xref: /onnv-gate/usr/src/cmd/perl/5.8.4/distrib/lib/Math/BigInt.pm (revision 0:68f95e015346)
1package Math::BigInt;
2
3#
4# "Mike had an infinite amount to do and a negative amount of time in which
5# to do it." - Before and After
6#
7
8# The following hash values are used:
9#   value: unsigned int with actual value (as a Math::BigInt::Calc or similiar)
10#   sign : +,-,NaN,+inf,-inf
11#   _a   : accuracy
12#   _p   : precision
13#   _f   : flags, used by MBF to flag parts of a float as untouchable
14
15# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
16# underlying lib might change the reference!
17
18my $class = "Math::BigInt";
19require 5.005;
20
21$VERSION = '1.70';
22use Exporter;
23@ISA =       qw( Exporter );
24@EXPORT_OK = qw( objectify bgcd blcm);
25# _trap_inf and _trap_nan are internal and should never be accessed from the
26# outside
27use vars qw/$round_mode $accuracy $precision $div_scale $rnd_mode
28	    $upgrade $downgrade $_trap_nan $_trap_inf/;
29use strict;
30
31# Inside overload, the first arg is always an object. If the original code had
32# it reversed (like $x = 2 * $y), then the third paramater is true.
33# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes
34# no difference, but in some cases it does.
35
36# For overloaded ops with only one argument we simple use $_[0]->copy() to
37# preserve the argument.
38
39# Thus inheritance of overload operators becomes possible and transparent for
40# our subclasses without the need to repeat the entire overload section there.
41
42use overload
43'='     =>      sub { $_[0]->copy(); },
44
45# some shortcuts for speed (assumes that reversed order of arguments is routed
46# to normal '+' and we thus can always modify first arg. If this is changed,
47# this breaks and must be adjusted.)
48'+='	=>	sub { $_[0]->badd($_[1]); },
49'-='	=>	sub { $_[0]->bsub($_[1]); },
50'*='	=>	sub { $_[0]->bmul($_[1]); },
51'/='	=>	sub { scalar $_[0]->bdiv($_[1]); },
52'%='	=>	sub { $_[0]->bmod($_[1]); },
53'^='	=>	sub { $_[0]->bxor($_[1]); },
54'&='	=>	sub { $_[0]->band($_[1]); },
55'|='	=>	sub { $_[0]->bior($_[1]); },
56'**='	=>	sub { $_[0]->bpow($_[1]); },
57
58# not supported by Perl yet
59'..'	=>	\&_pointpoint,
60
61'<=>'	=>	sub { $_[2] ?
62                      ref($_[0])->bcmp($_[1],$_[0]) :
63                      $_[0]->bcmp($_[1])},
64'cmp'	=>	sub {
65         $_[2] ?
66               "$_[1]" cmp $_[0]->bstr() :
67               $_[0]->bstr() cmp "$_[1]" },
68
69# make cos()/sin()/exp() "work" with BigInt's or subclasses
70'cos'	=>	sub { cos($_[0]->numify()) },
71'sin'	=>	sub { sin($_[0]->numify()) },
72'exp'	=>	sub { exp($_[0]->numify()) },
73'atan2'	=>	sub { atan2($_[0]->numify(),$_[1]) },
74
75'log'	=>	sub { $_[0]->copy()->blog($_[1]); },
76'int'	=>	sub { $_[0]->copy(); },
77'neg'	=>	sub { $_[0]->copy()->bneg(); },
78'abs'	=>	sub { $_[0]->copy()->babs(); },
79'sqrt'  =>	sub { $_[0]->copy()->bsqrt(); },
80'~'	=>	sub { $_[0]->copy()->bnot(); },
81
82# for sub it is a bit tricky to keep b: b-a => -a+b
83'-'	=>	sub { my $c = $_[0]->copy; $_[2] ?
84                   $c->bneg()->badd($_[1]) :
85                   $c->bsub( $_[1]) },
86'+'	=>	sub { $_[0]->copy()->badd($_[1]); },
87'*'	=>	sub { $_[0]->copy()->bmul($_[1]); },
88
89'/'	=>	sub {
90   $_[2] ? ref($_[0])->new($_[1])->bdiv($_[0]) : $_[0]->copy->bdiv($_[1]);
91  },
92'%'	=>	sub {
93   $_[2] ? ref($_[0])->new($_[1])->bmod($_[0]) : $_[0]->copy->bmod($_[1]);
94  },
95'**'	=>	sub {
96   $_[2] ? ref($_[0])->new($_[1])->bpow($_[0]) : $_[0]->copy->bpow($_[1]);
97  },
98'<<'	=>	sub {
99   $_[2] ? ref($_[0])->new($_[1])->blsft($_[0]) : $_[0]->copy->blsft($_[1]);
100  },
101'>>'	=>	sub {
102   $_[2] ? ref($_[0])->new($_[1])->brsft($_[0]) : $_[0]->copy->brsft($_[1]);
103  },
104'&'	=>	sub {
105   $_[2] ? ref($_[0])->new($_[1])->band($_[0]) : $_[0]->copy->band($_[1]);
106  },
107'|'	=>	sub {
108   $_[2] ? ref($_[0])->new($_[1])->bior($_[0]) : $_[0]->copy->bior($_[1]);
109  },
110'^'	=>	sub {
111   $_[2] ? ref($_[0])->new($_[1])->bxor($_[0]) : $_[0]->copy->bxor($_[1]);
112  },
113
114# can modify arg of ++ and --, so avoid a copy() for speed, but don't
115# use $_[0]->bone(), it would modify $_[0] to be 1!
116'++'	=>	sub { $_[0]->binc() },
117'--'	=>	sub { $_[0]->bdec() },
118
119# if overloaded, O(1) instead of O(N) and twice as fast for small numbers
120'bool'  =>	sub {
121  # this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/
122  # v5.6.1 dumps on this: return !$_[0]->is_zero() || undef;		    :-(
123  my $t = undef;
124  $t = 1 if !$_[0]->is_zero();
125  $t;
126  },
127
128# the original qw() does not work with the TIESCALAR below, why?
129# Order of arguments unsignificant
130'""' => sub { $_[0]->bstr(); },
131'0+' => sub { $_[0]->numify(); }
132;
133
134##############################################################################
135# global constants, flags and accessory
136
137# these are public, but their usage is not recommended, use the accessor
138# methods instead
139
140$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
141$accuracy   = undef;
142$precision  = undef;
143$div_scale  = 40;
144
145$upgrade = undef;			# default is no upgrade
146$downgrade = undef;			# default is no downgrade
147
148# these are internally, and not to be used from the outside
149
150sub MB_NEVER_ROUND () { 0x0001; }
151
152$_trap_nan = 0;				# are NaNs ok? set w/ config()
153$_trap_inf = 0;				# are infs ok? set w/ config()
154my $nan = 'NaN'; 			# constants for easier life
155
156my $CALC = 'Math::BigInt::Calc';	# module to do the low level math
157					# default is Calc.pm
158my $IMPORT = 0;				# was import() called yet?
159					# used to make require work
160my %WARN;				# warn only once for low-level libs
161my %CAN;				# cache for $CALC->can(...)
162my $EMU_LIB = 'Math/BigInt/CalcEmu.pm';	# emulate low-level math
163
164##############################################################################
165# the old code had $rnd_mode, so we need to support it, too
166
167$rnd_mode   = 'even';
168sub TIESCALAR  { my ($class) = @_; bless \$round_mode, $class; }
169sub FETCH      { return $round_mode; }
170sub STORE      { $rnd_mode = $_[0]->round_mode($_[1]); }
171
172BEGIN
173  {
174  # tie to enable $rnd_mode to work transparently
175  tie $rnd_mode, 'Math::BigInt';
176
177  # set up some handy alias names
178  *as_int = \&as_number;
179  *is_pos = \&is_positive;
180  *is_neg = \&is_negative;
181  }
182
183##############################################################################
184
185sub round_mode
186  {
187  no strict 'refs';
188  # make Class->round_mode() work
189  my $self = shift;
190  my $class = ref($self) || $self || __PACKAGE__;
191  if (defined $_[0])
192    {
193    my $m = shift;
194    if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/)
195      {
196      require Carp; Carp::croak ("Unknown round mode '$m'");
197      }
198    return ${"${class}::round_mode"} = $m;
199    }
200  ${"${class}::round_mode"};
201  }
202
203sub upgrade
204  {
205  no strict 'refs';
206  # make Class->upgrade() work
207  my $self = shift;
208  my $class = ref($self) || $self || __PACKAGE__;
209  # need to set new value?
210  if (@_ > 0)
211    {
212    my $u = shift;
213    return ${"${class}::upgrade"} = $u;
214    }
215  ${"${class}::upgrade"};
216  }
217
218sub downgrade
219  {
220  no strict 'refs';
221  # make Class->downgrade() work
222  my $self = shift;
223  my $class = ref($self) || $self || __PACKAGE__;
224  # need to set new value?
225  if (@_ > 0)
226    {
227    my $u = shift;
228    return ${"${class}::downgrade"} = $u;
229    }
230  ${"${class}::downgrade"};
231  }
232
233sub div_scale
234  {
235  no strict 'refs';
236  # make Class->div_scale() work
237  my $self = shift;
238  my $class = ref($self) || $self || __PACKAGE__;
239  if (defined $_[0])
240    {
241    if ($_[0] < 0)
242      {
243      require Carp; Carp::croak ('div_scale must be greater than zero');
244      }
245    ${"${class}::div_scale"} = shift;
246    }
247  ${"${class}::div_scale"};
248  }
249
250sub accuracy
251  {
252  # $x->accuracy($a);		ref($x)	$a
253  # $x->accuracy();		ref($x)
254  # Class->accuracy();		class
255  # Class->accuracy($a);	class $a
256
257  my $x = shift;
258  my $class = ref($x) || $x || __PACKAGE__;
259
260  no strict 'refs';
261  # need to set new value?
262  if (@_ > 0)
263    {
264    my $a = shift;
265    # convert objects to scalars to avoid deep recursion. If object doesn't
266    # have numify(), then hopefully it will have overloading for int() and
267    # boolean test without wandering into a deep recursion path...
268    $a = $a->numify() if ref($a) && $a->can('numify');
269
270    if (defined $a)
271      {
272      # also croak on non-numerical
273      if (!$a || $a <= 0)
274        {
275        require Carp;
276        Carp::croak ('Argument to accuracy must be greater than zero');
277        }
278      if (int($a) != $a)
279        {
280        require Carp; Carp::croak ('Argument to accuracy must be an integer');
281        }
282      }
283    if (ref($x))
284      {
285      # $object->accuracy() or fallback to global
286      $x->bround($a) if $a;		# not for undef, 0
287      $x->{_a} = $a;			# set/overwrite, even if not rounded
288      delete $x->{_p};			# clear P
289      $a = ${"${class}::accuracy"} unless defined $a;   # proper return value
290      }
291    else
292      {
293      ${"${class}::accuracy"} = $a;	# set global A
294      ${"${class}::precision"} = undef;	# clear global P
295      }
296    return $a;				# shortcut
297    }
298
299  my $r;
300  # $object->accuracy() or fallback to global
301  $r = $x->{_a} if ref($x);
302  # but don't return global undef, when $x's accuracy is 0!
303  $r = ${"${class}::accuracy"} if !defined $r;
304  $r;
305  }
306
307sub precision
308  {
309  # $x->precision($p);		ref($x)	$p
310  # $x->precision();		ref($x)
311  # Class->precision();		class
312  # Class->precision($p);	class $p
313
314  my $x = shift;
315  my $class = ref($x) || $x || __PACKAGE__;
316
317  no strict 'refs';
318  if (@_ > 0)
319    {
320    my $p = shift;
321    # convert objects to scalars to avoid deep recursion. If object doesn't
322    # have numify(), then hopefully it will have overloading for int() and
323    # boolean test without wandering into a deep recursion path...
324    $p = $p->numify() if ref($p) && $p->can('numify');
325    if ((defined $p) && (int($p) != $p))
326      {
327      require Carp; Carp::croak ('Argument to precision must be an integer');
328      }
329    if (ref($x))
330      {
331      # $object->precision() or fallback to global
332      $x->bfround($p) if $p;		# not for undef, 0
333      $x->{_p} = $p;			# set/overwrite, even if not rounded
334      delete $x->{_a};			# clear A
335      $p = ${"${class}::precision"} unless defined $p;  # proper return value
336      }
337    else
338      {
339      ${"${class}::precision"} = $p;	# set global P
340      ${"${class}::accuracy"} = undef;	# clear global A
341      }
342    return $p;				# shortcut
343    }
344
345  my $r;
346  # $object->precision() or fallback to global
347  $r = $x->{_p} if ref($x);
348  # but don't return global undef, when $x's precision is 0!
349  $r = ${"${class}::precision"} if !defined $r;
350  $r;
351  }
352
353sub config
354  {
355  # return (or set) configuration data as hash ref
356  my $class = shift || 'Math::BigInt';
357
358  no strict 'refs';
359  if (@_ > 0)
360    {
361    # try to set given options as arguments from hash
362
363    my $args = $_[0];
364    if (ref($args) ne 'HASH')
365      {
366      $args = { @_ };
367      }
368    # these values can be "set"
369    my $set_args = {};
370    foreach my $key (
371     qw/trap_inf trap_nan
372        upgrade downgrade precision accuracy round_mode div_scale/
373     )
374      {
375      $set_args->{$key} = $args->{$key} if exists $args->{$key};
376      delete $args->{$key};
377      }
378    if (keys %$args > 0)
379      {
380      require Carp;
381      Carp::croak ("Illegal key(s) '",
382       join("','",keys %$args),"' passed to $class\->config()");
383      }
384    foreach my $key (keys %$set_args)
385      {
386      if ($key =~ /^trap_(inf|nan)\z/)
387        {
388        ${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0);
389        next;
390        }
391      # use a call instead of just setting the $variable to check argument
392      $class->$key($set_args->{$key});
393      }
394    }
395
396  # now return actual configuration
397
398  my $cfg = {
399    lib => $CALC,
400    lib_version => ${"${CALC}::VERSION"},
401    class => $class,
402    trap_nan => ${"${class}::_trap_nan"},
403    trap_inf => ${"${class}::_trap_inf"},
404    version => ${"${class}::VERSION"},
405    };
406  foreach my $key (qw/
407     upgrade downgrade precision accuracy round_mode div_scale
408     /)
409    {
410    $cfg->{$key} = ${"${class}::$key"};
411    };
412  $cfg;
413  }
414
415sub _scale_a
416  {
417  # select accuracy parameter based on precedence,
418  # used by bround() and bfround(), may return undef for scale (means no op)
419  my ($x,$s,$m,$scale,$mode) = @_;
420  $scale = $x->{_a} if !defined $scale;
421  $scale = $s if (!defined $scale);
422  $mode = $m if !defined $mode;
423  return ($scale,$mode);
424  }
425
426sub _scale_p
427  {
428  # select precision parameter based on precedence,
429  # used by bround() and bfround(), may return undef for scale (means no op)
430  my ($x,$s,$m,$scale,$mode) = @_;
431  $scale = $x->{_p} if !defined $scale;
432  $scale = $s if (!defined $scale);
433  $mode = $m if !defined $mode;
434  return ($scale,$mode);
435  }
436
437##############################################################################
438# constructors
439
440sub copy
441  {
442  my ($c,$x);
443  if (@_ > 1)
444    {
445    # if two arguments, the first one is the class to "swallow" subclasses
446    ($c,$x) = @_;
447    }
448  else
449    {
450    $x = shift;
451    $c = ref($x);
452    }
453  return unless ref($x); # only for objects
454
455  my $self = {}; bless $self,$c;
456
457  $self->{sign} = $x->{sign};
458  $self->{value} = $CALC->_copy($x->{value});
459  $self->{_a} = $x->{_a} if defined $x->{_a};
460  $self->{_p} = $x->{_p} if defined $x->{_p};
461  $self;
462  }
463
464sub new
465  {
466  # create a new BigInt object from a string or another BigInt object.
467  # see hash keys documented at top
468
469  # the argument could be an object, so avoid ||, && etc on it, this would
470  # cause costly overloaded code to be called. The only allowed ops are
471  # ref() and defined.
472
473  my ($class,$wanted,$a,$p,$r) = @_;
474
475  # avoid numify-calls by not using || on $wanted!
476  return $class->bzero($a,$p) if !defined $wanted;	# default to 0
477  return $class->copy($wanted,$a,$p,$r)
478   if ref($wanted) && $wanted->isa($class);		# MBI or subclass
479
480  $class->import() if $IMPORT == 0;		# make require work
481
482  my $self = bless {}, $class;
483
484  # shortcut for "normal" numbers
485  if ((!ref $wanted) && ($wanted =~ /^([+-]?)[1-9][0-9]*\z/))
486    {
487    $self->{sign} = $1 || '+';
488
489    if ($wanted =~ /^[+-]/)
490     {
491      # remove sign without touching wanted to make it work with constants
492      my $t = $wanted; $t =~ s/^[+-]//;
493      $self->{value} = $CALC->_new($t);
494      }
495    else
496      {
497      $self->{value} = $CALC->_new($wanted);
498      }
499    no strict 'refs';
500    if ( (defined $a) || (defined $p)
501        || (defined ${"${class}::precision"})
502        || (defined ${"${class}::accuracy"})
503       )
504      {
505      $self->round($a,$p,$r) unless (@_ == 4 && !defined $a && !defined $p);
506      }
507    return $self;
508    }
509
510  # handle '+inf', '-inf' first
511  if ($wanted =~ /^[+-]?inf$/)
512    {
513    $self->{value} = $CALC->_zero();
514    $self->{sign} = $wanted; $self->{sign} = '+inf' if $self->{sign} eq 'inf';
515    return $self;
516    }
517  # split str in m mantissa, e exponent, i integer, f fraction, v value, s sign
518  my ($mis,$miv,$mfv,$es,$ev) = _split($wanted);
519  if (!ref $mis)
520    {
521    if ($_trap_nan)
522      {
523      require Carp; Carp::croak("$wanted is not a number in $class");
524      }
525    $self->{value} = $CALC->_zero();
526    $self->{sign} = $nan;
527    return $self;
528    }
529  if (!ref $miv)
530    {
531    # _from_hex or _from_bin
532    $self->{value} = $mis->{value};
533    $self->{sign} = $mis->{sign};
534    return $self;	# throw away $mis
535    }
536  # make integer from mantissa by adjusting exp, then convert to bigint
537  $self->{sign} = $$mis;			# store sign
538  $self->{value} = $CALC->_zero();		# for all the NaN cases
539  my $e = int("$$es$$ev");			# exponent (avoid recursion)
540  if ($e > 0)
541    {
542    my $diff = $e - CORE::length($$mfv);
543    if ($diff < 0)				# Not integer
544      {
545      if ($_trap_nan)
546        {
547        require Carp; Carp::croak("$wanted not an integer in $class");
548        }
549      #print "NOI 1\n";
550      return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
551      $self->{sign} = $nan;
552      }
553    else					# diff >= 0
554      {
555      # adjust fraction and add it to value
556      #print "diff > 0 $$miv\n";
557      $$miv = $$miv . ($$mfv . '0' x $diff);
558      }
559    }
560  else
561    {
562    if ($$mfv ne '')				# e <= 0
563      {
564      # fraction and negative/zero E => NOI
565      if ($_trap_nan)
566        {
567        require Carp; Carp::croak("$wanted not an integer in $class");
568        }
569      #print "NOI 2 \$\$mfv '$$mfv'\n";
570      return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
571      $self->{sign} = $nan;
572      }
573    elsif ($e < 0)
574      {
575      # xE-y, and empty mfv
576      #print "xE-y\n";
577      $e = abs($e);
578      if ($$miv !~ s/0{$e}$//)		# can strip so many zero's?
579        {
580        if ($_trap_nan)
581          {
582          require Carp; Carp::croak("$wanted not an integer in $class");
583          }
584        #print "NOI 3\n";
585        return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
586        $self->{sign} = $nan;
587        }
588      }
589    }
590  $self->{sign} = '+' if $$miv eq '0';			# normalize -0 => +0
591  $self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/;
592  # if any of the globals is set, use them to round and store them inside $self
593  # do not round for new($x,undef,undef) since that is used by MBF to signal
594  # no rounding
595  $self->round($a,$p,$r) unless @_ == 4 && !defined $a && !defined $p;
596  $self;
597  }
598
599sub bnan
600  {
601  # create a bigint 'NaN', if given a BigInt, set it to 'NaN'
602  my $self = shift;
603  $self = $class if !defined $self;
604  if (!ref($self))
605    {
606    my $c = $self; $self = {}; bless $self, $c;
607    }
608  no strict 'refs';
609  if (${"${class}::_trap_nan"})
610    {
611    require Carp;
612    Carp::croak ("Tried to set $self to NaN in $class\::bnan()");
613    }
614  $self->import() if $IMPORT == 0;		# make require work
615  return if $self->modify('bnan');
616  if ($self->can('_bnan'))
617    {
618    # use subclass to initialize
619    $self->_bnan();
620    }
621  else
622    {
623    # otherwise do our own thing
624    $self->{value} = $CALC->_zero();
625    }
626  $self->{sign} = $nan;
627  delete $self->{_a}; delete $self->{_p};	# rounding NaN is silly
628  $self;
629  }
630
631sub binf
632  {
633  # create a bigint '+-inf', if given a BigInt, set it to '+-inf'
634  # the sign is either '+', or if given, used from there
635  my $self = shift;
636  my $sign = shift; $sign = '+' if !defined $sign || $sign !~ /^-(inf)?$/;
637  $self = $class if !defined $self;
638  if (!ref($self))
639    {
640    my $c = $self; $self = {}; bless $self, $c;
641    }
642  no strict 'refs';
643  if (${"${class}::_trap_inf"})
644    {
645    require Carp;
646    Carp::croak ("Tried to set $self to +-inf in $class\::binfn()");
647    }
648  $self->import() if $IMPORT == 0;		# make require work
649  return if $self->modify('binf');
650  if ($self->can('_binf'))
651    {
652    # use subclass to initialize
653    $self->_binf();
654    }
655  else
656    {
657    # otherwise do our own thing
658    $self->{value} = $CALC->_zero();
659    }
660  $sign = $sign . 'inf' if $sign !~ /inf$/;	# - => -inf
661  $self->{sign} = $sign;
662  ($self->{_a},$self->{_p}) = @_;		# take over requested rounding
663  $self;
664  }
665
666sub bzero
667  {
668  # create a bigint '+0', if given a BigInt, set it to 0
669  my $self = shift;
670  $self = $class if !defined $self;
671
672  if (!ref($self))
673    {
674    my $c = $self; $self = {}; bless $self, $c;
675    }
676  $self->import() if $IMPORT == 0;		# make require work
677  return if $self->modify('bzero');
678
679  if ($self->can('_bzero'))
680    {
681    # use subclass to initialize
682    $self->_bzero();
683    }
684  else
685    {
686    # otherwise do our own thing
687    $self->{value} = $CALC->_zero();
688    }
689  $self->{sign} = '+';
690  if (@_ > 0)
691    {
692    if (@_ > 3)
693      {
694      # call like: $x->bzero($a,$p,$r,$y);
695      ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
696      }
697    else
698      {
699      $self->{_a} = $_[0]
700       if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
701      $self->{_p} = $_[1]
702       if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
703      }
704    }
705  $self;
706  }
707
708sub bone
709  {
710  # create a bigint '+1' (or -1 if given sign '-'),
711  # if given a BigInt, set it to +1 or -1, respecively
712  my $self = shift;
713  my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-';
714  $self = $class if !defined $self;
715
716  if (!ref($self))
717    {
718    my $c = $self; $self = {}; bless $self, $c;
719    }
720  $self->import() if $IMPORT == 0;		# make require work
721  return if $self->modify('bone');
722
723  if ($self->can('_bone'))
724    {
725    # use subclass to initialize
726    $self->_bone();
727    }
728  else
729    {
730    # otherwise do our own thing
731    $self->{value} = $CALC->_one();
732    }
733  $self->{sign} = $sign;
734  if (@_ > 0)
735    {
736    if (@_ > 3)
737      {
738      # call like: $x->bone($sign,$a,$p,$r,$y);
739      ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
740      }
741    else
742      {
743      # call like: $x->bone($sign,$a,$p,$r);
744      $self->{_a} = $_[0]
745       if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
746      $self->{_p} = $_[1]
747       if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
748      }
749    }
750  $self;
751  }
752
753##############################################################################
754# string conversation
755
756sub bsstr
757  {
758  # (ref to BFLOAT or num_str ) return num_str
759  # Convert number from internal format to scientific string format.
760  # internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
761  my $x = shift; $class = ref($x) || $x; $x = $class->new(shift) if !ref($x);
762  # my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
763
764  if ($x->{sign} !~ /^[+-]$/)
765    {
766    return $x->{sign} unless $x->{sign} eq '+inf';	# -inf, NaN
767    return 'inf';					# +inf
768    }
769  my ($m,$e) = $x->parts();
770  #$m->bstr() . 'e+' . $e->bstr(); 	# e can only be positive in BigInt
771  # 'e+' because E can only be positive in BigInt
772  $m->bstr() . 'e+' . $CALC->_str($e->{value});
773  }
774
775sub bstr
776  {
777  # make a string from bigint object
778  my $x = shift; $class = ref($x) || $x; $x = $class->new(shift) if !ref($x);
779  # my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
780
781  if ($x->{sign} !~ /^[+-]$/)
782    {
783    return $x->{sign} unless $x->{sign} eq '+inf';	# -inf, NaN
784    return 'inf';					# +inf
785    }
786  my $es = ''; $es = $x->{sign} if $x->{sign} eq '-';
787  $es.$CALC->_str($x->{value});
788  }
789
790sub numify
791  {
792  # Make a "normal" scalar from a BigInt object
793  my $x = shift; $x = $class->new($x) unless ref $x;
794
795  return $x->bstr() if $x->{sign} !~ /^[+-]$/;
796  my $num = $CALC->_num($x->{value});
797  return -$num if $x->{sign} eq '-';
798  $num;
799  }
800
801##############################################################################
802# public stuff (usually prefixed with "b")
803
804sub sign
805  {
806  # return the sign of the number: +/-/-inf/+inf/NaN
807  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
808
809  $x->{sign};
810  }
811
812sub _find_round_parameters
813  {
814  # After any operation or when calling round(), the result is rounded by
815  # regarding the A & P from arguments, local parameters, or globals.
816
817  # !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!!
818
819  # This procedure finds the round parameters, but it is for speed reasons
820  # duplicated in round. Otherwise, it is tested by the testsuite and used
821  # by fdiv().
822
823  # returns ($self) or ($self,$a,$p,$r) - sets $self to NaN of both A and P
824  # were requested/defined (locally or globally or both)
825
826  my ($self,$a,$p,$r,@args) = @_;
827  # $a accuracy, if given by caller
828  # $p precision, if given by caller
829  # $r round_mode, if given by caller
830  # @args all 'other' arguments (0 for unary, 1 for binary ops)
831
832  # leave bigfloat parts alone
833  return ($self) if exists $self->{_f} && ($self->{_f} & MB_NEVER_ROUND) != 0;
834
835  my $c = ref($self);				# find out class of argument(s)
836  no strict 'refs';
837
838  # now pick $a or $p, but only if we have got "arguments"
839  if (!defined $a)
840    {
841    foreach ($self,@args)
842      {
843      # take the defined one, or if both defined, the one that is smaller
844      $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
845      }
846    }
847  if (!defined $p)
848    {
849    # even if $a is defined, take $p, to signal error for both defined
850    foreach ($self,@args)
851      {
852      # take the defined one, or if both defined, the one that is bigger
853      # -2 > -3, and 3 > 2
854      $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
855      }
856    }
857  # if still none defined, use globals (#2)
858  $a = ${"$c\::accuracy"} unless defined $a;
859  $p = ${"$c\::precision"} unless defined $p;
860
861  # A == 0 is useless, so undef it to signal no rounding
862  $a = undef if defined $a && $a == 0;
863
864  # no rounding today?
865  return ($self) unless defined $a || defined $p;		# early out
866
867  # set A and set P is an fatal error
868  return ($self->bnan()) if defined $a && defined $p;		# error
869
870  $r = ${"$c\::round_mode"} unless defined $r;
871  if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/)
872    {
873    require Carp; Carp::croak ("Unknown round mode '$r'");
874    }
875
876  ($self,$a,$p,$r);
877  }
878
879sub round
880  {
881  # Round $self according to given parameters, or given second argument's
882  # parameters or global defaults
883
884  # for speed reasons, _find_round_parameters is embeded here:
885
886  my ($self,$a,$p,$r,@args) = @_;
887  # $a accuracy, if given by caller
888  # $p precision, if given by caller
889  # $r round_mode, if given by caller
890  # @args all 'other' arguments (0 for unary, 1 for binary ops)
891
892  # leave bigfloat parts alone
893  return ($self) if exists $self->{_f} && ($self->{_f} & MB_NEVER_ROUND) != 0;
894
895  my $c = ref($self);				# find out class of argument(s)
896  no strict 'refs';
897
898  # now pick $a or $p, but only if we have got "arguments"
899  if (!defined $a)
900    {
901    foreach ($self,@args)
902      {
903      # take the defined one, or if both defined, the one that is smaller
904      $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
905      }
906    }
907  if (!defined $p)
908    {
909    # even if $a is defined, take $p, to signal error for both defined
910    foreach ($self,@args)
911      {
912      # take the defined one, or if both defined, the one that is bigger
913      # -2 > -3, and 3 > 2
914      $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
915      }
916    }
917  # if still none defined, use globals (#2)
918  $a = ${"$c\::accuracy"} unless defined $a;
919  $p = ${"$c\::precision"} unless defined $p;
920
921  # A == 0 is useless, so undef it to signal no rounding
922  $a = undef if defined $a && $a == 0;
923
924  # no rounding today?
925  return $self unless defined $a || defined $p;		# early out
926
927  # set A and set P is an fatal error
928  return $self->bnan() if defined $a && defined $p;
929
930  $r = ${"$c\::round_mode"} unless defined $r;
931  if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/)
932    {
933    require Carp; Carp::croak ("Unknown round mode '$r'");
934    }
935
936  # now round, by calling either fround or ffround:
937  if (defined $a)
938    {
939    $self->bround($a,$r) if !defined $self->{_a} || $self->{_a} >= $a;
940    }
941  else # both can't be undefined due to early out
942    {
943    $self->bfround($p,$r) if !defined $self->{_p} || $self->{_p} <= $p;
944    }
945  $self->bnorm();			# after round, normalize
946  }
947
948sub bnorm
949  {
950  # (numstr or BINT) return BINT
951  # Normalize number -- no-op here
952  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
953  $x;
954  }
955
956sub babs
957  {
958  # (BINT or num_str) return BINT
959  # make number absolute, or return absolute BINT from string
960  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
961
962  return $x if $x->modify('babs');
963  # post-normalized abs for internal use (does nothing for NaN)
964  $x->{sign} =~ s/^-/+/;
965  $x;
966  }
967
968sub bneg
969  {
970  # (BINT or num_str) return BINT
971  # negate number or make a negated number from string
972  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
973
974  return $x if $x->modify('bneg');
975
976  # for +0 dont negate (to have always normalized)
977  $x->{sign} =~ tr/+-/-+/ if !$x->is_zero();	# does nothing for NaN
978  $x;
979  }
980
981sub bcmp
982  {
983  # Compares 2 values.  Returns one of undef, <0, =0, >0. (suitable for sort)
984  # (BINT or num_str, BINT or num_str) return cond_code
985
986  # set up parameters
987  my ($self,$x,$y) = (ref($_[0]),@_);
988
989  # objectify is costly, so avoid it
990  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
991    {
992    ($self,$x,$y) = objectify(2,@_);
993    }
994
995  return $upgrade->bcmp($x,$y) if defined $upgrade &&
996    ((!$x->isa($self)) || (!$y->isa($self)));
997
998  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
999    {
1000    # handle +-inf and NaN
1001    return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
1002    return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
1003    return +1 if $x->{sign} eq '+inf';
1004    return -1 if $x->{sign} eq '-inf';
1005    return -1 if $y->{sign} eq '+inf';
1006    return +1;
1007    }
1008  # check sign for speed first
1009  return 1 if $x->{sign} eq '+' && $y->{sign} eq '-';	# does also 0 <=> -y
1010  return -1 if $x->{sign} eq '-' && $y->{sign} eq '+';  # does also -x <=> 0
1011
1012  # have same sign, so compare absolute values. Don't make tests for zero here
1013  # because it's actually slower than testin in Calc (especially w/ Pari et al)
1014
1015  # post-normalized compare for internal use (honors signs)
1016  if ($x->{sign} eq '+')
1017    {
1018    # $x and $y both > 0
1019    return $CALC->_acmp($x->{value},$y->{value});
1020    }
1021
1022  # $x && $y both < 0
1023  $CALC->_acmp($y->{value},$x->{value});	# swaped acmp (lib returns 0,1,-1)
1024  }
1025
1026sub bacmp
1027  {
1028  # Compares 2 values, ignoring their signs.
1029  # Returns one of undef, <0, =0, >0. (suitable for sort)
1030  # (BINT, BINT) return cond_code
1031
1032  # set up parameters
1033  my ($self,$x,$y) = (ref($_[0]),@_);
1034  # objectify is costly, so avoid it
1035  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1036    {
1037    ($self,$x,$y) = objectify(2,@_);
1038    }
1039
1040  return $upgrade->bacmp($x,$y) if defined $upgrade &&
1041    ((!$x->isa($self)) || (!$y->isa($self)));
1042
1043  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
1044    {
1045    # handle +-inf and NaN
1046    return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
1047    return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
1048    return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
1049    return -1;
1050    }
1051  $CALC->_acmp($x->{value},$y->{value});	# lib does only 0,1,-1
1052  }
1053
1054sub badd
1055  {
1056  # add second arg (BINT or string) to first (BINT) (modifies first)
1057  # return result as BINT
1058
1059  # set up parameters
1060  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1061  # objectify is costly, so avoid it
1062  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1063    {
1064    ($self,$x,$y,@r) = objectify(2,@_);
1065    }
1066
1067  return $x if $x->modify('badd');
1068  return $upgrade->badd($upgrade->new($x),$upgrade->new($y),@r) if defined $upgrade &&
1069    ((!$x->isa($self)) || (!$y->isa($self)));
1070
1071  $r[3] = $y;				# no push!
1072  # inf and NaN handling
1073  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
1074    {
1075    # NaN first
1076    return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
1077    # inf handling
1078    if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
1079      {
1080      # +inf++inf or -inf+-inf => same, rest is NaN
1081      return $x if $x->{sign} eq $y->{sign};
1082      return $x->bnan();
1083      }
1084    # +-inf + something => +inf
1085    # something +-inf => +-inf
1086    $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
1087    return $x;
1088    }
1089
1090  my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); 		# get signs
1091
1092  if ($sx eq $sy)
1093    {
1094    $x->{value} = $CALC->_add($x->{value},$y->{value});	# same sign, abs add
1095    }
1096  else
1097    {
1098    my $a = $CALC->_acmp ($y->{value},$x->{value});	# absolute compare
1099    if ($a > 0)
1100      {
1101      $x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap
1102      $x->{sign} = $sy;
1103      }
1104    elsif ($a == 0)
1105      {
1106      # speedup, if equal, set result to 0
1107      $x->{value} = $CALC->_zero();
1108      $x->{sign} = '+';
1109      }
1110    else # a < 0
1111      {
1112      $x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub
1113      }
1114    }
1115  $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
1116  $x;
1117  }
1118
1119sub bsub
1120  {
1121  # (BINT or num_str, BINT or num_str) return BINT
1122  # subtract second arg from first, modify first
1123
1124  # set up parameters
1125  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1126  # objectify is costly, so avoid it
1127  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1128    {
1129    ($self,$x,$y,@r) = objectify(2,@_);
1130    }
1131
1132  return $x if $x->modify('bsub');
1133
1134  return $upgrade->new($x)->bsub($upgrade->new($y),@r) if defined $upgrade &&
1135   ((!$x->isa($self)) || (!$y->isa($self)));
1136
1137  if ($y->is_zero())
1138    {
1139    $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
1140    return $x;
1141    }
1142
1143  $y->{sign} =~ tr/+\-/-+/; 	# does nothing for NaN
1144  $x->badd($y,@r); 		# badd does not leave internal zeros
1145  $y->{sign} =~ tr/+\-/-+/; 	# refix $y (does nothing for NaN)
1146  $x;				# already rounded by badd() or no round necc.
1147  }
1148
1149sub binc
1150  {
1151  # increment arg by one
1152  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
1153  return $x if $x->modify('binc');
1154
1155  if ($x->{sign} eq '+')
1156    {
1157    $x->{value} = $CALC->_inc($x->{value});
1158    $x->round($a,$p,$r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
1159    return $x;
1160    }
1161  elsif ($x->{sign} eq '-')
1162    {
1163    $x->{value} = $CALC->_dec($x->{value});
1164    $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0
1165    $x->round($a,$p,$r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
1166    return $x;
1167    }
1168  # inf, nan handling etc
1169  $x->badd($self->bone(),$a,$p,$r);		# badd does round
1170  }
1171
1172sub bdec
1173  {
1174  # decrement arg by one
1175  my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
1176  return $x if $x->modify('bdec');
1177
1178  if ($x->{sign} eq '-')
1179    {
1180    # < 0
1181    $x->{value} = $CALC->_inc($x->{value});
1182    }
1183  else
1184    {
1185    return $x->badd($self->bone('-'),@r) unless $x->{sign} eq '+'; # inf/NaN
1186    # >= 0
1187    if ($CALC->_is_zero($x->{value}))
1188      {
1189      # == 0
1190      $x->{value} = $CALC->_one(); $x->{sign} = '-';		# 0 => -1
1191      }
1192    else
1193      {
1194      # > 0
1195      $x->{value} = $CALC->_dec($x->{value});
1196      }
1197    }
1198  $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
1199  $x;
1200  }
1201
1202sub blog
1203  {
1204  # calculate $x = $a ** $base + $b and return $a (e.g. the log() to base
1205  # $base of $x)
1206
1207  # set up parameters
1208  my ($self,$x,$base,@r) = (ref($_[0]),@_);
1209  # objectify is costly, so avoid it
1210  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1211    {
1212    ($self,$x,$base,@r) = objectify(1,$class,@_);
1213    }
1214
1215  return $x if $x->modify('blog');
1216
1217  # inf, -inf, NaN, <0 => NaN
1218  return $x->bnan()
1219   if $x->{sign} ne '+' || (defined $base && $base->{sign} ne '+');
1220
1221  return $upgrade->blog($upgrade->new($x),$base,@r) if
1222    defined $upgrade;
1223
1224  my ($rc,$exact) = $CALC->_log_int($x->{value},$base->{value});
1225  return $x->bnan() unless defined $rc;		# not possible to take log?
1226  $x->{value} = $rc;
1227  $x->round(@r);
1228  }
1229
1230sub blcm
1231  {
1232  # (BINT or num_str, BINT or num_str) return BINT
1233  # does not modify arguments, but returns new object
1234  # Lowest Common Multiplicator
1235
1236  my $y = shift; my ($x);
1237  if (ref($y))
1238    {
1239    $x = $y->copy();
1240    }
1241  else
1242    {
1243    $x = __PACKAGE__->new($y);
1244    }
1245  my $self = ref($x);
1246  while (@_)
1247    {
1248    my $y = shift; $y = $self->new($y) if !ref ($y);
1249    $x = __lcm($x,$y);
1250    }
1251  $x;
1252  }
1253
1254sub bgcd
1255  {
1256  # (BINT or num_str, BINT or num_str) return BINT
1257  # does not modify arguments, but returns new object
1258  # GCD -- Euclids algorithm, variant C (Knuth Vol 3, pg 341 ff)
1259
1260  my $y = shift;
1261  $y = __PACKAGE__->new($y) if !ref($y);
1262  my $self = ref($y);
1263  my $x = $y->copy()->babs();			# keep arguments
1264  return $x->bnan() if $x->{sign} !~ /^[+-]$/;	# x NaN?
1265
1266  while (@_)
1267    {
1268    $y = shift; $y = $self->new($y) if !ref($y);
1269    next if $y->is_zero();
1270    return $x->bnan() if $y->{sign} !~ /^[+-]$/;	# y NaN?
1271    $x->{value} = $CALC->_gcd($x->{value},$y->{value}); last if $x->is_one();
1272    }
1273  $x;
1274  }
1275
1276sub bnot
1277  {
1278  # (num_str or BINT) return BINT
1279  # represent ~x as twos-complement number
1280  # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
1281  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
1282
1283  return $x if $x->modify('bnot');
1284  $x->binc()->bneg();			# binc already does round
1285  }
1286
1287##############################################################################
1288# is_foo test routines
1289# we don't need $self, so undef instead of ref($_[0]) make it slightly faster
1290
1291sub is_zero
1292  {
1293  # return true if arg (BINT or num_str) is zero (array '+', '0')
1294  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1295
1296  return 0 if $x->{sign} !~ /^\+$/;			# -, NaN & +-inf aren't
1297  $CALC->_is_zero($x->{value});
1298  }
1299
1300sub is_nan
1301  {
1302  # return true if arg (BINT or num_str) is NaN
1303  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1304
1305  $x->{sign} eq $nan ? 1 : 0;
1306  }
1307
1308sub is_inf
1309  {
1310  # return true if arg (BINT or num_str) is +-inf
1311  my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
1312
1313  if (defined $sign)
1314    {
1315    $sign = '[+-]inf' if $sign eq '';	# +- doesn't matter, only that's inf
1316    $sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/;	# extract '+' or '-'
1317    return $x->{sign} =~ /^$sign$/ ? 1 : 0;
1318    }
1319  $x->{sign} =~ /^[+-]inf$/ ? 1 : 0;		# only +-inf is infinity
1320  }
1321
1322sub is_one
1323  {
1324  # return true if arg (BINT or num_str) is +1, or -1 if sign is given
1325  my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
1326
1327  $sign = '+' if !defined $sign || $sign ne '-';
1328
1329  return 0 if $x->{sign} ne $sign; 	# -1 != +1, NaN, +-inf aren't either
1330  $CALC->_is_one($x->{value});
1331  }
1332
1333sub is_odd
1334  {
1335  # return true when arg (BINT or num_str) is odd, false for even
1336  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1337
1338  return 0 if $x->{sign} !~ /^[+-]$/;			# NaN & +-inf aren't
1339  $CALC->_is_odd($x->{value});
1340  }
1341
1342sub is_even
1343  {
1344  # return true when arg (BINT or num_str) is even, false for odd
1345  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1346
1347  return 0 if $x->{sign} !~ /^[+-]$/;			# NaN & +-inf aren't
1348  $CALC->_is_even($x->{value});
1349  }
1350
1351sub is_positive
1352  {
1353  # return true when arg (BINT or num_str) is positive (>= 0)
1354  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1355
1356  $x->{sign} =~ /^\+/ ? 1 : 0;		# +inf is also positive, but NaN not
1357  }
1358
1359sub is_negative
1360  {
1361  # return true when arg (BINT or num_str) is negative (< 0)
1362  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1363
1364  $x->{sign} =~ /^-/ ? 1 : 0; 		# -inf is also negative, but NaN not
1365  }
1366
1367sub is_int
1368  {
1369  # return true when arg (BINT or num_str) is an integer
1370  # always true for BigInt, but different for BigFloats
1371  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1372
1373  $x->{sign} =~ /^[+-]$/ ? 1 : 0;		# inf/-inf/NaN aren't
1374  }
1375
1376###############################################################################
1377
1378sub bmul
1379  {
1380  # multiply two numbers -- stolen from Knuth Vol 2 pg 233
1381  # (BINT or num_str, BINT or num_str) return BINT
1382
1383  # set up parameters
1384  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1385  # objectify is costly, so avoid it
1386  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1387    {
1388    ($self,$x,$y,@r) = objectify(2,@_);
1389    }
1390
1391  return $x if $x->modify('bmul');
1392
1393  return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
1394
1395  # inf handling
1396  if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
1397    {
1398    return $x->bnan() if $x->is_zero() || $y->is_zero();
1399    # result will always be +-inf:
1400    # +inf * +/+inf => +inf, -inf * -/-inf => +inf
1401    # +inf * -/-inf => -inf, -inf * +/+inf => -inf
1402    return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
1403    return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
1404    return $x->binf('-');
1405    }
1406
1407  return $upgrade->bmul($x,$upgrade->new($y),@r)
1408   if defined $upgrade && !$y->isa($self);
1409
1410  $r[3] = $y;				# no push here
1411
1412  $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
1413
1414  $x->{value} = $CALC->_mul($x->{value},$y->{value});	# do actual math
1415  $x->{sign} = '+' if $CALC->_is_zero($x->{value}); 	# no -0
1416
1417  $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
1418  $x;
1419  }
1420
1421sub _div_inf
1422  {
1423  # helper function that handles +-inf cases for bdiv()/bmod() to reuse code
1424  my ($self,$x,$y) = @_;
1425
1426  # NaN if x == NaN or y == NaN or x==y==0
1427  return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan()
1428   if (($x->is_nan() || $y->is_nan())   ||
1429       ($x->is_zero() && $y->is_zero()));
1430
1431  # +-inf / +-inf == NaN, reminder also NaN
1432  if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
1433    {
1434    return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan();
1435    }
1436  # x / +-inf => 0, remainder x (works even if x == 0)
1437  if ($y->{sign} =~ /^[+-]inf$/)
1438    {
1439    my $t = $x->copy();		# bzero clobbers up $x
1440    return wantarray ? ($x->bzero(),$t) : $x->bzero()
1441    }
1442
1443  # 5 / 0 => +inf, -6 / 0 => -inf
1444  # +inf / 0 = inf, inf,  and -inf / 0 => -inf, -inf
1445  # exception:   -8 / 0 has remainder -8, not 8
1446  # exception: -inf / 0 has remainder -inf, not inf
1447  if ($y->is_zero())
1448    {
1449    # +-inf / 0 => special case for -inf
1450    return wantarray ?  ($x,$x->copy()) : $x if $x->is_inf();
1451    if (!$x->is_zero() && !$x->is_inf())
1452      {
1453      my $t = $x->copy();		# binf clobbers up $x
1454      return wantarray ?
1455       ($x->binf($x->{sign}),$t) : $x->binf($x->{sign})
1456      }
1457    }
1458
1459  # last case: +-inf / ordinary number
1460  my $sign = '+inf';
1461  $sign = '-inf' if substr($x->{sign},0,1) ne $y->{sign};
1462  $x->{sign} = $sign;
1463  return wantarray ? ($x,$self->bzero()) : $x;
1464  }
1465
1466sub bdiv
1467  {
1468  # (dividend: BINT or num_str, divisor: BINT or num_str) return
1469  # (BINT,BINT) (quo,rem) or BINT (only rem)
1470
1471  # set up parameters
1472  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1473  # objectify is costly, so avoid it
1474  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1475    {
1476    ($self,$x,$y,@r) = objectify(2,@_);
1477    }
1478
1479  return $x if $x->modify('bdiv');
1480
1481  return $self->_div_inf($x,$y)
1482   if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
1483
1484  return $upgrade->bdiv($upgrade->new($x),$upgrade->new($y),@r)
1485   if defined $upgrade;
1486
1487  $r[3] = $y;					# no push!
1488
1489  # calc new sign and in case $y == +/- 1, return $x
1490  my $xsign = $x->{sign};				# keep
1491  $x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+');
1492
1493  if (wantarray)
1494    {
1495    my $rem = $self->bzero();
1496    ($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value});
1497    $x->{sign} = '+' if $CALC->_is_zero($x->{value});
1498    $rem->{_a} = $x->{_a};
1499    $rem->{_p} = $x->{_p};
1500    $x->round(@r) if !exists $x->{_f} || ($x->{_f} & MB_NEVER_ROUND) == 0;
1501    if (! $CALC->_is_zero($rem->{value}))
1502      {
1503      $rem->{sign} = $y->{sign};
1504      $rem = $y->copy()->bsub($rem) if $xsign ne $y->{sign}; # one of them '-'
1505      }
1506    else
1507      {
1508      $rem->{sign} = '+';			# dont leave -0
1509      }
1510    $rem->round(@r) if !exists $rem->{_f} || ($rem->{_f} & MB_NEVER_ROUND) == 0;
1511    return ($x,$rem);
1512    }
1513
1514  $x->{value} = $CALC->_div($x->{value},$y->{value});
1515  $x->{sign} = '+' if $CALC->_is_zero($x->{value});
1516
1517  $x->round(@r) if !exists $x->{_f} || ($x->{_f} & MB_NEVER_ROUND) == 0;
1518  $x;
1519  }
1520
1521###############################################################################
1522# modulus functions
1523
1524sub bmod
1525  {
1526  # modulus (or remainder)
1527  # (BINT or num_str, BINT or num_str) return BINT
1528
1529  # set up parameters
1530  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1531  # objectify is costly, so avoid it
1532  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1533    {
1534    ($self,$x,$y,@r) = objectify(2,@_);
1535    }
1536
1537  return $x if $x->modify('bmod');
1538  $r[3] = $y;					# no push!
1539  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero())
1540    {
1541    my ($d,$r) = $self->_div_inf($x,$y);
1542    $x->{sign} = $r->{sign};
1543    $x->{value} = $r->{value};
1544    return $x->round(@r);
1545    }
1546
1547  # calc new sign and in case $y == +/- 1, return $x
1548  $x->{value} = $CALC->_mod($x->{value},$y->{value});
1549  if (!$CALC->_is_zero($x->{value}))
1550    {
1551    my $xsign = $x->{sign};
1552    $x->{sign} = $y->{sign};
1553    if ($xsign ne $y->{sign})
1554      {
1555      my $t = $CALC->_copy($x->{value});		# copy $x
1556      $x->{value} = $CALC->_sub($y->{value},$t,1); 	# $y-$x
1557      }
1558    }
1559   else
1560    {
1561    $x->{sign} = '+';				# dont leave -0
1562    }
1563  $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
1564  $x;
1565  }
1566
1567sub bmodinv
1568  {
1569  # Modular inverse.  given a number which is (hopefully) relatively
1570  # prime to the modulus, calculate its inverse using Euclid's
1571  # alogrithm.  If the number is not relatively prime to the modulus
1572  # (i.e. their gcd is not one) then NaN is returned.
1573
1574  # set up parameters
1575  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1576  # objectify is costly, so avoid it
1577  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1578    {
1579    ($self,$x,$y,@r) = objectify(2,@_);
1580    }
1581
1582  return $x if $x->modify('bmodinv');
1583
1584  return $x->bnan()
1585        if ($y->{sign} ne '+'                           # -, NaN, +inf, -inf
1586         || $x->is_zero()                               # or num == 0
1587         || $x->{sign} !~ /^[+-]$/                      # or num NaN, inf, -inf
1588        );
1589
1590  # put least residue into $x if $x was negative, and thus make it positive
1591  $x->bmod($y) if $x->{sign} eq '-';
1592
1593  my $sign;
1594  ($x->{value},$sign) = $CALC->_modinv($x->{value},$y->{value});
1595  return $x->bnan() if !defined $x->{value};		# in case no GCD found
1596  return $x if !defined $sign;			# already real result
1597  $x->{sign} = $sign;				# flip/flop see below
1598  $x->bmod($y);					# calc real result
1599  $x;
1600  }
1601
1602sub bmodpow
1603  {
1604  # takes a very large number to a very large exponent in a given very
1605  # large modulus, quickly, thanks to binary exponentation.  supports
1606  # negative exponents.
1607  my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
1608
1609  return $num if $num->modify('bmodpow');
1610
1611  # check modulus for valid values
1612  return $num->bnan() if ($mod->{sign} ne '+'		# NaN, - , -inf, +inf
1613                       || $mod->is_zero());
1614
1615  # check exponent for valid values
1616  if ($exp->{sign} =~ /\w/)
1617    {
1618    # i.e., if it's NaN, +inf, or -inf...
1619    return $num->bnan();
1620    }
1621
1622  $num->bmodinv ($mod) if ($exp->{sign} eq '-');
1623
1624  # check num for valid values (also NaN if there was no inverse but $exp < 0)
1625  return $num->bnan() if $num->{sign} !~ /^[+-]$/;
1626
1627  # $mod is positive, sign on $exp is ignored, result also positive
1628  $num->{value} = $CALC->_modpow($num->{value},$exp->{value},$mod->{value});
1629  $num;
1630  }
1631
1632###############################################################################
1633
1634sub bfac
1635  {
1636  # (BINT or num_str, BINT or num_str) return BINT
1637  # compute factorial number from $x, modify $x in place
1638  my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
1639
1640  return $x if $x->modify('bfac');
1641
1642  return $x if $x->{sign} eq '+inf';		# inf => inf
1643  return $x->bnan() if $x->{sign} ne '+';	# NaN, <0 etc => NaN
1644
1645  $x->{value} = $CALC->_fac($x->{value});
1646  $x->round(@r);
1647  }
1648
1649sub bpow
1650  {
1651  # (BINT or num_str, BINT or num_str) return BINT
1652  # compute power of two numbers -- stolen from Knuth Vol 2 pg 233
1653  # modifies first argument
1654
1655  # set up parameters
1656  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1657  # objectify is costly, so avoid it
1658  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1659    {
1660    ($self,$x,$y,@r) = objectify(2,@_);
1661    }
1662
1663  return $x if $x->modify('bpow');
1664
1665  return $upgrade->bpow($upgrade->new($x),$y,@r)
1666   if defined $upgrade && !$y->isa($self);
1667
1668  $r[3] = $y;					# no push!
1669  return $x if $x->{sign} =~ /^[+-]inf$/;	# -inf/+inf ** x
1670  return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
1671
1672  # cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu
1673
1674  my $new_sign = '+';
1675  $new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+');
1676
1677  # 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf
1678  return $x->binf()
1679    if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value});
1680  # 1 ** -y => 1 / (1 ** |y|)
1681  # so do test for negative $y after above's clause
1682  return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value});
1683
1684  $x->{value} = $CALC->_pow($x->{value},$y->{value});
1685  $x->{sign} = $new_sign;
1686  $x->{sign} = '+' if $CALC->_is_zero($y->{value});
1687  $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
1688  $x;
1689  }
1690
1691sub blsft
1692  {
1693  # (BINT or num_str, BINT or num_str) return BINT
1694  # compute x << y, base n, y >= 0
1695
1696  # set up parameters
1697  my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
1698  # objectify is costly, so avoid it
1699  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1700    {
1701    ($self,$x,$y,$n,@r) = objectify(2,@_);
1702    }
1703
1704  return $x if $x->modify('blsft');
1705  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
1706  return $x->round(@r) if $y->is_zero();
1707
1708  $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
1709
1710  $x->{value} = $CALC->_lsft($x->{value},$y->{value},$n);
1711  $x->round(@r);
1712  }
1713
1714sub brsft
1715  {
1716  # (BINT or num_str, BINT or num_str) return BINT
1717  # compute x >> y, base n, y >= 0
1718
1719  # set up parameters
1720  my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
1721  # objectify is costly, so avoid it
1722  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1723    {
1724    ($self,$x,$y,$n,@r) = objectify(2,@_);
1725    }
1726
1727  return $x if $x->modify('brsft');
1728  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
1729  return $x->round(@r) if $y->is_zero();
1730  return $x->bzero(@r) if $x->is_zero();		# 0 => 0
1731
1732  $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
1733
1734   # this only works for negative numbers when shifting in base 2
1735  if (($x->{sign} eq '-') && ($n == 2))
1736    {
1737    return $x->round(@r) if $x->is_one('-');	# -1 => -1
1738    if (!$y->is_one())
1739      {
1740      # although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al
1741      # but perhaps there is a better emulation for two's complement shift...
1742      # if $y != 1, we must simulate it by doing:
1743      # convert to bin, flip all bits, shift, and be done
1744      $x->binc();			# -3 => -2
1745      my $bin = $x->as_bin();
1746      $bin =~ s/^-0b//;			# strip '-0b' prefix
1747      $bin =~ tr/10/01/;		# flip bits
1748      # now shift
1749      if (CORE::length($bin) <= $y)
1750        {
1751	$bin = '0'; 			# shifting to far right creates -1
1752					# 0, because later increment makes
1753					# that 1, attached '-' makes it '-1'
1754					# because -1 >> x == -1 !
1755        }
1756      else
1757	{
1758	$bin =~ s/.{$y}$//;		# cut off at the right side
1759        $bin = '1' . $bin;		# extend left side by one dummy '1'
1760        $bin =~ tr/10/01/;		# flip bits back
1761	}
1762      my $res = $self->new('0b'.$bin);	# add prefix and convert back
1763      $res->binc();			# remember to increment
1764      $x->{value} = $res->{value};	# take over value
1765      return $x->round(@r);		# we are done now, magic, isn't?
1766      }
1767    # x < 0, n == 2, y == 1
1768    $x->bdec();				# n == 2, but $y == 1: this fixes it
1769    }
1770
1771  $x->{value} = $CALC->_rsft($x->{value},$y->{value},$n);
1772  $x->round(@r);
1773  }
1774
1775sub band
1776  {
1777  #(BINT or num_str, BINT or num_str) return BINT
1778  # compute x & y
1779
1780  # set up parameters
1781  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1782  # objectify is costly, so avoid it
1783  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1784    {
1785    ($self,$x,$y,@r) = objectify(2,@_);
1786    }
1787
1788  return $x if $x->modify('band');
1789
1790  $r[3] = $y;				# no push!
1791
1792  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
1793
1794  my $sx = $x->{sign} eq '+' ? 1 : -1;
1795  my $sy = $y->{sign} eq '+' ? 1 : -1;
1796
1797  if ($sx == 1 && $sy == 1)
1798    {
1799    $x->{value} = $CALC->_and($x->{value},$y->{value});
1800    return $x->round(@r);
1801    }
1802
1803  if ($CAN{signed_and})
1804    {
1805    $x->{value} = $CALC->_signed_and($x->{value},$y->{value},$sx,$sy);
1806    return $x->round(@r);
1807    }
1808
1809  require $EMU_LIB;
1810  __emu_band($self,$x,$y,$sx,$sy,@r);
1811  }
1812
1813sub bior
1814  {
1815  #(BINT or num_str, BINT or num_str) return BINT
1816  # compute x | y
1817
1818  # set up parameters
1819  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1820  # objectify is costly, so avoid it
1821  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1822    {
1823    ($self,$x,$y,@r) = objectify(2,@_);
1824    }
1825
1826  return $x if $x->modify('bior');
1827  $r[3] = $y;				# no push!
1828
1829  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
1830
1831  my $sx = $x->{sign} eq '+' ? 1 : -1;
1832  my $sy = $y->{sign} eq '+' ? 1 : -1;
1833
1834  # the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior()
1835
1836  # don't use lib for negative values
1837  if ($sx == 1 && $sy == 1)
1838    {
1839    $x->{value} = $CALC->_or($x->{value},$y->{value});
1840    return $x->round(@r);
1841    }
1842
1843  # if lib can do negative values, let it handle this
1844  if ($CAN{signed_or})
1845    {
1846    $x->{value} = $CALC->_signed_or($x->{value},$y->{value},$sx,$sy);
1847    return $x->round(@r);
1848    }
1849
1850  require $EMU_LIB;
1851  __emu_bior($self,$x,$y,$sx,$sy,@r);
1852  }
1853
1854sub bxor
1855  {
1856  #(BINT or num_str, BINT or num_str) return BINT
1857  # compute x ^ y
1858
1859  # set up parameters
1860  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1861  # objectify is costly, so avoid it
1862  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1863    {
1864    ($self,$x,$y,@r) = objectify(2,@_);
1865    }
1866
1867  return $x if $x->modify('bxor');
1868  $r[3] = $y;				# no push!
1869
1870  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
1871
1872  my $sx = $x->{sign} eq '+' ? 1 : -1;
1873  my $sy = $y->{sign} eq '+' ? 1 : -1;
1874
1875  # don't use lib for negative values
1876  if ($sx == 1 && $sy == 1)
1877    {
1878    $x->{value} = $CALC->_xor($x->{value},$y->{value});
1879    return $x->round(@r);
1880    }
1881
1882  # if lib can do negative values, let it handle this
1883  if ($CAN{signed_xor})
1884    {
1885    $x->{value} = $CALC->_signed_xor($x->{value},$y->{value},$sx,$sy);
1886    return $x->round(@r);
1887    }
1888
1889  require $EMU_LIB;
1890  __emu_bxor($self,$x,$y,$sx,$sy,@r);
1891  }
1892
1893sub length
1894  {
1895  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1896
1897  my $e = $CALC->_len($x->{value});
1898  wantarray ? ($e,0) : $e;
1899  }
1900
1901sub digit
1902  {
1903  # return the nth decimal digit, negative values count backward, 0 is right
1904  my ($self,$x,$n) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
1905
1906  $n = $n->numify() if ref($n);
1907  $CALC->_digit($x->{value},$n||0);
1908  }
1909
1910sub _trailing_zeros
1911  {
1912  # return the amount of trailing zeros in $x (as scalar)
1913  my $x = shift;
1914  $x = $class->new($x) unless ref $x;
1915
1916  return 0 if $x->{sign} !~ /^[+-]$/;	# NaN, inf, -inf etc
1917
1918  $CALC->_zeros($x->{value});		# must handle odd values, 0 etc
1919  }
1920
1921sub bsqrt
1922  {
1923  # calculate square root of $x
1924  my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
1925
1926  return $x if $x->modify('bsqrt');
1927
1928  return $x->bnan() if $x->{sign} !~ /^\+/;	# -x or -inf or NaN => NaN
1929  return $x if $x->{sign} eq '+inf';		# sqrt(+inf) == inf
1930
1931  return $upgrade->bsqrt($x,@r) if defined $upgrade;
1932
1933  $x->{value} = $CALC->_sqrt($x->{value});
1934  $x->round(@r);
1935  }
1936
1937sub broot
1938  {
1939  # calculate $y'th root of $x
1940
1941  # set up parameters
1942  my ($self,$x,$y,@r) = (ref($_[0]),@_);
1943
1944  $y = $self->new(2) unless defined $y;
1945
1946  # objectify is costly, so avoid it
1947  if ((!ref($x)) || (ref($x) ne ref($y)))
1948    {
1949    ($self,$x,$y,@r) = objectify(2,$self || $class,@_);
1950    }
1951
1952  return $x if $x->modify('broot');
1953
1954  # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
1955  return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
1956         $y->{sign} !~ /^\+$/;
1957
1958  return $x->round(@r)
1959    if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
1960
1961  return $upgrade->new($x)->broot($upgrade->new($y),@r) if defined $upgrade;
1962
1963  $x->{value} = $CALC->_root($x->{value},$y->{value});
1964  $x->round(@r);
1965  }
1966
1967sub exponent
1968  {
1969  # return a copy of the exponent (here always 0, NaN or 1 for $m == 0)
1970  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
1971
1972  if ($x->{sign} !~ /^[+-]$/)
1973    {
1974    my $s = $x->{sign}; $s =~ s/^[+-]//;  # NaN, -inf,+inf => NaN or inf
1975    return $self->new($s);
1976    }
1977  return $self->bone() if $x->is_zero();
1978
1979  $self->new($x->_trailing_zeros());
1980  }
1981
1982sub mantissa
1983  {
1984  # return the mantissa (compatible to Math::BigFloat, e.g. reduced)
1985  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
1986
1987  if ($x->{sign} !~ /^[+-]$/)
1988    {
1989    # for NaN, +inf, -inf: keep the sign
1990    return $self->new($x->{sign});
1991    }
1992  my $m = $x->copy(); delete $m->{_p}; delete $m->{_a};
1993  # that's a bit inefficient:
1994  my $zeros = $m->_trailing_zeros();
1995  $m->brsft($zeros,10) if $zeros != 0;
1996  $m;
1997  }
1998
1999sub parts
2000  {
2001  # return a copy of both the exponent and the mantissa
2002  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
2003
2004  ($x->mantissa(),$x->exponent());
2005  }
2006
2007##############################################################################
2008# rounding functions
2009
2010sub bfround
2011  {
2012  # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
2013  # $n == 0 || $n == 1 => round to integer
2014  my $x = shift; my $self = ref($x) || $x; $x = $self->new($x) unless ref $x;
2015
2016  my ($scale,$mode) = $x->_scale_p($x->precision(),$x->round_mode(),@_);
2017
2018  return $x if !defined $scale || $x->modify('bfround');	# no-op
2019
2020  # no-op for BigInts if $n <= 0
2021  $x->bround( $x->length()-$scale, $mode) if $scale > 0;
2022
2023  delete $x->{_a};	# delete to save memory
2024  $x->{_p} = $scale;	# store new _p
2025  $x;
2026  }
2027
2028sub _scan_for_nonzero
2029  {
2030  # internal, used by bround()
2031  my ($x,$pad,$xs) = @_;
2032
2033  my $len = $x->length();
2034  return 0 if $len == 1;		# '5' is trailed by invisible zeros
2035  my $follow = $pad - 1;
2036  return 0 if $follow > $len || $follow < 1;
2037
2038  # since we do not know underlying represention of $x, use decimal string
2039  my $r = substr ("$x",-$follow);
2040  $r =~ /[^0]/ ? 1 : 0;
2041  }
2042
2043sub fround
2044  {
2045  # Exists to make life easier for switch between MBF and MBI (should we
2046  # autoload fxxx() like MBF does for bxxx()?)
2047  my $x = shift;
2048  $x->bround(@_);
2049  }
2050
2051sub bround
2052  {
2053  # accuracy: +$n preserve $n digits from left,
2054  #           -$n preserve $n digits from right (f.i. for 0.1234 style in MBF)
2055  # no-op for $n == 0
2056  # and overwrite the rest with 0's, return normalized number
2057  # do not return $x->bnorm(), but $x
2058
2059  my $x = shift; $x = $class->new($x) unless ref $x;
2060  my ($scale,$mode) = $x->_scale_a($x->accuracy(),$x->round_mode(),@_);
2061  return $x if !defined $scale;			# no-op
2062  return $x if $x->modify('bround');
2063
2064  if ($x->is_zero() || $scale == 0)
2065    {
2066    $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
2067    return $x;
2068    }
2069  return $x if $x->{sign} !~ /^[+-]$/;		# inf, NaN
2070
2071  # we have fewer digits than we want to scale to
2072  my $len = $x->length();
2073  # convert $scale to a scalar in case it is an object (put's a limit on the
2074  # number length, but this would already limited by memory constraints), makes
2075  # it faster
2076  $scale = $scale->numify() if ref ($scale);
2077
2078  # scale < 0, but > -len (not >=!)
2079  if (($scale < 0 && $scale < -$len-1) || ($scale >= $len))
2080    {
2081    $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
2082    return $x;
2083    }
2084
2085  # count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6
2086  my ($pad,$digit_round,$digit_after);
2087  $pad = $len - $scale;
2088  $pad = abs($scale-1) if $scale < 0;
2089
2090  # do not use digit(), it is costly for binary => decimal
2091
2092  my $xs = $CALC->_str($x->{value});
2093  my $pl = -$pad-1;
2094
2095  # pad:   123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4
2096  # pad+1: 123: 0 => 0,  at 1 => -1, at 2 => -2, at 3 => -3
2097  $digit_round = '0'; $digit_round = substr($xs,$pl,1) if $pad <= $len;
2098  $pl++; $pl ++ if $pad >= $len;
2099  $digit_after = '0'; $digit_after = substr($xs,$pl,1) if $pad > 0;
2100
2101  # in case of 01234 we round down, for 6789 up, and only in case 5 we look
2102  # closer at the remaining digits of the original $x, remember decision
2103  my $round_up = 1;					# default round up
2104  $round_up -- if
2105    ($mode eq 'trunc')				||	# trunc by round down
2106    ($digit_after =~ /[01234]/)			|| 	# round down anyway,
2107							# 6789 => round up
2108    ($digit_after eq '5')			&&	# not 5000...0000
2109    ($x->_scan_for_nonzero($pad,$xs) == 0)		&&
2110    (
2111     ($mode eq 'even') && ($digit_round =~ /[24680]/) ||
2112     ($mode eq 'odd')  && ($digit_round =~ /[13579]/) ||
2113     ($mode eq '+inf') && ($x->{sign} eq '-')   ||
2114     ($mode eq '-inf') && ($x->{sign} eq '+')   ||
2115     ($mode eq 'zero')		# round down if zero, sign adjusted below
2116    );
2117  my $put_back = 0;					# not yet modified
2118
2119  if (($pad > 0) && ($pad <= $len))
2120    {
2121    substr($xs,-$pad,$pad) = '0' x $pad;
2122    $put_back = 1;
2123    }
2124  elsif ($pad > $len)
2125    {
2126    $x->bzero();					# round to '0'
2127    }
2128
2129  if ($round_up)					# what gave test above?
2130    {
2131    $put_back = 1;
2132    $pad = $len, $xs = '0' x $pad if $scale < 0;	# tlr: whack 0.51=>1.0
2133
2134    # we modify directly the string variant instead of creating a number and
2135    # adding it, since that is faster (we already have the string)
2136    my $c = 0; $pad ++;				# for $pad == $len case
2137    while ($pad <= $len)
2138      {
2139      $c = substr($xs,-$pad,1) + 1; $c = '0' if $c eq '10';
2140      substr($xs,-$pad,1) = $c; $pad++;
2141      last if $c != 0;				# no overflow => early out
2142      }
2143    $xs = '1'.$xs if $c == 0;
2144
2145    }
2146  $x->{value} = $CALC->_new($xs) if $put_back == 1;	# put back in if needed
2147
2148  $x->{_a} = $scale if $scale >= 0;
2149  if ($scale < 0)
2150    {
2151    $x->{_a} = $len+$scale;
2152    $x->{_a} = 0 if $scale < -$len;
2153    }
2154  $x;
2155  }
2156
2157sub bfloor
2158  {
2159  # return integer less or equal then number; no-op since it's already integer
2160  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
2161
2162  $x->round(@r);
2163  }
2164
2165sub bceil
2166  {
2167  # return integer greater or equal then number; no-op since it's already int
2168  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
2169
2170  $x->round(@r);
2171  }
2172
2173sub as_number
2174  {
2175  # An object might be asked to return itself as bigint on certain overloaded
2176  # operations, this does exactly this, so that sub classes can simple inherit
2177  # it or override with their own integer conversion routine.
2178  $_[0]->copy();
2179  }
2180
2181sub as_hex
2182  {
2183  # return as hex string, with prefixed 0x
2184  my $x = shift; $x = $class->new($x) if !ref($x);
2185
2186  return $x->bstr() if $x->{sign} !~ /^[+-]$/;	# inf, nan etc
2187
2188  my $s = '';
2189  $s = $x->{sign} if $x->{sign} eq '-';
2190  $s . $CALC->_as_hex($x->{value});
2191  }
2192
2193sub as_bin
2194  {
2195  # return as binary string, with prefixed 0b
2196  my $x = shift; $x = $class->new($x) if !ref($x);
2197
2198  return $x->bstr() if $x->{sign} !~ /^[+-]$/;	# inf, nan etc
2199
2200  my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
2201  return $s . $CALC->_as_bin($x->{value});
2202  }
2203
2204##############################################################################
2205# private stuff (internal use only)
2206
2207sub objectify
2208  {
2209  # check for strings, if yes, return objects instead
2210
2211  # the first argument is number of args objectify() should look at it will
2212  # return $count+1 elements, the first will be a classname. This is because
2213  # overloaded '""' calls bstr($object,undef,undef) and this would result in
2214  # useless objects beeing created and thrown away. So we cannot simple loop
2215  # over @_. If the given count is 0, all arguments will be used.
2216
2217  # If the second arg is a ref, use it as class.
2218  # If not, try to use it as classname, unless undef, then use $class
2219  # (aka Math::BigInt). The latter shouldn't happen,though.
2220
2221  # caller:			   gives us:
2222  # $x->badd(1);                => ref x, scalar y
2223  # Class->badd(1,2);           => classname x (scalar), scalar x, scalar y
2224  # Class->badd( Class->(1),2); => classname x (scalar), ref x, scalar y
2225  # Math::BigInt::badd(1,2);    => scalar x, scalar y
2226  # In the last case we check number of arguments to turn it silently into
2227  # $class,1,2. (We can not take '1' as class ;o)
2228  # badd($class,1) is not supported (it should, eventually, try to add undef)
2229  # currently it tries 'Math::BigInt' + 1, which will not work.
2230
2231  # some shortcut for the common cases
2232  # $x->unary_op();
2233  return (ref($_[1]),$_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]);
2234
2235  my $count = abs(shift || 0);
2236
2237  my (@a,$k,$d);		# resulting array, temp, and downgrade
2238  if (ref $_[0])
2239    {
2240    # okay, got object as first
2241    $a[0] = ref $_[0];
2242    }
2243  else
2244    {
2245    # nope, got 1,2 (Class->xxx(1) => Class,1 and not supported)
2246    $a[0] = $class;
2247    $a[0] = shift if $_[0] =~ /^[A-Z].*::/;	# classname as first?
2248    }
2249
2250  no strict 'refs';
2251  # disable downgrading, because Math::BigFLoat->foo('1.0','2.0') needs floats
2252  if (defined ${"$a[0]::downgrade"})
2253    {
2254    $d = ${"$a[0]::downgrade"};
2255    ${"$a[0]::downgrade"} = undef;
2256    }
2257
2258  my $up = ${"$a[0]::upgrade"};
2259  #print "Now in objectify, my class is today $a[0], count = $count\n";
2260  if ($count == 0)
2261    {
2262    while (@_)
2263      {
2264      $k = shift;
2265      if (!ref($k))
2266        {
2267        $k = $a[0]->new($k);
2268        }
2269      elsif (!defined $up && ref($k) ne $a[0])
2270	{
2271	# foreign object, try to convert to integer
2272        $k->can('as_number') ?  $k = $k->as_number() : $k = $a[0]->new($k);
2273	}
2274      push @a,$k;
2275      }
2276    }
2277  else
2278    {
2279    while ($count > 0)
2280      {
2281      $count--;
2282      $k = shift;
2283      if (!ref($k))
2284        {
2285        $k = $a[0]->new($k);
2286        }
2287      elsif (!defined $up && ref($k) ne $a[0])
2288	{
2289	# foreign object, try to convert to integer
2290        $k->can('as_number') ?  $k = $k->as_number() : $k = $a[0]->new($k);
2291	}
2292      push @a,$k;
2293      }
2294    push @a,@_;		# return other params, too
2295    }
2296  if (! wantarray)
2297    {
2298    require Carp; Carp::croak ("$class objectify needs list context");
2299    }
2300  ${"$a[0]::downgrade"} = $d;
2301  @a;
2302  }
2303
2304sub import
2305  {
2306  my $self = shift;
2307
2308  $IMPORT++;				# remember we did import()
2309  my @a; my $l = scalar @_;
2310  for ( my $i = 0; $i < $l ; $i++ )
2311    {
2312    if ($_[$i] eq ':constant')
2313      {
2314      # this causes overlord er load to step in
2315      overload::constant
2316	integer => sub { $self->new(shift) },
2317      	binary => sub { $self->new(shift) };
2318      }
2319    elsif ($_[$i] eq 'upgrade')
2320      {
2321      # this causes upgrading
2322      $upgrade = $_[$i+1];		# or undef to disable
2323      $i++;
2324      }
2325    elsif ($_[$i] =~ /^lib$/i)
2326      {
2327      # this causes a different low lib to take care...
2328      $CALC = $_[$i+1] || '';
2329      $i++;
2330      }
2331    else
2332      {
2333      push @a, $_[$i];
2334      }
2335    }
2336  # any non :constant stuff is handled by our parent, Exporter
2337  # even if @_ is empty, to give it a chance
2338  $self->SUPER::import(@a);			# need it for subclasses
2339  $self->export_to_level(1,$self,@a);		# need it for MBF
2340
2341  # try to load core math lib
2342  my @c = split /\s*,\s*/,$CALC;
2343  push @c,'Calc';				# if all fail, try this
2344  $CALC = '';					# signal error
2345  foreach my $lib (@c)
2346    {
2347    next if ($lib || '') eq '';
2348    $lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i;
2349    $lib =~ s/\.pm$//;
2350    if ($] < 5.006)
2351      {
2352      # Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is
2353      # used in the same script, or eval inside import().
2354      my @parts = split /::/, $lib;             # Math::BigInt => Math BigInt
2355      my $file = pop @parts; $file .= '.pm';    # BigInt => BigInt.pm
2356      require File::Spec;
2357      $file = File::Spec->catfile (@parts, $file);
2358      eval { require "$file"; $lib->import( @c ); }
2359      }
2360    else
2361      {
2362      eval "use $lib qw/@c/;";
2363      }
2364    if ($@ eq '')
2365      {
2366      my $ok = 1;
2367      # loaded it ok, see if the api_version() is high enough
2368      if ($lib->can('api_version') && $lib->api_version() >= 1.0)
2369	{
2370	$ok = 0;
2371	# api_version matches, check if it really provides anything we need
2372        for my $method (qw/
2373		one two ten
2374		str num
2375		add mul div sub dec inc
2376		acmp len digit is_one is_zero is_even is_odd
2377		is_two is_ten
2378		new copy check from_hex from_bin as_hex as_bin zeros
2379		rsft lsft xor and or
2380		mod sqrt root fac pow modinv modpow log_int gcd
2381	 /)
2382          {
2383	  if (!$lib->can("_$method"))
2384	    {
2385	    if (($WARN{$lib}||0) < 2)
2386	      {
2387	      require Carp;
2388	      Carp::carp ("$lib is missing method '_$method'");
2389	      $WARN{$lib} = 1;		# still warn about the lib
2390	      }
2391            $ok++; last;
2392	    }
2393          }
2394	}
2395      if ($ok == 0)
2396	{
2397	$CALC = $lib;
2398        last;			# found a usable one, break
2399	}
2400      else
2401	{
2402	if (($WARN{$lib}||0) < 2)
2403	  {
2404	  my $ver = eval "\$$lib\::VERSION";
2405	  require Carp;
2406	  Carp::carp ("Cannot load outdated $lib v$ver, please upgrade");
2407	  $WARN{$lib} = 2;		# never warn again
2408	  }
2409        }
2410      }
2411    }
2412  if ($CALC eq '')
2413    {
2414    require Carp;
2415    Carp::croak ("Couldn't load any math lib, not even 'Calc.pm'");
2416    }
2417  _fill_can_cache();		# for emulating lower math lib functions
2418  }
2419
2420sub _fill_can_cache
2421  {
2422  # fill $CAN with the results of $CALC->can(...)
2423
2424  %CAN = ();
2425  for my $method (qw/ signed_and or signed_or xor signed_xor /)
2426    {
2427    $CAN{$method} = $CALC->can("_$method") ? 1 : 0;
2428    }
2429  }
2430
2431sub __from_hex
2432  {
2433  # convert a (ref to) big hex string to BigInt, return undef for error
2434  my $hs = shift;
2435
2436  my $x = Math::BigInt->bzero();
2437
2438  # strip underscores
2439  $hs =~ s/([0-9a-fA-F])_([0-9a-fA-F])/$1$2/g;
2440  $hs =~ s/([0-9a-fA-F])_([0-9a-fA-F])/$1$2/g;
2441
2442  return $x->bnan() if $hs !~ /^[\-\+]?0x[0-9A-Fa-f]+$/;
2443
2444  my $sign = '+'; $sign = '-' if $hs =~ /^-/;
2445
2446  $hs =~ s/^[+-]//;						# strip sign
2447  $x->{value} = $CALC->_from_hex($hs);
2448  $x->{sign} = $sign unless $CALC->_is_zero($x->{value}); 	# no '-0'
2449  $x;
2450  }
2451
2452sub __from_bin
2453  {
2454  # convert a (ref to) big binary string to BigInt, return undef for error
2455  my $bs = shift;
2456
2457  my $x = Math::BigInt->bzero();
2458  # strip underscores
2459  $bs =~ s/([01])_([01])/$1$2/g;
2460  $bs =~ s/([01])_([01])/$1$2/g;
2461  return $x->bnan() if $bs !~ /^[+-]?0b[01]+$/;
2462
2463  my $sign = '+'; $sign = '-' if $bs =~ /^\-/;
2464  $bs =~ s/^[+-]//;						# strip sign
2465
2466  $x->{value} = $CALC->_from_bin($bs);
2467  $x->{sign} = $sign unless $CALC->_is_zero($x->{value}); 	# no '-0'
2468  $x;
2469  }
2470
2471sub _split
2472  {
2473  # (ref to num_str) return num_str
2474  # internal, take apart a string and return the pieces
2475  # strip leading/trailing whitespace, leading zeros, underscore and reject
2476  # invalid input
2477  my $x = shift;
2478
2479  # strip white space at front, also extranous leading zeros
2480  $x =~ s/^\s*([-]?)0*([0-9])/$1$2/g;	# will not strip '  .2'
2481  $x =~ s/^\s+//;			# but this will
2482  $x =~ s/\s+$//g;			# strip white space at end
2483
2484  # shortcut, if nothing to split, return early
2485  if ($x =~ /^[+-]?\d+\z/)
2486    {
2487    $x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+';
2488    return (\$sign, \$x, \'', \'', \0);
2489    }
2490
2491  # invalid starting char?
2492  return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;
2493
2494  return __from_hex($x) if $x =~ /^[\-\+]?0x/;	# hex string
2495  return __from_bin($x) if $x =~ /^[\-\+]?0b/;	# binary string
2496
2497  # strip underscores between digits
2498  $x =~ s/(\d)_(\d)/$1$2/g;
2499  $x =~ s/(\d)_(\d)/$1$2/g;		# do twice for 1_2_3
2500
2501  # some possible inputs:
2502  # 2.1234 # 0.12        # 1 	      # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2
2503  # .2 	   # 1_2_3.4_5_6 # 1.4E1_2_3  # 1e3 # +.2     # 0e999
2504
2505  my ($m,$e,$last) = split /[Ee]/,$x;
2506  return if defined $last;		# last defined => 1e2E3 or others
2507  $e = '0' if !defined $e || $e eq "";
2508
2509  # sign,value for exponent,mantint,mantfrac
2510  my ($es,$ev,$mis,$miv,$mfv);
2511  # valid exponent?
2512  if ($e =~ /^([+-]?)0*(\d+)$/) # strip leading zeros
2513    {
2514    $es = $1; $ev = $2;
2515    # valid mantissa?
2516    return if $m eq '.' || $m eq '';
2517    my ($mi,$mf,$lastf) = split /\./,$m;
2518    return if defined $lastf;		# lastf defined => 1.2.3 or others
2519    $mi = '0' if !defined $mi;
2520    $mi .= '0' if $mi =~ /^[\-\+]?$/;
2521    $mf = '0' if !defined $mf || $mf eq '';
2522    if ($mi =~ /^([+-]?)0*(\d+)$/) # strip leading zeros
2523      {
2524      $mis = $1||'+'; $miv = $2;
2525      return unless ($mf =~ /^(\d*?)0*$/);	# strip trailing zeros
2526      $mfv = $1;
2527      # handle the 0e999 case here
2528      $ev = 0 if $miv eq '0' && $mfv eq '';
2529      return (\$mis,\$miv,\$mfv,\$es,\$ev);
2530      }
2531    }
2532  return; # NaN, not a number
2533  }
2534
2535##############################################################################
2536# internal calculation routines (others are in Math::BigInt::Calc etc)
2537
2538sub __lcm
2539  {
2540  # (BINT or num_str, BINT or num_str) return BINT
2541  # does modify first argument
2542  # LCM
2543
2544  my $x = shift; my $ty = shift;
2545  return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan);
2546  $x * $ty / bgcd($x,$ty);
2547  }
2548
2549###############################################################################
2550# this method return 0 if the object can be modified, or 1 for not
2551# We use a fast constant sub() here, to avoid costly calls. Subclasses
2552# may override it with special code (f.i. Math::BigInt::Constant does so)
2553
2554sub modify () { 0; }
2555
25561;
2557__END__
2558
2559=head1 NAME
2560
2561Math::BigInt - Arbitrary size integer math package
2562
2563=head1 SYNOPSIS
2564
2565  use Math::BigInt;
2566
2567  # or make it faster: install (optional) Math::BigInt::GMP
2568  # and always use (it will fall back to pure Perl if the
2569  # GMP library is not installed):
2570
2571  use Math::BigInt lib => 'GMP';
2572
2573  my $str = '1234567890';
2574  my @values = (64,74,18);
2575  my $n = 1; my $sign = '-';
2576
2577  # Number creation
2578  $x = Math::BigInt->new($str);		# defaults to 0
2579  $y = $x->copy();			# make a true copy
2580  $nan  = Math::BigInt->bnan(); 	# create a NotANumber
2581  $zero = Math::BigInt->bzero();	# create a +0
2582  $inf = Math::BigInt->binf();		# create a +inf
2583  $inf = Math::BigInt->binf('-');	# create a -inf
2584  $one = Math::BigInt->bone();		# create a +1
2585  $one = Math::BigInt->bone('-');	# create a -1
2586
2587  # Testing (don't modify their arguments)
2588  # (return true if the condition is met, otherwise false)
2589
2590  $x->is_zero();	# if $x is +0
2591  $x->is_nan();		# if $x is NaN
2592  $x->is_one();		# if $x is +1
2593  $x->is_one('-');	# if $x is -1
2594  $x->is_odd();		# if $x is odd
2595  $x->is_even();	# if $x is even
2596  $x->is_pos();		# if $x >= 0
2597  $x->is_neg();		# if $x <  0
2598  $x->is_inf($sign);	# if $x is +inf, or -inf (sign is default '+')
2599  $x->is_int();		# if $x is an integer (not a float)
2600
2601  # comparing and digit/sign extration
2602  $x->bcmp($y);		# compare numbers (undef,<0,=0,>0)
2603  $x->bacmp($y);	# compare absolutely (undef,<0,=0,>0)
2604  $x->sign();		# return the sign, either +,- or NaN
2605  $x->digit($n);	# return the nth digit, counting from right
2606  $x->digit(-$n);	# return the nth digit, counting from left
2607
2608  # The following all modify their first argument. If you want to preserve
2609  # $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
2610  # neccessary when mixing $a = $b assigments with non-overloaded math.
2611
2612  $x->bzero();		# set $x to 0
2613  $x->bnan();		# set $x to NaN
2614  $x->bone();		# set $x to +1
2615  $x->bone('-');	# set $x to -1
2616  $x->binf();		# set $x to inf
2617  $x->binf('-');	# set $x to -inf
2618
2619  $x->bneg();		# negation
2620  $x->babs();		# absolute value
2621  $x->bnorm();		# normalize (no-op in BigInt)
2622  $x->bnot();		# two's complement (bit wise not)
2623  $x->binc();		# increment $x by 1
2624  $x->bdec();		# decrement $x by 1
2625
2626  $x->badd($y);		# addition (add $y to $x)
2627  $x->bsub($y);		# subtraction (subtract $y from $x)
2628  $x->bmul($y);		# multiplication (multiply $x by $y)
2629  $x->bdiv($y);		# divide, set $x to quotient
2630			# return (quo,rem) or quo if scalar
2631
2632  $x->bmod($y);		   # modulus (x % y)
2633  $x->bmodpow($exp,$mod);  # modular exponentation (($num**$exp) % $mod))
2634  $x->bmodinv($mod);	   # the inverse of $x in the given modulus $mod
2635
2636  $x->bpow($y);		   # power of arguments (x ** y)
2637  $x->blsft($y);	   # left shift
2638  $x->brsft($y);	   # right shift
2639  $x->blsft($y,$n);	   # left shift, by base $n (like 10)
2640  $x->brsft($y,$n);	   # right shift, by base $n (like 10)
2641
2642  $x->band($y);		   # bitwise and
2643  $x->bior($y);		   # bitwise inclusive or
2644  $x->bxor($y);		   # bitwise exclusive or
2645  $x->bnot();		   # bitwise not (two's complement)
2646
2647  $x->bsqrt();		   # calculate square-root
2648  $x->broot($y);	   # $y'th root of $x (e.g. $y == 3 => cubic root)
2649  $x->bfac();		   # factorial of $x (1*2*3*4*..$x)
2650
2651  $x->round($A,$P,$mode);  # round to accuracy or precision using mode $mode
2652  $x->bround($n);	   # accuracy: preserve $n digits
2653  $x->bfround($n);	   # round to $nth digit, no-op for BigInts
2654
2655  # The following do not modify their arguments in BigInt (are no-ops),
2656  # but do so in BigFloat:
2657
2658  $x->bfloor();		   # return integer less or equal than $x
2659  $x->bceil();		   # return integer greater or equal than $x
2660
2661  # The following do not modify their arguments:
2662
2663  # greatest common divisor (no OO style)
2664  my $gcd = Math::BigInt::bgcd(@values);
2665  # lowest common multiplicator (no OO style)
2666  my $lcm = Math::BigInt::blcm(@values);
2667
2668  $x->length();		   # return number of digits in number
2669  ($xl,$f) = $x->length(); # length of number and length of fraction part,
2670			   # latter is always 0 digits long for BigInt's
2671
2672  $x->exponent();	   # return exponent as BigInt
2673  $x->mantissa();	   # return (signed) mantissa as BigInt
2674  $x->parts();		   # return (mantissa,exponent) as BigInt
2675  $x->copy();		   # make a true copy of $x (unlike $y = $x;)
2676  $x->as_int();		   # return as BigInt (in BigInt: same as copy())
2677  $x->numify();		   # return as scalar (might overflow!)
2678
2679  # conversation to string (do not modify their argument)
2680  $x->bstr();		   # normalized string
2681  $x->bsstr();		   # normalized string in scientific notation
2682  $x->as_hex();		   # as signed hexadecimal string with prefixed 0x
2683  $x->as_bin();		   # as signed binary string with prefixed 0b
2684
2685
2686  # precision and accuracy (see section about rounding for more)
2687  $x->precision();	   # return P of $x (or global, if P of $x undef)
2688  $x->precision($n);	   # set P of $x to $n
2689  $x->accuracy();	   # return A of $x (or global, if A of $x undef)
2690  $x->accuracy($n);	   # set A $x to $n
2691
2692  # Global methods
2693  Math::BigInt->precision(); # get/set global P for all BigInt objects
2694  Math::BigInt->accuracy();  # get/set global A for all BigInt objects
2695  Math::BigInt->config();    # return hash containing configuration
2696
2697=head1 DESCRIPTION
2698
2699All operators (inlcuding basic math operations) are overloaded if you
2700declare your big integers as
2701
2702  $i = new Math::BigInt '123_456_789_123_456_789';
2703
2704Operations with overloaded operators preserve the arguments which is
2705exactly what you expect.
2706
2707=over 2
2708
2709=item Input
2710
2711Input values to these routines may be any string, that looks like a number
2712and results in an integer, including hexadecimal and binary numbers.
2713
2714Scalars holding numbers may also be passed, but note that non-integer numbers
2715may already have lost precision due to the conversation to float. Quote
2716your input if you want BigInt to see all the digits:
2717
2718	$x = Math::BigInt->new(12345678890123456789);	# bad
2719	$x = Math::BigInt->new('12345678901234567890');	# good
2720
2721You can include one underscore between any two digits.
2722
2723This means integer values like 1.01E2 or even 1000E-2 are also accepted.
2724Non-integer values result in NaN.
2725
2726Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('')
2727results in 'NaN'. This might change in the future, so use always the following
2728explicit forms to get a zero or NaN:
2729
2730	$zero = Math::BigInt->bzero();
2731	$nan = Math::BigInt->bnan();
2732
2733C<bnorm()> on a BigInt object is now effectively a no-op, since the numbers
2734are always stored in normalized form. If passed a string, creates a BigInt
2735object from the input.
2736
2737=item Output
2738
2739Output values are BigInt objects (normalized), except for bstr(), which
2740returns a string in normalized form.
2741Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
2742C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>)
2743return either undef, <0, 0 or >0 and are suited for sort.
2744
2745=back
2746
2747=head1 METHODS
2748
2749Each of the methods below (except config(), accuracy() and precision())
2750accepts three additional parameters. These arguments $A, $P and $R are
2751accuracy, precision and round_mode. Please see the section about
2752L<ACCURACY and PRECISION> for more information.
2753
2754=head2 config
2755
2756	use Data::Dumper;
2757
2758	print Dumper ( Math::BigInt->config() );
2759	print Math::BigInt->config()->{lib},"\n";
2760
2761Returns a hash containing the configuration, e.g. the version number, lib
2762loaded etc. The following hash keys are currently filled in with the
2763appropriate information.
2764
2765	key		Description
2766			Example
2767	============================================================
2768	lib		Name of the low-level math library
2769			Math::BigInt::Calc
2770	lib_version 	Version of low-level math library (see 'lib')
2771			0.30
2772	class		The class name of config() you just called
2773			Math::BigInt
2774	upgrade		To which class math operations might be upgraded
2775			Math::BigFloat
2776	downgrade	To which class math operations might be downgraded
2777			undef
2778	precision	Global precision
2779			undef
2780	accuracy	Global accuracy
2781			undef
2782	round_mode	Global round mode
2783			even
2784	version		version number of the class you used
2785			1.61
2786	div_scale	Fallback acccuracy for div
2787			40
2788	trap_nan	If true, traps creation of NaN via croak()
2789			1
2790	trap_inf	If true, traps creation of +inf/-inf via croak()
2791			1
2792
2793The following values can be set by passing C<config()> a reference to a hash:
2794
2795	trap_inf trap_nan
2796        upgrade downgrade precision accuracy round_mode div_scale
2797
2798Example:
2799
2800	$new_cfg = Math::BigInt->config( { trap_inf => 1, precision => 5 } );
2801
2802=head2 accuracy
2803
2804	$x->accuracy(5);		# local for $x
2805	CLASS->accuracy(5);		# global for all members of CLASS
2806	$A = $x->accuracy();		# read out
2807	$A = CLASS->accuracy();		# read out
2808
2809Set or get the global or local accuracy, aka how many significant digits the
2810results have.
2811
2812Please see the section about L<ACCURACY AND PRECISION> for further details.
2813
2814Value must be greater than zero. Pass an undef value to disable it:
2815
2816	$x->accuracy(undef);
2817	Math::BigInt->accuracy(undef);
2818
2819Returns the current accuracy. For C<$x->accuracy()> it will return either the
2820local accuracy, or if not defined, the global. This means the return value
2821represents the accuracy that will be in effect for $x:
2822
2823	$y = Math::BigInt->new(1234567);	# unrounded
2824	print Math::BigInt->accuracy(4),"\n";	# set 4, print 4
2825	$x = Math::BigInt->new(123456);		# will be automatically rounded
2826	print "$x $y\n";			# '123500 1234567'
2827	print $x->accuracy(),"\n";		# will be 4
2828	print $y->accuracy(),"\n";		# also 4, since global is 4
2829	print Math::BigInt->accuracy(5),"\n";	# set to 5, print 5
2830	print $x->accuracy(),"\n";		# still 4
2831	print $y->accuracy(),"\n";		# 5, since global is 5
2832
2833Note: Works also for subclasses like Math::BigFloat. Each class has it's own
2834globals separated from Math::BigInt, but it is possible to subclass
2835Math::BigInt and make the globals of the subclass aliases to the ones from
2836Math::BigInt.
2837
2838=head2 precision
2839
2840	$x->precision(-2);		# local for $x, round right of the dot
2841	$x->precision(2);		# ditto, but round left of the dot
2842	CLASS->accuracy(5);		# global for all members of CLASS
2843	CLASS->precision(-5);		# ditto
2844	$P = CLASS->precision();	# read out
2845	$P = $x->precision();		# read out
2846
2847Set or get the global or local precision, aka how many digits the result has
2848after the dot (or where to round it when passing a positive number). In
2849Math::BigInt, passing a negative number precision has no effect since no
2850numbers have digits after the dot.
2851
2852Please see the section about L<ACCURACY AND PRECISION> for further details.
2853
2854Value must be greater than zero. Pass an undef value to disable it:
2855
2856	$x->precision(undef);
2857	Math::BigInt->precision(undef);
2858
2859Returns the current precision. For C<$x->precision()> it will return either the
2860local precision of $x, or if not defined, the global. This means the return
2861value represents the accuracy that will be in effect for $x:
2862
2863	$y = Math::BigInt->new(1234567);	# unrounded
2864	print Math::BigInt->precision(4),"\n";	# set 4, print 4
2865	$x = Math::BigInt->new(123456);		# will be automatically rounded
2866
2867Note: Works also for subclasses like Math::BigFloat. Each class has it's own
2868globals separated from Math::BigInt, but it is possible to subclass
2869Math::BigInt and make the globals of the subclass aliases to the ones from
2870Math::BigInt.
2871
2872=head2 brsft
2873
2874	$x->brsft($y,$n);
2875
2876Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and
28772, but others work, too.
2878
2879Right shifting usually amounts to dividing $x by $n ** $y and truncating the
2880result:
2881
2882
2883	$x = Math::BigInt->new(10);
2884	$x->brsft(1);			# same as $x >> 1: 5
2885	$x = Math::BigInt->new(1234);
2886	$x->brsft(2,10);		# result 12
2887
2888There is one exception, and that is base 2 with negative $x:
2889
2890
2891	$x = Math::BigInt->new(-5);
2892	print $x->brsft(1);
2893
2894This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the
2895result).
2896
2897=head2 new
2898
2899  	$x = Math::BigInt->new($str,$A,$P,$R);
2900
2901Creates a new BigInt object from a scalar or another BigInt object. The
2902input is accepted as decimal, hex (with leading '0x') or binary (with leading
2903'0b').
2904
2905See L<Input> for more info on accepted input formats.
2906
2907=head2 bnan
2908
2909  	$x = Math::BigInt->bnan();
2910
2911Creates a new BigInt object representing NaN (Not A Number).
2912If used on an object, it will set it to NaN:
2913
2914	$x->bnan();
2915
2916=head2 bzero
2917
2918  	$x = Math::BigInt->bzero();
2919
2920Creates a new BigInt object representing zero.
2921If used on an object, it will set it to zero:
2922
2923	$x->bzero();
2924
2925=head2 binf
2926
2927  	$x = Math::BigInt->binf($sign);
2928
2929Creates a new BigInt object representing infinity. The optional argument is
2930either '-' or '+', indicating whether you want infinity or minus infinity.
2931If used on an object, it will set it to infinity:
2932
2933	$x->binf();
2934	$x->binf('-');
2935
2936=head2 bone
2937
2938  	$x = Math::BigInt->binf($sign);
2939
2940Creates a new BigInt object representing one. The optional argument is
2941either '-' or '+', indicating whether you want one or minus one.
2942If used on an object, it will set it to one:
2943
2944	$x->bone();		# +1
2945	$x->bone('-');		# -1
2946
2947=head2 is_one()/is_zero()/is_nan()/is_inf()
2948
2949
2950	$x->is_zero();			# true if arg is +0
2951	$x->is_nan();			# true if arg is NaN
2952	$x->is_one();			# true if arg is +1
2953	$x->is_one('-');		# true if arg is -1
2954	$x->is_inf();			# true if +inf
2955	$x->is_inf('-');		# true if -inf (sign is default '+')
2956
2957These methods all test the BigInt for beeing one specific value and return
2958true or false depending on the input. These are faster than doing something
2959like:
2960
2961	if ($x == 0)
2962
2963=head2 is_pos()/is_neg()
2964
2965	$x->is_pos();			# true if >= 0
2966	$x->is_neg();			# true if <  0
2967
2968The methods return true if the argument is positive or negative, respectively.
2969C<NaN> is neither positive nor negative, while C<+inf> counts as positive, and
2970C<-inf> is negative. A C<zero> is positive.
2971
2972These methods are only testing the sign, and not the value.
2973
2974C<is_positive()> and C<is_negative()> are aliase to C<is_pos()> and
2975C<is_neg()>, respectively. C<is_positive()> and C<is_negative()> were
2976introduced in v1.36, while C<is_pos()> and C<is_neg()> were only introduced
2977in v1.68.
2978
2979=head2 is_odd()/is_even()/is_int()
2980
2981	$x->is_odd();			# true if odd, false for even
2982	$x->is_even();			# true if even, false for odd
2983	$x->is_int();			# true if $x is an integer
2984
2985The return true when the argument satisfies the condition. C<NaN>, C<+inf>,
2986C<-inf> are not integers and are neither odd nor even.
2987
2988In BigInt, all numbers except C<NaN>, C<+inf> and C<-inf> are integers.
2989
2990=head2 bcmp
2991
2992	$x->bcmp($y);
2993
2994Compares $x with $y and takes the sign into account.
2995Returns -1, 0, 1 or undef.
2996
2997=head2 bacmp
2998
2999	$x->bacmp($y);
3000
3001Compares $x with $y while ignoring their. Returns -1, 0, 1 or undef.
3002
3003=head2 sign
3004
3005	$x->sign();
3006
3007Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN.
3008
3009=head2 digit
3010
3011	$x->digit($n);		# return the nth digit, counting from right
3012
3013If C<$n> is negative, returns the digit counting from left.
3014
3015=head2 bneg
3016
3017	$x->bneg();
3018
3019Negate the number, e.g. change the sign between '+' and '-', or between '+inf'
3020and '-inf', respectively. Does nothing for NaN or zero.
3021
3022=head2 babs
3023
3024	$x->babs();
3025
3026Set the number to it's absolute value, e.g. change the sign from '-' to '+'
3027and from '-inf' to '+inf', respectively. Does nothing for NaN or positive
3028numbers.
3029
3030=head2 bnorm
3031
3032	$x->bnorm();			# normalize (no-op)
3033
3034=head2 bnot
3035
3036	$x->bnot();
3037
3038Two's complement (bit wise not). This is equivalent to
3039
3040	$x->binc()->bneg();
3041
3042but faster.
3043
3044=head2 binc
3045
3046	$x->binc();			# increment x by 1
3047
3048=head2 bdec
3049
3050	$x->bdec();			# decrement x by 1
3051
3052=head2 badd
3053
3054	$x->badd($y);			# addition (add $y to $x)
3055
3056=head2 bsub
3057
3058	$x->bsub($y);			# subtraction (subtract $y from $x)
3059
3060=head2 bmul
3061
3062	$x->bmul($y);			# multiplication (multiply $x by $y)
3063
3064=head2 bdiv
3065
3066	$x->bdiv($y);			# divide, set $x to quotient
3067					# return (quo,rem) or quo if scalar
3068
3069=head2 bmod
3070
3071	$x->bmod($y);			# modulus (x % y)
3072
3073=head2 bmodinv
3074
3075	num->bmodinv($mod);		# modular inverse
3076
3077Returns the inverse of C<$num> in the given modulus C<$mod>.  'C<NaN>' is
3078returned unless C<$num> is relatively prime to C<$mod>, i.e. unless
3079C<bgcd($num, $mod)==1>.
3080
3081=head2 bmodpow
3082
3083	$num->bmodpow($exp,$mod);	# modular exponentation
3084					# ($num**$exp % $mod)
3085
3086Returns the value of C<$num> taken to the power C<$exp> in the modulus
3087C<$mod> using binary exponentation.  C<bmodpow> is far superior to
3088writing
3089
3090	$num ** $exp % $mod
3091
3092because it is much faster - it reduces internal variables into
3093the modulus whenever possible, so it operates on smaller numbers.
3094
3095C<bmodpow> also supports negative exponents.
3096
3097	bmodpow($num, -1, $mod)
3098
3099is exactly equivalent to
3100
3101	bmodinv($num, $mod)
3102
3103=head2 bpow
3104
3105	$x->bpow($y);			# power of arguments (x ** y)
3106
3107=head2 blsft
3108
3109	$x->blsft($y);		# left shift
3110	$x->blsft($y,$n);	# left shift, in base $n (like 10)
3111
3112=head2 brsft
3113
3114	$x->brsft($y);		# right shift
3115	$x->brsft($y,$n);	# right shift, in base $n (like 10)
3116
3117=head2 band
3118
3119	$x->band($y);			# bitwise and
3120
3121=head2 bior
3122
3123	$x->bior($y);			# bitwise inclusive or
3124
3125=head2 bxor
3126
3127	$x->bxor($y);			# bitwise exclusive or
3128
3129=head2 bnot
3130
3131	$x->bnot();			# bitwise not (two's complement)
3132
3133=head2 bsqrt
3134
3135	$x->bsqrt();			# calculate square-root
3136
3137=head2 bfac
3138
3139	$x->bfac();			# factorial of $x (1*2*3*4*..$x)
3140
3141=head2 round
3142
3143	$x->round($A,$P,$round_mode);
3144
3145Round $x to accuracy C<$A> or precision C<$P> using the round mode
3146C<$round_mode>.
3147
3148=head2 bround
3149
3150	$x->bround($N);               # accuracy: preserve $N digits
3151
3152=head2 bfround
3153
3154	$x->bfround($N);              # round to $Nth digit, no-op for BigInts
3155
3156=head2 bfloor
3157
3158	$x->bfloor();
3159
3160Set $x to the integer less or equal than $x. This is a no-op in BigInt, but
3161does change $x in BigFloat.
3162
3163=head2 bceil
3164
3165	$x->bceil();
3166
3167Set $x to the integer greater or equal than $x. This is a no-op in BigInt, but
3168does change $x in BigFloat.
3169
3170=head2 bgcd
3171
3172	bgcd(@values);		# greatest common divisor (no OO style)
3173
3174=head2 blcm
3175
3176	blcm(@values);		# lowest common multiplicator (no OO style)
3177
3178head2 length
3179
3180	$x->length();
3181        ($xl,$fl) = $x->length();
3182
3183Returns the number of digits in the decimal representation of the number.
3184In list context, returns the length of the integer and fraction part. For
3185BigInt's, the length of the fraction part will always be 0.
3186
3187=head2 exponent
3188
3189	$x->exponent();
3190
3191Return the exponent of $x as BigInt.
3192
3193=head2 mantissa
3194
3195	$x->mantissa();
3196
3197Return the signed mantissa of $x as BigInt.
3198
3199=head2 parts
3200
3201	$x->parts();		# return (mantissa,exponent) as BigInt
3202
3203=head2 copy
3204
3205	$x->copy();		# make a true copy of $x (unlike $y = $x;)
3206
3207=head2 as_int
3208
3209	$x->as_int();
3210
3211Returns $x as a BigInt (truncated towards zero). In BigInt this is the same as
3212C<copy()>.
3213
3214C<as_number()> is an alias to this method. C<as_number> was introduced in
3215v1.22, while C<as_int()> was only introduced in v1.68.
3216
3217=head2 bstr
3218
3219	$x->bstr();
3220
3221Returns a normalized string represantation of C<$x>.
3222
3223=head2 bsstr
3224
3225	$x->bsstr();		# normalized string in scientific notation
3226
3227=head2 as_hex
3228
3229	$x->as_hex();		# as signed hexadecimal string with prefixed 0x
3230
3231=head2 as_bin
3232
3233	$x->as_bin();		# as signed binary string with prefixed 0b
3234
3235=head1 ACCURACY and PRECISION
3236
3237Since version v1.33, Math::BigInt and Math::BigFloat have full support for
3238accuracy and precision based rounding, both automatically after every
3239operation, as well as manually.
3240
3241This section describes the accuracy/precision handling in Math::Big* as it
3242used to be and as it is now, complete with an explanation of all terms and
3243abbreviations.
3244
3245Not yet implemented things (but with correct description) are marked with '!',
3246things that need to be answered are marked with '?'.
3247
3248In the next paragraph follows a short description of terms used here (because
3249these may differ from terms used by others people or documentation).
3250
3251During the rest of this document, the shortcuts A (for accuracy), P (for
3252precision), F (fallback) and R (rounding mode) will be used.
3253
3254=head2 Precision P
3255
3256A fixed number of digits before (positive) or after (negative)
3257the decimal point. For example, 123.45 has a precision of -2. 0 means an
3258integer like 123 (or 120). A precision of 2 means two digits to the left
3259of the decimal point are zero, so 123 with P = 1 becomes 120. Note that
3260numbers with zeros before the decimal point may have different precisions,
3261because 1200 can have p = 0, 1 or 2 (depending on what the inital value
3262was). It could also have p < 0, when the digits after the decimal point
3263are zero.
3264
3265The string output (of floating point numbers) will be padded with zeros:
3266
3267	Initial value   P       A	Result          String
3268	------------------------------------------------------------
3269	1234.01         -3      	1000            1000
3270	1234            -2      	1200            1200
3271	1234.5          -1      	1230            1230
3272	1234.001        1       	1234            1234.0
3273	1234.01         0       	1234            1234
3274	1234.01         2       	1234.01		1234.01
3275	1234.01         5       	1234.01		1234.01000
3276
3277For BigInts, no padding occurs.
3278
3279=head2 Accuracy A
3280
3281Number of significant digits. Leading zeros are not counted. A
3282number may have an accuracy greater than the non-zero digits
3283when there are zeros in it or trailing zeros. For example, 123.456 has
3284A of 6, 10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3.
3285
3286The string output (of floating point numbers) will be padded with zeros:
3287
3288	Initial value   P       A	Result          String
3289	------------------------------------------------------------
3290	1234.01			3	1230		1230
3291	1234.01			6	1234.01		1234.01
3292	1234.1			8	1234.1		1234.1000
3293
3294For BigInts, no padding occurs.
3295
3296=head2 Fallback F
3297
3298When both A and P are undefined, this is used as a fallback accuracy when
3299dividing numbers.
3300
3301=head2 Rounding mode R
3302
3303When rounding a number, different 'styles' or 'kinds'
3304of rounding are possible. (Note that random rounding, as in
3305Math::Round, is not implemented.)
3306
3307=over 2
3308
3309=item 'trunc'
3310
3311truncation invariably removes all digits following the
3312rounding place, replacing them with zeros. Thus, 987.65 rounded
3313to tens (P=1) becomes 980, and rounded to the fourth sigdig
3314becomes 987.6 (A=4). 123.456 rounded to the second place after the
3315decimal point (P=-2) becomes 123.46.
3316
3317All other implemented styles of rounding attempt to round to the
3318"nearest digit." If the digit D immediately to the right of the
3319rounding place (skipping the decimal point) is greater than 5, the
3320number is incremented at the rounding place (possibly causing a
3321cascade of incrementation): e.g. when rounding to units, 0.9 rounds
3322to 1, and -19.9 rounds to -20. If D < 5, the number is similarly
3323truncated at the rounding place: e.g. when rounding to units, 0.4
3324rounds to 0, and -19.4 rounds to -19.
3325
3326However the results of other styles of rounding differ if the
3327digit immediately to the right of the rounding place (skipping the
3328decimal point) is 5 and if there are no digits, or no digits other
3329than 0, after that 5. In such cases:
3330
3331=item 'even'
3332
3333rounds the digit at the rounding place to 0, 2, 4, 6, or 8
3334if it is not already. E.g., when rounding to the first sigdig, 0.45
3335becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.
3336
3337=item 'odd'
3338
3339rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if
3340it is not already. E.g., when rounding to the first sigdig, 0.45
3341becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6.
3342
3343=item '+inf'
3344
3345round to plus infinity, i.e. always round up. E.g., when
3346rounding to the first sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5,
3347and 0.4501 also becomes 0.5.
3348
3349=item '-inf'
3350
3351round to minus infinity, i.e. always round down. E.g., when
3352rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6,
3353but 0.4501 becomes 0.5.
3354
3355=item 'zero'
3356
3357round to zero, i.e. positive numbers down, negative ones up.
3358E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55
3359becomes -0.5, but 0.4501 becomes 0.5.
3360
3361=back
3362
3363The handling of A & P in MBI/MBF (the old core code shipped with Perl
3364versions <= 5.7.2) is like this:
3365
3366=over 2
3367
3368=item Precision
3369
3370  * ffround($p) is able to round to $p number of digits after the decimal
3371    point
3372  * otherwise P is unused
3373
3374=item Accuracy (significant digits)
3375
3376  * fround($a) rounds to $a significant digits
3377  * only fdiv() and fsqrt() take A as (optional) paramater
3378    + other operations simply create the same number (fneg etc), or more (fmul)
3379      of digits
3380    + rounding/truncating is only done when explicitly calling one of fround
3381      or ffround, and never for BigInt (not implemented)
3382  * fsqrt() simply hands its accuracy argument over to fdiv.
3383  * the documentation and the comment in the code indicate two different ways
3384    on how fdiv() determines the maximum number of digits it should calculate,
3385    and the actual code does yet another thing
3386    POD:
3387      max($Math::BigFloat::div_scale,length(dividend)+length(divisor))
3388    Comment:
3389      result has at most max(scale, length(dividend), length(divisor)) digits
3390    Actual code:
3391      scale = max(scale, length(dividend)-1,length(divisor)-1);
3392      scale += length(divisior) - length(dividend);
3393    So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10+9-3).
3394    Actually, the 'difference' added to the scale is calculated from the
3395    number of "significant digits" in dividend and divisor, which is derived
3396    by looking at the length of the mantissa. Which is wrong, since it includes
3397    the + sign (oops) and actually gets 2 for '+100' and 4 for '+101'. Oops
3398    again. Thus 124/3 with div_scale=1 will get you '41.3' based on the strange
3399    assumption that 124 has 3 significant digits, while 120/7 will get you
3400    '17', not '17.1' since 120 is thought to have 2 significant digits.
3401    The rounding after the division then uses the remainder and $y to determine
3402    wether it must round up or down.
3403 ?  I have no idea which is the right way. That's why I used a slightly more
3404 ?  simple scheme and tweaked the few failing testcases to match it.
3405
3406=back
3407
3408This is how it works now:
3409
3410=over 2
3411
3412=item Setting/Accessing
3413
3414  * You can set the A global via C<< Math::BigInt->accuracy() >> or
3415    C<< Math::BigFloat->accuracy() >> or whatever class you are using.
3416  * You can also set P globally by using C<< Math::SomeClass->precision() >>
3417    likewise.
3418  * Globals are classwide, and not inherited by subclasses.
3419  * to undefine A, use C<< Math::SomeCLass->accuracy(undef); >>
3420  * to undefine P, use C<< Math::SomeClass->precision(undef); >>
3421  * Setting C<< Math::SomeClass->accuracy() >> clears automatically
3422    C<< Math::SomeClass->precision() >>, and vice versa.
3423  * To be valid, A must be > 0, P can have any value.
3424  * If P is negative, this means round to the P'th place to the right of the
3425    decimal point; positive values mean to the left of the decimal point.
3426    P of 0 means round to integer.
3427  * to find out the current global A, use C<< Math::SomeClass->accuracy() >>
3428  * to find out the current global P, use C<< Math::SomeClass->precision() >>
3429  * use C<< $x->accuracy() >> respective C<< $x->precision() >> for the local
3430    setting of C<< $x >>.
3431  * Please note that C<< $x->accuracy() >> respecive C<< $x->precision() >>
3432    return eventually defined global A or P, when C<< $x >>'s A or P is not
3433    set.
3434
3435=item Creating numbers
3436
3437  * When you create a number, you can give it's desired A or P via:
3438    $x = Math::BigInt->new($number,$A,$P);
3439  * Only one of A or P can be defined, otherwise the result is NaN
3440  * If no A or P is give ($x = Math::BigInt->new($number) form), then the
3441    globals (if set) will be used. Thus changing the global defaults later on
3442    will not change the A or P of previously created numbers (i.e., A and P of
3443    $x will be what was in effect when $x was created)
3444  * If given undef for A and P, B<no> rounding will occur, and the globals will
3445    B<not> be used. This is used by subclasses to create numbers without
3446    suffering rounding in the parent. Thus a subclass is able to have it's own
3447    globals enforced upon creation of a number by using
3448    C<< $x = Math::BigInt->new($number,undef,undef) >>:
3449
3450	use Math::BigInt::SomeSubclass;
3451	use Math::BigInt;
3452
3453	Math::BigInt->accuracy(2);
3454	Math::BigInt::SomeSubClass->accuracy(3);
3455	$x = Math::BigInt::SomeSubClass->new(1234);
3456
3457    $x is now 1230, and not 1200. A subclass might choose to implement
3458    this otherwise, e.g. falling back to the parent's A and P.
3459
3460=item Usage
3461
3462  * If A or P are enabled/defined, they are used to round the result of each
3463    operation according to the rules below
3464  * Negative P is ignored in Math::BigInt, since BigInts never have digits
3465    after the decimal point
3466  * Math::BigFloat uses Math::BigInt internally, but setting A or P inside
3467    Math::BigInt as globals does not tamper with the parts of a BigFloat.
3468    A flag is used to mark all Math::BigFloat numbers as 'never round'.
3469
3470=item Precedence
3471
3472  * It only makes sense that a number has only one of A or P at a time.
3473    If you set either A or P on one object, or globally, the other one will
3474    be automatically cleared.
3475  * If two objects are involved in an operation, and one of them has A in
3476    effect, and the other P, this results in an error (NaN).
3477  * A takes precendence over P (Hint: A comes before P).
3478    If neither of them is defined, nothing is used, i.e. the result will have
3479    as many digits as it can (with an exception for fdiv/fsqrt) and will not
3480    be rounded.
3481  * There is another setting for fdiv() (and thus for fsqrt()). If neither of
3482    A or P is defined, fdiv() will use a fallback (F) of $div_scale digits.
3483    If either the dividend's or the divisor's mantissa has more digits than
3484    the value of F, the higher value will be used instead of F.
3485    This is to limit the digits (A) of the result (just consider what would
3486    happen with unlimited A and P in the case of 1/3 :-)
3487  * fdiv will calculate (at least) 4 more digits than required (determined by
3488    A, P or F), and, if F is not used, round the result
3489    (this will still fail in the case of a result like 0.12345000000001 with A
3490    or P of 5, but this can not be helped - or can it?)
3491  * Thus you can have the math done by on Math::Big* class in two modi:
3492    + never round (this is the default):
3493      This is done by setting A and P to undef. No math operation
3494      will round the result, with fdiv() and fsqrt() as exceptions to guard
3495      against overflows. You must explicitely call bround(), bfround() or
3496      round() (the latter with parameters).
3497      Note: Once you have rounded a number, the settings will 'stick' on it
3498      and 'infect' all other numbers engaged in math operations with it, since
3499      local settings have the highest precedence. So, to get SaferRound[tm],
3500      use a copy() before rounding like this:
3501
3502        $x = Math::BigFloat->new(12.34);
3503        $y = Math::BigFloat->new(98.76);
3504        $z = $x * $y;                           # 1218.6984
3505        print $x->copy()->fround(3);            # 12.3 (but A is now 3!)
3506        $z = $x * $y;                           # still 1218.6984, without
3507                                                # copy would have been 1210!
3508
3509    + round after each op:
3510      After each single operation (except for testing like is_zero()), the
3511      method round() is called and the result is rounded appropriately. By
3512      setting proper values for A and P, you can have all-the-same-A or
3513      all-the-same-P modes. For example, Math::Currency might set A to undef,
3514      and P to -2, globally.
3515
3516 ?Maybe an extra option that forbids local A & P settings would be in order,
3517 ?so that intermediate rounding does not 'poison' further math?
3518
3519=item Overriding globals
3520
3521  * you will be able to give A, P and R as an argument to all the calculation
3522    routines; the second parameter is A, the third one is P, and the fourth is
3523    R (shift right by one for binary operations like badd). P is used only if
3524    the first parameter (A) is undefined. These three parameters override the
3525    globals in the order detailed as follows, i.e. the first defined value
3526    wins:
3527    (local: per object, global: global default, parameter: argument to sub)
3528      + parameter A
3529      + parameter P
3530      + local A (if defined on both of the operands: smaller one is taken)
3531      + local P (if defined on both of the operands: bigger one is taken)
3532      + global A
3533      + global P
3534      + global F
3535  * fsqrt() will hand its arguments to fdiv(), as it used to, only now for two
3536    arguments (A and P) instead of one
3537
3538=item Local settings
3539
3540  * You can set A or P locally by using C<< $x->accuracy() >> or
3541    C<< $x->precision() >>
3542    and thus force different A and P for different objects/numbers.
3543  * Setting A or P this way immediately rounds $x to the new value.
3544  * C<< $x->accuracy() >> clears C<< $x->precision() >>, and vice versa.
3545
3546=item Rounding
3547
3548  * the rounding routines will use the respective global or local settings.
3549    fround()/bround() is for accuracy rounding, while ffround()/bfround()
3550    is for precision
3551  * the two rounding functions take as the second parameter one of the
3552    following rounding modes (R):
3553    'even', 'odd', '+inf', '-inf', 'zero', 'trunc'
3554  * you can set/get the global R by using C<< Math::SomeClass->round_mode() >>
3555    or by setting C<< $Math::SomeClass::round_mode >>
3556  * after each operation, C<< $result->round() >> is called, and the result may
3557    eventually be rounded (that is, if A or P were set either locally,
3558    globally or as parameter to the operation)
3559  * to manually round a number, call C<< $x->round($A,$P,$round_mode); >>
3560    this will round the number by using the appropriate rounding function
3561    and then normalize it.
3562  * rounding modifies the local settings of the number:
3563
3564        $x = Math::BigFloat->new(123.456);
3565        $x->accuracy(5);
3566        $x->bround(4);
3567
3568    Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy()
3569    will be 4 from now on.
3570
3571=item Default values
3572
3573  * R: 'even'
3574  * F: 40
3575  * A: undef
3576  * P: undef
3577
3578=item Remarks
3579
3580  * The defaults are set up so that the new code gives the same results as
3581    the old code (except in a few cases on fdiv):
3582    + Both A and P are undefined and thus will not be used for rounding
3583      after each operation.
3584    + round() is thus a no-op, unless given extra parameters A and P
3585
3586=back
3587
3588=head1 INTERNALS
3589
3590The actual numbers are stored as unsigned big integers (with seperate sign).
3591You should neither care about nor depend on the internal representation; it
3592might change without notice. Use only method calls like C<< $x->sign(); >>
3593instead relying on the internal hash keys like in C<< $x->{sign}; >>.
3594
3595=head2 MATH LIBRARY
3596
3597Math with the numbers is done (by default) by a module called
3598C<Math::BigInt::Calc>. This is equivalent to saying:
3599
3600	use Math::BigInt lib => 'Calc';
3601
3602You can change this by using:
3603
3604	use Math::BigInt lib => 'BitVect';
3605
3606The following would first try to find Math::BigInt::Foo, then
3607Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
3608
3609	use Math::BigInt lib => 'Foo,Math::BigInt::Bar';
3610
3611Since Math::BigInt::GMP is in almost all cases faster than Calc (especially in
3612cases involving really big numbers, where it is B<much> faster), and there is
3613no penalty if Math::BigInt::GMP is not installed, it is a good idea to always
3614use the following:
3615
3616	use Math::BigInt lib => 'GMP';
3617
3618Different low-level libraries use different formats to store the
3619numbers. You should not depend on the number having a specific format.
3620
3621See the respective math library module documentation for further details.
3622
3623=head2 SIGN
3624
3625The sign is either '+', '-', 'NaN', '+inf' or '-inf' and stored seperately.
3626
3627A sign of 'NaN' is used to represent the result when input arguments are not
3628numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively
3629minus infinity. You will get '+inf' when dividing a positive number by 0, and
3630'-inf' when dividing any negative number by 0.
3631
3632=head2 mantissa(), exponent() and parts()
3633
3634C<mantissa()> and C<exponent()> return the said parts of the BigInt such
3635that:
3636
3637        $m = $x->mantissa();
3638        $e = $x->exponent();
3639        $y = $m * ( 10 ** $e );
3640        print "ok\n" if $x == $y;
3641
3642C<< ($m,$e) = $x->parts() >> is just a shortcut that gives you both of them
3643in one go. Both the returned mantissa and exponent have a sign.
3644
3645Currently, for BigInts C<$e> is always 0, except for NaN, +inf and -inf,
3646where it is C<NaN>; and for C<$x == 0>, where it is C<1> (to be compatible
3647with Math::BigFloat's internal representation of a zero as C<0E1>).
3648
3649C<$m> is currently just a copy of the original number. The relation between
3650C<$e> and C<$m> will stay always the same, though their real values might
3651change.
3652
3653=head1 EXAMPLES
3654
3655  use Math::BigInt;
3656
3657  sub bint { Math::BigInt->new(shift); }
3658
3659  $x = Math::BigInt->bstr("1234")      	# string "1234"
3660  $x = "$x";                         	# same as bstr()
3661  $x = Math::BigInt->bneg("1234");   	# BigInt "-1234"
3662  $x = Math::BigInt->babs("-12345"); 	# BigInt "12345"
3663  $x = Math::BigInt->bnorm("-0 00"); 	# BigInt "0"
3664  $x = bint(1) + bint(2);            	# BigInt "3"
3665  $x = bint(1) + "2";                	# ditto (auto-BigIntify of "2")
3666  $x = bint(1);                      	# BigInt "1"
3667  $x = $x + 5 / 2;                   	# BigInt "3"
3668  $x = $x ** 3;                      	# BigInt "27"
3669  $x *= 2;                           	# BigInt "54"
3670  $x = Math::BigInt->new(0);       	# BigInt "0"
3671  $x--;                              	# BigInt "-1"
3672  $x = Math::BigInt->badd(4,5)		# BigInt "9"
3673  print $x->bsstr();			# 9e+0
3674
3675Examples for rounding:
3676
3677  use Math::BigFloat;
3678  use Test;
3679
3680  $x = Math::BigFloat->new(123.4567);
3681  $y = Math::BigFloat->new(123.456789);
3682  Math::BigFloat->accuracy(4);		# no more A than 4
3683
3684  ok ($x->copy()->fround(),123.4);	# even rounding
3685  print $x->copy()->fround(),"\n";	# 123.4
3686  Math::BigFloat->round_mode('odd');	# round to odd
3687  print $x->copy()->fround(),"\n";	# 123.5
3688  Math::BigFloat->accuracy(5);		# no more A than 5
3689  Math::BigFloat->round_mode('odd');	# round to odd
3690  print $x->copy()->fround(),"\n";	# 123.46
3691  $y = $x->copy()->fround(4),"\n";	# A = 4: 123.4
3692  print "$y, ",$y->accuracy(),"\n";	# 123.4, 4
3693
3694  Math::BigFloat->accuracy(undef);	# A not important now
3695  Math::BigFloat->precision(2); 	# P important
3696  print $x->copy()->bnorm(),"\n";	# 123.46
3697  print $x->copy()->fround(),"\n";	# 123.46
3698
3699Examples for converting:
3700
3701  my $x = Math::BigInt->new('0b1'.'01' x 123);
3702  print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n";
3703
3704=head1 Autocreating constants
3705
3706After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal
3707and binary constants in the given scope are converted to C<Math::BigInt>.
3708This conversion happens at compile time.
3709
3710In particular,
3711
3712  perl -MMath::BigInt=:constant -e 'print 2**100,"\n"'
3713
3714prints the integer value of C<2**100>. Note that without conversion of
3715constants the expression 2**100 will be calculated as perl scalar.
3716
3717Please note that strings and floating point constants are not affected,
3718so that
3719
3720  	use Math::BigInt qw/:constant/;
3721
3722	$x = 1234567890123456789012345678901234567890
3723		+ 123456789123456789;
3724	$y = '1234567890123456789012345678901234567890'
3725		+ '123456789123456789';
3726
3727do not work. You need an explicit Math::BigInt->new() around one of the
3728operands. You should also quote large constants to protect loss of precision:
3729
3730	use Math::BigInt;
3731
3732	$x = Math::BigInt->new('1234567889123456789123456789123456789');
3733
3734Without the quotes Perl would convert the large number to a floating point
3735constant at compile time and then hand the result to BigInt, which results in
3736an truncated result or a NaN.
3737
3738This also applies to integers that look like floating point constants:
3739
3740	use Math::BigInt ':constant';
3741
3742	print ref(123e2),"\n";
3743	print ref(123.2e2),"\n";
3744
3745will print nothing but newlines. Use either L<bignum> or L<Math::BigFloat>
3746to get this to work.
3747
3748=head1 PERFORMANCE
3749
3750Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x
3751must be made in the second case. For long numbers, the copy can eat up to 20%
3752of the work (in the case of addition/subtraction, less for
3753multiplication/division). If $y is very small compared to $x, the form
3754$x += $y is MUCH faster than $x = $x + $y since making the copy of $x takes
3755more time then the actual addition.
3756
3757With a technique called copy-on-write, the cost of copying with overload could
3758be minimized or even completely avoided. A test implementation of COW did show
3759performance gains for overloaded math, but introduced a performance loss due
3760to a constant overhead for all other operatons. So Math::BigInt does currently
3761not COW.
3762
3763The rewritten version of this module (vs. v0.01) is slower on certain
3764operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it
3765does now more work and handles much more cases. The time spent in these
3766operations is usually gained in the other math operations so that code on
3767the average should get (much) faster. If they don't, please contact the author.
3768
3769Some operations may be slower for small numbers, but are significantly faster
3770for big numbers. Other operations are now constant (O(1), like C<bneg()>,
3771C<babs()> etc), instead of O(N) and thus nearly always take much less time.
3772These optimizations were done on purpose.
3773
3774If you find the Calc module to slow, try to install any of the replacement
3775modules and see if they help you.
3776
3777=head2 Alternative math libraries
3778
3779You can use an alternative library to drive Math::BigInt via:
3780
3781	use Math::BigInt lib => 'Module';
3782
3783See L<MATH LIBRARY> for more information.
3784
3785For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>.
3786
3787=head2 SUBCLASSING
3788
3789=head1 Subclassing Math::BigInt
3790
3791The basic design of Math::BigInt allows simple subclasses with very little
3792work, as long as a few simple rules are followed:
3793
3794=over 2
3795
3796=item *
3797
3798The public API must remain consistent, i.e. if a sub-class is overloading
3799addition, the sub-class must use the same name, in this case badd(). The
3800reason for this is that Math::BigInt is optimized to call the object methods
3801directly.
3802
3803=item *
3804
3805The private object hash keys like C<$x->{sign}> may not be changed, but
3806additional keys can be added, like C<$x->{_custom}>.
3807
3808=item *
3809
3810Accessor functions are available for all existing object hash keys and should
3811be used instead of directly accessing the internal hash keys. The reason for
3812this is that Math::BigInt itself has a pluggable interface which permits it
3813to support different storage methods.
3814
3815=back
3816
3817More complex sub-classes may have to replicate more of the logic internal of
3818Math::BigInt if they need to change more basic behaviors. A subclass that
3819needs to merely change the output only needs to overload C<bstr()>.
3820
3821All other object methods and overloaded functions can be directly inherited
3822from the parent class.
3823
3824At the very minimum, any subclass will need to provide it's own C<new()> and can
3825store additional hash keys in the object. There are also some package globals
3826that must be defined, e.g.:
3827
3828  # Globals
3829  $accuracy = undef;
3830  $precision = -2;       # round to 2 decimal places
3831  $round_mode = 'even';
3832  $div_scale = 40;
3833
3834Additionally, you might want to provide the following two globals to allow
3835auto-upgrading and auto-downgrading to work correctly:
3836
3837  $upgrade = undef;
3838  $downgrade = undef;
3839
3840This allows Math::BigInt to correctly retrieve package globals from the
3841subclass, like C<$SubClass::precision>.  See t/Math/BigInt/Subclass.pm or
3842t/Math/BigFloat/SubClass.pm completely functional subclass examples.
3843
3844Don't forget to
3845
3846	use overload;
3847
3848in your subclass to automatically inherit the overloading from the parent. If
3849you like, you can change part of the overloading, look at Math::String for an
3850example.
3851
3852=head1 UPGRADING
3853
3854When used like this:
3855
3856	use Math::BigInt upgrade => 'Foo::Bar';
3857
3858certain operations will 'upgrade' their calculation and thus the result to
3859the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat:
3860
3861	use Math::BigInt upgrade => 'Math::BigFloat';
3862
3863As a shortcut, you can use the module C<bignum>:
3864
3865	use bignum;
3866
3867Also good for oneliners:
3868
3869	perl -Mbignum -le 'print 2 ** 255'
3870
3871This makes it possible to mix arguments of different classes (as in 2.5 + 2)
3872as well es preserve accuracy (as in sqrt(3)).
3873
3874Beware: This feature is not fully implemented yet.
3875
3876=head2 Auto-upgrade
3877
3878The following methods upgrade themselves unconditionally; that is if upgrade
3879is in effect, they will always hand up their work:
3880
3881=over 2
3882
3883=item bsqrt()
3884
3885=item div()
3886
3887=item blog()
3888
3889=back
3890
3891Beware: This list is not complete.
3892
3893All other methods upgrade themselves only when one (or all) of their
3894arguments are of the class mentioned in $upgrade (This might change in later
3895versions to a more sophisticated scheme):
3896
3897=head1 BUGS
3898
3899=over 2
3900
3901=item broot() does not work
3902
3903The broot() function in BigInt may only work for small values. This will be
3904fixed in a later version.
3905
3906=item Out of Memory!
3907
3908Under Perl prior to 5.6.0 having an C<use Math::BigInt ':constant';> and
3909C<eval()> in your code will crash with "Out of memory". This is probably an
3910overload/exporter bug. You can workaround by not having C<eval()>
3911and ':constant' at the same time or upgrade your Perl to a newer version.
3912
3913=item Fails to load Calc on Perl prior 5.6.0
3914
3915Since eval(' use ...') can not be used in conjunction with ':constant', BigInt
3916will fall back to eval { require ... } when loading the math lib on Perls
3917prior to 5.6.0. This simple replaces '::' with '/' and thus might fail on
3918filesystems using a different seperator.
3919
3920=back
3921
3922=head1 CAVEATS
3923
3924Some things might not work as you expect them. Below is documented what is
3925known to be troublesome:
3926
3927=over 1
3928
3929=item bstr(), bsstr() and 'cmp'
3930
3931Both C<bstr()> and C<bsstr()> as well as automated stringify via overload now
3932drop the leading '+'. The old code would return '+3', the new returns '3'.
3933This is to be consistent with Perl and to make C<cmp> (especially with
3934overloading) to work as you expect. It also solves problems with C<Test.pm>,
3935because it's C<ok()> uses 'eq' internally.
3936
3937Mark Biggar said, when asked about to drop the '+' altogether, or make only
3938C<cmp> work:
3939
3940	I agree (with the first alternative), don't add the '+' on positive
3941	numbers.  It's not as important anymore with the new internal
3942	form for numbers.  It made doing things like abs and neg easier,
3943	but those have to be done differently now anyway.
3944
3945So, the following examples will now work all as expected:
3946
3947	use Test;
3948        BEGIN { plan tests => 1 }
3949	use Math::BigInt;
3950
3951	my $x = new Math::BigInt 3*3;
3952	my $y = new Math::BigInt 3*3;
3953
3954	ok ($x,3*3);
3955	print "$x eq 9" if $x eq $y;
3956	print "$x eq 9" if $x eq '9';
3957	print "$x eq 9" if $x eq 3*3;
3958
3959Additionally, the following still works:
3960
3961	print "$x == 9" if $x == $y;
3962	print "$x == 9" if $x == 9;
3963	print "$x == 9" if $x == 3*3;
3964
3965There is now a C<bsstr()> method to get the string in scientific notation aka
3966C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr()
3967for comparisation, but Perl will represent some numbers as 100 and others
3968as 1e+308. If in doubt, convert both arguments to Math::BigInt before
3969comparing them as strings:
3970
3971	use Test;
3972        BEGIN { plan tests => 3 }
3973	use Math::BigInt;
3974
3975	$x = Math::BigInt->new('1e56'); $y = 1e56;
3976	ok ($x,$y);			# will fail
3977	ok ($x->bsstr(),$y);		# okay
3978	$y = Math::BigInt->new($y);
3979	ok ($x,$y);			# okay
3980
3981Alternatively, simple use C<< <=> >> for comparisations, this will get it
3982always right. There is not yet a way to get a number automatically represented
3983as a string that matches exactly the way Perl represents it.
3984
3985=item int()
3986
3987C<int()> will return (at least for Perl v5.7.1 and up) another BigInt, not a
3988Perl scalar:
3989
3990	$x = Math::BigInt->new(123);
3991	$y = int($x);				# BigInt 123
3992	$x = Math::BigFloat->new(123.45);
3993	$y = int($x);				# BigInt 123
3994
3995In all Perl versions you can use C<as_number()> for the same effect:
3996
3997	$x = Math::BigFloat->new(123.45);
3998	$y = $x->as_number();			# BigInt 123
3999
4000This also works for other subclasses, like Math::String.
4001
4002It is yet unlcear whether overloaded int() should return a scalar or a BigInt.
4003
4004=item length
4005
4006The following will probably not do what you expect:
4007
4008	$c = Math::BigInt->new(123);
4009	print $c->length(),"\n";		# prints 30
4010
4011It prints both the number of digits in the number and in the fraction part
4012since print calls C<length()> in list context. Use something like:
4013
4014	print scalar $c->length(),"\n";		# prints 3
4015
4016=item bdiv
4017
4018The following will probably not do what you expect:
4019
4020	print $c->bdiv(10000),"\n";
4021
4022It prints both quotient and remainder since print calls C<bdiv()> in list
4023context. Also, C<bdiv()> will modify $c, so be carefull. You probably want
4024to use
4025
4026	print $c / 10000,"\n";
4027	print scalar $c->bdiv(10000),"\n";  # or if you want to modify $c
4028
4029instead.
4030
4031The quotient is always the greatest integer less than or equal to the
4032real-valued quotient of the two operands, and the remainder (when it is
4033nonzero) always has the same sign as the second operand; so, for
4034example,
4035
4036	  1 / 4  => ( 0, 1)
4037	  1 / -4 => (-1,-3)
4038	 -3 / 4  => (-1, 1)
4039	 -3 / -4 => ( 0,-3)
4040	-11 / 2  => (-5,1)
4041	 11 /-2  => (-5,-1)
4042
4043As a consequence, the behavior of the operator % agrees with the
4044behavior of Perl's built-in % operator (as documented in the perlop
4045manpage), and the equation
4046
4047	$x == ($x / $y) * $y + ($x % $y)
4048
4049holds true for any $x and $y, which justifies calling the two return
4050values of bdiv() the quotient and remainder. The only exception to this rule
4051are when $y == 0 and $x is negative, then the remainder will also be
4052negative. See below under "infinity handling" for the reasoning behing this.
4053
4054Perl's 'use integer;' changes the behaviour of % and / for scalars, but will
4055not change BigInt's way to do things. This is because under 'use integer' Perl
4056will do what the underlying C thinks is right and this is different for each
4057system. If you need BigInt's behaving exactly like Perl's 'use integer', bug
4058the author to implement it ;)
4059
4060=item infinity handling
4061
4062Here are some examples that explain the reasons why certain results occur while
4063handling infinity:
4064
4065The following table shows the result of the division and the remainder, so that
4066the equation above holds true. Some "ordinary" cases are strewn in to show more
4067clearly the reasoning:
4068
4069	A /  B  =   C,     R so that C *    B +    R =    A
4070     =========================================================
4071	5 /   8 =   0,     5 	     0 *    8 +    5 =    5
4072	0 /   8 =   0,     0	     0 *    8 +    0 =    0
4073	0 / inf =   0,     0	     0 *  inf +    0 =    0
4074	0 /-inf =   0,     0	     0 * -inf +    0 =    0
4075	5 / inf =   0,     5	     0 *  inf +    5 =    5
4076	5 /-inf =   0,     5	     0 * -inf +    5 =    5
4077	-5/ inf =   0,    -5	     0 *  inf +   -5 =   -5
4078	-5/-inf =   0,    -5	     0 * -inf +   -5 =   -5
4079       inf/   5 =  inf,    0	   inf *    5 +    0 =  inf
4080      -inf/   5 = -inf,    0      -inf *    5 +    0 = -inf
4081       inf/  -5 = -inf,    0	  -inf *   -5 +    0 =  inf
4082      -inf/  -5 =  inf,    0       inf *   -5 +    0 = -inf
4083	 5/   5 =    1,    0         1 *    5 +    0 =    5
4084	-5/  -5 =    1,    0         1 *   -5 +    0 =   -5
4085       inf/ inf =    1,    0         1 *  inf +    0 =  inf
4086      -inf/-inf =    1,    0         1 * -inf +    0 = -inf
4087       inf/-inf =   -1,    0        -1 * -inf +    0 =  inf
4088      -inf/ inf =   -1,    0         1 * -inf +    0 = -inf
4089	 8/   0 =  inf,    8       inf *    0 +    8 =    8
4090       inf/   0 =  inf,  inf       inf *    0 +  inf =  inf
4091         0/   0 =  NaN
4092
4093These cases below violate the "remainder has the sign of the second of the two
4094arguments", since they wouldn't match up otherwise.
4095
4096	A /  B  =   C,     R so that C *    B +    R =    A
4097     ========================================================
4098      -inf/   0 = -inf, -inf      -inf *    0 +  inf = -inf
4099	-8/   0 = -inf,   -8      -inf *    0 +    8 = -8
4100
4101=item Modifying and =
4102
4103Beware of:
4104
4105        $x = Math::BigFloat->new(5);
4106        $y = $x;
4107
4108It will not do what you think, e.g. making a copy of $x. Instead it just makes
4109a second reference to the B<same> object and stores it in $y. Thus anything
4110that modifies $x (except overloaded operators) will modify $y, and vice versa.
4111Or in other words, C<=> is only safe if you modify your BigInts only via
4112overloaded math. As soon as you use a method call it breaks:
4113
4114        $x->bmul(2);
4115        print "$x, $y\n";       # prints '10, 10'
4116
4117If you want a true copy of $x, use:
4118
4119        $y = $x->copy();
4120
4121You can also chain the calls like this, this will make first a copy and then
4122multiply it by 2:
4123
4124        $y = $x->copy()->bmul(2);
4125
4126See also the documentation for overload.pm regarding C<=>.
4127
4128=item bpow
4129
4130C<bpow()> (and the rounding functions) now modifies the first argument and
4131returns it, unlike the old code which left it alone and only returned the
4132result. This is to be consistent with C<badd()> etc. The first three will
4133modify $x, the last one won't:
4134
4135	print bpow($x,$i),"\n"; 	# modify $x
4136	print $x->bpow($i),"\n"; 	# ditto
4137	print $x **= $i,"\n";		# the same
4138	print $x ** $i,"\n";		# leave $x alone
4139
4140The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though.
4141
4142=item Overloading -$x
4143
4144The following:
4145
4146	$x = -$x;
4147
4148is slower than
4149
4150	$x->bneg();
4151
4152since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant
4153needs to preserve $x since it does not know that it later will get overwritten.
4154This makes a copy of $x and takes O(N), but $x->bneg() is O(1).
4155
4156With Copy-On-Write, this issue would be gone, but C-o-W is not implemented
4157since it is slower for all other things.
4158
4159=item Mixing different object types
4160
4161In Perl you will get a floating point value if you do one of the following:
4162
4163	$float = 5.0 + 2;
4164	$float = 2 + 5.0;
4165	$float = 5 / 2;
4166
4167With overloaded math, only the first two variants will result in a BigFloat:
4168
4169	use Math::BigInt;
4170	use Math::BigFloat;
4171
4172	$mbf = Math::BigFloat->new(5);
4173	$mbi2 = Math::BigInteger->new(5);
4174	$mbi = Math::BigInteger->new(2);
4175
4176					# what actually gets called:
4177	$float = $mbf + $mbi;		# $mbf->badd()
4178	$float = $mbf / $mbi;		# $mbf->bdiv()
4179	$integer = $mbi + $mbf;		# $mbi->badd()
4180	$integer = $mbi2 / $mbi;	# $mbi2->bdiv()
4181	$integer = $mbi2 / $mbf;	# $mbi2->bdiv()
4182
4183This is because math with overloaded operators follows the first (dominating)
4184operand, and the operation of that is called and returns thus the result. So,
4185Math::BigInt::bdiv() will always return a Math::BigInt, regardless whether
4186the result should be a Math::BigFloat or the second operant is one.
4187
4188To get a Math::BigFloat you either need to call the operation manually,
4189make sure the operands are already of the proper type or casted to that type
4190via Math::BigFloat->new():
4191
4192	$float = Math::BigFloat->new($mbi2) / $mbi;	# = 2.5
4193
4194Beware of simple "casting" the entire expression, this would only convert
4195the already computed result:
4196
4197	$float = Math::BigFloat->new($mbi2 / $mbi);	# = 2.0 thus wrong!
4198
4199Beware also of the order of more complicated expressions like:
4200
4201	$integer = ($mbi2 + $mbi) / $mbf;		# int / float => int
4202	$integer = $mbi2 / Math::BigFloat->new($mbi);	# ditto
4203
4204If in doubt, break the expression into simpler terms, or cast all operands
4205to the desired resulting type.
4206
4207Scalar values are a bit different, since:
4208
4209	$float = 2 + $mbf;
4210	$float = $mbf + 2;
4211
4212will both result in the proper type due to the way the overloaded math works.
4213
4214This section also applies to other overloaded math packages, like Math::String.
4215
4216One solution to you problem might be autoupgrading|upgrading. See the
4217pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this.
4218
4219=item bsqrt()
4220
4221C<bsqrt()> works only good if the result is a big integer, e.g. the square
4222root of 144 is 12, but from 12 the square root is 3, regardless of rounding
4223mode. The reason is that the result is always truncated to an integer.
4224
4225If you want a better approximation of the square root, then use:
4226
4227	$x = Math::BigFloat->new(12);
4228	Math::BigFloat->precision(0);
4229	Math::BigFloat->round_mode('even');
4230	print $x->copy->bsqrt(),"\n";		# 4
4231
4232	Math::BigFloat->precision(2);
4233	print $x->bsqrt(),"\n";			# 3.46
4234	print $x->bsqrt(3),"\n";		# 3.464
4235
4236=item brsft()
4237
4238For negative numbers in base see also L<brsft|brsft>.
4239
4240=back
4241
4242=head1 LICENSE
4243
4244This program is free software; you may redistribute it and/or modify it under
4245the same terms as Perl itself.
4246
4247=head1 SEE ALSO
4248
4249L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as
4250L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and  L<Math::BigInt::GMP>.
4251
4252The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest
4253because they solve the autoupgrading/downgrading issue, at least partly.
4254
4255The package at
4256L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
4257more documentation including a full version history, testcases, empty
4258subclass files and benchmarks.
4259
4260=head1 AUTHORS
4261
4262Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
4263Completely rewritten by Tels http://bloodgate.com in late 2000, 2001 - 2003
4264and still at it in 2004.
4265
4266Many people contributed in one or more ways to the final beast, see the file
4267CREDITS for an (uncomplete) list. If you miss your name, please drop me a
4268mail. Thank you!
4269
4270=cut
4271