xref: /llvm-project/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp (revision 18f8106f310ee702046a11f360af47947c030d2e)
1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Top-level implementation for the NVPTX target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "NVPTXTargetMachine.h"
14 #include "NVPTX.h"
15 #include "NVPTXAliasAnalysis.h"
16 #include "NVPTXAllocaHoisting.h"
17 #include "NVPTXAtomicLower.h"
18 #include "NVPTXCtorDtorLowering.h"
19 #include "NVPTXLowerAggrCopies.h"
20 #include "NVPTXMachineFunctionInfo.h"
21 #include "NVPTXTargetObjectFile.h"
22 #include "NVPTXTargetTransformInfo.h"
23 #include "TargetInfo/NVPTXTargetInfo.h"
24 #include "llvm/Analysis/KernelInfo.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/TargetPassConfig.h"
28 #include "llvm/IR/IntrinsicsNVPTX.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Passes/PassBuilder.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include "llvm/Transforms/IPO/ExpandVariadics.h"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Transforms/Scalar/GVN.h"
39 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
40 #include <cassert>
41 #include <optional>
42 #include <string>
43 
44 using namespace llvm;
45 
46 // LSV is still relatively new; this switch lets us turn it off in case we
47 // encounter (or suspect) a bug.
48 static cl::opt<bool>
49     DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer",
50                                cl::desc("Disable load/store vectorizer"),
51                                cl::init(false), cl::Hidden);
52 
53 // TODO: Remove this flag when we are confident with no regressions.
54 static cl::opt<bool> DisableRequireStructuredCFG(
55     "disable-nvptx-require-structured-cfg",
56     cl::desc("Transitional flag to turn off NVPTX's requirement on preserving "
57              "structured CFG. The requirement should be disabled only when "
58              "unexpected regressions happen."),
59     cl::init(false), cl::Hidden);
60 
61 static cl::opt<bool> UseShortPointersOpt(
62     "nvptx-short-ptr",
63     cl::desc(
64         "Use 32-bit pointers for accessing const/local/shared address spaces."),
65     cl::init(false), cl::Hidden);
66 
67 // byval arguments in NVPTX are special. We're only allowed to read from them
68 // using a special instruction, and if we ever need to write to them or take an
69 // address, we must make a local copy and use it, instead.
70 //
71 // The problem is that local copies are very expensive, and we create them very
72 // late in the compilation pipeline, so LLVM does not have much of a chance to
73 // eliminate them, if they turn out to be unnecessary.
74 //
75 // One way around that is to create such copies early on, and let them percolate
76 // through the optimizations. The copying itself will never trigger creation of
77 // another copy later on, as the reads are allowed. If LLVM can eliminate it,
78 // it's a win. It the full optimization pipeline can't remove the copy, that's
79 // as good as it gets in terms of the effort we could've done, and it's
80 // certainly a much better effort than what we do now.
81 //
82 // This early injection of the copies has potential to create undesireable
83 // side-effects, so it's disabled by default, for now, until it sees more
84 // testing.
85 static cl::opt<bool> EarlyByValArgsCopy(
86     "nvptx-early-byval-copy",
87     cl::desc("Create a copy of byval function arguments early."),
88     cl::init(false), cl::Hidden);
89 
90 namespace llvm {
91 
92 void initializeGenericToNVVMLegacyPassPass(PassRegistry &);
93 void initializeNVPTXAllocaHoistingPass(PassRegistry &);
94 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry &);
95 void initializeNVPTXAtomicLowerPass(PassRegistry &);
96 void initializeNVPTXCtorDtorLoweringLegacyPass(PassRegistry &);
97 void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
98 void initializeNVPTXLowerAllocaPass(PassRegistry &);
99 void initializeNVPTXLowerUnreachablePass(PassRegistry &);
100 void initializeNVPTXCtorDtorLoweringLegacyPass(PassRegistry &);
101 void initializeNVPTXLowerArgsPass(PassRegistry &);
102 void initializeNVPTXProxyRegErasurePass(PassRegistry &);
103 void initializeNVVMIntrRangePass(PassRegistry &);
104 void initializeNVVMReflectPass(PassRegistry &);
105 void initializeNVPTXAAWrapperPassPass(PassRegistry &);
106 void initializeNVPTXExternalAAWrapperPass(PassRegistry &);
107 
108 } // end namespace llvm
109 
110 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXTarget() {
111   // Register the target.
112   RegisterTargetMachine<NVPTXTargetMachine32> X(getTheNVPTXTarget32());
113   RegisterTargetMachine<NVPTXTargetMachine64> Y(getTheNVPTXTarget64());
114 
115   PassRegistry &PR = *PassRegistry::getPassRegistry();
116   // FIXME: This pass is really intended to be invoked during IR optimization,
117   // but it's very NVPTX-specific.
118   initializeNVVMReflectPass(PR);
119   initializeNVVMIntrRangePass(PR);
120   initializeGenericToNVVMLegacyPassPass(PR);
121   initializeNVPTXAllocaHoistingPass(PR);
122   initializeNVPTXAssignValidGlobalNamesPass(PR);
123   initializeNVPTXAtomicLowerPass(PR);
124   initializeNVPTXLowerArgsPass(PR);
125   initializeNVPTXLowerAllocaPass(PR);
126   initializeNVPTXLowerUnreachablePass(PR);
127   initializeNVPTXCtorDtorLoweringLegacyPass(PR);
128   initializeNVPTXLowerAggrCopiesPass(PR);
129   initializeNVPTXProxyRegErasurePass(PR);
130   initializeNVPTXDAGToDAGISelLegacyPass(PR);
131   initializeNVPTXAAWrapperPassPass(PR);
132   initializeNVPTXExternalAAWrapperPass(PR);
133 }
134 
135 static std::string computeDataLayout(bool is64Bit, bool UseShortPointers) {
136   std::string Ret = "e";
137 
138   if (!is64Bit)
139     Ret += "-p:32:32";
140   else if (UseShortPointers)
141     Ret += "-p3:32:32-p4:32:32-p5:32:32";
142 
143   Ret += "-i64:64-i128:128-v16:16-v32:32-n16:32:64";
144 
145   return Ret;
146 }
147 
148 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
149                                        StringRef CPU, StringRef FS,
150                                        const TargetOptions &Options,
151                                        std::optional<Reloc::Model> RM,
152                                        std::optional<CodeModel::Model> CM,
153                                        CodeGenOptLevel OL, bool is64bit)
154     // The pic relocation model is used regardless of what the client has
155     // specified, as it is the only relocation model currently supported.
156     : CodeGenTargetMachineImpl(T,
157                                computeDataLayout(is64bit, UseShortPointersOpt),
158                                TT, CPU, FS, Options, Reloc::PIC_,
159                                getEffectiveCodeModel(CM, CodeModel::Small), OL),
160       is64bit(is64bit), TLOF(std::make_unique<NVPTXTargetObjectFile>()),
161       Subtarget(TT, std::string(CPU), std::string(FS), *this),
162       StrPool(StrAlloc) {
163   if (TT.getOS() == Triple::NVCL)
164     drvInterface = NVPTX::NVCL;
165   else
166     drvInterface = NVPTX::CUDA;
167   if (!DisableRequireStructuredCFG)
168     setRequiresStructuredCFG(true);
169   initAsmInfo();
170 }
171 
172 NVPTXTargetMachine::~NVPTXTargetMachine() = default;
173 
174 void NVPTXTargetMachine32::anchor() {}
175 
176 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
177                                            StringRef CPU, StringRef FS,
178                                            const TargetOptions &Options,
179                                            std::optional<Reloc::Model> RM,
180                                            std::optional<CodeModel::Model> CM,
181                                            CodeGenOptLevel OL, bool JIT)
182     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
183 
184 void NVPTXTargetMachine64::anchor() {}
185 
186 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
187                                            StringRef CPU, StringRef FS,
188                                            const TargetOptions &Options,
189                                            std::optional<Reloc::Model> RM,
190                                            std::optional<CodeModel::Model> CM,
191                                            CodeGenOptLevel OL, bool JIT)
192     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
193 
194 namespace {
195 
196 class NVPTXPassConfig : public TargetPassConfig {
197 public:
198   NVPTXPassConfig(NVPTXTargetMachine &TM, PassManagerBase &PM)
199       : TargetPassConfig(TM, PM) {}
200 
201   NVPTXTargetMachine &getNVPTXTargetMachine() const {
202     return getTM<NVPTXTargetMachine>();
203   }
204 
205   void addIRPasses() override;
206   bool addInstSelector() override;
207   void addPreRegAlloc() override;
208   void addPostRegAlloc() override;
209   void addMachineSSAOptimization() override;
210 
211   FunctionPass *createTargetRegisterAllocator(bool) override;
212   void addFastRegAlloc() override;
213   void addOptimizedRegAlloc() override;
214 
215   bool addRegAssignAndRewriteFast() override {
216     llvm_unreachable("should not be used");
217   }
218 
219   bool addRegAssignAndRewriteOptimized() override {
220     llvm_unreachable("should not be used");
221   }
222 
223 private:
224   // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
225   // function is only called in opt mode.
226   void addEarlyCSEOrGVNPass();
227 
228   // Add passes that propagate special memory spaces.
229   void addAddressSpaceInferencePasses();
230 
231   // Add passes that perform straight-line scalar optimizations.
232   void addStraightLineScalarOptimizationPasses();
233 };
234 
235 } // end anonymous namespace
236 
237 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
238   return new NVPTXPassConfig(*this, PM);
239 }
240 
241 MachineFunctionInfo *NVPTXTargetMachine::createMachineFunctionInfo(
242     BumpPtrAllocator &Allocator, const Function &F,
243     const TargetSubtargetInfo *STI) const {
244   return NVPTXMachineFunctionInfo::create<NVPTXMachineFunctionInfo>(Allocator,
245                                                                     F, STI);
246 }
247 
248 void NVPTXTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
249   AAM.registerFunctionAnalysis<NVPTXAA>();
250 }
251 
252 void NVPTXTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
253 #define GET_PASS_REGISTRY "NVPTXPassRegistry.def"
254 #include "llvm/Passes/TargetPassRegistry.inc"
255 
256   PB.registerPipelineStartEPCallback(
257       [this](ModulePassManager &PM, OptimizationLevel Level) {
258         FunctionPassManager FPM;
259         // We do not want to fold out calls to nvvm.reflect early if the user
260         // has not provided a target architecture just yet.
261         if (Subtarget.hasTargetName())
262           FPM.addPass(NVVMReflectPass(Subtarget.getSmVersion()));
263         // Note: NVVMIntrRangePass was causing numerical discrepancies at one
264         // point, if issues crop up, consider disabling.
265         FPM.addPass(NVVMIntrRangePass());
266         if (EarlyByValArgsCopy)
267           FPM.addPass(NVPTXCopyByValArgsPass());
268         PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
269       });
270 
271   if (!NoKernelInfoEndLTO) {
272     PB.registerFullLinkTimeOptimizationLastEPCallback(
273         [this](ModulePassManager &PM, OptimizationLevel Level) {
274           FunctionPassManager FPM;
275           FPM.addPass(KernelInfoPrinter(this));
276           PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
277         });
278   }
279 }
280 
281 TargetTransformInfo
282 NVPTXTargetMachine::getTargetTransformInfo(const Function &F) const {
283   return TargetTransformInfo(NVPTXTTIImpl(this, F));
284 }
285 
286 std::pair<const Value *, unsigned>
287 NVPTXTargetMachine::getPredicatedAddrSpace(const Value *V) const {
288   if (auto *II = dyn_cast<IntrinsicInst>(V)) {
289     switch (II->getIntrinsicID()) {
290     case Intrinsic::nvvm_isspacep_const:
291       return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_CONST);
292     case Intrinsic::nvvm_isspacep_global:
293       return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_GLOBAL);
294     case Intrinsic::nvvm_isspacep_local:
295       return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_LOCAL);
296     case Intrinsic::nvvm_isspacep_shared:
297     case Intrinsic::nvvm_isspacep_shared_cluster:
298       return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_SHARED);
299     default:
300       break;
301     }
302   }
303   return std::make_pair(nullptr, -1);
304 }
305 
306 void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
307   if (getOptLevel() == CodeGenOptLevel::Aggressive)
308     addPass(createGVNPass());
309   else
310     addPass(createEarlyCSEPass());
311 }
312 
313 void NVPTXPassConfig::addAddressSpaceInferencePasses() {
314   // NVPTXLowerArgs emits alloca for byval parameters which can often
315   // be eliminated by SROA.
316   addPass(createSROAPass());
317   addPass(createNVPTXLowerAllocaPass());
318   // TODO: Consider running InferAddressSpaces during opt, earlier in the
319   // compilation flow.
320   addPass(createInferAddressSpacesPass());
321   addPass(createNVPTXAtomicLowerPass());
322 }
323 
324 void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
325   addPass(createSeparateConstOffsetFromGEPPass());
326   addPass(createSpeculativeExecutionPass());
327   // ReassociateGEPs exposes more opportunites for SLSR. See
328   // the example in reassociate-geps-and-slsr.ll.
329   addPass(createStraightLineStrengthReducePass());
330   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
331   // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
332   // for some of our benchmarks.
333   addEarlyCSEOrGVNPass();
334   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
335   addPass(createNaryReassociatePass());
336   // NaryReassociate on GEPs creates redundant common expressions, so run
337   // EarlyCSE after it.
338   addPass(createEarlyCSEPass());
339 }
340 
341 void NVPTXPassConfig::addIRPasses() {
342   // The following passes are known to not play well with virtual regs hanging
343   // around after register allocation (which in our case, is *all* registers).
344   // We explicitly disable them here.  We do, however, need some functionality
345   // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
346   // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
347   disablePass(&PrologEpilogCodeInserterID);
348   disablePass(&MachineLateInstrsCleanupID);
349   disablePass(&MachineCopyPropagationID);
350   disablePass(&TailDuplicateLegacyID);
351   disablePass(&StackMapLivenessID);
352   disablePass(&PostRAMachineSinkingID);
353   disablePass(&PostRASchedulerID);
354   disablePass(&FuncletLayoutID);
355   disablePass(&PatchableFunctionID);
356   disablePass(&ShrinkWrapID);
357   disablePass(&RemoveLoadsIntoFakeUsesID);
358 
359   addPass(createNVPTXAAWrapperPass());
360   addPass(createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) {
361     if (auto *WrapperPass = P.getAnalysisIfAvailable<NVPTXAAWrapperPass>())
362       AAR.addAAResult(WrapperPass->getResult());
363   }));
364 
365   // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
366   // it here does nothing.  But since we need it for correctness when lowering
367   // to NVPTX, run it here too, in case whoever built our pass pipeline didn't
368   // call addEarlyAsPossiblePasses.
369   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
370   addPass(createNVVMReflectPass(ST.getSmVersion()));
371 
372   if (getOptLevel() != CodeGenOptLevel::None)
373     addPass(createNVPTXImageOptimizerPass());
374   addPass(createNVPTXAssignValidGlobalNamesPass());
375   addPass(createGenericToNVVMLegacyPass());
376 
377   // NVPTXLowerArgs is required for correctness and should be run right
378   // before the address space inference passes.
379   addPass(createNVPTXLowerArgsPass());
380   if (getOptLevel() != CodeGenOptLevel::None) {
381     addAddressSpaceInferencePasses();
382     addStraightLineScalarOptimizationPasses();
383   }
384 
385   addPass(createAtomicExpandLegacyPass());
386   addPass(createExpandVariadicsPass(ExpandVariadicsMode::Lowering));
387   addPass(createNVPTXCtorDtorLoweringLegacyPass());
388 
389   // === LSR and other generic IR passes ===
390   TargetPassConfig::addIRPasses();
391   // EarlyCSE is not always strong enough to clean up what LSR produces. For
392   // example, GVN can combine
393   //
394   //   %0 = add %a, %b
395   //   %1 = add %b, %a
396   //
397   // and
398   //
399   //   %0 = shl nsw %a, 2
400   //   %1 = shl %a, 2
401   //
402   // but EarlyCSE can do neither of them.
403   if (getOptLevel() != CodeGenOptLevel::None) {
404     addEarlyCSEOrGVNPass();
405     if (!DisableLoadStoreVectorizer)
406       addPass(createLoadStoreVectorizerPass());
407     addPass(createSROAPass());
408   }
409 
410   if (ST.hasPTXASUnreachableBug()) {
411     // Run LowerUnreachable to WAR a ptxas bug. See the commit description of
412     // 1ee4d880e8760256c606fe55b7af85a4f70d006d for more details.
413     const auto &Options = getNVPTXTargetMachine().Options;
414     addPass(createNVPTXLowerUnreachablePass(Options.TrapUnreachable,
415                                             Options.NoTrapAfterNoreturn));
416   }
417 }
418 
419 bool NVPTXPassConfig::addInstSelector() {
420   addPass(createLowerAggrCopies());
421   addPass(createAllocaHoisting());
422   addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
423   addPass(createNVPTXReplaceImageHandlesPass());
424 
425   return false;
426 }
427 
428 void NVPTXPassConfig::addPreRegAlloc() {
429   // Remove Proxy Register pseudo instructions used to keep `callseq_end` alive.
430   addPass(createNVPTXProxyRegErasurePass());
431 }
432 
433 void NVPTXPassConfig::addPostRegAlloc() {
434   addPass(createNVPTXPrologEpilogPass());
435   if (getOptLevel() != CodeGenOptLevel::None) {
436     // NVPTXPrologEpilogPass calculates frame object offset and replace frame
437     // index with VRFrame register. NVPTXPeephole need to be run after that and
438     // will replace VRFrame with VRFrameLocal when possible.
439     addPass(createNVPTXPeephole());
440   }
441 }
442 
443 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
444   return nullptr; // No reg alloc
445 }
446 
447 void NVPTXPassConfig::addFastRegAlloc() {
448   addPass(&PHIEliminationID);
449   addPass(&TwoAddressInstructionPassID);
450 }
451 
452 void NVPTXPassConfig::addOptimizedRegAlloc() {
453   addPass(&ProcessImplicitDefsID);
454   addPass(&LiveVariablesID);
455   addPass(&MachineLoopInfoID);
456   addPass(&PHIEliminationID);
457 
458   addPass(&TwoAddressInstructionPassID);
459   addPass(&RegisterCoalescerID);
460 
461   // PreRA instruction scheduling.
462   if (addPass(&MachineSchedulerID))
463     printAndVerify("After Machine Scheduling");
464 
465   addPass(&StackSlotColoringID);
466 
467   // FIXME: Needs physical registers
468   // addPass(&MachineLICMID);
469 
470   printAndVerify("After StackSlotColoring");
471 }
472 
473 void NVPTXPassConfig::addMachineSSAOptimization() {
474   // Pre-ra tail duplication.
475   if (addPass(&EarlyTailDuplicateLegacyID))
476     printAndVerify("After Pre-RegAlloc TailDuplicate");
477 
478   // Optimize PHIs before DCE: removing dead PHI cycles may make more
479   // instructions dead.
480   addPass(&OptimizePHIsLegacyID);
481 
482   // This pass merges large allocas. StackSlotColoring is a different pass
483   // which merges spill slots.
484   addPass(&StackColoringLegacyID);
485 
486   // If the target requests it, assign local variables to stack slots relative
487   // to one another and simplify frame index references where possible.
488   addPass(&LocalStackSlotAllocationID);
489 
490   // With optimization, dead code should already be eliminated. However
491   // there is one known exception: lowered code for arguments that are only
492   // used by tail calls, where the tail calls reuse the incoming stack
493   // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
494   addPass(&DeadMachineInstructionElimID);
495   printAndVerify("After codegen DCE pass");
496 
497   // Allow targets to insert passes that improve instruction level parallelism,
498   // like if-conversion. Such passes will typically need dominator trees and
499   // loop info, just like LICM and CSE below.
500   if (addILPOpts())
501     printAndVerify("After ILP optimizations");
502 
503   addPass(&EarlyMachineLICMID);
504   addPass(&MachineCSELegacyID);
505 
506   addPass(&MachineSinkingID);
507   printAndVerify("After Machine LICM, CSE and Sinking passes");
508 
509   addPass(&PeepholeOptimizerLegacyID);
510   printAndVerify("After codegen peephole optimization pass");
511 }
512