1package Math::BigInt; 2 3# 4# "Mike had an infinite amount to do and a negative amount of time in which 5# to do it." - Before and After 6# 7 8# The following hash values are used: 9# value: unsigned int with actual value (as a Math::BigInt::Calc or similiar) 10# sign : +,-,NaN,+inf,-inf 11# _a : accuracy 12# _p : precision 13# _f : flags, used by MBF to flag parts of a float as untouchable 14 15# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since 16# underlying lib might change the reference! 17 18my $class = "Math::BigInt"; 19require 5.005; 20 21$VERSION = '1.70'; 22use Exporter; 23@ISA = qw( Exporter ); 24@EXPORT_OK = qw( objectify bgcd blcm); 25# _trap_inf and _trap_nan are internal and should never be accessed from the 26# outside 27use vars qw/$round_mode $accuracy $precision $div_scale $rnd_mode 28 $upgrade $downgrade $_trap_nan $_trap_inf/; 29use strict; 30 31# Inside overload, the first arg is always an object. If the original code had 32# it reversed (like $x = 2 * $y), then the third paramater is true. 33# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes 34# no difference, but in some cases it does. 35 36# For overloaded ops with only one argument we simple use $_[0]->copy() to 37# preserve the argument. 38 39# Thus inheritance of overload operators becomes possible and transparent for 40# our subclasses without the need to repeat the entire overload section there. 41 42use overload 43'=' => sub { $_[0]->copy(); }, 44 45# some shortcuts for speed (assumes that reversed order of arguments is routed 46# to normal '+' and we thus can always modify first arg. If this is changed, 47# this breaks and must be adjusted.) 48'+=' => sub { $_[0]->badd($_[1]); }, 49'-=' => sub { $_[0]->bsub($_[1]); }, 50'*=' => sub { $_[0]->bmul($_[1]); }, 51'/=' => sub { scalar $_[0]->bdiv($_[1]); }, 52'%=' => sub { $_[0]->bmod($_[1]); }, 53'^=' => sub { $_[0]->bxor($_[1]); }, 54'&=' => sub { $_[0]->band($_[1]); }, 55'|=' => sub { $_[0]->bior($_[1]); }, 56'**=' => sub { $_[0]->bpow($_[1]); }, 57 58# not supported by Perl yet 59'..' => \&_pointpoint, 60 61'<=>' => sub { $_[2] ? 62 ref($_[0])->bcmp($_[1],$_[0]) : 63 $_[0]->bcmp($_[1])}, 64'cmp' => sub { 65 $_[2] ? 66 "$_[1]" cmp $_[0]->bstr() : 67 $_[0]->bstr() cmp "$_[1]" }, 68 69# make cos()/sin()/exp() "work" with BigInt's or subclasses 70'cos' => sub { cos($_[0]->numify()) }, 71'sin' => sub { sin($_[0]->numify()) }, 72'exp' => sub { exp($_[0]->numify()) }, 73'atan2' => sub { atan2($_[0]->numify(),$_[1]) }, 74 75'log' => sub { $_[0]->copy()->blog($_[1]); }, 76'int' => sub { $_[0]->copy(); }, 77'neg' => sub { $_[0]->copy()->bneg(); }, 78'abs' => sub { $_[0]->copy()->babs(); }, 79'sqrt' => sub { $_[0]->copy()->bsqrt(); }, 80'~' => sub { $_[0]->copy()->bnot(); }, 81 82# for sub it is a bit tricky to keep b: b-a => -a+b 83'-' => sub { my $c = $_[0]->copy; $_[2] ? 84 $c->bneg()->badd($_[1]) : 85 $c->bsub( $_[1]) }, 86'+' => sub { $_[0]->copy()->badd($_[1]); }, 87'*' => sub { $_[0]->copy()->bmul($_[1]); }, 88 89'/' => sub { 90 $_[2] ? ref($_[0])->new($_[1])->bdiv($_[0]) : $_[0]->copy->bdiv($_[1]); 91 }, 92'%' => sub { 93 $_[2] ? ref($_[0])->new($_[1])->bmod($_[0]) : $_[0]->copy->bmod($_[1]); 94 }, 95'**' => sub { 96 $_[2] ? ref($_[0])->new($_[1])->bpow($_[0]) : $_[0]->copy->bpow($_[1]); 97 }, 98'<<' => sub { 99 $_[2] ? ref($_[0])->new($_[1])->blsft($_[0]) : $_[0]->copy->blsft($_[1]); 100 }, 101'>>' => sub { 102 $_[2] ? ref($_[0])->new($_[1])->brsft($_[0]) : $_[0]->copy->brsft($_[1]); 103 }, 104'&' => sub { 105 $_[2] ? ref($_[0])->new($_[1])->band($_[0]) : $_[0]->copy->band($_[1]); 106 }, 107'|' => sub { 108 $_[2] ? ref($_[0])->new($_[1])->bior($_[0]) : $_[0]->copy->bior($_[1]); 109 }, 110'^' => sub { 111 $_[2] ? ref($_[0])->new($_[1])->bxor($_[0]) : $_[0]->copy->bxor($_[1]); 112 }, 113 114# can modify arg of ++ and --, so avoid a copy() for speed, but don't 115# use $_[0]->bone(), it would modify $_[0] to be 1! 116'++' => sub { $_[0]->binc() }, 117'--' => sub { $_[0]->bdec() }, 118 119# if overloaded, O(1) instead of O(N) and twice as fast for small numbers 120'bool' => sub { 121 # this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/ 122 # v5.6.1 dumps on this: return !$_[0]->is_zero() || undef; :-( 123 my $t = undef; 124 $t = 1 if !$_[0]->is_zero(); 125 $t; 126 }, 127 128# the original qw() does not work with the TIESCALAR below, why? 129# Order of arguments unsignificant 130'""' => sub { $_[0]->bstr(); }, 131'0+' => sub { $_[0]->numify(); } 132; 133 134############################################################################## 135# global constants, flags and accessory 136 137# these are public, but their usage is not recommended, use the accessor 138# methods instead 139 140$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc' 141$accuracy = undef; 142$precision = undef; 143$div_scale = 40; 144 145$upgrade = undef; # default is no upgrade 146$downgrade = undef; # default is no downgrade 147 148# these are internally, and not to be used from the outside 149 150sub MB_NEVER_ROUND () { 0x0001; } 151 152$_trap_nan = 0; # are NaNs ok? set w/ config() 153$_trap_inf = 0; # are infs ok? set w/ config() 154my $nan = 'NaN'; # constants for easier life 155 156my $CALC = 'Math::BigInt::Calc'; # module to do the low level math 157 # default is Calc.pm 158my $IMPORT = 0; # was import() called yet? 159 # used to make require work 160my %WARN; # warn only once for low-level libs 161my %CAN; # cache for $CALC->can(...) 162my $EMU_LIB = 'Math/BigInt/CalcEmu.pm'; # emulate low-level math 163 164############################################################################## 165# the old code had $rnd_mode, so we need to support it, too 166 167$rnd_mode = 'even'; 168sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; } 169sub FETCH { return $round_mode; } 170sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); } 171 172BEGIN 173 { 174 # tie to enable $rnd_mode to work transparently 175 tie $rnd_mode, 'Math::BigInt'; 176 177 # set up some handy alias names 178 *as_int = \&as_number; 179 *is_pos = \&is_positive; 180 *is_neg = \&is_negative; 181 } 182 183############################################################################## 184 185sub round_mode 186 { 187 no strict 'refs'; 188 # make Class->round_mode() work 189 my $self = shift; 190 my $class = ref($self) || $self || __PACKAGE__; 191 if (defined $_[0]) 192 { 193 my $m = shift; 194 if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/) 195 { 196 require Carp; Carp::croak ("Unknown round mode '$m'"); 197 } 198 return ${"${class}::round_mode"} = $m; 199 } 200 ${"${class}::round_mode"}; 201 } 202 203sub upgrade 204 { 205 no strict 'refs'; 206 # make Class->upgrade() work 207 my $self = shift; 208 my $class = ref($self) || $self || __PACKAGE__; 209 # need to set new value? 210 if (@_ > 0) 211 { 212 my $u = shift; 213 return ${"${class}::upgrade"} = $u; 214 } 215 ${"${class}::upgrade"}; 216 } 217 218sub downgrade 219 { 220 no strict 'refs'; 221 # make Class->downgrade() work 222 my $self = shift; 223 my $class = ref($self) || $self || __PACKAGE__; 224 # need to set new value? 225 if (@_ > 0) 226 { 227 my $u = shift; 228 return ${"${class}::downgrade"} = $u; 229 } 230 ${"${class}::downgrade"}; 231 } 232 233sub div_scale 234 { 235 no strict 'refs'; 236 # make Class->div_scale() work 237 my $self = shift; 238 my $class = ref($self) || $self || __PACKAGE__; 239 if (defined $_[0]) 240 { 241 if ($_[0] < 0) 242 { 243 require Carp; Carp::croak ('div_scale must be greater than zero'); 244 } 245 ${"${class}::div_scale"} = shift; 246 } 247 ${"${class}::div_scale"}; 248 } 249 250sub accuracy 251 { 252 # $x->accuracy($a); ref($x) $a 253 # $x->accuracy(); ref($x) 254 # Class->accuracy(); class 255 # Class->accuracy($a); class $a 256 257 my $x = shift; 258 my $class = ref($x) || $x || __PACKAGE__; 259 260 no strict 'refs'; 261 # need to set new value? 262 if (@_ > 0) 263 { 264 my $a = shift; 265 # convert objects to scalars to avoid deep recursion. If object doesn't 266 # have numify(), then hopefully it will have overloading for int() and 267 # boolean test without wandering into a deep recursion path... 268 $a = $a->numify() if ref($a) && $a->can('numify'); 269 270 if (defined $a) 271 { 272 # also croak on non-numerical 273 if (!$a || $a <= 0) 274 { 275 require Carp; 276 Carp::croak ('Argument to accuracy must be greater than zero'); 277 } 278 if (int($a) != $a) 279 { 280 require Carp; Carp::croak ('Argument to accuracy must be an integer'); 281 } 282 } 283 if (ref($x)) 284 { 285 # $object->accuracy() or fallback to global 286 $x->bround($a) if $a; # not for undef, 0 287 $x->{_a} = $a; # set/overwrite, even if not rounded 288 delete $x->{_p}; # clear P 289 $a = ${"${class}::accuracy"} unless defined $a; # proper return value 290 } 291 else 292 { 293 ${"${class}::accuracy"} = $a; # set global A 294 ${"${class}::precision"} = undef; # clear global P 295 } 296 return $a; # shortcut 297 } 298 299 my $r; 300 # $object->accuracy() or fallback to global 301 $r = $x->{_a} if ref($x); 302 # but don't return global undef, when $x's accuracy is 0! 303 $r = ${"${class}::accuracy"} if !defined $r; 304 $r; 305 } 306 307sub precision 308 { 309 # $x->precision($p); ref($x) $p 310 # $x->precision(); ref($x) 311 # Class->precision(); class 312 # Class->precision($p); class $p 313 314 my $x = shift; 315 my $class = ref($x) || $x || __PACKAGE__; 316 317 no strict 'refs'; 318 if (@_ > 0) 319 { 320 my $p = shift; 321 # convert objects to scalars to avoid deep recursion. If object doesn't 322 # have numify(), then hopefully it will have overloading for int() and 323 # boolean test without wandering into a deep recursion path... 324 $p = $p->numify() if ref($p) && $p->can('numify'); 325 if ((defined $p) && (int($p) != $p)) 326 { 327 require Carp; Carp::croak ('Argument to precision must be an integer'); 328 } 329 if (ref($x)) 330 { 331 # $object->precision() or fallback to global 332 $x->bfround($p) if $p; # not for undef, 0 333 $x->{_p} = $p; # set/overwrite, even if not rounded 334 delete $x->{_a}; # clear A 335 $p = ${"${class}::precision"} unless defined $p; # proper return value 336 } 337 else 338 { 339 ${"${class}::precision"} = $p; # set global P 340 ${"${class}::accuracy"} = undef; # clear global A 341 } 342 return $p; # shortcut 343 } 344 345 my $r; 346 # $object->precision() or fallback to global 347 $r = $x->{_p} if ref($x); 348 # but don't return global undef, when $x's precision is 0! 349 $r = ${"${class}::precision"} if !defined $r; 350 $r; 351 } 352 353sub config 354 { 355 # return (or set) configuration data as hash ref 356 my $class = shift || 'Math::BigInt'; 357 358 no strict 'refs'; 359 if (@_ > 0) 360 { 361 # try to set given options as arguments from hash 362 363 my $args = $_[0]; 364 if (ref($args) ne 'HASH') 365 { 366 $args = { @_ }; 367 } 368 # these values can be "set" 369 my $set_args = {}; 370 foreach my $key ( 371 qw/trap_inf trap_nan 372 upgrade downgrade precision accuracy round_mode div_scale/ 373 ) 374 { 375 $set_args->{$key} = $args->{$key} if exists $args->{$key}; 376 delete $args->{$key}; 377 } 378 if (keys %$args > 0) 379 { 380 require Carp; 381 Carp::croak ("Illegal key(s) '", 382 join("','",keys %$args),"' passed to $class\->config()"); 383 } 384 foreach my $key (keys %$set_args) 385 { 386 if ($key =~ /^trap_(inf|nan)\z/) 387 { 388 ${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0); 389 next; 390 } 391 # use a call instead of just setting the $variable to check argument 392 $class->$key($set_args->{$key}); 393 } 394 } 395 396 # now return actual configuration 397 398 my $cfg = { 399 lib => $CALC, 400 lib_version => ${"${CALC}::VERSION"}, 401 class => $class, 402 trap_nan => ${"${class}::_trap_nan"}, 403 trap_inf => ${"${class}::_trap_inf"}, 404 version => ${"${class}::VERSION"}, 405 }; 406 foreach my $key (qw/ 407 upgrade downgrade precision accuracy round_mode div_scale 408 /) 409 { 410 $cfg->{$key} = ${"${class}::$key"}; 411 }; 412 $cfg; 413 } 414 415sub _scale_a 416 { 417 # select accuracy parameter based on precedence, 418 # used by bround() and bfround(), may return undef for scale (means no op) 419 my ($x,$s,$m,$scale,$mode) = @_; 420 $scale = $x->{_a} if !defined $scale; 421 $scale = $s if (!defined $scale); 422 $mode = $m if !defined $mode; 423 return ($scale,$mode); 424 } 425 426sub _scale_p 427 { 428 # select precision parameter based on precedence, 429 # used by bround() and bfround(), may return undef for scale (means no op) 430 my ($x,$s,$m,$scale,$mode) = @_; 431 $scale = $x->{_p} if !defined $scale; 432 $scale = $s if (!defined $scale); 433 $mode = $m if !defined $mode; 434 return ($scale,$mode); 435 } 436 437############################################################################## 438# constructors 439 440sub copy 441 { 442 my ($c,$x); 443 if (@_ > 1) 444 { 445 # if two arguments, the first one is the class to "swallow" subclasses 446 ($c,$x) = @_; 447 } 448 else 449 { 450 $x = shift; 451 $c = ref($x); 452 } 453 return unless ref($x); # only for objects 454 455 my $self = {}; bless $self,$c; 456 457 $self->{sign} = $x->{sign}; 458 $self->{value} = $CALC->_copy($x->{value}); 459 $self->{_a} = $x->{_a} if defined $x->{_a}; 460 $self->{_p} = $x->{_p} if defined $x->{_p}; 461 $self; 462 } 463 464sub new 465 { 466 # create a new BigInt object from a string or another BigInt object. 467 # see hash keys documented at top 468 469 # the argument could be an object, so avoid ||, && etc on it, this would 470 # cause costly overloaded code to be called. The only allowed ops are 471 # ref() and defined. 472 473 my ($class,$wanted,$a,$p,$r) = @_; 474 475 # avoid numify-calls by not using || on $wanted! 476 return $class->bzero($a,$p) if !defined $wanted; # default to 0 477 return $class->copy($wanted,$a,$p,$r) 478 if ref($wanted) && $wanted->isa($class); # MBI or subclass 479 480 $class->import() if $IMPORT == 0; # make require work 481 482 my $self = bless {}, $class; 483 484 # shortcut for "normal" numbers 485 if ((!ref $wanted) && ($wanted =~ /^([+-]?)[1-9][0-9]*\z/)) 486 { 487 $self->{sign} = $1 || '+'; 488 489 if ($wanted =~ /^[+-]/) 490 { 491 # remove sign without touching wanted to make it work with constants 492 my $t = $wanted; $t =~ s/^[+-]//; 493 $self->{value} = $CALC->_new($t); 494 } 495 else 496 { 497 $self->{value} = $CALC->_new($wanted); 498 } 499 no strict 'refs'; 500 if ( (defined $a) || (defined $p) 501 || (defined ${"${class}::precision"}) 502 || (defined ${"${class}::accuracy"}) 503 ) 504 { 505 $self->round($a,$p,$r) unless (@_ == 4 && !defined $a && !defined $p); 506 } 507 return $self; 508 } 509 510 # handle '+inf', '-inf' first 511 if ($wanted =~ /^[+-]?inf$/) 512 { 513 $self->{value} = $CALC->_zero(); 514 $self->{sign} = $wanted; $self->{sign} = '+inf' if $self->{sign} eq 'inf'; 515 return $self; 516 } 517 # split str in m mantissa, e exponent, i integer, f fraction, v value, s sign 518 my ($mis,$miv,$mfv,$es,$ev) = _split($wanted); 519 if (!ref $mis) 520 { 521 if ($_trap_nan) 522 { 523 require Carp; Carp::croak("$wanted is not a number in $class"); 524 } 525 $self->{value} = $CALC->_zero(); 526 $self->{sign} = $nan; 527 return $self; 528 } 529 if (!ref $miv) 530 { 531 # _from_hex or _from_bin 532 $self->{value} = $mis->{value}; 533 $self->{sign} = $mis->{sign}; 534 return $self; # throw away $mis 535 } 536 # make integer from mantissa by adjusting exp, then convert to bigint 537 $self->{sign} = $$mis; # store sign 538 $self->{value} = $CALC->_zero(); # for all the NaN cases 539 my $e = int("$$es$$ev"); # exponent (avoid recursion) 540 if ($e > 0) 541 { 542 my $diff = $e - CORE::length($$mfv); 543 if ($diff < 0) # Not integer 544 { 545 if ($_trap_nan) 546 { 547 require Carp; Carp::croak("$wanted not an integer in $class"); 548 } 549 #print "NOI 1\n"; 550 return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade; 551 $self->{sign} = $nan; 552 } 553 else # diff >= 0 554 { 555 # adjust fraction and add it to value 556 #print "diff > 0 $$miv\n"; 557 $$miv = $$miv . ($$mfv . '0' x $diff); 558 } 559 } 560 else 561 { 562 if ($$mfv ne '') # e <= 0 563 { 564 # fraction and negative/zero E => NOI 565 if ($_trap_nan) 566 { 567 require Carp; Carp::croak("$wanted not an integer in $class"); 568 } 569 #print "NOI 2 \$\$mfv '$$mfv'\n"; 570 return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade; 571 $self->{sign} = $nan; 572 } 573 elsif ($e < 0) 574 { 575 # xE-y, and empty mfv 576 #print "xE-y\n"; 577 $e = abs($e); 578 if ($$miv !~ s/0{$e}$//) # can strip so many zero's? 579 { 580 if ($_trap_nan) 581 { 582 require Carp; Carp::croak("$wanted not an integer in $class"); 583 } 584 #print "NOI 3\n"; 585 return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade; 586 $self->{sign} = $nan; 587 } 588 } 589 } 590 $self->{sign} = '+' if $$miv eq '0'; # normalize -0 => +0 591 $self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/; 592 # if any of the globals is set, use them to round and store them inside $self 593 # do not round for new($x,undef,undef) since that is used by MBF to signal 594 # no rounding 595 $self->round($a,$p,$r) unless @_ == 4 && !defined $a && !defined $p; 596 $self; 597 } 598 599sub bnan 600 { 601 # create a bigint 'NaN', if given a BigInt, set it to 'NaN' 602 my $self = shift; 603 $self = $class if !defined $self; 604 if (!ref($self)) 605 { 606 my $c = $self; $self = {}; bless $self, $c; 607 } 608 no strict 'refs'; 609 if (${"${class}::_trap_nan"}) 610 { 611 require Carp; 612 Carp::croak ("Tried to set $self to NaN in $class\::bnan()"); 613 } 614 $self->import() if $IMPORT == 0; # make require work 615 return if $self->modify('bnan'); 616 if ($self->can('_bnan')) 617 { 618 # use subclass to initialize 619 $self->_bnan(); 620 } 621 else 622 { 623 # otherwise do our own thing 624 $self->{value} = $CALC->_zero(); 625 } 626 $self->{sign} = $nan; 627 delete $self->{_a}; delete $self->{_p}; # rounding NaN is silly 628 $self; 629 } 630 631sub binf 632 { 633 # create a bigint '+-inf', if given a BigInt, set it to '+-inf' 634 # the sign is either '+', or if given, used from there 635 my $self = shift; 636 my $sign = shift; $sign = '+' if !defined $sign || $sign !~ /^-(inf)?$/; 637 $self = $class if !defined $self; 638 if (!ref($self)) 639 { 640 my $c = $self; $self = {}; bless $self, $c; 641 } 642 no strict 'refs'; 643 if (${"${class}::_trap_inf"}) 644 { 645 require Carp; 646 Carp::croak ("Tried to set $self to +-inf in $class\::binfn()"); 647 } 648 $self->import() if $IMPORT == 0; # make require work 649 return if $self->modify('binf'); 650 if ($self->can('_binf')) 651 { 652 # use subclass to initialize 653 $self->_binf(); 654 } 655 else 656 { 657 # otherwise do our own thing 658 $self->{value} = $CALC->_zero(); 659 } 660 $sign = $sign . 'inf' if $sign !~ /inf$/; # - => -inf 661 $self->{sign} = $sign; 662 ($self->{_a},$self->{_p}) = @_; # take over requested rounding 663 $self; 664 } 665 666sub bzero 667 { 668 # create a bigint '+0', if given a BigInt, set it to 0 669 my $self = shift; 670 $self = $class if !defined $self; 671 672 if (!ref($self)) 673 { 674 my $c = $self; $self = {}; bless $self, $c; 675 } 676 $self->import() if $IMPORT == 0; # make require work 677 return if $self->modify('bzero'); 678 679 if ($self->can('_bzero')) 680 { 681 # use subclass to initialize 682 $self->_bzero(); 683 } 684 else 685 { 686 # otherwise do our own thing 687 $self->{value} = $CALC->_zero(); 688 } 689 $self->{sign} = '+'; 690 if (@_ > 0) 691 { 692 if (@_ > 3) 693 { 694 # call like: $x->bzero($a,$p,$r,$y); 695 ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_); 696 } 697 else 698 { 699 $self->{_a} = $_[0] 700 if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a})); 701 $self->{_p} = $_[1] 702 if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p})); 703 } 704 } 705 $self; 706 } 707 708sub bone 709 { 710 # create a bigint '+1' (or -1 if given sign '-'), 711 # if given a BigInt, set it to +1 or -1, respecively 712 my $self = shift; 713 my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-'; 714 $self = $class if !defined $self; 715 716 if (!ref($self)) 717 { 718 my $c = $self; $self = {}; bless $self, $c; 719 } 720 $self->import() if $IMPORT == 0; # make require work 721 return if $self->modify('bone'); 722 723 if ($self->can('_bone')) 724 { 725 # use subclass to initialize 726 $self->_bone(); 727 } 728 else 729 { 730 # otherwise do our own thing 731 $self->{value} = $CALC->_one(); 732 } 733 $self->{sign} = $sign; 734 if (@_ > 0) 735 { 736 if (@_ > 3) 737 { 738 # call like: $x->bone($sign,$a,$p,$r,$y); 739 ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_); 740 } 741 else 742 { 743 # call like: $x->bone($sign,$a,$p,$r); 744 $self->{_a} = $_[0] 745 if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a})); 746 $self->{_p} = $_[1] 747 if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p})); 748 } 749 } 750 $self; 751 } 752 753############################################################################## 754# string conversation 755 756sub bsstr 757 { 758 # (ref to BFLOAT or num_str ) return num_str 759 # Convert number from internal format to scientific string format. 760 # internal format is always normalized (no leading zeros, "-0E0" => "+0E0") 761 my $x = shift; $class = ref($x) || $x; $x = $class->new(shift) if !ref($x); 762 # my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); 763 764 if ($x->{sign} !~ /^[+-]$/) 765 { 766 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN 767 return 'inf'; # +inf 768 } 769 my ($m,$e) = $x->parts(); 770 #$m->bstr() . 'e+' . $e->bstr(); # e can only be positive in BigInt 771 # 'e+' because E can only be positive in BigInt 772 $m->bstr() . 'e+' . $CALC->_str($e->{value}); 773 } 774 775sub bstr 776 { 777 # make a string from bigint object 778 my $x = shift; $class = ref($x) || $x; $x = $class->new(shift) if !ref($x); 779 # my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); 780 781 if ($x->{sign} !~ /^[+-]$/) 782 { 783 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN 784 return 'inf'; # +inf 785 } 786 my $es = ''; $es = $x->{sign} if $x->{sign} eq '-'; 787 $es.$CALC->_str($x->{value}); 788 } 789 790sub numify 791 { 792 # Make a "normal" scalar from a BigInt object 793 my $x = shift; $x = $class->new($x) unless ref $x; 794 795 return $x->bstr() if $x->{sign} !~ /^[+-]$/; 796 my $num = $CALC->_num($x->{value}); 797 return -$num if $x->{sign} eq '-'; 798 $num; 799 } 800 801############################################################################## 802# public stuff (usually prefixed with "b") 803 804sub sign 805 { 806 # return the sign of the number: +/-/-inf/+inf/NaN 807 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 808 809 $x->{sign}; 810 } 811 812sub _find_round_parameters 813 { 814 # After any operation or when calling round(), the result is rounded by 815 # regarding the A & P from arguments, local parameters, or globals. 816 817 # !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!! 818 819 # This procedure finds the round parameters, but it is for speed reasons 820 # duplicated in round. Otherwise, it is tested by the testsuite and used 821 # by fdiv(). 822 823 # returns ($self) or ($self,$a,$p,$r) - sets $self to NaN of both A and P 824 # were requested/defined (locally or globally or both) 825 826 my ($self,$a,$p,$r,@args) = @_; 827 # $a accuracy, if given by caller 828 # $p precision, if given by caller 829 # $r round_mode, if given by caller 830 # @args all 'other' arguments (0 for unary, 1 for binary ops) 831 832 # leave bigfloat parts alone 833 return ($self) if exists $self->{_f} && ($self->{_f} & MB_NEVER_ROUND) != 0; 834 835 my $c = ref($self); # find out class of argument(s) 836 no strict 'refs'; 837 838 # now pick $a or $p, but only if we have got "arguments" 839 if (!defined $a) 840 { 841 foreach ($self,@args) 842 { 843 # take the defined one, or if both defined, the one that is smaller 844 $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a); 845 } 846 } 847 if (!defined $p) 848 { 849 # even if $a is defined, take $p, to signal error for both defined 850 foreach ($self,@args) 851 { 852 # take the defined one, or if both defined, the one that is bigger 853 # -2 > -3, and 3 > 2 854 $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p); 855 } 856 } 857 # if still none defined, use globals (#2) 858 $a = ${"$c\::accuracy"} unless defined $a; 859 $p = ${"$c\::precision"} unless defined $p; 860 861 # A == 0 is useless, so undef it to signal no rounding 862 $a = undef if defined $a && $a == 0; 863 864 # no rounding today? 865 return ($self) unless defined $a || defined $p; # early out 866 867 # set A and set P is an fatal error 868 return ($self->bnan()) if defined $a && defined $p; # error 869 870 $r = ${"$c\::round_mode"} unless defined $r; 871 if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/) 872 { 873 require Carp; Carp::croak ("Unknown round mode '$r'"); 874 } 875 876 ($self,$a,$p,$r); 877 } 878 879sub round 880 { 881 # Round $self according to given parameters, or given second argument's 882 # parameters or global defaults 883 884 # for speed reasons, _find_round_parameters is embeded here: 885 886 my ($self,$a,$p,$r,@args) = @_; 887 # $a accuracy, if given by caller 888 # $p precision, if given by caller 889 # $r round_mode, if given by caller 890 # @args all 'other' arguments (0 for unary, 1 for binary ops) 891 892 # leave bigfloat parts alone 893 return ($self) if exists $self->{_f} && ($self->{_f} & MB_NEVER_ROUND) != 0; 894 895 my $c = ref($self); # find out class of argument(s) 896 no strict 'refs'; 897 898 # now pick $a or $p, but only if we have got "arguments" 899 if (!defined $a) 900 { 901 foreach ($self,@args) 902 { 903 # take the defined one, or if both defined, the one that is smaller 904 $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a); 905 } 906 } 907 if (!defined $p) 908 { 909 # even if $a is defined, take $p, to signal error for both defined 910 foreach ($self,@args) 911 { 912 # take the defined one, or if both defined, the one that is bigger 913 # -2 > -3, and 3 > 2 914 $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p); 915 } 916 } 917 # if still none defined, use globals (#2) 918 $a = ${"$c\::accuracy"} unless defined $a; 919 $p = ${"$c\::precision"} unless defined $p; 920 921 # A == 0 is useless, so undef it to signal no rounding 922 $a = undef if defined $a && $a == 0; 923 924 # no rounding today? 925 return $self unless defined $a || defined $p; # early out 926 927 # set A and set P is an fatal error 928 return $self->bnan() if defined $a && defined $p; 929 930 $r = ${"$c\::round_mode"} unless defined $r; 931 if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/) 932 { 933 require Carp; Carp::croak ("Unknown round mode '$r'"); 934 } 935 936 # now round, by calling either fround or ffround: 937 if (defined $a) 938 { 939 $self->bround($a,$r) if !defined $self->{_a} || $self->{_a} >= $a; 940 } 941 else # both can't be undefined due to early out 942 { 943 $self->bfround($p,$r) if !defined $self->{_p} || $self->{_p} <= $p; 944 } 945 $self->bnorm(); # after round, normalize 946 } 947 948sub bnorm 949 { 950 # (numstr or BINT) return BINT 951 # Normalize number -- no-op here 952 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 953 $x; 954 } 955 956sub babs 957 { 958 # (BINT or num_str) return BINT 959 # make number absolute, or return absolute BINT from string 960 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); 961 962 return $x if $x->modify('babs'); 963 # post-normalized abs for internal use (does nothing for NaN) 964 $x->{sign} =~ s/^-/+/; 965 $x; 966 } 967 968sub bneg 969 { 970 # (BINT or num_str) return BINT 971 # negate number or make a negated number from string 972 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); 973 974 return $x if $x->modify('bneg'); 975 976 # for +0 dont negate (to have always normalized) 977 $x->{sign} =~ tr/+-/-+/ if !$x->is_zero(); # does nothing for NaN 978 $x; 979 } 980 981sub bcmp 982 { 983 # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort) 984 # (BINT or num_str, BINT or num_str) return cond_code 985 986 # set up parameters 987 my ($self,$x,$y) = (ref($_[0]),@_); 988 989 # objectify is costly, so avoid it 990 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 991 { 992 ($self,$x,$y) = objectify(2,@_); 993 } 994 995 return $upgrade->bcmp($x,$y) if defined $upgrade && 996 ((!$x->isa($self)) || (!$y->isa($self))); 997 998 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) 999 { 1000 # handle +-inf and NaN 1001 return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); 1002 return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/; 1003 return +1 if $x->{sign} eq '+inf'; 1004 return -1 if $x->{sign} eq '-inf'; 1005 return -1 if $y->{sign} eq '+inf'; 1006 return +1; 1007 } 1008 # check sign for speed first 1009 return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y 1010 return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0 1011 1012 # have same sign, so compare absolute values. Don't make tests for zero here 1013 # because it's actually slower than testin in Calc (especially w/ Pari et al) 1014 1015 # post-normalized compare for internal use (honors signs) 1016 if ($x->{sign} eq '+') 1017 { 1018 # $x and $y both > 0 1019 return $CALC->_acmp($x->{value},$y->{value}); 1020 } 1021 1022 # $x && $y both < 0 1023 $CALC->_acmp($y->{value},$x->{value}); # swaped acmp (lib returns 0,1,-1) 1024 } 1025 1026sub bacmp 1027 { 1028 # Compares 2 values, ignoring their signs. 1029 # Returns one of undef, <0, =0, >0. (suitable for sort) 1030 # (BINT, BINT) return cond_code 1031 1032 # set up parameters 1033 my ($self,$x,$y) = (ref($_[0]),@_); 1034 # objectify is costly, so avoid it 1035 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1036 { 1037 ($self,$x,$y) = objectify(2,@_); 1038 } 1039 1040 return $upgrade->bacmp($x,$y) if defined $upgrade && 1041 ((!$x->isa($self)) || (!$y->isa($self))); 1042 1043 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) 1044 { 1045 # handle +-inf and NaN 1046 return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); 1047 return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/; 1048 return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/; 1049 return -1; 1050 } 1051 $CALC->_acmp($x->{value},$y->{value}); # lib does only 0,1,-1 1052 } 1053 1054sub badd 1055 { 1056 # add second arg (BINT or string) to first (BINT) (modifies first) 1057 # return result as BINT 1058 1059 # set up parameters 1060 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1061 # objectify is costly, so avoid it 1062 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1063 { 1064 ($self,$x,$y,@r) = objectify(2,@_); 1065 } 1066 1067 return $x if $x->modify('badd'); 1068 return $upgrade->badd($upgrade->new($x),$upgrade->new($y),@r) if defined $upgrade && 1069 ((!$x->isa($self)) || (!$y->isa($self))); 1070 1071 $r[3] = $y; # no push! 1072 # inf and NaN handling 1073 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) 1074 { 1075 # NaN first 1076 return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); 1077 # inf handling 1078 if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) 1079 { 1080 # +inf++inf or -inf+-inf => same, rest is NaN 1081 return $x if $x->{sign} eq $y->{sign}; 1082 return $x->bnan(); 1083 } 1084 # +-inf + something => +inf 1085 # something +-inf => +-inf 1086 $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/; 1087 return $x; 1088 } 1089 1090 my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); # get signs 1091 1092 if ($sx eq $sy) 1093 { 1094 $x->{value} = $CALC->_add($x->{value},$y->{value}); # same sign, abs add 1095 } 1096 else 1097 { 1098 my $a = $CALC->_acmp ($y->{value},$x->{value}); # absolute compare 1099 if ($a > 0) 1100 { 1101 $x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap 1102 $x->{sign} = $sy; 1103 } 1104 elsif ($a == 0) 1105 { 1106 # speedup, if equal, set result to 0 1107 $x->{value} = $CALC->_zero(); 1108 $x->{sign} = '+'; 1109 } 1110 else # a < 0 1111 { 1112 $x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub 1113 } 1114 } 1115 $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0; 1116 $x; 1117 } 1118 1119sub bsub 1120 { 1121 # (BINT or num_str, BINT or num_str) return BINT 1122 # subtract second arg from first, modify first 1123 1124 # set up parameters 1125 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1126 # objectify is costly, so avoid it 1127 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1128 { 1129 ($self,$x,$y,@r) = objectify(2,@_); 1130 } 1131 1132 return $x if $x->modify('bsub'); 1133 1134 return $upgrade->new($x)->bsub($upgrade->new($y),@r) if defined $upgrade && 1135 ((!$x->isa($self)) || (!$y->isa($self))); 1136 1137 if ($y->is_zero()) 1138 { 1139 $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0; 1140 return $x; 1141 } 1142 1143 $y->{sign} =~ tr/+\-/-+/; # does nothing for NaN 1144 $x->badd($y,@r); # badd does not leave internal zeros 1145 $y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN) 1146 $x; # already rounded by badd() or no round necc. 1147 } 1148 1149sub binc 1150 { 1151 # increment arg by one 1152 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); 1153 return $x if $x->modify('binc'); 1154 1155 if ($x->{sign} eq '+') 1156 { 1157 $x->{value} = $CALC->_inc($x->{value}); 1158 $x->round($a,$p,$r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0; 1159 return $x; 1160 } 1161 elsif ($x->{sign} eq '-') 1162 { 1163 $x->{value} = $CALC->_dec($x->{value}); 1164 $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0 1165 $x->round($a,$p,$r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0; 1166 return $x; 1167 } 1168 # inf, nan handling etc 1169 $x->badd($self->bone(),$a,$p,$r); # badd does round 1170 } 1171 1172sub bdec 1173 { 1174 # decrement arg by one 1175 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); 1176 return $x if $x->modify('bdec'); 1177 1178 if ($x->{sign} eq '-') 1179 { 1180 # < 0 1181 $x->{value} = $CALC->_inc($x->{value}); 1182 } 1183 else 1184 { 1185 return $x->badd($self->bone('-'),@r) unless $x->{sign} eq '+'; # inf/NaN 1186 # >= 0 1187 if ($CALC->_is_zero($x->{value})) 1188 { 1189 # == 0 1190 $x->{value} = $CALC->_one(); $x->{sign} = '-'; # 0 => -1 1191 } 1192 else 1193 { 1194 # > 0 1195 $x->{value} = $CALC->_dec($x->{value}); 1196 } 1197 } 1198 $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0; 1199 $x; 1200 } 1201 1202sub blog 1203 { 1204 # calculate $x = $a ** $base + $b and return $a (e.g. the log() to base 1205 # $base of $x) 1206 1207 # set up parameters 1208 my ($self,$x,$base,@r) = (ref($_[0]),@_); 1209 # objectify is costly, so avoid it 1210 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1211 { 1212 ($self,$x,$base,@r) = objectify(1,$class,@_); 1213 } 1214 1215 return $x if $x->modify('blog'); 1216 1217 # inf, -inf, NaN, <0 => NaN 1218 return $x->bnan() 1219 if $x->{sign} ne '+' || (defined $base && $base->{sign} ne '+'); 1220 1221 return $upgrade->blog($upgrade->new($x),$base,@r) if 1222 defined $upgrade; 1223 1224 my ($rc,$exact) = $CALC->_log_int($x->{value},$base->{value}); 1225 return $x->bnan() unless defined $rc; # not possible to take log? 1226 $x->{value} = $rc; 1227 $x->round(@r); 1228 } 1229 1230sub blcm 1231 { 1232 # (BINT or num_str, BINT or num_str) return BINT 1233 # does not modify arguments, but returns new object 1234 # Lowest Common Multiplicator 1235 1236 my $y = shift; my ($x); 1237 if (ref($y)) 1238 { 1239 $x = $y->copy(); 1240 } 1241 else 1242 { 1243 $x = __PACKAGE__->new($y); 1244 } 1245 my $self = ref($x); 1246 while (@_) 1247 { 1248 my $y = shift; $y = $self->new($y) if !ref ($y); 1249 $x = __lcm($x,$y); 1250 } 1251 $x; 1252 } 1253 1254sub bgcd 1255 { 1256 # (BINT or num_str, BINT or num_str) return BINT 1257 # does not modify arguments, but returns new object 1258 # GCD -- Euclids algorithm, variant C (Knuth Vol 3, pg 341 ff) 1259 1260 my $y = shift; 1261 $y = __PACKAGE__->new($y) if !ref($y); 1262 my $self = ref($y); 1263 my $x = $y->copy()->babs(); # keep arguments 1264 return $x->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN? 1265 1266 while (@_) 1267 { 1268 $y = shift; $y = $self->new($y) if !ref($y); 1269 next if $y->is_zero(); 1270 return $x->bnan() if $y->{sign} !~ /^[+-]$/; # y NaN? 1271 $x->{value} = $CALC->_gcd($x->{value},$y->{value}); last if $x->is_one(); 1272 } 1273 $x; 1274 } 1275 1276sub bnot 1277 { 1278 # (num_str or BINT) return BINT 1279 # represent ~x as twos-complement number 1280 # we don't need $self, so undef instead of ref($_[0]) make it slightly faster 1281 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); 1282 1283 return $x if $x->modify('bnot'); 1284 $x->binc()->bneg(); # binc already does round 1285 } 1286 1287############################################################################## 1288# is_foo test routines 1289# we don't need $self, so undef instead of ref($_[0]) make it slightly faster 1290 1291sub is_zero 1292 { 1293 # return true if arg (BINT or num_str) is zero (array '+', '0') 1294 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 1295 1296 return 0 if $x->{sign} !~ /^\+$/; # -, NaN & +-inf aren't 1297 $CALC->_is_zero($x->{value}); 1298 } 1299 1300sub is_nan 1301 { 1302 # return true if arg (BINT or num_str) is NaN 1303 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 1304 1305 $x->{sign} eq $nan ? 1 : 0; 1306 } 1307 1308sub is_inf 1309 { 1310 # return true if arg (BINT or num_str) is +-inf 1311 my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_); 1312 1313 if (defined $sign) 1314 { 1315 $sign = '[+-]inf' if $sign eq ''; # +- doesn't matter, only that's inf 1316 $sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/; # extract '+' or '-' 1317 return $x->{sign} =~ /^$sign$/ ? 1 : 0; 1318 } 1319 $x->{sign} =~ /^[+-]inf$/ ? 1 : 0; # only +-inf is infinity 1320 } 1321 1322sub is_one 1323 { 1324 # return true if arg (BINT or num_str) is +1, or -1 if sign is given 1325 my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_); 1326 1327 $sign = '+' if !defined $sign || $sign ne '-'; 1328 1329 return 0 if $x->{sign} ne $sign; # -1 != +1, NaN, +-inf aren't either 1330 $CALC->_is_one($x->{value}); 1331 } 1332 1333sub is_odd 1334 { 1335 # return true when arg (BINT or num_str) is odd, false for even 1336 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 1337 1338 return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't 1339 $CALC->_is_odd($x->{value}); 1340 } 1341 1342sub is_even 1343 { 1344 # return true when arg (BINT or num_str) is even, false for odd 1345 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 1346 1347 return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't 1348 $CALC->_is_even($x->{value}); 1349 } 1350 1351sub is_positive 1352 { 1353 # return true when arg (BINT or num_str) is positive (>= 0) 1354 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 1355 1356 $x->{sign} =~ /^\+/ ? 1 : 0; # +inf is also positive, but NaN not 1357 } 1358 1359sub is_negative 1360 { 1361 # return true when arg (BINT or num_str) is negative (< 0) 1362 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 1363 1364 $x->{sign} =~ /^-/ ? 1 : 0; # -inf is also negative, but NaN not 1365 } 1366 1367sub is_int 1368 { 1369 # return true when arg (BINT or num_str) is an integer 1370 # always true for BigInt, but different for BigFloats 1371 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 1372 1373 $x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't 1374 } 1375 1376############################################################################### 1377 1378sub bmul 1379 { 1380 # multiply two numbers -- stolen from Knuth Vol 2 pg 233 1381 # (BINT or num_str, BINT or num_str) return BINT 1382 1383 # set up parameters 1384 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1385 # objectify is costly, so avoid it 1386 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1387 { 1388 ($self,$x,$y,@r) = objectify(2,@_); 1389 } 1390 1391 return $x if $x->modify('bmul'); 1392 1393 return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); 1394 1395 # inf handling 1396 if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) 1397 { 1398 return $x->bnan() if $x->is_zero() || $y->is_zero(); 1399 # result will always be +-inf: 1400 # +inf * +/+inf => +inf, -inf * -/-inf => +inf 1401 # +inf * -/-inf => -inf, -inf * +/+inf => -inf 1402 return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); 1403 return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); 1404 return $x->binf('-'); 1405 } 1406 1407 return $upgrade->bmul($x,$upgrade->new($y),@r) 1408 if defined $upgrade && !$y->isa($self); 1409 1410 $r[3] = $y; # no push here 1411 1412 $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => + 1413 1414 $x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math 1415 $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0 1416 1417 $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0; 1418 $x; 1419 } 1420 1421sub _div_inf 1422 { 1423 # helper function that handles +-inf cases for bdiv()/bmod() to reuse code 1424 my ($self,$x,$y) = @_; 1425 1426 # NaN if x == NaN or y == NaN or x==y==0 1427 return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan() 1428 if (($x->is_nan() || $y->is_nan()) || 1429 ($x->is_zero() && $y->is_zero())); 1430 1431 # +-inf / +-inf == NaN, reminder also NaN 1432 if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) 1433 { 1434 return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan(); 1435 } 1436 # x / +-inf => 0, remainder x (works even if x == 0) 1437 if ($y->{sign} =~ /^[+-]inf$/) 1438 { 1439 my $t = $x->copy(); # bzero clobbers up $x 1440 return wantarray ? ($x->bzero(),$t) : $x->bzero() 1441 } 1442 1443 # 5 / 0 => +inf, -6 / 0 => -inf 1444 # +inf / 0 = inf, inf, and -inf / 0 => -inf, -inf 1445 # exception: -8 / 0 has remainder -8, not 8 1446 # exception: -inf / 0 has remainder -inf, not inf 1447 if ($y->is_zero()) 1448 { 1449 # +-inf / 0 => special case for -inf 1450 return wantarray ? ($x,$x->copy()) : $x if $x->is_inf(); 1451 if (!$x->is_zero() && !$x->is_inf()) 1452 { 1453 my $t = $x->copy(); # binf clobbers up $x 1454 return wantarray ? 1455 ($x->binf($x->{sign}),$t) : $x->binf($x->{sign}) 1456 } 1457 } 1458 1459 # last case: +-inf / ordinary number 1460 my $sign = '+inf'; 1461 $sign = '-inf' if substr($x->{sign},0,1) ne $y->{sign}; 1462 $x->{sign} = $sign; 1463 return wantarray ? ($x,$self->bzero()) : $x; 1464 } 1465 1466sub bdiv 1467 { 1468 # (dividend: BINT or num_str, divisor: BINT or num_str) return 1469 # (BINT,BINT) (quo,rem) or BINT (only rem) 1470 1471 # set up parameters 1472 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1473 # objectify is costly, so avoid it 1474 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1475 { 1476 ($self,$x,$y,@r) = objectify(2,@_); 1477 } 1478 1479 return $x if $x->modify('bdiv'); 1480 1481 return $self->_div_inf($x,$y) 1482 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero()); 1483 1484 return $upgrade->bdiv($upgrade->new($x),$upgrade->new($y),@r) 1485 if defined $upgrade; 1486 1487 $r[3] = $y; # no push! 1488 1489 # calc new sign and in case $y == +/- 1, return $x 1490 my $xsign = $x->{sign}; # keep 1491 $x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+'); 1492 1493 if (wantarray) 1494 { 1495 my $rem = $self->bzero(); 1496 ($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value}); 1497 $x->{sign} = '+' if $CALC->_is_zero($x->{value}); 1498 $rem->{_a} = $x->{_a}; 1499 $rem->{_p} = $x->{_p}; 1500 $x->round(@r) if !exists $x->{_f} || ($x->{_f} & MB_NEVER_ROUND) == 0; 1501 if (! $CALC->_is_zero($rem->{value})) 1502 { 1503 $rem->{sign} = $y->{sign}; 1504 $rem = $y->copy()->bsub($rem) if $xsign ne $y->{sign}; # one of them '-' 1505 } 1506 else 1507 { 1508 $rem->{sign} = '+'; # dont leave -0 1509 } 1510 $rem->round(@r) if !exists $rem->{_f} || ($rem->{_f} & MB_NEVER_ROUND) == 0; 1511 return ($x,$rem); 1512 } 1513 1514 $x->{value} = $CALC->_div($x->{value},$y->{value}); 1515 $x->{sign} = '+' if $CALC->_is_zero($x->{value}); 1516 1517 $x->round(@r) if !exists $x->{_f} || ($x->{_f} & MB_NEVER_ROUND) == 0; 1518 $x; 1519 } 1520 1521############################################################################### 1522# modulus functions 1523 1524sub bmod 1525 { 1526 # modulus (or remainder) 1527 # (BINT or num_str, BINT or num_str) return BINT 1528 1529 # set up parameters 1530 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1531 # objectify is costly, so avoid it 1532 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1533 { 1534 ($self,$x,$y,@r) = objectify(2,@_); 1535 } 1536 1537 return $x if $x->modify('bmod'); 1538 $r[3] = $y; # no push! 1539 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero()) 1540 { 1541 my ($d,$r) = $self->_div_inf($x,$y); 1542 $x->{sign} = $r->{sign}; 1543 $x->{value} = $r->{value}; 1544 return $x->round(@r); 1545 } 1546 1547 # calc new sign and in case $y == +/- 1, return $x 1548 $x->{value} = $CALC->_mod($x->{value},$y->{value}); 1549 if (!$CALC->_is_zero($x->{value})) 1550 { 1551 my $xsign = $x->{sign}; 1552 $x->{sign} = $y->{sign}; 1553 if ($xsign ne $y->{sign}) 1554 { 1555 my $t = $CALC->_copy($x->{value}); # copy $x 1556 $x->{value} = $CALC->_sub($y->{value},$t,1); # $y-$x 1557 } 1558 } 1559 else 1560 { 1561 $x->{sign} = '+'; # dont leave -0 1562 } 1563 $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0; 1564 $x; 1565 } 1566 1567sub bmodinv 1568 { 1569 # Modular inverse. given a number which is (hopefully) relatively 1570 # prime to the modulus, calculate its inverse using Euclid's 1571 # alogrithm. If the number is not relatively prime to the modulus 1572 # (i.e. their gcd is not one) then NaN is returned. 1573 1574 # set up parameters 1575 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1576 # objectify is costly, so avoid it 1577 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1578 { 1579 ($self,$x,$y,@r) = objectify(2,@_); 1580 } 1581 1582 return $x if $x->modify('bmodinv'); 1583 1584 return $x->bnan() 1585 if ($y->{sign} ne '+' # -, NaN, +inf, -inf 1586 || $x->is_zero() # or num == 0 1587 || $x->{sign} !~ /^[+-]$/ # or num NaN, inf, -inf 1588 ); 1589 1590 # put least residue into $x if $x was negative, and thus make it positive 1591 $x->bmod($y) if $x->{sign} eq '-'; 1592 1593 my $sign; 1594 ($x->{value},$sign) = $CALC->_modinv($x->{value},$y->{value}); 1595 return $x->bnan() if !defined $x->{value}; # in case no GCD found 1596 return $x if !defined $sign; # already real result 1597 $x->{sign} = $sign; # flip/flop see below 1598 $x->bmod($y); # calc real result 1599 $x; 1600 } 1601 1602sub bmodpow 1603 { 1604 # takes a very large number to a very large exponent in a given very 1605 # large modulus, quickly, thanks to binary exponentation. supports 1606 # negative exponents. 1607 my ($self,$num,$exp,$mod,@r) = objectify(3,@_); 1608 1609 return $num if $num->modify('bmodpow'); 1610 1611 # check modulus for valid values 1612 return $num->bnan() if ($mod->{sign} ne '+' # NaN, - , -inf, +inf 1613 || $mod->is_zero()); 1614 1615 # check exponent for valid values 1616 if ($exp->{sign} =~ /\w/) 1617 { 1618 # i.e., if it's NaN, +inf, or -inf... 1619 return $num->bnan(); 1620 } 1621 1622 $num->bmodinv ($mod) if ($exp->{sign} eq '-'); 1623 1624 # check num for valid values (also NaN if there was no inverse but $exp < 0) 1625 return $num->bnan() if $num->{sign} !~ /^[+-]$/; 1626 1627 # $mod is positive, sign on $exp is ignored, result also positive 1628 $num->{value} = $CALC->_modpow($num->{value},$exp->{value},$mod->{value}); 1629 $num; 1630 } 1631 1632############################################################################### 1633 1634sub bfac 1635 { 1636 # (BINT or num_str, BINT or num_str) return BINT 1637 # compute factorial number from $x, modify $x in place 1638 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); 1639 1640 return $x if $x->modify('bfac'); 1641 1642 return $x if $x->{sign} eq '+inf'; # inf => inf 1643 return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN 1644 1645 $x->{value} = $CALC->_fac($x->{value}); 1646 $x->round(@r); 1647 } 1648 1649sub bpow 1650 { 1651 # (BINT or num_str, BINT or num_str) return BINT 1652 # compute power of two numbers -- stolen from Knuth Vol 2 pg 233 1653 # modifies first argument 1654 1655 # set up parameters 1656 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1657 # objectify is costly, so avoid it 1658 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1659 { 1660 ($self,$x,$y,@r) = objectify(2,@_); 1661 } 1662 1663 return $x if $x->modify('bpow'); 1664 1665 return $upgrade->bpow($upgrade->new($x),$y,@r) 1666 if defined $upgrade && !$y->isa($self); 1667 1668 $r[3] = $y; # no push! 1669 return $x if $x->{sign} =~ /^[+-]inf$/; # -inf/+inf ** x 1670 return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan; 1671 1672 # cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu 1673 1674 my $new_sign = '+'; 1675 $new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+'); 1676 1677 # 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf 1678 return $x->binf() 1679 if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value}); 1680 # 1 ** -y => 1 / (1 ** |y|) 1681 # so do test for negative $y after above's clause 1682 return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value}); 1683 1684 $x->{value} = $CALC->_pow($x->{value},$y->{value}); 1685 $x->{sign} = $new_sign; 1686 $x->{sign} = '+' if $CALC->_is_zero($y->{value}); 1687 $x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0; 1688 $x; 1689 } 1690 1691sub blsft 1692 { 1693 # (BINT or num_str, BINT or num_str) return BINT 1694 # compute x << y, base n, y >= 0 1695 1696 # set up parameters 1697 my ($self,$x,$y,$n,@r) = (ref($_[0]),@_); 1698 # objectify is costly, so avoid it 1699 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1700 { 1701 ($self,$x,$y,$n,@r) = objectify(2,@_); 1702 } 1703 1704 return $x if $x->modify('blsft'); 1705 return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); 1706 return $x->round(@r) if $y->is_zero(); 1707 1708 $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-'; 1709 1710 $x->{value} = $CALC->_lsft($x->{value},$y->{value},$n); 1711 $x->round(@r); 1712 } 1713 1714sub brsft 1715 { 1716 # (BINT or num_str, BINT or num_str) return BINT 1717 # compute x >> y, base n, y >= 0 1718 1719 # set up parameters 1720 my ($self,$x,$y,$n,@r) = (ref($_[0]),@_); 1721 # objectify is costly, so avoid it 1722 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1723 { 1724 ($self,$x,$y,$n,@r) = objectify(2,@_); 1725 } 1726 1727 return $x if $x->modify('brsft'); 1728 return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); 1729 return $x->round(@r) if $y->is_zero(); 1730 return $x->bzero(@r) if $x->is_zero(); # 0 => 0 1731 1732 $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-'; 1733 1734 # this only works for negative numbers when shifting in base 2 1735 if (($x->{sign} eq '-') && ($n == 2)) 1736 { 1737 return $x->round(@r) if $x->is_one('-'); # -1 => -1 1738 if (!$y->is_one()) 1739 { 1740 # although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al 1741 # but perhaps there is a better emulation for two's complement shift... 1742 # if $y != 1, we must simulate it by doing: 1743 # convert to bin, flip all bits, shift, and be done 1744 $x->binc(); # -3 => -2 1745 my $bin = $x->as_bin(); 1746 $bin =~ s/^-0b//; # strip '-0b' prefix 1747 $bin =~ tr/10/01/; # flip bits 1748 # now shift 1749 if (CORE::length($bin) <= $y) 1750 { 1751 $bin = '0'; # shifting to far right creates -1 1752 # 0, because later increment makes 1753 # that 1, attached '-' makes it '-1' 1754 # because -1 >> x == -1 ! 1755 } 1756 else 1757 { 1758 $bin =~ s/.{$y}$//; # cut off at the right side 1759 $bin = '1' . $bin; # extend left side by one dummy '1' 1760 $bin =~ tr/10/01/; # flip bits back 1761 } 1762 my $res = $self->new('0b'.$bin); # add prefix and convert back 1763 $res->binc(); # remember to increment 1764 $x->{value} = $res->{value}; # take over value 1765 return $x->round(@r); # we are done now, magic, isn't? 1766 } 1767 # x < 0, n == 2, y == 1 1768 $x->bdec(); # n == 2, but $y == 1: this fixes it 1769 } 1770 1771 $x->{value} = $CALC->_rsft($x->{value},$y->{value},$n); 1772 $x->round(@r); 1773 } 1774 1775sub band 1776 { 1777 #(BINT or num_str, BINT or num_str) return BINT 1778 # compute x & y 1779 1780 # set up parameters 1781 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1782 # objectify is costly, so avoid it 1783 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1784 { 1785 ($self,$x,$y,@r) = objectify(2,@_); 1786 } 1787 1788 return $x if $x->modify('band'); 1789 1790 $r[3] = $y; # no push! 1791 1792 return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); 1793 1794 my $sx = $x->{sign} eq '+' ? 1 : -1; 1795 my $sy = $y->{sign} eq '+' ? 1 : -1; 1796 1797 if ($sx == 1 && $sy == 1) 1798 { 1799 $x->{value} = $CALC->_and($x->{value},$y->{value}); 1800 return $x->round(@r); 1801 } 1802 1803 if ($CAN{signed_and}) 1804 { 1805 $x->{value} = $CALC->_signed_and($x->{value},$y->{value},$sx,$sy); 1806 return $x->round(@r); 1807 } 1808 1809 require $EMU_LIB; 1810 __emu_band($self,$x,$y,$sx,$sy,@r); 1811 } 1812 1813sub bior 1814 { 1815 #(BINT or num_str, BINT or num_str) return BINT 1816 # compute x | y 1817 1818 # set up parameters 1819 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1820 # objectify is costly, so avoid it 1821 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1822 { 1823 ($self,$x,$y,@r) = objectify(2,@_); 1824 } 1825 1826 return $x if $x->modify('bior'); 1827 $r[3] = $y; # no push! 1828 1829 return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); 1830 1831 my $sx = $x->{sign} eq '+' ? 1 : -1; 1832 my $sy = $y->{sign} eq '+' ? 1 : -1; 1833 1834 # the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior() 1835 1836 # don't use lib for negative values 1837 if ($sx == 1 && $sy == 1) 1838 { 1839 $x->{value} = $CALC->_or($x->{value},$y->{value}); 1840 return $x->round(@r); 1841 } 1842 1843 # if lib can do negative values, let it handle this 1844 if ($CAN{signed_or}) 1845 { 1846 $x->{value} = $CALC->_signed_or($x->{value},$y->{value},$sx,$sy); 1847 return $x->round(@r); 1848 } 1849 1850 require $EMU_LIB; 1851 __emu_bior($self,$x,$y,$sx,$sy,@r); 1852 } 1853 1854sub bxor 1855 { 1856 #(BINT or num_str, BINT or num_str) return BINT 1857 # compute x ^ y 1858 1859 # set up parameters 1860 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1861 # objectify is costly, so avoid it 1862 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) 1863 { 1864 ($self,$x,$y,@r) = objectify(2,@_); 1865 } 1866 1867 return $x if $x->modify('bxor'); 1868 $r[3] = $y; # no push! 1869 1870 return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); 1871 1872 my $sx = $x->{sign} eq '+' ? 1 : -1; 1873 my $sy = $y->{sign} eq '+' ? 1 : -1; 1874 1875 # don't use lib for negative values 1876 if ($sx == 1 && $sy == 1) 1877 { 1878 $x->{value} = $CALC->_xor($x->{value},$y->{value}); 1879 return $x->round(@r); 1880 } 1881 1882 # if lib can do negative values, let it handle this 1883 if ($CAN{signed_xor}) 1884 { 1885 $x->{value} = $CALC->_signed_xor($x->{value},$y->{value},$sx,$sy); 1886 return $x->round(@r); 1887 } 1888 1889 require $EMU_LIB; 1890 __emu_bxor($self,$x,$y,$sx,$sy,@r); 1891 } 1892 1893sub length 1894 { 1895 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 1896 1897 my $e = $CALC->_len($x->{value}); 1898 wantarray ? ($e,0) : $e; 1899 } 1900 1901sub digit 1902 { 1903 # return the nth decimal digit, negative values count backward, 0 is right 1904 my ($self,$x,$n) = ref($_[0]) ? (undef,@_) : objectify(1,@_); 1905 1906 $n = $n->numify() if ref($n); 1907 $CALC->_digit($x->{value},$n||0); 1908 } 1909 1910sub _trailing_zeros 1911 { 1912 # return the amount of trailing zeros in $x (as scalar) 1913 my $x = shift; 1914 $x = $class->new($x) unless ref $x; 1915 1916 return 0 if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf etc 1917 1918 $CALC->_zeros($x->{value}); # must handle odd values, 0 etc 1919 } 1920 1921sub bsqrt 1922 { 1923 # calculate square root of $x 1924 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); 1925 1926 return $x if $x->modify('bsqrt'); 1927 1928 return $x->bnan() if $x->{sign} !~ /^\+/; # -x or -inf or NaN => NaN 1929 return $x if $x->{sign} eq '+inf'; # sqrt(+inf) == inf 1930 1931 return $upgrade->bsqrt($x,@r) if defined $upgrade; 1932 1933 $x->{value} = $CALC->_sqrt($x->{value}); 1934 $x->round(@r); 1935 } 1936 1937sub broot 1938 { 1939 # calculate $y'th root of $x 1940 1941 # set up parameters 1942 my ($self,$x,$y,@r) = (ref($_[0]),@_); 1943 1944 $y = $self->new(2) unless defined $y; 1945 1946 # objectify is costly, so avoid it 1947 if ((!ref($x)) || (ref($x) ne ref($y))) 1948 { 1949 ($self,$x,$y,@r) = objectify(2,$self || $class,@_); 1950 } 1951 1952 return $x if $x->modify('broot'); 1953 1954 # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0 1955 return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() || 1956 $y->{sign} !~ /^\+$/; 1957 1958 return $x->round(@r) 1959 if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one(); 1960 1961 return $upgrade->new($x)->broot($upgrade->new($y),@r) if defined $upgrade; 1962 1963 $x->{value} = $CALC->_root($x->{value},$y->{value}); 1964 $x->round(@r); 1965 } 1966 1967sub exponent 1968 { 1969 # return a copy of the exponent (here always 0, NaN or 1 for $m == 0) 1970 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); 1971 1972 if ($x->{sign} !~ /^[+-]$/) 1973 { 1974 my $s = $x->{sign}; $s =~ s/^[+-]//; # NaN, -inf,+inf => NaN or inf 1975 return $self->new($s); 1976 } 1977 return $self->bone() if $x->is_zero(); 1978 1979 $self->new($x->_trailing_zeros()); 1980 } 1981 1982sub mantissa 1983 { 1984 # return the mantissa (compatible to Math::BigFloat, e.g. reduced) 1985 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); 1986 1987 if ($x->{sign} !~ /^[+-]$/) 1988 { 1989 # for NaN, +inf, -inf: keep the sign 1990 return $self->new($x->{sign}); 1991 } 1992 my $m = $x->copy(); delete $m->{_p}; delete $m->{_a}; 1993 # that's a bit inefficient: 1994 my $zeros = $m->_trailing_zeros(); 1995 $m->brsft($zeros,10) if $zeros != 0; 1996 $m; 1997 } 1998 1999sub parts 2000 { 2001 # return a copy of both the exponent and the mantissa 2002 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 2003 2004 ($x->mantissa(),$x->exponent()); 2005 } 2006 2007############################################################################## 2008# rounding functions 2009 2010sub bfround 2011 { 2012 # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.' 2013 # $n == 0 || $n == 1 => round to integer 2014 my $x = shift; my $self = ref($x) || $x; $x = $self->new($x) unless ref $x; 2015 2016 my ($scale,$mode) = $x->_scale_p($x->precision(),$x->round_mode(),@_); 2017 2018 return $x if !defined $scale || $x->modify('bfround'); # no-op 2019 2020 # no-op for BigInts if $n <= 0 2021 $x->bround( $x->length()-$scale, $mode) if $scale > 0; 2022 2023 delete $x->{_a}; # delete to save memory 2024 $x->{_p} = $scale; # store new _p 2025 $x; 2026 } 2027 2028sub _scan_for_nonzero 2029 { 2030 # internal, used by bround() 2031 my ($x,$pad,$xs) = @_; 2032 2033 my $len = $x->length(); 2034 return 0 if $len == 1; # '5' is trailed by invisible zeros 2035 my $follow = $pad - 1; 2036 return 0 if $follow > $len || $follow < 1; 2037 2038 # since we do not know underlying represention of $x, use decimal string 2039 my $r = substr ("$x",-$follow); 2040 $r =~ /[^0]/ ? 1 : 0; 2041 } 2042 2043sub fround 2044 { 2045 # Exists to make life easier for switch between MBF and MBI (should we 2046 # autoload fxxx() like MBF does for bxxx()?) 2047 my $x = shift; 2048 $x->bround(@_); 2049 } 2050 2051sub bround 2052 { 2053 # accuracy: +$n preserve $n digits from left, 2054 # -$n preserve $n digits from right (f.i. for 0.1234 style in MBF) 2055 # no-op for $n == 0 2056 # and overwrite the rest with 0's, return normalized number 2057 # do not return $x->bnorm(), but $x 2058 2059 my $x = shift; $x = $class->new($x) unless ref $x; 2060 my ($scale,$mode) = $x->_scale_a($x->accuracy(),$x->round_mode(),@_); 2061 return $x if !defined $scale; # no-op 2062 return $x if $x->modify('bround'); 2063 2064 if ($x->is_zero() || $scale == 0) 2065 { 2066 $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2 2067 return $x; 2068 } 2069 return $x if $x->{sign} !~ /^[+-]$/; # inf, NaN 2070 2071 # we have fewer digits than we want to scale to 2072 my $len = $x->length(); 2073 # convert $scale to a scalar in case it is an object (put's a limit on the 2074 # number length, but this would already limited by memory constraints), makes 2075 # it faster 2076 $scale = $scale->numify() if ref ($scale); 2077 2078 # scale < 0, but > -len (not >=!) 2079 if (($scale < 0 && $scale < -$len-1) || ($scale >= $len)) 2080 { 2081 $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2 2082 return $x; 2083 } 2084 2085 # count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6 2086 my ($pad,$digit_round,$digit_after); 2087 $pad = $len - $scale; 2088 $pad = abs($scale-1) if $scale < 0; 2089 2090 # do not use digit(), it is costly for binary => decimal 2091 2092 my $xs = $CALC->_str($x->{value}); 2093 my $pl = -$pad-1; 2094 2095 # pad: 123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4 2096 # pad+1: 123: 0 => 0, at 1 => -1, at 2 => -2, at 3 => -3 2097 $digit_round = '0'; $digit_round = substr($xs,$pl,1) if $pad <= $len; 2098 $pl++; $pl ++ if $pad >= $len; 2099 $digit_after = '0'; $digit_after = substr($xs,$pl,1) if $pad > 0; 2100 2101 # in case of 01234 we round down, for 6789 up, and only in case 5 we look 2102 # closer at the remaining digits of the original $x, remember decision 2103 my $round_up = 1; # default round up 2104 $round_up -- if 2105 ($mode eq 'trunc') || # trunc by round down 2106 ($digit_after =~ /[01234]/) || # round down anyway, 2107 # 6789 => round up 2108 ($digit_after eq '5') && # not 5000...0000 2109 ($x->_scan_for_nonzero($pad,$xs) == 0) && 2110 ( 2111 ($mode eq 'even') && ($digit_round =~ /[24680]/) || 2112 ($mode eq 'odd') && ($digit_round =~ /[13579]/) || 2113 ($mode eq '+inf') && ($x->{sign} eq '-') || 2114 ($mode eq '-inf') && ($x->{sign} eq '+') || 2115 ($mode eq 'zero') # round down if zero, sign adjusted below 2116 ); 2117 my $put_back = 0; # not yet modified 2118 2119 if (($pad > 0) && ($pad <= $len)) 2120 { 2121 substr($xs,-$pad,$pad) = '0' x $pad; 2122 $put_back = 1; 2123 } 2124 elsif ($pad > $len) 2125 { 2126 $x->bzero(); # round to '0' 2127 } 2128 2129 if ($round_up) # what gave test above? 2130 { 2131 $put_back = 1; 2132 $pad = $len, $xs = '0' x $pad if $scale < 0; # tlr: whack 0.51=>1.0 2133 2134 # we modify directly the string variant instead of creating a number and 2135 # adding it, since that is faster (we already have the string) 2136 my $c = 0; $pad ++; # for $pad == $len case 2137 while ($pad <= $len) 2138 { 2139 $c = substr($xs,-$pad,1) + 1; $c = '0' if $c eq '10'; 2140 substr($xs,-$pad,1) = $c; $pad++; 2141 last if $c != 0; # no overflow => early out 2142 } 2143 $xs = '1'.$xs if $c == 0; 2144 2145 } 2146 $x->{value} = $CALC->_new($xs) if $put_back == 1; # put back in if needed 2147 2148 $x->{_a} = $scale if $scale >= 0; 2149 if ($scale < 0) 2150 { 2151 $x->{_a} = $len+$scale; 2152 $x->{_a} = 0 if $scale < -$len; 2153 } 2154 $x; 2155 } 2156 2157sub bfloor 2158 { 2159 # return integer less or equal then number; no-op since it's already integer 2160 my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); 2161 2162 $x->round(@r); 2163 } 2164 2165sub bceil 2166 { 2167 # return integer greater or equal then number; no-op since it's already int 2168 my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); 2169 2170 $x->round(@r); 2171 } 2172 2173sub as_number 2174 { 2175 # An object might be asked to return itself as bigint on certain overloaded 2176 # operations, this does exactly this, so that sub classes can simple inherit 2177 # it or override with their own integer conversion routine. 2178 $_[0]->copy(); 2179 } 2180 2181sub as_hex 2182 { 2183 # return as hex string, with prefixed 0x 2184 my $x = shift; $x = $class->new($x) if !ref($x); 2185 2186 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc 2187 2188 my $s = ''; 2189 $s = $x->{sign} if $x->{sign} eq '-'; 2190 $s . $CALC->_as_hex($x->{value}); 2191 } 2192 2193sub as_bin 2194 { 2195 # return as binary string, with prefixed 0b 2196 my $x = shift; $x = $class->new($x) if !ref($x); 2197 2198 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc 2199 2200 my $s = ''; $s = $x->{sign} if $x->{sign} eq '-'; 2201 return $s . $CALC->_as_bin($x->{value}); 2202 } 2203 2204############################################################################## 2205# private stuff (internal use only) 2206 2207sub objectify 2208 { 2209 # check for strings, if yes, return objects instead 2210 2211 # the first argument is number of args objectify() should look at it will 2212 # return $count+1 elements, the first will be a classname. This is because 2213 # overloaded '""' calls bstr($object,undef,undef) and this would result in 2214 # useless objects beeing created and thrown away. So we cannot simple loop 2215 # over @_. If the given count is 0, all arguments will be used. 2216 2217 # If the second arg is a ref, use it as class. 2218 # If not, try to use it as classname, unless undef, then use $class 2219 # (aka Math::BigInt). The latter shouldn't happen,though. 2220 2221 # caller: gives us: 2222 # $x->badd(1); => ref x, scalar y 2223 # Class->badd(1,2); => classname x (scalar), scalar x, scalar y 2224 # Class->badd( Class->(1),2); => classname x (scalar), ref x, scalar y 2225 # Math::BigInt::badd(1,2); => scalar x, scalar y 2226 # In the last case we check number of arguments to turn it silently into 2227 # $class,1,2. (We can not take '1' as class ;o) 2228 # badd($class,1) is not supported (it should, eventually, try to add undef) 2229 # currently it tries 'Math::BigInt' + 1, which will not work. 2230 2231 # some shortcut for the common cases 2232 # $x->unary_op(); 2233 return (ref($_[1]),$_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]); 2234 2235 my $count = abs(shift || 0); 2236 2237 my (@a,$k,$d); # resulting array, temp, and downgrade 2238 if (ref $_[0]) 2239 { 2240 # okay, got object as first 2241 $a[0] = ref $_[0]; 2242 } 2243 else 2244 { 2245 # nope, got 1,2 (Class->xxx(1) => Class,1 and not supported) 2246 $a[0] = $class; 2247 $a[0] = shift if $_[0] =~ /^[A-Z].*::/; # classname as first? 2248 } 2249 2250 no strict 'refs'; 2251 # disable downgrading, because Math::BigFLoat->foo('1.0','2.0') needs floats 2252 if (defined ${"$a[0]::downgrade"}) 2253 { 2254 $d = ${"$a[0]::downgrade"}; 2255 ${"$a[0]::downgrade"} = undef; 2256 } 2257 2258 my $up = ${"$a[0]::upgrade"}; 2259 #print "Now in objectify, my class is today $a[0], count = $count\n"; 2260 if ($count == 0) 2261 { 2262 while (@_) 2263 { 2264 $k = shift; 2265 if (!ref($k)) 2266 { 2267 $k = $a[0]->new($k); 2268 } 2269 elsif (!defined $up && ref($k) ne $a[0]) 2270 { 2271 # foreign object, try to convert to integer 2272 $k->can('as_number') ? $k = $k->as_number() : $k = $a[0]->new($k); 2273 } 2274 push @a,$k; 2275 } 2276 } 2277 else 2278 { 2279 while ($count > 0) 2280 { 2281 $count--; 2282 $k = shift; 2283 if (!ref($k)) 2284 { 2285 $k = $a[0]->new($k); 2286 } 2287 elsif (!defined $up && ref($k) ne $a[0]) 2288 { 2289 # foreign object, try to convert to integer 2290 $k->can('as_number') ? $k = $k->as_number() : $k = $a[0]->new($k); 2291 } 2292 push @a,$k; 2293 } 2294 push @a,@_; # return other params, too 2295 } 2296 if (! wantarray) 2297 { 2298 require Carp; Carp::croak ("$class objectify needs list context"); 2299 } 2300 ${"$a[0]::downgrade"} = $d; 2301 @a; 2302 } 2303 2304sub import 2305 { 2306 my $self = shift; 2307 2308 $IMPORT++; # remember we did import() 2309 my @a; my $l = scalar @_; 2310 for ( my $i = 0; $i < $l ; $i++ ) 2311 { 2312 if ($_[$i] eq ':constant') 2313 { 2314 # this causes overlord er load to step in 2315 overload::constant 2316 integer => sub { $self->new(shift) }, 2317 binary => sub { $self->new(shift) }; 2318 } 2319 elsif ($_[$i] eq 'upgrade') 2320 { 2321 # this causes upgrading 2322 $upgrade = $_[$i+1]; # or undef to disable 2323 $i++; 2324 } 2325 elsif ($_[$i] =~ /^lib$/i) 2326 { 2327 # this causes a different low lib to take care... 2328 $CALC = $_[$i+1] || ''; 2329 $i++; 2330 } 2331 else 2332 { 2333 push @a, $_[$i]; 2334 } 2335 } 2336 # any non :constant stuff is handled by our parent, Exporter 2337 # even if @_ is empty, to give it a chance 2338 $self->SUPER::import(@a); # need it for subclasses 2339 $self->export_to_level(1,$self,@a); # need it for MBF 2340 2341 # try to load core math lib 2342 my @c = split /\s*,\s*/,$CALC; 2343 push @c,'Calc'; # if all fail, try this 2344 $CALC = ''; # signal error 2345 foreach my $lib (@c) 2346 { 2347 next if ($lib || '') eq ''; 2348 $lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i; 2349 $lib =~ s/\.pm$//; 2350 if ($] < 5.006) 2351 { 2352 # Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is 2353 # used in the same script, or eval inside import(). 2354 my @parts = split /::/, $lib; # Math::BigInt => Math BigInt 2355 my $file = pop @parts; $file .= '.pm'; # BigInt => BigInt.pm 2356 require File::Spec; 2357 $file = File::Spec->catfile (@parts, $file); 2358 eval { require "$file"; $lib->import( @c ); } 2359 } 2360 else 2361 { 2362 eval "use $lib qw/@c/;"; 2363 } 2364 if ($@ eq '') 2365 { 2366 my $ok = 1; 2367 # loaded it ok, see if the api_version() is high enough 2368 if ($lib->can('api_version') && $lib->api_version() >= 1.0) 2369 { 2370 $ok = 0; 2371 # api_version matches, check if it really provides anything we need 2372 for my $method (qw/ 2373 one two ten 2374 str num 2375 add mul div sub dec inc 2376 acmp len digit is_one is_zero is_even is_odd 2377 is_two is_ten 2378 new copy check from_hex from_bin as_hex as_bin zeros 2379 rsft lsft xor and or 2380 mod sqrt root fac pow modinv modpow log_int gcd 2381 /) 2382 { 2383 if (!$lib->can("_$method")) 2384 { 2385 if (($WARN{$lib}||0) < 2) 2386 { 2387 require Carp; 2388 Carp::carp ("$lib is missing method '_$method'"); 2389 $WARN{$lib} = 1; # still warn about the lib 2390 } 2391 $ok++; last; 2392 } 2393 } 2394 } 2395 if ($ok == 0) 2396 { 2397 $CALC = $lib; 2398 last; # found a usable one, break 2399 } 2400 else 2401 { 2402 if (($WARN{$lib}||0) < 2) 2403 { 2404 my $ver = eval "\$$lib\::VERSION"; 2405 require Carp; 2406 Carp::carp ("Cannot load outdated $lib v$ver, please upgrade"); 2407 $WARN{$lib} = 2; # never warn again 2408 } 2409 } 2410 } 2411 } 2412 if ($CALC eq '') 2413 { 2414 require Carp; 2415 Carp::croak ("Couldn't load any math lib, not even 'Calc.pm'"); 2416 } 2417 _fill_can_cache(); # for emulating lower math lib functions 2418 } 2419 2420sub _fill_can_cache 2421 { 2422 # fill $CAN with the results of $CALC->can(...) 2423 2424 %CAN = (); 2425 for my $method (qw/ signed_and or signed_or xor signed_xor /) 2426 { 2427 $CAN{$method} = $CALC->can("_$method") ? 1 : 0; 2428 } 2429 } 2430 2431sub __from_hex 2432 { 2433 # convert a (ref to) big hex string to BigInt, return undef for error 2434 my $hs = shift; 2435 2436 my $x = Math::BigInt->bzero(); 2437 2438 # strip underscores 2439 $hs =~ s/([0-9a-fA-F])_([0-9a-fA-F])/$1$2/g; 2440 $hs =~ s/([0-9a-fA-F])_([0-9a-fA-F])/$1$2/g; 2441 2442 return $x->bnan() if $hs !~ /^[\-\+]?0x[0-9A-Fa-f]+$/; 2443 2444 my $sign = '+'; $sign = '-' if $hs =~ /^-/; 2445 2446 $hs =~ s/^[+-]//; # strip sign 2447 $x->{value} = $CALC->_from_hex($hs); 2448 $x->{sign} = $sign unless $CALC->_is_zero($x->{value}); # no '-0' 2449 $x; 2450 } 2451 2452sub __from_bin 2453 { 2454 # convert a (ref to) big binary string to BigInt, return undef for error 2455 my $bs = shift; 2456 2457 my $x = Math::BigInt->bzero(); 2458 # strip underscores 2459 $bs =~ s/([01])_([01])/$1$2/g; 2460 $bs =~ s/([01])_([01])/$1$2/g; 2461 return $x->bnan() if $bs !~ /^[+-]?0b[01]+$/; 2462 2463 my $sign = '+'; $sign = '-' if $bs =~ /^\-/; 2464 $bs =~ s/^[+-]//; # strip sign 2465 2466 $x->{value} = $CALC->_from_bin($bs); 2467 $x->{sign} = $sign unless $CALC->_is_zero($x->{value}); # no '-0' 2468 $x; 2469 } 2470 2471sub _split 2472 { 2473 # (ref to num_str) return num_str 2474 # internal, take apart a string and return the pieces 2475 # strip leading/trailing whitespace, leading zeros, underscore and reject 2476 # invalid input 2477 my $x = shift; 2478 2479 # strip white space at front, also extranous leading zeros 2480 $x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2' 2481 $x =~ s/^\s+//; # but this will 2482 $x =~ s/\s+$//g; # strip white space at end 2483 2484 # shortcut, if nothing to split, return early 2485 if ($x =~ /^[+-]?\d+\z/) 2486 { 2487 $x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+'; 2488 return (\$sign, \$x, \'', \'', \0); 2489 } 2490 2491 # invalid starting char? 2492 return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/; 2493 2494 return __from_hex($x) if $x =~ /^[\-\+]?0x/; # hex string 2495 return __from_bin($x) if $x =~ /^[\-\+]?0b/; # binary string 2496 2497 # strip underscores between digits 2498 $x =~ s/(\d)_(\d)/$1$2/g; 2499 $x =~ s/(\d)_(\d)/$1$2/g; # do twice for 1_2_3 2500 2501 # some possible inputs: 2502 # 2.1234 # 0.12 # 1 # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2 2503 # .2 # 1_2_3.4_5_6 # 1.4E1_2_3 # 1e3 # +.2 # 0e999 2504 2505 my ($m,$e,$last) = split /[Ee]/,$x; 2506 return if defined $last; # last defined => 1e2E3 or others 2507 $e = '0' if !defined $e || $e eq ""; 2508 2509 # sign,value for exponent,mantint,mantfrac 2510 my ($es,$ev,$mis,$miv,$mfv); 2511 # valid exponent? 2512 if ($e =~ /^([+-]?)0*(\d+)$/) # strip leading zeros 2513 { 2514 $es = $1; $ev = $2; 2515 # valid mantissa? 2516 return if $m eq '.' || $m eq ''; 2517 my ($mi,$mf,$lastf) = split /\./,$m; 2518 return if defined $lastf; # lastf defined => 1.2.3 or others 2519 $mi = '0' if !defined $mi; 2520 $mi .= '0' if $mi =~ /^[\-\+]?$/; 2521 $mf = '0' if !defined $mf || $mf eq ''; 2522 if ($mi =~ /^([+-]?)0*(\d+)$/) # strip leading zeros 2523 { 2524 $mis = $1||'+'; $miv = $2; 2525 return unless ($mf =~ /^(\d*?)0*$/); # strip trailing zeros 2526 $mfv = $1; 2527 # handle the 0e999 case here 2528 $ev = 0 if $miv eq '0' && $mfv eq ''; 2529 return (\$mis,\$miv,\$mfv,\$es,\$ev); 2530 } 2531 } 2532 return; # NaN, not a number 2533 } 2534 2535############################################################################## 2536# internal calculation routines (others are in Math::BigInt::Calc etc) 2537 2538sub __lcm 2539 { 2540 # (BINT or num_str, BINT or num_str) return BINT 2541 # does modify first argument 2542 # LCM 2543 2544 my $x = shift; my $ty = shift; 2545 return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan); 2546 $x * $ty / bgcd($x,$ty); 2547 } 2548 2549############################################################################### 2550# this method return 0 if the object can be modified, or 1 for not 2551# We use a fast constant sub() here, to avoid costly calls. Subclasses 2552# may override it with special code (f.i. Math::BigInt::Constant does so) 2553 2554sub modify () { 0; } 2555 25561; 2557__END__ 2558 2559=head1 NAME 2560 2561Math::BigInt - Arbitrary size integer math package 2562 2563=head1 SYNOPSIS 2564 2565 use Math::BigInt; 2566 2567 # or make it faster: install (optional) Math::BigInt::GMP 2568 # and always use (it will fall back to pure Perl if the 2569 # GMP library is not installed): 2570 2571 use Math::BigInt lib => 'GMP'; 2572 2573 my $str = '1234567890'; 2574 my @values = (64,74,18); 2575 my $n = 1; my $sign = '-'; 2576 2577 # Number creation 2578 $x = Math::BigInt->new($str); # defaults to 0 2579 $y = $x->copy(); # make a true copy 2580 $nan = Math::BigInt->bnan(); # create a NotANumber 2581 $zero = Math::BigInt->bzero(); # create a +0 2582 $inf = Math::BigInt->binf(); # create a +inf 2583 $inf = Math::BigInt->binf('-'); # create a -inf 2584 $one = Math::BigInt->bone(); # create a +1 2585 $one = Math::BigInt->bone('-'); # create a -1 2586 2587 # Testing (don't modify their arguments) 2588 # (return true if the condition is met, otherwise false) 2589 2590 $x->is_zero(); # if $x is +0 2591 $x->is_nan(); # if $x is NaN 2592 $x->is_one(); # if $x is +1 2593 $x->is_one('-'); # if $x is -1 2594 $x->is_odd(); # if $x is odd 2595 $x->is_even(); # if $x is even 2596 $x->is_pos(); # if $x >= 0 2597 $x->is_neg(); # if $x < 0 2598 $x->is_inf($sign); # if $x is +inf, or -inf (sign is default '+') 2599 $x->is_int(); # if $x is an integer (not a float) 2600 2601 # comparing and digit/sign extration 2602 $x->bcmp($y); # compare numbers (undef,<0,=0,>0) 2603 $x->bacmp($y); # compare absolutely (undef,<0,=0,>0) 2604 $x->sign(); # return the sign, either +,- or NaN 2605 $x->digit($n); # return the nth digit, counting from right 2606 $x->digit(-$n); # return the nth digit, counting from left 2607 2608 # The following all modify their first argument. If you want to preserve 2609 # $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is 2610 # neccessary when mixing $a = $b assigments with non-overloaded math. 2611 2612 $x->bzero(); # set $x to 0 2613 $x->bnan(); # set $x to NaN 2614 $x->bone(); # set $x to +1 2615 $x->bone('-'); # set $x to -1 2616 $x->binf(); # set $x to inf 2617 $x->binf('-'); # set $x to -inf 2618 2619 $x->bneg(); # negation 2620 $x->babs(); # absolute value 2621 $x->bnorm(); # normalize (no-op in BigInt) 2622 $x->bnot(); # two's complement (bit wise not) 2623 $x->binc(); # increment $x by 1 2624 $x->bdec(); # decrement $x by 1 2625 2626 $x->badd($y); # addition (add $y to $x) 2627 $x->bsub($y); # subtraction (subtract $y from $x) 2628 $x->bmul($y); # multiplication (multiply $x by $y) 2629 $x->bdiv($y); # divide, set $x to quotient 2630 # return (quo,rem) or quo if scalar 2631 2632 $x->bmod($y); # modulus (x % y) 2633 $x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod)) 2634 $x->bmodinv($mod); # the inverse of $x in the given modulus $mod 2635 2636 $x->bpow($y); # power of arguments (x ** y) 2637 $x->blsft($y); # left shift 2638 $x->brsft($y); # right shift 2639 $x->blsft($y,$n); # left shift, by base $n (like 10) 2640 $x->brsft($y,$n); # right shift, by base $n (like 10) 2641 2642 $x->band($y); # bitwise and 2643 $x->bior($y); # bitwise inclusive or 2644 $x->bxor($y); # bitwise exclusive or 2645 $x->bnot(); # bitwise not (two's complement) 2646 2647 $x->bsqrt(); # calculate square-root 2648 $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root) 2649 $x->bfac(); # factorial of $x (1*2*3*4*..$x) 2650 2651 $x->round($A,$P,$mode); # round to accuracy or precision using mode $mode 2652 $x->bround($n); # accuracy: preserve $n digits 2653 $x->bfround($n); # round to $nth digit, no-op for BigInts 2654 2655 # The following do not modify their arguments in BigInt (are no-ops), 2656 # but do so in BigFloat: 2657 2658 $x->bfloor(); # return integer less or equal than $x 2659 $x->bceil(); # return integer greater or equal than $x 2660 2661 # The following do not modify their arguments: 2662 2663 # greatest common divisor (no OO style) 2664 my $gcd = Math::BigInt::bgcd(@values); 2665 # lowest common multiplicator (no OO style) 2666 my $lcm = Math::BigInt::blcm(@values); 2667 2668 $x->length(); # return number of digits in number 2669 ($xl,$f) = $x->length(); # length of number and length of fraction part, 2670 # latter is always 0 digits long for BigInt's 2671 2672 $x->exponent(); # return exponent as BigInt 2673 $x->mantissa(); # return (signed) mantissa as BigInt 2674 $x->parts(); # return (mantissa,exponent) as BigInt 2675 $x->copy(); # make a true copy of $x (unlike $y = $x;) 2676 $x->as_int(); # return as BigInt (in BigInt: same as copy()) 2677 $x->numify(); # return as scalar (might overflow!) 2678 2679 # conversation to string (do not modify their argument) 2680 $x->bstr(); # normalized string 2681 $x->bsstr(); # normalized string in scientific notation 2682 $x->as_hex(); # as signed hexadecimal string with prefixed 0x 2683 $x->as_bin(); # as signed binary string with prefixed 0b 2684 2685 2686 # precision and accuracy (see section about rounding for more) 2687 $x->precision(); # return P of $x (or global, if P of $x undef) 2688 $x->precision($n); # set P of $x to $n 2689 $x->accuracy(); # return A of $x (or global, if A of $x undef) 2690 $x->accuracy($n); # set A $x to $n 2691 2692 # Global methods 2693 Math::BigInt->precision(); # get/set global P for all BigInt objects 2694 Math::BigInt->accuracy(); # get/set global A for all BigInt objects 2695 Math::BigInt->config(); # return hash containing configuration 2696 2697=head1 DESCRIPTION 2698 2699All operators (inlcuding basic math operations) are overloaded if you 2700declare your big integers as 2701 2702 $i = new Math::BigInt '123_456_789_123_456_789'; 2703 2704Operations with overloaded operators preserve the arguments which is 2705exactly what you expect. 2706 2707=over 2 2708 2709=item Input 2710 2711Input values to these routines may be any string, that looks like a number 2712and results in an integer, including hexadecimal and binary numbers. 2713 2714Scalars holding numbers may also be passed, but note that non-integer numbers 2715may already have lost precision due to the conversation to float. Quote 2716your input if you want BigInt to see all the digits: 2717 2718 $x = Math::BigInt->new(12345678890123456789); # bad 2719 $x = Math::BigInt->new('12345678901234567890'); # good 2720 2721You can include one underscore between any two digits. 2722 2723This means integer values like 1.01E2 or even 1000E-2 are also accepted. 2724Non-integer values result in NaN. 2725 2726Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('') 2727results in 'NaN'. This might change in the future, so use always the following 2728explicit forms to get a zero or NaN: 2729 2730 $zero = Math::BigInt->bzero(); 2731 $nan = Math::BigInt->bnan(); 2732 2733C<bnorm()> on a BigInt object is now effectively a no-op, since the numbers 2734are always stored in normalized form. If passed a string, creates a BigInt 2735object from the input. 2736 2737=item Output 2738 2739Output values are BigInt objects (normalized), except for bstr(), which 2740returns a string in normalized form. 2741Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>, 2742C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>) 2743return either undef, <0, 0 or >0 and are suited for sort. 2744 2745=back 2746 2747=head1 METHODS 2748 2749Each of the methods below (except config(), accuracy() and precision()) 2750accepts three additional parameters. These arguments $A, $P and $R are 2751accuracy, precision and round_mode. Please see the section about 2752L<ACCURACY and PRECISION> for more information. 2753 2754=head2 config 2755 2756 use Data::Dumper; 2757 2758 print Dumper ( Math::BigInt->config() ); 2759 print Math::BigInt->config()->{lib},"\n"; 2760 2761Returns a hash containing the configuration, e.g. the version number, lib 2762loaded etc. The following hash keys are currently filled in with the 2763appropriate information. 2764 2765 key Description 2766 Example 2767 ============================================================ 2768 lib Name of the low-level math library 2769 Math::BigInt::Calc 2770 lib_version Version of low-level math library (see 'lib') 2771 0.30 2772 class The class name of config() you just called 2773 Math::BigInt 2774 upgrade To which class math operations might be upgraded 2775 Math::BigFloat 2776 downgrade To which class math operations might be downgraded 2777 undef 2778 precision Global precision 2779 undef 2780 accuracy Global accuracy 2781 undef 2782 round_mode Global round mode 2783 even 2784 version version number of the class you used 2785 1.61 2786 div_scale Fallback acccuracy for div 2787 40 2788 trap_nan If true, traps creation of NaN via croak() 2789 1 2790 trap_inf If true, traps creation of +inf/-inf via croak() 2791 1 2792 2793The following values can be set by passing C<config()> a reference to a hash: 2794 2795 trap_inf trap_nan 2796 upgrade downgrade precision accuracy round_mode div_scale 2797 2798Example: 2799 2800 $new_cfg = Math::BigInt->config( { trap_inf => 1, precision => 5 } ); 2801 2802=head2 accuracy 2803 2804 $x->accuracy(5); # local for $x 2805 CLASS->accuracy(5); # global for all members of CLASS 2806 $A = $x->accuracy(); # read out 2807 $A = CLASS->accuracy(); # read out 2808 2809Set or get the global or local accuracy, aka how many significant digits the 2810results have. 2811 2812Please see the section about L<ACCURACY AND PRECISION> for further details. 2813 2814Value must be greater than zero. Pass an undef value to disable it: 2815 2816 $x->accuracy(undef); 2817 Math::BigInt->accuracy(undef); 2818 2819Returns the current accuracy. For C<$x->accuracy()> it will return either the 2820local accuracy, or if not defined, the global. This means the return value 2821represents the accuracy that will be in effect for $x: 2822 2823 $y = Math::BigInt->new(1234567); # unrounded 2824 print Math::BigInt->accuracy(4),"\n"; # set 4, print 4 2825 $x = Math::BigInt->new(123456); # will be automatically rounded 2826 print "$x $y\n"; # '123500 1234567' 2827 print $x->accuracy(),"\n"; # will be 4 2828 print $y->accuracy(),"\n"; # also 4, since global is 4 2829 print Math::BigInt->accuracy(5),"\n"; # set to 5, print 5 2830 print $x->accuracy(),"\n"; # still 4 2831 print $y->accuracy(),"\n"; # 5, since global is 5 2832 2833Note: Works also for subclasses like Math::BigFloat. Each class has it's own 2834globals separated from Math::BigInt, but it is possible to subclass 2835Math::BigInt and make the globals of the subclass aliases to the ones from 2836Math::BigInt. 2837 2838=head2 precision 2839 2840 $x->precision(-2); # local for $x, round right of the dot 2841 $x->precision(2); # ditto, but round left of the dot 2842 CLASS->accuracy(5); # global for all members of CLASS 2843 CLASS->precision(-5); # ditto 2844 $P = CLASS->precision(); # read out 2845 $P = $x->precision(); # read out 2846 2847Set or get the global or local precision, aka how many digits the result has 2848after the dot (or where to round it when passing a positive number). In 2849Math::BigInt, passing a negative number precision has no effect since no 2850numbers have digits after the dot. 2851 2852Please see the section about L<ACCURACY AND PRECISION> for further details. 2853 2854Value must be greater than zero. Pass an undef value to disable it: 2855 2856 $x->precision(undef); 2857 Math::BigInt->precision(undef); 2858 2859Returns the current precision. For C<$x->precision()> it will return either the 2860local precision of $x, or if not defined, the global. This means the return 2861value represents the accuracy that will be in effect for $x: 2862 2863 $y = Math::BigInt->new(1234567); # unrounded 2864 print Math::BigInt->precision(4),"\n"; # set 4, print 4 2865 $x = Math::BigInt->new(123456); # will be automatically rounded 2866 2867Note: Works also for subclasses like Math::BigFloat. Each class has it's own 2868globals separated from Math::BigInt, but it is possible to subclass 2869Math::BigInt and make the globals of the subclass aliases to the ones from 2870Math::BigInt. 2871 2872=head2 brsft 2873 2874 $x->brsft($y,$n); 2875 2876Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and 28772, but others work, too. 2878 2879Right shifting usually amounts to dividing $x by $n ** $y and truncating the 2880result: 2881 2882 2883 $x = Math::BigInt->new(10); 2884 $x->brsft(1); # same as $x >> 1: 5 2885 $x = Math::BigInt->new(1234); 2886 $x->brsft(2,10); # result 12 2887 2888There is one exception, and that is base 2 with negative $x: 2889 2890 2891 $x = Math::BigInt->new(-5); 2892 print $x->brsft(1); 2893 2894This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the 2895result). 2896 2897=head2 new 2898 2899 $x = Math::BigInt->new($str,$A,$P,$R); 2900 2901Creates a new BigInt object from a scalar or another BigInt object. The 2902input is accepted as decimal, hex (with leading '0x') or binary (with leading 2903'0b'). 2904 2905See L<Input> for more info on accepted input formats. 2906 2907=head2 bnan 2908 2909 $x = Math::BigInt->bnan(); 2910 2911Creates a new BigInt object representing NaN (Not A Number). 2912If used on an object, it will set it to NaN: 2913 2914 $x->bnan(); 2915 2916=head2 bzero 2917 2918 $x = Math::BigInt->bzero(); 2919 2920Creates a new BigInt object representing zero. 2921If used on an object, it will set it to zero: 2922 2923 $x->bzero(); 2924 2925=head2 binf 2926 2927 $x = Math::BigInt->binf($sign); 2928 2929Creates a new BigInt object representing infinity. The optional argument is 2930either '-' or '+', indicating whether you want infinity or minus infinity. 2931If used on an object, it will set it to infinity: 2932 2933 $x->binf(); 2934 $x->binf('-'); 2935 2936=head2 bone 2937 2938 $x = Math::BigInt->binf($sign); 2939 2940Creates a new BigInt object representing one. The optional argument is 2941either '-' or '+', indicating whether you want one or minus one. 2942If used on an object, it will set it to one: 2943 2944 $x->bone(); # +1 2945 $x->bone('-'); # -1 2946 2947=head2 is_one()/is_zero()/is_nan()/is_inf() 2948 2949 2950 $x->is_zero(); # true if arg is +0 2951 $x->is_nan(); # true if arg is NaN 2952 $x->is_one(); # true if arg is +1 2953 $x->is_one('-'); # true if arg is -1 2954 $x->is_inf(); # true if +inf 2955 $x->is_inf('-'); # true if -inf (sign is default '+') 2956 2957These methods all test the BigInt for beeing one specific value and return 2958true or false depending on the input. These are faster than doing something 2959like: 2960 2961 if ($x == 0) 2962 2963=head2 is_pos()/is_neg() 2964 2965 $x->is_pos(); # true if >= 0 2966 $x->is_neg(); # true if < 0 2967 2968The methods return true if the argument is positive or negative, respectively. 2969C<NaN> is neither positive nor negative, while C<+inf> counts as positive, and 2970C<-inf> is negative. A C<zero> is positive. 2971 2972These methods are only testing the sign, and not the value. 2973 2974C<is_positive()> and C<is_negative()> are aliase to C<is_pos()> and 2975C<is_neg()>, respectively. C<is_positive()> and C<is_negative()> were 2976introduced in v1.36, while C<is_pos()> and C<is_neg()> were only introduced 2977in v1.68. 2978 2979=head2 is_odd()/is_even()/is_int() 2980 2981 $x->is_odd(); # true if odd, false for even 2982 $x->is_even(); # true if even, false for odd 2983 $x->is_int(); # true if $x is an integer 2984 2985The return true when the argument satisfies the condition. C<NaN>, C<+inf>, 2986C<-inf> are not integers and are neither odd nor even. 2987 2988In BigInt, all numbers except C<NaN>, C<+inf> and C<-inf> are integers. 2989 2990=head2 bcmp 2991 2992 $x->bcmp($y); 2993 2994Compares $x with $y and takes the sign into account. 2995Returns -1, 0, 1 or undef. 2996 2997=head2 bacmp 2998 2999 $x->bacmp($y); 3000 3001Compares $x with $y while ignoring their. Returns -1, 0, 1 or undef. 3002 3003=head2 sign 3004 3005 $x->sign(); 3006 3007Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN. 3008 3009=head2 digit 3010 3011 $x->digit($n); # return the nth digit, counting from right 3012 3013If C<$n> is negative, returns the digit counting from left. 3014 3015=head2 bneg 3016 3017 $x->bneg(); 3018 3019Negate the number, e.g. change the sign between '+' and '-', or between '+inf' 3020and '-inf', respectively. Does nothing for NaN or zero. 3021 3022=head2 babs 3023 3024 $x->babs(); 3025 3026Set the number to it's absolute value, e.g. change the sign from '-' to '+' 3027and from '-inf' to '+inf', respectively. Does nothing for NaN or positive 3028numbers. 3029 3030=head2 bnorm 3031 3032 $x->bnorm(); # normalize (no-op) 3033 3034=head2 bnot 3035 3036 $x->bnot(); 3037 3038Two's complement (bit wise not). This is equivalent to 3039 3040 $x->binc()->bneg(); 3041 3042but faster. 3043 3044=head2 binc 3045 3046 $x->binc(); # increment x by 1 3047 3048=head2 bdec 3049 3050 $x->bdec(); # decrement x by 1 3051 3052=head2 badd 3053 3054 $x->badd($y); # addition (add $y to $x) 3055 3056=head2 bsub 3057 3058 $x->bsub($y); # subtraction (subtract $y from $x) 3059 3060=head2 bmul 3061 3062 $x->bmul($y); # multiplication (multiply $x by $y) 3063 3064=head2 bdiv 3065 3066 $x->bdiv($y); # divide, set $x to quotient 3067 # return (quo,rem) or quo if scalar 3068 3069=head2 bmod 3070 3071 $x->bmod($y); # modulus (x % y) 3072 3073=head2 bmodinv 3074 3075 num->bmodinv($mod); # modular inverse 3076 3077Returns the inverse of C<$num> in the given modulus C<$mod>. 'C<NaN>' is 3078returned unless C<$num> is relatively prime to C<$mod>, i.e. unless 3079C<bgcd($num, $mod)==1>. 3080 3081=head2 bmodpow 3082 3083 $num->bmodpow($exp,$mod); # modular exponentation 3084 # ($num**$exp % $mod) 3085 3086Returns the value of C<$num> taken to the power C<$exp> in the modulus 3087C<$mod> using binary exponentation. C<bmodpow> is far superior to 3088writing 3089 3090 $num ** $exp % $mod 3091 3092because it is much faster - it reduces internal variables into 3093the modulus whenever possible, so it operates on smaller numbers. 3094 3095C<bmodpow> also supports negative exponents. 3096 3097 bmodpow($num, -1, $mod) 3098 3099is exactly equivalent to 3100 3101 bmodinv($num, $mod) 3102 3103=head2 bpow 3104 3105 $x->bpow($y); # power of arguments (x ** y) 3106 3107=head2 blsft 3108 3109 $x->blsft($y); # left shift 3110 $x->blsft($y,$n); # left shift, in base $n (like 10) 3111 3112=head2 brsft 3113 3114 $x->brsft($y); # right shift 3115 $x->brsft($y,$n); # right shift, in base $n (like 10) 3116 3117=head2 band 3118 3119 $x->band($y); # bitwise and 3120 3121=head2 bior 3122 3123 $x->bior($y); # bitwise inclusive or 3124 3125=head2 bxor 3126 3127 $x->bxor($y); # bitwise exclusive or 3128 3129=head2 bnot 3130 3131 $x->bnot(); # bitwise not (two's complement) 3132 3133=head2 bsqrt 3134 3135 $x->bsqrt(); # calculate square-root 3136 3137=head2 bfac 3138 3139 $x->bfac(); # factorial of $x (1*2*3*4*..$x) 3140 3141=head2 round 3142 3143 $x->round($A,$P,$round_mode); 3144 3145Round $x to accuracy C<$A> or precision C<$P> using the round mode 3146C<$round_mode>. 3147 3148=head2 bround 3149 3150 $x->bround($N); # accuracy: preserve $N digits 3151 3152=head2 bfround 3153 3154 $x->bfround($N); # round to $Nth digit, no-op for BigInts 3155 3156=head2 bfloor 3157 3158 $x->bfloor(); 3159 3160Set $x to the integer less or equal than $x. This is a no-op in BigInt, but 3161does change $x in BigFloat. 3162 3163=head2 bceil 3164 3165 $x->bceil(); 3166 3167Set $x to the integer greater or equal than $x. This is a no-op in BigInt, but 3168does change $x in BigFloat. 3169 3170=head2 bgcd 3171 3172 bgcd(@values); # greatest common divisor (no OO style) 3173 3174=head2 blcm 3175 3176 blcm(@values); # lowest common multiplicator (no OO style) 3177 3178head2 length 3179 3180 $x->length(); 3181 ($xl,$fl) = $x->length(); 3182 3183Returns the number of digits in the decimal representation of the number. 3184In list context, returns the length of the integer and fraction part. For 3185BigInt's, the length of the fraction part will always be 0. 3186 3187=head2 exponent 3188 3189 $x->exponent(); 3190 3191Return the exponent of $x as BigInt. 3192 3193=head2 mantissa 3194 3195 $x->mantissa(); 3196 3197Return the signed mantissa of $x as BigInt. 3198 3199=head2 parts 3200 3201 $x->parts(); # return (mantissa,exponent) as BigInt 3202 3203=head2 copy 3204 3205 $x->copy(); # make a true copy of $x (unlike $y = $x;) 3206 3207=head2 as_int 3208 3209 $x->as_int(); 3210 3211Returns $x as a BigInt (truncated towards zero). In BigInt this is the same as 3212C<copy()>. 3213 3214C<as_number()> is an alias to this method. C<as_number> was introduced in 3215v1.22, while C<as_int()> was only introduced in v1.68. 3216 3217=head2 bstr 3218 3219 $x->bstr(); 3220 3221Returns a normalized string represantation of C<$x>. 3222 3223=head2 bsstr 3224 3225 $x->bsstr(); # normalized string in scientific notation 3226 3227=head2 as_hex 3228 3229 $x->as_hex(); # as signed hexadecimal string with prefixed 0x 3230 3231=head2 as_bin 3232 3233 $x->as_bin(); # as signed binary string with prefixed 0b 3234 3235=head1 ACCURACY and PRECISION 3236 3237Since version v1.33, Math::BigInt and Math::BigFloat have full support for 3238accuracy and precision based rounding, both automatically after every 3239operation, as well as manually. 3240 3241This section describes the accuracy/precision handling in Math::Big* as it 3242used to be and as it is now, complete with an explanation of all terms and 3243abbreviations. 3244 3245Not yet implemented things (but with correct description) are marked with '!', 3246things that need to be answered are marked with '?'. 3247 3248In the next paragraph follows a short description of terms used here (because 3249these may differ from terms used by others people or documentation). 3250 3251During the rest of this document, the shortcuts A (for accuracy), P (for 3252precision), F (fallback) and R (rounding mode) will be used. 3253 3254=head2 Precision P 3255 3256A fixed number of digits before (positive) or after (negative) 3257the decimal point. For example, 123.45 has a precision of -2. 0 means an 3258integer like 123 (or 120). A precision of 2 means two digits to the left 3259of the decimal point are zero, so 123 with P = 1 becomes 120. Note that 3260numbers with zeros before the decimal point may have different precisions, 3261because 1200 can have p = 0, 1 or 2 (depending on what the inital value 3262was). It could also have p < 0, when the digits after the decimal point 3263are zero. 3264 3265The string output (of floating point numbers) will be padded with zeros: 3266 3267 Initial value P A Result String 3268 ------------------------------------------------------------ 3269 1234.01 -3 1000 1000 3270 1234 -2 1200 1200 3271 1234.5 -1 1230 1230 3272 1234.001 1 1234 1234.0 3273 1234.01 0 1234 1234 3274 1234.01 2 1234.01 1234.01 3275 1234.01 5 1234.01 1234.01000 3276 3277For BigInts, no padding occurs. 3278 3279=head2 Accuracy A 3280 3281Number of significant digits. Leading zeros are not counted. A 3282number may have an accuracy greater than the non-zero digits 3283when there are zeros in it or trailing zeros. For example, 123.456 has 3284A of 6, 10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3. 3285 3286The string output (of floating point numbers) will be padded with zeros: 3287 3288 Initial value P A Result String 3289 ------------------------------------------------------------ 3290 1234.01 3 1230 1230 3291 1234.01 6 1234.01 1234.01 3292 1234.1 8 1234.1 1234.1000 3293 3294For BigInts, no padding occurs. 3295 3296=head2 Fallback F 3297 3298When both A and P are undefined, this is used as a fallback accuracy when 3299dividing numbers. 3300 3301=head2 Rounding mode R 3302 3303When rounding a number, different 'styles' or 'kinds' 3304of rounding are possible. (Note that random rounding, as in 3305Math::Round, is not implemented.) 3306 3307=over 2 3308 3309=item 'trunc' 3310 3311truncation invariably removes all digits following the 3312rounding place, replacing them with zeros. Thus, 987.65 rounded 3313to tens (P=1) becomes 980, and rounded to the fourth sigdig 3314becomes 987.6 (A=4). 123.456 rounded to the second place after the 3315decimal point (P=-2) becomes 123.46. 3316 3317All other implemented styles of rounding attempt to round to the 3318"nearest digit." If the digit D immediately to the right of the 3319rounding place (skipping the decimal point) is greater than 5, the 3320number is incremented at the rounding place (possibly causing a 3321cascade of incrementation): e.g. when rounding to units, 0.9 rounds 3322to 1, and -19.9 rounds to -20. If D < 5, the number is similarly 3323truncated at the rounding place: e.g. when rounding to units, 0.4 3324rounds to 0, and -19.4 rounds to -19. 3325 3326However the results of other styles of rounding differ if the 3327digit immediately to the right of the rounding place (skipping the 3328decimal point) is 5 and if there are no digits, or no digits other 3329than 0, after that 5. In such cases: 3330 3331=item 'even' 3332 3333rounds the digit at the rounding place to 0, 2, 4, 6, or 8 3334if it is not already. E.g., when rounding to the first sigdig, 0.45 3335becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5. 3336 3337=item 'odd' 3338 3339rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if 3340it is not already. E.g., when rounding to the first sigdig, 0.45 3341becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6. 3342 3343=item '+inf' 3344 3345round to plus infinity, i.e. always round up. E.g., when 3346rounding to the first sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5, 3347and 0.4501 also becomes 0.5. 3348 3349=item '-inf' 3350 3351round to minus infinity, i.e. always round down. E.g., when 3352rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6, 3353but 0.4501 becomes 0.5. 3354 3355=item 'zero' 3356 3357round to zero, i.e. positive numbers down, negative ones up. 3358E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55 3359becomes -0.5, but 0.4501 becomes 0.5. 3360 3361=back 3362 3363The handling of A & P in MBI/MBF (the old core code shipped with Perl 3364versions <= 5.7.2) is like this: 3365 3366=over 2 3367 3368=item Precision 3369 3370 * ffround($p) is able to round to $p number of digits after the decimal 3371 point 3372 * otherwise P is unused 3373 3374=item Accuracy (significant digits) 3375 3376 * fround($a) rounds to $a significant digits 3377 * only fdiv() and fsqrt() take A as (optional) paramater 3378 + other operations simply create the same number (fneg etc), or more (fmul) 3379 of digits 3380 + rounding/truncating is only done when explicitly calling one of fround 3381 or ffround, and never for BigInt (not implemented) 3382 * fsqrt() simply hands its accuracy argument over to fdiv. 3383 * the documentation and the comment in the code indicate two different ways 3384 on how fdiv() determines the maximum number of digits it should calculate, 3385 and the actual code does yet another thing 3386 POD: 3387 max($Math::BigFloat::div_scale,length(dividend)+length(divisor)) 3388 Comment: 3389 result has at most max(scale, length(dividend), length(divisor)) digits 3390 Actual code: 3391 scale = max(scale, length(dividend)-1,length(divisor)-1); 3392 scale += length(divisior) - length(dividend); 3393 So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10+9-3). 3394 Actually, the 'difference' added to the scale is calculated from the 3395 number of "significant digits" in dividend and divisor, which is derived 3396 by looking at the length of the mantissa. Which is wrong, since it includes 3397 the + sign (oops) and actually gets 2 for '+100' and 4 for '+101'. Oops 3398 again. Thus 124/3 with div_scale=1 will get you '41.3' based on the strange 3399 assumption that 124 has 3 significant digits, while 120/7 will get you 3400 '17', not '17.1' since 120 is thought to have 2 significant digits. 3401 The rounding after the division then uses the remainder and $y to determine 3402 wether it must round up or down. 3403 ? I have no idea which is the right way. That's why I used a slightly more 3404 ? simple scheme and tweaked the few failing testcases to match it. 3405 3406=back 3407 3408This is how it works now: 3409 3410=over 2 3411 3412=item Setting/Accessing 3413 3414 * You can set the A global via C<< Math::BigInt->accuracy() >> or 3415 C<< Math::BigFloat->accuracy() >> or whatever class you are using. 3416 * You can also set P globally by using C<< Math::SomeClass->precision() >> 3417 likewise. 3418 * Globals are classwide, and not inherited by subclasses. 3419 * to undefine A, use C<< Math::SomeCLass->accuracy(undef); >> 3420 * to undefine P, use C<< Math::SomeClass->precision(undef); >> 3421 * Setting C<< Math::SomeClass->accuracy() >> clears automatically 3422 C<< Math::SomeClass->precision() >>, and vice versa. 3423 * To be valid, A must be > 0, P can have any value. 3424 * If P is negative, this means round to the P'th place to the right of the 3425 decimal point; positive values mean to the left of the decimal point. 3426 P of 0 means round to integer. 3427 * to find out the current global A, use C<< Math::SomeClass->accuracy() >> 3428 * to find out the current global P, use C<< Math::SomeClass->precision() >> 3429 * use C<< $x->accuracy() >> respective C<< $x->precision() >> for the local 3430 setting of C<< $x >>. 3431 * Please note that C<< $x->accuracy() >> respecive C<< $x->precision() >> 3432 return eventually defined global A or P, when C<< $x >>'s A or P is not 3433 set. 3434 3435=item Creating numbers 3436 3437 * When you create a number, you can give it's desired A or P via: 3438 $x = Math::BigInt->new($number,$A,$P); 3439 * Only one of A or P can be defined, otherwise the result is NaN 3440 * If no A or P is give ($x = Math::BigInt->new($number) form), then the 3441 globals (if set) will be used. Thus changing the global defaults later on 3442 will not change the A or P of previously created numbers (i.e., A and P of 3443 $x will be what was in effect when $x was created) 3444 * If given undef for A and P, B<no> rounding will occur, and the globals will 3445 B<not> be used. This is used by subclasses to create numbers without 3446 suffering rounding in the parent. Thus a subclass is able to have it's own 3447 globals enforced upon creation of a number by using 3448 C<< $x = Math::BigInt->new($number,undef,undef) >>: 3449 3450 use Math::BigInt::SomeSubclass; 3451 use Math::BigInt; 3452 3453 Math::BigInt->accuracy(2); 3454 Math::BigInt::SomeSubClass->accuracy(3); 3455 $x = Math::BigInt::SomeSubClass->new(1234); 3456 3457 $x is now 1230, and not 1200. A subclass might choose to implement 3458 this otherwise, e.g. falling back to the parent's A and P. 3459 3460=item Usage 3461 3462 * If A or P are enabled/defined, they are used to round the result of each 3463 operation according to the rules below 3464 * Negative P is ignored in Math::BigInt, since BigInts never have digits 3465 after the decimal point 3466 * Math::BigFloat uses Math::BigInt internally, but setting A or P inside 3467 Math::BigInt as globals does not tamper with the parts of a BigFloat. 3468 A flag is used to mark all Math::BigFloat numbers as 'never round'. 3469 3470=item Precedence 3471 3472 * It only makes sense that a number has only one of A or P at a time. 3473 If you set either A or P on one object, or globally, the other one will 3474 be automatically cleared. 3475 * If two objects are involved in an operation, and one of them has A in 3476 effect, and the other P, this results in an error (NaN). 3477 * A takes precendence over P (Hint: A comes before P). 3478 If neither of them is defined, nothing is used, i.e. the result will have 3479 as many digits as it can (with an exception for fdiv/fsqrt) and will not 3480 be rounded. 3481 * There is another setting for fdiv() (and thus for fsqrt()). If neither of 3482 A or P is defined, fdiv() will use a fallback (F) of $div_scale digits. 3483 If either the dividend's or the divisor's mantissa has more digits than 3484 the value of F, the higher value will be used instead of F. 3485 This is to limit the digits (A) of the result (just consider what would 3486 happen with unlimited A and P in the case of 1/3 :-) 3487 * fdiv will calculate (at least) 4 more digits than required (determined by 3488 A, P or F), and, if F is not used, round the result 3489 (this will still fail in the case of a result like 0.12345000000001 with A 3490 or P of 5, but this can not be helped - or can it?) 3491 * Thus you can have the math done by on Math::Big* class in two modi: 3492 + never round (this is the default): 3493 This is done by setting A and P to undef. No math operation 3494 will round the result, with fdiv() and fsqrt() as exceptions to guard 3495 against overflows. You must explicitely call bround(), bfround() or 3496 round() (the latter with parameters). 3497 Note: Once you have rounded a number, the settings will 'stick' on it 3498 and 'infect' all other numbers engaged in math operations with it, since 3499 local settings have the highest precedence. So, to get SaferRound[tm], 3500 use a copy() before rounding like this: 3501 3502 $x = Math::BigFloat->new(12.34); 3503 $y = Math::BigFloat->new(98.76); 3504 $z = $x * $y; # 1218.6984 3505 print $x->copy()->fround(3); # 12.3 (but A is now 3!) 3506 $z = $x * $y; # still 1218.6984, without 3507 # copy would have been 1210! 3508 3509 + round after each op: 3510 After each single operation (except for testing like is_zero()), the 3511 method round() is called and the result is rounded appropriately. By 3512 setting proper values for A and P, you can have all-the-same-A or 3513 all-the-same-P modes. For example, Math::Currency might set A to undef, 3514 and P to -2, globally. 3515 3516 ?Maybe an extra option that forbids local A & P settings would be in order, 3517 ?so that intermediate rounding does not 'poison' further math? 3518 3519=item Overriding globals 3520 3521 * you will be able to give A, P and R as an argument to all the calculation 3522 routines; the second parameter is A, the third one is P, and the fourth is 3523 R (shift right by one for binary operations like badd). P is used only if 3524 the first parameter (A) is undefined. These three parameters override the 3525 globals in the order detailed as follows, i.e. the first defined value 3526 wins: 3527 (local: per object, global: global default, parameter: argument to sub) 3528 + parameter A 3529 + parameter P 3530 + local A (if defined on both of the operands: smaller one is taken) 3531 + local P (if defined on both of the operands: bigger one is taken) 3532 + global A 3533 + global P 3534 + global F 3535 * fsqrt() will hand its arguments to fdiv(), as it used to, only now for two 3536 arguments (A and P) instead of one 3537 3538=item Local settings 3539 3540 * You can set A or P locally by using C<< $x->accuracy() >> or 3541 C<< $x->precision() >> 3542 and thus force different A and P for different objects/numbers. 3543 * Setting A or P this way immediately rounds $x to the new value. 3544 * C<< $x->accuracy() >> clears C<< $x->precision() >>, and vice versa. 3545 3546=item Rounding 3547 3548 * the rounding routines will use the respective global or local settings. 3549 fround()/bround() is for accuracy rounding, while ffround()/bfround() 3550 is for precision 3551 * the two rounding functions take as the second parameter one of the 3552 following rounding modes (R): 3553 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' 3554 * you can set/get the global R by using C<< Math::SomeClass->round_mode() >> 3555 or by setting C<< $Math::SomeClass::round_mode >> 3556 * after each operation, C<< $result->round() >> is called, and the result may 3557 eventually be rounded (that is, if A or P were set either locally, 3558 globally or as parameter to the operation) 3559 * to manually round a number, call C<< $x->round($A,$P,$round_mode); >> 3560 this will round the number by using the appropriate rounding function 3561 and then normalize it. 3562 * rounding modifies the local settings of the number: 3563 3564 $x = Math::BigFloat->new(123.456); 3565 $x->accuracy(5); 3566 $x->bround(4); 3567 3568 Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy() 3569 will be 4 from now on. 3570 3571=item Default values 3572 3573 * R: 'even' 3574 * F: 40 3575 * A: undef 3576 * P: undef 3577 3578=item Remarks 3579 3580 * The defaults are set up so that the new code gives the same results as 3581 the old code (except in a few cases on fdiv): 3582 + Both A and P are undefined and thus will not be used for rounding 3583 after each operation. 3584 + round() is thus a no-op, unless given extra parameters A and P 3585 3586=back 3587 3588=head1 INTERNALS 3589 3590The actual numbers are stored as unsigned big integers (with seperate sign). 3591You should neither care about nor depend on the internal representation; it 3592might change without notice. Use only method calls like C<< $x->sign(); >> 3593instead relying on the internal hash keys like in C<< $x->{sign}; >>. 3594 3595=head2 MATH LIBRARY 3596 3597Math with the numbers is done (by default) by a module called 3598C<Math::BigInt::Calc>. This is equivalent to saying: 3599 3600 use Math::BigInt lib => 'Calc'; 3601 3602You can change this by using: 3603 3604 use Math::BigInt lib => 'BitVect'; 3605 3606The following would first try to find Math::BigInt::Foo, then 3607Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc: 3608 3609 use Math::BigInt lib => 'Foo,Math::BigInt::Bar'; 3610 3611Since Math::BigInt::GMP is in almost all cases faster than Calc (especially in 3612cases involving really big numbers, where it is B<much> faster), and there is 3613no penalty if Math::BigInt::GMP is not installed, it is a good idea to always 3614use the following: 3615 3616 use Math::BigInt lib => 'GMP'; 3617 3618Different low-level libraries use different formats to store the 3619numbers. You should not depend on the number having a specific format. 3620 3621See the respective math library module documentation for further details. 3622 3623=head2 SIGN 3624 3625The sign is either '+', '-', 'NaN', '+inf' or '-inf' and stored seperately. 3626 3627A sign of 'NaN' is used to represent the result when input arguments are not 3628numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively 3629minus infinity. You will get '+inf' when dividing a positive number by 0, and 3630'-inf' when dividing any negative number by 0. 3631 3632=head2 mantissa(), exponent() and parts() 3633 3634C<mantissa()> and C<exponent()> return the said parts of the BigInt such 3635that: 3636 3637 $m = $x->mantissa(); 3638 $e = $x->exponent(); 3639 $y = $m * ( 10 ** $e ); 3640 print "ok\n" if $x == $y; 3641 3642C<< ($m,$e) = $x->parts() >> is just a shortcut that gives you both of them 3643in one go. Both the returned mantissa and exponent have a sign. 3644 3645Currently, for BigInts C<$e> is always 0, except for NaN, +inf and -inf, 3646where it is C<NaN>; and for C<$x == 0>, where it is C<1> (to be compatible 3647with Math::BigFloat's internal representation of a zero as C<0E1>). 3648 3649C<$m> is currently just a copy of the original number. The relation between 3650C<$e> and C<$m> will stay always the same, though their real values might 3651change. 3652 3653=head1 EXAMPLES 3654 3655 use Math::BigInt; 3656 3657 sub bint { Math::BigInt->new(shift); } 3658 3659 $x = Math::BigInt->bstr("1234") # string "1234" 3660 $x = "$x"; # same as bstr() 3661 $x = Math::BigInt->bneg("1234"); # BigInt "-1234" 3662 $x = Math::BigInt->babs("-12345"); # BigInt "12345" 3663 $x = Math::BigInt->bnorm("-0 00"); # BigInt "0" 3664 $x = bint(1) + bint(2); # BigInt "3" 3665 $x = bint(1) + "2"; # ditto (auto-BigIntify of "2") 3666 $x = bint(1); # BigInt "1" 3667 $x = $x + 5 / 2; # BigInt "3" 3668 $x = $x ** 3; # BigInt "27" 3669 $x *= 2; # BigInt "54" 3670 $x = Math::BigInt->new(0); # BigInt "0" 3671 $x--; # BigInt "-1" 3672 $x = Math::BigInt->badd(4,5) # BigInt "9" 3673 print $x->bsstr(); # 9e+0 3674 3675Examples for rounding: 3676 3677 use Math::BigFloat; 3678 use Test; 3679 3680 $x = Math::BigFloat->new(123.4567); 3681 $y = Math::BigFloat->new(123.456789); 3682 Math::BigFloat->accuracy(4); # no more A than 4 3683 3684 ok ($x->copy()->fround(),123.4); # even rounding 3685 print $x->copy()->fround(),"\n"; # 123.4 3686 Math::BigFloat->round_mode('odd'); # round to odd 3687 print $x->copy()->fround(),"\n"; # 123.5 3688 Math::BigFloat->accuracy(5); # no more A than 5 3689 Math::BigFloat->round_mode('odd'); # round to odd 3690 print $x->copy()->fround(),"\n"; # 123.46 3691 $y = $x->copy()->fround(4),"\n"; # A = 4: 123.4 3692 print "$y, ",$y->accuracy(),"\n"; # 123.4, 4 3693 3694 Math::BigFloat->accuracy(undef); # A not important now 3695 Math::BigFloat->precision(2); # P important 3696 print $x->copy()->bnorm(),"\n"; # 123.46 3697 print $x->copy()->fround(),"\n"; # 123.46 3698 3699Examples for converting: 3700 3701 my $x = Math::BigInt->new('0b1'.'01' x 123); 3702 print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n"; 3703 3704=head1 Autocreating constants 3705 3706After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal 3707and binary constants in the given scope are converted to C<Math::BigInt>. 3708This conversion happens at compile time. 3709 3710In particular, 3711 3712 perl -MMath::BigInt=:constant -e 'print 2**100,"\n"' 3713 3714prints the integer value of C<2**100>. Note that without conversion of 3715constants the expression 2**100 will be calculated as perl scalar. 3716 3717Please note that strings and floating point constants are not affected, 3718so that 3719 3720 use Math::BigInt qw/:constant/; 3721 3722 $x = 1234567890123456789012345678901234567890 3723 + 123456789123456789; 3724 $y = '1234567890123456789012345678901234567890' 3725 + '123456789123456789'; 3726 3727do not work. You need an explicit Math::BigInt->new() around one of the 3728operands. You should also quote large constants to protect loss of precision: 3729 3730 use Math::BigInt; 3731 3732 $x = Math::BigInt->new('1234567889123456789123456789123456789'); 3733 3734Without the quotes Perl would convert the large number to a floating point 3735constant at compile time and then hand the result to BigInt, which results in 3736an truncated result or a NaN. 3737 3738This also applies to integers that look like floating point constants: 3739 3740 use Math::BigInt ':constant'; 3741 3742 print ref(123e2),"\n"; 3743 print ref(123.2e2),"\n"; 3744 3745will print nothing but newlines. Use either L<bignum> or L<Math::BigFloat> 3746to get this to work. 3747 3748=head1 PERFORMANCE 3749 3750Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x 3751must be made in the second case. For long numbers, the copy can eat up to 20% 3752of the work (in the case of addition/subtraction, less for 3753multiplication/division). If $y is very small compared to $x, the form 3754$x += $y is MUCH faster than $x = $x + $y since making the copy of $x takes 3755more time then the actual addition. 3756 3757With a technique called copy-on-write, the cost of copying with overload could 3758be minimized or even completely avoided. A test implementation of COW did show 3759performance gains for overloaded math, but introduced a performance loss due 3760to a constant overhead for all other operatons. So Math::BigInt does currently 3761not COW. 3762 3763The rewritten version of this module (vs. v0.01) is slower on certain 3764operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it 3765does now more work and handles much more cases. The time spent in these 3766operations is usually gained in the other math operations so that code on 3767the average should get (much) faster. If they don't, please contact the author. 3768 3769Some operations may be slower for small numbers, but are significantly faster 3770for big numbers. Other operations are now constant (O(1), like C<bneg()>, 3771C<babs()> etc), instead of O(N) and thus nearly always take much less time. 3772These optimizations were done on purpose. 3773 3774If you find the Calc module to slow, try to install any of the replacement 3775modules and see if they help you. 3776 3777=head2 Alternative math libraries 3778 3779You can use an alternative library to drive Math::BigInt via: 3780 3781 use Math::BigInt lib => 'Module'; 3782 3783See L<MATH LIBRARY> for more information. 3784 3785For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>. 3786 3787=head2 SUBCLASSING 3788 3789=head1 Subclassing Math::BigInt 3790 3791The basic design of Math::BigInt allows simple subclasses with very little 3792work, as long as a few simple rules are followed: 3793 3794=over 2 3795 3796=item * 3797 3798The public API must remain consistent, i.e. if a sub-class is overloading 3799addition, the sub-class must use the same name, in this case badd(). The 3800reason for this is that Math::BigInt is optimized to call the object methods 3801directly. 3802 3803=item * 3804 3805The private object hash keys like C<$x->{sign}> may not be changed, but 3806additional keys can be added, like C<$x->{_custom}>. 3807 3808=item * 3809 3810Accessor functions are available for all existing object hash keys and should 3811be used instead of directly accessing the internal hash keys. The reason for 3812this is that Math::BigInt itself has a pluggable interface which permits it 3813to support different storage methods. 3814 3815=back 3816 3817More complex sub-classes may have to replicate more of the logic internal of 3818Math::BigInt if they need to change more basic behaviors. A subclass that 3819needs to merely change the output only needs to overload C<bstr()>. 3820 3821All other object methods and overloaded functions can be directly inherited 3822from the parent class. 3823 3824At the very minimum, any subclass will need to provide it's own C<new()> and can 3825store additional hash keys in the object. There are also some package globals 3826that must be defined, e.g.: 3827 3828 # Globals 3829 $accuracy = undef; 3830 $precision = -2; # round to 2 decimal places 3831 $round_mode = 'even'; 3832 $div_scale = 40; 3833 3834Additionally, you might want to provide the following two globals to allow 3835auto-upgrading and auto-downgrading to work correctly: 3836 3837 $upgrade = undef; 3838 $downgrade = undef; 3839 3840This allows Math::BigInt to correctly retrieve package globals from the 3841subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or 3842t/Math/BigFloat/SubClass.pm completely functional subclass examples. 3843 3844Don't forget to 3845 3846 use overload; 3847 3848in your subclass to automatically inherit the overloading from the parent. If 3849you like, you can change part of the overloading, look at Math::String for an 3850example. 3851 3852=head1 UPGRADING 3853 3854When used like this: 3855 3856 use Math::BigInt upgrade => 'Foo::Bar'; 3857 3858certain operations will 'upgrade' their calculation and thus the result to 3859the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat: 3860 3861 use Math::BigInt upgrade => 'Math::BigFloat'; 3862 3863As a shortcut, you can use the module C<bignum>: 3864 3865 use bignum; 3866 3867Also good for oneliners: 3868 3869 perl -Mbignum -le 'print 2 ** 255' 3870 3871This makes it possible to mix arguments of different classes (as in 2.5 + 2) 3872as well es preserve accuracy (as in sqrt(3)). 3873 3874Beware: This feature is not fully implemented yet. 3875 3876=head2 Auto-upgrade 3877 3878The following methods upgrade themselves unconditionally; that is if upgrade 3879is in effect, they will always hand up their work: 3880 3881=over 2 3882 3883=item bsqrt() 3884 3885=item div() 3886 3887=item blog() 3888 3889=back 3890 3891Beware: This list is not complete. 3892 3893All other methods upgrade themselves only when one (or all) of their 3894arguments are of the class mentioned in $upgrade (This might change in later 3895versions to a more sophisticated scheme): 3896 3897=head1 BUGS 3898 3899=over 2 3900 3901=item broot() does not work 3902 3903The broot() function in BigInt may only work for small values. This will be 3904fixed in a later version. 3905 3906=item Out of Memory! 3907 3908Under Perl prior to 5.6.0 having an C<use Math::BigInt ':constant';> and 3909C<eval()> in your code will crash with "Out of memory". This is probably an 3910overload/exporter bug. You can workaround by not having C<eval()> 3911and ':constant' at the same time or upgrade your Perl to a newer version. 3912 3913=item Fails to load Calc on Perl prior 5.6.0 3914 3915Since eval(' use ...') can not be used in conjunction with ':constant', BigInt 3916will fall back to eval { require ... } when loading the math lib on Perls 3917prior to 5.6.0. This simple replaces '::' with '/' and thus might fail on 3918filesystems using a different seperator. 3919 3920=back 3921 3922=head1 CAVEATS 3923 3924Some things might not work as you expect them. Below is documented what is 3925known to be troublesome: 3926 3927=over 1 3928 3929=item bstr(), bsstr() and 'cmp' 3930 3931Both C<bstr()> and C<bsstr()> as well as automated stringify via overload now 3932drop the leading '+'. The old code would return '+3', the new returns '3'. 3933This is to be consistent with Perl and to make C<cmp> (especially with 3934overloading) to work as you expect. It also solves problems with C<Test.pm>, 3935because it's C<ok()> uses 'eq' internally. 3936 3937Mark Biggar said, when asked about to drop the '+' altogether, or make only 3938C<cmp> work: 3939 3940 I agree (with the first alternative), don't add the '+' on positive 3941 numbers. It's not as important anymore with the new internal 3942 form for numbers. It made doing things like abs and neg easier, 3943 but those have to be done differently now anyway. 3944 3945So, the following examples will now work all as expected: 3946 3947 use Test; 3948 BEGIN { plan tests => 1 } 3949 use Math::BigInt; 3950 3951 my $x = new Math::BigInt 3*3; 3952 my $y = new Math::BigInt 3*3; 3953 3954 ok ($x,3*3); 3955 print "$x eq 9" if $x eq $y; 3956 print "$x eq 9" if $x eq '9'; 3957 print "$x eq 9" if $x eq 3*3; 3958 3959Additionally, the following still works: 3960 3961 print "$x == 9" if $x == $y; 3962 print "$x == 9" if $x == 9; 3963 print "$x == 9" if $x == 3*3; 3964 3965There is now a C<bsstr()> method to get the string in scientific notation aka 3966C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr() 3967for comparisation, but Perl will represent some numbers as 100 and others 3968as 1e+308. If in doubt, convert both arguments to Math::BigInt before 3969comparing them as strings: 3970 3971 use Test; 3972 BEGIN { plan tests => 3 } 3973 use Math::BigInt; 3974 3975 $x = Math::BigInt->new('1e56'); $y = 1e56; 3976 ok ($x,$y); # will fail 3977 ok ($x->bsstr(),$y); # okay 3978 $y = Math::BigInt->new($y); 3979 ok ($x,$y); # okay 3980 3981Alternatively, simple use C<< <=> >> for comparisations, this will get it 3982always right. There is not yet a way to get a number automatically represented 3983as a string that matches exactly the way Perl represents it. 3984 3985=item int() 3986 3987C<int()> will return (at least for Perl v5.7.1 and up) another BigInt, not a 3988Perl scalar: 3989 3990 $x = Math::BigInt->new(123); 3991 $y = int($x); # BigInt 123 3992 $x = Math::BigFloat->new(123.45); 3993 $y = int($x); # BigInt 123 3994 3995In all Perl versions you can use C<as_number()> for the same effect: 3996 3997 $x = Math::BigFloat->new(123.45); 3998 $y = $x->as_number(); # BigInt 123 3999 4000This also works for other subclasses, like Math::String. 4001 4002It is yet unlcear whether overloaded int() should return a scalar or a BigInt. 4003 4004=item length 4005 4006The following will probably not do what you expect: 4007 4008 $c = Math::BigInt->new(123); 4009 print $c->length(),"\n"; # prints 30 4010 4011It prints both the number of digits in the number and in the fraction part 4012since print calls C<length()> in list context. Use something like: 4013 4014 print scalar $c->length(),"\n"; # prints 3 4015 4016=item bdiv 4017 4018The following will probably not do what you expect: 4019 4020 print $c->bdiv(10000),"\n"; 4021 4022It prints both quotient and remainder since print calls C<bdiv()> in list 4023context. Also, C<bdiv()> will modify $c, so be carefull. You probably want 4024to use 4025 4026 print $c / 10000,"\n"; 4027 print scalar $c->bdiv(10000),"\n"; # or if you want to modify $c 4028 4029instead. 4030 4031The quotient is always the greatest integer less than or equal to the 4032real-valued quotient of the two operands, and the remainder (when it is 4033nonzero) always has the same sign as the second operand; so, for 4034example, 4035 4036 1 / 4 => ( 0, 1) 4037 1 / -4 => (-1,-3) 4038 -3 / 4 => (-1, 1) 4039 -3 / -4 => ( 0,-3) 4040 -11 / 2 => (-5,1) 4041 11 /-2 => (-5,-1) 4042 4043As a consequence, the behavior of the operator % agrees with the 4044behavior of Perl's built-in % operator (as documented in the perlop 4045manpage), and the equation 4046 4047 $x == ($x / $y) * $y + ($x % $y) 4048 4049holds true for any $x and $y, which justifies calling the two return 4050values of bdiv() the quotient and remainder. The only exception to this rule 4051are when $y == 0 and $x is negative, then the remainder will also be 4052negative. See below under "infinity handling" for the reasoning behing this. 4053 4054Perl's 'use integer;' changes the behaviour of % and / for scalars, but will 4055not change BigInt's way to do things. This is because under 'use integer' Perl 4056will do what the underlying C thinks is right and this is different for each 4057system. If you need BigInt's behaving exactly like Perl's 'use integer', bug 4058the author to implement it ;) 4059 4060=item infinity handling 4061 4062Here are some examples that explain the reasons why certain results occur while 4063handling infinity: 4064 4065The following table shows the result of the division and the remainder, so that 4066the equation above holds true. Some "ordinary" cases are strewn in to show more 4067clearly the reasoning: 4068 4069 A / B = C, R so that C * B + R = A 4070 ========================================================= 4071 5 / 8 = 0, 5 0 * 8 + 5 = 5 4072 0 / 8 = 0, 0 0 * 8 + 0 = 0 4073 0 / inf = 0, 0 0 * inf + 0 = 0 4074 0 /-inf = 0, 0 0 * -inf + 0 = 0 4075 5 / inf = 0, 5 0 * inf + 5 = 5 4076 5 /-inf = 0, 5 0 * -inf + 5 = 5 4077 -5/ inf = 0, -5 0 * inf + -5 = -5 4078 -5/-inf = 0, -5 0 * -inf + -5 = -5 4079 inf/ 5 = inf, 0 inf * 5 + 0 = inf 4080 -inf/ 5 = -inf, 0 -inf * 5 + 0 = -inf 4081 inf/ -5 = -inf, 0 -inf * -5 + 0 = inf 4082 -inf/ -5 = inf, 0 inf * -5 + 0 = -inf 4083 5/ 5 = 1, 0 1 * 5 + 0 = 5 4084 -5/ -5 = 1, 0 1 * -5 + 0 = -5 4085 inf/ inf = 1, 0 1 * inf + 0 = inf 4086 -inf/-inf = 1, 0 1 * -inf + 0 = -inf 4087 inf/-inf = -1, 0 -1 * -inf + 0 = inf 4088 -inf/ inf = -1, 0 1 * -inf + 0 = -inf 4089 8/ 0 = inf, 8 inf * 0 + 8 = 8 4090 inf/ 0 = inf, inf inf * 0 + inf = inf 4091 0/ 0 = NaN 4092 4093These cases below violate the "remainder has the sign of the second of the two 4094arguments", since they wouldn't match up otherwise. 4095 4096 A / B = C, R so that C * B + R = A 4097 ======================================================== 4098 -inf/ 0 = -inf, -inf -inf * 0 + inf = -inf 4099 -8/ 0 = -inf, -8 -inf * 0 + 8 = -8 4100 4101=item Modifying and = 4102 4103Beware of: 4104 4105 $x = Math::BigFloat->new(5); 4106 $y = $x; 4107 4108It will not do what you think, e.g. making a copy of $x. Instead it just makes 4109a second reference to the B<same> object and stores it in $y. Thus anything 4110that modifies $x (except overloaded operators) will modify $y, and vice versa. 4111Or in other words, C<=> is only safe if you modify your BigInts only via 4112overloaded math. As soon as you use a method call it breaks: 4113 4114 $x->bmul(2); 4115 print "$x, $y\n"; # prints '10, 10' 4116 4117If you want a true copy of $x, use: 4118 4119 $y = $x->copy(); 4120 4121You can also chain the calls like this, this will make first a copy and then 4122multiply it by 2: 4123 4124 $y = $x->copy()->bmul(2); 4125 4126See also the documentation for overload.pm regarding C<=>. 4127 4128=item bpow 4129 4130C<bpow()> (and the rounding functions) now modifies the first argument and 4131returns it, unlike the old code which left it alone and only returned the 4132result. This is to be consistent with C<badd()> etc. The first three will 4133modify $x, the last one won't: 4134 4135 print bpow($x,$i),"\n"; # modify $x 4136 print $x->bpow($i),"\n"; # ditto 4137 print $x **= $i,"\n"; # the same 4138 print $x ** $i,"\n"; # leave $x alone 4139 4140The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though. 4141 4142=item Overloading -$x 4143 4144The following: 4145 4146 $x = -$x; 4147 4148is slower than 4149 4150 $x->bneg(); 4151 4152since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant 4153needs to preserve $x since it does not know that it later will get overwritten. 4154This makes a copy of $x and takes O(N), but $x->bneg() is O(1). 4155 4156With Copy-On-Write, this issue would be gone, but C-o-W is not implemented 4157since it is slower for all other things. 4158 4159=item Mixing different object types 4160 4161In Perl you will get a floating point value if you do one of the following: 4162 4163 $float = 5.0 + 2; 4164 $float = 2 + 5.0; 4165 $float = 5 / 2; 4166 4167With overloaded math, only the first two variants will result in a BigFloat: 4168 4169 use Math::BigInt; 4170 use Math::BigFloat; 4171 4172 $mbf = Math::BigFloat->new(5); 4173 $mbi2 = Math::BigInteger->new(5); 4174 $mbi = Math::BigInteger->new(2); 4175 4176 # what actually gets called: 4177 $float = $mbf + $mbi; # $mbf->badd() 4178 $float = $mbf / $mbi; # $mbf->bdiv() 4179 $integer = $mbi + $mbf; # $mbi->badd() 4180 $integer = $mbi2 / $mbi; # $mbi2->bdiv() 4181 $integer = $mbi2 / $mbf; # $mbi2->bdiv() 4182 4183This is because math with overloaded operators follows the first (dominating) 4184operand, and the operation of that is called and returns thus the result. So, 4185Math::BigInt::bdiv() will always return a Math::BigInt, regardless whether 4186the result should be a Math::BigFloat or the second operant is one. 4187 4188To get a Math::BigFloat you either need to call the operation manually, 4189make sure the operands are already of the proper type or casted to that type 4190via Math::BigFloat->new(): 4191 4192 $float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5 4193 4194Beware of simple "casting" the entire expression, this would only convert 4195the already computed result: 4196 4197 $float = Math::BigFloat->new($mbi2 / $mbi); # = 2.0 thus wrong! 4198 4199Beware also of the order of more complicated expressions like: 4200 4201 $integer = ($mbi2 + $mbi) / $mbf; # int / float => int 4202 $integer = $mbi2 / Math::BigFloat->new($mbi); # ditto 4203 4204If in doubt, break the expression into simpler terms, or cast all operands 4205to the desired resulting type. 4206 4207Scalar values are a bit different, since: 4208 4209 $float = 2 + $mbf; 4210 $float = $mbf + 2; 4211 4212will both result in the proper type due to the way the overloaded math works. 4213 4214This section also applies to other overloaded math packages, like Math::String. 4215 4216One solution to you problem might be autoupgrading|upgrading. See the 4217pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this. 4218 4219=item bsqrt() 4220 4221C<bsqrt()> works only good if the result is a big integer, e.g. the square 4222root of 144 is 12, but from 12 the square root is 3, regardless of rounding 4223mode. The reason is that the result is always truncated to an integer. 4224 4225If you want a better approximation of the square root, then use: 4226 4227 $x = Math::BigFloat->new(12); 4228 Math::BigFloat->precision(0); 4229 Math::BigFloat->round_mode('even'); 4230 print $x->copy->bsqrt(),"\n"; # 4 4231 4232 Math::BigFloat->precision(2); 4233 print $x->bsqrt(),"\n"; # 3.46 4234 print $x->bsqrt(3),"\n"; # 3.464 4235 4236=item brsft() 4237 4238For negative numbers in base see also L<brsft|brsft>. 4239 4240=back 4241 4242=head1 LICENSE 4243 4244This program is free software; you may redistribute it and/or modify it under 4245the same terms as Perl itself. 4246 4247=head1 SEE ALSO 4248 4249L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as 4250L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>. 4251 4252The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest 4253because they solve the autoupgrading/downgrading issue, at least partly. 4254 4255The package at 4256L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains 4257more documentation including a full version history, testcases, empty 4258subclass files and benchmarks. 4259 4260=head1 AUTHORS 4261 4262Original code by Mark Biggar, overloaded interface by Ilya Zakharevich. 4263Completely rewritten by Tels http://bloodgate.com in late 2000, 2001 - 2003 4264and still at it in 2004. 4265 4266Many people contributed in one or more ways to the final beast, see the file 4267CREDITS for an (uncomplete) list. If you miss your name, please drop me a 4268mail. Thank you! 4269 4270=cut 4271