(debugSuccessor("abort!!!"));
345 return false;
346 }
347
348 // If "Pred" is a loop header, then this isn't really a backedge; rather,
349 // OuterLoop must be irreducible. These false backedges can come only from
350 // secondary loop headers.
351 assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
352 "unhandled irreducible control flow");
353 }
354
355 LLVM_DEBUG(debugSuccessor(" local "));
356 Dist.addLocal(Resolved, Weight);
357 return true;
358 }
359
addLoopSuccessorsToDist(const LoopData * OuterLoop,LoopData & Loop,Distribution & Dist)360 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
361 const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
362 // Copy the exit map into Dist.
363 for (const auto &I : Loop.Exits)
364 if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
365 I.second.getMass()))
366 // Irreducible backedge.
367 return false;
368
369 return true;
370 }
371
372 /// Compute the loop scale for a loop.
computeLoopScale(LoopData & Loop)373 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
374 // Compute loop scale.
375 LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
376
377 // Infinite loops need special handling. If we give the back edge an infinite
378 // mass, they may saturate all the other scales in the function down to 1,
379 // making all the other region temperatures look exactly the same. Choose an
380 // arbitrary scale to avoid these issues.
381 //
382 // FIXME: An alternate way would be to select a symbolic scale which is later
383 // replaced to be the maximum of all computed scales plus 1. This would
384 // appropriately describe the loop as having a large scale, without skewing
385 // the final frequency computation.
386 const Scaled64 InfiniteLoopScale(1, 12);
387
388 // LoopScale == 1 / ExitMass
389 // ExitMass == HeadMass - BackedgeMass
390 BlockMass TotalBackedgeMass;
391 for (auto &Mass : Loop.BackedgeMass)
392 TotalBackedgeMass += Mass;
393 BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
394
395 // Block scale stores the inverse of the scale. If this is an infinite loop,
396 // its exit mass will be zero. In this case, use an arbitrary scale for the
397 // loop scale.
398 Loop.Scale =
399 ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
400
401 LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
402 << BlockMass::getFull() << " - " << TotalBackedgeMass
403 << ")\n"
404 << " - scale = " << Loop.Scale << "\n");
405 }
406
407 /// Package up a loop.
packageLoop(LoopData & Loop)408 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
409 LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
410
411 // Clear the subloop exits to prevent quadratic memory usage.
412 for (const BlockNode &M : Loop.Nodes) {
413 if (auto *Loop = Working[M.Index].getPackagedLoop())
414 Loop->Exits.clear();
415 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
416 }
417 Loop.IsPackaged = true;
418 }
419
420 #ifndef NDEBUG
debugAssign(const BlockFrequencyInfoImplBase & BFI,const DitheringDistributer & D,const BlockNode & T,const BlockMass & M,const char * Desc)421 static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
422 const DitheringDistributer &D, const BlockNode &T,
423 const BlockMass &M, const char *Desc) {
424 dbgs() << " => assign " << M << " (" << D.RemMass << ")";
425 if (Desc)
426 dbgs() << " [" << Desc << "]";
427 if (T.isValid())
428 dbgs() << " to " << BFI.getBlockName(T);
429 dbgs() << "\n";
430 }
431 #endif
432
distributeMass(const BlockNode & Source,LoopData * OuterLoop,Distribution & Dist)433 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
434 LoopData *OuterLoop,
435 Distribution &Dist) {
436 BlockMass Mass = Working[Source.Index].getMass();
437 LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n");
438
439 // Distribute mass to successors as laid out in Dist.
440 DitheringDistributer D(Dist, Mass);
441
442 for (const Weight &W : Dist.Weights) {
443 // Check for a local edge (non-backedge and non-exit).
444 BlockMass Taken = D.takeMass(W.Amount);
445 if (W.Type == Weight::Local) {
446 Working[W.TargetNode.Index].getMass() += Taken;
447 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
448 continue;
449 }
450
451 // Backedges and exits only make sense if we're processing a loop.
452 assert(OuterLoop && "backedge or exit outside of loop");
453
454 // Check for a backedge.
455 if (W.Type == Weight::Backedge) {
456 OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
457 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
458 continue;
459 }
460
461 // This must be an exit.
462 assert(W.Type == Weight::Exit);
463 OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
464 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
465 }
466 }
467
convertFloatingToInteger(BlockFrequencyInfoImplBase & BFI,const Scaled64 & Min,const Scaled64 & Max)468 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
469 const Scaled64 &Min, const Scaled64 &Max) {
470 // Scale the Factor to a size that creates integers. Ideally, integers would
471 // be scaled so that Max == UINT64_MAX so that they can be best
472 // differentiated. However, in the presence of large frequency values, small
473 // frequencies are scaled down to 1, making it impossible to differentiate
474 // small, unequal numbers. When the spread between Min and Max frequencies
475 // fits well within MaxBits, we make the scale be at least 8.
476 const unsigned MaxBits = 64;
477 const unsigned SpreadBits = (Max / Min).lg();
478 Scaled64 ScalingFactor;
479 if (SpreadBits <= MaxBits - 3) {
480 // If the values are small enough, make the scaling factor at least 8 to
481 // allow distinguishing small values.
482 ScalingFactor = Min.inverse();
483 ScalingFactor <<= 3;
484 } else {
485 // If the values need more than MaxBits to be represented, saturate small
486 // frequency values down to 1 by using a scaling factor that benefits large
487 // frequency values.
488 ScalingFactor = Scaled64(1, MaxBits) / Max;
489 }
490
491 // Translate the floats to integers.
492 LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
493 << ", factor = " << ScalingFactor << "\n");
494 for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
495 Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
496 BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
497 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
498 << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
499 << ", int = " << BFI.Freqs[Index].Integer << "\n");
500 }
501 }
502
503 /// Unwrap a loop package.
504 ///
505 /// Visits all the members of a loop, adjusting their BlockData according to
506 /// the loop's pseudo-node.
unwrapLoop(BlockFrequencyInfoImplBase & BFI,LoopData & Loop)507 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
508 LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
509 << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
510 << "\n");
511 Loop.Scale *= Loop.Mass.toScaled();
512 Loop.IsPackaged = false;
513 LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n");
514
515 // Propagate the head scale through the loop. Since members are visited in
516 // RPO, the head scale will be updated by the loop scale first, and then the
517 // final head scale will be used for updated the rest of the members.
518 for (const BlockNode &N : Loop.Nodes) {
519 const auto &Working = BFI.Working[N.Index];
520 Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
521 : BFI.Freqs[N.Index].Scaled;
522 Scaled64 New = Loop.Scale * F;
523 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
524 << New << "\n");
525 F = New;
526 }
527 }
528
unwrapLoops()529 void BlockFrequencyInfoImplBase::unwrapLoops() {
530 // Set initial frequencies from loop-local masses.
531 for (size_t Index = 0; Index < Working.size(); ++Index)
532 Freqs[Index].Scaled = Working[Index].Mass.toScaled();
533
534 for (LoopData &Loop : Loops)
535 unwrapLoop(*this, Loop);
536 }
537
finalizeMetrics()538 void BlockFrequencyInfoImplBase::finalizeMetrics() {
539 // Unwrap loop packages in reverse post-order, tracking min and max
540 // frequencies.
541 auto Min = Scaled64::getLargest();
542 auto Max = Scaled64::getZero();
543 for (size_t Index = 0; Index < Working.size(); ++Index) {
544 // Update min/max scale.
545 Min = std::min(Min, Freqs[Index].Scaled);
546 Max = std::max(Max, Freqs[Index].Scaled);
547 }
548
549 // Convert to integers.
550 convertFloatingToInteger(*this, Min, Max);
551
552 // Clean up data structures.
553 cleanup(*this);
554
555 // Print out the final stats.
556 LLVM_DEBUG(dump());
557 }
558
559 BlockFrequency
getBlockFreq(const BlockNode & Node) const560 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
561 if (!Node.isValid()) {
562 #ifndef NDEBUG
563 if (CheckBFIUnknownBlockQueries) {
564 SmallString<256> Msg;
565 raw_svector_ostream OS(Msg);
566 OS << "*** Detected BFI query for unknown block " << getBlockName(Node);
567 report_fatal_error(OS.str());
568 }
569 #endif
570 return 0;
571 }
572 return Freqs[Node.Index].Integer;
573 }
574
575 Optional<uint64_t>
getBlockProfileCount(const Function & F,const BlockNode & Node,bool AllowSynthetic) const576 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
577 const BlockNode &Node,
578 bool AllowSynthetic) const {
579 return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(),
580 AllowSynthetic);
581 }
582
583 Optional<uint64_t>
getProfileCountFromFreq(const Function & F,uint64_t Freq,bool AllowSynthetic) const584 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
585 uint64_t Freq,
586 bool AllowSynthetic) const {
587 auto EntryCount = F.getEntryCount(AllowSynthetic);
588 if (!EntryCount)
589 return None;
590 // Use 128 bit APInt to do the arithmetic to avoid overflow.
591 APInt BlockCount(128, EntryCount.getCount());
592 APInt BlockFreq(128, Freq);
593 APInt EntryFreq(128, getEntryFreq());
594 BlockCount *= BlockFreq;
595 // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
596 // lshr by 1 gives EntryFreq/2.
597 BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq);
598 return BlockCount.getLimitedValue();
599 }
600
601 bool
isIrrLoopHeader(const BlockNode & Node)602 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
603 if (!Node.isValid())
604 return false;
605 return IsIrrLoopHeader.test(Node.Index);
606 }
607
608 Scaled64
getFloatingBlockFreq(const BlockNode & Node) const609 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
610 if (!Node.isValid())
611 return Scaled64::getZero();
612 return Freqs[Node.Index].Scaled;
613 }
614
setBlockFreq(const BlockNode & Node,uint64_t Freq)615 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
616 uint64_t Freq) {
617 assert(Node.isValid() && "Expected valid node");
618 assert(Node.Index < Freqs.size() && "Expected legal index");
619 Freqs[Node.Index].Integer = Freq;
620 }
621
622 std::string
getBlockName(const BlockNode & Node) const623 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
624 return {};
625 }
626
627 std::string
getLoopName(const LoopData & Loop) const628 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
629 return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
630 }
631
632 raw_ostream &
printBlockFreq(raw_ostream & OS,const BlockNode & Node) const633 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
634 const BlockNode &Node) const {
635 return OS << getFloatingBlockFreq(Node);
636 }
637
638 raw_ostream &
printBlockFreq(raw_ostream & OS,const BlockFrequency & Freq) const639 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
640 const BlockFrequency &Freq) const {
641 Scaled64 Block(Freq.getFrequency(), 0);
642 Scaled64 Entry(getEntryFreq(), 0);
643
644 return OS << Block / Entry;
645 }
646
addNodesInLoop(const BFIBase::LoopData & OuterLoop)647 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
648 Start = OuterLoop.getHeader();
649 Nodes.reserve(OuterLoop.Nodes.size());
650 for (auto N : OuterLoop.Nodes)
651 addNode(N);
652 indexNodes();
653 }
654
addNodesInFunction()655 void IrreducibleGraph::addNodesInFunction() {
656 Start = 0;
657 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
658 if (!BFI.Working[Index].isPackaged())
659 addNode(Index);
660 indexNodes();
661 }
662
indexNodes()663 void IrreducibleGraph::indexNodes() {
664 for (auto &I : Nodes)
665 Lookup[I.Node.Index] = &I;
666 }
667
addEdge(IrrNode & Irr,const BlockNode & Succ,const BFIBase::LoopData * OuterLoop)668 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
669 const BFIBase::LoopData *OuterLoop) {
670 if (OuterLoop && OuterLoop->isHeader(Succ))
671 return;
672 auto L = Lookup.find(Succ.Index);
673 if (L == Lookup.end())
674 return;
675 IrrNode &SuccIrr = *L->second;
676 Irr.Edges.push_back(&SuccIrr);
677 SuccIrr.Edges.push_front(&Irr);
678 ++SuccIrr.NumIn;
679 }
680
681 namespace llvm {
682
683 template <> struct GraphTraits<IrreducibleGraph> {
684 using GraphT = bfi_detail::IrreducibleGraph;
685 using NodeRef = const GraphT::IrrNode *;
686 using ChildIteratorType = GraphT::IrrNode::iterator;
687
getEntryNodellvm::GraphTraits688 static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
child_beginllvm::GraphTraits689 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
child_endllvm::GraphTraits690 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
691 };
692
693 } // end namespace llvm
694
695 /// Find extra irreducible headers.
696 ///
697 /// Find entry blocks and other blocks with backedges, which exist when \c G
698 /// contains irreducible sub-SCCs.
findIrreducibleHeaders(const BlockFrequencyInfoImplBase & BFI,const IrreducibleGraph & G,const std::vector<const IrreducibleGraph::IrrNode * > & SCC,LoopData::NodeList & Headers,LoopData::NodeList & Others)699 static void findIrreducibleHeaders(
700 const BlockFrequencyInfoImplBase &BFI,
701 const IrreducibleGraph &G,
702 const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
703 LoopData::NodeList &Headers, LoopData::NodeList &Others) {
704 // Map from nodes in the SCC to whether it's an entry block.
705 SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
706
707 // InSCC also acts the set of nodes in the graph. Seed it.
708 for (const auto *I : SCC)
709 InSCC[I] = false;
710
711 for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
712 auto &Irr = *I->first;
713 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
714 if (InSCC.count(P))
715 continue;
716
717 // This is an entry block.
718 I->second = true;
719 Headers.push_back(Irr.Node);
720 LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node)
721 << "\n");
722 break;
723 }
724 }
725 assert(Headers.size() >= 2 &&
726 "Expected irreducible CFG; -loop-info is likely invalid");
727 if (Headers.size() == InSCC.size()) {
728 // Every block is a header.
729 llvm::sort(Headers);
730 return;
731 }
732
733 // Look for extra headers from irreducible sub-SCCs.
734 for (const auto &I : InSCC) {
735 // Entry blocks are already headers.
736 if (I.second)
737 continue;
738
739 auto &Irr = *I.first;
740 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
741 // Skip forward edges.
742 if (P->Node < Irr.Node)
743 continue;
744
745 // Skip predecessors from entry blocks. These can have inverted
746 // ordering.
747 if (InSCC.lookup(P))
748 continue;
749
750 // Store the extra header.
751 Headers.push_back(Irr.Node);
752 LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node)
753 << "\n");
754 break;
755 }
756 if (Headers.back() == Irr.Node)
757 // Added this as a header.
758 continue;
759
760 // This is not a header.
761 Others.push_back(Irr.Node);
762 LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n");
763 }
764 llvm::sort(Headers);
765 llvm::sort(Others);
766 }
767
createIrreducibleLoop(BlockFrequencyInfoImplBase & BFI,const IrreducibleGraph & G,LoopData * OuterLoop,std::list<LoopData>::iterator Insert,const std::vector<const IrreducibleGraph::IrrNode * > & SCC)768 static void createIrreducibleLoop(
769 BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
770 LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
771 const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
772 // Translate the SCC into RPO.
773 LLVM_DEBUG(dbgs() << " - found-scc\n");
774
775 LoopData::NodeList Headers;
776 LoopData::NodeList Others;
777 findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
778
779 auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
780 Headers.end(), Others.begin(), Others.end());
781
782 // Update loop hierarchy.
783 for (const auto &N : Loop->Nodes)
784 if (BFI.Working[N.Index].isLoopHeader())
785 BFI.Working[N.Index].Loop->Parent = &*Loop;
786 else
787 BFI.Working[N.Index].Loop = &*Loop;
788 }
789
790 iterator_range<std::list<LoopData>::iterator>
analyzeIrreducible(const IrreducibleGraph & G,LoopData * OuterLoop,std::list<LoopData>::iterator Insert)791 BlockFrequencyInfoImplBase::analyzeIrreducible(
792 const IrreducibleGraph &G, LoopData *OuterLoop,
793 std::list<LoopData>::iterator Insert) {
794 assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
795 auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
796
797 for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
798 if (I->size() < 2)
799 continue;
800
801 // Translate the SCC into RPO.
802 createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
803 }
804
805 if (OuterLoop)
806 return make_range(std::next(Prev), Insert);
807 return make_range(Loops.begin(), Insert);
808 }
809
810 void
updateLoopWithIrreducible(LoopData & OuterLoop)811 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
812 OuterLoop.Exits.clear();
813 for (auto &Mass : OuterLoop.BackedgeMass)
814 Mass = BlockMass::getEmpty();
815 auto O = OuterLoop.Nodes.begin() + 1;
816 for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
817 if (!Working[I->Index].isPackaged())
818 *O++ = *I;
819 OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
820 }
821
adjustLoopHeaderMass(LoopData & Loop)822 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
823 assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
824
825 // Since the loop has more than one header block, the mass flowing back into
826 // each header will be different. Adjust the mass in each header loop to
827 // reflect the masses flowing through back edges.
828 //
829 // To do this, we distribute the initial mass using the backedge masses
830 // as weights for the distribution.
831 BlockMass LoopMass = BlockMass::getFull();
832 Distribution Dist;
833
834 LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
835 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
836 auto &HeaderNode = Loop.Nodes[H];
837 auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
838 LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
839 << getBlockName(HeaderNode) << ": " << BackedgeMass
840 << "\n");
841 if (BackedgeMass.getMass() > 0)
842 Dist.addLocal(HeaderNode, BackedgeMass.getMass());
843 else
844 LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n");
845 }
846
847 DitheringDistributer D(Dist, LoopMass);
848
849 LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
850 << " to headers using above weights\n");
851 for (const Weight &W : Dist.Weights) {
852 BlockMass Taken = D.takeMass(W.Amount);
853 assert(W.Type == Weight::Local && "all weights should be local");
854 Working[W.TargetNode.Index].getMass() = Taken;
855 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
856 }
857 }
858
distributeIrrLoopHeaderMass(Distribution & Dist)859 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
860 BlockMass LoopMass = BlockMass::getFull();
861 DitheringDistributer D(Dist, LoopMass);
862 for (const Weight &W : Dist.Weights) {
863 BlockMass Taken = D.takeMass(W.Amount);
864 assert(W.Type == Weight::Local && "all weights should be local");
865 Working[W.TargetNode.Index].getMass() = Taken;
866 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
867 }
868 }
869