1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
26 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
29 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
30 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
31 #include "llvm/CodeGen/LowLevelType.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/RuntimeLibcalls.h"
41 #include "llvm/CodeGen/StackProtector.h"
42 #include "llvm/CodeGen/SwitchLoweringUtils.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/BasicBlock.h"
50 #include "llvm/IR/CFG.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/DiagnosticInfo.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Statepoint.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/MC/MCContext.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CodeGen.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/LowLevelTypeImpl.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Target/TargetIntrinsicInfo.h"
81 #include "llvm/Target/TargetMachine.h"
82 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
83 #include <algorithm>
84 #include <cassert>
85 #include <cstdint>
86 #include <iterator>
87 #include <optional>
88 #include <string>
89 #include <utility>
90 #include <vector>
91
92 #define DEBUG_TYPE "irtranslator"
93
94 using namespace llvm;
95
96 static cl::opt<bool>
97 EnableCSEInIRTranslator("enable-cse-in-irtranslator",
98 cl::desc("Should enable CSE in irtranslator"),
99 cl::Optional, cl::init(false));
100 char IRTranslator::ID = 0;
101
102 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
103 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)104 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
105 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
106 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
107 INITIALIZE_PASS_DEPENDENCY(StackProtector)
108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
109 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
110 false, false)
111
112 static void reportTranslationError(MachineFunction &MF,
113 const TargetPassConfig &TPC,
114 OptimizationRemarkEmitter &ORE,
115 OptimizationRemarkMissed &R) {
116 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
117
118 // Print the function name explicitly if we don't have a debug location (which
119 // makes the diagnostic less useful) or if we're going to emit a raw error.
120 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
121 R << (" (in function: " + MF.getName() + ")").str();
122
123 if (TPC.isGlobalISelAbortEnabled())
124 report_fatal_error(Twine(R.getMsg()));
125 else
126 ORE.emit(R);
127 }
128
IRTranslator(CodeGenOpt::Level optlevel)129 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
130 : MachineFunctionPass(ID), OptLevel(optlevel) {}
131
132 #ifndef NDEBUG
133 namespace {
134 /// Verify that every instruction created has the same DILocation as the
135 /// instruction being translated.
136 class DILocationVerifier : public GISelChangeObserver {
137 const Instruction *CurrInst = nullptr;
138
139 public:
140 DILocationVerifier() = default;
141 ~DILocationVerifier() = default;
142
getCurrentInst() const143 const Instruction *getCurrentInst() const { return CurrInst; }
setCurrentInst(const Instruction * Inst)144 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
145
erasingInstr(MachineInstr & MI)146 void erasingInstr(MachineInstr &MI) override {}
changingInstr(MachineInstr & MI)147 void changingInstr(MachineInstr &MI) override {}
changedInstr(MachineInstr & MI)148 void changedInstr(MachineInstr &MI) override {}
149
createdInstr(MachineInstr & MI)150 void createdInstr(MachineInstr &MI) override {
151 assert(getCurrentInst() && "Inserted instruction without a current MI");
152
153 // Only print the check message if we're actually checking it.
154 #ifndef NDEBUG
155 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
156 << " was copied to " << MI);
157 #endif
158 // We allow insts in the entry block to have no debug loc because
159 // they could have originated from constants, and we don't want a jumpy
160 // debug experience.
161 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
162 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc())) &&
163 "Line info was not transferred to all instructions");
164 }
165 };
166 } // namespace
167 #endif // ifndef NDEBUG
168
169
getAnalysisUsage(AnalysisUsage & AU) const170 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
171 AU.addRequired<StackProtector>();
172 AU.addRequired<TargetPassConfig>();
173 AU.addRequired<GISelCSEAnalysisWrapperPass>();
174 AU.addRequired<AssumptionCacheTracker>();
175 if (OptLevel != CodeGenOpt::None) {
176 AU.addRequired<BranchProbabilityInfoWrapperPass>();
177 AU.addRequired<AAResultsWrapperPass>();
178 }
179 AU.addRequired<TargetLibraryInfoWrapperPass>();
180 AU.addPreserved<TargetLibraryInfoWrapperPass>();
181 getSelectionDAGFallbackAnalysisUsage(AU);
182 MachineFunctionPass::getAnalysisUsage(AU);
183 }
184
185 IRTranslator::ValueToVRegInfo::VRegListT &
allocateVRegs(const Value & Val)186 IRTranslator::allocateVRegs(const Value &Val) {
187 auto VRegsIt = VMap.findVRegs(Val);
188 if (VRegsIt != VMap.vregs_end())
189 return *VRegsIt->second;
190 auto *Regs = VMap.getVRegs(Val);
191 auto *Offsets = VMap.getOffsets(Val);
192 SmallVector<LLT, 4> SplitTys;
193 computeValueLLTs(*DL, *Val.getType(), SplitTys,
194 Offsets->empty() ? Offsets : nullptr);
195 for (unsigned i = 0; i < SplitTys.size(); ++i)
196 Regs->push_back(0);
197 return *Regs;
198 }
199
getOrCreateVRegs(const Value & Val)200 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
201 auto VRegsIt = VMap.findVRegs(Val);
202 if (VRegsIt != VMap.vregs_end())
203 return *VRegsIt->second;
204
205 if (Val.getType()->isVoidTy())
206 return *VMap.getVRegs(Val);
207
208 // Create entry for this type.
209 auto *VRegs = VMap.getVRegs(Val);
210 auto *Offsets = VMap.getOffsets(Val);
211
212 assert(Val.getType()->isSized() &&
213 "Don't know how to create an empty vreg");
214
215 SmallVector<LLT, 4> SplitTys;
216 computeValueLLTs(*DL, *Val.getType(), SplitTys,
217 Offsets->empty() ? Offsets : nullptr);
218
219 if (!isa<Constant>(Val)) {
220 for (auto Ty : SplitTys)
221 VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
222 return *VRegs;
223 }
224
225 if (Val.getType()->isAggregateType()) {
226 // UndefValue, ConstantAggregateZero
227 auto &C = cast<Constant>(Val);
228 unsigned Idx = 0;
229 while (auto Elt = C.getAggregateElement(Idx++)) {
230 auto EltRegs = getOrCreateVRegs(*Elt);
231 llvm::copy(EltRegs, std::back_inserter(*VRegs));
232 }
233 } else {
234 assert(SplitTys.size() == 1 && "unexpectedly split LLT");
235 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
236 bool Success = translate(cast<Constant>(Val), VRegs->front());
237 if (!Success) {
238 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
239 MF->getFunction().getSubprogram(),
240 &MF->getFunction().getEntryBlock());
241 R << "unable to translate constant: " << ore::NV("Type", Val.getType());
242 reportTranslationError(*MF, *TPC, *ORE, R);
243 return *VRegs;
244 }
245 }
246
247 return *VRegs;
248 }
249
getOrCreateFrameIndex(const AllocaInst & AI)250 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
251 auto MapEntry = FrameIndices.find(&AI);
252 if (MapEntry != FrameIndices.end())
253 return MapEntry->second;
254
255 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
256 uint64_t Size =
257 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
258
259 // Always allocate at least one byte.
260 Size = std::max<uint64_t>(Size, 1u);
261
262 int &FI = FrameIndices[&AI];
263 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
264 return FI;
265 }
266
getMemOpAlign(const Instruction & I)267 Align IRTranslator::getMemOpAlign(const Instruction &I) {
268 if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
269 return SI->getAlign();
270 if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
271 return LI->getAlign();
272 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
273 return AI->getAlign();
274 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
275 return AI->getAlign();
276
277 OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
278 R << "unable to translate memop: " << ore::NV("Opcode", &I);
279 reportTranslationError(*MF, *TPC, *ORE, R);
280 return Align(1);
281 }
282
getMBB(const BasicBlock & BB)283 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
284 MachineBasicBlock *&MBB = BBToMBB[&BB];
285 assert(MBB && "BasicBlock was not encountered before");
286 return *MBB;
287 }
288
addMachineCFGPred(CFGEdge Edge,MachineBasicBlock * NewPred)289 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
290 assert(NewPred && "new predecessor must be a real MachineBasicBlock");
291 MachinePreds[Edge].push_back(NewPred);
292 }
293
translateBinaryOp(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)294 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
295 MachineIRBuilder &MIRBuilder) {
296 // Get or create a virtual register for each value.
297 // Unless the value is a Constant => loadimm cst?
298 // or inline constant each time?
299 // Creation of a virtual register needs to have a size.
300 Register Op0 = getOrCreateVReg(*U.getOperand(0));
301 Register Op1 = getOrCreateVReg(*U.getOperand(1));
302 Register Res = getOrCreateVReg(U);
303 uint16_t Flags = 0;
304 if (isa<Instruction>(U)) {
305 const Instruction &I = cast<Instruction>(U);
306 Flags = MachineInstr::copyFlagsFromInstruction(I);
307 }
308
309 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
310 return true;
311 }
312
translateUnaryOp(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)313 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
314 MachineIRBuilder &MIRBuilder) {
315 Register Op0 = getOrCreateVReg(*U.getOperand(0));
316 Register Res = getOrCreateVReg(U);
317 uint16_t Flags = 0;
318 if (isa<Instruction>(U)) {
319 const Instruction &I = cast<Instruction>(U);
320 Flags = MachineInstr::copyFlagsFromInstruction(I);
321 }
322 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
323 return true;
324 }
325
translateFNeg(const User & U,MachineIRBuilder & MIRBuilder)326 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
327 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
328 }
329
translateCompare(const User & U,MachineIRBuilder & MIRBuilder)330 bool IRTranslator::translateCompare(const User &U,
331 MachineIRBuilder &MIRBuilder) {
332 auto *CI = dyn_cast<CmpInst>(&U);
333 Register Op0 = getOrCreateVReg(*U.getOperand(0));
334 Register Op1 = getOrCreateVReg(*U.getOperand(1));
335 Register Res = getOrCreateVReg(U);
336 CmpInst::Predicate Pred =
337 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
338 cast<ConstantExpr>(U).getPredicate());
339 if (CmpInst::isIntPredicate(Pred))
340 MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
341 else if (Pred == CmpInst::FCMP_FALSE)
342 MIRBuilder.buildCopy(
343 Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
344 else if (Pred == CmpInst::FCMP_TRUE)
345 MIRBuilder.buildCopy(
346 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
347 else {
348 uint16_t Flags = 0;
349 if (CI)
350 Flags = MachineInstr::copyFlagsFromInstruction(*CI);
351 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
352 }
353
354 return true;
355 }
356
translateRet(const User & U,MachineIRBuilder & MIRBuilder)357 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
358 const ReturnInst &RI = cast<ReturnInst>(U);
359 const Value *Ret = RI.getReturnValue();
360 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
361 Ret = nullptr;
362
363 ArrayRef<Register> VRegs;
364 if (Ret)
365 VRegs = getOrCreateVRegs(*Ret);
366
367 Register SwiftErrorVReg = 0;
368 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
369 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
370 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
371 }
372
373 // The target may mess up with the insertion point, but
374 // this is not important as a return is the last instruction
375 // of the block anyway.
376 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
377 }
378
emitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,BranchProbability TProb,BranchProbability FProb,bool InvertCond)379 void IRTranslator::emitBranchForMergedCondition(
380 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
381 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
382 BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
383 // If the leaf of the tree is a comparison, merge the condition into
384 // the caseblock.
385 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
386 CmpInst::Predicate Condition;
387 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
388 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
389 } else {
390 const FCmpInst *FC = cast<FCmpInst>(Cond);
391 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
392 }
393
394 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
395 BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
396 CurBuilder->getDebugLoc(), TProb, FProb);
397 SL->SwitchCases.push_back(CB);
398 return;
399 }
400
401 // Create a CaseBlock record representing this branch.
402 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
403 SwitchCG::CaseBlock CB(
404 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
405 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
406 SL->SwitchCases.push_back(CB);
407 }
408
isValInBlock(const Value * V,const BasicBlock * BB)409 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
410 if (const Instruction *I = dyn_cast<Instruction>(V))
411 return I->getParent() == BB;
412 return true;
413 }
414
findMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,Instruction::BinaryOps Opc,BranchProbability TProb,BranchProbability FProb,bool InvertCond)415 void IRTranslator::findMergedConditions(
416 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
417 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
418 Instruction::BinaryOps Opc, BranchProbability TProb,
419 BranchProbability FProb, bool InvertCond) {
420 using namespace PatternMatch;
421 assert((Opc == Instruction::And || Opc == Instruction::Or) &&
422 "Expected Opc to be AND/OR");
423 // Skip over not part of the tree and remember to invert op and operands at
424 // next level.
425 Value *NotCond;
426 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
427 isValInBlock(NotCond, CurBB->getBasicBlock())) {
428 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
429 !InvertCond);
430 return;
431 }
432
433 const Instruction *BOp = dyn_cast<Instruction>(Cond);
434 const Value *BOpOp0, *BOpOp1;
435 // Compute the effective opcode for Cond, taking into account whether it needs
436 // to be inverted, e.g.
437 // and (not (or A, B)), C
438 // gets lowered as
439 // and (and (not A, not B), C)
440 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
441 if (BOp) {
442 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
443 ? Instruction::And
444 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
445 ? Instruction::Or
446 : (Instruction::BinaryOps)0);
447 if (InvertCond) {
448 if (BOpc == Instruction::And)
449 BOpc = Instruction::Or;
450 else if (BOpc == Instruction::Or)
451 BOpc = Instruction::And;
452 }
453 }
454
455 // If this node is not part of the or/and tree, emit it as a branch.
456 // Note that all nodes in the tree should have same opcode.
457 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
458 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
459 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
460 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
461 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
462 InvertCond);
463 return;
464 }
465
466 // Create TmpBB after CurBB.
467 MachineFunction::iterator BBI(CurBB);
468 MachineBasicBlock *TmpBB =
469 MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
470 CurBB->getParent()->insert(++BBI, TmpBB);
471
472 if (Opc == Instruction::Or) {
473 // Codegen X | Y as:
474 // BB1:
475 // jmp_if_X TBB
476 // jmp TmpBB
477 // TmpBB:
478 // jmp_if_Y TBB
479 // jmp FBB
480 //
481
482 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
483 // The requirement is that
484 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
485 // = TrueProb for original BB.
486 // Assuming the original probabilities are A and B, one choice is to set
487 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
488 // A/(1+B) and 2B/(1+B). This choice assumes that
489 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
490 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
491 // TmpBB, but the math is more complicated.
492
493 auto NewTrueProb = TProb / 2;
494 auto NewFalseProb = TProb / 2 + FProb;
495 // Emit the LHS condition.
496 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
497 NewFalseProb, InvertCond);
498
499 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
500 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
501 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
502 // Emit the RHS condition into TmpBB.
503 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
504 Probs[1], InvertCond);
505 } else {
506 assert(Opc == Instruction::And && "Unknown merge op!");
507 // Codegen X & Y as:
508 // BB1:
509 // jmp_if_X TmpBB
510 // jmp FBB
511 // TmpBB:
512 // jmp_if_Y TBB
513 // jmp FBB
514 //
515 // This requires creation of TmpBB after CurBB.
516
517 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
518 // The requirement is that
519 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
520 // = FalseProb for original BB.
521 // Assuming the original probabilities are A and B, one choice is to set
522 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
523 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
524 // TrueProb for BB1 * FalseProb for TmpBB.
525
526 auto NewTrueProb = TProb + FProb / 2;
527 auto NewFalseProb = FProb / 2;
528 // Emit the LHS condition.
529 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
530 NewFalseProb, InvertCond);
531
532 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
533 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
534 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
535 // Emit the RHS condition into TmpBB.
536 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
537 Probs[1], InvertCond);
538 }
539 }
540
shouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> & Cases)541 bool IRTranslator::shouldEmitAsBranches(
542 const std::vector<SwitchCG::CaseBlock> &Cases) {
543 // For multiple cases, it's better to emit as branches.
544 if (Cases.size() != 2)
545 return true;
546
547 // If this is two comparisons of the same values or'd or and'd together, they
548 // will get folded into a single comparison, so don't emit two blocks.
549 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
550 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
551 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
552 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
553 return false;
554 }
555
556 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
557 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
558 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
559 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
560 isa<Constant>(Cases[0].CmpRHS) &&
561 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
562 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
563 Cases[0].TrueBB == Cases[1].ThisBB)
564 return false;
565 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
566 Cases[0].FalseBB == Cases[1].ThisBB)
567 return false;
568 }
569
570 return true;
571 }
572
translateBr(const User & U,MachineIRBuilder & MIRBuilder)573 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
574 const BranchInst &BrInst = cast<BranchInst>(U);
575 auto &CurMBB = MIRBuilder.getMBB();
576 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
577
578 if (BrInst.isUnconditional()) {
579 // If the unconditional target is the layout successor, fallthrough.
580 if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB))
581 MIRBuilder.buildBr(*Succ0MBB);
582
583 // Link successors.
584 for (const BasicBlock *Succ : successors(&BrInst))
585 CurMBB.addSuccessor(&getMBB(*Succ));
586 return true;
587 }
588
589 // If this condition is one of the special cases we handle, do special stuff
590 // now.
591 const Value *CondVal = BrInst.getCondition();
592 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
593
594 const auto &TLI = *MF->getSubtarget().getTargetLowering();
595
596 // If this is a series of conditions that are or'd or and'd together, emit
597 // this as a sequence of branches instead of setcc's with and/or operations.
598 // As long as jumps are not expensive (exceptions for multi-use logic ops,
599 // unpredictable branches, and vector extracts because those jumps are likely
600 // expensive for any target), this should improve performance.
601 // For example, instead of something like:
602 // cmp A, B
603 // C = seteq
604 // cmp D, E
605 // F = setle
606 // or C, F
607 // jnz foo
608 // Emit:
609 // cmp A, B
610 // je foo
611 // cmp D, E
612 // jle foo
613 using namespace PatternMatch;
614 const Instruction *CondI = dyn_cast<Instruction>(CondVal);
615 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
616 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
617 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
618 Value *Vec;
619 const Value *BOp0, *BOp1;
620 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
621 Opcode = Instruction::And;
622 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
623 Opcode = Instruction::Or;
624
625 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
626 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
627 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
628 getEdgeProbability(&CurMBB, Succ0MBB),
629 getEdgeProbability(&CurMBB, Succ1MBB),
630 /*InvertCond=*/false);
631 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
632
633 // Allow some cases to be rejected.
634 if (shouldEmitAsBranches(SL->SwitchCases)) {
635 // Emit the branch for this block.
636 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
637 SL->SwitchCases.erase(SL->SwitchCases.begin());
638 return true;
639 }
640
641 // Okay, we decided not to do this, remove any inserted MBB's and clear
642 // SwitchCases.
643 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
644 MF->erase(SL->SwitchCases[I].ThisBB);
645
646 SL->SwitchCases.clear();
647 }
648 }
649
650 // Create a CaseBlock record representing this branch.
651 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
652 ConstantInt::getTrue(MF->getFunction().getContext()),
653 nullptr, Succ0MBB, Succ1MBB, &CurMBB,
654 CurBuilder->getDebugLoc());
655
656 // Use emitSwitchCase to actually insert the fast branch sequence for this
657 // cond branch.
658 emitSwitchCase(CB, &CurMBB, *CurBuilder);
659 return true;
660 }
661
addSuccessorWithProb(MachineBasicBlock * Src,MachineBasicBlock * Dst,BranchProbability Prob)662 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
663 MachineBasicBlock *Dst,
664 BranchProbability Prob) {
665 if (!FuncInfo.BPI) {
666 Src->addSuccessorWithoutProb(Dst);
667 return;
668 }
669 if (Prob.isUnknown())
670 Prob = getEdgeProbability(Src, Dst);
671 Src->addSuccessor(Dst, Prob);
672 }
673
674 BranchProbability
getEdgeProbability(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const675 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
676 const MachineBasicBlock *Dst) const {
677 const BasicBlock *SrcBB = Src->getBasicBlock();
678 const BasicBlock *DstBB = Dst->getBasicBlock();
679 if (!FuncInfo.BPI) {
680 // If BPI is not available, set the default probability as 1 / N, where N is
681 // the number of successors.
682 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
683 return BranchProbability(1, SuccSize);
684 }
685 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
686 }
687
translateSwitch(const User & U,MachineIRBuilder & MIB)688 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
689 using namespace SwitchCG;
690 // Extract cases from the switch.
691 const SwitchInst &SI = cast<SwitchInst>(U);
692 BranchProbabilityInfo *BPI = FuncInfo.BPI;
693 CaseClusterVector Clusters;
694 Clusters.reserve(SI.getNumCases());
695 for (const auto &I : SI.cases()) {
696 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
697 assert(Succ && "Could not find successor mbb in mapping");
698 const ConstantInt *CaseVal = I.getCaseValue();
699 BranchProbability Prob =
700 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
701 : BranchProbability(1, SI.getNumCases() + 1);
702 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
703 }
704
705 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
706
707 // Cluster adjacent cases with the same destination. We do this at all
708 // optimization levels because it's cheap to do and will make codegen faster
709 // if there are many clusters.
710 sortAndRangeify(Clusters);
711
712 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
713
714 // If there is only the default destination, jump there directly.
715 if (Clusters.empty()) {
716 SwitchMBB->addSuccessor(DefaultMBB);
717 if (DefaultMBB != SwitchMBB->getNextNode())
718 MIB.buildBr(*DefaultMBB);
719 return true;
720 }
721
722 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
723 SL->findBitTestClusters(Clusters, &SI);
724
725 LLVM_DEBUG({
726 dbgs() << "Case clusters: ";
727 for (const CaseCluster &C : Clusters) {
728 if (C.Kind == CC_JumpTable)
729 dbgs() << "JT:";
730 if (C.Kind == CC_BitTests)
731 dbgs() << "BT:";
732
733 C.Low->getValue().print(dbgs(), true);
734 if (C.Low != C.High) {
735 dbgs() << '-';
736 C.High->getValue().print(dbgs(), true);
737 }
738 dbgs() << ' ';
739 }
740 dbgs() << '\n';
741 });
742
743 assert(!Clusters.empty());
744 SwitchWorkList WorkList;
745 CaseClusterIt First = Clusters.begin();
746 CaseClusterIt Last = Clusters.end() - 1;
747 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
748 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
749
750 // FIXME: At the moment we don't do any splitting optimizations here like
751 // SelectionDAG does, so this worklist only has one entry.
752 while (!WorkList.empty()) {
753 SwitchWorkListItem W = WorkList.pop_back_val();
754 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
755 return false;
756 }
757 return true;
758 }
759
emitJumpTable(SwitchCG::JumpTable & JT,MachineBasicBlock * MBB)760 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
761 MachineBasicBlock *MBB) {
762 // Emit the code for the jump table
763 assert(JT.Reg != -1U && "Should lower JT Header first!");
764 MachineIRBuilder MIB(*MBB->getParent());
765 MIB.setMBB(*MBB);
766 MIB.setDebugLoc(CurBuilder->getDebugLoc());
767
768 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
769 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
770
771 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
772 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
773 }
774
emitJumpTableHeader(SwitchCG::JumpTable & JT,SwitchCG::JumpTableHeader & JTH,MachineBasicBlock * HeaderBB)775 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
776 SwitchCG::JumpTableHeader &JTH,
777 MachineBasicBlock *HeaderBB) {
778 MachineIRBuilder MIB(*HeaderBB->getParent());
779 MIB.setMBB(*HeaderBB);
780 MIB.setDebugLoc(CurBuilder->getDebugLoc());
781
782 const Value &SValue = *JTH.SValue;
783 // Subtract the lowest switch case value from the value being switched on.
784 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
785 Register SwitchOpReg = getOrCreateVReg(SValue);
786 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
787 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
788
789 // This value may be smaller or larger than the target's pointer type, and
790 // therefore require extension or truncating.
791 Type *PtrIRTy = SValue.getType()->getPointerTo();
792 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
793 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
794
795 JT.Reg = Sub.getReg(0);
796
797 if (JTH.FallthroughUnreachable) {
798 if (JT.MBB != HeaderBB->getNextNode())
799 MIB.buildBr(*JT.MBB);
800 return true;
801 }
802
803 // Emit the range check for the jump table, and branch to the default block
804 // for the switch statement if the value being switched on exceeds the
805 // largest case in the switch.
806 auto Cst = getOrCreateVReg(
807 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
808 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
809 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
810
811 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
812
813 // Avoid emitting unnecessary branches to the next block.
814 if (JT.MBB != HeaderBB->getNextNode())
815 BrCond = MIB.buildBr(*JT.MBB);
816 return true;
817 }
818
emitSwitchCase(SwitchCG::CaseBlock & CB,MachineBasicBlock * SwitchBB,MachineIRBuilder & MIB)819 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
820 MachineBasicBlock *SwitchBB,
821 MachineIRBuilder &MIB) {
822 Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
823 Register Cond;
824 DebugLoc OldDbgLoc = MIB.getDebugLoc();
825 MIB.setDebugLoc(CB.DbgLoc);
826 MIB.setMBB(*CB.ThisBB);
827
828 if (CB.PredInfo.NoCmp) {
829 // Branch or fall through to TrueBB.
830 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
831 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
832 CB.ThisBB);
833 CB.ThisBB->normalizeSuccProbs();
834 if (CB.TrueBB != CB.ThisBB->getNextNode())
835 MIB.buildBr(*CB.TrueBB);
836 MIB.setDebugLoc(OldDbgLoc);
837 return;
838 }
839
840 const LLT i1Ty = LLT::scalar(1);
841 // Build the compare.
842 if (!CB.CmpMHS) {
843 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
844 // For conditional branch lowering, we might try to do something silly like
845 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
846 // just re-use the existing condition vreg.
847 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI &&
848 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
849 Cond = CondLHS;
850 } else {
851 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
852 if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
853 Cond =
854 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
855 else
856 Cond =
857 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
858 }
859 } else {
860 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
861 "Can only handle SLE ranges");
862
863 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
864 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
865
866 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
867 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
868 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
869 Cond =
870 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
871 } else {
872 const LLT CmpTy = MRI->getType(CmpOpReg);
873 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
874 auto Diff = MIB.buildConstant(CmpTy, High - Low);
875 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
876 }
877 }
878
879 // Update successor info
880 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
881
882 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
883 CB.ThisBB);
884
885 // TrueBB and FalseBB are always different unless the incoming IR is
886 // degenerate. This only happens when running llc on weird IR.
887 if (CB.TrueBB != CB.FalseBB)
888 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
889 CB.ThisBB->normalizeSuccProbs();
890
891 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
892 CB.ThisBB);
893
894 MIB.buildBrCond(Cond, *CB.TrueBB);
895 MIB.buildBr(*CB.FalseBB);
896 MIB.setDebugLoc(OldDbgLoc);
897 }
898
lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,MachineBasicBlock * SwitchMBB,MachineBasicBlock * CurMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB,MachineFunction::iterator BBI,BranchProbability UnhandledProbs,SwitchCG::CaseClusterIt I,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable)899 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
900 MachineBasicBlock *SwitchMBB,
901 MachineBasicBlock *CurMBB,
902 MachineBasicBlock *DefaultMBB,
903 MachineIRBuilder &MIB,
904 MachineFunction::iterator BBI,
905 BranchProbability UnhandledProbs,
906 SwitchCG::CaseClusterIt I,
907 MachineBasicBlock *Fallthrough,
908 bool FallthroughUnreachable) {
909 using namespace SwitchCG;
910 MachineFunction *CurMF = SwitchMBB->getParent();
911 // FIXME: Optimize away range check based on pivot comparisons.
912 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
913 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
914 BranchProbability DefaultProb = W.DefaultProb;
915
916 // The jump block hasn't been inserted yet; insert it here.
917 MachineBasicBlock *JumpMBB = JT->MBB;
918 CurMF->insert(BBI, JumpMBB);
919
920 // Since the jump table block is separate from the switch block, we need
921 // to keep track of it as a machine predecessor to the default block,
922 // otherwise we lose the phi edges.
923 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
924 CurMBB);
925 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
926 JumpMBB);
927
928 auto JumpProb = I->Prob;
929 auto FallthroughProb = UnhandledProbs;
930
931 // If the default statement is a target of the jump table, we evenly
932 // distribute the default probability to successors of CurMBB. Also
933 // update the probability on the edge from JumpMBB to Fallthrough.
934 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
935 SE = JumpMBB->succ_end();
936 SI != SE; ++SI) {
937 if (*SI == DefaultMBB) {
938 JumpProb += DefaultProb / 2;
939 FallthroughProb -= DefaultProb / 2;
940 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
941 JumpMBB->normalizeSuccProbs();
942 } else {
943 // Also record edges from the jump table block to it's successors.
944 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
945 JumpMBB);
946 }
947 }
948
949 if (FallthroughUnreachable)
950 JTH->FallthroughUnreachable = true;
951
952 if (!JTH->FallthroughUnreachable)
953 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
954 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
955 CurMBB->normalizeSuccProbs();
956
957 // The jump table header will be inserted in our current block, do the
958 // range check, and fall through to our fallthrough block.
959 JTH->HeaderBB = CurMBB;
960 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
961
962 // If we're in the right place, emit the jump table header right now.
963 if (CurMBB == SwitchMBB) {
964 if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
965 return false;
966 JTH->Emitted = true;
967 }
968 return true;
969 }
lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,Value * Cond,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable,BranchProbability UnhandledProbs,MachineBasicBlock * CurMBB,MachineIRBuilder & MIB,MachineBasicBlock * SwitchMBB)970 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
971 Value *Cond,
972 MachineBasicBlock *Fallthrough,
973 bool FallthroughUnreachable,
974 BranchProbability UnhandledProbs,
975 MachineBasicBlock *CurMBB,
976 MachineIRBuilder &MIB,
977 MachineBasicBlock *SwitchMBB) {
978 using namespace SwitchCG;
979 const Value *RHS, *LHS, *MHS;
980 CmpInst::Predicate Pred;
981 if (I->Low == I->High) {
982 // Check Cond == I->Low.
983 Pred = CmpInst::ICMP_EQ;
984 LHS = Cond;
985 RHS = I->Low;
986 MHS = nullptr;
987 } else {
988 // Check I->Low <= Cond <= I->High.
989 Pred = CmpInst::ICMP_SLE;
990 LHS = I->Low;
991 MHS = Cond;
992 RHS = I->High;
993 }
994
995 // If Fallthrough is unreachable, fold away the comparison.
996 // The false probability is the sum of all unhandled cases.
997 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
998 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
999
1000 emitSwitchCase(CB, SwitchMBB, MIB);
1001 return true;
1002 }
1003
emitBitTestHeader(SwitchCG::BitTestBlock & B,MachineBasicBlock * SwitchBB)1004 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
1005 MachineBasicBlock *SwitchBB) {
1006 MachineIRBuilder &MIB = *CurBuilder;
1007 MIB.setMBB(*SwitchBB);
1008
1009 // Subtract the minimum value.
1010 Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1011
1012 LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1013 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1014 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1015
1016 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
1017 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1018
1019 LLT MaskTy = SwitchOpTy;
1020 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
1021 !isPowerOf2_32(MaskTy.getSizeInBits()))
1022 MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1023 else {
1024 // Ensure that the type will fit the mask value.
1025 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1026 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1027 // Switch table case range are encoded into series of masks.
1028 // Just use pointer type, it's guaranteed to fit.
1029 MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1030 break;
1031 }
1032 }
1033 }
1034 Register SubReg = RangeSub.getReg(0);
1035 if (SwitchOpTy != MaskTy)
1036 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1037
1038 B.RegVT = getMVTForLLT(MaskTy);
1039 B.Reg = SubReg;
1040
1041 MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1042
1043 if (!B.FallthroughUnreachable)
1044 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1045 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1046
1047 SwitchBB->normalizeSuccProbs();
1048
1049 if (!B.FallthroughUnreachable) {
1050 // Conditional branch to the default block.
1051 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1052 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1053 RangeSub, RangeCst);
1054 MIB.buildBrCond(RangeCmp, *B.Default);
1055 }
1056
1057 // Avoid emitting unnecessary branches to the next block.
1058 if (MBB != SwitchBB->getNextNode())
1059 MIB.buildBr(*MBB);
1060 }
1061
emitBitTestCase(SwitchCG::BitTestBlock & BB,MachineBasicBlock * NextMBB,BranchProbability BranchProbToNext,Register Reg,SwitchCG::BitTestCase & B,MachineBasicBlock * SwitchBB)1062 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1063 MachineBasicBlock *NextMBB,
1064 BranchProbability BranchProbToNext,
1065 Register Reg, SwitchCG::BitTestCase &B,
1066 MachineBasicBlock *SwitchBB) {
1067 MachineIRBuilder &MIB = *CurBuilder;
1068 MIB.setMBB(*SwitchBB);
1069
1070 LLT SwitchTy = getLLTForMVT(BB.RegVT);
1071 Register Cmp;
1072 unsigned PopCount = llvm::popcount(B.Mask);
1073 if (PopCount == 1) {
1074 // Testing for a single bit; just compare the shift count with what it
1075 // would need to be to shift a 1 bit in that position.
1076 auto MaskTrailingZeros =
1077 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
1078 Cmp =
1079 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1080 .getReg(0);
1081 } else if (PopCount == BB.Range) {
1082 // There is only one zero bit in the range, test for it directly.
1083 auto MaskTrailingOnes =
1084 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
1085 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1086 .getReg(0);
1087 } else {
1088 // Make desired shift.
1089 auto CstOne = MIB.buildConstant(SwitchTy, 1);
1090 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1091
1092 // Emit bit tests and jumps.
1093 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1094 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1095 auto CstZero = MIB.buildConstant(SwitchTy, 0);
1096 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1097 .getReg(0);
1098 }
1099
1100 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1101 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1102 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1103 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1104 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1105 // one as they are relative probabilities (and thus work more like weights),
1106 // and hence we need to normalize them to let the sum of them become one.
1107 SwitchBB->normalizeSuccProbs();
1108
1109 // Record the fact that the IR edge from the header to the bit test target
1110 // will go through our new block. Neeeded for PHIs to have nodes added.
1111 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1112 SwitchBB);
1113
1114 MIB.buildBrCond(Cmp, *B.TargetBB);
1115
1116 // Avoid emitting unnecessary branches to the next block.
1117 if (NextMBB != SwitchBB->getNextNode())
1118 MIB.buildBr(*NextMBB);
1119 }
1120
lowerBitTestWorkItem(SwitchCG::SwitchWorkListItem W,MachineBasicBlock * SwitchMBB,MachineBasicBlock * CurMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB,MachineFunction::iterator BBI,BranchProbability DefaultProb,BranchProbability UnhandledProbs,SwitchCG::CaseClusterIt I,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable)1121 bool IRTranslator::lowerBitTestWorkItem(
1122 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1123 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1124 MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1125 BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1126 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1127 bool FallthroughUnreachable) {
1128 using namespace SwitchCG;
1129 MachineFunction *CurMF = SwitchMBB->getParent();
1130 // FIXME: Optimize away range check based on pivot comparisons.
1131 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1132 // The bit test blocks haven't been inserted yet; insert them here.
1133 for (BitTestCase &BTC : BTB->Cases)
1134 CurMF->insert(BBI, BTC.ThisBB);
1135
1136 // Fill in fields of the BitTestBlock.
1137 BTB->Parent = CurMBB;
1138 BTB->Default = Fallthrough;
1139
1140 BTB->DefaultProb = UnhandledProbs;
1141 // If the cases in bit test don't form a contiguous range, we evenly
1142 // distribute the probability on the edge to Fallthrough to two
1143 // successors of CurMBB.
1144 if (!BTB->ContiguousRange) {
1145 BTB->Prob += DefaultProb / 2;
1146 BTB->DefaultProb -= DefaultProb / 2;
1147 }
1148
1149 if (FallthroughUnreachable)
1150 BTB->FallthroughUnreachable = true;
1151
1152 // If we're in the right place, emit the bit test header right now.
1153 if (CurMBB == SwitchMBB) {
1154 emitBitTestHeader(*BTB, SwitchMBB);
1155 BTB->Emitted = true;
1156 }
1157 return true;
1158 }
1159
lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB)1160 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1161 Value *Cond,
1162 MachineBasicBlock *SwitchMBB,
1163 MachineBasicBlock *DefaultMBB,
1164 MachineIRBuilder &MIB) {
1165 using namespace SwitchCG;
1166 MachineFunction *CurMF = FuncInfo.MF;
1167 MachineBasicBlock *NextMBB = nullptr;
1168 MachineFunction::iterator BBI(W.MBB);
1169 if (++BBI != FuncInfo.MF->end())
1170 NextMBB = &*BBI;
1171
1172 if (EnableOpts) {
1173 // Here, we order cases by probability so the most likely case will be
1174 // checked first. However, two clusters can have the same probability in
1175 // which case their relative ordering is non-deterministic. So we use Low
1176 // as a tie-breaker as clusters are guaranteed to never overlap.
1177 llvm::sort(W.FirstCluster, W.LastCluster + 1,
1178 [](const CaseCluster &a, const CaseCluster &b) {
1179 return a.Prob != b.Prob
1180 ? a.Prob > b.Prob
1181 : a.Low->getValue().slt(b.Low->getValue());
1182 });
1183
1184 // Rearrange the case blocks so that the last one falls through if possible
1185 // without changing the order of probabilities.
1186 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1187 --I;
1188 if (I->Prob > W.LastCluster->Prob)
1189 break;
1190 if (I->Kind == CC_Range && I->MBB == NextMBB) {
1191 std::swap(*I, *W.LastCluster);
1192 break;
1193 }
1194 }
1195 }
1196
1197 // Compute total probability.
1198 BranchProbability DefaultProb = W.DefaultProb;
1199 BranchProbability UnhandledProbs = DefaultProb;
1200 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1201 UnhandledProbs += I->Prob;
1202
1203 MachineBasicBlock *CurMBB = W.MBB;
1204 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1205 bool FallthroughUnreachable = false;
1206 MachineBasicBlock *Fallthrough;
1207 if (I == W.LastCluster) {
1208 // For the last cluster, fall through to the default destination.
1209 Fallthrough = DefaultMBB;
1210 FallthroughUnreachable = isa<UnreachableInst>(
1211 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1212 } else {
1213 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1214 CurMF->insert(BBI, Fallthrough);
1215 }
1216 UnhandledProbs -= I->Prob;
1217
1218 switch (I->Kind) {
1219 case CC_BitTests: {
1220 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1221 DefaultProb, UnhandledProbs, I, Fallthrough,
1222 FallthroughUnreachable)) {
1223 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1224 return false;
1225 }
1226 break;
1227 }
1228
1229 case CC_JumpTable: {
1230 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1231 UnhandledProbs, I, Fallthrough,
1232 FallthroughUnreachable)) {
1233 LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1234 return false;
1235 }
1236 break;
1237 }
1238 case CC_Range: {
1239 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1240 FallthroughUnreachable, UnhandledProbs,
1241 CurMBB, MIB, SwitchMBB)) {
1242 LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1243 return false;
1244 }
1245 break;
1246 }
1247 }
1248 CurMBB = Fallthrough;
1249 }
1250
1251 return true;
1252 }
1253
translateIndirectBr(const User & U,MachineIRBuilder & MIRBuilder)1254 bool IRTranslator::translateIndirectBr(const User &U,
1255 MachineIRBuilder &MIRBuilder) {
1256 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1257
1258 const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1259 MIRBuilder.buildBrIndirect(Tgt);
1260
1261 // Link successors.
1262 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1263 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1264 for (const BasicBlock *Succ : successors(&BrInst)) {
1265 // It's legal for indirectbr instructions to have duplicate blocks in the
1266 // destination list. We don't allow this in MIR. Skip anything that's
1267 // already a successor.
1268 if (!AddedSuccessors.insert(Succ).second)
1269 continue;
1270 CurBB.addSuccessor(&getMBB(*Succ));
1271 }
1272
1273 return true;
1274 }
1275
isSwiftError(const Value * V)1276 static bool isSwiftError(const Value *V) {
1277 if (auto Arg = dyn_cast<Argument>(V))
1278 return Arg->hasSwiftErrorAttr();
1279 if (auto AI = dyn_cast<AllocaInst>(V))
1280 return AI->isSwiftError();
1281 return false;
1282 }
1283
translateLoad(const User & U,MachineIRBuilder & MIRBuilder)1284 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1285 const LoadInst &LI = cast<LoadInst>(U);
1286
1287 unsigned StoreSize = DL->getTypeStoreSize(LI.getType());
1288 if (StoreSize == 0)
1289 return true;
1290
1291 ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1292 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1293 Register Base = getOrCreateVReg(*LI.getPointerOperand());
1294 AAMDNodes AAInfo = LI.getAAMetadata();
1295
1296 const Value *Ptr = LI.getPointerOperand();
1297 Type *OffsetIRTy = DL->getIntPtrType(Ptr->getType());
1298 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1299
1300 if (CLI->supportSwiftError() && isSwiftError(Ptr)) {
1301 assert(Regs.size() == 1 && "swifterror should be single pointer");
1302 Register VReg =
1303 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr);
1304 MIRBuilder.buildCopy(Regs[0], VReg);
1305 return true;
1306 }
1307
1308 auto &TLI = *MF->getSubtarget().getTargetLowering();
1309 MachineMemOperand::Flags Flags =
1310 TLI.getLoadMemOperandFlags(LI, *DL, AC, LibInfo);
1311 if (AA && !(Flags & MachineMemOperand::MOInvariant)) {
1312 if (AA->pointsToConstantMemory(
1313 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) {
1314 Flags |= MachineMemOperand::MOInvariant;
1315 }
1316 }
1317
1318 const MDNode *Ranges =
1319 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1320 for (unsigned i = 0; i < Regs.size(); ++i) {
1321 Register Addr;
1322 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1323
1324 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1325 Align BaseAlign = getMemOpAlign(LI);
1326 auto MMO = MF->getMachineMemOperand(
1327 Ptr, Flags, MRI->getType(Regs[i]),
1328 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges,
1329 LI.getSyncScopeID(), LI.getOrdering());
1330 MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1331 }
1332
1333 return true;
1334 }
1335
translateStore(const User & U,MachineIRBuilder & MIRBuilder)1336 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1337 const StoreInst &SI = cast<StoreInst>(U);
1338 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1339 return true;
1340
1341 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1342 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1343 Register Base = getOrCreateVReg(*SI.getPointerOperand());
1344
1345 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
1346 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1347
1348 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1349 assert(Vals.size() == 1 && "swifterror should be single pointer");
1350
1351 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1352 SI.getPointerOperand());
1353 MIRBuilder.buildCopy(VReg, Vals[0]);
1354 return true;
1355 }
1356
1357 auto &TLI = *MF->getSubtarget().getTargetLowering();
1358 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1359
1360 for (unsigned i = 0; i < Vals.size(); ++i) {
1361 Register Addr;
1362 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1363
1364 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1365 Align BaseAlign = getMemOpAlign(SI);
1366 auto MMO = MF->getMachineMemOperand(
1367 Ptr, Flags, MRI->getType(Vals[i]),
1368 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr,
1369 SI.getSyncScopeID(), SI.getOrdering());
1370 MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1371 }
1372 return true;
1373 }
1374
getOffsetFromIndices(const User & U,const DataLayout & DL)1375 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1376 const Value *Src = U.getOperand(0);
1377 Type *Int32Ty = Type::getInt32Ty(U.getContext());
1378
1379 // getIndexedOffsetInType is designed for GEPs, so the first index is the
1380 // usual array element rather than looking into the actual aggregate.
1381 SmallVector<Value *, 1> Indices;
1382 Indices.push_back(ConstantInt::get(Int32Ty, 0));
1383
1384 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1385 for (auto Idx : EVI->indices())
1386 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1387 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1388 for (auto Idx : IVI->indices())
1389 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1390 } else {
1391 for (unsigned i = 1; i < U.getNumOperands(); ++i)
1392 Indices.push_back(U.getOperand(i));
1393 }
1394
1395 return 8 * static_cast<uint64_t>(
1396 DL.getIndexedOffsetInType(Src->getType(), Indices));
1397 }
1398
translateExtractValue(const User & U,MachineIRBuilder & MIRBuilder)1399 bool IRTranslator::translateExtractValue(const User &U,
1400 MachineIRBuilder &MIRBuilder) {
1401 const Value *Src = U.getOperand(0);
1402 uint64_t Offset = getOffsetFromIndices(U, *DL);
1403 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1404 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1405 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1406 auto &DstRegs = allocateVRegs(U);
1407
1408 for (unsigned i = 0; i < DstRegs.size(); ++i)
1409 DstRegs[i] = SrcRegs[Idx++];
1410
1411 return true;
1412 }
1413
translateInsertValue(const User & U,MachineIRBuilder & MIRBuilder)1414 bool IRTranslator::translateInsertValue(const User &U,
1415 MachineIRBuilder &MIRBuilder) {
1416 const Value *Src = U.getOperand(0);
1417 uint64_t Offset = getOffsetFromIndices(U, *DL);
1418 auto &DstRegs = allocateVRegs(U);
1419 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1420 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1421 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1422 auto *InsertedIt = InsertedRegs.begin();
1423
1424 for (unsigned i = 0; i < DstRegs.size(); ++i) {
1425 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1426 DstRegs[i] = *InsertedIt++;
1427 else
1428 DstRegs[i] = SrcRegs[i];
1429 }
1430
1431 return true;
1432 }
1433
translateSelect(const User & U,MachineIRBuilder & MIRBuilder)1434 bool IRTranslator::translateSelect(const User &U,
1435 MachineIRBuilder &MIRBuilder) {
1436 Register Tst = getOrCreateVReg(*U.getOperand(0));
1437 ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1438 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1439 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1440
1441 uint16_t Flags = 0;
1442 if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1443 Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1444
1445 for (unsigned i = 0; i < ResRegs.size(); ++i) {
1446 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1447 }
1448
1449 return true;
1450 }
1451
translateCopy(const User & U,const Value & V,MachineIRBuilder & MIRBuilder)1452 bool IRTranslator::translateCopy(const User &U, const Value &V,
1453 MachineIRBuilder &MIRBuilder) {
1454 Register Src = getOrCreateVReg(V);
1455 auto &Regs = *VMap.getVRegs(U);
1456 if (Regs.empty()) {
1457 Regs.push_back(Src);
1458 VMap.getOffsets(U)->push_back(0);
1459 } else {
1460 // If we already assigned a vreg for this instruction, we can't change that.
1461 // Emit a copy to satisfy the users we already emitted.
1462 MIRBuilder.buildCopy(Regs[0], Src);
1463 }
1464 return true;
1465 }
1466
translateBitCast(const User & U,MachineIRBuilder & MIRBuilder)1467 bool IRTranslator::translateBitCast(const User &U,
1468 MachineIRBuilder &MIRBuilder) {
1469 // If we're bitcasting to the source type, we can reuse the source vreg.
1470 if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1471 getLLTForType(*U.getType(), *DL))
1472 return translateCopy(U, *U.getOperand(0), MIRBuilder);
1473
1474 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1475 }
1476
translateCast(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)1477 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1478 MachineIRBuilder &MIRBuilder) {
1479 Register Op = getOrCreateVReg(*U.getOperand(0));
1480 Register Res = getOrCreateVReg(U);
1481 MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1482 return true;
1483 }
1484
translateGetElementPtr(const User & U,MachineIRBuilder & MIRBuilder)1485 bool IRTranslator::translateGetElementPtr(const User &U,
1486 MachineIRBuilder &MIRBuilder) {
1487 Value &Op0 = *U.getOperand(0);
1488 Register BaseReg = getOrCreateVReg(Op0);
1489 Type *PtrIRTy = Op0.getType();
1490 LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1491 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1492 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1493
1494 // Normalize Vector GEP - all scalar operands should be converted to the
1495 // splat vector.
1496 unsigned VectorWidth = 0;
1497
1498 // True if we should use a splat vector; using VectorWidth alone is not
1499 // sufficient.
1500 bool WantSplatVector = false;
1501 if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1502 VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1503 // We don't produce 1 x N vectors; those are treated as scalars.
1504 WantSplatVector = VectorWidth > 1;
1505 }
1506
1507 // We might need to splat the base pointer into a vector if the offsets
1508 // are vectors.
1509 if (WantSplatVector && !PtrTy.isVector()) {
1510 BaseReg =
1511 MIRBuilder
1512 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1513 .getReg(0);
1514 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1515 PtrTy = getLLTForType(*PtrIRTy, *DL);
1516 OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1517 OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1518 }
1519
1520 int64_t Offset = 0;
1521 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1522 GTI != E; ++GTI) {
1523 const Value *Idx = GTI.getOperand();
1524 if (StructType *StTy = GTI.getStructTypeOrNull()) {
1525 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1526 Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1527 continue;
1528 } else {
1529 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1530
1531 // If this is a scalar constant or a splat vector of constants,
1532 // handle it quickly.
1533 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1534 Offset += ElementSize * CI->getSExtValue();
1535 continue;
1536 }
1537
1538 if (Offset != 0) {
1539 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1540 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1541 .getReg(0);
1542 Offset = 0;
1543 }
1544
1545 Register IdxReg = getOrCreateVReg(*Idx);
1546 LLT IdxTy = MRI->getType(IdxReg);
1547 if (IdxTy != OffsetTy) {
1548 if (!IdxTy.isVector() && WantSplatVector) {
1549 IdxReg = MIRBuilder.buildSplatVector(
1550 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1551 }
1552
1553 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1554 }
1555
1556 // N = N + Idx * ElementSize;
1557 // Avoid doing it for ElementSize of 1.
1558 Register GepOffsetReg;
1559 if (ElementSize != 1) {
1560 auto ElementSizeMIB = MIRBuilder.buildConstant(
1561 getLLTForType(*OffsetIRTy, *DL), ElementSize);
1562 GepOffsetReg =
1563 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1564 } else
1565 GepOffsetReg = IdxReg;
1566
1567 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1568 }
1569 }
1570
1571 if (Offset != 0) {
1572 auto OffsetMIB =
1573 MIRBuilder.buildConstant(OffsetTy, Offset);
1574 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1575 return true;
1576 }
1577
1578 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1579 return true;
1580 }
1581
translateMemFunc(const CallInst & CI,MachineIRBuilder & MIRBuilder,unsigned Opcode)1582 bool IRTranslator::translateMemFunc(const CallInst &CI,
1583 MachineIRBuilder &MIRBuilder,
1584 unsigned Opcode) {
1585 const Value *SrcPtr = CI.getArgOperand(1);
1586 // If the source is undef, then just emit a nop.
1587 if (isa<UndefValue>(SrcPtr))
1588 return true;
1589
1590 SmallVector<Register, 3> SrcRegs;
1591
1592 unsigned MinPtrSize = UINT_MAX;
1593 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1594 Register SrcReg = getOrCreateVReg(**AI);
1595 LLT SrcTy = MRI->getType(SrcReg);
1596 if (SrcTy.isPointer())
1597 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1598 SrcRegs.push_back(SrcReg);
1599 }
1600
1601 LLT SizeTy = LLT::scalar(MinPtrSize);
1602
1603 // The size operand should be the minimum of the pointer sizes.
1604 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1605 if (MRI->getType(SizeOpReg) != SizeTy)
1606 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1607
1608 auto ICall = MIRBuilder.buildInstr(Opcode);
1609 for (Register SrcReg : SrcRegs)
1610 ICall.addUse(SrcReg);
1611
1612 Align DstAlign;
1613 Align SrcAlign;
1614 unsigned IsVol =
1615 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue();
1616
1617 ConstantInt *CopySize = nullptr;
1618
1619 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1620 DstAlign = MCI->getDestAlign().valueOrOne();
1621 SrcAlign = MCI->getSourceAlign().valueOrOne();
1622 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1623 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1624 DstAlign = MCI->getDestAlign().valueOrOne();
1625 SrcAlign = MCI->getSourceAlign().valueOrOne();
1626 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1627 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1628 DstAlign = MMI->getDestAlign().valueOrOne();
1629 SrcAlign = MMI->getSourceAlign().valueOrOne();
1630 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2));
1631 } else {
1632 auto *MSI = cast<MemSetInst>(&CI);
1633 DstAlign = MSI->getDestAlign().valueOrOne();
1634 }
1635
1636 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1637 // We need to propagate the tail call flag from the IR inst as an argument.
1638 // Otherwise, we have to pessimize and assume later that we cannot tail call
1639 // any memory intrinsics.
1640 ICall.addImm(CI.isTailCall() ? 1 : 0);
1641 }
1642
1643 // Create mem operands to store the alignment and volatile info.
1644 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad;
1645 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore;
1646 if (IsVol) {
1647 LoadFlags |= MachineMemOperand::MOVolatile;
1648 StoreFlags |= MachineMemOperand::MOVolatile;
1649 }
1650
1651 AAMDNodes AAInfo = CI.getAAMetadata();
1652 if (AA && CopySize &&
1653 AA->pointsToConstantMemory(MemoryLocation(
1654 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) {
1655 LoadFlags |= MachineMemOperand::MOInvariant;
1656
1657 // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
1658 // but the previous usage implied it did. Probably should check
1659 // isDereferenceableAndAlignedPointer.
1660 LoadFlags |= MachineMemOperand::MODereferenceable;
1661 }
1662
1663 ICall.addMemOperand(
1664 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)),
1665 StoreFlags, 1, DstAlign, AAInfo));
1666 if (Opcode != TargetOpcode::G_MEMSET)
1667 ICall.addMemOperand(MF->getMachineMemOperand(
1668 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo));
1669
1670 return true;
1671 }
1672
getStackGuard(Register DstReg,MachineIRBuilder & MIRBuilder)1673 void IRTranslator::getStackGuard(Register DstReg,
1674 MachineIRBuilder &MIRBuilder) {
1675 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1676 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1677 auto MIB =
1678 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1679
1680 auto &TLI = *MF->getSubtarget().getTargetLowering();
1681 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1682 if (!Global)
1683 return;
1684
1685 unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1686 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1687
1688 MachinePointerInfo MPInfo(Global);
1689 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1690 MachineMemOperand::MODereferenceable;
1691 MachineMemOperand *MemRef = MF->getMachineMemOperand(
1692 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1693 MIB.setMemRefs({MemRef});
1694 }
1695
translateOverflowIntrinsic(const CallInst & CI,unsigned Op,MachineIRBuilder & MIRBuilder)1696 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1697 MachineIRBuilder &MIRBuilder) {
1698 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1699 MIRBuilder.buildInstr(
1700 Op, {ResRegs[0], ResRegs[1]},
1701 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1702
1703 return true;
1704 }
1705
translateFixedPointIntrinsic(unsigned Op,const CallInst & CI,MachineIRBuilder & MIRBuilder)1706 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1707 MachineIRBuilder &MIRBuilder) {
1708 Register Dst = getOrCreateVReg(CI);
1709 Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1710 Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1711 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1712 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1713 return true;
1714 }
1715
getSimpleIntrinsicOpcode(Intrinsic::ID ID)1716 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1717 switch (ID) {
1718 default:
1719 break;
1720 case Intrinsic::bswap:
1721 return TargetOpcode::G_BSWAP;
1722 case Intrinsic::bitreverse:
1723 return TargetOpcode::G_BITREVERSE;
1724 case Intrinsic::fshl:
1725 return TargetOpcode::G_FSHL;
1726 case Intrinsic::fshr:
1727 return TargetOpcode::G_FSHR;
1728 case Intrinsic::ceil:
1729 return TargetOpcode::G_FCEIL;
1730 case Intrinsic::cos:
1731 return TargetOpcode::G_FCOS;
1732 case Intrinsic::ctpop:
1733 return TargetOpcode::G_CTPOP;
1734 case Intrinsic::exp:
1735 return TargetOpcode::G_FEXP;
1736 case Intrinsic::exp2:
1737 return TargetOpcode::G_FEXP2;
1738 case Intrinsic::fabs:
1739 return TargetOpcode::G_FABS;
1740 case Intrinsic::copysign:
1741 return TargetOpcode::G_FCOPYSIGN;
1742 case Intrinsic::minnum:
1743 return TargetOpcode::G_FMINNUM;
1744 case Intrinsic::maxnum:
1745 return TargetOpcode::G_FMAXNUM;
1746 case Intrinsic::minimum:
1747 return TargetOpcode::G_FMINIMUM;
1748 case Intrinsic::maximum:
1749 return TargetOpcode::G_FMAXIMUM;
1750 case Intrinsic::canonicalize:
1751 return TargetOpcode::G_FCANONICALIZE;
1752 case Intrinsic::floor:
1753 return TargetOpcode::G_FFLOOR;
1754 case Intrinsic::fma:
1755 return TargetOpcode::G_FMA;
1756 case Intrinsic::log:
1757 return TargetOpcode::G_FLOG;
1758 case Intrinsic::log2:
1759 return TargetOpcode::G_FLOG2;
1760 case Intrinsic::log10:
1761 return TargetOpcode::G_FLOG10;
1762 case Intrinsic::nearbyint:
1763 return TargetOpcode::G_FNEARBYINT;
1764 case Intrinsic::pow:
1765 return TargetOpcode::G_FPOW;
1766 case Intrinsic::powi:
1767 return TargetOpcode::G_FPOWI;
1768 case Intrinsic::rint:
1769 return TargetOpcode::G_FRINT;
1770 case Intrinsic::round:
1771 return TargetOpcode::G_INTRINSIC_ROUND;
1772 case Intrinsic::roundeven:
1773 return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1774 case Intrinsic::sin:
1775 return TargetOpcode::G_FSIN;
1776 case Intrinsic::sqrt:
1777 return TargetOpcode::G_FSQRT;
1778 case Intrinsic::trunc:
1779 return TargetOpcode::G_INTRINSIC_TRUNC;
1780 case Intrinsic::readcyclecounter:
1781 return TargetOpcode::G_READCYCLECOUNTER;
1782 case Intrinsic::ptrmask:
1783 return TargetOpcode::G_PTRMASK;
1784 case Intrinsic::lrint:
1785 return TargetOpcode::G_INTRINSIC_LRINT;
1786 // FADD/FMUL require checking the FMF, so are handled elsewhere.
1787 case Intrinsic::vector_reduce_fmin:
1788 return TargetOpcode::G_VECREDUCE_FMIN;
1789 case Intrinsic::vector_reduce_fmax:
1790 return TargetOpcode::G_VECREDUCE_FMAX;
1791 case Intrinsic::vector_reduce_add:
1792 return TargetOpcode::G_VECREDUCE_ADD;
1793 case Intrinsic::vector_reduce_mul:
1794 return TargetOpcode::G_VECREDUCE_MUL;
1795 case Intrinsic::vector_reduce_and:
1796 return TargetOpcode::G_VECREDUCE_AND;
1797 case Intrinsic::vector_reduce_or:
1798 return TargetOpcode::G_VECREDUCE_OR;
1799 case Intrinsic::vector_reduce_xor:
1800 return TargetOpcode::G_VECREDUCE_XOR;
1801 case Intrinsic::vector_reduce_smax:
1802 return TargetOpcode::G_VECREDUCE_SMAX;
1803 case Intrinsic::vector_reduce_smin:
1804 return TargetOpcode::G_VECREDUCE_SMIN;
1805 case Intrinsic::vector_reduce_umax:
1806 return TargetOpcode::G_VECREDUCE_UMAX;
1807 case Intrinsic::vector_reduce_umin:
1808 return TargetOpcode::G_VECREDUCE_UMIN;
1809 case Intrinsic::lround:
1810 return TargetOpcode::G_LROUND;
1811 case Intrinsic::llround:
1812 return TargetOpcode::G_LLROUND;
1813 }
1814 return Intrinsic::not_intrinsic;
1815 }
1816
translateSimpleIntrinsic(const CallInst & CI,Intrinsic::ID ID,MachineIRBuilder & MIRBuilder)1817 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1818 Intrinsic::ID ID,
1819 MachineIRBuilder &MIRBuilder) {
1820
1821 unsigned Op = getSimpleIntrinsicOpcode(ID);
1822
1823 // Is this a simple intrinsic?
1824 if (Op == Intrinsic::not_intrinsic)
1825 return false;
1826
1827 // Yes. Let's translate it.
1828 SmallVector<llvm::SrcOp, 4> VRegs;
1829 for (const auto &Arg : CI.args())
1830 VRegs.push_back(getOrCreateVReg(*Arg));
1831
1832 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1833 MachineInstr::copyFlagsFromInstruction(CI));
1834 return true;
1835 }
1836
1837 // TODO: Include ConstainedOps.def when all strict instructions are defined.
getConstrainedOpcode(Intrinsic::ID ID)1838 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1839 switch (ID) {
1840 case Intrinsic::experimental_constrained_fadd:
1841 return TargetOpcode::G_STRICT_FADD;
1842 case Intrinsic::experimental_constrained_fsub:
1843 return TargetOpcode::G_STRICT_FSUB;
1844 case Intrinsic::experimental_constrained_fmul:
1845 return TargetOpcode::G_STRICT_FMUL;
1846 case Intrinsic::experimental_constrained_fdiv:
1847 return TargetOpcode::G_STRICT_FDIV;
1848 case Intrinsic::experimental_constrained_frem:
1849 return TargetOpcode::G_STRICT_FREM;
1850 case Intrinsic::experimental_constrained_fma:
1851 return TargetOpcode::G_STRICT_FMA;
1852 case Intrinsic::experimental_constrained_sqrt:
1853 return TargetOpcode::G_STRICT_FSQRT;
1854 default:
1855 return 0;
1856 }
1857 }
1858
translateConstrainedFPIntrinsic(const ConstrainedFPIntrinsic & FPI,MachineIRBuilder & MIRBuilder)1859 bool IRTranslator::translateConstrainedFPIntrinsic(
1860 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1861 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
1862
1863 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1864 if (!Opcode)
1865 return false;
1866
1867 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1868 if (EB == fp::ExceptionBehavior::ebIgnore)
1869 Flags |= MachineInstr::NoFPExcept;
1870
1871 SmallVector<llvm::SrcOp, 4> VRegs;
1872 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1873 if (!FPI.isUnaryOp())
1874 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1875 if (FPI.isTernaryOp())
1876 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1877
1878 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1879 return true;
1880 }
1881
translateKnownIntrinsic(const CallInst & CI,Intrinsic::ID ID,MachineIRBuilder & MIRBuilder)1882 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1883 MachineIRBuilder &MIRBuilder) {
1884 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
1885 if (ORE->enabled()) {
1886 if (MemoryOpRemark::canHandle(MI, *LibInfo)) {
1887 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
1888 R.visit(MI);
1889 }
1890 }
1891 }
1892
1893 // If this is a simple intrinsic (that is, we just need to add a def of
1894 // a vreg, and uses for each arg operand, then translate it.
1895 if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1896 return true;
1897
1898 switch (ID) {
1899 default:
1900 break;
1901 case Intrinsic::lifetime_start:
1902 case Intrinsic::lifetime_end: {
1903 // No stack colouring in O0, discard region information.
1904 if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1905 return true;
1906
1907 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1908 : TargetOpcode::LIFETIME_END;
1909
1910 // Get the underlying objects for the location passed on the lifetime
1911 // marker.
1912 SmallVector<const Value *, 4> Allocas;
1913 getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1914
1915 // Iterate over each underlying object, creating lifetime markers for each
1916 // static alloca. Quit if we find a non-static alloca.
1917 for (const Value *V : Allocas) {
1918 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1919 if (!AI)
1920 continue;
1921
1922 if (!AI->isStaticAlloca())
1923 return true;
1924
1925 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1926 }
1927 return true;
1928 }
1929 case Intrinsic::dbg_declare: {
1930 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1931 assert(DI.getVariable() && "Missing variable");
1932
1933 const Value *Address = DI.getAddress();
1934 if (!Address || isa<UndefValue>(Address)) {
1935 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1936 return true;
1937 }
1938
1939 assert(DI.getVariable()->isValidLocationForIntrinsic(
1940 MIRBuilder.getDebugLoc()) &&
1941 "Expected inlined-at fields to agree");
1942 auto AI = dyn_cast<AllocaInst>(Address);
1943 if (AI && AI->isStaticAlloca()) {
1944 // Static allocas are tracked at the MF level, no need for DBG_VALUE
1945 // instructions (in fact, they get ignored if they *do* exist).
1946 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1947 getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1948 } else {
1949 // A dbg.declare describes the address of a source variable, so lower it
1950 // into an indirect DBG_VALUE.
1951 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1952 DI.getVariable(), DI.getExpression());
1953 }
1954 return true;
1955 }
1956 case Intrinsic::dbg_label: {
1957 const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1958 assert(DI.getLabel() && "Missing label");
1959
1960 assert(DI.getLabel()->isValidLocationForIntrinsic(
1961 MIRBuilder.getDebugLoc()) &&
1962 "Expected inlined-at fields to agree");
1963
1964 MIRBuilder.buildDbgLabel(DI.getLabel());
1965 return true;
1966 }
1967 case Intrinsic::vaend:
1968 // No target I know of cares about va_end. Certainly no in-tree target
1969 // does. Simplest intrinsic ever!
1970 return true;
1971 case Intrinsic::vastart: {
1972 auto &TLI = *MF->getSubtarget().getTargetLowering();
1973 Value *Ptr = CI.getArgOperand(0);
1974 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1975
1976 // FIXME: Get alignment
1977 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1978 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1979 MachineMemOperand::MOStore,
1980 ListSize, Align(1)));
1981 return true;
1982 }
1983 case Intrinsic::dbg_value: {
1984 // This form of DBG_VALUE is target-independent.
1985 const DbgValueInst &DI = cast<DbgValueInst>(CI);
1986 const Value *V = DI.getValue();
1987 assert(DI.getVariable()->isValidLocationForIntrinsic(
1988 MIRBuilder.getDebugLoc()) &&
1989 "Expected inlined-at fields to agree");
1990 if (!V || DI.hasArgList()) {
1991 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
1992 // terminate any prior location.
1993 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1994 } else if (const auto *CI = dyn_cast<Constant>(V)) {
1995 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1996 } else {
1997 for (Register Reg : getOrCreateVRegs(*V)) {
1998 // FIXME: This does not handle register-indirect values at offset 0. The
1999 // direct/indirect thing shouldn't really be handled by something as
2000 // implicit as reg+noreg vs reg+imm in the first place, but it seems
2001 // pretty baked in right now.
2002 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
2003 }
2004 }
2005 return true;
2006 }
2007 case Intrinsic::uadd_with_overflow:
2008 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
2009 case Intrinsic::sadd_with_overflow:
2010 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
2011 case Intrinsic::usub_with_overflow:
2012 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
2013 case Intrinsic::ssub_with_overflow:
2014 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
2015 case Intrinsic::umul_with_overflow:
2016 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
2017 case Intrinsic::smul_with_overflow:
2018 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
2019 case Intrinsic::uadd_sat:
2020 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
2021 case Intrinsic::sadd_sat:
2022 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
2023 case Intrinsic::usub_sat:
2024 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
2025 case Intrinsic::ssub_sat:
2026 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
2027 case Intrinsic::ushl_sat:
2028 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
2029 case Intrinsic::sshl_sat:
2030 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
2031 case Intrinsic::umin:
2032 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
2033 case Intrinsic::umax:
2034 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
2035 case Intrinsic::smin:
2036 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
2037 case Intrinsic::smax:
2038 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
2039 case Intrinsic::abs:
2040 // TODO: Preserve "int min is poison" arg in GMIR?
2041 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2042 case Intrinsic::smul_fix:
2043 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2044 case Intrinsic::umul_fix:
2045 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2046 case Intrinsic::smul_fix_sat:
2047 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2048 case Intrinsic::umul_fix_sat:
2049 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2050 case Intrinsic::sdiv_fix:
2051 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2052 case Intrinsic::udiv_fix:
2053 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2054 case Intrinsic::sdiv_fix_sat:
2055 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2056 case Intrinsic::udiv_fix_sat:
2057 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2058 case Intrinsic::fmuladd: {
2059 const TargetMachine &TM = MF->getTarget();
2060 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2061 Register Dst = getOrCreateVReg(CI);
2062 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2063 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2064 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2065 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2066 TLI.isFMAFasterThanFMulAndFAdd(*MF,
2067 TLI.getValueType(*DL, CI.getType()))) {
2068 // TODO: Revisit this to see if we should move this part of the
2069 // lowering to the combiner.
2070 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2071 MachineInstr::copyFlagsFromInstruction(CI));
2072 } else {
2073 LLT Ty = getLLTForType(*CI.getType(), *DL);
2074 auto FMul = MIRBuilder.buildFMul(
2075 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2076 MIRBuilder.buildFAdd(Dst, FMul, Op2,
2077 MachineInstr::copyFlagsFromInstruction(CI));
2078 }
2079 return true;
2080 }
2081 case Intrinsic::convert_from_fp16:
2082 // FIXME: This intrinsic should probably be removed from the IR.
2083 MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2084 getOrCreateVReg(*CI.getArgOperand(0)),
2085 MachineInstr::copyFlagsFromInstruction(CI));
2086 return true;
2087 case Intrinsic::convert_to_fp16:
2088 // FIXME: This intrinsic should probably be removed from the IR.
2089 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2090 getOrCreateVReg(*CI.getArgOperand(0)),
2091 MachineInstr::copyFlagsFromInstruction(CI));
2092 return true;
2093 case Intrinsic::memcpy_inline:
2094 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2095 case Intrinsic::memcpy:
2096 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2097 case Intrinsic::memmove:
2098 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2099 case Intrinsic::memset:
2100 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2101 case Intrinsic::eh_typeid_for: {
2102 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2103 Register Reg = getOrCreateVReg(CI);
2104 unsigned TypeID = MF->getTypeIDFor(GV);
2105 MIRBuilder.buildConstant(Reg, TypeID);
2106 return true;
2107 }
2108 case Intrinsic::objectsize:
2109 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2110
2111 case Intrinsic::is_constant:
2112 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2113
2114 case Intrinsic::stackguard:
2115 getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2116 return true;
2117 case Intrinsic::stackprotector: {
2118 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2119 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2120 Register GuardVal;
2121 if (TLI.useLoadStackGuardNode()) {
2122 GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2123 getStackGuard(GuardVal, MIRBuilder);
2124 } else
2125 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value.
2126
2127 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2128 int FI = getOrCreateFrameIndex(*Slot);
2129 MF->getFrameInfo().setStackProtectorIndex(FI);
2130
2131 MIRBuilder.buildStore(
2132 GuardVal, getOrCreateVReg(*Slot),
2133 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2134 MachineMemOperand::MOStore |
2135 MachineMemOperand::MOVolatile,
2136 PtrTy, Align(8)));
2137 return true;
2138 }
2139 case Intrinsic::stacksave: {
2140 // Save the stack pointer to the location provided by the intrinsic.
2141 Register Reg = getOrCreateVReg(CI);
2142 Register StackPtr = MF->getSubtarget()
2143 .getTargetLowering()
2144 ->getStackPointerRegisterToSaveRestore();
2145
2146 // If the target doesn't specify a stack pointer, then fall back.
2147 if (!StackPtr)
2148 return false;
2149
2150 MIRBuilder.buildCopy(Reg, StackPtr);
2151 return true;
2152 }
2153 case Intrinsic::stackrestore: {
2154 // Restore the stack pointer from the location provided by the intrinsic.
2155 Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2156 Register StackPtr = MF->getSubtarget()
2157 .getTargetLowering()
2158 ->getStackPointerRegisterToSaveRestore();
2159
2160 // If the target doesn't specify a stack pointer, then fall back.
2161 if (!StackPtr)
2162 return false;
2163
2164 MIRBuilder.buildCopy(StackPtr, Reg);
2165 return true;
2166 }
2167 case Intrinsic::cttz:
2168 case Intrinsic::ctlz: {
2169 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2170 bool isTrailing = ID == Intrinsic::cttz;
2171 unsigned Opcode = isTrailing
2172 ? Cst->isZero() ? TargetOpcode::G_CTTZ
2173 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2174 : Cst->isZero() ? TargetOpcode::G_CTLZ
2175 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2176 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2177 {getOrCreateVReg(*CI.getArgOperand(0))});
2178 return true;
2179 }
2180 case Intrinsic::invariant_start: {
2181 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2182 Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2183 MIRBuilder.buildUndef(Undef);
2184 return true;
2185 }
2186 case Intrinsic::invariant_end:
2187 return true;
2188 case Intrinsic::expect:
2189 case Intrinsic::annotation:
2190 case Intrinsic::ptr_annotation:
2191 case Intrinsic::launder_invariant_group:
2192 case Intrinsic::strip_invariant_group: {
2193 // Drop the intrinsic, but forward the value.
2194 MIRBuilder.buildCopy(getOrCreateVReg(CI),
2195 getOrCreateVReg(*CI.getArgOperand(0)));
2196 return true;
2197 }
2198 case Intrinsic::assume:
2199 case Intrinsic::experimental_noalias_scope_decl:
2200 case Intrinsic::var_annotation:
2201 case Intrinsic::sideeffect:
2202 // Discard annotate attributes, assumptions, and artificial side-effects.
2203 return true;
2204 case Intrinsic::read_volatile_register:
2205 case Intrinsic::read_register: {
2206 Value *Arg = CI.getArgOperand(0);
2207 MIRBuilder
2208 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2209 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2210 return true;
2211 }
2212 case Intrinsic::write_register: {
2213 Value *Arg = CI.getArgOperand(0);
2214 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2215 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2216 .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2217 return true;
2218 }
2219 case Intrinsic::localescape: {
2220 MachineBasicBlock &EntryMBB = MF->front();
2221 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2222
2223 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2224 // is the same on all targets.
2225 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
2226 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2227 if (isa<ConstantPointerNull>(Arg))
2228 continue; // Skip null pointers. They represent a hole in index space.
2229
2230 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2231 MCSymbol *FrameAllocSym =
2232 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2233 Idx);
2234
2235 // This should be inserted at the start of the entry block.
2236 auto LocalEscape =
2237 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2238 .addSym(FrameAllocSym)
2239 .addFrameIndex(FI);
2240
2241 EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2242 }
2243
2244 return true;
2245 }
2246 case Intrinsic::vector_reduce_fadd:
2247 case Intrinsic::vector_reduce_fmul: {
2248 // Need to check for the reassoc flag to decide whether we want a
2249 // sequential reduction opcode or not.
2250 Register Dst = getOrCreateVReg(CI);
2251 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2252 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2253 unsigned Opc = 0;
2254 if (!CI.hasAllowReassoc()) {
2255 // The sequential ordering case.
2256 Opc = ID == Intrinsic::vector_reduce_fadd
2257 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2258 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2259 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2260 MachineInstr::copyFlagsFromInstruction(CI));
2261 return true;
2262 }
2263 // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2264 // since the associativity doesn't matter.
2265 unsigned ScalarOpc;
2266 if (ID == Intrinsic::vector_reduce_fadd) {
2267 Opc = TargetOpcode::G_VECREDUCE_FADD;
2268 ScalarOpc = TargetOpcode::G_FADD;
2269 } else {
2270 Opc = TargetOpcode::G_VECREDUCE_FMUL;
2271 ScalarOpc = TargetOpcode::G_FMUL;
2272 }
2273 LLT DstTy = MRI->getType(Dst);
2274 auto Rdx = MIRBuilder.buildInstr(
2275 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2276 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2277 MachineInstr::copyFlagsFromInstruction(CI));
2278
2279 return true;
2280 }
2281 case Intrinsic::trap:
2282 case Intrinsic::debugtrap:
2283 case Intrinsic::ubsantrap: {
2284 StringRef TrapFuncName =
2285 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString();
2286 if (TrapFuncName.empty())
2287 break; // Use the default handling.
2288 CallLowering::CallLoweringInfo Info;
2289 if (ID == Intrinsic::ubsantrap) {
2290 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)),
2291 CI.getArgOperand(0)->getType(), 0});
2292 }
2293 Info.Callee = MachineOperand::CreateES(TrapFuncName.data());
2294 Info.CB = &CI;
2295 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0};
2296 return CLI->lowerCall(MIRBuilder, Info);
2297 }
2298 case Intrinsic::fptrunc_round: {
2299 unsigned Flags = MachineInstr::copyFlagsFromInstruction(CI);
2300
2301 // Convert the metadata argument to a constant integer
2302 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata();
2303 std::optional<RoundingMode> RoundMode =
2304 convertStrToRoundingMode(cast<MDString>(MD)->getString());
2305
2306 // Add the Rounding mode as an integer
2307 MIRBuilder
2308 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
2309 {getOrCreateVReg(CI)},
2310 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags)
2311 .addImm((int)*RoundMode);
2312
2313 return true;
2314 }
2315 case Intrinsic::is_fpclass: {
2316 Value *FpValue = CI.getOperand(0);
2317 ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1));
2318
2319 MIRBuilder
2320 .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)},
2321 {getOrCreateVReg(*FpValue)})
2322 .addImm(TestMaskValue->getZExtValue());
2323
2324 return true;
2325 }
2326 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2327 case Intrinsic::INTRINSIC:
2328 #include "llvm/IR/ConstrainedOps.def"
2329 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2330 MIRBuilder);
2331
2332 }
2333 return false;
2334 }
2335
translateInlineAsm(const CallBase & CB,MachineIRBuilder & MIRBuilder)2336 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2337 MachineIRBuilder &MIRBuilder) {
2338
2339 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2340
2341 if (!ALI) {
2342 LLVM_DEBUG(
2343 dbgs() << "Inline asm lowering is not supported for this target yet\n");
2344 return false;
2345 }
2346
2347 return ALI->lowerInlineAsm(
2348 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2349 }
2350
translateCallBase(const CallBase & CB,MachineIRBuilder & MIRBuilder)2351 bool IRTranslator::translateCallBase(const CallBase &CB,
2352 MachineIRBuilder &MIRBuilder) {
2353 ArrayRef<Register> Res = getOrCreateVRegs(CB);
2354
2355 SmallVector<ArrayRef<Register>, 8> Args;
2356 Register SwiftInVReg = 0;
2357 Register SwiftErrorVReg = 0;
2358 for (const auto &Arg : CB.args()) {
2359 if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2360 assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2361 LLT Ty = getLLTForType(*Arg->getType(), *DL);
2362 SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2363 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2364 &CB, &MIRBuilder.getMBB(), Arg));
2365 Args.emplace_back(ArrayRef(SwiftInVReg));
2366 SwiftErrorVReg =
2367 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2368 continue;
2369 }
2370 Args.push_back(getOrCreateVRegs(*Arg));
2371 }
2372
2373 if (auto *CI = dyn_cast<CallInst>(&CB)) {
2374 if (ORE->enabled()) {
2375 if (MemoryOpRemark::canHandle(CI, *LibInfo)) {
2376 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2377 R.visit(CI);
2378 }
2379 }
2380 }
2381
2382 // We don't set HasCalls on MFI here yet because call lowering may decide to
2383 // optimize into tail calls. Instead, we defer that to selection where a final
2384 // scan is done to check if any instructions are calls.
2385 bool Success =
2386 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2387 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2388
2389 // Check if we just inserted a tail call.
2390 if (Success) {
2391 assert(!HasTailCall && "Can't tail call return twice from block?");
2392 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2393 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2394 }
2395
2396 return Success;
2397 }
2398
translateCall(const User & U,MachineIRBuilder & MIRBuilder)2399 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2400 const CallInst &CI = cast<CallInst>(U);
2401 auto TII = MF->getTarget().getIntrinsicInfo();
2402 const Function *F = CI.getCalledFunction();
2403
2404 // FIXME: support Windows dllimport function calls.
2405 if (F && (F->hasDLLImportStorageClass() ||
2406 (MF->getTarget().getTargetTriple().isOSWindows() &&
2407 F->hasExternalWeakLinkage())))
2408 return false;
2409
2410 // FIXME: support control flow guard targets.
2411 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2412 return false;
2413
2414 // FIXME: support statepoints and related.
2415 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U))
2416 return false;
2417
2418 if (CI.isInlineAsm())
2419 return translateInlineAsm(CI, MIRBuilder);
2420
2421 diagnoseDontCall(CI);
2422
2423 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2424 if (F && F->isIntrinsic()) {
2425 ID = F->getIntrinsicID();
2426 if (TII && ID == Intrinsic::not_intrinsic)
2427 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2428 }
2429
2430 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2431 return translateCallBase(CI, MIRBuilder);
2432
2433 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2434
2435 if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2436 return true;
2437
2438 ArrayRef<Register> ResultRegs;
2439 if (!CI.getType()->isVoidTy())
2440 ResultRegs = getOrCreateVRegs(CI);
2441
2442 // Ignore the callsite attributes. Backend code is most likely not expecting
2443 // an intrinsic to sometimes have side effects and sometimes not.
2444 MachineInstrBuilder MIB =
2445 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2446 if (isa<FPMathOperator>(CI))
2447 MIB->copyIRFlags(CI);
2448
2449 for (const auto &Arg : enumerate(CI.args())) {
2450 // If this is required to be an immediate, don't materialize it in a
2451 // register.
2452 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2453 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2454 // imm arguments are more convenient than cimm (and realistically
2455 // probably sufficient), so use them.
2456 assert(CI->getBitWidth() <= 64 &&
2457 "large intrinsic immediates not handled");
2458 MIB.addImm(CI->getSExtValue());
2459 } else {
2460 MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2461 }
2462 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) {
2463 auto *MD = MDVal->getMetadata();
2464 auto *MDN = dyn_cast<MDNode>(MD);
2465 if (!MDN) {
2466 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD))
2467 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD);
2468 else // This was probably an MDString.
2469 return false;
2470 }
2471 MIB.addMetadata(MDN);
2472 } else {
2473 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2474 if (VRegs.size() > 1)
2475 return false;
2476 MIB.addUse(VRegs[0]);
2477 }
2478 }
2479
2480 // Add a MachineMemOperand if it is a target mem intrinsic.
2481 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2482 TargetLowering::IntrinsicInfo Info;
2483 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2484 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2485 Align Alignment = Info.align.value_or(
2486 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2487 LLT MemTy = Info.memVT.isSimple()
2488 ? getLLTForMVT(Info.memVT.getSimpleVT())
2489 : LLT::scalar(Info.memVT.getStoreSizeInBits());
2490
2491 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
2492 // didn't yield anything useful.
2493 MachinePointerInfo MPI;
2494 if (Info.ptrVal)
2495 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
2496 else if (Info.fallbackAddressSpace)
2497 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
2498 MIB.addMemOperand(
2499 MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata()));
2500 }
2501
2502 return true;
2503 }
2504
findUnwindDestinations(const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)2505 bool IRTranslator::findUnwindDestinations(
2506 const BasicBlock *EHPadBB,
2507 BranchProbability Prob,
2508 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2509 &UnwindDests) {
2510 EHPersonality Personality = classifyEHPersonality(
2511 EHPadBB->getParent()->getFunction().getPersonalityFn());
2512 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2513 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2514 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2515 bool IsSEH = isAsynchronousEHPersonality(Personality);
2516
2517 if (IsWasmCXX) {
2518 // Ignore this for now.
2519 return false;
2520 }
2521
2522 while (EHPadBB) {
2523 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2524 BasicBlock *NewEHPadBB = nullptr;
2525 if (isa<LandingPadInst>(Pad)) {
2526 // Stop on landingpads. They are not funclets.
2527 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2528 break;
2529 }
2530 if (isa<CleanupPadInst>(Pad)) {
2531 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2532 // personalities.
2533 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2534 UnwindDests.back().first->setIsEHScopeEntry();
2535 UnwindDests.back().first->setIsEHFuncletEntry();
2536 break;
2537 }
2538 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2539 // Add the catchpad handlers to the possible destinations.
2540 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2541 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2542 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2543 if (IsMSVCCXX || IsCoreCLR)
2544 UnwindDests.back().first->setIsEHFuncletEntry();
2545 if (!IsSEH)
2546 UnwindDests.back().first->setIsEHScopeEntry();
2547 }
2548 NewEHPadBB = CatchSwitch->getUnwindDest();
2549 } else {
2550 continue;
2551 }
2552
2553 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2554 if (BPI && NewEHPadBB)
2555 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2556 EHPadBB = NewEHPadBB;
2557 }
2558 return true;
2559 }
2560
translateInvoke(const User & U,MachineIRBuilder & MIRBuilder)2561 bool IRTranslator::translateInvoke(const User &U,
2562 MachineIRBuilder &MIRBuilder) {
2563 const InvokeInst &I = cast<InvokeInst>(U);
2564 MCContext &Context = MF->getContext();
2565
2566 const BasicBlock *ReturnBB = I.getSuccessor(0);
2567 const BasicBlock *EHPadBB = I.getSuccessor(1);
2568
2569 const Function *Fn = I.getCalledFunction();
2570
2571 // FIXME: support invoking patchpoint and statepoint intrinsics.
2572 if (Fn && Fn->isIntrinsic())
2573 return false;
2574
2575 // FIXME: support whatever these are.
2576 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2577 return false;
2578
2579 // FIXME: support control flow guard targets.
2580 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2581 return false;
2582
2583 // FIXME: support Windows exception handling.
2584 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2585 return false;
2586
2587 bool LowerInlineAsm = I.isInlineAsm();
2588 bool NeedEHLabel = true;
2589
2590 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2591 // the region covered by the try.
2592 MCSymbol *BeginSymbol = nullptr;
2593 if (NeedEHLabel) {
2594 MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START);
2595 BeginSymbol = Context.createTempSymbol();
2596 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2597 }
2598
2599 if (LowerInlineAsm) {
2600 if (!translateInlineAsm(I, MIRBuilder))
2601 return false;
2602 } else if (!translateCallBase(I, MIRBuilder))
2603 return false;
2604
2605 MCSymbol *EndSymbol = nullptr;
2606 if (NeedEHLabel) {
2607 EndSymbol = Context.createTempSymbol();
2608 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2609 }
2610
2611 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2612 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2613 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2614 BranchProbability EHPadBBProb =
2615 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2616 : BranchProbability::getZero();
2617
2618 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2619 return false;
2620
2621 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2622 &ReturnMBB = getMBB(*ReturnBB);
2623 // Update successor info.
2624 addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2625 for (auto &UnwindDest : UnwindDests) {
2626 UnwindDest.first->setIsEHPad();
2627 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2628 }
2629 InvokeMBB->normalizeSuccProbs();
2630
2631 if (NeedEHLabel) {
2632 assert(BeginSymbol && "Expected a begin symbol!");
2633 assert(EndSymbol && "Expected an end symbol!");
2634 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2635 }
2636
2637 MIRBuilder.buildBr(ReturnMBB);
2638 return true;
2639 }
2640
translateCallBr(const User & U,MachineIRBuilder & MIRBuilder)2641 bool IRTranslator::translateCallBr(const User &U,
2642 MachineIRBuilder &MIRBuilder) {
2643 // FIXME: Implement this.
2644 return false;
2645 }
2646
translateLandingPad(const User & U,MachineIRBuilder & MIRBuilder)2647 bool IRTranslator::translateLandingPad(const User &U,
2648 MachineIRBuilder &MIRBuilder) {
2649 const LandingPadInst &LP = cast<LandingPadInst>(U);
2650
2651 MachineBasicBlock &MBB = MIRBuilder.getMBB();
2652
2653 MBB.setIsEHPad();
2654
2655 // If there aren't registers to copy the values into (e.g., during SjLj
2656 // exceptions), then don't bother.
2657 auto &TLI = *MF->getSubtarget().getTargetLowering();
2658 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2659 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2660 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2661 return true;
2662
2663 // If landingpad's return type is token type, we don't create DAG nodes
2664 // for its exception pointer and selector value. The extraction of exception
2665 // pointer or selector value from token type landingpads is not currently
2666 // supported.
2667 if (LP.getType()->isTokenTy())
2668 return true;
2669
2670 // Add a label to mark the beginning of the landing pad. Deletion of the
2671 // landing pad can thus be detected via the MachineModuleInfo.
2672 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2673 .addSym(MF->addLandingPad(&MBB));
2674
2675 // If the unwinder does not preserve all registers, ensure that the
2676 // function marks the clobbered registers as used.
2677 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2678 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2679 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2680
2681 LLT Ty = getLLTForType(*LP.getType(), *DL);
2682 Register Undef = MRI->createGenericVirtualRegister(Ty);
2683 MIRBuilder.buildUndef(Undef);
2684
2685 SmallVector<LLT, 2> Tys;
2686 for (Type *Ty : cast<StructType>(LP.getType())->elements())
2687 Tys.push_back(getLLTForType(*Ty, *DL));
2688 assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2689
2690 // Mark exception register as live in.
2691 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2692 if (!ExceptionReg)
2693 return false;
2694
2695 MBB.addLiveIn(ExceptionReg);
2696 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2697 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2698
2699 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2700 if (!SelectorReg)
2701 return false;
2702
2703 MBB.addLiveIn(SelectorReg);
2704 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2705 MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2706 MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2707
2708 return true;
2709 }
2710
translateAlloca(const User & U,MachineIRBuilder & MIRBuilder)2711 bool IRTranslator::translateAlloca(const User &U,
2712 MachineIRBuilder &MIRBuilder) {
2713 auto &AI = cast<AllocaInst>(U);
2714
2715 if (AI.isSwiftError())
2716 return true;
2717
2718 if (AI.isStaticAlloca()) {
2719 Register Res = getOrCreateVReg(AI);
2720 int FI = getOrCreateFrameIndex(AI);
2721 MIRBuilder.buildFrameIndex(Res, FI);
2722 return true;
2723 }
2724
2725 // FIXME: support stack probing for Windows.
2726 if (MF->getTarget().getTargetTriple().isOSWindows())
2727 return false;
2728
2729 // Now we're in the harder dynamic case.
2730 Register NumElts = getOrCreateVReg(*AI.getArraySize());
2731 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2732 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2733 if (MRI->getType(NumElts) != IntPtrTy) {
2734 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2735 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2736 NumElts = ExtElts;
2737 }
2738
2739 Type *Ty = AI.getAllocatedType();
2740
2741 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2742 Register TySize =
2743 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2744 MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2745
2746 // Round the size of the allocation up to the stack alignment size
2747 // by add SA-1 to the size. This doesn't overflow because we're computing
2748 // an address inside an alloca.
2749 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2750 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2751 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2752 MachineInstr::NoUWrap);
2753 auto AlignCst =
2754 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2755 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2756
2757 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2758 if (Alignment <= StackAlign)
2759 Alignment = Align(1);
2760 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2761
2762 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2763 assert(MF->getFrameInfo().hasVarSizedObjects());
2764 return true;
2765 }
2766
translateVAArg(const User & U,MachineIRBuilder & MIRBuilder)2767 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2768 // FIXME: We may need more info about the type. Because of how LLT works,
2769 // we're completely discarding the i64/double distinction here (amongst
2770 // others). Fortunately the ABIs I know of where that matters don't use va_arg
2771 // anyway but that's not guaranteed.
2772 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2773 {getOrCreateVReg(*U.getOperand(0)),
2774 DL->getABITypeAlign(U.getType()).value()});
2775 return true;
2776 }
2777
translateUnreachable(const User & U,MachineIRBuilder & MIRBuilder)2778 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
2779 if (!MF->getTarget().Options.TrapUnreachable)
2780 return true;
2781
2782 auto &UI = cast<UnreachableInst>(U);
2783 // We may be able to ignore unreachable behind a noreturn call.
2784 if (MF->getTarget().Options.NoTrapAfterNoreturn) {
2785 const BasicBlock &BB = *UI.getParent();
2786 if (&UI != &BB.front()) {
2787 BasicBlock::const_iterator PredI =
2788 std::prev(BasicBlock::const_iterator(UI));
2789 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2790 if (Call->doesNotReturn())
2791 return true;
2792 }
2793 }
2794 }
2795
2796 MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
2797 return true;
2798 }
2799
translateInsertElement(const User & U,MachineIRBuilder & MIRBuilder)2800 bool IRTranslator::translateInsertElement(const User &U,
2801 MachineIRBuilder &MIRBuilder) {
2802 // If it is a <1 x Ty> vector, use the scalar as it is
2803 // not a legal vector type in LLT.
2804 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2805 return translateCopy(U, *U.getOperand(1), MIRBuilder);
2806
2807 Register Res = getOrCreateVReg(U);
2808 Register Val = getOrCreateVReg(*U.getOperand(0));
2809 Register Elt = getOrCreateVReg(*U.getOperand(1));
2810 Register Idx = getOrCreateVReg(*U.getOperand(2));
2811 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2812 return true;
2813 }
2814
translateExtractElement(const User & U,MachineIRBuilder & MIRBuilder)2815 bool IRTranslator::translateExtractElement(const User &U,
2816 MachineIRBuilder &MIRBuilder) {
2817 // If it is a <1 x Ty> vector, use the scalar as it is
2818 // not a legal vector type in LLT.
2819 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2820 return translateCopy(U, *U.getOperand(0), MIRBuilder);
2821
2822 Register Res = getOrCreateVReg(U);
2823 Register Val = getOrCreateVReg(*U.getOperand(0));
2824 const auto &TLI = *MF->getSubtarget().getTargetLowering();
2825 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2826 Register Idx;
2827 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2828 if (CI->getBitWidth() != PreferredVecIdxWidth) {
2829 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
2830 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2831 Idx = getOrCreateVReg(*NewIdxCI);
2832 }
2833 }
2834 if (!Idx)
2835 Idx = getOrCreateVReg(*U.getOperand(1));
2836 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2837 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2838 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0);
2839 }
2840 MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2841 return true;
2842 }
2843
translateShuffleVector(const User & U,MachineIRBuilder & MIRBuilder)2844 bool IRTranslator::translateShuffleVector(const User &U,
2845 MachineIRBuilder &MIRBuilder) {
2846 ArrayRef<int> Mask;
2847 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2848 Mask = SVI->getShuffleMask();
2849 else
2850 Mask = cast<ConstantExpr>(U).getShuffleMask();
2851 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2852 MIRBuilder
2853 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2854 {getOrCreateVReg(*U.getOperand(0)),
2855 getOrCreateVReg(*U.getOperand(1))})
2856 .addShuffleMask(MaskAlloc);
2857 return true;
2858 }
2859
translatePHI(const User & U,MachineIRBuilder & MIRBuilder)2860 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2861 const PHINode &PI = cast<PHINode>(U);
2862
2863 SmallVector<MachineInstr *, 4> Insts;
2864 for (auto Reg : getOrCreateVRegs(PI)) {
2865 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2866 Insts.push_back(MIB.getInstr());
2867 }
2868
2869 PendingPHIs.emplace_back(&PI, std::move(Insts));
2870 return true;
2871 }
2872
translateAtomicCmpXchg(const User & U,MachineIRBuilder & MIRBuilder)2873 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2874 MachineIRBuilder &MIRBuilder) {
2875 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2876
2877 auto &TLI = *MF->getSubtarget().getTargetLowering();
2878 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2879
2880 auto Res = getOrCreateVRegs(I);
2881 Register OldValRes = Res[0];
2882 Register SuccessRes = Res[1];
2883 Register Addr = getOrCreateVReg(*I.getPointerOperand());
2884 Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2885 Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2886
2887 MIRBuilder.buildAtomicCmpXchgWithSuccess(
2888 OldValRes, SuccessRes, Addr, Cmp, NewVal,
2889 *MF->getMachineMemOperand(
2890 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
2891 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(),
2892 I.getSuccessOrdering(), I.getFailureOrdering()));
2893 return true;
2894 }
2895
translateAtomicRMW(const User & U,MachineIRBuilder & MIRBuilder)2896 bool IRTranslator::translateAtomicRMW(const User &U,
2897 MachineIRBuilder &MIRBuilder) {
2898 const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2899 auto &TLI = *MF->getSubtarget().getTargetLowering();
2900 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2901
2902 Register Res = getOrCreateVReg(I);
2903 Register Addr = getOrCreateVReg(*I.getPointerOperand());
2904 Register Val = getOrCreateVReg(*I.getValOperand());
2905
2906 unsigned Opcode = 0;
2907 switch (I.getOperation()) {
2908 default:
2909 return false;
2910 case AtomicRMWInst::Xchg:
2911 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2912 break;
2913 case AtomicRMWInst::Add:
2914 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2915 break;
2916 case AtomicRMWInst::Sub:
2917 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2918 break;
2919 case AtomicRMWInst::And:
2920 Opcode = TargetOpcode::G_ATOMICRMW_AND;
2921 break;
2922 case AtomicRMWInst::Nand:
2923 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2924 break;
2925 case AtomicRMWInst::Or:
2926 Opcode = TargetOpcode::G_ATOMICRMW_OR;
2927 break;
2928 case AtomicRMWInst::Xor:
2929 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2930 break;
2931 case AtomicRMWInst::Max:
2932 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2933 break;
2934 case AtomicRMWInst::Min:
2935 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2936 break;
2937 case AtomicRMWInst::UMax:
2938 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2939 break;
2940 case AtomicRMWInst::UMin:
2941 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2942 break;
2943 case AtomicRMWInst::FAdd:
2944 Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2945 break;
2946 case AtomicRMWInst::FSub:
2947 Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2948 break;
2949 case AtomicRMWInst::FMax:
2950 Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
2951 break;
2952 case AtomicRMWInst::FMin:
2953 Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
2954 break;
2955 case AtomicRMWInst::UIncWrap:
2956 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP;
2957 break;
2958 case AtomicRMWInst::UDecWrap:
2959 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP;
2960 break;
2961 }
2962
2963 MIRBuilder.buildAtomicRMW(
2964 Opcode, Res, Addr, Val,
2965 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2966 Flags, MRI->getType(Val), getMemOpAlign(I),
2967 I.getAAMetadata(), nullptr, I.getSyncScopeID(),
2968 I.getOrdering()));
2969 return true;
2970 }
2971
translateFence(const User & U,MachineIRBuilder & MIRBuilder)2972 bool IRTranslator::translateFence(const User &U,
2973 MachineIRBuilder &MIRBuilder) {
2974 const FenceInst &Fence = cast<FenceInst>(U);
2975 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2976 Fence.getSyncScopeID());
2977 return true;
2978 }
2979
translateFreeze(const User & U,MachineIRBuilder & MIRBuilder)2980 bool IRTranslator::translateFreeze(const User &U,
2981 MachineIRBuilder &MIRBuilder) {
2982 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2983 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2984
2985 assert(DstRegs.size() == SrcRegs.size() &&
2986 "Freeze with different source and destination type?");
2987
2988 for (unsigned I = 0; I < DstRegs.size(); ++I) {
2989 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2990 }
2991
2992 return true;
2993 }
2994
finishPendingPhis()2995 void IRTranslator::finishPendingPhis() {
2996 #ifndef NDEBUG
2997 DILocationVerifier Verifier;
2998 GISelObserverWrapper WrapperObserver(&Verifier);
2999 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3000 #endif // ifndef NDEBUG
3001 for (auto &Phi : PendingPHIs) {
3002 const PHINode *PI = Phi.first;
3003 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
3004 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
3005 EntryBuilder->setDebugLoc(PI->getDebugLoc());
3006 #ifndef NDEBUG
3007 Verifier.setCurrentInst(PI);
3008 #endif // ifndef NDEBUG
3009
3010 SmallSet<const MachineBasicBlock *, 16> SeenPreds;
3011 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
3012 auto IRPred = PI->getIncomingBlock(i);
3013 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
3014 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
3015 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
3016 continue;
3017 SeenPreds.insert(Pred);
3018 for (unsigned j = 0; j < ValRegs.size(); ++j) {
3019 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
3020 MIB.addUse(ValRegs[j]);
3021 MIB.addMBB(Pred);
3022 }
3023 }
3024 }
3025 }
3026 }
3027
translate(const Instruction & Inst)3028 bool IRTranslator::translate(const Instruction &Inst) {
3029 CurBuilder->setDebugLoc(Inst.getDebugLoc());
3030 CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections));
3031
3032 auto &TLI = *MF->getSubtarget().getTargetLowering();
3033 if (TLI.fallBackToDAGISel(Inst))
3034 return false;
3035
3036 switch (Inst.getOpcode()) {
3037 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3038 case Instruction::OPCODE: \
3039 return translate##OPCODE(Inst, *CurBuilder.get());
3040 #include "llvm/IR/Instruction.def"
3041 default:
3042 return false;
3043 }
3044 }
3045
translate(const Constant & C,Register Reg)3046 bool IRTranslator::translate(const Constant &C, Register Reg) {
3047 // We only emit constants into the entry block from here. To prevent jumpy
3048 // debug behaviour remove debug line.
3049 if (auto CurrInstDL = CurBuilder->getDL())
3050 EntryBuilder->setDebugLoc(DebugLoc());
3051
3052 if (auto CI = dyn_cast<ConstantInt>(&C))
3053 EntryBuilder->buildConstant(Reg, *CI);
3054 else if (auto CF = dyn_cast<ConstantFP>(&C))
3055 EntryBuilder->buildFConstant(Reg, *CF);
3056 else if (isa<UndefValue>(C))
3057 EntryBuilder->buildUndef(Reg);
3058 else if (isa<ConstantPointerNull>(C))
3059 EntryBuilder->buildConstant(Reg, 0);
3060 else if (auto GV = dyn_cast<GlobalValue>(&C))
3061 EntryBuilder->buildGlobalValue(Reg, GV);
3062 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
3063 if (!isa<FixedVectorType>(CAZ->getType()))
3064 return false;
3065 // Return the scalar if it is a <1 x Ty> vector.
3066 unsigned NumElts = CAZ->getElementCount().getFixedValue();
3067 if (NumElts == 1)
3068 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder);
3069 SmallVector<Register, 4> Ops;
3070 for (unsigned I = 0; I < NumElts; ++I) {
3071 Constant &Elt = *CAZ->getElementValue(I);
3072 Ops.push_back(getOrCreateVReg(Elt));
3073 }
3074 EntryBuilder->buildBuildVector(Reg, Ops);
3075 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
3076 // Return the scalar if it is a <1 x Ty> vector.
3077 if (CV->getNumElements() == 1)
3078 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder);
3079 SmallVector<Register, 4> Ops;
3080 for (unsigned i = 0; i < CV->getNumElements(); ++i) {
3081 Constant &Elt = *CV->getElementAsConstant(i);
3082 Ops.push_back(getOrCreateVReg(Elt));
3083 }
3084 EntryBuilder->buildBuildVector(Reg, Ops);
3085 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
3086 switch(CE->getOpcode()) {
3087 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3088 case Instruction::OPCODE: \
3089 return translate##OPCODE(*CE, *EntryBuilder.get());
3090 #include "llvm/IR/Instruction.def"
3091 default:
3092 return false;
3093 }
3094 } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
3095 if (CV->getNumOperands() == 1)
3096 return translateCopy(C, *CV->getOperand(0), *EntryBuilder);
3097 SmallVector<Register, 4> Ops;
3098 for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
3099 Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
3100 }
3101 EntryBuilder->buildBuildVector(Reg, Ops);
3102 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
3103 EntryBuilder->buildBlockAddress(Reg, BA);
3104 } else
3105 return false;
3106
3107 return true;
3108 }
3109
finalizeBasicBlock(const BasicBlock & BB,MachineBasicBlock & MBB)3110 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
3111 MachineBasicBlock &MBB) {
3112 for (auto &BTB : SL->BitTestCases) {
3113 // Emit header first, if it wasn't already emitted.
3114 if (!BTB.Emitted)
3115 emitBitTestHeader(BTB, BTB.Parent);
3116
3117 BranchProbability UnhandledProb = BTB.Prob;
3118 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3119 UnhandledProb -= BTB.Cases[j].ExtraProb;
3120 // Set the current basic block to the mbb we wish to insert the code into
3121 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3122 // If all cases cover a contiguous range, it is not necessary to jump to
3123 // the default block after the last bit test fails. This is because the
3124 // range check during bit test header creation has guaranteed that every
3125 // case here doesn't go outside the range. In this case, there is no need
3126 // to perform the last bit test, as it will always be true. Instead, make
3127 // the second-to-last bit-test fall through to the target of the last bit
3128 // test, and delete the last bit test.
3129
3130 MachineBasicBlock *NextMBB;
3131 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3132 // Second-to-last bit-test with contiguous range: fall through to the
3133 // target of the final bit test.
3134 NextMBB = BTB.Cases[j + 1].TargetBB;
3135 } else if (j + 1 == ej) {
3136 // For the last bit test, fall through to Default.
3137 NextMBB = BTB.Default;
3138 } else {
3139 // Otherwise, fall through to the next bit test.
3140 NextMBB = BTB.Cases[j + 1].ThisBB;
3141 }
3142
3143 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3144
3145 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3146 // We need to record the replacement phi edge here that normally
3147 // happens in emitBitTestCase before we delete the case, otherwise the
3148 // phi edge will be lost.
3149 addMachineCFGPred({BTB.Parent->getBasicBlock(),
3150 BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3151 MBB);
3152 // Since we're not going to use the final bit test, remove it.
3153 BTB.Cases.pop_back();
3154 break;
3155 }
3156 }
3157 // This is "default" BB. We have two jumps to it. From "header" BB and from
3158 // last "case" BB, unless the latter was skipped.
3159 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3160 BTB.Default->getBasicBlock()};
3161 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3162 if (!BTB.ContiguousRange) {
3163 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3164 }
3165 }
3166 SL->BitTestCases.clear();
3167
3168 for (auto &JTCase : SL->JTCases) {
3169 // Emit header first, if it wasn't already emitted.
3170 if (!JTCase.first.Emitted)
3171 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3172
3173 emitJumpTable(JTCase.second, JTCase.second.MBB);
3174 }
3175 SL->JTCases.clear();
3176
3177 for (auto &SwCase : SL->SwitchCases)
3178 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3179 SL->SwitchCases.clear();
3180
3181 // Check if we need to generate stack-protector guard checks.
3182 StackProtector &SP = getAnalysis<StackProtector>();
3183 if (SP.shouldEmitSDCheck(BB)) {
3184 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3185 bool FunctionBasedInstrumentation =
3186 TLI.getSSPStackGuardCheck(*MF->getFunction().getParent());
3187 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation);
3188 }
3189 // Handle stack protector.
3190 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3191 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3192 return false;
3193 } else if (SPDescriptor.shouldEmitStackProtector()) {
3194 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3195 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3196
3197 // Find the split point to split the parent mbb. At the same time copy all
3198 // physical registers used in the tail of parent mbb into virtual registers
3199 // before the split point and back into physical registers after the split
3200 // point. This prevents us needing to deal with Live-ins and many other
3201 // register allocation issues caused by us splitting the parent mbb. The
3202 // register allocator will clean up said virtual copies later on.
3203 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
3204 ParentMBB, *MF->getSubtarget().getInstrInfo());
3205
3206 // Splice the terminator of ParentMBB into SuccessMBB.
3207 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
3208 ParentMBB->end());
3209
3210 // Add compare/jump on neq/jump to the parent BB.
3211 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
3212 return false;
3213
3214 // CodeGen Failure MBB if we have not codegened it yet.
3215 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3216 if (FailureMBB->empty()) {
3217 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
3218 return false;
3219 }
3220
3221 // Clear the Per-BB State.
3222 SPDescriptor.resetPerBBState();
3223 }
3224 return true;
3225 }
3226
emitSPDescriptorParent(StackProtectorDescriptor & SPD,MachineBasicBlock * ParentBB)3227 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
3228 MachineBasicBlock *ParentBB) {
3229 CurBuilder->setInsertPt(*ParentBB, ParentBB->end());
3230 // First create the loads to the guard/stack slot for the comparison.
3231 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3232 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
3233 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
3234 LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL));
3235
3236 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3237 int FI = MFI.getStackProtectorIndex();
3238
3239 Register Guard;
3240 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
3241 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3242 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
3243
3244 // Generate code to load the content of the guard slot.
3245 Register GuardVal =
3246 CurBuilder
3247 ->buildLoad(PtrMemTy, StackSlotPtr,
3248 MachinePointerInfo::getFixedStack(*MF, FI), Align,
3249 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
3250 .getReg(0);
3251
3252 if (TLI.useStackGuardXorFP()) {
3253 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3254 return false;
3255 }
3256
3257 // Retrieve guard check function, nullptr if instrumentation is inlined.
3258 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3259 // This path is currently untestable on GlobalISel, since the only platform
3260 // that needs this seems to be Windows, and we fall back on that currently.
3261 // The code still lives here in case that changes.
3262 // Silence warning about unused variable until the code below that uses
3263 // 'GuardCheckFn' is enabled.
3264 (void)GuardCheckFn;
3265 return false;
3266 #if 0
3267 // The target provides a guard check function to validate the guard value.
3268 // Generate a call to that function with the content of the guard slot as
3269 // argument.
3270 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3271 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3272 ISD::ArgFlagsTy Flags;
3273 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3274 Flags.setInReg();
3275 CallLowering::ArgInfo GuardArgInfo(
3276 {GuardVal, FnTy->getParamType(0), {Flags}});
3277
3278 CallLowering::CallLoweringInfo Info;
3279 Info.OrigArgs.push_back(GuardArgInfo);
3280 Info.CallConv = GuardCheckFn->getCallingConv();
3281 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0);
3282 Info.OrigRet = {Register(), FnTy->getReturnType()};
3283 if (!CLI->lowerCall(MIRBuilder, Info)) {
3284 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3285 return false;
3286 }
3287 return true;
3288 #endif
3289 }
3290
3291 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3292 // Otherwise, emit a volatile load to retrieve the stack guard value.
3293 if (TLI.useLoadStackGuardNode()) {
3294 Guard =
3295 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits()));
3296 getStackGuard(Guard, *CurBuilder);
3297 } else {
3298 // TODO: test using android subtarget when we support @llvm.thread.pointer.
3299 const Value *IRGuard = TLI.getSDagStackGuard(M);
3300 Register GuardPtr = getOrCreateVReg(*IRGuard);
3301
3302 Guard = CurBuilder
3303 ->buildLoad(PtrMemTy, GuardPtr,
3304 MachinePointerInfo::getFixedStack(*MF, FI), Align,
3305 MachineMemOperand::MOLoad |
3306 MachineMemOperand::MOVolatile)
3307 .getReg(0);
3308 }
3309
3310 // Perform the comparison.
3311 auto Cmp =
3312 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal);
3313 // If the guard/stackslot do not equal, branch to failure MBB.
3314 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB());
3315 // Otherwise branch to success MBB.
3316 CurBuilder->buildBr(*SPD.getSuccessMBB());
3317 return true;
3318 }
3319
emitSPDescriptorFailure(StackProtectorDescriptor & SPD,MachineBasicBlock * FailureBB)3320 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
3321 MachineBasicBlock *FailureBB) {
3322 CurBuilder->setInsertPt(*FailureBB, FailureBB->end());
3323 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3324
3325 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3326 const char *Name = TLI.getLibcallName(Libcall);
3327
3328 CallLowering::CallLoweringInfo Info;
3329 Info.CallConv = TLI.getLibcallCallingConv(Libcall);
3330 Info.Callee = MachineOperand::CreateES(Name);
3331 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()),
3332 0};
3333 if (!CLI->lowerCall(*CurBuilder, Info)) {
3334 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3335 return false;
3336 }
3337
3338 // On PS4/PS5, the "return address" must still be within the calling
3339 // function, even if it's at the very end, so emit an explicit TRAP here.
3340 // WebAssembly needs an unreachable instruction after a non-returning call,
3341 // because the function return type can be different from __stack_chk_fail's
3342 // return type (void).
3343 const TargetMachine &TM = MF->getTarget();
3344 if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) {
3345 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
3346 return false;
3347 }
3348 return true;
3349 }
3350
finalizeFunction()3351 void IRTranslator::finalizeFunction() {
3352 // Release the memory used by the different maps we
3353 // needed during the translation.
3354 PendingPHIs.clear();
3355 VMap.reset();
3356 FrameIndices.clear();
3357 MachinePreds.clear();
3358 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3359 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3360 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3361 EntryBuilder.reset();
3362 CurBuilder.reset();
3363 FuncInfo.clear();
3364 SPDescriptor.resetPerFunctionState();
3365 }
3366
3367 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3368 /// variadic musttail call.
checkForMustTailInVarArgFn(bool IsVarArg,const BasicBlock & BB)3369 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3370 if (!IsVarArg)
3371 return false;
3372
3373 // Walk the block backwards, because tail calls usually only appear at the end
3374 // of a block.
3375 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) {
3376 const auto *CI = dyn_cast<CallInst>(&I);
3377 return CI && CI->isMustTailCall();
3378 });
3379 }
3380
runOnMachineFunction(MachineFunction & CurMF)3381 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3382 MF = &CurMF;
3383 const Function &F = MF->getFunction();
3384 GISelCSEAnalysisWrapper &Wrapper =
3385 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3386 // Set the CSEConfig and run the analysis.
3387 GISelCSEInfo *CSEInfo = nullptr;
3388 TPC = &getAnalysis<TargetPassConfig>();
3389 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3390 ? EnableCSEInIRTranslator
3391 : TPC->isGISelCSEEnabled();
3392
3393 if (EnableCSE) {
3394 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3395 CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3396 EntryBuilder->setCSEInfo(CSEInfo);
3397 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3398 CurBuilder->setCSEInfo(CSEInfo);
3399 } else {
3400 EntryBuilder = std::make_unique<MachineIRBuilder>();
3401 CurBuilder = std::make_unique<MachineIRBuilder>();
3402 }
3403 CLI = MF->getSubtarget().getCallLowering();
3404 CurBuilder->setMF(*MF);
3405 EntryBuilder->setMF(*MF);
3406 MRI = &MF->getRegInfo();
3407 DL = &F.getParent()->getDataLayout();
3408 ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3409 const TargetMachine &TM = MF->getTarget();
3410 TM.resetTargetOptions(F);
3411 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3412 FuncInfo.MF = MF;
3413 if (EnableOpts) {
3414 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3415 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3416 } else {
3417 AA = nullptr;
3418 FuncInfo.BPI = nullptr;
3419 }
3420
3421 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
3422 MF->getFunction());
3423 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3424 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3425
3426 const auto &TLI = *MF->getSubtarget().getTargetLowering();
3427
3428 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3429 SL->init(TLI, TM, *DL);
3430
3431
3432
3433 assert(PendingPHIs.empty() && "stale PHIs");
3434
3435 // Targets which want to use big endian can enable it using
3436 // enableBigEndian()
3437 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3438 // Currently we don't properly handle big endian code.
3439 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3440 F.getSubprogram(), &F.getEntryBlock());
3441 R << "unable to translate in big endian mode";
3442 reportTranslationError(*MF, *TPC, *ORE, R);
3443 }
3444
3445 // Release the per-function state when we return, whether we succeeded or not.
3446 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3447
3448 // Setup a separate basic-block for the arguments and constants
3449 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3450 MF->push_back(EntryBB);
3451 EntryBuilder->setMBB(*EntryBB);
3452
3453 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3454 SwiftError.setFunction(CurMF);
3455 SwiftError.createEntriesInEntryBlock(DbgLoc);
3456
3457 bool IsVarArg = F.isVarArg();
3458 bool HasMustTailInVarArgFn = false;
3459
3460 // Create all blocks, in IR order, to preserve the layout.
3461 for (const BasicBlock &BB: F) {
3462 auto *&MBB = BBToMBB[&BB];
3463
3464 MBB = MF->CreateMachineBasicBlock(&BB);
3465 MF->push_back(MBB);
3466
3467 if (BB.hasAddressTaken())
3468 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
3469
3470 if (!HasMustTailInVarArgFn)
3471 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3472 }
3473
3474 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3475
3476 // Make our arguments/constants entry block fallthrough to the IR entry block.
3477 EntryBB->addSuccessor(&getMBB(F.front()));
3478
3479 if (CLI->fallBackToDAGISel(*MF)) {
3480 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3481 F.getSubprogram(), &F.getEntryBlock());
3482 R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3483 reportTranslationError(*MF, *TPC, *ORE, R);
3484 return false;
3485 }
3486
3487 // Lower the actual args into this basic block.
3488 SmallVector<ArrayRef<Register>, 8> VRegArgs;
3489 for (const Argument &Arg: F.args()) {
3490 if (DL->getTypeStoreSize(Arg.getType()).isZero())
3491 continue; // Don't handle zero sized types.
3492 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3493 VRegArgs.push_back(VRegs);
3494
3495 if (Arg.hasSwiftErrorAttr()) {
3496 assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3497 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3498 }
3499 }
3500
3501 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) {
3502 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3503 F.getSubprogram(), &F.getEntryBlock());
3504 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3505 reportTranslationError(*MF, *TPC, *ORE, R);
3506 return false;
3507 }
3508
3509 // Need to visit defs before uses when translating instructions.
3510 GISelObserverWrapper WrapperObserver;
3511 if (EnableCSE && CSEInfo)
3512 WrapperObserver.addObserver(CSEInfo);
3513 {
3514 ReversePostOrderTraversal<const Function *> RPOT(&F);
3515 #ifndef NDEBUG
3516 DILocationVerifier Verifier;
3517 WrapperObserver.addObserver(&Verifier);
3518 #endif // ifndef NDEBUG
3519 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3520 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3521 for (const BasicBlock *BB : RPOT) {
3522 MachineBasicBlock &MBB = getMBB(*BB);
3523 // Set the insertion point of all the following translations to
3524 // the end of this basic block.
3525 CurBuilder->setMBB(MBB);
3526 HasTailCall = false;
3527 for (const Instruction &Inst : *BB) {
3528 // If we translated a tail call in the last step, then we know
3529 // everything after the call is either a return, or something that is
3530 // handled by the call itself. (E.g. a lifetime marker or assume
3531 // intrinsic.) In this case, we should stop translating the block and
3532 // move on.
3533 if (HasTailCall)
3534 break;
3535 #ifndef NDEBUG
3536 Verifier.setCurrentInst(&Inst);
3537 #endif // ifndef NDEBUG
3538 if (translate(Inst))
3539 continue;
3540
3541 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3542 Inst.getDebugLoc(), BB);
3543 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3544
3545 if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3546 std::string InstStrStorage;
3547 raw_string_ostream InstStr(InstStrStorage);
3548 InstStr << Inst;
3549
3550 R << ": '" << InstStr.str() << "'";
3551 }
3552
3553 reportTranslationError(*MF, *TPC, *ORE, R);
3554 return false;
3555 }
3556
3557 if (!finalizeBasicBlock(*BB, MBB)) {
3558 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3559 BB->getTerminator()->getDebugLoc(), BB);
3560 R << "unable to translate basic block";
3561 reportTranslationError(*MF, *TPC, *ORE, R);
3562 return false;
3563 }
3564 }
3565 #ifndef NDEBUG
3566 WrapperObserver.removeObserver(&Verifier);
3567 #endif
3568 }
3569
3570 finishPendingPhis();
3571
3572 SwiftError.propagateVRegs();
3573
3574 // Merge the argument lowering and constants block with its single
3575 // successor, the LLVM-IR entry block. We want the basic block to
3576 // be maximal.
3577 assert(EntryBB->succ_size() == 1 &&
3578 "Custom BB used for lowering should have only one successor");
3579 // Get the successor of the current entry block.
3580 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3581 assert(NewEntryBB.pred_size() == 1 &&
3582 "LLVM-IR entry block has a predecessor!?");
3583 // Move all the instruction from the current entry block to the
3584 // new entry block.
3585 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3586 EntryBB->end());
3587
3588 // Update the live-in information for the new entry block.
3589 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3590 NewEntryBB.addLiveIn(LiveIn);
3591 NewEntryBB.sortUniqueLiveIns();
3592
3593 // Get rid of the now empty basic block.
3594 EntryBB->removeSuccessor(&NewEntryBB);
3595 MF->remove(EntryBB);
3596 MF->deleteMachineBasicBlock(EntryBB);
3597
3598 assert(&MF->front() == &NewEntryBB &&
3599 "New entry wasn't next in the list of basic block!");
3600
3601 // Initialize stack protector information.
3602 StackProtector &SP = getAnalysis<StackProtector>();
3603 SP.copyToMachineFrameInfo(MF->getFrameInfo());
3604
3605 return false;
3606 }
3607