1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/ProfileData/MemProf.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/SHA1.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/TargetParser/Triple.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <optional> 82 #include <string> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 using namespace llvm::memprof; 88 89 static cl::opt<unsigned> 90 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 91 cl::desc("Number of metadatas above which we emit an index " 92 "to enable lazy-loading")); 93 static cl::opt<uint32_t> FlushThreshold( 94 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 95 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 96 97 static cl::opt<bool> WriteRelBFToSummary( 98 "write-relbf-to-summary", cl::Hidden, cl::init(false), 99 cl::desc("Write relative block frequency to function summary ")); 100 101 namespace llvm { 102 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 103 } 104 105 extern bool WriteNewDbgInfoFormatToBitcode; 106 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 107 108 namespace { 109 110 /// These are manifest constants used by the bitcode writer. They do not need to 111 /// be kept in sync with the reader, but need to be consistent within this file. 112 enum { 113 // VALUE_SYMTAB_BLOCK abbrev id's. 114 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 VST_ENTRY_7_ABBREV, 116 VST_ENTRY_6_ABBREV, 117 VST_BBENTRY_6_ABBREV, 118 119 // CONSTANTS_BLOCK abbrev id's. 120 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 CONSTANTS_INTEGER_ABBREV, 122 CONSTANTS_CE_CAST_Abbrev, 123 CONSTANTS_NULL_Abbrev, 124 125 // FUNCTION_BLOCK abbrev id's. 126 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 127 FUNCTION_INST_UNOP_ABBREV, 128 FUNCTION_INST_UNOP_FLAGS_ABBREV, 129 FUNCTION_INST_BINOP_ABBREV, 130 FUNCTION_INST_BINOP_FLAGS_ABBREV, 131 FUNCTION_INST_CAST_ABBREV, 132 FUNCTION_INST_CAST_FLAGS_ABBREV, 133 FUNCTION_INST_RET_VOID_ABBREV, 134 FUNCTION_INST_RET_VAL_ABBREV, 135 FUNCTION_INST_UNREACHABLE_ABBREV, 136 FUNCTION_INST_GEP_ABBREV, 137 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 138 }; 139 140 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 141 /// file type. 142 class BitcodeWriterBase { 143 protected: 144 /// The stream created and owned by the client. 145 BitstreamWriter &Stream; 146 147 StringTableBuilder &StrtabBuilder; 148 149 public: 150 /// Constructs a BitcodeWriterBase object that writes to the provided 151 /// \p Stream. 152 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 153 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 154 155 protected: 156 void writeModuleVersion(); 157 }; 158 159 void BitcodeWriterBase::writeModuleVersion() { 160 // VERSION: [version#] 161 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 162 } 163 164 /// Base class to manage the module bitcode writing, currently subclassed for 165 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 166 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 167 protected: 168 /// The Module to write to bitcode. 169 const Module &M; 170 171 /// Enumerates ids for all values in the module. 172 ValueEnumerator VE; 173 174 /// Optional per-module index to write for ThinLTO. 175 const ModuleSummaryIndex *Index; 176 177 /// Map that holds the correspondence between GUIDs in the summary index, 178 /// that came from indirect call profiles, and a value id generated by this 179 /// class to use in the VST and summary block records. 180 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 181 182 /// Tracks the last value id recorded in the GUIDToValueMap. 183 unsigned GlobalValueId; 184 185 /// Saves the offset of the VSTOffset record that must eventually be 186 /// backpatched with the offset of the actual VST. 187 uint64_t VSTOffsetPlaceholder = 0; 188 189 public: 190 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 191 /// writing to the provided \p Buffer. 192 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 193 BitstreamWriter &Stream, 194 bool ShouldPreserveUseListOrder, 195 const ModuleSummaryIndex *Index) 196 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 197 VE(M, ShouldPreserveUseListOrder), Index(Index) { 198 // Assign ValueIds to any callee values in the index that came from 199 // indirect call profiles and were recorded as a GUID not a Value* 200 // (which would have been assigned an ID by the ValueEnumerator). 201 // The starting ValueId is just after the number of values in the 202 // ValueEnumerator, so that they can be emitted in the VST. 203 GlobalValueId = VE.getValues().size(); 204 if (!Index) 205 return; 206 for (const auto &GUIDSummaryLists : *Index) 207 // Examine all summaries for this GUID. 208 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 209 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 210 // For each call in the function summary, see if the call 211 // is to a GUID (which means it is for an indirect call, 212 // otherwise we would have a Value for it). If so, synthesize 213 // a value id. 214 for (auto &CallEdge : FS->calls()) 215 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 216 assignValueId(CallEdge.first.getGUID()); 217 218 // For each referenced variables in the function summary, see if the 219 // variable is represented by a GUID (as opposed to a symbol to 220 // declarations or definitions in the module). If so, synthesize a 221 // value id. 222 for (auto &RefEdge : FS->refs()) 223 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 224 assignValueId(RefEdge.getGUID()); 225 } 226 } 227 228 protected: 229 void writePerModuleGlobalValueSummary(); 230 231 private: 232 void writePerModuleFunctionSummaryRecord( 233 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 234 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 235 unsigned CallsiteAbbrev, unsigned AllocAbbrev, unsigned ContextIdAbbvId, 236 const Function &F, DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 237 CallStackId &CallStackCount); 238 void writeModuleLevelReferences(const GlobalVariable &V, 239 SmallVector<uint64_t, 64> &NameVals, 240 unsigned FSModRefsAbbrev, 241 unsigned FSModVTableRefsAbbrev); 242 243 void assignValueId(GlobalValue::GUID ValGUID) { 244 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 245 } 246 247 unsigned getValueId(GlobalValue::GUID ValGUID) { 248 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 249 // Expect that any GUID value had a value Id assigned by an 250 // earlier call to assignValueId. 251 assert(VMI != GUIDToValueIdMap.end() && 252 "GUID does not have assigned value Id"); 253 return VMI->second; 254 } 255 256 // Helper to get the valueId for the type of value recorded in VI. 257 unsigned getValueId(ValueInfo VI) { 258 if (!VI.haveGVs() || !VI.getValue()) 259 return getValueId(VI.getGUID()); 260 return VE.getValueID(VI.getValue()); 261 } 262 263 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 264 }; 265 266 /// Class to manage the bitcode writing for a module. 267 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 268 /// True if a module hash record should be written. 269 bool GenerateHash; 270 271 /// If non-null, when GenerateHash is true, the resulting hash is written 272 /// into ModHash. 273 ModuleHash *ModHash; 274 275 SHA1 Hasher; 276 277 /// The start bit of the identification block. 278 uint64_t BitcodeStartBit; 279 280 public: 281 /// Constructs a ModuleBitcodeWriter object for the given Module, 282 /// writing to the provided \p Buffer. 283 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 284 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 285 const ModuleSummaryIndex *Index, bool GenerateHash, 286 ModuleHash *ModHash = nullptr) 287 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 288 ShouldPreserveUseListOrder, Index), 289 GenerateHash(GenerateHash), ModHash(ModHash), 290 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 291 292 /// Emit the current module to the bitstream. 293 void write(); 294 295 private: 296 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 297 298 size_t addToStrtab(StringRef Str); 299 300 void writeAttributeGroupTable(); 301 void writeAttributeTable(); 302 void writeTypeTable(); 303 void writeComdats(); 304 void writeValueSymbolTableForwardDecl(); 305 void writeModuleInfo(); 306 void writeValueAsMetadata(const ValueAsMetadata *MD, 307 SmallVectorImpl<uint64_t> &Record); 308 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 unsigned createDILocationAbbrev(); 311 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 312 unsigned &Abbrev); 313 unsigned createGenericDINodeAbbrev(); 314 void writeGenericDINode(const GenericDINode *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 316 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIGenericSubrange(const DIGenericSubrange *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIEnumerator(const DIEnumerator *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIStringType(const DIStringType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDIDerivedType(const DIDerivedType *N, 328 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 329 void writeDICompositeType(const DICompositeType *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDISubroutineType(const DISubroutineType *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDICompileUnit(const DICompileUnit *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDISubprogram(const DISubprogram *N, 339 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 340 void writeDILexicalBlock(const DILexicalBlock *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDICommonBlock(const DICommonBlock *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 354 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 355 unsigned Abbrev); 356 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 357 unsigned Abbrev); 358 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 void writeDIGlobalVariable(const DIGlobalVariable *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 void writeDILocalVariable(const DILocalVariable *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDILabel(const DILabel *N, 370 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 371 void writeDIExpression(const DIExpression *N, 372 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 373 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 374 SmallVectorImpl<uint64_t> &Record, 375 unsigned Abbrev); 376 void writeDIObjCProperty(const DIObjCProperty *N, 377 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 378 void writeDIImportedEntity(const DIImportedEntity *N, 379 SmallVectorImpl<uint64_t> &Record, 380 unsigned Abbrev); 381 unsigned createNamedMetadataAbbrev(); 382 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 383 unsigned createMetadataStringsAbbrev(); 384 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 385 SmallVectorImpl<uint64_t> &Record); 386 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 387 SmallVectorImpl<uint64_t> &Record, 388 std::vector<unsigned> *MDAbbrevs = nullptr, 389 std::vector<uint64_t> *IndexPos = nullptr); 390 void writeModuleMetadata(); 391 void writeFunctionMetadata(const Function &F); 392 void writeFunctionMetadataAttachment(const Function &F); 393 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 394 const GlobalObject &GO); 395 void writeModuleMetadataKinds(); 396 void writeOperandBundleTags(); 397 void writeSyncScopeNames(); 398 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 399 void writeModuleConstants(); 400 bool pushValueAndType(const Value *V, unsigned InstID, 401 SmallVectorImpl<unsigned> &Vals); 402 bool pushValueOrMetadata(const Value *V, unsigned InstID, 403 SmallVectorImpl<unsigned> &Vals); 404 void writeOperandBundles(const CallBase &CB, unsigned InstID); 405 void pushValue(const Value *V, unsigned InstID, 406 SmallVectorImpl<unsigned> &Vals); 407 void pushValueSigned(const Value *V, unsigned InstID, 408 SmallVectorImpl<uint64_t> &Vals); 409 void writeInstruction(const Instruction &I, unsigned InstID, 410 SmallVectorImpl<unsigned> &Vals); 411 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 412 void writeGlobalValueSymbolTable( 413 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 414 void writeUseList(UseListOrder &&Order); 415 void writeUseListBlock(const Function *F); 416 void 417 writeFunction(const Function &F, 418 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 419 void writeBlockInfo(); 420 void writeModuleHash(StringRef View); 421 422 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 423 return unsigned(SSID); 424 } 425 426 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 427 }; 428 429 /// Class to manage the bitcode writing for a combined index. 430 class IndexBitcodeWriter : public BitcodeWriterBase { 431 /// The combined index to write to bitcode. 432 const ModuleSummaryIndex &Index; 433 434 /// When writing combined summaries, provides the set of global value 435 /// summaries for which the value (function, function alias, etc) should be 436 /// imported as a declaration. 437 const GVSummaryPtrSet *DecSummaries = nullptr; 438 439 /// When writing a subset of the index for distributed backends, client 440 /// provides a map of modules to the corresponding GUIDs/summaries to write. 441 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 442 443 /// Map that holds the correspondence between the GUID used in the combined 444 /// index and a value id generated by this class to use in references. 445 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 446 447 // The stack ids used by this index, which will be a subset of those in 448 // the full index in the case of distributed indexes. 449 std::vector<uint64_t> StackIds; 450 451 // Keep a map of the stack id indices used by records being written for this 452 // index to the index of the corresponding stack id in the above StackIds 453 // vector. Ensures we write each referenced stack id once. 454 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 455 456 /// Tracks the last value id recorded in the GUIDToValueMap. 457 unsigned GlobalValueId = 0; 458 459 /// Tracks the assignment of module paths in the module path string table to 460 /// an id assigned for use in summary references to the module path. 461 DenseMap<StringRef, uint64_t> ModuleIdMap; 462 463 public: 464 /// Constructs a IndexBitcodeWriter object for the given combined index, 465 /// writing to the provided \p Buffer. When writing a subset of the index 466 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 467 /// If provided, \p DecSummaries specifies the set of summaries for which 468 /// the corresponding functions or aliased functions should be imported as a 469 /// declaration (but not definition) for each module. 470 IndexBitcodeWriter( 471 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 472 const ModuleSummaryIndex &Index, 473 const GVSummaryPtrSet *DecSummaries = nullptr, 474 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 475 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 476 DecSummaries(DecSummaries), 477 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 478 479 // See if the StackIdIndex was already added to the StackId map and 480 // vector. If not, record it. 481 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 482 // If the StackIdIndex is not yet in the map, the below insert ensures 483 // that it will point to the new StackIds vector entry we push to just 484 // below. 485 auto Inserted = 486 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 487 if (Inserted.second) 488 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 489 }; 490 491 // Assign unique value ids to all summaries to be written, for use 492 // in writing out the call graph edges. Save the mapping from GUID 493 // to the new global value id to use when writing those edges, which 494 // are currently saved in the index in terms of GUID. 495 forEachSummary([&](GVInfo I, bool IsAliasee) { 496 GUIDToValueIdMap[I.first] = ++GlobalValueId; 497 // If this is invoked for an aliasee, we want to record the above mapping, 498 // but not the information needed for its summary entry (if the aliasee is 499 // to be imported, we will invoke this separately with IsAliasee=false). 500 if (IsAliasee) 501 return; 502 auto *FS = dyn_cast<FunctionSummary>(I.second); 503 if (!FS) 504 return; 505 // Record all stack id indices actually used in the summary entries being 506 // written, so that we can compact them in the case of distributed ThinLTO 507 // indexes. 508 for (auto &CI : FS->callsites()) { 509 // If the stack id list is empty, this callsite info was synthesized for 510 // a missing tail call frame. Ensure that the callee's GUID gets a value 511 // id. Normally we only generate these for defined summaries, which in 512 // the case of distributed ThinLTO is only the functions already defined 513 // in the module or that we want to import. We don't bother to include 514 // all the callee symbols as they aren't normally needed in the backend. 515 // However, for the synthesized callsite infos we do need the callee 516 // GUID in the backend so that we can correlate the identified callee 517 // with this callsite info (which for non-tail calls is done by the 518 // ordering of the callsite infos and verified via stack ids). 519 if (CI.StackIdIndices.empty()) { 520 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 521 continue; 522 } 523 for (auto Idx : CI.StackIdIndices) 524 RecordStackIdReference(Idx); 525 } 526 for (auto &AI : FS->allocs()) 527 for (auto &MIB : AI.MIBs) 528 for (auto Idx : MIB.StackIdIndices) 529 RecordStackIdReference(Idx); 530 }); 531 } 532 533 /// The below iterator returns the GUID and associated summary. 534 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 535 536 /// Calls the callback for each value GUID and summary to be written to 537 /// bitcode. This hides the details of whether they are being pulled from the 538 /// entire index or just those in a provided ModuleToSummariesForIndex map. 539 template<typename Functor> 540 void forEachSummary(Functor Callback) { 541 if (ModuleToSummariesForIndex) { 542 for (auto &M : *ModuleToSummariesForIndex) 543 for (auto &Summary : M.second) { 544 Callback(Summary, false); 545 // Ensure aliasee is handled, e.g. for assigning a valueId, 546 // even if we are not importing the aliasee directly (the 547 // imported alias will contain a copy of aliasee). 548 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 549 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 550 } 551 } else { 552 for (auto &Summaries : Index) 553 for (auto &Summary : Summaries.second.SummaryList) 554 Callback({Summaries.first, Summary.get()}, false); 555 } 556 } 557 558 /// Calls the callback for each entry in the modulePaths StringMap that 559 /// should be written to the module path string table. This hides the details 560 /// of whether they are being pulled from the entire index or just those in a 561 /// provided ModuleToSummariesForIndex map. 562 template <typename Functor> void forEachModule(Functor Callback) { 563 if (ModuleToSummariesForIndex) { 564 for (const auto &M : *ModuleToSummariesForIndex) { 565 const auto &MPI = Index.modulePaths().find(M.first); 566 if (MPI == Index.modulePaths().end()) { 567 // This should only happen if the bitcode file was empty, in which 568 // case we shouldn't be importing (the ModuleToSummariesForIndex 569 // would only include the module we are writing and index for). 570 assert(ModuleToSummariesForIndex->size() == 1); 571 continue; 572 } 573 Callback(*MPI); 574 } 575 } else { 576 // Since StringMap iteration order isn't guaranteed, order by path string 577 // first. 578 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 579 // map lookup. 580 std::vector<StringRef> ModulePaths; 581 for (auto &[ModPath, _] : Index.modulePaths()) 582 ModulePaths.push_back(ModPath); 583 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 584 for (auto &ModPath : ModulePaths) 585 Callback(*Index.modulePaths().find(ModPath)); 586 } 587 } 588 589 /// Main entry point for writing a combined index to bitcode. 590 void write(); 591 592 private: 593 void writeModStrings(); 594 void writeCombinedGlobalValueSummary(); 595 596 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 597 auto VMI = GUIDToValueIdMap.find(ValGUID); 598 if (VMI == GUIDToValueIdMap.end()) 599 return std::nullopt; 600 return VMI->second; 601 } 602 603 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 604 }; 605 606 } // end anonymous namespace 607 608 static unsigned getEncodedCastOpcode(unsigned Opcode) { 609 switch (Opcode) { 610 default: llvm_unreachable("Unknown cast instruction!"); 611 case Instruction::Trunc : return bitc::CAST_TRUNC; 612 case Instruction::ZExt : return bitc::CAST_ZEXT; 613 case Instruction::SExt : return bitc::CAST_SEXT; 614 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 615 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 616 case Instruction::UIToFP : return bitc::CAST_UITOFP; 617 case Instruction::SIToFP : return bitc::CAST_SITOFP; 618 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 619 case Instruction::FPExt : return bitc::CAST_FPEXT; 620 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 621 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 622 case Instruction::BitCast : return bitc::CAST_BITCAST; 623 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 624 } 625 } 626 627 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 628 switch (Opcode) { 629 default: llvm_unreachable("Unknown binary instruction!"); 630 case Instruction::FNeg: return bitc::UNOP_FNEG; 631 } 632 } 633 634 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 635 switch (Opcode) { 636 default: llvm_unreachable("Unknown binary instruction!"); 637 case Instruction::Add: 638 case Instruction::FAdd: return bitc::BINOP_ADD; 639 case Instruction::Sub: 640 case Instruction::FSub: return bitc::BINOP_SUB; 641 case Instruction::Mul: 642 case Instruction::FMul: return bitc::BINOP_MUL; 643 case Instruction::UDiv: return bitc::BINOP_UDIV; 644 case Instruction::FDiv: 645 case Instruction::SDiv: return bitc::BINOP_SDIV; 646 case Instruction::URem: return bitc::BINOP_UREM; 647 case Instruction::FRem: 648 case Instruction::SRem: return bitc::BINOP_SREM; 649 case Instruction::Shl: return bitc::BINOP_SHL; 650 case Instruction::LShr: return bitc::BINOP_LSHR; 651 case Instruction::AShr: return bitc::BINOP_ASHR; 652 case Instruction::And: return bitc::BINOP_AND; 653 case Instruction::Or: return bitc::BINOP_OR; 654 case Instruction::Xor: return bitc::BINOP_XOR; 655 } 656 } 657 658 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 659 switch (Op) { 660 default: llvm_unreachable("Unknown RMW operation!"); 661 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 662 case AtomicRMWInst::Add: return bitc::RMW_ADD; 663 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 664 case AtomicRMWInst::And: return bitc::RMW_AND; 665 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 666 case AtomicRMWInst::Or: return bitc::RMW_OR; 667 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 668 case AtomicRMWInst::Max: return bitc::RMW_MAX; 669 case AtomicRMWInst::Min: return bitc::RMW_MIN; 670 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 671 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 672 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 673 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 674 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 675 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 676 case AtomicRMWInst::UIncWrap: 677 return bitc::RMW_UINC_WRAP; 678 case AtomicRMWInst::UDecWrap: 679 return bitc::RMW_UDEC_WRAP; 680 case AtomicRMWInst::USubCond: 681 return bitc::RMW_USUB_COND; 682 case AtomicRMWInst::USubSat: 683 return bitc::RMW_USUB_SAT; 684 } 685 } 686 687 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 688 switch (Ordering) { 689 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 690 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 691 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 692 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 693 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 694 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 695 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 696 } 697 llvm_unreachable("Invalid ordering"); 698 } 699 700 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 701 StringRef Str, unsigned AbbrevToUse) { 702 SmallVector<unsigned, 64> Vals; 703 704 // Code: [strchar x N] 705 for (char C : Str) { 706 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 707 AbbrevToUse = 0; 708 Vals.push_back(C); 709 } 710 711 // Emit the finished record. 712 Stream.EmitRecord(Code, Vals, AbbrevToUse); 713 } 714 715 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 716 switch (Kind) { 717 case Attribute::Alignment: 718 return bitc::ATTR_KIND_ALIGNMENT; 719 case Attribute::AllocAlign: 720 return bitc::ATTR_KIND_ALLOC_ALIGN; 721 case Attribute::AllocSize: 722 return bitc::ATTR_KIND_ALLOC_SIZE; 723 case Attribute::AlwaysInline: 724 return bitc::ATTR_KIND_ALWAYS_INLINE; 725 case Attribute::Builtin: 726 return bitc::ATTR_KIND_BUILTIN; 727 case Attribute::ByVal: 728 return bitc::ATTR_KIND_BY_VAL; 729 case Attribute::Convergent: 730 return bitc::ATTR_KIND_CONVERGENT; 731 case Attribute::InAlloca: 732 return bitc::ATTR_KIND_IN_ALLOCA; 733 case Attribute::Cold: 734 return bitc::ATTR_KIND_COLD; 735 case Attribute::DisableSanitizerInstrumentation: 736 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 737 case Attribute::FnRetThunkExtern: 738 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 739 case Attribute::Hot: 740 return bitc::ATTR_KIND_HOT; 741 case Attribute::ElementType: 742 return bitc::ATTR_KIND_ELEMENTTYPE; 743 case Attribute::HybridPatchable: 744 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 745 case Attribute::InlineHint: 746 return bitc::ATTR_KIND_INLINE_HINT; 747 case Attribute::InReg: 748 return bitc::ATTR_KIND_IN_REG; 749 case Attribute::JumpTable: 750 return bitc::ATTR_KIND_JUMP_TABLE; 751 case Attribute::MinSize: 752 return bitc::ATTR_KIND_MIN_SIZE; 753 case Attribute::AllocatedPointer: 754 return bitc::ATTR_KIND_ALLOCATED_POINTER; 755 case Attribute::AllocKind: 756 return bitc::ATTR_KIND_ALLOC_KIND; 757 case Attribute::Memory: 758 return bitc::ATTR_KIND_MEMORY; 759 case Attribute::NoFPClass: 760 return bitc::ATTR_KIND_NOFPCLASS; 761 case Attribute::Naked: 762 return bitc::ATTR_KIND_NAKED; 763 case Attribute::Nest: 764 return bitc::ATTR_KIND_NEST; 765 case Attribute::NoAlias: 766 return bitc::ATTR_KIND_NO_ALIAS; 767 case Attribute::NoBuiltin: 768 return bitc::ATTR_KIND_NO_BUILTIN; 769 case Attribute::NoCallback: 770 return bitc::ATTR_KIND_NO_CALLBACK; 771 case Attribute::NoDivergenceSource: 772 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE; 773 case Attribute::NoDuplicate: 774 return bitc::ATTR_KIND_NO_DUPLICATE; 775 case Attribute::NoFree: 776 return bitc::ATTR_KIND_NOFREE; 777 case Attribute::NoImplicitFloat: 778 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 779 case Attribute::NoInline: 780 return bitc::ATTR_KIND_NO_INLINE; 781 case Attribute::NoRecurse: 782 return bitc::ATTR_KIND_NO_RECURSE; 783 case Attribute::NoMerge: 784 return bitc::ATTR_KIND_NO_MERGE; 785 case Attribute::NonLazyBind: 786 return bitc::ATTR_KIND_NON_LAZY_BIND; 787 case Attribute::NonNull: 788 return bitc::ATTR_KIND_NON_NULL; 789 case Attribute::Dereferenceable: 790 return bitc::ATTR_KIND_DEREFERENCEABLE; 791 case Attribute::DereferenceableOrNull: 792 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 793 case Attribute::NoRedZone: 794 return bitc::ATTR_KIND_NO_RED_ZONE; 795 case Attribute::NoReturn: 796 return bitc::ATTR_KIND_NO_RETURN; 797 case Attribute::NoSync: 798 return bitc::ATTR_KIND_NOSYNC; 799 case Attribute::NoCfCheck: 800 return bitc::ATTR_KIND_NOCF_CHECK; 801 case Attribute::NoProfile: 802 return bitc::ATTR_KIND_NO_PROFILE; 803 case Attribute::SkipProfile: 804 return bitc::ATTR_KIND_SKIP_PROFILE; 805 case Attribute::NoUnwind: 806 return bitc::ATTR_KIND_NO_UNWIND; 807 case Attribute::NoSanitizeBounds: 808 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 809 case Attribute::NoSanitizeCoverage: 810 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 811 case Attribute::NullPointerIsValid: 812 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 813 case Attribute::OptimizeForDebugging: 814 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 815 case Attribute::OptForFuzzing: 816 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 817 case Attribute::OptimizeForSize: 818 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 819 case Attribute::OptimizeNone: 820 return bitc::ATTR_KIND_OPTIMIZE_NONE; 821 case Attribute::ReadNone: 822 return bitc::ATTR_KIND_READ_NONE; 823 case Attribute::ReadOnly: 824 return bitc::ATTR_KIND_READ_ONLY; 825 case Attribute::Returned: 826 return bitc::ATTR_KIND_RETURNED; 827 case Attribute::ReturnsTwice: 828 return bitc::ATTR_KIND_RETURNS_TWICE; 829 case Attribute::SExt: 830 return bitc::ATTR_KIND_S_EXT; 831 case Attribute::Speculatable: 832 return bitc::ATTR_KIND_SPECULATABLE; 833 case Attribute::StackAlignment: 834 return bitc::ATTR_KIND_STACK_ALIGNMENT; 835 case Attribute::StackProtect: 836 return bitc::ATTR_KIND_STACK_PROTECT; 837 case Attribute::StackProtectReq: 838 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 839 case Attribute::StackProtectStrong: 840 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 841 case Attribute::SafeStack: 842 return bitc::ATTR_KIND_SAFESTACK; 843 case Attribute::ShadowCallStack: 844 return bitc::ATTR_KIND_SHADOWCALLSTACK; 845 case Attribute::StrictFP: 846 return bitc::ATTR_KIND_STRICT_FP; 847 case Attribute::StructRet: 848 return bitc::ATTR_KIND_STRUCT_RET; 849 case Attribute::SanitizeAddress: 850 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 851 case Attribute::SanitizeHWAddress: 852 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 853 case Attribute::SanitizeThread: 854 return bitc::ATTR_KIND_SANITIZE_THREAD; 855 case Attribute::SanitizeType: 856 return bitc::ATTR_KIND_SANITIZE_TYPE; 857 case Attribute::SanitizeMemory: 858 return bitc::ATTR_KIND_SANITIZE_MEMORY; 859 case Attribute::SanitizeNumericalStability: 860 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 861 case Attribute::SanitizeRealtime: 862 return bitc::ATTR_KIND_SANITIZE_REALTIME; 863 case Attribute::SanitizeRealtimeBlocking: 864 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING; 865 case Attribute::SpeculativeLoadHardening: 866 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 867 case Attribute::SwiftError: 868 return bitc::ATTR_KIND_SWIFT_ERROR; 869 case Attribute::SwiftSelf: 870 return bitc::ATTR_KIND_SWIFT_SELF; 871 case Attribute::SwiftAsync: 872 return bitc::ATTR_KIND_SWIFT_ASYNC; 873 case Attribute::UWTable: 874 return bitc::ATTR_KIND_UW_TABLE; 875 case Attribute::VScaleRange: 876 return bitc::ATTR_KIND_VSCALE_RANGE; 877 case Attribute::WillReturn: 878 return bitc::ATTR_KIND_WILLRETURN; 879 case Attribute::WriteOnly: 880 return bitc::ATTR_KIND_WRITEONLY; 881 case Attribute::ZExt: 882 return bitc::ATTR_KIND_Z_EXT; 883 case Attribute::ImmArg: 884 return bitc::ATTR_KIND_IMMARG; 885 case Attribute::SanitizeMemTag: 886 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 887 case Attribute::Preallocated: 888 return bitc::ATTR_KIND_PREALLOCATED; 889 case Attribute::NoUndef: 890 return bitc::ATTR_KIND_NOUNDEF; 891 case Attribute::ByRef: 892 return bitc::ATTR_KIND_BYREF; 893 case Attribute::MustProgress: 894 return bitc::ATTR_KIND_MUSTPROGRESS; 895 case Attribute::PresplitCoroutine: 896 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 897 case Attribute::Writable: 898 return bitc::ATTR_KIND_WRITABLE; 899 case Attribute::CoroDestroyOnlyWhenComplete: 900 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 901 case Attribute::CoroElideSafe: 902 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 903 case Attribute::DeadOnUnwind: 904 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 905 case Attribute::Range: 906 return bitc::ATTR_KIND_RANGE; 907 case Attribute::Initializes: 908 return bitc::ATTR_KIND_INITIALIZES; 909 case Attribute::NoExt: 910 return bitc::ATTR_KIND_NO_EXT; 911 case Attribute::Captures: 912 return bitc::ATTR_KIND_CAPTURES; 913 case Attribute::EndAttrKinds: 914 llvm_unreachable("Can not encode end-attribute kinds marker."); 915 case Attribute::None: 916 llvm_unreachable("Can not encode none-attribute."); 917 case Attribute::EmptyKey: 918 case Attribute::TombstoneKey: 919 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 920 } 921 922 llvm_unreachable("Trying to encode unknown attribute"); 923 } 924 925 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 926 if ((int64_t)V >= 0) 927 Vals.push_back(V << 1); 928 else 929 Vals.push_back((-V << 1) | 1); 930 } 931 932 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 933 // We have an arbitrary precision integer value to write whose 934 // bit width is > 64. However, in canonical unsigned integer 935 // format it is likely that the high bits are going to be zero. 936 // So, we only write the number of active words. 937 unsigned NumWords = A.getActiveWords(); 938 const uint64_t *RawData = A.getRawData(); 939 for (unsigned i = 0; i < NumWords; i++) 940 emitSignedInt64(Vals, RawData[i]); 941 } 942 943 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 944 const ConstantRange &CR, bool EmitBitWidth) { 945 unsigned BitWidth = CR.getBitWidth(); 946 if (EmitBitWidth) 947 Record.push_back(BitWidth); 948 if (BitWidth > 64) { 949 Record.push_back(CR.getLower().getActiveWords() | 950 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 951 emitWideAPInt(Record, CR.getLower()); 952 emitWideAPInt(Record, CR.getUpper()); 953 } else { 954 emitSignedInt64(Record, CR.getLower().getSExtValue()); 955 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 956 } 957 } 958 959 void ModuleBitcodeWriter::writeAttributeGroupTable() { 960 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 961 VE.getAttributeGroups(); 962 if (AttrGrps.empty()) return; 963 964 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 965 966 SmallVector<uint64_t, 64> Record; 967 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 968 unsigned AttrListIndex = Pair.first; 969 AttributeSet AS = Pair.second; 970 Record.push_back(VE.getAttributeGroupID(Pair)); 971 Record.push_back(AttrListIndex); 972 973 for (Attribute Attr : AS) { 974 if (Attr.isEnumAttribute()) { 975 Record.push_back(0); 976 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 977 } else if (Attr.isIntAttribute()) { 978 Record.push_back(1); 979 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 980 Record.push_back(Attr.getValueAsInt()); 981 } else if (Attr.isStringAttribute()) { 982 StringRef Kind = Attr.getKindAsString(); 983 StringRef Val = Attr.getValueAsString(); 984 985 Record.push_back(Val.empty() ? 3 : 4); 986 Record.append(Kind.begin(), Kind.end()); 987 Record.push_back(0); 988 if (!Val.empty()) { 989 Record.append(Val.begin(), Val.end()); 990 Record.push_back(0); 991 } 992 } else if (Attr.isTypeAttribute()) { 993 Type *Ty = Attr.getValueAsType(); 994 Record.push_back(Ty ? 6 : 5); 995 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 996 if (Ty) 997 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 998 } else if (Attr.isConstantRangeAttribute()) { 999 Record.push_back(7); 1000 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 1001 emitConstantRange(Record, Attr.getValueAsConstantRange(), 1002 /*EmitBitWidth=*/true); 1003 } else { 1004 assert(Attr.isConstantRangeListAttribute()); 1005 Record.push_back(8); 1006 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 1007 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 1008 Record.push_back(Val.size()); 1009 Record.push_back(Val[0].getBitWidth()); 1010 for (auto &CR : Val) 1011 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 1012 } 1013 } 1014 1015 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 1016 Record.clear(); 1017 } 1018 1019 Stream.ExitBlock(); 1020 } 1021 1022 void ModuleBitcodeWriter::writeAttributeTable() { 1023 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1024 if (Attrs.empty()) return; 1025 1026 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1027 1028 SmallVector<uint64_t, 64> Record; 1029 for (const AttributeList &AL : Attrs) { 1030 for (unsigned i : AL.indexes()) { 1031 AttributeSet AS = AL.getAttributes(i); 1032 if (AS.hasAttributes()) 1033 Record.push_back(VE.getAttributeGroupID({i, AS})); 1034 } 1035 1036 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1037 Record.clear(); 1038 } 1039 1040 Stream.ExitBlock(); 1041 } 1042 1043 /// WriteTypeTable - Write out the type table for a module. 1044 void ModuleBitcodeWriter::writeTypeTable() { 1045 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1046 1047 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1048 SmallVector<uint64_t, 64> TypeVals; 1049 1050 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1051 1052 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1053 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1054 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1055 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1056 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1057 1058 // Abbrev for TYPE_CODE_FUNCTION. 1059 Abbv = std::make_shared<BitCodeAbbrev>(); 1060 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1064 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1065 1066 // Abbrev for TYPE_CODE_STRUCT_ANON. 1067 Abbv = std::make_shared<BitCodeAbbrev>(); 1068 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1072 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1073 1074 // Abbrev for TYPE_CODE_STRUCT_NAME. 1075 Abbv = std::make_shared<BitCodeAbbrev>(); 1076 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1079 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1080 1081 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1082 Abbv = std::make_shared<BitCodeAbbrev>(); 1083 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1087 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1088 1089 // Abbrev for TYPE_CODE_ARRAY. 1090 Abbv = std::make_shared<BitCodeAbbrev>(); 1091 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1094 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1095 1096 // Emit an entry count so the reader can reserve space. 1097 TypeVals.push_back(TypeList.size()); 1098 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1099 TypeVals.clear(); 1100 1101 // Loop over all of the types, emitting each in turn. 1102 for (Type *T : TypeList) { 1103 int AbbrevToUse = 0; 1104 unsigned Code = 0; 1105 1106 switch (T->getTypeID()) { 1107 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1108 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1109 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1110 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1111 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1112 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1113 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1114 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1115 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1116 case Type::MetadataTyID: 1117 Code = bitc::TYPE_CODE_METADATA; 1118 break; 1119 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1120 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1121 case Type::IntegerTyID: 1122 // INTEGER: [width] 1123 Code = bitc::TYPE_CODE_INTEGER; 1124 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1125 break; 1126 case Type::PointerTyID: { 1127 PointerType *PTy = cast<PointerType>(T); 1128 unsigned AddressSpace = PTy->getAddressSpace(); 1129 // OPAQUE_POINTER: [address space] 1130 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1131 TypeVals.push_back(AddressSpace); 1132 if (AddressSpace == 0) 1133 AbbrevToUse = OpaquePtrAbbrev; 1134 break; 1135 } 1136 case Type::FunctionTyID: { 1137 FunctionType *FT = cast<FunctionType>(T); 1138 // FUNCTION: [isvararg, retty, paramty x N] 1139 Code = bitc::TYPE_CODE_FUNCTION; 1140 TypeVals.push_back(FT->isVarArg()); 1141 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1142 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1143 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1144 AbbrevToUse = FunctionAbbrev; 1145 break; 1146 } 1147 case Type::StructTyID: { 1148 StructType *ST = cast<StructType>(T); 1149 // STRUCT: [ispacked, eltty x N] 1150 TypeVals.push_back(ST->isPacked()); 1151 // Output all of the element types. 1152 for (Type *ET : ST->elements()) 1153 TypeVals.push_back(VE.getTypeID(ET)); 1154 1155 if (ST->isLiteral()) { 1156 Code = bitc::TYPE_CODE_STRUCT_ANON; 1157 AbbrevToUse = StructAnonAbbrev; 1158 } else { 1159 if (ST->isOpaque()) { 1160 Code = bitc::TYPE_CODE_OPAQUE; 1161 } else { 1162 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1163 AbbrevToUse = StructNamedAbbrev; 1164 } 1165 1166 // Emit the name if it is present. 1167 if (!ST->getName().empty()) 1168 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1169 StructNameAbbrev); 1170 } 1171 break; 1172 } 1173 case Type::ArrayTyID: { 1174 ArrayType *AT = cast<ArrayType>(T); 1175 // ARRAY: [numelts, eltty] 1176 Code = bitc::TYPE_CODE_ARRAY; 1177 TypeVals.push_back(AT->getNumElements()); 1178 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1179 AbbrevToUse = ArrayAbbrev; 1180 break; 1181 } 1182 case Type::FixedVectorTyID: 1183 case Type::ScalableVectorTyID: { 1184 VectorType *VT = cast<VectorType>(T); 1185 // VECTOR [numelts, eltty] or 1186 // [numelts, eltty, scalable] 1187 Code = bitc::TYPE_CODE_VECTOR; 1188 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1189 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1190 if (isa<ScalableVectorType>(VT)) 1191 TypeVals.push_back(true); 1192 break; 1193 } 1194 case Type::TargetExtTyID: { 1195 TargetExtType *TET = cast<TargetExtType>(T); 1196 Code = bitc::TYPE_CODE_TARGET_TYPE; 1197 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1198 StructNameAbbrev); 1199 TypeVals.push_back(TET->getNumTypeParameters()); 1200 for (Type *InnerTy : TET->type_params()) 1201 TypeVals.push_back(VE.getTypeID(InnerTy)); 1202 for (unsigned IntParam : TET->int_params()) 1203 TypeVals.push_back(IntParam); 1204 break; 1205 } 1206 case Type::TypedPointerTyID: 1207 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1208 } 1209 1210 // Emit the finished record. 1211 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1212 TypeVals.clear(); 1213 } 1214 1215 Stream.ExitBlock(); 1216 } 1217 1218 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1219 switch (Linkage) { 1220 case GlobalValue::ExternalLinkage: 1221 return 0; 1222 case GlobalValue::WeakAnyLinkage: 1223 return 16; 1224 case GlobalValue::AppendingLinkage: 1225 return 2; 1226 case GlobalValue::InternalLinkage: 1227 return 3; 1228 case GlobalValue::LinkOnceAnyLinkage: 1229 return 18; 1230 case GlobalValue::ExternalWeakLinkage: 1231 return 7; 1232 case GlobalValue::CommonLinkage: 1233 return 8; 1234 case GlobalValue::PrivateLinkage: 1235 return 9; 1236 case GlobalValue::WeakODRLinkage: 1237 return 17; 1238 case GlobalValue::LinkOnceODRLinkage: 1239 return 19; 1240 case GlobalValue::AvailableExternallyLinkage: 1241 return 12; 1242 } 1243 llvm_unreachable("Invalid linkage"); 1244 } 1245 1246 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1247 return getEncodedLinkage(GV.getLinkage()); 1248 } 1249 1250 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1251 uint64_t RawFlags = 0; 1252 RawFlags |= Flags.ReadNone; 1253 RawFlags |= (Flags.ReadOnly << 1); 1254 RawFlags |= (Flags.NoRecurse << 2); 1255 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1256 RawFlags |= (Flags.NoInline << 4); 1257 RawFlags |= (Flags.AlwaysInline << 5); 1258 RawFlags |= (Flags.NoUnwind << 6); 1259 RawFlags |= (Flags.MayThrow << 7); 1260 RawFlags |= (Flags.HasUnknownCall << 8); 1261 RawFlags |= (Flags.MustBeUnreachable << 9); 1262 return RawFlags; 1263 } 1264 1265 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1266 // in BitcodeReader.cpp. 1267 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1268 bool ImportAsDecl = false) { 1269 uint64_t RawFlags = 0; 1270 1271 RawFlags |= Flags.NotEligibleToImport; // bool 1272 RawFlags |= (Flags.Live << 1); 1273 RawFlags |= (Flags.DSOLocal << 2); 1274 RawFlags |= (Flags.CanAutoHide << 3); 1275 1276 // Linkage don't need to be remapped at that time for the summary. Any future 1277 // change to the getEncodedLinkage() function will need to be taken into 1278 // account here as well. 1279 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1280 1281 RawFlags |= (Flags.Visibility << 8); // 2 bits 1282 1283 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1284 RawFlags |= (ImportType << 10); // 1 bit 1285 1286 return RawFlags; 1287 } 1288 1289 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1290 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1291 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1292 return RawFlags; 1293 } 1294 1295 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1296 uint64_t RawFlags = 0; 1297 1298 RawFlags |= CI.Hotness; // 3 bits 1299 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1300 1301 return RawFlags; 1302 } 1303 1304 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1305 uint64_t RawFlags = 0; 1306 1307 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1308 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1309 1310 return RawFlags; 1311 } 1312 1313 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1314 switch (GV.getVisibility()) { 1315 case GlobalValue::DefaultVisibility: return 0; 1316 case GlobalValue::HiddenVisibility: return 1; 1317 case GlobalValue::ProtectedVisibility: return 2; 1318 } 1319 llvm_unreachable("Invalid visibility"); 1320 } 1321 1322 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1323 switch (GV.getDLLStorageClass()) { 1324 case GlobalValue::DefaultStorageClass: return 0; 1325 case GlobalValue::DLLImportStorageClass: return 1; 1326 case GlobalValue::DLLExportStorageClass: return 2; 1327 } 1328 llvm_unreachable("Invalid DLL storage class"); 1329 } 1330 1331 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1332 switch (GV.getThreadLocalMode()) { 1333 case GlobalVariable::NotThreadLocal: return 0; 1334 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1335 case GlobalVariable::LocalDynamicTLSModel: return 2; 1336 case GlobalVariable::InitialExecTLSModel: return 3; 1337 case GlobalVariable::LocalExecTLSModel: return 4; 1338 } 1339 llvm_unreachable("Invalid TLS model"); 1340 } 1341 1342 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1343 switch (C.getSelectionKind()) { 1344 case Comdat::Any: 1345 return bitc::COMDAT_SELECTION_KIND_ANY; 1346 case Comdat::ExactMatch: 1347 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1348 case Comdat::Largest: 1349 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1350 case Comdat::NoDeduplicate: 1351 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1352 case Comdat::SameSize: 1353 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1354 } 1355 llvm_unreachable("Invalid selection kind"); 1356 } 1357 1358 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1359 switch (GV.getUnnamedAddr()) { 1360 case GlobalValue::UnnamedAddr::None: return 0; 1361 case GlobalValue::UnnamedAddr::Local: return 2; 1362 case GlobalValue::UnnamedAddr::Global: return 1; 1363 } 1364 llvm_unreachable("Invalid unnamed_addr"); 1365 } 1366 1367 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1368 if (GenerateHash) 1369 Hasher.update(Str); 1370 return StrtabBuilder.add(Str); 1371 } 1372 1373 void ModuleBitcodeWriter::writeComdats() { 1374 SmallVector<unsigned, 64> Vals; 1375 for (const Comdat *C : VE.getComdats()) { 1376 // COMDAT: [strtab offset, strtab size, selection_kind] 1377 Vals.push_back(addToStrtab(C->getName())); 1378 Vals.push_back(C->getName().size()); 1379 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1380 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1381 Vals.clear(); 1382 } 1383 } 1384 1385 /// Write a record that will eventually hold the word offset of the 1386 /// module-level VST. For now the offset is 0, which will be backpatched 1387 /// after the real VST is written. Saves the bit offset to backpatch. 1388 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1389 // Write a placeholder value in for the offset of the real VST, 1390 // which is written after the function blocks so that it can include 1391 // the offset of each function. The placeholder offset will be 1392 // updated when the real VST is written. 1393 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1394 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1395 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1396 // hold the real VST offset. Must use fixed instead of VBR as we don't 1397 // know how many VBR chunks to reserve ahead of time. 1398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1399 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1400 1401 // Emit the placeholder 1402 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1403 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1404 1405 // Compute and save the bit offset to the placeholder, which will be 1406 // patched when the real VST is written. We can simply subtract the 32-bit 1407 // fixed size from the current bit number to get the location to backpatch. 1408 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1409 } 1410 1411 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1412 1413 /// Determine the encoding to use for the given string name and length. 1414 static StringEncoding getStringEncoding(StringRef Str) { 1415 bool isChar6 = true; 1416 for (char C : Str) { 1417 if (isChar6) 1418 isChar6 = BitCodeAbbrevOp::isChar6(C); 1419 if ((unsigned char)C & 128) 1420 // don't bother scanning the rest. 1421 return SE_Fixed8; 1422 } 1423 if (isChar6) 1424 return SE_Char6; 1425 return SE_Fixed7; 1426 } 1427 1428 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1429 "Sanitizer Metadata is too large for naive serialization."); 1430 static unsigned 1431 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1432 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1433 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1434 } 1435 1436 /// Emit top-level description of module, including target triple, inline asm, 1437 /// descriptors for global variables, and function prototype info. 1438 /// Returns the bit offset to backpatch with the location of the real VST. 1439 void ModuleBitcodeWriter::writeModuleInfo() { 1440 // Emit various pieces of data attached to a module. 1441 if (!M.getTargetTriple().empty()) 1442 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1443 0 /*TODO*/); 1444 const std::string &DL = M.getDataLayoutStr(); 1445 if (!DL.empty()) 1446 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1447 if (!M.getModuleInlineAsm().empty()) 1448 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1449 0 /*TODO*/); 1450 1451 // Emit information about sections and GC, computing how many there are. Also 1452 // compute the maximum alignment value. 1453 std::map<std::string, unsigned> SectionMap; 1454 std::map<std::string, unsigned> GCMap; 1455 MaybeAlign MaxAlignment; 1456 unsigned MaxGlobalType = 0; 1457 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1458 if (A) 1459 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1460 }; 1461 for (const GlobalVariable &GV : M.globals()) { 1462 UpdateMaxAlignment(GV.getAlign()); 1463 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1464 if (GV.hasSection()) { 1465 // Give section names unique ID's. 1466 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1467 if (!Entry) { 1468 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1469 0 /*TODO*/); 1470 Entry = SectionMap.size(); 1471 } 1472 } 1473 } 1474 for (const Function &F : M) { 1475 UpdateMaxAlignment(F.getAlign()); 1476 if (F.hasSection()) { 1477 // Give section names unique ID's. 1478 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1479 if (!Entry) { 1480 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1481 0 /*TODO*/); 1482 Entry = SectionMap.size(); 1483 } 1484 } 1485 if (F.hasGC()) { 1486 // Same for GC names. 1487 unsigned &Entry = GCMap[F.getGC()]; 1488 if (!Entry) { 1489 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1490 0 /*TODO*/); 1491 Entry = GCMap.size(); 1492 } 1493 } 1494 } 1495 1496 // Emit abbrev for globals, now that we know # sections and max alignment. 1497 unsigned SimpleGVarAbbrev = 0; 1498 if (!M.global_empty()) { 1499 // Add an abbrev for common globals with no visibility or thread localness. 1500 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1501 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1505 Log2_32_Ceil(MaxGlobalType+1))); 1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1507 //| explicitType << 1 1508 //| constant 1509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1511 if (!MaxAlignment) // Alignment. 1512 Abbv->Add(BitCodeAbbrevOp(0)); 1513 else { 1514 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1516 Log2_32_Ceil(MaxEncAlignment+1))); 1517 } 1518 if (SectionMap.empty()) // Section. 1519 Abbv->Add(BitCodeAbbrevOp(0)); 1520 else 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1522 Log2_32_Ceil(SectionMap.size()+1))); 1523 // Don't bother emitting vis + thread local. 1524 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1525 } 1526 1527 SmallVector<unsigned, 64> Vals; 1528 // Emit the module's source file name. 1529 { 1530 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1531 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1532 if (Bits == SE_Char6) 1533 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1534 else if (Bits == SE_Fixed7) 1535 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1536 1537 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1538 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1539 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1541 Abbv->Add(AbbrevOpToUse); 1542 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1543 1544 for (const auto P : M.getSourceFileName()) 1545 Vals.push_back((unsigned char)P); 1546 1547 // Emit the finished record. 1548 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1549 Vals.clear(); 1550 } 1551 1552 // Emit the global variable information. 1553 for (const GlobalVariable &GV : M.globals()) { 1554 unsigned AbbrevToUse = 0; 1555 1556 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1557 // linkage, alignment, section, visibility, threadlocal, 1558 // unnamed_addr, externally_initialized, dllstorageclass, 1559 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1560 Vals.push_back(addToStrtab(GV.getName())); 1561 Vals.push_back(GV.getName().size()); 1562 Vals.push_back(VE.getTypeID(GV.getValueType())); 1563 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1564 Vals.push_back(GV.isDeclaration() ? 0 : 1565 (VE.getValueID(GV.getInitializer()) + 1)); 1566 Vals.push_back(getEncodedLinkage(GV)); 1567 Vals.push_back(getEncodedAlign(GV.getAlign())); 1568 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1569 : 0); 1570 if (GV.isThreadLocal() || 1571 GV.getVisibility() != GlobalValue::DefaultVisibility || 1572 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1573 GV.isExternallyInitialized() || 1574 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1575 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1576 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1577 Vals.push_back(getEncodedVisibility(GV)); 1578 Vals.push_back(getEncodedThreadLocalMode(GV)); 1579 Vals.push_back(getEncodedUnnamedAddr(GV)); 1580 Vals.push_back(GV.isExternallyInitialized()); 1581 Vals.push_back(getEncodedDLLStorageClass(GV)); 1582 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1583 1584 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1585 Vals.push_back(VE.getAttributeListID(AL)); 1586 1587 Vals.push_back(GV.isDSOLocal()); 1588 Vals.push_back(addToStrtab(GV.getPartition())); 1589 Vals.push_back(GV.getPartition().size()); 1590 1591 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1592 GV.getSanitizerMetadata()) 1593 : 0)); 1594 Vals.push_back(GV.getCodeModelRaw()); 1595 } else { 1596 AbbrevToUse = SimpleGVarAbbrev; 1597 } 1598 1599 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1600 Vals.clear(); 1601 } 1602 1603 // Emit the function proto information. 1604 for (const Function &F : M) { 1605 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1606 // linkage, paramattrs, alignment, section, visibility, gc, 1607 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1608 // prefixdata, personalityfn, DSO_Local, addrspace] 1609 Vals.push_back(addToStrtab(F.getName())); 1610 Vals.push_back(F.getName().size()); 1611 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1612 Vals.push_back(F.getCallingConv()); 1613 Vals.push_back(F.isDeclaration()); 1614 Vals.push_back(getEncodedLinkage(F)); 1615 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1616 Vals.push_back(getEncodedAlign(F.getAlign())); 1617 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1618 : 0); 1619 Vals.push_back(getEncodedVisibility(F)); 1620 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1621 Vals.push_back(getEncodedUnnamedAddr(F)); 1622 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1623 : 0); 1624 Vals.push_back(getEncodedDLLStorageClass(F)); 1625 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1626 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1627 : 0); 1628 Vals.push_back( 1629 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1630 1631 Vals.push_back(F.isDSOLocal()); 1632 Vals.push_back(F.getAddressSpace()); 1633 Vals.push_back(addToStrtab(F.getPartition())); 1634 Vals.push_back(F.getPartition().size()); 1635 1636 unsigned AbbrevToUse = 0; 1637 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1638 Vals.clear(); 1639 } 1640 1641 // Emit the alias information. 1642 for (const GlobalAlias &A : M.aliases()) { 1643 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1644 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1645 // DSO_Local] 1646 Vals.push_back(addToStrtab(A.getName())); 1647 Vals.push_back(A.getName().size()); 1648 Vals.push_back(VE.getTypeID(A.getValueType())); 1649 Vals.push_back(A.getType()->getAddressSpace()); 1650 Vals.push_back(VE.getValueID(A.getAliasee())); 1651 Vals.push_back(getEncodedLinkage(A)); 1652 Vals.push_back(getEncodedVisibility(A)); 1653 Vals.push_back(getEncodedDLLStorageClass(A)); 1654 Vals.push_back(getEncodedThreadLocalMode(A)); 1655 Vals.push_back(getEncodedUnnamedAddr(A)); 1656 Vals.push_back(A.isDSOLocal()); 1657 Vals.push_back(addToStrtab(A.getPartition())); 1658 Vals.push_back(A.getPartition().size()); 1659 1660 unsigned AbbrevToUse = 0; 1661 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1662 Vals.clear(); 1663 } 1664 1665 // Emit the ifunc information. 1666 for (const GlobalIFunc &I : M.ifuncs()) { 1667 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1668 // val#, linkage, visibility, DSO_Local] 1669 Vals.push_back(addToStrtab(I.getName())); 1670 Vals.push_back(I.getName().size()); 1671 Vals.push_back(VE.getTypeID(I.getValueType())); 1672 Vals.push_back(I.getType()->getAddressSpace()); 1673 Vals.push_back(VE.getValueID(I.getResolver())); 1674 Vals.push_back(getEncodedLinkage(I)); 1675 Vals.push_back(getEncodedVisibility(I)); 1676 Vals.push_back(I.isDSOLocal()); 1677 Vals.push_back(addToStrtab(I.getPartition())); 1678 Vals.push_back(I.getPartition().size()); 1679 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1680 Vals.clear(); 1681 } 1682 1683 writeValueSymbolTableForwardDecl(); 1684 } 1685 1686 static uint64_t getOptimizationFlags(const Value *V) { 1687 uint64_t Flags = 0; 1688 1689 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1690 if (OBO->hasNoSignedWrap()) 1691 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1692 if (OBO->hasNoUnsignedWrap()) 1693 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1694 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1695 if (PEO->isExact()) 1696 Flags |= 1 << bitc::PEO_EXACT; 1697 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1698 if (PDI->isDisjoint()) 1699 Flags |= 1 << bitc::PDI_DISJOINT; 1700 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1701 if (FPMO->hasAllowReassoc()) 1702 Flags |= bitc::AllowReassoc; 1703 if (FPMO->hasNoNaNs()) 1704 Flags |= bitc::NoNaNs; 1705 if (FPMO->hasNoInfs()) 1706 Flags |= bitc::NoInfs; 1707 if (FPMO->hasNoSignedZeros()) 1708 Flags |= bitc::NoSignedZeros; 1709 if (FPMO->hasAllowReciprocal()) 1710 Flags |= bitc::AllowReciprocal; 1711 if (FPMO->hasAllowContract()) 1712 Flags |= bitc::AllowContract; 1713 if (FPMO->hasApproxFunc()) 1714 Flags |= bitc::ApproxFunc; 1715 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1716 if (NNI->hasNonNeg()) 1717 Flags |= 1 << bitc::PNNI_NON_NEG; 1718 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1719 if (TI->hasNoSignedWrap()) 1720 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1721 if (TI->hasNoUnsignedWrap()) 1722 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1723 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1724 if (GEP->isInBounds()) 1725 Flags |= 1 << bitc::GEP_INBOUNDS; 1726 if (GEP->hasNoUnsignedSignedWrap()) 1727 Flags |= 1 << bitc::GEP_NUSW; 1728 if (GEP->hasNoUnsignedWrap()) 1729 Flags |= 1 << bitc::GEP_NUW; 1730 } else if (const auto *ICmp = dyn_cast<ICmpInst>(V)) { 1731 if (ICmp->hasSameSign()) 1732 Flags |= 1 << bitc::ICMP_SAME_SIGN; 1733 } 1734 1735 return Flags; 1736 } 1737 1738 void ModuleBitcodeWriter::writeValueAsMetadata( 1739 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1740 // Mimic an MDNode with a value as one operand. 1741 Value *V = MD->getValue(); 1742 Record.push_back(VE.getTypeID(V->getType())); 1743 Record.push_back(VE.getValueID(V)); 1744 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1745 Record.clear(); 1746 } 1747 1748 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1749 SmallVectorImpl<uint64_t> &Record, 1750 unsigned Abbrev) { 1751 for (const MDOperand &MDO : N->operands()) { 1752 Metadata *MD = MDO; 1753 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1754 "Unexpected function-local metadata"); 1755 Record.push_back(VE.getMetadataOrNullID(MD)); 1756 } 1757 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1758 : bitc::METADATA_NODE, 1759 Record, Abbrev); 1760 Record.clear(); 1761 } 1762 1763 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1764 // Assume the column is usually under 128, and always output the inlined-at 1765 // location (it's never more expensive than building an array size 1). 1766 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1767 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1774 return Stream.EmitAbbrev(std::move(Abbv)); 1775 } 1776 1777 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1778 SmallVectorImpl<uint64_t> &Record, 1779 unsigned &Abbrev) { 1780 if (!Abbrev) 1781 Abbrev = createDILocationAbbrev(); 1782 1783 Record.push_back(N->isDistinct()); 1784 Record.push_back(N->getLine()); 1785 Record.push_back(N->getColumn()); 1786 Record.push_back(VE.getMetadataID(N->getScope())); 1787 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1788 Record.push_back(N->isImplicitCode()); 1789 1790 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1791 Record.clear(); 1792 } 1793 1794 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1795 // Assume the column is usually under 128, and always output the inlined-at 1796 // location (it's never more expensive than building an array size 1). 1797 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1798 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1805 return Stream.EmitAbbrev(std::move(Abbv)); 1806 } 1807 1808 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1809 SmallVectorImpl<uint64_t> &Record, 1810 unsigned &Abbrev) { 1811 if (!Abbrev) 1812 Abbrev = createGenericDINodeAbbrev(); 1813 1814 Record.push_back(N->isDistinct()); 1815 Record.push_back(N->getTag()); 1816 Record.push_back(0); // Per-tag version field; unused for now. 1817 1818 for (auto &I : N->operands()) 1819 Record.push_back(VE.getMetadataOrNullID(I)); 1820 1821 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1822 Record.clear(); 1823 } 1824 1825 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1826 SmallVectorImpl<uint64_t> &Record, 1827 unsigned Abbrev) { 1828 const uint64_t Version = 2 << 1; 1829 Record.push_back((uint64_t)N->isDistinct() | Version); 1830 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1831 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1833 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1834 1835 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1836 Record.clear(); 1837 } 1838 1839 void ModuleBitcodeWriter::writeDIGenericSubrange( 1840 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1841 unsigned Abbrev) { 1842 Record.push_back((uint64_t)N->isDistinct()); 1843 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1844 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1846 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1847 1848 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1849 Record.clear(); 1850 } 1851 1852 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1853 SmallVectorImpl<uint64_t> &Record, 1854 unsigned Abbrev) { 1855 const uint64_t IsBigInt = 1 << 2; 1856 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1857 Record.push_back(N->getValue().getBitWidth()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1859 emitWideAPInt(Record, N->getValue()); 1860 1861 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1862 Record.clear(); 1863 } 1864 1865 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1866 SmallVectorImpl<uint64_t> &Record, 1867 unsigned Abbrev) { 1868 Record.push_back(N->isDistinct()); 1869 Record.push_back(N->getTag()); 1870 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1871 Record.push_back(N->getSizeInBits()); 1872 Record.push_back(N->getAlignInBits()); 1873 Record.push_back(N->getEncoding()); 1874 Record.push_back(N->getFlags()); 1875 Record.push_back(N->getNumExtraInhabitants()); 1876 1877 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1878 Record.clear(); 1879 } 1880 1881 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1882 SmallVectorImpl<uint64_t> &Record, 1883 unsigned Abbrev) { 1884 Record.push_back(N->isDistinct()); 1885 Record.push_back(N->getTag()); 1886 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1887 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1890 Record.push_back(N->getSizeInBits()); 1891 Record.push_back(N->getAlignInBits()); 1892 Record.push_back(N->getEncoding()); 1893 1894 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1895 Record.clear(); 1896 } 1897 1898 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1899 SmallVectorImpl<uint64_t> &Record, 1900 unsigned Abbrev) { 1901 Record.push_back(N->isDistinct()); 1902 Record.push_back(N->getTag()); 1903 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1904 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1905 Record.push_back(N->getLine()); 1906 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1907 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1908 Record.push_back(N->getSizeInBits()); 1909 Record.push_back(N->getAlignInBits()); 1910 Record.push_back(N->getOffsetInBits()); 1911 Record.push_back(N->getFlags()); 1912 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1913 1914 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1915 // that there is no DWARF address space associated with DIDerivedType. 1916 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1917 Record.push_back(*DWARFAddressSpace + 1); 1918 else 1919 Record.push_back(0); 1920 1921 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1922 1923 if (auto PtrAuthData = N->getPtrAuthData()) 1924 Record.push_back(PtrAuthData->RawData); 1925 else 1926 Record.push_back(0); 1927 1928 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1929 Record.clear(); 1930 } 1931 1932 void ModuleBitcodeWriter::writeDICompositeType( 1933 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1934 unsigned Abbrev) { 1935 const unsigned IsNotUsedInOldTypeRef = 0x2; 1936 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1937 Record.push_back(N->getTag()); 1938 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1939 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1940 Record.push_back(N->getLine()); 1941 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1942 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1943 Record.push_back(N->getSizeInBits()); 1944 Record.push_back(N->getAlignInBits()); 1945 Record.push_back(N->getOffsetInBits()); 1946 Record.push_back(N->getFlags()); 1947 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1948 Record.push_back(N->getRuntimeLang()); 1949 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1950 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1951 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1952 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1953 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1954 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1955 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1958 Record.push_back(N->getNumExtraInhabitants()); 1959 Record.push_back(VE.getMetadataOrNullID(N->getRawSpecification())); 1960 1961 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1962 Record.clear(); 1963 } 1964 1965 void ModuleBitcodeWriter::writeDISubroutineType( 1966 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1967 unsigned Abbrev) { 1968 const unsigned HasNoOldTypeRefs = 0x2; 1969 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1970 Record.push_back(N->getFlags()); 1971 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1972 Record.push_back(N->getCC()); 1973 1974 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1975 Record.clear(); 1976 } 1977 1978 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1979 SmallVectorImpl<uint64_t> &Record, 1980 unsigned Abbrev) { 1981 Record.push_back(N->isDistinct()); 1982 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1983 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1984 if (N->getRawChecksum()) { 1985 Record.push_back(N->getRawChecksum()->Kind); 1986 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1987 } else { 1988 // Maintain backwards compatibility with the old internal representation of 1989 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1990 Record.push_back(0); 1991 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1992 } 1993 auto Source = N->getRawSource(); 1994 if (Source) 1995 Record.push_back(VE.getMetadataOrNullID(Source)); 1996 1997 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1998 Record.clear(); 1999 } 2000 2001 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 2002 SmallVectorImpl<uint64_t> &Record, 2003 unsigned Abbrev) { 2004 assert(N->isDistinct() && "Expected distinct compile units"); 2005 Record.push_back(/* IsDistinct */ true); 2006 Record.push_back(N->getSourceLanguage()); 2007 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2008 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 2009 Record.push_back(N->isOptimized()); 2010 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 2011 Record.push_back(N->getRuntimeVersion()); 2012 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 2013 Record.push_back(N->getEmissionKind()); 2014 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 2015 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 2016 Record.push_back(/* subprograms */ 0); 2017 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 2018 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 2019 Record.push_back(N->getDWOId()); 2020 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 2021 Record.push_back(N->getSplitDebugInlining()); 2022 Record.push_back(N->getDebugInfoForProfiling()); 2023 Record.push_back((unsigned)N->getNameTableKind()); 2024 Record.push_back(N->getRangesBaseAddress()); 2025 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2026 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2027 2028 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2029 Record.clear(); 2030 } 2031 2032 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2033 SmallVectorImpl<uint64_t> &Record, 2034 unsigned Abbrev) { 2035 const uint64_t HasUnitFlag = 1 << 1; 2036 const uint64_t HasSPFlagsFlag = 1 << 2; 2037 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2038 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2039 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2040 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2041 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2042 Record.push_back(N->getLine()); 2043 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2044 Record.push_back(N->getScopeLine()); 2045 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2046 Record.push_back(N->getSPFlags()); 2047 Record.push_back(N->getVirtualIndex()); 2048 Record.push_back(N->getFlags()); 2049 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2050 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2051 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2052 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2053 Record.push_back(N->getThisAdjustment()); 2054 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2055 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2056 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2057 2058 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2059 Record.clear(); 2060 } 2061 2062 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2063 SmallVectorImpl<uint64_t> &Record, 2064 unsigned Abbrev) { 2065 Record.push_back(N->isDistinct()); 2066 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2067 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2068 Record.push_back(N->getLine()); 2069 Record.push_back(N->getColumn()); 2070 2071 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2072 Record.clear(); 2073 } 2074 2075 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2076 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2077 unsigned Abbrev) { 2078 Record.push_back(N->isDistinct()); 2079 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2080 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2081 Record.push_back(N->getDiscriminator()); 2082 2083 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2084 Record.clear(); 2085 } 2086 2087 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2088 SmallVectorImpl<uint64_t> &Record, 2089 unsigned Abbrev) { 2090 Record.push_back(N->isDistinct()); 2091 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2092 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2093 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2094 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2095 Record.push_back(N->getLineNo()); 2096 2097 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2098 Record.clear(); 2099 } 2100 2101 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2102 SmallVectorImpl<uint64_t> &Record, 2103 unsigned Abbrev) { 2104 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2105 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2106 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2107 2108 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2109 Record.clear(); 2110 } 2111 2112 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2113 SmallVectorImpl<uint64_t> &Record, 2114 unsigned Abbrev) { 2115 Record.push_back(N->isDistinct()); 2116 Record.push_back(N->getMacinfoType()); 2117 Record.push_back(N->getLine()); 2118 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2119 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2120 2121 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2122 Record.clear(); 2123 } 2124 2125 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2126 SmallVectorImpl<uint64_t> &Record, 2127 unsigned Abbrev) { 2128 Record.push_back(N->isDistinct()); 2129 Record.push_back(N->getMacinfoType()); 2130 Record.push_back(N->getLine()); 2131 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2132 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2133 2134 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2135 Record.clear(); 2136 } 2137 2138 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2139 SmallVectorImpl<uint64_t> &Record) { 2140 Record.reserve(N->getArgs().size()); 2141 for (ValueAsMetadata *MD : N->getArgs()) 2142 Record.push_back(VE.getMetadataID(MD)); 2143 2144 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2145 Record.clear(); 2146 } 2147 2148 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2149 SmallVectorImpl<uint64_t> &Record, 2150 unsigned Abbrev) { 2151 Record.push_back(N->isDistinct()); 2152 for (auto &I : N->operands()) 2153 Record.push_back(VE.getMetadataOrNullID(I)); 2154 Record.push_back(N->getLineNo()); 2155 Record.push_back(N->getIsDecl()); 2156 2157 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2158 Record.clear(); 2159 } 2160 2161 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2162 SmallVectorImpl<uint64_t> &Record, 2163 unsigned Abbrev) { 2164 // There are no arguments for this metadata type. 2165 Record.push_back(N->isDistinct()); 2166 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2167 Record.clear(); 2168 } 2169 2170 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2171 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2172 unsigned Abbrev) { 2173 Record.push_back(N->isDistinct()); 2174 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2175 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2176 Record.push_back(N->isDefault()); 2177 2178 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2179 Record.clear(); 2180 } 2181 2182 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2183 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2184 unsigned Abbrev) { 2185 Record.push_back(N->isDistinct()); 2186 Record.push_back(N->getTag()); 2187 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2188 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2189 Record.push_back(N->isDefault()); 2190 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2191 2192 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2193 Record.clear(); 2194 } 2195 2196 void ModuleBitcodeWriter::writeDIGlobalVariable( 2197 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2198 unsigned Abbrev) { 2199 const uint64_t Version = 2 << 1; 2200 Record.push_back((uint64_t)N->isDistinct() | Version); 2201 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2202 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2203 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2204 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2205 Record.push_back(N->getLine()); 2206 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2207 Record.push_back(N->isLocalToUnit()); 2208 Record.push_back(N->isDefinition()); 2209 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2210 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2211 Record.push_back(N->getAlignInBits()); 2212 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2213 2214 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2215 Record.clear(); 2216 } 2217 2218 void ModuleBitcodeWriter::writeDILocalVariable( 2219 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2220 unsigned Abbrev) { 2221 // In order to support all possible bitcode formats in BitcodeReader we need 2222 // to distinguish the following cases: 2223 // 1) Record has no artificial tag (Record[1]), 2224 // has no obsolete inlinedAt field (Record[9]). 2225 // In this case Record size will be 8, HasAlignment flag is false. 2226 // 2) Record has artificial tag (Record[1]), 2227 // has no obsolete inlignedAt field (Record[9]). 2228 // In this case Record size will be 9, HasAlignment flag is false. 2229 // 3) Record has both artificial tag (Record[1]) and 2230 // obsolete inlignedAt field (Record[9]). 2231 // In this case Record size will be 10, HasAlignment flag is false. 2232 // 4) Record has neither artificial tag, nor inlignedAt field, but 2233 // HasAlignment flag is true and Record[8] contains alignment value. 2234 const uint64_t HasAlignmentFlag = 1 << 1; 2235 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2236 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2237 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2238 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2239 Record.push_back(N->getLine()); 2240 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2241 Record.push_back(N->getArg()); 2242 Record.push_back(N->getFlags()); 2243 Record.push_back(N->getAlignInBits()); 2244 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2245 2246 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2247 Record.clear(); 2248 } 2249 2250 void ModuleBitcodeWriter::writeDILabel( 2251 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2252 unsigned Abbrev) { 2253 Record.push_back((uint64_t)N->isDistinct()); 2254 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2255 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2256 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2257 Record.push_back(N->getLine()); 2258 2259 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2260 Record.clear(); 2261 } 2262 2263 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2264 SmallVectorImpl<uint64_t> &Record, 2265 unsigned Abbrev) { 2266 Record.reserve(N->getElements().size() + 1); 2267 const uint64_t Version = 3 << 1; 2268 Record.push_back((uint64_t)N->isDistinct() | Version); 2269 Record.append(N->elements_begin(), N->elements_end()); 2270 2271 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2272 Record.clear(); 2273 } 2274 2275 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2276 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2277 unsigned Abbrev) { 2278 Record.push_back(N->isDistinct()); 2279 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2280 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2281 2282 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2283 Record.clear(); 2284 } 2285 2286 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2287 SmallVectorImpl<uint64_t> &Record, 2288 unsigned Abbrev) { 2289 Record.push_back(N->isDistinct()); 2290 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2291 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2292 Record.push_back(N->getLine()); 2293 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2294 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2295 Record.push_back(N->getAttributes()); 2296 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2297 2298 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2299 Record.clear(); 2300 } 2301 2302 void ModuleBitcodeWriter::writeDIImportedEntity( 2303 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2304 unsigned Abbrev) { 2305 Record.push_back(N->isDistinct()); 2306 Record.push_back(N->getTag()); 2307 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2308 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2309 Record.push_back(N->getLine()); 2310 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2311 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2312 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2313 2314 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2315 Record.clear(); 2316 } 2317 2318 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2319 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2320 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2323 return Stream.EmitAbbrev(std::move(Abbv)); 2324 } 2325 2326 void ModuleBitcodeWriter::writeNamedMetadata( 2327 SmallVectorImpl<uint64_t> &Record) { 2328 if (M.named_metadata_empty()) 2329 return; 2330 2331 unsigned Abbrev = createNamedMetadataAbbrev(); 2332 for (const NamedMDNode &NMD : M.named_metadata()) { 2333 // Write name. 2334 StringRef Str = NMD.getName(); 2335 Record.append(Str.bytes_begin(), Str.bytes_end()); 2336 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2337 Record.clear(); 2338 2339 // Write named metadata operands. 2340 for (const MDNode *N : NMD.operands()) 2341 Record.push_back(VE.getMetadataID(N)); 2342 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2343 Record.clear(); 2344 } 2345 } 2346 2347 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2348 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2349 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2353 return Stream.EmitAbbrev(std::move(Abbv)); 2354 } 2355 2356 /// Write out a record for MDString. 2357 /// 2358 /// All the metadata strings in a metadata block are emitted in a single 2359 /// record. The sizes and strings themselves are shoved into a blob. 2360 void ModuleBitcodeWriter::writeMetadataStrings( 2361 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2362 if (Strings.empty()) 2363 return; 2364 2365 // Start the record with the number of strings. 2366 Record.push_back(bitc::METADATA_STRINGS); 2367 Record.push_back(Strings.size()); 2368 2369 // Emit the sizes of the strings in the blob. 2370 SmallString<256> Blob; 2371 { 2372 BitstreamWriter W(Blob); 2373 for (const Metadata *MD : Strings) 2374 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2375 W.FlushToWord(); 2376 } 2377 2378 // Add the offset to the strings to the record. 2379 Record.push_back(Blob.size()); 2380 2381 // Add the strings to the blob. 2382 for (const Metadata *MD : Strings) 2383 Blob.append(cast<MDString>(MD)->getString()); 2384 2385 // Emit the final record. 2386 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2387 Record.clear(); 2388 } 2389 2390 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2391 enum MetadataAbbrev : unsigned { 2392 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2393 #include "llvm/IR/Metadata.def" 2394 LastPlusOne 2395 }; 2396 2397 void ModuleBitcodeWriter::writeMetadataRecords( 2398 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2399 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2400 if (MDs.empty()) 2401 return; 2402 2403 // Initialize MDNode abbreviations. 2404 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2405 #include "llvm/IR/Metadata.def" 2406 2407 for (const Metadata *MD : MDs) { 2408 if (IndexPos) 2409 IndexPos->push_back(Stream.GetCurrentBitNo()); 2410 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2411 assert(N->isResolved() && "Expected forward references to be resolved"); 2412 2413 switch (N->getMetadataID()) { 2414 default: 2415 llvm_unreachable("Invalid MDNode subclass"); 2416 #define HANDLE_MDNODE_LEAF(CLASS) \ 2417 case Metadata::CLASS##Kind: \ 2418 if (MDAbbrevs) \ 2419 write##CLASS(cast<CLASS>(N), Record, \ 2420 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2421 else \ 2422 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2423 continue; 2424 #include "llvm/IR/Metadata.def" 2425 } 2426 } 2427 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2428 writeDIArgList(AL, Record); 2429 continue; 2430 } 2431 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2432 } 2433 } 2434 2435 void ModuleBitcodeWriter::writeModuleMetadata() { 2436 if (!VE.hasMDs() && M.named_metadata_empty()) 2437 return; 2438 2439 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2440 SmallVector<uint64_t, 64> Record; 2441 2442 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2443 // block and load any metadata. 2444 std::vector<unsigned> MDAbbrevs; 2445 2446 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2447 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2448 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2449 createGenericDINodeAbbrev(); 2450 2451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2452 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2455 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2456 2457 Abbv = std::make_shared<BitCodeAbbrev>(); 2458 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2461 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2462 2463 // Emit MDStrings together upfront. 2464 writeMetadataStrings(VE.getMDStrings(), Record); 2465 2466 // We only emit an index for the metadata record if we have more than a given 2467 // (naive) threshold of metadatas, otherwise it is not worth it. 2468 if (VE.getNonMDStrings().size() > IndexThreshold) { 2469 // Write a placeholder value in for the offset of the metadata index, 2470 // which is written after the records, so that it can include 2471 // the offset of each entry. The placeholder offset will be 2472 // updated after all records are emitted. 2473 uint64_t Vals[] = {0, 0}; 2474 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2475 } 2476 2477 // Compute and save the bit offset to the current position, which will be 2478 // patched when we emit the index later. We can simply subtract the 64-bit 2479 // fixed size from the current bit number to get the location to backpatch. 2480 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2481 2482 // This index will contain the bitpos for each individual record. 2483 std::vector<uint64_t> IndexPos; 2484 IndexPos.reserve(VE.getNonMDStrings().size()); 2485 2486 // Write all the records 2487 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2488 2489 if (VE.getNonMDStrings().size() > IndexThreshold) { 2490 // Now that we have emitted all the records we will emit the index. But 2491 // first 2492 // backpatch the forward reference so that the reader can skip the records 2493 // efficiently. 2494 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2495 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2496 2497 // Delta encode the index. 2498 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2499 for (auto &Elt : IndexPos) { 2500 auto EltDelta = Elt - PreviousValue; 2501 PreviousValue = Elt; 2502 Elt = EltDelta; 2503 } 2504 // Emit the index record. 2505 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2506 IndexPos.clear(); 2507 } 2508 2509 // Write the named metadata now. 2510 writeNamedMetadata(Record); 2511 2512 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2513 SmallVector<uint64_t, 4> Record; 2514 Record.push_back(VE.getValueID(&GO)); 2515 pushGlobalMetadataAttachment(Record, GO); 2516 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2517 }; 2518 for (const Function &F : M) 2519 if (F.isDeclaration() && F.hasMetadata()) 2520 AddDeclAttachedMetadata(F); 2521 // FIXME: Only store metadata for declarations here, and move data for global 2522 // variable definitions to a separate block (PR28134). 2523 for (const GlobalVariable &GV : M.globals()) 2524 if (GV.hasMetadata()) 2525 AddDeclAttachedMetadata(GV); 2526 2527 Stream.ExitBlock(); 2528 } 2529 2530 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2531 if (!VE.hasMDs()) 2532 return; 2533 2534 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2535 SmallVector<uint64_t, 64> Record; 2536 writeMetadataStrings(VE.getMDStrings(), Record); 2537 writeMetadataRecords(VE.getNonMDStrings(), Record); 2538 Stream.ExitBlock(); 2539 } 2540 2541 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2542 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2543 // [n x [id, mdnode]] 2544 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2545 GO.getAllMetadata(MDs); 2546 for (const auto &I : MDs) { 2547 Record.push_back(I.first); 2548 Record.push_back(VE.getMetadataID(I.second)); 2549 } 2550 } 2551 2552 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2553 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2554 2555 SmallVector<uint64_t, 64> Record; 2556 2557 if (F.hasMetadata()) { 2558 pushGlobalMetadataAttachment(Record, F); 2559 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2560 Record.clear(); 2561 } 2562 2563 // Write metadata attachments 2564 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2565 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2566 for (const BasicBlock &BB : F) 2567 for (const Instruction &I : BB) { 2568 MDs.clear(); 2569 I.getAllMetadataOtherThanDebugLoc(MDs); 2570 2571 // If no metadata, ignore instruction. 2572 if (MDs.empty()) continue; 2573 2574 Record.push_back(VE.getInstructionID(&I)); 2575 2576 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2577 Record.push_back(MDs[i].first); 2578 Record.push_back(VE.getMetadataID(MDs[i].second)); 2579 } 2580 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2581 Record.clear(); 2582 } 2583 2584 Stream.ExitBlock(); 2585 } 2586 2587 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2588 SmallVector<uint64_t, 64> Record; 2589 2590 // Write metadata kinds 2591 // METADATA_KIND - [n x [id, name]] 2592 SmallVector<StringRef, 8> Names; 2593 M.getMDKindNames(Names); 2594 2595 if (Names.empty()) return; 2596 2597 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2598 2599 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2600 Record.push_back(MDKindID); 2601 StringRef KName = Names[MDKindID]; 2602 Record.append(KName.begin(), KName.end()); 2603 2604 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2605 Record.clear(); 2606 } 2607 2608 Stream.ExitBlock(); 2609 } 2610 2611 void ModuleBitcodeWriter::writeOperandBundleTags() { 2612 // Write metadata kinds 2613 // 2614 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2615 // 2616 // OPERAND_BUNDLE_TAG - [strchr x N] 2617 2618 SmallVector<StringRef, 8> Tags; 2619 M.getOperandBundleTags(Tags); 2620 2621 if (Tags.empty()) 2622 return; 2623 2624 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2625 2626 SmallVector<uint64_t, 64> Record; 2627 2628 for (auto Tag : Tags) { 2629 Record.append(Tag.begin(), Tag.end()); 2630 2631 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2632 Record.clear(); 2633 } 2634 2635 Stream.ExitBlock(); 2636 } 2637 2638 void ModuleBitcodeWriter::writeSyncScopeNames() { 2639 SmallVector<StringRef, 8> SSNs; 2640 M.getContext().getSyncScopeNames(SSNs); 2641 if (SSNs.empty()) 2642 return; 2643 2644 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2645 2646 SmallVector<uint64_t, 64> Record; 2647 for (auto SSN : SSNs) { 2648 Record.append(SSN.begin(), SSN.end()); 2649 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2650 Record.clear(); 2651 } 2652 2653 Stream.ExitBlock(); 2654 } 2655 2656 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2657 bool isGlobal) { 2658 if (FirstVal == LastVal) return; 2659 2660 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2661 2662 unsigned AggregateAbbrev = 0; 2663 unsigned String8Abbrev = 0; 2664 unsigned CString7Abbrev = 0; 2665 unsigned CString6Abbrev = 0; 2666 // If this is a constant pool for the module, emit module-specific abbrevs. 2667 if (isGlobal) { 2668 // Abbrev for CST_CODE_AGGREGATE. 2669 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2670 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2673 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2674 2675 // Abbrev for CST_CODE_STRING. 2676 Abbv = std::make_shared<BitCodeAbbrev>(); 2677 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2680 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2681 // Abbrev for CST_CODE_CSTRING. 2682 Abbv = std::make_shared<BitCodeAbbrev>(); 2683 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2686 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2687 // Abbrev for CST_CODE_CSTRING. 2688 Abbv = std::make_shared<BitCodeAbbrev>(); 2689 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2692 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2693 } 2694 2695 SmallVector<uint64_t, 64> Record; 2696 2697 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2698 Type *LastTy = nullptr; 2699 for (unsigned i = FirstVal; i != LastVal; ++i) { 2700 const Value *V = Vals[i].first; 2701 // If we need to switch types, do so now. 2702 if (V->getType() != LastTy) { 2703 LastTy = V->getType(); 2704 Record.push_back(VE.getTypeID(LastTy)); 2705 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2706 CONSTANTS_SETTYPE_ABBREV); 2707 Record.clear(); 2708 } 2709 2710 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2711 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2712 Record.push_back( 2713 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2714 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2715 2716 // Add the asm string. 2717 const std::string &AsmStr = IA->getAsmString(); 2718 Record.push_back(AsmStr.size()); 2719 Record.append(AsmStr.begin(), AsmStr.end()); 2720 2721 // Add the constraint string. 2722 const std::string &ConstraintStr = IA->getConstraintString(); 2723 Record.push_back(ConstraintStr.size()); 2724 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2725 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2726 Record.clear(); 2727 continue; 2728 } 2729 const Constant *C = cast<Constant>(V); 2730 unsigned Code = -1U; 2731 unsigned AbbrevToUse = 0; 2732 if (C->isNullValue()) { 2733 Code = bitc::CST_CODE_NULL; 2734 } else if (isa<PoisonValue>(C)) { 2735 Code = bitc::CST_CODE_POISON; 2736 } else if (isa<UndefValue>(C)) { 2737 Code = bitc::CST_CODE_UNDEF; 2738 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2739 if (IV->getBitWidth() <= 64) { 2740 uint64_t V = IV->getSExtValue(); 2741 emitSignedInt64(Record, V); 2742 Code = bitc::CST_CODE_INTEGER; 2743 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2744 } else { // Wide integers, > 64 bits in size. 2745 emitWideAPInt(Record, IV->getValue()); 2746 Code = bitc::CST_CODE_WIDE_INTEGER; 2747 } 2748 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2749 Code = bitc::CST_CODE_FLOAT; 2750 Type *Ty = CFP->getType()->getScalarType(); 2751 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2752 Ty->isDoubleTy()) { 2753 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2754 } else if (Ty->isX86_FP80Ty()) { 2755 // api needed to prevent premature destruction 2756 // bits are not in the same order as a normal i80 APInt, compensate. 2757 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2758 const uint64_t *p = api.getRawData(); 2759 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2760 Record.push_back(p[0] & 0xffffLL); 2761 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2762 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2763 const uint64_t *p = api.getRawData(); 2764 Record.push_back(p[0]); 2765 Record.push_back(p[1]); 2766 } else { 2767 assert(0 && "Unknown FP type!"); 2768 } 2769 } else if (isa<ConstantDataSequential>(C) && 2770 cast<ConstantDataSequential>(C)->isString()) { 2771 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2772 // Emit constant strings specially. 2773 unsigned NumElts = Str->getNumElements(); 2774 // If this is a null-terminated string, use the denser CSTRING encoding. 2775 if (Str->isCString()) { 2776 Code = bitc::CST_CODE_CSTRING; 2777 --NumElts; // Don't encode the null, which isn't allowed by char6. 2778 } else { 2779 Code = bitc::CST_CODE_STRING; 2780 AbbrevToUse = String8Abbrev; 2781 } 2782 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2783 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2784 for (unsigned i = 0; i != NumElts; ++i) { 2785 unsigned char V = Str->getElementAsInteger(i); 2786 Record.push_back(V); 2787 isCStr7 &= (V & 128) == 0; 2788 if (isCStrChar6) 2789 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2790 } 2791 2792 if (isCStrChar6) 2793 AbbrevToUse = CString6Abbrev; 2794 else if (isCStr7) 2795 AbbrevToUse = CString7Abbrev; 2796 } else if (const ConstantDataSequential *CDS = 2797 dyn_cast<ConstantDataSequential>(C)) { 2798 Code = bitc::CST_CODE_DATA; 2799 Type *EltTy = CDS->getElementType(); 2800 if (isa<IntegerType>(EltTy)) { 2801 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2802 Record.push_back(CDS->getElementAsInteger(i)); 2803 } else { 2804 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2805 Record.push_back( 2806 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2807 } 2808 } else if (isa<ConstantAggregate>(C)) { 2809 Code = bitc::CST_CODE_AGGREGATE; 2810 for (const Value *Op : C->operands()) 2811 Record.push_back(VE.getValueID(Op)); 2812 AbbrevToUse = AggregateAbbrev; 2813 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2814 switch (CE->getOpcode()) { 2815 default: 2816 if (Instruction::isCast(CE->getOpcode())) { 2817 Code = bitc::CST_CODE_CE_CAST; 2818 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2819 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2820 Record.push_back(VE.getValueID(C->getOperand(0))); 2821 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2822 } else { 2823 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2824 Code = bitc::CST_CODE_CE_BINOP; 2825 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2826 Record.push_back(VE.getValueID(C->getOperand(0))); 2827 Record.push_back(VE.getValueID(C->getOperand(1))); 2828 uint64_t Flags = getOptimizationFlags(CE); 2829 if (Flags != 0) 2830 Record.push_back(Flags); 2831 } 2832 break; 2833 case Instruction::FNeg: { 2834 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2835 Code = bitc::CST_CODE_CE_UNOP; 2836 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2837 Record.push_back(VE.getValueID(C->getOperand(0))); 2838 uint64_t Flags = getOptimizationFlags(CE); 2839 if (Flags != 0) 2840 Record.push_back(Flags); 2841 break; 2842 } 2843 case Instruction::GetElementPtr: { 2844 Code = bitc::CST_CODE_CE_GEP; 2845 const auto *GO = cast<GEPOperator>(C); 2846 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2847 Record.push_back(getOptimizationFlags(GO)); 2848 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2849 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2850 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2851 } 2852 for (const Value *Op : CE->operands()) { 2853 Record.push_back(VE.getTypeID(Op->getType())); 2854 Record.push_back(VE.getValueID(Op)); 2855 } 2856 break; 2857 } 2858 case Instruction::ExtractElement: 2859 Code = bitc::CST_CODE_CE_EXTRACTELT; 2860 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2861 Record.push_back(VE.getValueID(C->getOperand(0))); 2862 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2863 Record.push_back(VE.getValueID(C->getOperand(1))); 2864 break; 2865 case Instruction::InsertElement: 2866 Code = bitc::CST_CODE_CE_INSERTELT; 2867 Record.push_back(VE.getValueID(C->getOperand(0))); 2868 Record.push_back(VE.getValueID(C->getOperand(1))); 2869 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2870 Record.push_back(VE.getValueID(C->getOperand(2))); 2871 break; 2872 case Instruction::ShuffleVector: 2873 // If the return type and argument types are the same, this is a 2874 // standard shufflevector instruction. If the types are different, 2875 // then the shuffle is widening or truncating the input vectors, and 2876 // the argument type must also be encoded. 2877 if (C->getType() == C->getOperand(0)->getType()) { 2878 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2879 } else { 2880 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2881 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2882 } 2883 Record.push_back(VE.getValueID(C->getOperand(0))); 2884 Record.push_back(VE.getValueID(C->getOperand(1))); 2885 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2886 break; 2887 } 2888 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2889 Code = bitc::CST_CODE_BLOCKADDRESS; 2890 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2891 Record.push_back(VE.getValueID(BA->getFunction())); 2892 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2893 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2894 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2895 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2896 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2897 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2898 Code = bitc::CST_CODE_NO_CFI_VALUE; 2899 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2900 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2901 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2902 Code = bitc::CST_CODE_PTRAUTH; 2903 Record.push_back(VE.getValueID(CPA->getPointer())); 2904 Record.push_back(VE.getValueID(CPA->getKey())); 2905 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2906 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2907 } else { 2908 #ifndef NDEBUG 2909 C->dump(); 2910 #endif 2911 llvm_unreachable("Unknown constant!"); 2912 } 2913 Stream.EmitRecord(Code, Record, AbbrevToUse); 2914 Record.clear(); 2915 } 2916 2917 Stream.ExitBlock(); 2918 } 2919 2920 void ModuleBitcodeWriter::writeModuleConstants() { 2921 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2922 2923 // Find the first constant to emit, which is the first non-globalvalue value. 2924 // We know globalvalues have been emitted by WriteModuleInfo. 2925 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2926 if (!isa<GlobalValue>(Vals[i].first)) { 2927 writeConstants(i, Vals.size(), true); 2928 return; 2929 } 2930 } 2931 } 2932 2933 /// pushValueAndType - The file has to encode both the value and type id for 2934 /// many values, because we need to know what type to create for forward 2935 /// references. However, most operands are not forward references, so this type 2936 /// field is not needed. 2937 /// 2938 /// This function adds V's value ID to Vals. If the value ID is higher than the 2939 /// instruction ID, then it is a forward reference, and it also includes the 2940 /// type ID. The value ID that is written is encoded relative to the InstID. 2941 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2942 SmallVectorImpl<unsigned> &Vals) { 2943 unsigned ValID = VE.getValueID(V); 2944 // Make encoding relative to the InstID. 2945 Vals.push_back(InstID - ValID); 2946 if (ValID >= InstID) { 2947 Vals.push_back(VE.getTypeID(V->getType())); 2948 return true; 2949 } 2950 return false; 2951 } 2952 2953 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID, 2954 SmallVectorImpl<unsigned> &Vals) { 2955 bool IsMetadata = V->getType()->isMetadataTy(); 2956 if (IsMetadata) { 2957 Vals.push_back(bitc::OB_METADATA); 2958 Metadata *MD = cast<MetadataAsValue>(V)->getMetadata(); 2959 unsigned ValID = VE.getMetadataID(MD); 2960 Vals.push_back(InstID - ValID); 2961 return false; 2962 } 2963 return pushValueAndType(V, InstID, Vals); 2964 } 2965 2966 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2967 unsigned InstID) { 2968 SmallVector<unsigned, 64> Record; 2969 LLVMContext &C = CS.getContext(); 2970 2971 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2972 const auto &Bundle = CS.getOperandBundleAt(i); 2973 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2974 2975 for (auto &Input : Bundle.Inputs) 2976 pushValueOrMetadata(Input, InstID, Record); 2977 2978 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2979 Record.clear(); 2980 } 2981 } 2982 2983 /// pushValue - Like pushValueAndType, but where the type of the value is 2984 /// omitted (perhaps it was already encoded in an earlier operand). 2985 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2986 SmallVectorImpl<unsigned> &Vals) { 2987 unsigned ValID = VE.getValueID(V); 2988 Vals.push_back(InstID - ValID); 2989 } 2990 2991 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2992 SmallVectorImpl<uint64_t> &Vals) { 2993 unsigned ValID = VE.getValueID(V); 2994 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2995 emitSignedInt64(Vals, diff); 2996 } 2997 2998 /// WriteInstruction - Emit an instruction to the specified stream. 2999 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 3000 unsigned InstID, 3001 SmallVectorImpl<unsigned> &Vals) { 3002 unsigned Code = 0; 3003 unsigned AbbrevToUse = 0; 3004 VE.setInstructionID(&I); 3005 switch (I.getOpcode()) { 3006 default: 3007 if (Instruction::isCast(I.getOpcode())) { 3008 Code = bitc::FUNC_CODE_INST_CAST; 3009 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3010 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 3011 Vals.push_back(VE.getTypeID(I.getType())); 3012 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 3013 uint64_t Flags = getOptimizationFlags(&I); 3014 if (Flags != 0) { 3015 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 3016 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 3017 Vals.push_back(Flags); 3018 } 3019 } else { 3020 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 3021 Code = bitc::FUNC_CODE_INST_BINOP; 3022 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3023 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 3024 pushValue(I.getOperand(1), InstID, Vals); 3025 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 3026 uint64_t Flags = getOptimizationFlags(&I); 3027 if (Flags != 0) { 3028 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 3029 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 3030 Vals.push_back(Flags); 3031 } 3032 } 3033 break; 3034 case Instruction::FNeg: { 3035 Code = bitc::FUNC_CODE_INST_UNOP; 3036 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3037 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3038 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3039 uint64_t Flags = getOptimizationFlags(&I); 3040 if (Flags != 0) { 3041 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3042 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3043 Vals.push_back(Flags); 3044 } 3045 break; 3046 } 3047 case Instruction::GetElementPtr: { 3048 Code = bitc::FUNC_CODE_INST_GEP; 3049 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3050 auto &GEPInst = cast<GetElementPtrInst>(I); 3051 Vals.push_back(getOptimizationFlags(&I)); 3052 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3053 for (const Value *Op : I.operands()) 3054 pushValueAndType(Op, InstID, Vals); 3055 break; 3056 } 3057 case Instruction::ExtractValue: { 3058 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3059 pushValueAndType(I.getOperand(0), InstID, Vals); 3060 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3061 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3062 break; 3063 } 3064 case Instruction::InsertValue: { 3065 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3066 pushValueAndType(I.getOperand(0), InstID, Vals); 3067 pushValueAndType(I.getOperand(1), InstID, Vals); 3068 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3069 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3070 break; 3071 } 3072 case Instruction::Select: { 3073 Code = bitc::FUNC_CODE_INST_VSELECT; 3074 pushValueAndType(I.getOperand(1), InstID, Vals); 3075 pushValue(I.getOperand(2), InstID, Vals); 3076 pushValueAndType(I.getOperand(0), InstID, Vals); 3077 uint64_t Flags = getOptimizationFlags(&I); 3078 if (Flags != 0) 3079 Vals.push_back(Flags); 3080 break; 3081 } 3082 case Instruction::ExtractElement: 3083 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3084 pushValueAndType(I.getOperand(0), InstID, Vals); 3085 pushValueAndType(I.getOperand(1), InstID, Vals); 3086 break; 3087 case Instruction::InsertElement: 3088 Code = bitc::FUNC_CODE_INST_INSERTELT; 3089 pushValueAndType(I.getOperand(0), InstID, Vals); 3090 pushValue(I.getOperand(1), InstID, Vals); 3091 pushValueAndType(I.getOperand(2), InstID, Vals); 3092 break; 3093 case Instruction::ShuffleVector: 3094 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3095 pushValueAndType(I.getOperand(0), InstID, Vals); 3096 pushValue(I.getOperand(1), InstID, Vals); 3097 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3098 Vals); 3099 break; 3100 case Instruction::ICmp: 3101 case Instruction::FCmp: { 3102 // compare returning Int1Ty or vector of Int1Ty 3103 Code = bitc::FUNC_CODE_INST_CMP2; 3104 pushValueAndType(I.getOperand(0), InstID, Vals); 3105 pushValue(I.getOperand(1), InstID, Vals); 3106 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3107 uint64_t Flags = getOptimizationFlags(&I); 3108 if (Flags != 0) 3109 Vals.push_back(Flags); 3110 break; 3111 } 3112 3113 case Instruction::Ret: 3114 { 3115 Code = bitc::FUNC_CODE_INST_RET; 3116 unsigned NumOperands = I.getNumOperands(); 3117 if (NumOperands == 0) 3118 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3119 else if (NumOperands == 1) { 3120 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3121 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3122 } else { 3123 for (const Value *Op : I.operands()) 3124 pushValueAndType(Op, InstID, Vals); 3125 } 3126 } 3127 break; 3128 case Instruction::Br: 3129 { 3130 Code = bitc::FUNC_CODE_INST_BR; 3131 const BranchInst &II = cast<BranchInst>(I); 3132 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3133 if (II.isConditional()) { 3134 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3135 pushValue(II.getCondition(), InstID, Vals); 3136 } 3137 } 3138 break; 3139 case Instruction::Switch: 3140 { 3141 Code = bitc::FUNC_CODE_INST_SWITCH; 3142 const SwitchInst &SI = cast<SwitchInst>(I); 3143 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3144 pushValue(SI.getCondition(), InstID, Vals); 3145 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3146 for (auto Case : SI.cases()) { 3147 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3148 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3149 } 3150 } 3151 break; 3152 case Instruction::IndirectBr: 3153 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3154 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3155 // Encode the address operand as relative, but not the basic blocks. 3156 pushValue(I.getOperand(0), InstID, Vals); 3157 for (const Value *Op : drop_begin(I.operands())) 3158 Vals.push_back(VE.getValueID(Op)); 3159 break; 3160 3161 case Instruction::Invoke: { 3162 const InvokeInst *II = cast<InvokeInst>(&I); 3163 const Value *Callee = II->getCalledOperand(); 3164 FunctionType *FTy = II->getFunctionType(); 3165 3166 if (II->hasOperandBundles()) 3167 writeOperandBundles(*II, InstID); 3168 3169 Code = bitc::FUNC_CODE_INST_INVOKE; 3170 3171 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3172 Vals.push_back(II->getCallingConv() | 1 << 13); 3173 Vals.push_back(VE.getValueID(II->getNormalDest())); 3174 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3175 Vals.push_back(VE.getTypeID(FTy)); 3176 pushValueAndType(Callee, InstID, Vals); 3177 3178 // Emit value #'s for the fixed parameters. 3179 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3180 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3181 3182 // Emit type/value pairs for varargs params. 3183 if (FTy->isVarArg()) { 3184 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3185 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3186 } 3187 break; 3188 } 3189 case Instruction::Resume: 3190 Code = bitc::FUNC_CODE_INST_RESUME; 3191 pushValueAndType(I.getOperand(0), InstID, Vals); 3192 break; 3193 case Instruction::CleanupRet: { 3194 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3195 const auto &CRI = cast<CleanupReturnInst>(I); 3196 pushValue(CRI.getCleanupPad(), InstID, Vals); 3197 if (CRI.hasUnwindDest()) 3198 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3199 break; 3200 } 3201 case Instruction::CatchRet: { 3202 Code = bitc::FUNC_CODE_INST_CATCHRET; 3203 const auto &CRI = cast<CatchReturnInst>(I); 3204 pushValue(CRI.getCatchPad(), InstID, Vals); 3205 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3206 break; 3207 } 3208 case Instruction::CleanupPad: 3209 case Instruction::CatchPad: { 3210 const auto &FuncletPad = cast<FuncletPadInst>(I); 3211 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3212 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3213 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3214 3215 unsigned NumArgOperands = FuncletPad.arg_size(); 3216 Vals.push_back(NumArgOperands); 3217 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3218 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3219 break; 3220 } 3221 case Instruction::CatchSwitch: { 3222 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3223 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3224 3225 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3226 3227 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3228 Vals.push_back(NumHandlers); 3229 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3230 Vals.push_back(VE.getValueID(CatchPadBB)); 3231 3232 if (CatchSwitch.hasUnwindDest()) 3233 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3234 break; 3235 } 3236 case Instruction::CallBr: { 3237 const CallBrInst *CBI = cast<CallBrInst>(&I); 3238 const Value *Callee = CBI->getCalledOperand(); 3239 FunctionType *FTy = CBI->getFunctionType(); 3240 3241 if (CBI->hasOperandBundles()) 3242 writeOperandBundles(*CBI, InstID); 3243 3244 Code = bitc::FUNC_CODE_INST_CALLBR; 3245 3246 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3247 3248 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3249 1 << bitc::CALL_EXPLICIT_TYPE); 3250 3251 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3252 Vals.push_back(CBI->getNumIndirectDests()); 3253 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3254 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3255 3256 Vals.push_back(VE.getTypeID(FTy)); 3257 pushValueAndType(Callee, InstID, Vals); 3258 3259 // Emit value #'s for the fixed parameters. 3260 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3261 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3262 3263 // Emit type/value pairs for varargs params. 3264 if (FTy->isVarArg()) { 3265 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3266 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3267 } 3268 break; 3269 } 3270 case Instruction::Unreachable: 3271 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3272 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3273 break; 3274 3275 case Instruction::PHI: { 3276 const PHINode &PN = cast<PHINode>(I); 3277 Code = bitc::FUNC_CODE_INST_PHI; 3278 // With the newer instruction encoding, forward references could give 3279 // negative valued IDs. This is most common for PHIs, so we use 3280 // signed VBRs. 3281 SmallVector<uint64_t, 128> Vals64; 3282 Vals64.push_back(VE.getTypeID(PN.getType())); 3283 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3284 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3285 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3286 } 3287 3288 uint64_t Flags = getOptimizationFlags(&I); 3289 if (Flags != 0) 3290 Vals64.push_back(Flags); 3291 3292 // Emit a Vals64 vector and exit. 3293 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3294 Vals64.clear(); 3295 return; 3296 } 3297 3298 case Instruction::LandingPad: { 3299 const LandingPadInst &LP = cast<LandingPadInst>(I); 3300 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3301 Vals.push_back(VE.getTypeID(LP.getType())); 3302 Vals.push_back(LP.isCleanup()); 3303 Vals.push_back(LP.getNumClauses()); 3304 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3305 if (LP.isCatch(I)) 3306 Vals.push_back(LandingPadInst::Catch); 3307 else 3308 Vals.push_back(LandingPadInst::Filter); 3309 pushValueAndType(LP.getClause(I), InstID, Vals); 3310 } 3311 break; 3312 } 3313 3314 case Instruction::Alloca: { 3315 Code = bitc::FUNC_CODE_INST_ALLOCA; 3316 const AllocaInst &AI = cast<AllocaInst>(I); 3317 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3318 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3319 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3320 using APV = AllocaPackedValues; 3321 unsigned Record = 0; 3322 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3323 Bitfield::set<APV::AlignLower>( 3324 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3325 Bitfield::set<APV::AlignUpper>(Record, 3326 EncodedAlign >> APV::AlignLower::Bits); 3327 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3328 Bitfield::set<APV::ExplicitType>(Record, true); 3329 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3330 Vals.push_back(Record); 3331 3332 unsigned AS = AI.getAddressSpace(); 3333 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3334 Vals.push_back(AS); 3335 break; 3336 } 3337 3338 case Instruction::Load: 3339 if (cast<LoadInst>(I).isAtomic()) { 3340 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3341 pushValueAndType(I.getOperand(0), InstID, Vals); 3342 } else { 3343 Code = bitc::FUNC_CODE_INST_LOAD; 3344 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3345 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3346 } 3347 Vals.push_back(VE.getTypeID(I.getType())); 3348 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3349 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3350 if (cast<LoadInst>(I).isAtomic()) { 3351 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3352 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3353 } 3354 break; 3355 case Instruction::Store: 3356 if (cast<StoreInst>(I).isAtomic()) 3357 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3358 else 3359 Code = bitc::FUNC_CODE_INST_STORE; 3360 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3361 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3362 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3363 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3364 if (cast<StoreInst>(I).isAtomic()) { 3365 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3366 Vals.push_back( 3367 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3368 } 3369 break; 3370 case Instruction::AtomicCmpXchg: 3371 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3372 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3373 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3374 pushValue(I.getOperand(2), InstID, Vals); // newval. 3375 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3376 Vals.push_back( 3377 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3378 Vals.push_back( 3379 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3380 Vals.push_back( 3381 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3382 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3383 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3384 break; 3385 case Instruction::AtomicRMW: 3386 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3387 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3388 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3389 Vals.push_back( 3390 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3391 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3392 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3393 Vals.push_back( 3394 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3395 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3396 break; 3397 case Instruction::Fence: 3398 Code = bitc::FUNC_CODE_INST_FENCE; 3399 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3400 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3401 break; 3402 case Instruction::Call: { 3403 const CallInst &CI = cast<CallInst>(I); 3404 FunctionType *FTy = CI.getFunctionType(); 3405 3406 if (CI.hasOperandBundles()) 3407 writeOperandBundles(CI, InstID); 3408 3409 Code = bitc::FUNC_CODE_INST_CALL; 3410 3411 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3412 3413 unsigned Flags = getOptimizationFlags(&I); 3414 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3415 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3416 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3417 1 << bitc::CALL_EXPLICIT_TYPE | 3418 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3419 unsigned(Flags != 0) << bitc::CALL_FMF); 3420 if (Flags != 0) 3421 Vals.push_back(Flags); 3422 3423 Vals.push_back(VE.getTypeID(FTy)); 3424 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3425 3426 // Emit value #'s for the fixed parameters. 3427 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3428 // Check for labels (can happen with asm labels). 3429 if (FTy->getParamType(i)->isLabelTy()) 3430 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3431 else 3432 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3433 } 3434 3435 // Emit type/value pairs for varargs params. 3436 if (FTy->isVarArg()) { 3437 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3438 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3439 } 3440 break; 3441 } 3442 case Instruction::VAArg: 3443 Code = bitc::FUNC_CODE_INST_VAARG; 3444 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3445 pushValue(I.getOperand(0), InstID, Vals); // valist. 3446 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3447 break; 3448 case Instruction::Freeze: 3449 Code = bitc::FUNC_CODE_INST_FREEZE; 3450 pushValueAndType(I.getOperand(0), InstID, Vals); 3451 break; 3452 } 3453 3454 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3455 Vals.clear(); 3456 } 3457 3458 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3459 /// to allow clients to efficiently find the function body. 3460 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3461 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3462 // Get the offset of the VST we are writing, and backpatch it into 3463 // the VST forward declaration record. 3464 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3465 // The BitcodeStartBit was the stream offset of the identification block. 3466 VSTOffset -= bitcodeStartBit(); 3467 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3468 // Note that we add 1 here because the offset is relative to one word 3469 // before the start of the identification block, which was historically 3470 // always the start of the regular bitcode header. 3471 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3472 3473 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3474 3475 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3476 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3479 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3480 3481 for (const Function &F : M) { 3482 uint64_t Record[2]; 3483 3484 if (F.isDeclaration()) 3485 continue; 3486 3487 Record[0] = VE.getValueID(&F); 3488 3489 // Save the word offset of the function (from the start of the 3490 // actual bitcode written to the stream). 3491 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3492 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3493 // Note that we add 1 here because the offset is relative to one word 3494 // before the start of the identification block, which was historically 3495 // always the start of the regular bitcode header. 3496 Record[1] = BitcodeIndex / 32 + 1; 3497 3498 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3499 } 3500 3501 Stream.ExitBlock(); 3502 } 3503 3504 /// Emit names for arguments, instructions and basic blocks in a function. 3505 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3506 const ValueSymbolTable &VST) { 3507 if (VST.empty()) 3508 return; 3509 3510 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3511 3512 // FIXME: Set up the abbrev, we know how many values there are! 3513 // FIXME: We know if the type names can use 7-bit ascii. 3514 SmallVector<uint64_t, 64> NameVals; 3515 3516 for (const ValueName &Name : VST) { 3517 // Figure out the encoding to use for the name. 3518 StringEncoding Bits = getStringEncoding(Name.getKey()); 3519 3520 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3521 NameVals.push_back(VE.getValueID(Name.getValue())); 3522 3523 // VST_CODE_ENTRY: [valueid, namechar x N] 3524 // VST_CODE_BBENTRY: [bbid, namechar x N] 3525 unsigned Code; 3526 if (isa<BasicBlock>(Name.getValue())) { 3527 Code = bitc::VST_CODE_BBENTRY; 3528 if (Bits == SE_Char6) 3529 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3530 } else { 3531 Code = bitc::VST_CODE_ENTRY; 3532 if (Bits == SE_Char6) 3533 AbbrevToUse = VST_ENTRY_6_ABBREV; 3534 else if (Bits == SE_Fixed7) 3535 AbbrevToUse = VST_ENTRY_7_ABBREV; 3536 } 3537 3538 for (const auto P : Name.getKey()) 3539 NameVals.push_back((unsigned char)P); 3540 3541 // Emit the finished record. 3542 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3543 NameVals.clear(); 3544 } 3545 3546 Stream.ExitBlock(); 3547 } 3548 3549 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3550 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3551 unsigned Code; 3552 if (isa<BasicBlock>(Order.V)) 3553 Code = bitc::USELIST_CODE_BB; 3554 else 3555 Code = bitc::USELIST_CODE_DEFAULT; 3556 3557 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3558 Record.push_back(VE.getValueID(Order.V)); 3559 Stream.EmitRecord(Code, Record); 3560 } 3561 3562 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3563 assert(VE.shouldPreserveUseListOrder() && 3564 "Expected to be preserving use-list order"); 3565 3566 auto hasMore = [&]() { 3567 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3568 }; 3569 if (!hasMore()) 3570 // Nothing to do. 3571 return; 3572 3573 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3574 while (hasMore()) { 3575 writeUseList(std::move(VE.UseListOrders.back())); 3576 VE.UseListOrders.pop_back(); 3577 } 3578 Stream.ExitBlock(); 3579 } 3580 3581 /// Emit a function body to the module stream. 3582 void ModuleBitcodeWriter::writeFunction( 3583 const Function &F, 3584 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3585 // Save the bitcode index of the start of this function block for recording 3586 // in the VST. 3587 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3588 3589 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3590 VE.incorporateFunction(F); 3591 3592 SmallVector<unsigned, 64> Vals; 3593 3594 // Emit the number of basic blocks, so the reader can create them ahead of 3595 // time. 3596 Vals.push_back(VE.getBasicBlocks().size()); 3597 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3598 Vals.clear(); 3599 3600 // If there are function-local constants, emit them now. 3601 unsigned CstStart, CstEnd; 3602 VE.getFunctionConstantRange(CstStart, CstEnd); 3603 writeConstants(CstStart, CstEnd, false); 3604 3605 // If there is function-local metadata, emit it now. 3606 writeFunctionMetadata(F); 3607 3608 // Keep a running idea of what the instruction ID is. 3609 unsigned InstID = CstEnd; 3610 3611 bool NeedsMetadataAttachment = F.hasMetadata(); 3612 3613 DILocation *LastDL = nullptr; 3614 SmallSetVector<Function *, 4> BlockAddressUsers; 3615 3616 // Finally, emit all the instructions, in order. 3617 for (const BasicBlock &BB : F) { 3618 for (const Instruction &I : BB) { 3619 writeInstruction(I, InstID, Vals); 3620 3621 if (!I.getType()->isVoidTy()) 3622 ++InstID; 3623 3624 // If the instruction has metadata, write a metadata attachment later. 3625 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3626 3627 // If the instruction has a debug location, emit it. 3628 if (DILocation *DL = I.getDebugLoc()) { 3629 if (DL == LastDL) { 3630 // Just repeat the same debug loc as last time. 3631 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3632 } else { 3633 Vals.push_back(DL->getLine()); 3634 Vals.push_back(DL->getColumn()); 3635 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3636 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3637 Vals.push_back(DL->isImplicitCode()); 3638 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3639 Vals.clear(); 3640 LastDL = DL; 3641 } 3642 } 3643 3644 // If the instruction has DbgRecords attached to it, emit them. Note that 3645 // they come after the instruction so that it's easy to attach them again 3646 // when reading the bitcode, even though conceptually the debug locations 3647 // start "before" the instruction. 3648 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3649 /// Try to push the value only (unwrapped), otherwise push the 3650 /// metadata wrapped value. Returns true if the value was pushed 3651 /// without the ValueAsMetadata wrapper. 3652 auto PushValueOrMetadata = [&Vals, InstID, 3653 this](Metadata *RawLocation) { 3654 assert(RawLocation && 3655 "RawLocation unexpectedly null in DbgVariableRecord"); 3656 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3657 SmallVector<unsigned, 2> ValAndType; 3658 // If the value is a fwd-ref the type is also pushed. We don't 3659 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3660 // returns false if the value is pushed without type). 3661 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3662 Vals.push_back(ValAndType[0]); 3663 return true; 3664 } 3665 } 3666 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3667 // fwd-ref. Push the metadata ID. 3668 Vals.push_back(VE.getMetadataID(RawLocation)); 3669 return false; 3670 }; 3671 3672 // Write out non-instruction debug information attached to this 3673 // instruction. Write it after the instruction so that it's easy to 3674 // re-attach to the instruction reading the records in. 3675 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3676 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3677 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3678 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3679 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3680 Vals.clear(); 3681 continue; 3682 } 3683 3684 // First 3 fields are common to all kinds: 3685 // DILocation, DILocalVariable, DIExpression 3686 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3687 // ..., LocationMetadata 3688 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3689 // ..., Value 3690 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3691 // ..., LocationMetadata 3692 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3693 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3694 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3695 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3696 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3697 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3698 if (DVR.isDbgValue()) { 3699 if (PushValueOrMetadata(DVR.getRawLocation())) 3700 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3701 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3702 else 3703 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3704 } else if (DVR.isDbgDeclare()) { 3705 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3706 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3707 } else { 3708 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3709 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3710 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3711 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3712 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3713 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3714 } 3715 Vals.clear(); 3716 } 3717 } 3718 } 3719 3720 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3721 SmallVector<Value *> Worklist{BA}; 3722 SmallPtrSet<Value *, 8> Visited{BA}; 3723 while (!Worklist.empty()) { 3724 Value *V = Worklist.pop_back_val(); 3725 for (User *U : V->users()) { 3726 if (auto *I = dyn_cast<Instruction>(U)) { 3727 Function *P = I->getFunction(); 3728 if (P != &F) 3729 BlockAddressUsers.insert(P); 3730 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3731 Visited.insert(U).second) 3732 Worklist.push_back(U); 3733 } 3734 } 3735 } 3736 } 3737 3738 if (!BlockAddressUsers.empty()) { 3739 Vals.resize(BlockAddressUsers.size()); 3740 for (auto I : llvm::enumerate(BlockAddressUsers)) 3741 Vals[I.index()] = VE.getValueID(I.value()); 3742 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3743 Vals.clear(); 3744 } 3745 3746 // Emit names for all the instructions etc. 3747 if (auto *Symtab = F.getValueSymbolTable()) 3748 writeFunctionLevelValueSymbolTable(*Symtab); 3749 3750 if (NeedsMetadataAttachment) 3751 writeFunctionMetadataAttachment(F); 3752 if (VE.shouldPreserveUseListOrder()) 3753 writeUseListBlock(&F); 3754 VE.purgeFunction(); 3755 Stream.ExitBlock(); 3756 } 3757 3758 // Emit blockinfo, which defines the standard abbreviations etc. 3759 void ModuleBitcodeWriter::writeBlockInfo() { 3760 // We only want to emit block info records for blocks that have multiple 3761 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3762 // Other blocks can define their abbrevs inline. 3763 Stream.EnterBlockInfoBlock(); 3764 3765 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3766 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3771 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3772 VST_ENTRY_8_ABBREV) 3773 llvm_unreachable("Unexpected abbrev ordering!"); 3774 } 3775 3776 { // 7-bit fixed width VST_CODE_ENTRY strings. 3777 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3778 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3782 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3783 VST_ENTRY_7_ABBREV) 3784 llvm_unreachable("Unexpected abbrev ordering!"); 3785 } 3786 { // 6-bit char6 VST_CODE_ENTRY strings. 3787 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3788 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3792 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3793 VST_ENTRY_6_ABBREV) 3794 llvm_unreachable("Unexpected abbrev ordering!"); 3795 } 3796 { // 6-bit char6 VST_CODE_BBENTRY strings. 3797 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3798 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3802 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3803 VST_BBENTRY_6_ABBREV) 3804 llvm_unreachable("Unexpected abbrev ordering!"); 3805 } 3806 3807 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3808 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3809 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3811 VE.computeBitsRequiredForTypeIndices())); 3812 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3813 CONSTANTS_SETTYPE_ABBREV) 3814 llvm_unreachable("Unexpected abbrev ordering!"); 3815 } 3816 3817 { // INTEGER abbrev for CONSTANTS_BLOCK. 3818 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3819 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3821 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3822 CONSTANTS_INTEGER_ABBREV) 3823 llvm_unreachable("Unexpected abbrev ordering!"); 3824 } 3825 3826 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3827 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3828 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3831 VE.computeBitsRequiredForTypeIndices())); 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3833 3834 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3835 CONSTANTS_CE_CAST_Abbrev) 3836 llvm_unreachable("Unexpected abbrev ordering!"); 3837 } 3838 { // NULL abbrev for CONSTANTS_BLOCK. 3839 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3840 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3841 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3842 CONSTANTS_NULL_Abbrev) 3843 llvm_unreachable("Unexpected abbrev ordering!"); 3844 } 3845 3846 // FIXME: This should only use space for first class types! 3847 3848 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3849 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3850 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3853 VE.computeBitsRequiredForTypeIndices())); 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3856 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3857 FUNCTION_INST_LOAD_ABBREV) 3858 llvm_unreachable("Unexpected abbrev ordering!"); 3859 } 3860 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3862 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3865 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3866 FUNCTION_INST_UNOP_ABBREV) 3867 llvm_unreachable("Unexpected abbrev ordering!"); 3868 } 3869 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3870 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3871 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3875 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3876 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3877 llvm_unreachable("Unexpected abbrev ordering!"); 3878 } 3879 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3880 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3881 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3885 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3886 FUNCTION_INST_BINOP_ABBREV) 3887 llvm_unreachable("Unexpected abbrev ordering!"); 3888 } 3889 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3890 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3891 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3896 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3897 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3898 llvm_unreachable("Unexpected abbrev ordering!"); 3899 } 3900 { // INST_CAST abbrev for FUNCTION_BLOCK. 3901 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3902 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3905 VE.computeBitsRequiredForTypeIndices())); 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3907 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3908 FUNCTION_INST_CAST_ABBREV) 3909 llvm_unreachable("Unexpected abbrev ordering!"); 3910 } 3911 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3912 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3913 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3916 VE.computeBitsRequiredForTypeIndices())); 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3919 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3920 FUNCTION_INST_CAST_FLAGS_ABBREV) 3921 llvm_unreachable("Unexpected abbrev ordering!"); 3922 } 3923 3924 { // INST_RET abbrev for FUNCTION_BLOCK. 3925 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3926 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3927 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3928 FUNCTION_INST_RET_VOID_ABBREV) 3929 llvm_unreachable("Unexpected abbrev ordering!"); 3930 } 3931 { // INST_RET abbrev for FUNCTION_BLOCK. 3932 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3933 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3935 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3936 FUNCTION_INST_RET_VAL_ABBREV) 3937 llvm_unreachable("Unexpected abbrev ordering!"); 3938 } 3939 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3940 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3941 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3942 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3943 FUNCTION_INST_UNREACHABLE_ABBREV) 3944 llvm_unreachable("Unexpected abbrev ordering!"); 3945 } 3946 { 3947 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3948 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3951 Log2_32_Ceil(VE.getTypes().size() + 1))); 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3954 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3955 FUNCTION_INST_GEP_ABBREV) 3956 llvm_unreachable("Unexpected abbrev ordering!"); 3957 } 3958 { 3959 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3960 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3965 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3966 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3967 llvm_unreachable("Unexpected abbrev ordering! 1"); 3968 } 3969 Stream.ExitBlock(); 3970 } 3971 3972 /// Write the module path strings, currently only used when generating 3973 /// a combined index file. 3974 void IndexBitcodeWriter::writeModStrings() { 3975 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3976 3977 // TODO: See which abbrev sizes we actually need to emit 3978 3979 // 8-bit fixed-width MST_ENTRY strings. 3980 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3981 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3985 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3986 3987 // 7-bit fixed width MST_ENTRY strings. 3988 Abbv = std::make_shared<BitCodeAbbrev>(); 3989 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3993 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3994 3995 // 6-bit char6 MST_ENTRY strings. 3996 Abbv = std::make_shared<BitCodeAbbrev>(); 3997 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4001 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 4002 4003 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 4004 Abbv = std::make_shared<BitCodeAbbrev>(); 4005 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4011 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 4012 4013 SmallVector<unsigned, 64> Vals; 4014 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 4015 StringRef Key = MPSE.getKey(); 4016 const auto &Hash = MPSE.getValue(); 4017 StringEncoding Bits = getStringEncoding(Key); 4018 unsigned AbbrevToUse = Abbrev8Bit; 4019 if (Bits == SE_Char6) 4020 AbbrevToUse = Abbrev6Bit; 4021 else if (Bits == SE_Fixed7) 4022 AbbrevToUse = Abbrev7Bit; 4023 4024 auto ModuleId = ModuleIdMap.size(); 4025 ModuleIdMap[Key] = ModuleId; 4026 Vals.push_back(ModuleId); 4027 Vals.append(Key.begin(), Key.end()); 4028 4029 // Emit the finished record. 4030 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 4031 4032 // Emit an optional hash for the module now 4033 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 4034 Vals.assign(Hash.begin(), Hash.end()); 4035 // Emit the hash record. 4036 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4037 } 4038 4039 Vals.clear(); 4040 }); 4041 Stream.ExitBlock(); 4042 } 4043 4044 /// Write the function type metadata related records that need to appear before 4045 /// a function summary entry (whether per-module or combined). 4046 template <typename Fn> 4047 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4048 FunctionSummary *FS, 4049 Fn GetValueID) { 4050 if (!FS->type_tests().empty()) 4051 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4052 4053 SmallVector<uint64_t, 64> Record; 4054 4055 auto WriteVFuncIdVec = [&](uint64_t Ty, 4056 ArrayRef<FunctionSummary::VFuncId> VFs) { 4057 if (VFs.empty()) 4058 return; 4059 Record.clear(); 4060 for (auto &VF : VFs) { 4061 Record.push_back(VF.GUID); 4062 Record.push_back(VF.Offset); 4063 } 4064 Stream.EmitRecord(Ty, Record); 4065 }; 4066 4067 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4068 FS->type_test_assume_vcalls()); 4069 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4070 FS->type_checked_load_vcalls()); 4071 4072 auto WriteConstVCallVec = [&](uint64_t Ty, 4073 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4074 for (auto &VC : VCs) { 4075 Record.clear(); 4076 Record.push_back(VC.VFunc.GUID); 4077 Record.push_back(VC.VFunc.Offset); 4078 llvm::append_range(Record, VC.Args); 4079 Stream.EmitRecord(Ty, Record); 4080 } 4081 }; 4082 4083 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4084 FS->type_test_assume_const_vcalls()); 4085 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4086 FS->type_checked_load_const_vcalls()); 4087 4088 auto WriteRange = [&](ConstantRange Range) { 4089 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4090 assert(Range.getLower().getNumWords() == 1); 4091 assert(Range.getUpper().getNumWords() == 1); 4092 emitSignedInt64(Record, *Range.getLower().getRawData()); 4093 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4094 }; 4095 4096 if (!FS->paramAccesses().empty()) { 4097 Record.clear(); 4098 for (auto &Arg : FS->paramAccesses()) { 4099 size_t UndoSize = Record.size(); 4100 Record.push_back(Arg.ParamNo); 4101 WriteRange(Arg.Use); 4102 Record.push_back(Arg.Calls.size()); 4103 for (auto &Call : Arg.Calls) { 4104 Record.push_back(Call.ParamNo); 4105 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4106 if (!ValueID) { 4107 // If ValueID is unknown we can't drop just this call, we must drop 4108 // entire parameter. 4109 Record.resize(UndoSize); 4110 break; 4111 } 4112 Record.push_back(*ValueID); 4113 WriteRange(Call.Offsets); 4114 } 4115 } 4116 if (!Record.empty()) 4117 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4118 } 4119 } 4120 4121 /// Collect type IDs from type tests used by function. 4122 static void 4123 getReferencedTypeIds(FunctionSummary *FS, 4124 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4125 if (!FS->type_tests().empty()) 4126 for (auto &TT : FS->type_tests()) 4127 ReferencedTypeIds.insert(TT); 4128 4129 auto GetReferencedTypesFromVFuncIdVec = 4130 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4131 for (auto &VF : VFs) 4132 ReferencedTypeIds.insert(VF.GUID); 4133 }; 4134 4135 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4136 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4137 4138 auto GetReferencedTypesFromConstVCallVec = 4139 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4140 for (auto &VC : VCs) 4141 ReferencedTypeIds.insert(VC.VFunc.GUID); 4142 }; 4143 4144 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4145 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4146 } 4147 4148 static void writeWholeProgramDevirtResolutionByArg( 4149 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4150 const WholeProgramDevirtResolution::ByArg &ByArg) { 4151 NameVals.push_back(args.size()); 4152 llvm::append_range(NameVals, args); 4153 4154 NameVals.push_back(ByArg.TheKind); 4155 NameVals.push_back(ByArg.Info); 4156 NameVals.push_back(ByArg.Byte); 4157 NameVals.push_back(ByArg.Bit); 4158 } 4159 4160 static void writeWholeProgramDevirtResolution( 4161 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4162 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4163 NameVals.push_back(Id); 4164 4165 NameVals.push_back(Wpd.TheKind); 4166 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4167 NameVals.push_back(Wpd.SingleImplName.size()); 4168 4169 NameVals.push_back(Wpd.ResByArg.size()); 4170 for (auto &A : Wpd.ResByArg) 4171 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4172 } 4173 4174 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4175 StringTableBuilder &StrtabBuilder, 4176 StringRef Id, 4177 const TypeIdSummary &Summary) { 4178 NameVals.push_back(StrtabBuilder.add(Id)); 4179 NameVals.push_back(Id.size()); 4180 4181 NameVals.push_back(Summary.TTRes.TheKind); 4182 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4183 NameVals.push_back(Summary.TTRes.AlignLog2); 4184 NameVals.push_back(Summary.TTRes.SizeM1); 4185 NameVals.push_back(Summary.TTRes.BitMask); 4186 NameVals.push_back(Summary.TTRes.InlineBits); 4187 4188 for (auto &W : Summary.WPDRes) 4189 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4190 W.second); 4191 } 4192 4193 static void writeTypeIdCompatibleVtableSummaryRecord( 4194 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4195 StringRef Id, const TypeIdCompatibleVtableInfo &Summary, 4196 ValueEnumerator &VE) { 4197 NameVals.push_back(StrtabBuilder.add(Id)); 4198 NameVals.push_back(Id.size()); 4199 4200 for (auto &P : Summary) { 4201 NameVals.push_back(P.AddressPointOffset); 4202 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4203 } 4204 } 4205 4206 // Adds the allocation contexts to the CallStacks map. We simply use the 4207 // size at the time the context was added as the CallStackId. This works because 4208 // when we look up the call stacks later on we process the function summaries 4209 // and their allocation records in the same exact order. 4210 static void collectMemProfCallStacks( 4211 FunctionSummary *FS, std::function<LinearFrameId(unsigned)> GetStackIndex, 4212 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &CallStacks) { 4213 // The interfaces in ProfileData/MemProf.h use a type alias for a stack frame 4214 // id offset into the index of the full stack frames. The ModuleSummaryIndex 4215 // currently uses unsigned. Make sure these stay in sync. 4216 static_assert(std::is_same_v<LinearFrameId, unsigned>); 4217 for (auto &AI : FS->allocs()) { 4218 for (auto &MIB : AI.MIBs) { 4219 SmallVector<unsigned> StackIdIndices; 4220 StackIdIndices.reserve(MIB.StackIdIndices.size()); 4221 for (auto Id : MIB.StackIdIndices) 4222 StackIdIndices.push_back(GetStackIndex(Id)); 4223 // The CallStackId is the size at the time this context was inserted. 4224 CallStacks.insert({CallStacks.size(), StackIdIndices}); 4225 } 4226 } 4227 } 4228 4229 // Build the radix tree from the accumulated CallStacks, write out the resulting 4230 // linearized radix tree array, and return the map of call stack positions into 4231 // this array for use when writing the allocation records. The returned map is 4232 // indexed by a CallStackId which in this case is implicitly determined by the 4233 // order of function summaries and their allocation infos being written. 4234 static DenseMap<CallStackId, LinearCallStackId> writeMemoryProfileRadixTree( 4235 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &&CallStacks, 4236 BitstreamWriter &Stream, unsigned RadixAbbrev) { 4237 assert(!CallStacks.empty()); 4238 DenseMap<unsigned, FrameStat> FrameHistogram = 4239 computeFrameHistogram<LinearFrameId>(CallStacks); 4240 CallStackRadixTreeBuilder<LinearFrameId> Builder; 4241 // We don't need a MemProfFrameIndexes map as we have already converted the 4242 // full stack id hash to a linear offset into the StackIds array. 4243 Builder.build(std::move(CallStacks), /*MemProfFrameIndexes=*/nullptr, 4244 FrameHistogram); 4245 Stream.EmitRecord(bitc::FS_CONTEXT_RADIX_TREE_ARRAY, Builder.getRadixArray(), 4246 RadixAbbrev); 4247 return Builder.takeCallStackPos(); 4248 } 4249 4250 static void writeFunctionHeapProfileRecords( 4251 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4252 unsigned AllocAbbrev, unsigned ContextIdAbbvId, bool PerModule, 4253 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4254 std::function<unsigned(unsigned)> GetStackIndex, 4255 bool WriteContextSizeInfoIndex, 4256 DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 4257 CallStackId &CallStackCount) { 4258 SmallVector<uint64_t> Record; 4259 4260 for (auto &CI : FS->callsites()) { 4261 Record.clear(); 4262 // Per module callsite clones should always have a single entry of 4263 // value 0. 4264 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4265 Record.push_back(GetValueID(CI.Callee)); 4266 if (!PerModule) { 4267 Record.push_back(CI.StackIdIndices.size()); 4268 Record.push_back(CI.Clones.size()); 4269 } 4270 for (auto Id : CI.StackIdIndices) 4271 Record.push_back(GetStackIndex(Id)); 4272 if (!PerModule) { 4273 for (auto V : CI.Clones) 4274 Record.push_back(V); 4275 } 4276 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4277 : bitc::FS_COMBINED_CALLSITE_INFO, 4278 Record, CallsiteAbbrev); 4279 } 4280 4281 for (auto &AI : FS->allocs()) { 4282 Record.clear(); 4283 // Per module alloc versions should always have a single entry of 4284 // value 0. 4285 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4286 Record.push_back(AI.MIBs.size()); 4287 if (!PerModule) 4288 Record.push_back(AI.Versions.size()); 4289 for (auto &MIB : AI.MIBs) { 4290 Record.push_back((uint8_t)MIB.AllocType); 4291 // Record the index into the radix tree array for this context. 4292 assert(CallStackCount <= CallStackPos.size()); 4293 Record.push_back(CallStackPos[CallStackCount++]); 4294 } 4295 if (!PerModule) { 4296 for (auto V : AI.Versions) 4297 Record.push_back(V); 4298 } 4299 assert(AI.ContextSizeInfos.empty() || 4300 AI.ContextSizeInfos.size() == AI.MIBs.size()); 4301 // Optionally emit the context size information if it exists. 4302 if (WriteContextSizeInfoIndex && !AI.ContextSizeInfos.empty()) { 4303 // The abbreviation id for the context ids record should have been created 4304 // if we are emitting the per-module index, which is where we write this 4305 // info. 4306 assert(ContextIdAbbvId); 4307 SmallVector<uint32_t> ContextIds; 4308 // At least one context id per ContextSizeInfos entry (MIB), broken into 2 4309 // halves. 4310 ContextIds.reserve(AI.ContextSizeInfos.size() * 2); 4311 for (auto &Infos : AI.ContextSizeInfos) { 4312 Record.push_back(Infos.size()); 4313 for (auto [FullStackId, TotalSize] : Infos) { 4314 // The context ids are emitted separately as a fixed width array, 4315 // which is more efficient than a VBR given that these hashes are 4316 // typically close to 64-bits. The max fixed width entry is 32 bits so 4317 // it is split into 2. 4318 ContextIds.push_back(static_cast<uint32_t>(FullStackId >> 32)); 4319 ContextIds.push_back(static_cast<uint32_t>(FullStackId)); 4320 Record.push_back(TotalSize); 4321 } 4322 } 4323 // The context ids are expected by the reader to immediately precede the 4324 // associated alloc info record. 4325 Stream.EmitRecord(bitc::FS_ALLOC_CONTEXT_IDS, ContextIds, 4326 ContextIdAbbvId); 4327 } 4328 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4329 : bitc::FS_COMBINED_ALLOC_INFO, 4330 Record, AllocAbbrev); 4331 } 4332 } 4333 4334 // Helper to emit a single function summary record. 4335 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4336 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4337 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4338 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4339 unsigned AllocAbbrev, unsigned ContextIdAbbvId, const Function &F, 4340 DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 4341 CallStackId &CallStackCount) { 4342 NameVals.push_back(ValueID); 4343 4344 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4345 4346 writeFunctionTypeMetadataRecords( 4347 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4348 return {VE.getValueID(VI.getValue())}; 4349 }); 4350 4351 writeFunctionHeapProfileRecords( 4352 Stream, FS, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, 4353 /*PerModule*/ true, 4354 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4355 /*GetStackIndex*/ [&](unsigned I) { return I; }, 4356 /*WriteContextSizeInfoIndex*/ true, CallStackPos, CallStackCount); 4357 4358 auto SpecialRefCnts = FS->specialRefCounts(); 4359 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4360 NameVals.push_back(FS->instCount()); 4361 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4362 NameVals.push_back(FS->refs().size()); 4363 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4364 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4365 4366 for (auto &RI : FS->refs()) 4367 NameVals.push_back(getValueId(RI)); 4368 4369 const bool UseRelBFRecord = 4370 WriteRelBFToSummary && !F.hasProfileData() && 4371 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4372 for (auto &ECI : FS->calls()) { 4373 NameVals.push_back(getValueId(ECI.first)); 4374 if (UseRelBFRecord) 4375 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4376 else 4377 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4378 } 4379 4380 unsigned FSAbbrev = 4381 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4382 unsigned Code = 4383 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4384 4385 // Emit the finished record. 4386 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4387 NameVals.clear(); 4388 } 4389 4390 // Collect the global value references in the given variable's initializer, 4391 // and emit them in a summary record. 4392 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4393 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4394 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4395 auto VI = Index->getValueInfo(V.getGUID()); 4396 if (!VI || VI.getSummaryList().empty()) { 4397 // Only declarations should not have a summary (a declaration might however 4398 // have a summary if the def was in module level asm). 4399 assert(V.isDeclaration()); 4400 return; 4401 } 4402 auto *Summary = VI.getSummaryList()[0].get(); 4403 NameVals.push_back(VE.getValueID(&V)); 4404 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4405 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4406 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4407 4408 auto VTableFuncs = VS->vTableFuncs(); 4409 if (!VTableFuncs.empty()) 4410 NameVals.push_back(VS->refs().size()); 4411 4412 unsigned SizeBeforeRefs = NameVals.size(); 4413 for (auto &RI : VS->refs()) 4414 NameVals.push_back(VE.getValueID(RI.getValue())); 4415 // Sort the refs for determinism output, the vector returned by FS->refs() has 4416 // been initialized from a DenseSet. 4417 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4418 4419 if (VTableFuncs.empty()) 4420 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4421 FSModRefsAbbrev); 4422 else { 4423 // VTableFuncs pairs should already be sorted by offset. 4424 for (auto &P : VTableFuncs) { 4425 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4426 NameVals.push_back(P.VTableOffset); 4427 } 4428 4429 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4430 FSModVTableRefsAbbrev); 4431 } 4432 NameVals.clear(); 4433 } 4434 4435 /// Emit the per-module summary section alongside the rest of 4436 /// the module's bitcode. 4437 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4438 // By default we compile with ThinLTO if the module has a summary, but the 4439 // client can request full LTO with a module flag. 4440 bool IsThinLTO = true; 4441 if (auto *MD = 4442 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4443 IsThinLTO = MD->getZExtValue(); 4444 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4445 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4446 4); 4447 4448 Stream.EmitRecord( 4449 bitc::FS_VERSION, 4450 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4451 4452 // Write the index flags. 4453 uint64_t Flags = 0; 4454 // Bits 1-3 are set only in the combined index, skip them. 4455 if (Index->enableSplitLTOUnit()) 4456 Flags |= 0x8; 4457 if (Index->hasUnifiedLTO()) 4458 Flags |= 0x200; 4459 4460 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4461 4462 if (Index->begin() == Index->end()) { 4463 Stream.ExitBlock(); 4464 return; 4465 } 4466 4467 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4468 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4470 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4473 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4474 4475 for (const auto &GVI : valueIds()) { 4476 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4477 ArrayRef<uint32_t>{GVI.second, 4478 static_cast<uint32_t>(GVI.first >> 32), 4479 static_cast<uint32_t>(GVI.first)}, 4480 ValueGuidAbbrev); 4481 } 4482 4483 if (!Index->stackIds().empty()) { 4484 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4485 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4486 // numids x stackid 4487 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4488 // The stack ids are hashes that are close to 64 bits in size, so emitting 4489 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4490 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4491 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4492 SmallVector<uint32_t> Vals; 4493 Vals.reserve(Index->stackIds().size() * 2); 4494 for (auto Id : Index->stackIds()) { 4495 Vals.push_back(static_cast<uint32_t>(Id >> 32)); 4496 Vals.push_back(static_cast<uint32_t>(Id)); 4497 } 4498 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId); 4499 } 4500 4501 // n x context id 4502 auto ContextIdAbbv = std::make_shared<BitCodeAbbrev>(); 4503 ContextIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_ALLOC_CONTEXT_IDS)); 4504 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4505 // The context ids are hashes that are close to 64 bits in size, so emitting 4506 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4507 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4508 unsigned ContextIdAbbvId = Stream.EmitAbbrev(std::move(ContextIdAbbv)); 4509 4510 // Abbrev for FS_PERMODULE_PROFILE. 4511 Abbv = std::make_shared<BitCodeAbbrev>(); 4512 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4520 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4523 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4524 4525 // Abbrev for FS_PERMODULE_RELBF. 4526 Abbv = std::make_shared<BitCodeAbbrev>(); 4527 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4535 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4538 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4539 4540 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4541 Abbv = std::make_shared<BitCodeAbbrev>(); 4542 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4547 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4548 4549 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4550 Abbv = std::make_shared<BitCodeAbbrev>(); 4551 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4555 // numrefs x valueid, n x (valueid , offset) 4556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4558 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4559 4560 // Abbrev for FS_ALIAS. 4561 Abbv = std::make_shared<BitCodeAbbrev>(); 4562 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4566 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4567 4568 // Abbrev for FS_TYPE_ID_METADATA 4569 Abbv = std::make_shared<BitCodeAbbrev>(); 4570 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4573 // n x (valueid , offset) 4574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4576 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4577 4578 Abbv = std::make_shared<BitCodeAbbrev>(); 4579 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4581 // n x stackidindex 4582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4584 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4585 4586 Abbv = std::make_shared<BitCodeAbbrev>(); 4587 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4589 // n x (alloc type, context radix tree index) 4590 // optional: nummib x (numcontext x total size) 4591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4593 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4594 4595 Abbv = std::make_shared<BitCodeAbbrev>(); 4596 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY)); 4597 // n x entry 4598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4600 unsigned RadixAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4601 4602 // First walk through all the functions and collect the allocation contexts in 4603 // their associated summaries, for use in constructing a radix tree of 4604 // contexts. Note that we need to do this in the same order as the functions 4605 // are processed further below since the call stack positions in the resulting 4606 // radix tree array are identified based on this order. 4607 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks; 4608 for (const Function &F : M) { 4609 // Summary emission does not support anonymous functions, they have to be 4610 // renamed using the anonymous function renaming pass. 4611 if (!F.hasName()) 4612 report_fatal_error("Unexpected anonymous function when writing summary"); 4613 4614 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4615 if (!VI || VI.getSummaryList().empty()) { 4616 // Only declarations should not have a summary (a declaration might 4617 // however have a summary if the def was in module level asm). 4618 assert(F.isDeclaration()); 4619 continue; 4620 } 4621 auto *Summary = VI.getSummaryList()[0].get(); 4622 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4623 collectMemProfCallStacks( 4624 FS, /*GetStackIndex*/ [](unsigned I) { return I; }, CallStacks); 4625 } 4626 // Finalize the radix tree, write it out, and get the map of positions in the 4627 // linearized tree array. 4628 DenseMap<CallStackId, LinearCallStackId> CallStackPos; 4629 if (!CallStacks.empty()) { 4630 CallStackPos = 4631 writeMemoryProfileRadixTree(std::move(CallStacks), Stream, RadixAbbrev); 4632 } 4633 4634 // Keep track of the current index into the CallStackPos map. 4635 CallStackId CallStackCount = 0; 4636 4637 SmallVector<uint64_t, 64> NameVals; 4638 // Iterate over the list of functions instead of the Index to 4639 // ensure the ordering is stable. 4640 for (const Function &F : M) { 4641 // Summary emission does not support anonymous functions, they have to 4642 // renamed using the anonymous function renaming pass. 4643 if (!F.hasName()) 4644 report_fatal_error("Unexpected anonymous function when writing summary"); 4645 4646 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4647 if (!VI || VI.getSummaryList().empty()) { 4648 // Only declarations should not have a summary (a declaration might 4649 // however have a summary if the def was in module level asm). 4650 assert(F.isDeclaration()); 4651 continue; 4652 } 4653 auto *Summary = VI.getSummaryList()[0].get(); 4654 writePerModuleFunctionSummaryRecord( 4655 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4656 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, F, 4657 CallStackPos, CallStackCount); 4658 } 4659 4660 // Capture references from GlobalVariable initializers, which are outside 4661 // of a function scope. 4662 for (const GlobalVariable &G : M.globals()) 4663 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4664 FSModVTableRefsAbbrev); 4665 4666 for (const GlobalAlias &A : M.aliases()) { 4667 auto *Aliasee = A.getAliaseeObject(); 4668 // Skip ifunc and nameless functions which don't have an entry in the 4669 // summary. 4670 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4671 continue; 4672 auto AliasId = VE.getValueID(&A); 4673 auto AliaseeId = VE.getValueID(Aliasee); 4674 NameVals.push_back(AliasId); 4675 auto *Summary = Index->getGlobalValueSummary(A); 4676 AliasSummary *AS = cast<AliasSummary>(Summary); 4677 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4678 NameVals.push_back(AliaseeId); 4679 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4680 NameVals.clear(); 4681 } 4682 4683 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4684 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4685 S.second, VE); 4686 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4687 TypeIdCompatibleVtableAbbrev); 4688 NameVals.clear(); 4689 } 4690 4691 if (Index->getBlockCount()) 4692 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4693 ArrayRef<uint64_t>{Index->getBlockCount()}); 4694 4695 Stream.ExitBlock(); 4696 } 4697 4698 /// Emit the combined summary section into the combined index file. 4699 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4700 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4701 Stream.EmitRecord( 4702 bitc::FS_VERSION, 4703 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4704 4705 // Write the index flags. 4706 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4707 4708 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4709 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4711 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4714 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4715 4716 for (const auto &GVI : valueIds()) { 4717 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4718 ArrayRef<uint32_t>{GVI.second, 4719 static_cast<uint32_t>(GVI.first >> 32), 4720 static_cast<uint32_t>(GVI.first)}, 4721 ValueGuidAbbrev); 4722 } 4723 4724 // Write the stack ids used by this index, which will be a subset of those in 4725 // the full index in the case of distributed indexes. 4726 if (!StackIds.empty()) { 4727 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4728 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4729 // numids x stackid 4730 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4731 // The stack ids are hashes that are close to 64 bits in size, so emitting 4732 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4733 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4734 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4735 SmallVector<uint32_t> Vals; 4736 Vals.reserve(StackIds.size() * 2); 4737 for (auto Id : StackIds) { 4738 Vals.push_back(static_cast<uint32_t>(Id >> 32)); 4739 Vals.push_back(static_cast<uint32_t>(Id)); 4740 } 4741 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId); 4742 } 4743 4744 // Abbrev for FS_COMBINED_PROFILE. 4745 Abbv = std::make_shared<BitCodeAbbrev>(); 4746 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4756 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4759 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4760 4761 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4762 Abbv = std::make_shared<BitCodeAbbrev>(); 4763 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4769 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4770 4771 // Abbrev for FS_COMBINED_ALIAS. 4772 Abbv = std::make_shared<BitCodeAbbrev>(); 4773 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4778 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4779 4780 Abbv = std::make_shared<BitCodeAbbrev>(); 4781 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4785 // numstackindices x stackidindex, numver x version 4786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4788 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4789 4790 Abbv = std::make_shared<BitCodeAbbrev>(); 4791 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4794 // nummib x (alloc type, context radix tree index), 4795 // numver x version 4796 // optional: nummib x total size 4797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4799 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4800 4801 Abbv = std::make_shared<BitCodeAbbrev>(); 4802 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY)); 4803 // n x entry 4804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4806 unsigned RadixAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4807 4808 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4809 if (DecSummaries == nullptr) 4810 return false; 4811 return DecSummaries->count(GVS); 4812 }; 4813 4814 // The aliases are emitted as a post-pass, and will point to the value 4815 // id of the aliasee. Save them in a vector for post-processing. 4816 SmallVector<AliasSummary *, 64> Aliases; 4817 4818 // Save the value id for each summary for alias emission. 4819 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4820 4821 SmallVector<uint64_t, 64> NameVals; 4822 4823 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4824 // with the type ids referenced by this index file. 4825 std::set<GlobalValue::GUID> ReferencedTypeIds; 4826 4827 // For local linkage, we also emit the original name separately 4828 // immediately after the record. 4829 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4830 // We don't need to emit the original name if we are writing the index for 4831 // distributed backends (in which case ModuleToSummariesForIndex is 4832 // non-null). The original name is only needed during the thin link, since 4833 // for SamplePGO the indirect call targets for local functions have 4834 // have the original name annotated in profile. 4835 // Continue to emit it when writing out the entire combined index, which is 4836 // used in testing the thin link via llvm-lto. 4837 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4838 return; 4839 NameVals.push_back(S.getOriginalName()); 4840 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4841 NameVals.clear(); 4842 }; 4843 4844 // First walk through all the functions and collect the allocation contexts in 4845 // their associated summaries, for use in constructing a radix tree of 4846 // contexts. Note that we need to do this in the same order as the functions 4847 // are processed further below since the call stack positions in the resulting 4848 // radix tree array are identified based on this order. 4849 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks; 4850 forEachSummary([&](GVInfo I, bool IsAliasee) { 4851 // Don't collect this when invoked for an aliasee, as it is not needed for 4852 // the alias summary. If the aliasee is to be imported, we will invoke this 4853 // separately with IsAliasee=false. 4854 if (IsAliasee) 4855 return; 4856 GlobalValueSummary *S = I.second; 4857 assert(S); 4858 auto *FS = dyn_cast<FunctionSummary>(S); 4859 if (!FS) 4860 return; 4861 collectMemProfCallStacks( 4862 FS, 4863 /*GetStackIndex*/ 4864 [&](unsigned I) { 4865 // Get the corresponding index into the list of StackIds actually 4866 // being written for this combined index (which may be a subset in 4867 // the case of distributed indexes). 4868 assert(StackIdIndicesToIndex.contains(I)); 4869 return StackIdIndicesToIndex[I]; 4870 }, 4871 CallStacks); 4872 }); 4873 // Finalize the radix tree, write it out, and get the map of positions in the 4874 // linearized tree array. 4875 DenseMap<CallStackId, LinearCallStackId> CallStackPos; 4876 if (!CallStacks.empty()) { 4877 CallStackPos = 4878 writeMemoryProfileRadixTree(std::move(CallStacks), Stream, RadixAbbrev); 4879 } 4880 4881 // Keep track of the current index into the CallStackPos map. 4882 CallStackId CallStackCount = 0; 4883 4884 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4885 forEachSummary([&](GVInfo I, bool IsAliasee) { 4886 GlobalValueSummary *S = I.second; 4887 assert(S); 4888 DefOrUseGUIDs.insert(I.first); 4889 for (const ValueInfo &VI : S->refs()) 4890 DefOrUseGUIDs.insert(VI.getGUID()); 4891 4892 auto ValueId = getValueId(I.first); 4893 assert(ValueId); 4894 SummaryToValueIdMap[S] = *ValueId; 4895 4896 // If this is invoked for an aliasee, we want to record the above 4897 // mapping, but then not emit a summary entry (if the aliasee is 4898 // to be imported, we will invoke this separately with IsAliasee=false). 4899 if (IsAliasee) 4900 return; 4901 4902 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4903 // Will process aliases as a post-pass because the reader wants all 4904 // global to be loaded first. 4905 Aliases.push_back(AS); 4906 return; 4907 } 4908 4909 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4910 NameVals.push_back(*ValueId); 4911 assert(ModuleIdMap.count(VS->modulePath())); 4912 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4913 NameVals.push_back( 4914 getEncodedGVSummaryFlags(VS->flags(), shouldImportValueAsDecl(VS))); 4915 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4916 for (auto &RI : VS->refs()) { 4917 auto RefValueId = getValueId(RI.getGUID()); 4918 if (!RefValueId) 4919 continue; 4920 NameVals.push_back(*RefValueId); 4921 } 4922 4923 // Emit the finished record. 4924 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4925 FSModRefsAbbrev); 4926 NameVals.clear(); 4927 MaybeEmitOriginalName(*S); 4928 return; 4929 } 4930 4931 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4932 if (!VI) 4933 return std::nullopt; 4934 return getValueId(VI.getGUID()); 4935 }; 4936 4937 auto *FS = cast<FunctionSummary>(S); 4938 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4939 getReferencedTypeIds(FS, ReferencedTypeIds); 4940 4941 writeFunctionHeapProfileRecords( 4942 Stream, FS, CallsiteAbbrev, AllocAbbrev, /*ContextIdAbbvId*/ 0, 4943 /*PerModule*/ false, 4944 /*GetValueId*/ 4945 [&](const ValueInfo &VI) -> unsigned { 4946 std::optional<unsigned> ValueID = GetValueId(VI); 4947 // This can happen in shared index files for distributed ThinLTO if 4948 // the callee function summary is not included. Record 0 which we 4949 // will have to deal with conservatively when doing any kind of 4950 // validation in the ThinLTO backends. 4951 if (!ValueID) 4952 return 0; 4953 return *ValueID; 4954 }, 4955 /*GetStackIndex*/ 4956 [&](unsigned I) { 4957 // Get the corresponding index into the list of StackIds actually 4958 // being written for this combined index (which may be a subset in 4959 // the case of distributed indexes). 4960 assert(StackIdIndicesToIndex.contains(I)); 4961 return StackIdIndicesToIndex[I]; 4962 }, 4963 /*WriteContextSizeInfoIndex*/ false, CallStackPos, CallStackCount); 4964 4965 NameVals.push_back(*ValueId); 4966 assert(ModuleIdMap.count(FS->modulePath())); 4967 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4968 NameVals.push_back( 4969 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4970 NameVals.push_back(FS->instCount()); 4971 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4972 // TODO: Stop writing entry count and bump bitcode version. 4973 NameVals.push_back(0 /* EntryCount */); 4974 4975 // Fill in below 4976 NameVals.push_back(0); // numrefs 4977 NameVals.push_back(0); // rorefcnt 4978 NameVals.push_back(0); // worefcnt 4979 4980 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4981 for (auto &RI : FS->refs()) { 4982 auto RefValueId = getValueId(RI.getGUID()); 4983 if (!RefValueId) 4984 continue; 4985 NameVals.push_back(*RefValueId); 4986 if (RI.isReadOnly()) 4987 RORefCnt++; 4988 else if (RI.isWriteOnly()) 4989 WORefCnt++; 4990 Count++; 4991 } 4992 NameVals[6] = Count; 4993 NameVals[7] = RORefCnt; 4994 NameVals[8] = WORefCnt; 4995 4996 for (auto &EI : FS->calls()) { 4997 // If this GUID doesn't have a value id, it doesn't have a function 4998 // summary and we don't need to record any calls to it. 4999 std::optional<unsigned> CallValueId = GetValueId(EI.first); 5000 if (!CallValueId) 5001 continue; 5002 NameVals.push_back(*CallValueId); 5003 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 5004 } 5005 5006 // Emit the finished record. 5007 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 5008 FSCallsProfileAbbrev); 5009 NameVals.clear(); 5010 MaybeEmitOriginalName(*S); 5011 }); 5012 5013 for (auto *AS : Aliases) { 5014 auto AliasValueId = SummaryToValueIdMap[AS]; 5015 assert(AliasValueId); 5016 NameVals.push_back(AliasValueId); 5017 assert(ModuleIdMap.count(AS->modulePath())); 5018 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 5019 NameVals.push_back( 5020 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 5021 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 5022 assert(AliaseeValueId); 5023 NameVals.push_back(AliaseeValueId); 5024 5025 // Emit the finished record. 5026 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 5027 NameVals.clear(); 5028 MaybeEmitOriginalName(*AS); 5029 5030 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 5031 getReferencedTypeIds(FS, ReferencedTypeIds); 5032 } 5033 5034 if (!Index.cfiFunctionDefs().empty()) { 5035 for (auto &S : Index.cfiFunctionDefs()) { 5036 if (DefOrUseGUIDs.contains( 5037 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 5038 NameVals.push_back(StrtabBuilder.add(S)); 5039 NameVals.push_back(S.size()); 5040 } 5041 } 5042 if (!NameVals.empty()) { 5043 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 5044 NameVals.clear(); 5045 } 5046 } 5047 5048 if (!Index.cfiFunctionDecls().empty()) { 5049 for (auto &S : Index.cfiFunctionDecls()) { 5050 if (DefOrUseGUIDs.contains( 5051 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 5052 NameVals.push_back(StrtabBuilder.add(S)); 5053 NameVals.push_back(S.size()); 5054 } 5055 } 5056 if (!NameVals.empty()) { 5057 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 5058 NameVals.clear(); 5059 } 5060 } 5061 5062 // Walk the GUIDs that were referenced, and write the 5063 // corresponding type id records. 5064 for (auto &T : ReferencedTypeIds) { 5065 auto TidIter = Index.typeIds().equal_range(T); 5066 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 5067 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 5068 TypeIdPair.second); 5069 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 5070 NameVals.clear(); 5071 } 5072 } 5073 5074 if (Index.getBlockCount()) 5075 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 5076 ArrayRef<uint64_t>{Index.getBlockCount()}); 5077 5078 Stream.ExitBlock(); 5079 } 5080 5081 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 5082 /// current llvm version, and a record for the epoch number. 5083 static void writeIdentificationBlock(BitstreamWriter &Stream) { 5084 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 5085 5086 // Write the "user readable" string identifying the bitcode producer 5087 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5088 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 5089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 5091 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5092 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 5093 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 5094 5095 // Write the epoch version 5096 Abbv = std::make_shared<BitCodeAbbrev>(); 5097 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 5098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 5099 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5100 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 5101 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 5102 Stream.ExitBlock(); 5103 } 5104 5105 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 5106 // Emit the module's hash. 5107 // MODULE_CODE_HASH: [5*i32] 5108 if (GenerateHash) { 5109 uint32_t Vals[5]; 5110 Hasher.update(ArrayRef<uint8_t>( 5111 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 5112 std::array<uint8_t, 20> Hash = Hasher.result(); 5113 for (int Pos = 0; Pos < 20; Pos += 4) { 5114 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 5115 } 5116 5117 // Emit the finished record. 5118 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 5119 5120 if (ModHash) 5121 // Save the written hash value. 5122 llvm::copy(Vals, std::begin(*ModHash)); 5123 } 5124 } 5125 5126 void ModuleBitcodeWriter::write() { 5127 writeIdentificationBlock(Stream); 5128 5129 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5130 // We will want to write the module hash at this point. Block any flushing so 5131 // we can have access to the whole underlying data later. 5132 Stream.markAndBlockFlushing(); 5133 5134 writeModuleVersion(); 5135 5136 // Emit blockinfo, which defines the standard abbreviations etc. 5137 writeBlockInfo(); 5138 5139 // Emit information describing all of the types in the module. 5140 writeTypeTable(); 5141 5142 // Emit information about attribute groups. 5143 writeAttributeGroupTable(); 5144 5145 // Emit information about parameter attributes. 5146 writeAttributeTable(); 5147 5148 writeComdats(); 5149 5150 // Emit top-level description of module, including target triple, inline asm, 5151 // descriptors for global variables, and function prototype info. 5152 writeModuleInfo(); 5153 5154 // Emit constants. 5155 writeModuleConstants(); 5156 5157 // Emit metadata kind names. 5158 writeModuleMetadataKinds(); 5159 5160 // Emit metadata. 5161 writeModuleMetadata(); 5162 5163 // Emit module-level use-lists. 5164 if (VE.shouldPreserveUseListOrder()) 5165 writeUseListBlock(nullptr); 5166 5167 writeOperandBundleTags(); 5168 writeSyncScopeNames(); 5169 5170 // Emit function bodies. 5171 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 5172 for (const Function &F : M) 5173 if (!F.isDeclaration()) 5174 writeFunction(F, FunctionToBitcodeIndex); 5175 5176 // Need to write after the above call to WriteFunction which populates 5177 // the summary information in the index. 5178 if (Index) 5179 writePerModuleGlobalValueSummary(); 5180 5181 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 5182 5183 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 5184 5185 Stream.ExitBlock(); 5186 } 5187 5188 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 5189 uint32_t &Position) { 5190 support::endian::write32le(&Buffer[Position], Value); 5191 Position += 4; 5192 } 5193 5194 /// If generating a bc file on darwin, we have to emit a 5195 /// header and trailer to make it compatible with the system archiver. To do 5196 /// this we emit the following header, and then emit a trailer that pads the 5197 /// file out to be a multiple of 16 bytes. 5198 /// 5199 /// struct bc_header { 5200 /// uint32_t Magic; // 0x0B17C0DE 5201 /// uint32_t Version; // Version, currently always 0. 5202 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 5203 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 5204 /// uint32_t CPUType; // CPU specifier. 5205 /// ... potentially more later ... 5206 /// }; 5207 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 5208 const Triple &TT) { 5209 unsigned CPUType = ~0U; 5210 5211 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 5212 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 5213 // number from /usr/include/mach/machine.h. It is ok to reproduce the 5214 // specific constants here because they are implicitly part of the Darwin ABI. 5215 enum { 5216 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 5217 DARWIN_CPU_TYPE_X86 = 7, 5218 DARWIN_CPU_TYPE_ARM = 12, 5219 DARWIN_CPU_TYPE_POWERPC = 18 5220 }; 5221 5222 Triple::ArchType Arch = TT.getArch(); 5223 if (Arch == Triple::x86_64) 5224 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 5225 else if (Arch == Triple::x86) 5226 CPUType = DARWIN_CPU_TYPE_X86; 5227 else if (Arch == Triple::ppc) 5228 CPUType = DARWIN_CPU_TYPE_POWERPC; 5229 else if (Arch == Triple::ppc64) 5230 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5231 else if (Arch == Triple::arm || Arch == Triple::thumb) 5232 CPUType = DARWIN_CPU_TYPE_ARM; 5233 5234 // Traditional Bitcode starts after header. 5235 assert(Buffer.size() >= BWH_HeaderSize && 5236 "Expected header size to be reserved"); 5237 unsigned BCOffset = BWH_HeaderSize; 5238 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5239 5240 // Write the magic and version. 5241 unsigned Position = 0; 5242 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5243 writeInt32ToBuffer(0, Buffer, Position); // Version. 5244 writeInt32ToBuffer(BCOffset, Buffer, Position); 5245 writeInt32ToBuffer(BCSize, Buffer, Position); 5246 writeInt32ToBuffer(CPUType, Buffer, Position); 5247 5248 // If the file is not a multiple of 16 bytes, insert dummy padding. 5249 while (Buffer.size() & 15) 5250 Buffer.push_back(0); 5251 } 5252 5253 /// Helper to write the header common to all bitcode files. 5254 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5255 // Emit the file header. 5256 Stream.Emit((unsigned)'B', 8); 5257 Stream.Emit((unsigned)'C', 8); 5258 Stream.Emit(0x0, 4); 5259 Stream.Emit(0xC, 4); 5260 Stream.Emit(0xE, 4); 5261 Stream.Emit(0xD, 4); 5262 } 5263 5264 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5265 : Stream(new BitstreamWriter(Buffer)) { 5266 writeBitcodeHeader(*Stream); 5267 } 5268 5269 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5270 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5271 writeBitcodeHeader(*Stream); 5272 } 5273 5274 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5275 5276 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5277 Stream->EnterSubblock(Block, 3); 5278 5279 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5280 Abbv->Add(BitCodeAbbrevOp(Record)); 5281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5282 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5283 5284 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5285 5286 Stream->ExitBlock(); 5287 } 5288 5289 void BitcodeWriter::writeSymtab() { 5290 assert(!WroteStrtab && !WroteSymtab); 5291 5292 // If any module has module-level inline asm, we will require a registered asm 5293 // parser for the target so that we can create an accurate symbol table for 5294 // the module. 5295 for (Module *M : Mods) { 5296 if (M->getModuleInlineAsm().empty()) 5297 continue; 5298 5299 std::string Err; 5300 const Triple TT(M->getTargetTriple()); 5301 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5302 if (!T || !T->hasMCAsmParser()) 5303 return; 5304 } 5305 5306 WroteSymtab = true; 5307 SmallVector<char, 0> Symtab; 5308 // The irsymtab::build function may be unable to create a symbol table if the 5309 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5310 // table is not required for correctness, but we still want to be able to 5311 // write malformed modules to bitcode files, so swallow the error. 5312 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5313 consumeError(std::move(E)); 5314 return; 5315 } 5316 5317 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5318 {Symtab.data(), Symtab.size()}); 5319 } 5320 5321 void BitcodeWriter::writeStrtab() { 5322 assert(!WroteStrtab); 5323 5324 std::vector<char> Strtab; 5325 StrtabBuilder.finalizeInOrder(); 5326 Strtab.resize(StrtabBuilder.getSize()); 5327 StrtabBuilder.write((uint8_t *)Strtab.data()); 5328 5329 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5330 {Strtab.data(), Strtab.size()}); 5331 5332 WroteStrtab = true; 5333 } 5334 5335 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5336 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5337 WroteStrtab = true; 5338 } 5339 5340 void BitcodeWriter::writeModule(const Module &M, 5341 bool ShouldPreserveUseListOrder, 5342 const ModuleSummaryIndex *Index, 5343 bool GenerateHash, ModuleHash *ModHash) { 5344 assert(!WroteStrtab); 5345 5346 // The Mods vector is used by irsymtab::build, which requires non-const 5347 // Modules in case it needs to materialize metadata. But the bitcode writer 5348 // requires that the module is materialized, so we can cast to non-const here, 5349 // after checking that it is in fact materialized. 5350 assert(M.isMaterialized()); 5351 Mods.push_back(const_cast<Module *>(&M)); 5352 5353 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5354 ShouldPreserveUseListOrder, Index, 5355 GenerateHash, ModHash); 5356 ModuleWriter.write(); 5357 } 5358 5359 void BitcodeWriter::writeIndex( 5360 const ModuleSummaryIndex *Index, 5361 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5362 const GVSummaryPtrSet *DecSummaries) { 5363 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5364 ModuleToSummariesForIndex); 5365 IndexWriter.write(); 5366 } 5367 5368 /// Write the specified module to the specified output stream. 5369 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5370 bool ShouldPreserveUseListOrder, 5371 const ModuleSummaryIndex *Index, 5372 bool GenerateHash, ModuleHash *ModHash) { 5373 auto Write = [&](BitcodeWriter &Writer) { 5374 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5375 ModHash); 5376 Writer.writeSymtab(); 5377 Writer.writeStrtab(); 5378 }; 5379 Triple TT(M.getTargetTriple()); 5380 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5381 // If this is darwin or another generic macho target, reserve space for the 5382 // header. Note that the header is computed *after* the output is known, so 5383 // we currently explicitly use a buffer, write to it, and then subsequently 5384 // flush to Out. 5385 SmallVector<char, 0> Buffer; 5386 Buffer.reserve(256 * 1024); 5387 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5388 BitcodeWriter Writer(Buffer); 5389 Write(Writer); 5390 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5391 Out.write(Buffer.data(), Buffer.size()); 5392 } else { 5393 BitcodeWriter Writer(Out); 5394 Write(Writer); 5395 } 5396 } 5397 5398 void IndexBitcodeWriter::write() { 5399 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5400 5401 writeModuleVersion(); 5402 5403 // Write the module paths in the combined index. 5404 writeModStrings(); 5405 5406 // Write the summary combined index records. 5407 writeCombinedGlobalValueSummary(); 5408 5409 Stream.ExitBlock(); 5410 } 5411 5412 // Write the specified module summary index to the given raw output stream, 5413 // where it will be written in a new bitcode block. This is used when 5414 // writing the combined index file for ThinLTO. When writing a subset of the 5415 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5416 void llvm::writeIndexToFile( 5417 const ModuleSummaryIndex &Index, raw_ostream &Out, 5418 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5419 const GVSummaryPtrSet *DecSummaries) { 5420 SmallVector<char, 0> Buffer; 5421 Buffer.reserve(256 * 1024); 5422 5423 BitcodeWriter Writer(Buffer); 5424 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5425 Writer.writeStrtab(); 5426 5427 Out.write((char *)&Buffer.front(), Buffer.size()); 5428 } 5429 5430 namespace { 5431 5432 /// Class to manage the bitcode writing for a thin link bitcode file. 5433 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5434 /// ModHash is for use in ThinLTO incremental build, generated while writing 5435 /// the module bitcode file. 5436 const ModuleHash *ModHash; 5437 5438 public: 5439 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5440 BitstreamWriter &Stream, 5441 const ModuleSummaryIndex &Index, 5442 const ModuleHash &ModHash) 5443 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5444 /*ShouldPreserveUseListOrder=*/false, &Index), 5445 ModHash(&ModHash) {} 5446 5447 void write(); 5448 5449 private: 5450 void writeSimplifiedModuleInfo(); 5451 }; 5452 5453 } // end anonymous namespace 5454 5455 // This function writes a simpilified module info for thin link bitcode file. 5456 // It only contains the source file name along with the name(the offset and 5457 // size in strtab) and linkage for global values. For the global value info 5458 // entry, in order to keep linkage at offset 5, there are three zeros used 5459 // as padding. 5460 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5461 SmallVector<unsigned, 64> Vals; 5462 // Emit the module's source file name. 5463 { 5464 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5465 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5466 if (Bits == SE_Char6) 5467 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5468 else if (Bits == SE_Fixed7) 5469 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5470 5471 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5472 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5473 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5475 Abbv->Add(AbbrevOpToUse); 5476 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5477 5478 for (const auto P : M.getSourceFileName()) 5479 Vals.push_back((unsigned char)P); 5480 5481 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5482 Vals.clear(); 5483 } 5484 5485 // Emit the global variable information. 5486 for (const GlobalVariable &GV : M.globals()) { 5487 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5488 Vals.push_back(StrtabBuilder.add(GV.getName())); 5489 Vals.push_back(GV.getName().size()); 5490 Vals.push_back(0); 5491 Vals.push_back(0); 5492 Vals.push_back(0); 5493 Vals.push_back(getEncodedLinkage(GV)); 5494 5495 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5496 Vals.clear(); 5497 } 5498 5499 // Emit the function proto information. 5500 for (const Function &F : M) { 5501 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5502 Vals.push_back(StrtabBuilder.add(F.getName())); 5503 Vals.push_back(F.getName().size()); 5504 Vals.push_back(0); 5505 Vals.push_back(0); 5506 Vals.push_back(0); 5507 Vals.push_back(getEncodedLinkage(F)); 5508 5509 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5510 Vals.clear(); 5511 } 5512 5513 // Emit the alias information. 5514 for (const GlobalAlias &A : M.aliases()) { 5515 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5516 Vals.push_back(StrtabBuilder.add(A.getName())); 5517 Vals.push_back(A.getName().size()); 5518 Vals.push_back(0); 5519 Vals.push_back(0); 5520 Vals.push_back(0); 5521 Vals.push_back(getEncodedLinkage(A)); 5522 5523 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5524 Vals.clear(); 5525 } 5526 5527 // Emit the ifunc information. 5528 for (const GlobalIFunc &I : M.ifuncs()) { 5529 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5530 Vals.push_back(StrtabBuilder.add(I.getName())); 5531 Vals.push_back(I.getName().size()); 5532 Vals.push_back(0); 5533 Vals.push_back(0); 5534 Vals.push_back(0); 5535 Vals.push_back(getEncodedLinkage(I)); 5536 5537 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5538 Vals.clear(); 5539 } 5540 } 5541 5542 void ThinLinkBitcodeWriter::write() { 5543 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5544 5545 writeModuleVersion(); 5546 5547 writeSimplifiedModuleInfo(); 5548 5549 writePerModuleGlobalValueSummary(); 5550 5551 // Write module hash. 5552 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5553 5554 Stream.ExitBlock(); 5555 } 5556 5557 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5558 const ModuleSummaryIndex &Index, 5559 const ModuleHash &ModHash) { 5560 assert(!WroteStrtab); 5561 5562 // The Mods vector is used by irsymtab::build, which requires non-const 5563 // Modules in case it needs to materialize metadata. But the bitcode writer 5564 // requires that the module is materialized, so we can cast to non-const here, 5565 // after checking that it is in fact materialized. 5566 assert(M.isMaterialized()); 5567 Mods.push_back(const_cast<Module *>(&M)); 5568 5569 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5570 ModHash); 5571 ThinLinkWriter.write(); 5572 } 5573 5574 // Write the specified thin link bitcode file to the given raw output stream, 5575 // where it will be written in a new bitcode block. This is used when 5576 // writing the per-module index file for ThinLTO. 5577 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5578 const ModuleSummaryIndex &Index, 5579 const ModuleHash &ModHash) { 5580 SmallVector<char, 0> Buffer; 5581 Buffer.reserve(256 * 1024); 5582 5583 BitcodeWriter Writer(Buffer); 5584 Writer.writeThinLinkBitcode(M, Index, ModHash); 5585 Writer.writeSymtab(); 5586 Writer.writeStrtab(); 5587 5588 Out.write((char *)&Buffer.front(), Buffer.size()); 5589 } 5590 5591 static const char *getSectionNameForBitcode(const Triple &T) { 5592 switch (T.getObjectFormat()) { 5593 case Triple::MachO: 5594 return "__LLVM,__bitcode"; 5595 case Triple::COFF: 5596 case Triple::ELF: 5597 case Triple::Wasm: 5598 case Triple::UnknownObjectFormat: 5599 return ".llvmbc"; 5600 case Triple::GOFF: 5601 llvm_unreachable("GOFF is not yet implemented"); 5602 break; 5603 case Triple::SPIRV: 5604 if (T.getVendor() == Triple::AMD) 5605 return ".llvmbc"; 5606 llvm_unreachable("SPIRV is not yet implemented"); 5607 break; 5608 case Triple::XCOFF: 5609 llvm_unreachable("XCOFF is not yet implemented"); 5610 break; 5611 case Triple::DXContainer: 5612 llvm_unreachable("DXContainer is not yet implemented"); 5613 break; 5614 } 5615 llvm_unreachable("Unimplemented ObjectFormatType"); 5616 } 5617 5618 static const char *getSectionNameForCommandline(const Triple &T) { 5619 switch (T.getObjectFormat()) { 5620 case Triple::MachO: 5621 return "__LLVM,__cmdline"; 5622 case Triple::COFF: 5623 case Triple::ELF: 5624 case Triple::Wasm: 5625 case Triple::UnknownObjectFormat: 5626 return ".llvmcmd"; 5627 case Triple::GOFF: 5628 llvm_unreachable("GOFF is not yet implemented"); 5629 break; 5630 case Triple::SPIRV: 5631 if (T.getVendor() == Triple::AMD) 5632 return ".llvmcmd"; 5633 llvm_unreachable("SPIRV is not yet implemented"); 5634 break; 5635 case Triple::XCOFF: 5636 llvm_unreachable("XCOFF is not yet implemented"); 5637 break; 5638 case Triple::DXContainer: 5639 llvm_unreachable("DXC is not yet implemented"); 5640 break; 5641 } 5642 llvm_unreachable("Unimplemented ObjectFormatType"); 5643 } 5644 5645 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5646 bool EmbedBitcode, bool EmbedCmdline, 5647 const std::vector<uint8_t> &CmdArgs) { 5648 // Save llvm.compiler.used and remove it. 5649 SmallVector<Constant *, 2> UsedArray; 5650 SmallVector<GlobalValue *, 4> UsedGlobals; 5651 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5652 Type *UsedElementType = Used ? Used->getValueType()->getArrayElementType() 5653 : PointerType::getUnqual(M.getContext()); 5654 for (auto *GV : UsedGlobals) { 5655 if (GV->getName() != "llvm.embedded.module" && 5656 GV->getName() != "llvm.cmdline") 5657 UsedArray.push_back( 5658 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5659 } 5660 if (Used) 5661 Used->eraseFromParent(); 5662 5663 // Embed the bitcode for the llvm module. 5664 std::string Data; 5665 ArrayRef<uint8_t> ModuleData; 5666 Triple T(M.getTargetTriple()); 5667 5668 if (EmbedBitcode) { 5669 if (Buf.getBufferSize() == 0 || 5670 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5671 (const unsigned char *)Buf.getBufferEnd())) { 5672 // If the input is LLVM Assembly, bitcode is produced by serializing 5673 // the module. Use-lists order need to be preserved in this case. 5674 llvm::raw_string_ostream OS(Data); 5675 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5676 ModuleData = 5677 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5678 } else 5679 // If the input is LLVM bitcode, write the input byte stream directly. 5680 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5681 Buf.getBufferSize()); 5682 } 5683 llvm::Constant *ModuleConstant = 5684 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5685 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5686 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5687 ModuleConstant); 5688 GV->setSection(getSectionNameForBitcode(T)); 5689 // Set alignment to 1 to prevent padding between two contributions from input 5690 // sections after linking. 5691 GV->setAlignment(Align(1)); 5692 UsedArray.push_back( 5693 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5694 if (llvm::GlobalVariable *Old = 5695 M.getGlobalVariable("llvm.embedded.module", true)) { 5696 assert(Old->hasZeroLiveUses() && 5697 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5698 GV->takeName(Old); 5699 Old->eraseFromParent(); 5700 } else { 5701 GV->setName("llvm.embedded.module"); 5702 } 5703 5704 // Skip if only bitcode needs to be embedded. 5705 if (EmbedCmdline) { 5706 // Embed command-line options. 5707 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5708 CmdArgs.size()); 5709 llvm::Constant *CmdConstant = 5710 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5711 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5712 llvm::GlobalValue::PrivateLinkage, 5713 CmdConstant); 5714 GV->setSection(getSectionNameForCommandline(T)); 5715 GV->setAlignment(Align(1)); 5716 UsedArray.push_back( 5717 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5718 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5719 assert(Old->hasZeroLiveUses() && 5720 "llvm.cmdline can only be used once in llvm.compiler.used"); 5721 GV->takeName(Old); 5722 Old->eraseFromParent(); 5723 } else { 5724 GV->setName("llvm.cmdline"); 5725 } 5726 } 5727 5728 if (UsedArray.empty()) 5729 return; 5730 5731 // Recreate llvm.compiler.used. 5732 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5733 auto *NewUsed = new GlobalVariable( 5734 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5735 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5736 NewUsed->setSection("llvm.metadata"); 5737 } 5738