1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "DXILBitcodeWriter.h"
14 #include "DXILValueEnumerator.h"
15 #include "DirectXIRPasses/PointerTypeAnalysis.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Bitcode/BitcodeCommon.h"
19 #include "llvm/Bitcode/BitcodeReader.h"
20 #include "llvm/Bitcode/LLVMBitCodes.h"
21 #include "llvm/Bitstream/BitCodes.h"
22 #include "llvm/Bitstream/BitstreamWriter.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalIFunc.h"
34 #include "llvm/IR/GlobalObject.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/UseListOrder.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/IR/ValueSymbolTable.h"
50 #include "llvm/Object/IRSymtab.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/ModRef.h"
53 #include "llvm/Support/SHA1.h"
54
55 namespace llvm {
56 namespace dxil {
57
58 // Generates an enum to use as an index in the Abbrev array of Metadata record.
59 enum MetadataAbbrev : unsigned {
60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
61 #include "llvm/IR/Metadata.def"
62 LastPlusOne
63 };
64
65 class DXILBitcodeWriter {
66
67 /// These are manifest constants used by the bitcode writer. They do not need
68 /// to be kept in sync with the reader, but need to be consistent within this
69 /// file.
70 enum {
71 // VALUE_SYMTAB_BLOCK abbrev id's.
72 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
73 VST_ENTRY_7_ABBREV,
74 VST_ENTRY_6_ABBREV,
75 VST_BBENTRY_6_ABBREV,
76
77 // CONSTANTS_BLOCK abbrev id's.
78 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
79 CONSTANTS_INTEGER_ABBREV,
80 CONSTANTS_CE_CAST_Abbrev,
81 CONSTANTS_NULL_Abbrev,
82
83 // FUNCTION_BLOCK abbrev id's.
84 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
85 FUNCTION_INST_BINOP_ABBREV,
86 FUNCTION_INST_BINOP_FLAGS_ABBREV,
87 FUNCTION_INST_CAST_ABBREV,
88 FUNCTION_INST_RET_VOID_ABBREV,
89 FUNCTION_INST_RET_VAL_ABBREV,
90 FUNCTION_INST_UNREACHABLE_ABBREV,
91 FUNCTION_INST_GEP_ABBREV,
92 };
93
94 // Cache some types
95 Type *I8Ty;
96 Type *I8PtrTy;
97
98 /// The stream created and owned by the client.
99 BitstreamWriter &Stream;
100
101 StringTableBuilder &StrtabBuilder;
102
103 /// The Module to write to bitcode.
104 const Module &M;
105
106 /// Enumerates ids for all values in the module.
107 ValueEnumerator VE;
108
109 /// Map that holds the correspondence between GUIDs in the summary index,
110 /// that came from indirect call profiles, and a value id generated by this
111 /// class to use in the VST and summary block records.
112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
113
114 /// Tracks the last value id recorded in the GUIDToValueMap.
115 unsigned GlobalValueId;
116
117 /// Saves the offset of the VSTOffset record that must eventually be
118 /// backpatched with the offset of the actual VST.
119 uint64_t VSTOffsetPlaceholder = 0;
120
121 /// Pointer to the buffer allocated by caller for bitcode writing.
122 const SmallVectorImpl<char> &Buffer;
123
124 /// The start bit of the identification block.
125 uint64_t BitcodeStartBit;
126
127 /// This maps values to their typed pointers
128 PointerTypeMap PointerMap;
129
130 public:
131 /// Constructs a ModuleBitcodeWriter object for the given Module,
132 /// writing to the provided \p Buffer.
DXILBitcodeWriter(const Module & M,SmallVectorImpl<char> & Buffer,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream)133 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
134 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
135 : I8Ty(Type::getInt8Ty(M.getContext())),
136 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
137 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
138 BitcodeStartBit(Stream.GetCurrentBitNo()),
139 PointerMap(PointerTypeAnalysis::run(M)) {
140 GlobalValueId = VE.getValues().size();
141 // Enumerate the typed pointers
142 for (auto El : PointerMap)
143 VE.EnumerateType(El.second);
144 }
145
146 /// Emit the current module to the bitstream.
147 void write();
148
149 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
150 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
151 StringRef Str, unsigned AbbrevToUse);
152 static void writeIdentificationBlock(BitstreamWriter &Stream);
153 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
154 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
155
156 static unsigned getEncodedComdatSelectionKind(const Comdat &C);
157 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
158 static unsigned getEncodedLinkage(const GlobalValue &GV);
159 static unsigned getEncodedVisibility(const GlobalValue &GV);
160 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
161 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
162 static unsigned getEncodedCastOpcode(unsigned Opcode);
163 static unsigned getEncodedUnaryOpcode(unsigned Opcode);
164 static unsigned getEncodedBinaryOpcode(unsigned Opcode);
165 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
166 static unsigned getEncodedOrdering(AtomicOrdering Ordering);
167 static uint64_t getOptimizationFlags(const Value *V);
168
169 private:
170 void writeModuleVersion();
171 void writePerModuleGlobalValueSummary();
172
173 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
174 GlobalValueSummary *Summary,
175 unsigned ValueID,
176 unsigned FSCallsAbbrev,
177 unsigned FSCallsProfileAbbrev,
178 const Function &F);
179 void writeModuleLevelReferences(const GlobalVariable &V,
180 SmallVector<uint64_t, 64> &NameVals,
181 unsigned FSModRefsAbbrev,
182 unsigned FSModVTableRefsAbbrev);
183
assignValueId(GlobalValue::GUID ValGUID)184 void assignValueId(GlobalValue::GUID ValGUID) {
185 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
186 }
187
getValueId(GlobalValue::GUID ValGUID)188 unsigned getValueId(GlobalValue::GUID ValGUID) {
189 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
190 // Expect that any GUID value had a value Id assigned by an
191 // earlier call to assignValueId.
192 assert(VMI != GUIDToValueIdMap.end() &&
193 "GUID does not have assigned value Id");
194 return VMI->second;
195 }
196
197 // Helper to get the valueId for the type of value recorded in VI.
getValueId(ValueInfo VI)198 unsigned getValueId(ValueInfo VI) {
199 if (!VI.haveGVs() || !VI.getValue())
200 return getValueId(VI.getGUID());
201 return VE.getValueID(VI.getValue());
202 }
203
valueIds()204 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
205
bitcodeStartBit()206 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
207
208 size_t addToStrtab(StringRef Str);
209
210 unsigned createDILocationAbbrev();
211 unsigned createGenericDINodeAbbrev();
212
213 void writeAttributeGroupTable();
214 void writeAttributeTable();
215 void writeTypeTable();
216 void writeComdats();
217 void writeValueSymbolTableForwardDecl();
218 void writeModuleInfo();
219 void writeValueAsMetadata(const ValueAsMetadata *MD,
220 SmallVectorImpl<uint64_t> &Record);
221 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
222 unsigned Abbrev);
223 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
224 unsigned &Abbrev);
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)225 void writeGenericDINode(const GenericDINode *N,
226 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
227 llvm_unreachable("DXIL cannot contain GenericDI Nodes");
228 }
229 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
230 unsigned Abbrev);
writeDIGenericSubrange(const DIGenericSubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)231 void writeDIGenericSubrange(const DIGenericSubrange *N,
232 SmallVectorImpl<uint64_t> &Record,
233 unsigned Abbrev) {
234 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
235 }
236 void writeDIEnumerator(const DIEnumerator *N,
237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
238 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
239 unsigned Abbrev);
writeDIStringType(const DIStringType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)240 void writeDIStringType(const DIStringType *N,
241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
242 llvm_unreachable("DXIL cannot contain DIStringType Nodes");
243 }
244 void writeDIDerivedType(const DIDerivedType *N,
245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
246 void writeDICompositeType(const DICompositeType *N,
247 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
248 void writeDISubroutineType(const DISubroutineType *N,
249 SmallVectorImpl<uint64_t> &Record,
250 unsigned Abbrev);
251 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
252 unsigned Abbrev);
253 void writeDICompileUnit(const DICompileUnit *N,
254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
255 void writeDISubprogram(const DISubprogram *N,
256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
257 void writeDILexicalBlock(const DILexicalBlock *N,
258 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
259 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
260 SmallVectorImpl<uint64_t> &Record,
261 unsigned Abbrev);
writeDICommonBlock(const DICommonBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)262 void writeDICommonBlock(const DICommonBlock *N,
263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
264 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
265 }
266 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
267 unsigned Abbrev);
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)268 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
269 unsigned Abbrev) {
270 llvm_unreachable("DXIL cannot contain DIMacro Nodes");
271 }
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)272 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
273 unsigned Abbrev) {
274 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
275 }
writeDIArgList(const DIArgList * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)276 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
277 unsigned Abbrev) {
278 llvm_unreachable("DXIL cannot contain DIArgList Nodes");
279 }
writeDIAssignID(const DIAssignID * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)280 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
281 unsigned Abbrev) {
282 // DIAssignID is experimental feature to track variable location in IR..
283 // FIXME: translate DIAssignID to debug info DXIL supports.
284 // See https://github.com/llvm/llvm-project/issues/58989
285 llvm_unreachable("DXIL cannot contain DIAssignID Nodes");
286 }
287 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
288 unsigned Abbrev);
289 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
290 SmallVectorImpl<uint64_t> &Record,
291 unsigned Abbrev);
292 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
293 SmallVectorImpl<uint64_t> &Record,
294 unsigned Abbrev);
295 void writeDIGlobalVariable(const DIGlobalVariable *N,
296 SmallVectorImpl<uint64_t> &Record,
297 unsigned Abbrev);
298 void writeDILocalVariable(const DILocalVariable *N,
299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
writeDILabel(const DILabel * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)300 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
301 unsigned Abbrev) {
302 llvm_unreachable("DXIL cannot contain DILabel Nodes");
303 }
304 void writeDIExpression(const DIExpression *N,
305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
writeDIGlobalVariableExpression(const DIGlobalVariableExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)306 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
307 SmallVectorImpl<uint64_t> &Record,
308 unsigned Abbrev) {
309 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
310 }
311 void writeDIObjCProperty(const DIObjCProperty *N,
312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313 void writeDIImportedEntity(const DIImportedEntity *N,
314 SmallVectorImpl<uint64_t> &Record,
315 unsigned Abbrev);
316 unsigned createNamedMetadataAbbrev();
317 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
318 unsigned createMetadataStringsAbbrev();
319 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
320 SmallVectorImpl<uint64_t> &Record);
321 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
322 SmallVectorImpl<uint64_t> &Record,
323 std::vector<unsigned> *MDAbbrevs = nullptr,
324 std::vector<uint64_t> *IndexPos = nullptr);
325 void writeModuleMetadata();
326 void writeFunctionMetadata(const Function &F);
327 void writeFunctionMetadataAttachment(const Function &F);
328 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
329 const GlobalObject &GO);
330 void writeModuleMetadataKinds();
331 void writeOperandBundleTags();
332 void writeSyncScopeNames();
333 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
334 void writeModuleConstants();
335 bool pushValueAndType(const Value *V, unsigned InstID,
336 SmallVectorImpl<unsigned> &Vals);
337 void writeOperandBundles(const CallBase &CB, unsigned InstID);
338 void pushValue(const Value *V, unsigned InstID,
339 SmallVectorImpl<unsigned> &Vals);
340 void pushValueSigned(const Value *V, unsigned InstID,
341 SmallVectorImpl<uint64_t> &Vals);
342 void writeInstruction(const Instruction &I, unsigned InstID,
343 SmallVectorImpl<unsigned> &Vals);
344 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
345 void writeGlobalValueSymbolTable(
346 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
347 void writeFunction(const Function &F);
348 void writeBlockInfo();
349
getEncodedSyncScopeID(SyncScope::ID SSID)350 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
351
getEncodedAlign(MaybeAlign Alignment)352 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
353
354 unsigned getTypeID(Type *T, const Value *V = nullptr);
355 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject
356 ///
357 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the
358 /// GlobalObject, but in the bitcode writer we need the pointer element type.
359 unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G);
360 };
361
362 } // namespace dxil
363 } // namespace llvm
364
365 using namespace llvm;
366 using namespace llvm::dxil;
367
368 ////////////////////////////////////////////////////////////////////////////////
369 /// Begin dxil::BitcodeWriter Implementation
370 ////////////////////////////////////////////////////////////////////////////////
371
BitcodeWriter(SmallVectorImpl<char> & Buffer,raw_fd_stream * FS)372 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer,
373 raw_fd_stream *FS)
374 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
375 // Emit the file header.
376 Stream->Emit((unsigned)'B', 8);
377 Stream->Emit((unsigned)'C', 8);
378 Stream->Emit(0x0, 4);
379 Stream->Emit(0xC, 4);
380 Stream->Emit(0xE, 4);
381 Stream->Emit(0xD, 4);
382 }
383
~BitcodeWriter()384 dxil::BitcodeWriter::~BitcodeWriter() { }
385
386 /// Write the specified module to the specified output stream.
WriteDXILToFile(const Module & M,raw_ostream & Out)387 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
388 SmallVector<char, 0> Buffer;
389 Buffer.reserve(256 * 1024);
390
391 // If this is darwin or another generic macho target, reserve space for the
392 // header.
393 Triple TT(M.getTargetTriple());
394 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
395 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
396
397 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
398 Writer.writeModule(M);
399
400 // Write the generated bitstream to "Out".
401 if (!Buffer.empty())
402 Out.write((char *)&Buffer.front(), Buffer.size());
403 }
404
writeBlob(unsigned Block,unsigned Record,StringRef Blob)405 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
406 Stream->EnterSubblock(Block, 3);
407
408 auto Abbv = std::make_shared<BitCodeAbbrev>();
409 Abbv->Add(BitCodeAbbrevOp(Record));
410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
411 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
412
413 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
414
415 Stream->ExitBlock();
416 }
417
writeModule(const Module & M)418 void BitcodeWriter::writeModule(const Module &M) {
419
420 // The Mods vector is used by irsymtab::build, which requires non-const
421 // Modules in case it needs to materialize metadata. But the bitcode writer
422 // requires that the module is materialized, so we can cast to non-const here,
423 // after checking that it is in fact materialized.
424 assert(M.isMaterialized());
425 Mods.push_back(const_cast<Module *>(&M));
426
427 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
428 ModuleWriter.write();
429 }
430
431 ////////////////////////////////////////////////////////////////////////////////
432 /// Begin dxil::BitcodeWriterBase Implementation
433 ////////////////////////////////////////////////////////////////////////////////
434
getEncodedCastOpcode(unsigned Opcode)435 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
436 switch (Opcode) {
437 default:
438 llvm_unreachable("Unknown cast instruction!");
439 case Instruction::Trunc:
440 return bitc::CAST_TRUNC;
441 case Instruction::ZExt:
442 return bitc::CAST_ZEXT;
443 case Instruction::SExt:
444 return bitc::CAST_SEXT;
445 case Instruction::FPToUI:
446 return bitc::CAST_FPTOUI;
447 case Instruction::FPToSI:
448 return bitc::CAST_FPTOSI;
449 case Instruction::UIToFP:
450 return bitc::CAST_UITOFP;
451 case Instruction::SIToFP:
452 return bitc::CAST_SITOFP;
453 case Instruction::FPTrunc:
454 return bitc::CAST_FPTRUNC;
455 case Instruction::FPExt:
456 return bitc::CAST_FPEXT;
457 case Instruction::PtrToInt:
458 return bitc::CAST_PTRTOINT;
459 case Instruction::IntToPtr:
460 return bitc::CAST_INTTOPTR;
461 case Instruction::BitCast:
462 return bitc::CAST_BITCAST;
463 case Instruction::AddrSpaceCast:
464 return bitc::CAST_ADDRSPACECAST;
465 }
466 }
467
getEncodedUnaryOpcode(unsigned Opcode)468 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
469 switch (Opcode) {
470 default:
471 llvm_unreachable("Unknown binary instruction!");
472 case Instruction::FNeg:
473 return bitc::UNOP_FNEG;
474 }
475 }
476
getEncodedBinaryOpcode(unsigned Opcode)477 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
478 switch (Opcode) {
479 default:
480 llvm_unreachable("Unknown binary instruction!");
481 case Instruction::Add:
482 case Instruction::FAdd:
483 return bitc::BINOP_ADD;
484 case Instruction::Sub:
485 case Instruction::FSub:
486 return bitc::BINOP_SUB;
487 case Instruction::Mul:
488 case Instruction::FMul:
489 return bitc::BINOP_MUL;
490 case Instruction::UDiv:
491 return bitc::BINOP_UDIV;
492 case Instruction::FDiv:
493 case Instruction::SDiv:
494 return bitc::BINOP_SDIV;
495 case Instruction::URem:
496 return bitc::BINOP_UREM;
497 case Instruction::FRem:
498 case Instruction::SRem:
499 return bitc::BINOP_SREM;
500 case Instruction::Shl:
501 return bitc::BINOP_SHL;
502 case Instruction::LShr:
503 return bitc::BINOP_LSHR;
504 case Instruction::AShr:
505 return bitc::BINOP_ASHR;
506 case Instruction::And:
507 return bitc::BINOP_AND;
508 case Instruction::Or:
509 return bitc::BINOP_OR;
510 case Instruction::Xor:
511 return bitc::BINOP_XOR;
512 }
513 }
514
getTypeID(Type * T,const Value * V)515 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
516 if (!T->isOpaquePointerTy() &&
517 // For Constant, always check PointerMap to make sure OpaquePointer in
518 // things like constant struct/array works.
519 (!V || !isa<Constant>(V)))
520 return VE.getTypeID(T);
521 auto It = PointerMap.find(V);
522 if (It != PointerMap.end())
523 return VE.getTypeID(It->second);
524 // For Constant, return T when cannot find in PointerMap.
525 // FIXME: support ConstantPointerNull which could map to more than one
526 // TypedPointerType.
527 // See https://github.com/llvm/llvm-project/issues/57942.
528 if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V))
529 return VE.getTypeID(T);
530 return VE.getTypeID(I8PtrTy);
531 }
532
getGlobalObjectValueTypeID(Type * T,const GlobalObject * G)533 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T,
534 const GlobalObject *G) {
535 auto It = PointerMap.find(G);
536 if (It != PointerMap.end()) {
537 TypedPointerType *PtrTy = cast<TypedPointerType>(It->second);
538 return VE.getTypeID(PtrTy->getElementType());
539 }
540 return VE.getTypeID(T);
541 }
542
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)543 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
544 switch (Op) {
545 default:
546 llvm_unreachable("Unknown RMW operation!");
547 case AtomicRMWInst::Xchg:
548 return bitc::RMW_XCHG;
549 case AtomicRMWInst::Add:
550 return bitc::RMW_ADD;
551 case AtomicRMWInst::Sub:
552 return bitc::RMW_SUB;
553 case AtomicRMWInst::And:
554 return bitc::RMW_AND;
555 case AtomicRMWInst::Nand:
556 return bitc::RMW_NAND;
557 case AtomicRMWInst::Or:
558 return bitc::RMW_OR;
559 case AtomicRMWInst::Xor:
560 return bitc::RMW_XOR;
561 case AtomicRMWInst::Max:
562 return bitc::RMW_MAX;
563 case AtomicRMWInst::Min:
564 return bitc::RMW_MIN;
565 case AtomicRMWInst::UMax:
566 return bitc::RMW_UMAX;
567 case AtomicRMWInst::UMin:
568 return bitc::RMW_UMIN;
569 case AtomicRMWInst::FAdd:
570 return bitc::RMW_FADD;
571 case AtomicRMWInst::FSub:
572 return bitc::RMW_FSUB;
573 case AtomicRMWInst::FMax:
574 return bitc::RMW_FMAX;
575 case AtomicRMWInst::FMin:
576 return bitc::RMW_FMIN;
577 }
578 }
579
getEncodedOrdering(AtomicOrdering Ordering)580 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
581 switch (Ordering) {
582 case AtomicOrdering::NotAtomic:
583 return bitc::ORDERING_NOTATOMIC;
584 case AtomicOrdering::Unordered:
585 return bitc::ORDERING_UNORDERED;
586 case AtomicOrdering::Monotonic:
587 return bitc::ORDERING_MONOTONIC;
588 case AtomicOrdering::Acquire:
589 return bitc::ORDERING_ACQUIRE;
590 case AtomicOrdering::Release:
591 return bitc::ORDERING_RELEASE;
592 case AtomicOrdering::AcquireRelease:
593 return bitc::ORDERING_ACQREL;
594 case AtomicOrdering::SequentiallyConsistent:
595 return bitc::ORDERING_SEQCST;
596 }
597 llvm_unreachable("Invalid ordering");
598 }
599
writeStringRecord(BitstreamWriter & Stream,unsigned Code,StringRef Str,unsigned AbbrevToUse)600 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
601 unsigned Code, StringRef Str,
602 unsigned AbbrevToUse) {
603 SmallVector<unsigned, 64> Vals;
604
605 // Code: [strchar x N]
606 for (char C : Str) {
607 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
608 AbbrevToUse = 0;
609 Vals.push_back(C);
610 }
611
612 // Emit the finished record.
613 Stream.EmitRecord(Code, Vals, AbbrevToUse);
614 }
615
getAttrKindEncoding(Attribute::AttrKind Kind)616 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
617 switch (Kind) {
618 case Attribute::Alignment:
619 return bitc::ATTR_KIND_ALIGNMENT;
620 case Attribute::AlwaysInline:
621 return bitc::ATTR_KIND_ALWAYS_INLINE;
622 case Attribute::Builtin:
623 return bitc::ATTR_KIND_BUILTIN;
624 case Attribute::ByVal:
625 return bitc::ATTR_KIND_BY_VAL;
626 case Attribute::Convergent:
627 return bitc::ATTR_KIND_CONVERGENT;
628 case Attribute::InAlloca:
629 return bitc::ATTR_KIND_IN_ALLOCA;
630 case Attribute::Cold:
631 return bitc::ATTR_KIND_COLD;
632 case Attribute::InlineHint:
633 return bitc::ATTR_KIND_INLINE_HINT;
634 case Attribute::InReg:
635 return bitc::ATTR_KIND_IN_REG;
636 case Attribute::JumpTable:
637 return bitc::ATTR_KIND_JUMP_TABLE;
638 case Attribute::MinSize:
639 return bitc::ATTR_KIND_MIN_SIZE;
640 case Attribute::Naked:
641 return bitc::ATTR_KIND_NAKED;
642 case Attribute::Nest:
643 return bitc::ATTR_KIND_NEST;
644 case Attribute::NoAlias:
645 return bitc::ATTR_KIND_NO_ALIAS;
646 case Attribute::NoBuiltin:
647 return bitc::ATTR_KIND_NO_BUILTIN;
648 case Attribute::NoCapture:
649 return bitc::ATTR_KIND_NO_CAPTURE;
650 case Attribute::NoDuplicate:
651 return bitc::ATTR_KIND_NO_DUPLICATE;
652 case Attribute::NoImplicitFloat:
653 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
654 case Attribute::NoInline:
655 return bitc::ATTR_KIND_NO_INLINE;
656 case Attribute::NonLazyBind:
657 return bitc::ATTR_KIND_NON_LAZY_BIND;
658 case Attribute::NonNull:
659 return bitc::ATTR_KIND_NON_NULL;
660 case Attribute::Dereferenceable:
661 return bitc::ATTR_KIND_DEREFERENCEABLE;
662 case Attribute::DereferenceableOrNull:
663 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
664 case Attribute::NoRedZone:
665 return bitc::ATTR_KIND_NO_RED_ZONE;
666 case Attribute::NoReturn:
667 return bitc::ATTR_KIND_NO_RETURN;
668 case Attribute::NoUnwind:
669 return bitc::ATTR_KIND_NO_UNWIND;
670 case Attribute::OptimizeForSize:
671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
672 case Attribute::OptimizeNone:
673 return bitc::ATTR_KIND_OPTIMIZE_NONE;
674 case Attribute::ReadNone:
675 return bitc::ATTR_KIND_READ_NONE;
676 case Attribute::ReadOnly:
677 return bitc::ATTR_KIND_READ_ONLY;
678 case Attribute::Returned:
679 return bitc::ATTR_KIND_RETURNED;
680 case Attribute::ReturnsTwice:
681 return bitc::ATTR_KIND_RETURNS_TWICE;
682 case Attribute::SExt:
683 return bitc::ATTR_KIND_S_EXT;
684 case Attribute::StackAlignment:
685 return bitc::ATTR_KIND_STACK_ALIGNMENT;
686 case Attribute::StackProtect:
687 return bitc::ATTR_KIND_STACK_PROTECT;
688 case Attribute::StackProtectReq:
689 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
690 case Attribute::StackProtectStrong:
691 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
692 case Attribute::SafeStack:
693 return bitc::ATTR_KIND_SAFESTACK;
694 case Attribute::StructRet:
695 return bitc::ATTR_KIND_STRUCT_RET;
696 case Attribute::SanitizeAddress:
697 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
698 case Attribute::SanitizeThread:
699 return bitc::ATTR_KIND_SANITIZE_THREAD;
700 case Attribute::SanitizeMemory:
701 return bitc::ATTR_KIND_SANITIZE_MEMORY;
702 case Attribute::UWTable:
703 return bitc::ATTR_KIND_UW_TABLE;
704 case Attribute::ZExt:
705 return bitc::ATTR_KIND_Z_EXT;
706 case Attribute::EndAttrKinds:
707 llvm_unreachable("Can not encode end-attribute kinds marker.");
708 case Attribute::None:
709 llvm_unreachable("Can not encode none-attribute.");
710 case Attribute::EmptyKey:
711 case Attribute::TombstoneKey:
712 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
713 default:
714 llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
715 "should be stripped in DXILPrepare");
716 }
717
718 llvm_unreachable("Trying to encode unknown attribute");
719 }
720
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)721 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
722 uint64_t V) {
723 if ((int64_t)V >= 0)
724 Vals.push_back(V << 1);
725 else
726 Vals.push_back((-V << 1) | 1);
727 }
728
emitWideAPInt(SmallVectorImpl<uint64_t> & Vals,const APInt & A)729 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
730 const APInt &A) {
731 // We have an arbitrary precision integer value to write whose
732 // bit width is > 64. However, in canonical unsigned integer
733 // format it is likely that the high bits are going to be zero.
734 // So, we only write the number of active words.
735 unsigned NumWords = A.getActiveWords();
736 const uint64_t *RawData = A.getRawData();
737 for (unsigned i = 0; i < NumWords; i++)
738 emitSignedInt64(Vals, RawData[i]);
739 }
740
getOptimizationFlags(const Value * V)741 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
742 uint64_t Flags = 0;
743
744 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
745 if (OBO->hasNoSignedWrap())
746 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
747 if (OBO->hasNoUnsignedWrap())
748 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
749 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
750 if (PEO->isExact())
751 Flags |= 1 << bitc::PEO_EXACT;
752 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
753 if (FPMO->hasAllowReassoc())
754 Flags |= bitc::AllowReassoc;
755 if (FPMO->hasNoNaNs())
756 Flags |= bitc::NoNaNs;
757 if (FPMO->hasNoInfs())
758 Flags |= bitc::NoInfs;
759 if (FPMO->hasNoSignedZeros())
760 Flags |= bitc::NoSignedZeros;
761 if (FPMO->hasAllowReciprocal())
762 Flags |= bitc::AllowReciprocal;
763 if (FPMO->hasAllowContract())
764 Flags |= bitc::AllowContract;
765 if (FPMO->hasApproxFunc())
766 Flags |= bitc::ApproxFunc;
767 }
768
769 return Flags;
770 }
771
772 unsigned
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)773 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
774 switch (Linkage) {
775 case GlobalValue::ExternalLinkage:
776 return 0;
777 case GlobalValue::WeakAnyLinkage:
778 return 16;
779 case GlobalValue::AppendingLinkage:
780 return 2;
781 case GlobalValue::InternalLinkage:
782 return 3;
783 case GlobalValue::LinkOnceAnyLinkage:
784 return 18;
785 case GlobalValue::ExternalWeakLinkage:
786 return 7;
787 case GlobalValue::CommonLinkage:
788 return 8;
789 case GlobalValue::PrivateLinkage:
790 return 9;
791 case GlobalValue::WeakODRLinkage:
792 return 17;
793 case GlobalValue::LinkOnceODRLinkage:
794 return 19;
795 case GlobalValue::AvailableExternallyLinkage:
796 return 12;
797 }
798 llvm_unreachable("Invalid linkage");
799 }
800
getEncodedLinkage(const GlobalValue & GV)801 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
802 return getEncodedLinkage(GV.getLinkage());
803 }
804
getEncodedVisibility(const GlobalValue & GV)805 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
806 switch (GV.getVisibility()) {
807 case GlobalValue::DefaultVisibility:
808 return 0;
809 case GlobalValue::HiddenVisibility:
810 return 1;
811 case GlobalValue::ProtectedVisibility:
812 return 2;
813 }
814 llvm_unreachable("Invalid visibility");
815 }
816
getEncodedDLLStorageClass(const GlobalValue & GV)817 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
818 switch (GV.getDLLStorageClass()) {
819 case GlobalValue::DefaultStorageClass:
820 return 0;
821 case GlobalValue::DLLImportStorageClass:
822 return 1;
823 case GlobalValue::DLLExportStorageClass:
824 return 2;
825 }
826 llvm_unreachable("Invalid DLL storage class");
827 }
828
getEncodedThreadLocalMode(const GlobalValue & GV)829 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
830 switch (GV.getThreadLocalMode()) {
831 case GlobalVariable::NotThreadLocal:
832 return 0;
833 case GlobalVariable::GeneralDynamicTLSModel:
834 return 1;
835 case GlobalVariable::LocalDynamicTLSModel:
836 return 2;
837 case GlobalVariable::InitialExecTLSModel:
838 return 3;
839 case GlobalVariable::LocalExecTLSModel:
840 return 4;
841 }
842 llvm_unreachable("Invalid TLS model");
843 }
844
getEncodedComdatSelectionKind(const Comdat & C)845 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
846 switch (C.getSelectionKind()) {
847 case Comdat::Any:
848 return bitc::COMDAT_SELECTION_KIND_ANY;
849 case Comdat::ExactMatch:
850 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
851 case Comdat::Largest:
852 return bitc::COMDAT_SELECTION_KIND_LARGEST;
853 case Comdat::NoDeduplicate:
854 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
855 case Comdat::SameSize:
856 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
857 }
858 llvm_unreachable("Invalid selection kind");
859 }
860
861 ////////////////////////////////////////////////////////////////////////////////
862 /// Begin DXILBitcodeWriter Implementation
863 ////////////////////////////////////////////////////////////////////////////////
864
writeAttributeGroupTable()865 void DXILBitcodeWriter::writeAttributeGroupTable() {
866 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
867 VE.getAttributeGroups();
868 if (AttrGrps.empty())
869 return;
870
871 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
872
873 SmallVector<uint64_t, 64> Record;
874 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
875 unsigned AttrListIndex = Pair.first;
876 AttributeSet AS = Pair.second;
877 Record.push_back(VE.getAttributeGroupID(Pair));
878 Record.push_back(AttrListIndex);
879
880 for (Attribute Attr : AS) {
881 if (Attr.isEnumAttribute()) {
882 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
883 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
884 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
885 Record.push_back(0);
886 Record.push_back(Val);
887 } else if (Attr.isIntAttribute()) {
888 if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) {
889 MemoryEffects ME = Attr.getMemoryEffects();
890 if (ME.doesNotAccessMemory()) {
891 Record.push_back(0);
892 Record.push_back(bitc::ATTR_KIND_READ_NONE);
893 } else {
894 if (ME.onlyReadsMemory()) {
895 Record.push_back(0);
896 Record.push_back(bitc::ATTR_KIND_READ_ONLY);
897 }
898 if (ME.onlyAccessesArgPointees()) {
899 Record.push_back(0);
900 Record.push_back(bitc::ATTR_KIND_ARGMEMONLY);
901 }
902 }
903 } else {
904 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
905 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
906 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
907 Record.push_back(1);
908 Record.push_back(Val);
909 Record.push_back(Attr.getValueAsInt());
910 }
911 } else {
912 StringRef Kind = Attr.getKindAsString();
913 StringRef Val = Attr.getValueAsString();
914
915 Record.push_back(Val.empty() ? 3 : 4);
916 Record.append(Kind.begin(), Kind.end());
917 Record.push_back(0);
918 if (!Val.empty()) {
919 Record.append(Val.begin(), Val.end());
920 Record.push_back(0);
921 }
922 }
923 }
924
925 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
926 Record.clear();
927 }
928
929 Stream.ExitBlock();
930 }
931
writeAttributeTable()932 void DXILBitcodeWriter::writeAttributeTable() {
933 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
934 if (Attrs.empty())
935 return;
936
937 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
938
939 SmallVector<uint64_t, 64> Record;
940 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
941 AttributeList AL = Attrs[i];
942 for (unsigned i : AL.indexes()) {
943 AttributeSet AS = AL.getAttributes(i);
944 if (AS.hasAttributes())
945 Record.push_back(VE.getAttributeGroupID({i, AS}));
946 }
947
948 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
949 Record.clear();
950 }
951
952 Stream.ExitBlock();
953 }
954
955 /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()956 void DXILBitcodeWriter::writeTypeTable() {
957 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
958
959 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
960 SmallVector<uint64_t, 64> TypeVals;
961
962 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
963
964 // Abbrev for TYPE_CODE_POINTER.
965 auto Abbv = std::make_shared<BitCodeAbbrev>();
966 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
968 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
969 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
970
971 // Abbrev for TYPE_CODE_FUNCTION.
972 Abbv = std::make_shared<BitCodeAbbrev>();
973 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
977 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
978
979 // Abbrev for TYPE_CODE_STRUCT_ANON.
980 Abbv = std::make_shared<BitCodeAbbrev>();
981 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
985 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
986
987 // Abbrev for TYPE_CODE_STRUCT_NAME.
988 Abbv = std::make_shared<BitCodeAbbrev>();
989 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
992 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
993
994 // Abbrev for TYPE_CODE_STRUCT_NAMED.
995 Abbv = std::make_shared<BitCodeAbbrev>();
996 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1000 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1001
1002 // Abbrev for TYPE_CODE_ARRAY.
1003 Abbv = std::make_shared<BitCodeAbbrev>();
1004 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1007 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1008
1009 // Emit an entry count so the reader can reserve space.
1010 TypeVals.push_back(TypeList.size());
1011 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1012 TypeVals.clear();
1013
1014 // Loop over all of the types, emitting each in turn.
1015 for (Type *T : TypeList) {
1016 int AbbrevToUse = 0;
1017 unsigned Code = 0;
1018
1019 switch (T->getTypeID()) {
1020 case Type::BFloatTyID:
1021 case Type::X86_AMXTyID:
1022 case Type::TokenTyID:
1023 case Type::TargetExtTyID:
1024 llvm_unreachable("These should never be used!!!");
1025 break;
1026 case Type::VoidTyID:
1027 Code = bitc::TYPE_CODE_VOID;
1028 break;
1029 case Type::HalfTyID:
1030 Code = bitc::TYPE_CODE_HALF;
1031 break;
1032 case Type::FloatTyID:
1033 Code = bitc::TYPE_CODE_FLOAT;
1034 break;
1035 case Type::DoubleTyID:
1036 Code = bitc::TYPE_CODE_DOUBLE;
1037 break;
1038 case Type::X86_FP80TyID:
1039 Code = bitc::TYPE_CODE_X86_FP80;
1040 break;
1041 case Type::FP128TyID:
1042 Code = bitc::TYPE_CODE_FP128;
1043 break;
1044 case Type::PPC_FP128TyID:
1045 Code = bitc::TYPE_CODE_PPC_FP128;
1046 break;
1047 case Type::LabelTyID:
1048 Code = bitc::TYPE_CODE_LABEL;
1049 break;
1050 case Type::MetadataTyID:
1051 Code = bitc::TYPE_CODE_METADATA;
1052 break;
1053 case Type::X86_MMXTyID:
1054 Code = bitc::TYPE_CODE_X86_MMX;
1055 break;
1056 case Type::IntegerTyID:
1057 // INTEGER: [width]
1058 Code = bitc::TYPE_CODE_INTEGER;
1059 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1060 break;
1061 case Type::TypedPointerTyID: {
1062 TypedPointerType *PTy = cast<TypedPointerType>(T);
1063 // POINTER: [pointee type, address space]
1064 Code = bitc::TYPE_CODE_POINTER;
1065 TypeVals.push_back(getTypeID(PTy->getElementType()));
1066 unsigned AddressSpace = PTy->getAddressSpace();
1067 TypeVals.push_back(AddressSpace);
1068 if (AddressSpace == 0)
1069 AbbrevToUse = PtrAbbrev;
1070 break;
1071 }
1072 case Type::PointerTyID: {
1073 PointerType *PTy = cast<PointerType>(T);
1074 // POINTER: [pointee type, address space]
1075 Code = bitc::TYPE_CODE_POINTER;
1076 // Emitting an empty struct type for the opaque pointer's type allows
1077 // this to be order-independent. Non-struct types must be emitted in
1078 // bitcode before they can be referenced.
1079 if (PTy->isOpaquePointerTy()) {
1080 TypeVals.push_back(false);
1081 Code = bitc::TYPE_CODE_OPAQUE;
1082 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
1083 "dxilOpaquePtrReservedName", StructNameAbbrev);
1084 } else {
1085 TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType()));
1086 unsigned AddressSpace = PTy->getAddressSpace();
1087 TypeVals.push_back(AddressSpace);
1088 if (AddressSpace == 0)
1089 AbbrevToUse = PtrAbbrev;
1090 }
1091 break;
1092 }
1093 case Type::FunctionTyID: {
1094 FunctionType *FT = cast<FunctionType>(T);
1095 // FUNCTION: [isvararg, retty, paramty x N]
1096 Code = bitc::TYPE_CODE_FUNCTION;
1097 TypeVals.push_back(FT->isVarArg());
1098 TypeVals.push_back(getTypeID(FT->getReturnType()));
1099 for (Type *PTy : FT->params())
1100 TypeVals.push_back(getTypeID(PTy));
1101 AbbrevToUse = FunctionAbbrev;
1102 break;
1103 }
1104 case Type::StructTyID: {
1105 StructType *ST = cast<StructType>(T);
1106 // STRUCT: [ispacked, eltty x N]
1107 TypeVals.push_back(ST->isPacked());
1108 // Output all of the element types.
1109 for (Type *ElTy : ST->elements())
1110 TypeVals.push_back(getTypeID(ElTy));
1111
1112 if (ST->isLiteral()) {
1113 Code = bitc::TYPE_CODE_STRUCT_ANON;
1114 AbbrevToUse = StructAnonAbbrev;
1115 } else {
1116 if (ST->isOpaque()) {
1117 Code = bitc::TYPE_CODE_OPAQUE;
1118 } else {
1119 Code = bitc::TYPE_CODE_STRUCT_NAMED;
1120 AbbrevToUse = StructNamedAbbrev;
1121 }
1122
1123 // Emit the name if it is present.
1124 if (!ST->getName().empty())
1125 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1126 StructNameAbbrev);
1127 }
1128 break;
1129 }
1130 case Type::ArrayTyID: {
1131 ArrayType *AT = cast<ArrayType>(T);
1132 // ARRAY: [numelts, eltty]
1133 Code = bitc::TYPE_CODE_ARRAY;
1134 TypeVals.push_back(AT->getNumElements());
1135 TypeVals.push_back(getTypeID(AT->getElementType()));
1136 AbbrevToUse = ArrayAbbrev;
1137 break;
1138 }
1139 case Type::FixedVectorTyID:
1140 case Type::ScalableVectorTyID: {
1141 VectorType *VT = cast<VectorType>(T);
1142 // VECTOR [numelts, eltty]
1143 Code = bitc::TYPE_CODE_VECTOR;
1144 TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1145 TypeVals.push_back(getTypeID(VT->getElementType()));
1146 break;
1147 }
1148 }
1149
1150 // Emit the finished record.
1151 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1152 TypeVals.clear();
1153 }
1154
1155 Stream.ExitBlock();
1156 }
1157
writeComdats()1158 void DXILBitcodeWriter::writeComdats() {
1159 SmallVector<uint16_t, 64> Vals;
1160 for (const Comdat *C : VE.getComdats()) {
1161 // COMDAT: [selection_kind, name]
1162 Vals.push_back(getEncodedComdatSelectionKind(*C));
1163 size_t Size = C->getName().size();
1164 assert(isUInt<16>(Size));
1165 Vals.push_back(Size);
1166 for (char Chr : C->getName())
1167 Vals.push_back((unsigned char)Chr);
1168 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1169 Vals.clear();
1170 }
1171 }
1172
writeValueSymbolTableForwardDecl()1173 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1174
1175 /// Emit top-level description of module, including target triple, inline asm,
1176 /// descriptors for global variables, and function prototype info.
1177 /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1178 void DXILBitcodeWriter::writeModuleInfo() {
1179 // Emit various pieces of data attached to a module.
1180 if (!M.getTargetTriple().empty())
1181 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1182 0 /*TODO*/);
1183 const std::string &DL = M.getDataLayoutStr();
1184 if (!DL.empty())
1185 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1186 if (!M.getModuleInlineAsm().empty())
1187 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1188 0 /*TODO*/);
1189
1190 // Emit information about sections and GC, computing how many there are. Also
1191 // compute the maximum alignment value.
1192 std::map<std::string, unsigned> SectionMap;
1193 std::map<std::string, unsigned> GCMap;
1194 MaybeAlign MaxAlignment;
1195 unsigned MaxGlobalType = 0;
1196 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1197 if (A)
1198 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1199 };
1200 for (const GlobalVariable &GV : M.globals()) {
1201 UpdateMaxAlignment(GV.getAlign());
1202 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for
1203 // Global Variable types.
1204 MaxGlobalType = std::max(
1205 MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1206 if (GV.hasSection()) {
1207 // Give section names unique ID's.
1208 unsigned &Entry = SectionMap[std::string(GV.getSection())];
1209 if (!Entry) {
1210 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1211 GV.getSection(), 0 /*TODO*/);
1212 Entry = SectionMap.size();
1213 }
1214 }
1215 }
1216 for (const Function &F : M) {
1217 UpdateMaxAlignment(F.getAlign());
1218 if (F.hasSection()) {
1219 // Give section names unique ID's.
1220 unsigned &Entry = SectionMap[std::string(F.getSection())];
1221 if (!Entry) {
1222 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1223 0 /*TODO*/);
1224 Entry = SectionMap.size();
1225 }
1226 }
1227 if (F.hasGC()) {
1228 // Same for GC names.
1229 unsigned &Entry = GCMap[F.getGC()];
1230 if (!Entry) {
1231 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1232 0 /*TODO*/);
1233 Entry = GCMap.size();
1234 }
1235 }
1236 }
1237
1238 // Emit abbrev for globals, now that we know # sections and max alignment.
1239 unsigned SimpleGVarAbbrev = 0;
1240 if (!M.global_empty()) {
1241 // Add an abbrev for common globals with no visibility or thread
1242 // localness.
1243 auto Abbv = std::make_shared<BitCodeAbbrev>();
1244 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1246 Log2_32_Ceil(MaxGlobalType + 1)));
1247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1248 //| explicitType << 1
1249 //| constant
1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1252 if (!MaxAlignment) // Alignment.
1253 Abbv->Add(BitCodeAbbrevOp(0));
1254 else {
1255 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1257 Log2_32_Ceil(MaxEncAlignment + 1)));
1258 }
1259 if (SectionMap.empty()) // Section.
1260 Abbv->Add(BitCodeAbbrevOp(0));
1261 else
1262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1263 Log2_32_Ceil(SectionMap.size() + 1)));
1264 // Don't bother emitting vis + thread local.
1265 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1266 }
1267
1268 // Emit the global variable information.
1269 SmallVector<unsigned, 64> Vals;
1270 for (const GlobalVariable &GV : M.globals()) {
1271 unsigned AbbrevToUse = 0;
1272
1273 // GLOBALVAR: [type, isconst, initid,
1274 // linkage, alignment, section, visibility, threadlocal,
1275 // unnamed_addr, externally_initialized, dllstorageclass,
1276 // comdat]
1277 Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1278 Vals.push_back(
1279 GV.getType()->getAddressSpace() << 2 | 2 |
1280 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1281 // unsigned int and bool
1282 Vals.push_back(
1283 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1284 Vals.push_back(getEncodedLinkage(GV));
1285 Vals.push_back(getEncodedAlign(GV.getAlign()));
1286 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1287 : 0);
1288 if (GV.isThreadLocal() ||
1289 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1290 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1291 GV.isExternallyInitialized() ||
1292 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1293 GV.hasComdat()) {
1294 Vals.push_back(getEncodedVisibility(GV));
1295 Vals.push_back(getEncodedThreadLocalMode(GV));
1296 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1297 Vals.push_back(GV.isExternallyInitialized());
1298 Vals.push_back(getEncodedDLLStorageClass(GV));
1299 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1300 } else {
1301 AbbrevToUse = SimpleGVarAbbrev;
1302 }
1303
1304 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1305 Vals.clear();
1306 }
1307
1308 // Emit the function proto information.
1309 for (const Function &F : M) {
1310 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
1311 // section, visibility, gc, unnamed_addr, prologuedata,
1312 // dllstorageclass, comdat, prefixdata, personalityfn]
1313 Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F));
1314 Vals.push_back(F.getCallingConv());
1315 Vals.push_back(F.isDeclaration());
1316 Vals.push_back(getEncodedLinkage(F));
1317 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1318 Vals.push_back(getEncodedAlign(F.getAlign()));
1319 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1320 : 0);
1321 Vals.push_back(getEncodedVisibility(F));
1322 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1323 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1324 Vals.push_back(
1325 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1326 Vals.push_back(getEncodedDLLStorageClass(F));
1327 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1328 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1329 : 0);
1330 Vals.push_back(
1331 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1332
1333 unsigned AbbrevToUse = 0;
1334 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1335 Vals.clear();
1336 }
1337
1338 // Emit the alias information.
1339 for (const GlobalAlias &A : M.aliases()) {
1340 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1341 Vals.push_back(getTypeID(A.getValueType(), &A));
1342 Vals.push_back(VE.getValueID(A.getAliasee()));
1343 Vals.push_back(getEncodedLinkage(A));
1344 Vals.push_back(getEncodedVisibility(A));
1345 Vals.push_back(getEncodedDLLStorageClass(A));
1346 Vals.push_back(getEncodedThreadLocalMode(A));
1347 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1348 unsigned AbbrevToUse = 0;
1349 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1350 Vals.clear();
1351 }
1352 }
1353
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1354 void DXILBitcodeWriter::writeValueAsMetadata(
1355 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1356 // Mimic an MDNode with a value as one operand.
1357 Value *V = MD->getValue();
1358 Type *Ty = V->getType();
1359 if (Function *F = dyn_cast<Function>(V))
1360 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
1361 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1362 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
1363 Record.push_back(getTypeID(Ty));
1364 Record.push_back(VE.getValueID(V));
1365 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1366 Record.clear();
1367 }
1368
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1369 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1370 SmallVectorImpl<uint64_t> &Record,
1371 unsigned Abbrev) {
1372 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1373 Metadata *MD = N->getOperand(i);
1374 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1375 "Unexpected function-local metadata");
1376 Record.push_back(VE.getMetadataOrNullID(MD));
1377 }
1378 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1379 : bitc::METADATA_NODE,
1380 Record, Abbrev);
1381 Record.clear();
1382 }
1383
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1384 void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1385 SmallVectorImpl<uint64_t> &Record,
1386 unsigned &Abbrev) {
1387 if (!Abbrev)
1388 Abbrev = createDILocationAbbrev();
1389 Record.push_back(N->isDistinct());
1390 Record.push_back(N->getLine());
1391 Record.push_back(N->getColumn());
1392 Record.push_back(VE.getMetadataID(N->getScope()));
1393 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1394
1395 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1396 Record.clear();
1397 }
1398
rotateSign(APInt Val)1399 static uint64_t rotateSign(APInt Val) {
1400 int64_t I = Val.getSExtValue();
1401 uint64_t U = I;
1402 return I < 0 ? ~(U << 1) : U << 1;
1403 }
1404
rotateSign(DISubrange::BoundType Val)1405 static uint64_t rotateSign(DISubrange::BoundType Val) {
1406 return rotateSign(Val.get<ConstantInt *>()->getValue());
1407 }
1408
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1409 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1410 SmallVectorImpl<uint64_t> &Record,
1411 unsigned Abbrev) {
1412 Record.push_back(N->isDistinct());
1413 Record.push_back(
1414 N->getCount().get<ConstantInt *>()->getValue().getSExtValue());
1415 Record.push_back(rotateSign(N->getLowerBound()));
1416
1417 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1418 Record.clear();
1419 }
1420
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1421 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1422 SmallVectorImpl<uint64_t> &Record,
1423 unsigned Abbrev) {
1424 Record.push_back(N->isDistinct());
1425 Record.push_back(rotateSign(N->getValue()));
1426 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1427
1428 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1429 Record.clear();
1430 }
1431
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1432 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1433 SmallVectorImpl<uint64_t> &Record,
1434 unsigned Abbrev) {
1435 Record.push_back(N->isDistinct());
1436 Record.push_back(N->getTag());
1437 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1438 Record.push_back(N->getSizeInBits());
1439 Record.push_back(N->getAlignInBits());
1440 Record.push_back(N->getEncoding());
1441
1442 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1443 Record.clear();
1444 }
1445
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1446 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1447 SmallVectorImpl<uint64_t> &Record,
1448 unsigned Abbrev) {
1449 Record.push_back(N->isDistinct());
1450 Record.push_back(N->getTag());
1451 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1452 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1453 Record.push_back(N->getLine());
1454 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1455 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1456 Record.push_back(N->getSizeInBits());
1457 Record.push_back(N->getAlignInBits());
1458 Record.push_back(N->getOffsetInBits());
1459 Record.push_back(N->getFlags());
1460 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1461
1462 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1463 Record.clear();
1464 }
1465
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1466 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1467 SmallVectorImpl<uint64_t> &Record,
1468 unsigned Abbrev) {
1469 Record.push_back(N->isDistinct());
1470 Record.push_back(N->getTag());
1471 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1472 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1473 Record.push_back(N->getLine());
1474 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1475 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1476 Record.push_back(N->getSizeInBits());
1477 Record.push_back(N->getAlignInBits());
1478 Record.push_back(N->getOffsetInBits());
1479 Record.push_back(N->getFlags());
1480 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1481 Record.push_back(N->getRuntimeLang());
1482 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1483 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1484 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1485
1486 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1487 Record.clear();
1488 }
1489
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1490 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1491 SmallVectorImpl<uint64_t> &Record,
1492 unsigned Abbrev) {
1493 Record.push_back(N->isDistinct());
1494 Record.push_back(N->getFlags());
1495 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1496
1497 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1498 Record.clear();
1499 }
1500
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1501 void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1502 SmallVectorImpl<uint64_t> &Record,
1503 unsigned Abbrev) {
1504 Record.push_back(N->isDistinct());
1505 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1506 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1507
1508 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1509 Record.clear();
1510 }
1511
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1512 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1513 SmallVectorImpl<uint64_t> &Record,
1514 unsigned Abbrev) {
1515 Record.push_back(N->isDistinct());
1516 Record.push_back(N->getSourceLanguage());
1517 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1518 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1519 Record.push_back(N->isOptimized());
1520 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1521 Record.push_back(N->getRuntimeVersion());
1522 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1523 Record.push_back(N->getEmissionKind());
1524 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1525 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1526 Record.push_back(/* subprograms */ 0);
1527 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1528 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1529 Record.push_back(N->getDWOId());
1530
1531 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1532 Record.clear();
1533 }
1534
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1535 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1536 SmallVectorImpl<uint64_t> &Record,
1537 unsigned Abbrev) {
1538 Record.push_back(N->isDistinct());
1539 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1540 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1541 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1542 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1543 Record.push_back(N->getLine());
1544 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1545 Record.push_back(N->isLocalToUnit());
1546 Record.push_back(N->isDefinition());
1547 Record.push_back(N->getScopeLine());
1548 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1549 Record.push_back(N->getVirtuality());
1550 Record.push_back(N->getVirtualIndex());
1551 Record.push_back(N->getFlags());
1552 Record.push_back(N->isOptimized());
1553 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1554 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1555 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1556 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1557
1558 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1559 Record.clear();
1560 }
1561
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1562 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1563 SmallVectorImpl<uint64_t> &Record,
1564 unsigned Abbrev) {
1565 Record.push_back(N->isDistinct());
1566 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1567 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1568 Record.push_back(N->getLine());
1569 Record.push_back(N->getColumn());
1570
1571 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1572 Record.clear();
1573 }
1574
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1575 void DXILBitcodeWriter::writeDILexicalBlockFile(
1576 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1577 unsigned Abbrev) {
1578 Record.push_back(N->isDistinct());
1579 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1580 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1581 Record.push_back(N->getDiscriminator());
1582
1583 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1584 Record.clear();
1585 }
1586
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1587 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1588 SmallVectorImpl<uint64_t> &Record,
1589 unsigned Abbrev) {
1590 Record.push_back(N->isDistinct());
1591 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1592 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1593 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1594 Record.push_back(/* line number */ 0);
1595
1596 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1597 Record.clear();
1598 }
1599
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1600 void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1601 SmallVectorImpl<uint64_t> &Record,
1602 unsigned Abbrev) {
1603 Record.push_back(N->isDistinct());
1604 for (auto &I : N->operands())
1605 Record.push_back(VE.getMetadataOrNullID(I));
1606
1607 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1608 Record.clear();
1609 }
1610
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1611 void DXILBitcodeWriter::writeDITemplateTypeParameter(
1612 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1613 unsigned Abbrev) {
1614 Record.push_back(N->isDistinct());
1615 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1616 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1617
1618 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1619 Record.clear();
1620 }
1621
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1622 void DXILBitcodeWriter::writeDITemplateValueParameter(
1623 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1624 unsigned Abbrev) {
1625 Record.push_back(N->isDistinct());
1626 Record.push_back(N->getTag());
1627 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1628 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1629 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1630
1631 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1632 Record.clear();
1633 }
1634
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1635 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1636 SmallVectorImpl<uint64_t> &Record,
1637 unsigned Abbrev) {
1638 Record.push_back(N->isDistinct());
1639 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1640 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1641 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1642 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1643 Record.push_back(N->getLine());
1644 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1645 Record.push_back(N->isLocalToUnit());
1646 Record.push_back(N->isDefinition());
1647 Record.push_back(/* N->getRawVariable() */ 0);
1648 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1649
1650 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1651 Record.clear();
1652 }
1653
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1654 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1655 SmallVectorImpl<uint64_t> &Record,
1656 unsigned Abbrev) {
1657 Record.push_back(N->isDistinct());
1658 Record.push_back(N->getTag());
1659 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1660 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1661 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1662 Record.push_back(N->getLine());
1663 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1664 Record.push_back(N->getArg());
1665 Record.push_back(N->getFlags());
1666
1667 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1668 Record.clear();
1669 }
1670
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1671 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1672 SmallVectorImpl<uint64_t> &Record,
1673 unsigned Abbrev) {
1674 Record.reserve(N->getElements().size() + 1);
1675
1676 Record.push_back(N->isDistinct());
1677 Record.append(N->elements_begin(), N->elements_end());
1678
1679 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1680 Record.clear();
1681 }
1682
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1683 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1684 SmallVectorImpl<uint64_t> &Record,
1685 unsigned Abbrev) {
1686 llvm_unreachable("DXIL does not support objc!!!");
1687 }
1688
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1689 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1690 SmallVectorImpl<uint64_t> &Record,
1691 unsigned Abbrev) {
1692 Record.push_back(N->isDistinct());
1693 Record.push_back(N->getTag());
1694 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1695 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1696 Record.push_back(N->getLine());
1697 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1698
1699 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1700 Record.clear();
1701 }
1702
createDILocationAbbrev()1703 unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1704 // Abbrev for METADATA_LOCATION.
1705 //
1706 // Assume the column is usually under 128, and always output the inlined-at
1707 // location (it's never more expensive than building an array size 1).
1708 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1709 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1715 return Stream.EmitAbbrev(std::move(Abbv));
1716 }
1717
createGenericDINodeAbbrev()1718 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1719 // Abbrev for METADATA_GENERIC_DEBUG.
1720 //
1721 // Assume the column is usually under 128, and always output the inlined-at
1722 // location (it's never more expensive than building an array size 1).
1723 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1724 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1731 return Stream.EmitAbbrev(std::move(Abbv));
1732 }
1733
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record,std::vector<unsigned> * MDAbbrevs,std::vector<uint64_t> * IndexPos)1734 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1735 SmallVectorImpl<uint64_t> &Record,
1736 std::vector<unsigned> *MDAbbrevs,
1737 std::vector<uint64_t> *IndexPos) {
1738 if (MDs.empty())
1739 return;
1740
1741 // Initialize MDNode abbreviations.
1742 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1743 #include "llvm/IR/Metadata.def"
1744
1745 for (const Metadata *MD : MDs) {
1746 if (IndexPos)
1747 IndexPos->push_back(Stream.GetCurrentBitNo());
1748 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1749 assert(N->isResolved() && "Expected forward references to be resolved");
1750
1751 switch (N->getMetadataID()) {
1752 default:
1753 llvm_unreachable("Invalid MDNode subclass");
1754 #define HANDLE_MDNODE_LEAF(CLASS) \
1755 case Metadata::CLASS##Kind: \
1756 if (MDAbbrevs) \
1757 write##CLASS(cast<CLASS>(N), Record, \
1758 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
1759 else \
1760 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
1761 continue;
1762 #include "llvm/IR/Metadata.def"
1763 }
1764 }
1765 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1766 }
1767 }
1768
createMetadataStringsAbbrev()1769 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1770 auto Abbv = std::make_shared<BitCodeAbbrev>();
1771 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1774 return Stream.EmitAbbrev(std::move(Abbv));
1775 }
1776
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)1777 void DXILBitcodeWriter::writeMetadataStrings(
1778 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1779 for (const Metadata *MD : Strings) {
1780 const MDString *MDS = cast<MDString>(MD);
1781 // Code: [strchar x N]
1782 Record.append(MDS->bytes_begin(), MDS->bytes_end());
1783
1784 // Emit the finished record.
1785 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record,
1786 createMetadataStringsAbbrev());
1787 Record.clear();
1788 }
1789 }
1790
writeModuleMetadata()1791 void DXILBitcodeWriter::writeModuleMetadata() {
1792 if (!VE.hasMDs() && M.named_metadata_empty())
1793 return;
1794
1795 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1796
1797 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1798 // block and load any metadata.
1799 std::vector<unsigned> MDAbbrevs;
1800
1801 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1802 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1803 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1804 createGenericDINodeAbbrev();
1805
1806 unsigned NameAbbrev = 0;
1807 if (!M.named_metadata_empty()) {
1808 // Abbrev for METADATA_NAME.
1809 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1810 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1813 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1814 }
1815
1816 SmallVector<uint64_t, 64> Record;
1817 writeMetadataStrings(VE.getMDStrings(), Record);
1818
1819 std::vector<uint64_t> IndexPos;
1820 IndexPos.reserve(VE.getNonMDStrings().size());
1821 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1822
1823 // Write named metadata.
1824 for (const NamedMDNode &NMD : M.named_metadata()) {
1825 // Write name.
1826 StringRef Str = NMD.getName();
1827 Record.append(Str.bytes_begin(), Str.bytes_end());
1828 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1829 Record.clear();
1830
1831 // Write named metadata operands.
1832 for (const MDNode *N : NMD.operands())
1833 Record.push_back(VE.getMetadataID(N));
1834 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1835 Record.clear();
1836 }
1837
1838 Stream.ExitBlock();
1839 }
1840
writeFunctionMetadata(const Function & F)1841 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1842 if (!VE.hasMDs())
1843 return;
1844
1845 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1846 SmallVector<uint64_t, 64> Record;
1847 writeMetadataStrings(VE.getMDStrings(), Record);
1848 writeMetadataRecords(VE.getNonMDStrings(), Record);
1849 Stream.ExitBlock();
1850 }
1851
writeFunctionMetadataAttachment(const Function & F)1852 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1853 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1854
1855 SmallVector<uint64_t, 64> Record;
1856
1857 // Write metadata attachments
1858 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1859 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1860 F.getAllMetadata(MDs);
1861 if (!MDs.empty()) {
1862 for (const auto &I : MDs) {
1863 Record.push_back(I.first);
1864 Record.push_back(VE.getMetadataID(I.second));
1865 }
1866 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1867 Record.clear();
1868 }
1869
1870 for (const BasicBlock &BB : F)
1871 for (const Instruction &I : BB) {
1872 MDs.clear();
1873 I.getAllMetadataOtherThanDebugLoc(MDs);
1874
1875 // If no metadata, ignore instruction.
1876 if (MDs.empty())
1877 continue;
1878
1879 Record.push_back(VE.getInstructionID(&I));
1880
1881 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1882 Record.push_back(MDs[i].first);
1883 Record.push_back(VE.getMetadataID(MDs[i].second));
1884 }
1885 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1886 Record.clear();
1887 }
1888
1889 Stream.ExitBlock();
1890 }
1891
writeModuleMetadataKinds()1892 void DXILBitcodeWriter::writeModuleMetadataKinds() {
1893 SmallVector<uint64_t, 64> Record;
1894
1895 // Write metadata kinds
1896 // METADATA_KIND - [n x [id, name]]
1897 SmallVector<StringRef, 8> Names;
1898 M.getMDKindNames(Names);
1899
1900 if (Names.empty())
1901 return;
1902
1903 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1904
1905 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1906 Record.push_back(MDKindID);
1907 StringRef KName = Names[MDKindID];
1908 Record.append(KName.begin(), KName.end());
1909
1910 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1911 Record.clear();
1912 }
1913
1914 Stream.ExitBlock();
1915 }
1916
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)1917 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1918 bool isGlobal) {
1919 if (FirstVal == LastVal)
1920 return;
1921
1922 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1923
1924 unsigned AggregateAbbrev = 0;
1925 unsigned String8Abbrev = 0;
1926 unsigned CString7Abbrev = 0;
1927 unsigned CString6Abbrev = 0;
1928 // If this is a constant pool for the module, emit module-specific abbrevs.
1929 if (isGlobal) {
1930 // Abbrev for CST_CODE_AGGREGATE.
1931 auto Abbv = std::make_shared<BitCodeAbbrev>();
1932 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1934 Abbv->Add(
1935 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1936 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1937
1938 // Abbrev for CST_CODE_STRING.
1939 Abbv = std::make_shared<BitCodeAbbrev>();
1940 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1943 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1944 // Abbrev for CST_CODE_CSTRING.
1945 Abbv = std::make_shared<BitCodeAbbrev>();
1946 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1949 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1950 // Abbrev for CST_CODE_CSTRING.
1951 Abbv = std::make_shared<BitCodeAbbrev>();
1952 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1955 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1956 }
1957
1958 SmallVector<uint64_t, 64> Record;
1959
1960 const ValueEnumerator::ValueList &Vals = VE.getValues();
1961 Type *LastTy = nullptr;
1962 for (unsigned i = FirstVal; i != LastVal; ++i) {
1963 const Value *V = Vals[i].first;
1964 // If we need to switch types, do so now.
1965 if (V->getType() != LastTy) {
1966 LastTy = V->getType();
1967 Record.push_back(getTypeID(LastTy, V));
1968 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1969 CONSTANTS_SETTYPE_ABBREV);
1970 Record.clear();
1971 }
1972
1973 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1974 Record.push_back(unsigned(IA->hasSideEffects()) |
1975 unsigned(IA->isAlignStack()) << 1 |
1976 unsigned(IA->getDialect() & 1) << 2);
1977
1978 // Add the asm string.
1979 const std::string &AsmStr = IA->getAsmString();
1980 Record.push_back(AsmStr.size());
1981 Record.append(AsmStr.begin(), AsmStr.end());
1982
1983 // Add the constraint string.
1984 const std::string &ConstraintStr = IA->getConstraintString();
1985 Record.push_back(ConstraintStr.size());
1986 Record.append(ConstraintStr.begin(), ConstraintStr.end());
1987 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1988 Record.clear();
1989 continue;
1990 }
1991 const Constant *C = cast<Constant>(V);
1992 unsigned Code = -1U;
1993 unsigned AbbrevToUse = 0;
1994 if (C->isNullValue()) {
1995 Code = bitc::CST_CODE_NULL;
1996 } else if (isa<UndefValue>(C)) {
1997 Code = bitc::CST_CODE_UNDEF;
1998 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1999 if (IV->getBitWidth() <= 64) {
2000 uint64_t V = IV->getSExtValue();
2001 emitSignedInt64(Record, V);
2002 Code = bitc::CST_CODE_INTEGER;
2003 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2004 } else { // Wide integers, > 64 bits in size.
2005 // We have an arbitrary precision integer value to write whose
2006 // bit width is > 64. However, in canonical unsigned integer
2007 // format it is likely that the high bits are going to be zero.
2008 // So, we only write the number of active words.
2009 unsigned NWords = IV->getValue().getActiveWords();
2010 const uint64_t *RawWords = IV->getValue().getRawData();
2011 for (unsigned i = 0; i != NWords; ++i) {
2012 emitSignedInt64(Record, RawWords[i]);
2013 }
2014 Code = bitc::CST_CODE_WIDE_INTEGER;
2015 }
2016 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2017 Code = bitc::CST_CODE_FLOAT;
2018 Type *Ty = CFP->getType();
2019 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2020 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2021 } else if (Ty->isX86_FP80Ty()) {
2022 // api needed to prevent premature destruction
2023 // bits are not in the same order as a normal i80 APInt, compensate.
2024 APInt api = CFP->getValueAPF().bitcastToAPInt();
2025 const uint64_t *p = api.getRawData();
2026 Record.push_back((p[1] << 48) | (p[0] >> 16));
2027 Record.push_back(p[0] & 0xffffLL);
2028 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2029 APInt api = CFP->getValueAPF().bitcastToAPInt();
2030 const uint64_t *p = api.getRawData();
2031 Record.push_back(p[0]);
2032 Record.push_back(p[1]);
2033 } else {
2034 assert(0 && "Unknown FP type!");
2035 }
2036 } else if (isa<ConstantDataSequential>(C) &&
2037 cast<ConstantDataSequential>(C)->isString()) {
2038 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2039 // Emit constant strings specially.
2040 unsigned NumElts = Str->getNumElements();
2041 // If this is a null-terminated string, use the denser CSTRING encoding.
2042 if (Str->isCString()) {
2043 Code = bitc::CST_CODE_CSTRING;
2044 --NumElts; // Don't encode the null, which isn't allowed by char6.
2045 } else {
2046 Code = bitc::CST_CODE_STRING;
2047 AbbrevToUse = String8Abbrev;
2048 }
2049 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2050 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2051 for (unsigned i = 0; i != NumElts; ++i) {
2052 unsigned char V = Str->getElementAsInteger(i);
2053 Record.push_back(V);
2054 isCStr7 &= (V & 128) == 0;
2055 if (isCStrChar6)
2056 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2057 }
2058
2059 if (isCStrChar6)
2060 AbbrevToUse = CString6Abbrev;
2061 else if (isCStr7)
2062 AbbrevToUse = CString7Abbrev;
2063 } else if (const ConstantDataSequential *CDS =
2064 dyn_cast<ConstantDataSequential>(C)) {
2065 Code = bitc::CST_CODE_DATA;
2066 Type *EltTy = CDS->getElementType();
2067 if (isa<IntegerType>(EltTy)) {
2068 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2069 Record.push_back(CDS->getElementAsInteger(i));
2070 } else if (EltTy->isFloatTy()) {
2071 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2072 union {
2073 float F;
2074 uint32_t I;
2075 };
2076 F = CDS->getElementAsFloat(i);
2077 Record.push_back(I);
2078 }
2079 } else {
2080 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2081 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2082 union {
2083 double F;
2084 uint64_t I;
2085 };
2086 F = CDS->getElementAsDouble(i);
2087 Record.push_back(I);
2088 }
2089 }
2090 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2091 isa<ConstantVector>(C)) {
2092 Code = bitc::CST_CODE_AGGREGATE;
2093 for (const Value *Op : C->operands())
2094 Record.push_back(VE.getValueID(Op));
2095 AbbrevToUse = AggregateAbbrev;
2096 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2097 switch (CE->getOpcode()) {
2098 default:
2099 if (Instruction::isCast(CE->getOpcode())) {
2100 Code = bitc::CST_CODE_CE_CAST;
2101 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2102 Record.push_back(
2103 getTypeID(C->getOperand(0)->getType(), C->getOperand(0)));
2104 Record.push_back(VE.getValueID(C->getOperand(0)));
2105 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2106 } else {
2107 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2108 Code = bitc::CST_CODE_CE_BINOP;
2109 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2110 Record.push_back(VE.getValueID(C->getOperand(0)));
2111 Record.push_back(VE.getValueID(C->getOperand(1)));
2112 uint64_t Flags = getOptimizationFlags(CE);
2113 if (Flags != 0)
2114 Record.push_back(Flags);
2115 }
2116 break;
2117 case Instruction::GetElementPtr: {
2118 Code = bitc::CST_CODE_CE_GEP;
2119 const auto *GO = cast<GEPOperator>(C);
2120 if (GO->isInBounds())
2121 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2122 Record.push_back(getTypeID(GO->getSourceElementType()));
2123 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2124 Record.push_back(
2125 getTypeID(C->getOperand(i)->getType(), C->getOperand(i)));
2126 Record.push_back(VE.getValueID(C->getOperand(i)));
2127 }
2128 break;
2129 }
2130 case Instruction::Select:
2131 Code = bitc::CST_CODE_CE_SELECT;
2132 Record.push_back(VE.getValueID(C->getOperand(0)));
2133 Record.push_back(VE.getValueID(C->getOperand(1)));
2134 Record.push_back(VE.getValueID(C->getOperand(2)));
2135 break;
2136 case Instruction::ExtractElement:
2137 Code = bitc::CST_CODE_CE_EXTRACTELT;
2138 Record.push_back(getTypeID(C->getOperand(0)->getType()));
2139 Record.push_back(VE.getValueID(C->getOperand(0)));
2140 Record.push_back(getTypeID(C->getOperand(1)->getType()));
2141 Record.push_back(VE.getValueID(C->getOperand(1)));
2142 break;
2143 case Instruction::InsertElement:
2144 Code = bitc::CST_CODE_CE_INSERTELT;
2145 Record.push_back(VE.getValueID(C->getOperand(0)));
2146 Record.push_back(VE.getValueID(C->getOperand(1)));
2147 Record.push_back(getTypeID(C->getOperand(2)->getType()));
2148 Record.push_back(VE.getValueID(C->getOperand(2)));
2149 break;
2150 case Instruction::ShuffleVector:
2151 // If the return type and argument types are the same, this is a
2152 // standard shufflevector instruction. If the types are different,
2153 // then the shuffle is widening or truncating the input vectors, and
2154 // the argument type must also be encoded.
2155 if (C->getType() == C->getOperand(0)->getType()) {
2156 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2157 } else {
2158 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2159 Record.push_back(getTypeID(C->getOperand(0)->getType()));
2160 }
2161 Record.push_back(VE.getValueID(C->getOperand(0)));
2162 Record.push_back(VE.getValueID(C->getOperand(1)));
2163 Record.push_back(VE.getValueID(C->getOperand(2)));
2164 break;
2165 case Instruction::ICmp:
2166 case Instruction::FCmp:
2167 Code = bitc::CST_CODE_CE_CMP;
2168 Record.push_back(getTypeID(C->getOperand(0)->getType()));
2169 Record.push_back(VE.getValueID(C->getOperand(0)));
2170 Record.push_back(VE.getValueID(C->getOperand(1)));
2171 Record.push_back(CE->getPredicate());
2172 break;
2173 }
2174 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2175 Code = bitc::CST_CODE_BLOCKADDRESS;
2176 Record.push_back(getTypeID(BA->getFunction()->getType()));
2177 Record.push_back(VE.getValueID(BA->getFunction()));
2178 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2179 } else {
2180 #ifndef NDEBUG
2181 C->dump();
2182 #endif
2183 llvm_unreachable("Unknown constant!");
2184 }
2185 Stream.EmitRecord(Code, Record, AbbrevToUse);
2186 Record.clear();
2187 }
2188
2189 Stream.ExitBlock();
2190 }
2191
writeModuleConstants()2192 void DXILBitcodeWriter::writeModuleConstants() {
2193 const ValueEnumerator::ValueList &Vals = VE.getValues();
2194
2195 // Find the first constant to emit, which is the first non-globalvalue value.
2196 // We know globalvalues have been emitted by WriteModuleInfo.
2197 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2198 if (!isa<GlobalValue>(Vals[i].first)) {
2199 writeConstants(i, Vals.size(), true);
2200 return;
2201 }
2202 }
2203 }
2204
2205 /// pushValueAndType - The file has to encode both the value and type id for
2206 /// many values, because we need to know what type to create for forward
2207 /// references. However, most operands are not forward references, so this type
2208 /// field is not needed.
2209 ///
2210 /// This function adds V's value ID to Vals. If the value ID is higher than the
2211 /// instruction ID, then it is a forward reference, and it also includes the
2212 /// type ID. The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2213 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2214 SmallVectorImpl<unsigned> &Vals) {
2215 unsigned ValID = VE.getValueID(V);
2216 // Make encoding relative to the InstID.
2217 Vals.push_back(InstID - ValID);
2218 if (ValID >= InstID) {
2219 Vals.push_back(getTypeID(V->getType(), V));
2220 return true;
2221 }
2222 return false;
2223 }
2224
2225 /// pushValue - Like pushValueAndType, but where the type of the value is
2226 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2227 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2228 SmallVectorImpl<unsigned> &Vals) {
2229 unsigned ValID = VE.getValueID(V);
2230 Vals.push_back(InstID - ValID);
2231 }
2232
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2233 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2234 SmallVectorImpl<uint64_t> &Vals) {
2235 unsigned ValID = VE.getValueID(V);
2236 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2237 emitSignedInt64(Vals, diff);
2238 }
2239
2240 /// WriteInstruction - Emit an instruction
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2241 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2242 SmallVectorImpl<unsigned> &Vals) {
2243 unsigned Code = 0;
2244 unsigned AbbrevToUse = 0;
2245 VE.setInstructionID(&I);
2246 switch (I.getOpcode()) {
2247 default:
2248 if (Instruction::isCast(I.getOpcode())) {
2249 Code = bitc::FUNC_CODE_INST_CAST;
2250 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2251 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2252 Vals.push_back(getTypeID(I.getType(), &I));
2253 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2254 } else {
2255 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2256 Code = bitc::FUNC_CODE_INST_BINOP;
2257 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2258 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2259 pushValue(I.getOperand(1), InstID, Vals);
2260 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2261 uint64_t Flags = getOptimizationFlags(&I);
2262 if (Flags != 0) {
2263 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2264 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2265 Vals.push_back(Flags);
2266 }
2267 }
2268 break;
2269
2270 case Instruction::GetElementPtr: {
2271 Code = bitc::FUNC_CODE_INST_GEP;
2272 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2273 auto &GEPInst = cast<GetElementPtrInst>(I);
2274 Vals.push_back(GEPInst.isInBounds());
2275 Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
2276 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2277 pushValueAndType(I.getOperand(i), InstID, Vals);
2278 break;
2279 }
2280 case Instruction::ExtractValue: {
2281 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2282 pushValueAndType(I.getOperand(0), InstID, Vals);
2283 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2284 Vals.append(EVI->idx_begin(), EVI->idx_end());
2285 break;
2286 }
2287 case Instruction::InsertValue: {
2288 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2289 pushValueAndType(I.getOperand(0), InstID, Vals);
2290 pushValueAndType(I.getOperand(1), InstID, Vals);
2291 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2292 Vals.append(IVI->idx_begin(), IVI->idx_end());
2293 break;
2294 }
2295 case Instruction::Select:
2296 Code = bitc::FUNC_CODE_INST_VSELECT;
2297 pushValueAndType(I.getOperand(1), InstID, Vals);
2298 pushValue(I.getOperand(2), InstID, Vals);
2299 pushValueAndType(I.getOperand(0), InstID, Vals);
2300 break;
2301 case Instruction::ExtractElement:
2302 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2303 pushValueAndType(I.getOperand(0), InstID, Vals);
2304 pushValueAndType(I.getOperand(1), InstID, Vals);
2305 break;
2306 case Instruction::InsertElement:
2307 Code = bitc::FUNC_CODE_INST_INSERTELT;
2308 pushValueAndType(I.getOperand(0), InstID, Vals);
2309 pushValue(I.getOperand(1), InstID, Vals);
2310 pushValueAndType(I.getOperand(2), InstID, Vals);
2311 break;
2312 case Instruction::ShuffleVector:
2313 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2314 pushValueAndType(I.getOperand(0), InstID, Vals);
2315 pushValue(I.getOperand(1), InstID, Vals);
2316 pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID,
2317 Vals);
2318 break;
2319 case Instruction::ICmp:
2320 case Instruction::FCmp: {
2321 // compare returning Int1Ty or vector of Int1Ty
2322 Code = bitc::FUNC_CODE_INST_CMP2;
2323 pushValueAndType(I.getOperand(0), InstID, Vals);
2324 pushValue(I.getOperand(1), InstID, Vals);
2325 Vals.push_back(cast<CmpInst>(I).getPredicate());
2326 uint64_t Flags = getOptimizationFlags(&I);
2327 if (Flags != 0)
2328 Vals.push_back(Flags);
2329 break;
2330 }
2331
2332 case Instruction::Ret: {
2333 Code = bitc::FUNC_CODE_INST_RET;
2334 unsigned NumOperands = I.getNumOperands();
2335 if (NumOperands == 0)
2336 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2337 else if (NumOperands == 1) {
2338 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2339 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2340 } else {
2341 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2342 pushValueAndType(I.getOperand(i), InstID, Vals);
2343 }
2344 } break;
2345 case Instruction::Br: {
2346 Code = bitc::FUNC_CODE_INST_BR;
2347 const BranchInst &II = cast<BranchInst>(I);
2348 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2349 if (II.isConditional()) {
2350 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2351 pushValue(II.getCondition(), InstID, Vals);
2352 }
2353 } break;
2354 case Instruction::Switch: {
2355 Code = bitc::FUNC_CODE_INST_SWITCH;
2356 const SwitchInst &SI = cast<SwitchInst>(I);
2357 Vals.push_back(getTypeID(SI.getCondition()->getType()));
2358 pushValue(SI.getCondition(), InstID, Vals);
2359 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2360 for (auto Case : SI.cases()) {
2361 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2362 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2363 }
2364 } break;
2365 case Instruction::IndirectBr:
2366 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2367 Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2368 // Encode the address operand as relative, but not the basic blocks.
2369 pushValue(I.getOperand(0), InstID, Vals);
2370 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2371 Vals.push_back(VE.getValueID(I.getOperand(i)));
2372 break;
2373
2374 case Instruction::Invoke: {
2375 const InvokeInst *II = cast<InvokeInst>(&I);
2376 const Value *Callee = II->getCalledOperand();
2377 FunctionType *FTy = II->getFunctionType();
2378 Code = bitc::FUNC_CODE_INST_INVOKE;
2379
2380 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2381 Vals.push_back(II->getCallingConv() | 1 << 13);
2382 Vals.push_back(VE.getValueID(II->getNormalDest()));
2383 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2384 Vals.push_back(getTypeID(FTy));
2385 pushValueAndType(Callee, InstID, Vals);
2386
2387 // Emit value #'s for the fixed parameters.
2388 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2389 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2390
2391 // Emit type/value pairs for varargs params.
2392 if (FTy->isVarArg()) {
2393 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2394 ++i)
2395 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2396 }
2397 break;
2398 }
2399 case Instruction::Resume:
2400 Code = bitc::FUNC_CODE_INST_RESUME;
2401 pushValueAndType(I.getOperand(0), InstID, Vals);
2402 break;
2403 case Instruction::Unreachable:
2404 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2405 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2406 break;
2407
2408 case Instruction::PHI: {
2409 const PHINode &PN = cast<PHINode>(I);
2410 Code = bitc::FUNC_CODE_INST_PHI;
2411 // With the newer instruction encoding, forward references could give
2412 // negative valued IDs. This is most common for PHIs, so we use
2413 // signed VBRs.
2414 SmallVector<uint64_t, 128> Vals64;
2415 Vals64.push_back(getTypeID(PN.getType()));
2416 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2417 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2418 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2419 }
2420 // Emit a Vals64 vector and exit.
2421 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2422 Vals64.clear();
2423 return;
2424 }
2425
2426 case Instruction::LandingPad: {
2427 const LandingPadInst &LP = cast<LandingPadInst>(I);
2428 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2429 Vals.push_back(getTypeID(LP.getType()));
2430 Vals.push_back(LP.isCleanup());
2431 Vals.push_back(LP.getNumClauses());
2432 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2433 if (LP.isCatch(I))
2434 Vals.push_back(LandingPadInst::Catch);
2435 else
2436 Vals.push_back(LandingPadInst::Filter);
2437 pushValueAndType(LP.getClause(I), InstID, Vals);
2438 }
2439 break;
2440 }
2441
2442 case Instruction::Alloca: {
2443 Code = bitc::FUNC_CODE_INST_ALLOCA;
2444 const AllocaInst &AI = cast<AllocaInst>(I);
2445 Vals.push_back(getTypeID(AI.getAllocatedType()));
2446 Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2447 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2448 unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1;
2449 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2450 AlignRecord |= AI.isUsedWithInAlloca() << 5;
2451 AlignRecord |= 1 << 6;
2452 Vals.push_back(AlignRecord);
2453 break;
2454 }
2455
2456 case Instruction::Load:
2457 if (cast<LoadInst>(I).isAtomic()) {
2458 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2459 pushValueAndType(I.getOperand(0), InstID, Vals);
2460 } else {
2461 Code = bitc::FUNC_CODE_INST_LOAD;
2462 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2463 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2464 }
2465 Vals.push_back(getTypeID(I.getType()));
2466 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
2467 Vals.push_back(cast<LoadInst>(I).isVolatile());
2468 if (cast<LoadInst>(I).isAtomic()) {
2469 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2470 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2471 }
2472 break;
2473 case Instruction::Store:
2474 if (cast<StoreInst>(I).isAtomic())
2475 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2476 else
2477 Code = bitc::FUNC_CODE_INST_STORE;
2478 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2479 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2480 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
2481 Vals.push_back(cast<StoreInst>(I).isVolatile());
2482 if (cast<StoreInst>(I).isAtomic()) {
2483 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2484 Vals.push_back(
2485 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2486 }
2487 break;
2488 case Instruction::AtomicCmpXchg:
2489 Code = bitc::FUNC_CODE_INST_CMPXCHG;
2490 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2491 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2492 pushValue(I.getOperand(2), InstID, Vals); // newval.
2493 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2494 Vals.push_back(
2495 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2496 Vals.push_back(
2497 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2498 Vals.push_back(
2499 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2500 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2501 break;
2502 case Instruction::AtomicRMW:
2503 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2504 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2505 pushValue(I.getOperand(1), InstID, Vals); // val.
2506 Vals.push_back(
2507 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2508 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2509 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2510 Vals.push_back(
2511 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2512 break;
2513 case Instruction::Fence:
2514 Code = bitc::FUNC_CODE_INST_FENCE;
2515 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2516 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2517 break;
2518 case Instruction::Call: {
2519 const CallInst &CI = cast<CallInst>(I);
2520 FunctionType *FTy = CI.getFunctionType();
2521
2522 Code = bitc::FUNC_CODE_INST_CALL;
2523
2524 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2525 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2526 unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2527 Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction()));
2528 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2529
2530 // Emit value #'s for the fixed parameters.
2531 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2532 // Check for labels (can happen with asm labels).
2533 if (FTy->getParamType(i)->isLabelTy())
2534 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2535 else
2536 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2537 }
2538
2539 // Emit type/value pairs for varargs params.
2540 if (FTy->isVarArg()) {
2541 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2542 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2543 }
2544 break;
2545 }
2546 case Instruction::VAArg:
2547 Code = bitc::FUNC_CODE_INST_VAARG;
2548 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
2549 pushValue(I.getOperand(0), InstID, Vals); // valist.
2550 Vals.push_back(getTypeID(I.getType())); // restype.
2551 break;
2552 }
2553
2554 Stream.EmitRecord(Code, Vals, AbbrevToUse);
2555 Vals.clear();
2556 }
2557
2558 // Emit names for globals/functions etc.
writeFunctionLevelValueSymbolTable(const ValueSymbolTable & VST)2559 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2560 const ValueSymbolTable &VST) {
2561 if (VST.empty())
2562 return;
2563 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2564
2565 SmallVector<unsigned, 64> NameVals;
2566
2567 // HLSL Change
2568 // Read the named values from a sorted list instead of the original list
2569 // to ensure the binary is the same no matter what values ever existed.
2570 SmallVector<const ValueName *, 16> SortedTable;
2571
2572 for (auto &VI : VST) {
2573 SortedTable.push_back(VI.second->getValueName());
2574 }
2575 // The keys are unique, so there shouldn't be stability issues.
2576 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) {
2577 return A->first() < B->first();
2578 });
2579
2580 for (const ValueName *SI : SortedTable) {
2581 auto &Name = *SI;
2582
2583 // Figure out the encoding to use for the name.
2584 bool is7Bit = true;
2585 bool isChar6 = true;
2586 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2587 C != E; ++C) {
2588 if (isChar6)
2589 isChar6 = BitCodeAbbrevOp::isChar6(*C);
2590 if ((unsigned char)*C & 128) {
2591 is7Bit = false;
2592 break; // don't bother scanning the rest.
2593 }
2594 }
2595
2596 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2597
2598 // VST_ENTRY: [valueid, namechar x N]
2599 // VST_BBENTRY: [bbid, namechar x N]
2600 unsigned Code;
2601 if (isa<BasicBlock>(SI->getValue())) {
2602 Code = bitc::VST_CODE_BBENTRY;
2603 if (isChar6)
2604 AbbrevToUse = VST_BBENTRY_6_ABBREV;
2605 } else {
2606 Code = bitc::VST_CODE_ENTRY;
2607 if (isChar6)
2608 AbbrevToUse = VST_ENTRY_6_ABBREV;
2609 else if (is7Bit)
2610 AbbrevToUse = VST_ENTRY_7_ABBREV;
2611 }
2612
2613 NameVals.push_back(VE.getValueID(SI->getValue()));
2614 for (const char *P = Name.getKeyData(),
2615 *E = Name.getKeyData() + Name.getKeyLength();
2616 P != E; ++P)
2617 NameVals.push_back((unsigned char)*P);
2618
2619 // Emit the finished record.
2620 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2621 NameVals.clear();
2622 }
2623 Stream.ExitBlock();
2624 }
2625
2626 /// Emit a function body to the module stream.
writeFunction(const Function & F)2627 void DXILBitcodeWriter::writeFunction(const Function &F) {
2628 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2629 VE.incorporateFunction(F);
2630
2631 SmallVector<unsigned, 64> Vals;
2632
2633 // Emit the number of basic blocks, so the reader can create them ahead of
2634 // time.
2635 Vals.push_back(VE.getBasicBlocks().size());
2636 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2637 Vals.clear();
2638
2639 // If there are function-local constants, emit them now.
2640 unsigned CstStart, CstEnd;
2641 VE.getFunctionConstantRange(CstStart, CstEnd);
2642 writeConstants(CstStart, CstEnd, false);
2643
2644 // If there is function-local metadata, emit it now.
2645 writeFunctionMetadata(F);
2646
2647 // Keep a running idea of what the instruction ID is.
2648 unsigned InstID = CstEnd;
2649
2650 bool NeedsMetadataAttachment = F.hasMetadata();
2651
2652 DILocation *LastDL = nullptr;
2653
2654 // Finally, emit all the instructions, in order.
2655 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2656 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2657 ++I) {
2658 writeInstruction(*I, InstID, Vals);
2659
2660 if (!I->getType()->isVoidTy())
2661 ++InstID;
2662
2663 // If the instruction has metadata, write a metadata attachment later.
2664 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2665
2666 // If the instruction has a debug location, emit it.
2667 DILocation *DL = I->getDebugLoc();
2668 if (!DL)
2669 continue;
2670
2671 if (DL == LastDL) {
2672 // Just repeat the same debug loc as last time.
2673 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2674 continue;
2675 }
2676
2677 Vals.push_back(DL->getLine());
2678 Vals.push_back(DL->getColumn());
2679 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2680 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2681 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2682 Vals.clear();
2683
2684 LastDL = DL;
2685 }
2686
2687 // Emit names for all the instructions etc.
2688 if (auto *Symtab = F.getValueSymbolTable())
2689 writeFunctionLevelValueSymbolTable(*Symtab);
2690
2691 if (NeedsMetadataAttachment)
2692 writeFunctionMetadataAttachment(F);
2693
2694 VE.purgeFunction();
2695 Stream.ExitBlock();
2696 }
2697
2698 // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()2699 void DXILBitcodeWriter::writeBlockInfo() {
2700 // We only want to emit block info records for blocks that have multiple
2701 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2702 // Other blocks can define their abbrevs inline.
2703 Stream.EnterBlockInfoBlock();
2704
2705 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2706 auto Abbv = std::make_shared<BitCodeAbbrev>();
2707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2711 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2712 std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2713 assert(false && "Unexpected abbrev ordering!");
2714 }
2715
2716 { // 7-bit fixed width VST_ENTRY strings.
2717 auto Abbv = std::make_shared<BitCodeAbbrev>();
2718 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2722 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2723 std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2724 assert(false && "Unexpected abbrev ordering!");
2725 }
2726 { // 6-bit char6 VST_ENTRY strings.
2727 auto Abbv = std::make_shared<BitCodeAbbrev>();
2728 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2732 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2733 std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2734 assert(false && "Unexpected abbrev ordering!");
2735 }
2736 { // 6-bit char6 VST_BBENTRY strings.
2737 auto Abbv = std::make_shared<BitCodeAbbrev>();
2738 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2742 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2743 std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2744 assert(false && "Unexpected abbrev ordering!");
2745 }
2746
2747 { // SETTYPE abbrev for CONSTANTS_BLOCK.
2748 auto Abbv = std::make_shared<BitCodeAbbrev>();
2749 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2751 VE.computeBitsRequiredForTypeIndicies()));
2752 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2753 CONSTANTS_SETTYPE_ABBREV)
2754 assert(false && "Unexpected abbrev ordering!");
2755 }
2756
2757 { // INTEGER abbrev for CONSTANTS_BLOCK.
2758 auto Abbv = std::make_shared<BitCodeAbbrev>();
2759 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2761 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2762 CONSTANTS_INTEGER_ABBREV)
2763 assert(false && "Unexpected abbrev ordering!");
2764 }
2765
2766 { // CE_CAST abbrev for CONSTANTS_BLOCK.
2767 auto Abbv = std::make_shared<BitCodeAbbrev>();
2768 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
2771 VE.computeBitsRequiredForTypeIndicies()));
2772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2773
2774 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2775 CONSTANTS_CE_CAST_Abbrev)
2776 assert(false && "Unexpected abbrev ordering!");
2777 }
2778 { // NULL abbrev for CONSTANTS_BLOCK.
2779 auto Abbv = std::make_shared<BitCodeAbbrev>();
2780 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2781 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2782 CONSTANTS_NULL_Abbrev)
2783 assert(false && "Unexpected abbrev ordering!");
2784 }
2785
2786 // FIXME: This should only use space for first class types!
2787
2788 { // INST_LOAD abbrev for FUNCTION_BLOCK.
2789 auto Abbv = std::make_shared<BitCodeAbbrev>();
2790 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2793 VE.computeBitsRequiredForTypeIndicies()));
2794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2796 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2797 (unsigned)FUNCTION_INST_LOAD_ABBREV)
2798 assert(false && "Unexpected abbrev ordering!");
2799 }
2800 { // INST_BINOP abbrev for FUNCTION_BLOCK.
2801 auto Abbv = std::make_shared<BitCodeAbbrev>();
2802 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2806 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2807 (unsigned)FUNCTION_INST_BINOP_ABBREV)
2808 assert(false && "Unexpected abbrev ordering!");
2809 }
2810 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2811 auto Abbv = std::make_shared<BitCodeAbbrev>();
2812 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2817 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2818 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2819 assert(false && "Unexpected abbrev ordering!");
2820 }
2821 { // INST_CAST abbrev for FUNCTION_BLOCK.
2822 auto Abbv = std::make_shared<BitCodeAbbrev>();
2823 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2826 VE.computeBitsRequiredForTypeIndicies()));
2827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2828 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2829 (unsigned)FUNCTION_INST_CAST_ABBREV)
2830 assert(false && "Unexpected abbrev ordering!");
2831 }
2832
2833 { // INST_RET abbrev for FUNCTION_BLOCK.
2834 auto Abbv = std::make_shared<BitCodeAbbrev>();
2835 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2836 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2837 (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2838 assert(false && "Unexpected abbrev ordering!");
2839 }
2840 { // INST_RET abbrev for FUNCTION_BLOCK.
2841 auto Abbv = std::make_shared<BitCodeAbbrev>();
2842 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2844 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2845 (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2846 assert(false && "Unexpected abbrev ordering!");
2847 }
2848 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2849 auto Abbv = std::make_shared<BitCodeAbbrev>();
2850 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2851 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2852 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2853 assert(false && "Unexpected abbrev ordering!");
2854 }
2855 {
2856 auto Abbv = std::make_shared<BitCodeAbbrev>();
2857 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2860 Log2_32_Ceil(VE.getTypes().size() + 1)));
2861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2863 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2864 (unsigned)FUNCTION_INST_GEP_ABBREV)
2865 assert(false && "Unexpected abbrev ordering!");
2866 }
2867
2868 Stream.ExitBlock();
2869 }
2870
writeModuleVersion()2871 void DXILBitcodeWriter::writeModuleVersion() {
2872 // VERSION: [version#]
2873 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2874 }
2875
2876 /// WriteModule - Emit the specified module to the bitstream.
write()2877 void DXILBitcodeWriter::write() {
2878 // The identification block is new since llvm-3.7, but the old bitcode reader
2879 // will skip it.
2880 // writeIdentificationBlock(Stream);
2881
2882 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2883
2884 // It is redundant to fully-specify this here, but nice to make it explicit
2885 // so that it is clear the DXIL module version is different.
2886 DXILBitcodeWriter::writeModuleVersion();
2887
2888 // Emit blockinfo, which defines the standard abbreviations etc.
2889 writeBlockInfo();
2890
2891 // Emit information about attribute groups.
2892 writeAttributeGroupTable();
2893
2894 // Emit information about parameter attributes.
2895 writeAttributeTable();
2896
2897 // Emit information describing all of the types in the module.
2898 writeTypeTable();
2899
2900 writeComdats();
2901
2902 // Emit top-level description of module, including target triple, inline asm,
2903 // descriptors for global variables, and function prototype info.
2904 writeModuleInfo();
2905
2906 // Emit constants.
2907 writeModuleConstants();
2908
2909 // Emit metadata.
2910 writeModuleMetadataKinds();
2911
2912 // Emit metadata.
2913 writeModuleMetadata();
2914
2915 // Emit names for globals/functions etc.
2916 // DXIL uses the same format for module-level value symbol table as for the
2917 // function level table.
2918 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2919
2920 // Emit function bodies.
2921 for (const Function &F : M)
2922 if (!F.isDeclaration())
2923 writeFunction(F);
2924
2925 Stream.ExitBlock();
2926 }
2927