xref: /llvm-project/mlir/lib/Dialect/SparseTensor/IR/Detail/Var.h (revision 704c22473641e26d95435c55aa482fbf5abbbc2c)
1 //===- Var.h ----------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef MLIR_DIALECT_SPARSETENSOR_IR_DETAIL_VAR_H
10 #define MLIR_DIALECT_SPARSETENSOR_IR_DETAIL_VAR_H
11 
12 #include "TemplateExtras.h"
13 
14 #include "mlir/IR/OpImplementation.h"
15 #include "llvm/ADT/EnumeratedArray.h"
16 #include "llvm/ADT/STLForwardCompat.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/StringMap.h"
19 
20 namespace mlir {
21 namespace sparse_tensor {
22 namespace ir_detail {
23 
24 //===----------------------------------------------------------------------===//
25 /// The three kinds of variables that `Var` can be.
26 ///
27 /// NOTE: The numerical values used to represent this enum should be
28 /// treated as an implementation detail, not as part of the API.  In the
29 /// API below we use the canonical ordering `{Symbol,Dimension,Level}` even
30 /// though that does not agree with the numerical ordering of the numerical
31 /// representation.
32 enum class VarKind { Symbol = 1, Dimension = 0, Level = 2 };
33 
isWF(VarKind vk)34 [[nodiscard]] constexpr bool isWF(VarKind vk) {
35   const auto vk_ = llvm::to_underlying(vk);
36   return 0 <= vk_ && vk_ <= 2;
37 }
38 
39 /// Gets the ASCII character used as the prefix when printing `Var`.
toChar(VarKind vk)40 constexpr char toChar(VarKind vk) {
41   // If `isWF(vk)` then this computation's intermediate results are always
42   // in the range [-44..126] (where that lower bound is under worst-case
43   // rearranging of the expression); and `int_fast8_t` is the fastest type
44   // which can support that range without over-/underflow.
45   const auto vk_ = static_cast<int_fast8_t>(llvm::to_underlying(vk));
46   return static_cast<char>(100 + vk_ * (26 - vk_ * 11));
47 }
48 static_assert(toChar(VarKind::Symbol) == 's' &&
49               toChar(VarKind::Dimension) == 'd' &&
50               toChar(VarKind::Level) == 'l');
51 
52 //===----------------------------------------------------------------------===//
53 /// The type of arrays indexed by `VarKind`.
54 template <typename T>
55 using VarKindArray = llvm::EnumeratedArray<T, VarKind, VarKind::Level>;
56 
57 //===----------------------------------------------------------------------===//
58 /// A concrete variable, to be used in our variant of `AffineExpr`.
59 /// Client-facing class for `VarKind` + `Var::Num` pairs, with RTTI
60 /// support for subclasses with a fixed `VarKind`.
61 class Var {
62 public:
63   /// Typedef for the type of variable numbers.
64   using Num = unsigned;
65 
66 private:
67   /// Typedef for the underlying storage of `Var::Impl`.
68   using Storage = unsigned;
69 
70   /// The largest `Var::Num` supported by `Var`/`Var::Impl`/`Var::Storage`.
71   /// Two low-order bits are reserved for storing the `VarKind`,
72   /// and one high-order bit is reserved for future use (e.g., to support
73   /// `DenseMapInfo<Var>` while maintaining the usual numeric values for
74   /// "empty" and "tombstone").
75   static constexpr Num kMaxNum =
76       static_cast<Num>(std::numeric_limits<Storage>::max() >> 3);
77 
78 public:
79   /// Checks whether the number would be accepted by `Var(VarKind,Var::Num)`.
80   //
81   // This must be public for `VarInfo` to use it (whereas we don't want
82   // to expose the `impl` field via friendship).
isWF_Num(Num n)83   [[nodiscard]] static constexpr bool isWF_Num(Num n) { return n <= kMaxNum; }
84 
85 protected:
86   /// The underlying implementation of `Var`.  Note that this must be kept
87   /// distinct from `Var` itself, since we want to ensure that the RTTI
88   /// methods will select the `U(Var::Impl)` ctor rather than selecting
89   /// the `U(Var::Num)` ctor.
90   class Impl final {
91     Storage data;
92 
93   public:
Impl(VarKind vk,Num n)94     constexpr Impl(VarKind vk, Num n)
95         : data((static_cast<Storage>(n) << 2) |
96                static_cast<Storage>(llvm::to_underlying(vk))) {
97       assert(isWF(vk) && "unknown VarKind");
98       assert(isWF_Num(n) && "Var::Num is too large");
99     }
100     constexpr bool operator==(Impl other) const { return data == other.data; }
101     constexpr bool operator!=(Impl other) const { return !(*this == other); }
getKind()102     constexpr VarKind getKind() const { return static_cast<VarKind>(data & 3); }
getNum()103     constexpr Num getNum() const { return static_cast<Num>(data >> 2); }
104   };
105   static_assert(IsZeroCostAbstraction<Impl>);
106 
107 private:
108   Impl impl;
109 
110 protected:
111   /// Protected ctor for the RTTI methods to use.
Var(Impl impl)112   constexpr explicit Var(Impl impl) : impl(impl) {}
113 
114 public:
Var(VarKind vk,Num n)115   constexpr Var(VarKind vk, Num n) : impl(Impl(vk, n)) {}
Var(AffineSymbolExpr sym)116   Var(AffineSymbolExpr sym) : Var(VarKind::Symbol, sym.getPosition()) {}
Var(VarKind vk,AffineDimExpr var)117   Var(VarKind vk, AffineDimExpr var) : Var(vk, var.getPosition()) {
118     assert(vk != VarKind::Symbol);
119   }
120 
121   constexpr bool operator==(Var other) const { return impl == other.impl; }
122   constexpr bool operator!=(Var other) const { return !(*this == other); }
123 
getKind()124   constexpr VarKind getKind() const { return impl.getKind(); }
getNum()125   constexpr Num getNum() const { return impl.getNum(); }
126 
127   template <typename U>
128   constexpr bool isa() const;
129   template <typename U>
130   constexpr U cast() const;
131   template <typename U>
132   constexpr std::optional<U> dyn_cast() const;
133 
134   std::string str() const;
135   void print(llvm::raw_ostream &os) const;
136   void print(AsmPrinter &printer) const;
137   void dump() const;
138 };
139 static_assert(IsZeroCostAbstraction<Var>);
140 
141 class SymVar final : public Var {
142   using Var::Var; // inherit `Var(Impl)` ctor for RTTI use.
143 public:
144   static constexpr VarKind Kind = VarKind::Symbol;
classof(Var const * var)145   static constexpr bool classof(Var const *var) {
146     return var->getKind() == Kind;
147   }
SymVar(Num sym)148   constexpr SymVar(Num sym) : Var(Kind, sym) {}
SymVar(AffineSymbolExpr symExpr)149   SymVar(AffineSymbolExpr symExpr) : Var(symExpr) {}
150 };
151 static_assert(IsZeroCostAbstraction<SymVar>);
152 
153 class DimVar final : public Var {
154   using Var::Var; // inherit `Var(Impl)` ctor for RTTI use.
155 public:
156   static constexpr VarKind Kind = VarKind::Dimension;
classof(Var const * var)157   static constexpr bool classof(Var const *var) {
158     return var->getKind() == Kind;
159   }
DimVar(Num dim)160   constexpr DimVar(Num dim) : Var(Kind, dim) {}
DimVar(AffineDimExpr dimExpr)161   DimVar(AffineDimExpr dimExpr) : Var(Kind, dimExpr) {}
162 };
163 static_assert(IsZeroCostAbstraction<DimVar>);
164 
165 class LvlVar final : public Var {
166   using Var::Var; // inherit `Var(Impl)` ctor for RTTI use.
167 public:
168   static constexpr VarKind Kind = VarKind::Level;
classof(Var const * var)169   static constexpr bool classof(Var const *var) {
170     return var->getKind() == Kind;
171   }
LvlVar(Num lvl)172   constexpr LvlVar(Num lvl) : Var(Kind, lvl) {}
LvlVar(AffineDimExpr lvlExpr)173   LvlVar(AffineDimExpr lvlExpr) : Var(Kind, lvlExpr) {}
174 };
175 static_assert(IsZeroCostAbstraction<LvlVar>);
176 
177 template <typename U>
isa()178 constexpr bool Var::isa() const {
179   if constexpr (std::is_same_v<U, SymVar>)
180     return getKind() == VarKind::Symbol;
181   if constexpr (std::is_same_v<U, DimVar>)
182     return getKind() == VarKind::Dimension;
183   if constexpr (std::is_same_v<U, LvlVar>)
184     return getKind() == VarKind::Level;
185 }
186 
187 template <typename U>
cast()188 constexpr U Var::cast() const {
189   assert(isa<U>());
190   // NOTE: This should select the `U(Var::Impl)` ctor, *not* `U(Var::Num)`
191   return U(impl);
192 }
193 
194 template <typename U>
dyn_cast()195 constexpr std::optional<U> Var::dyn_cast() const {
196   // NOTE: This should select the `U(Var::Impl)` ctor, *not* `U(Var::Num)`
197   return isa<U>() ? std::make_optional(U(impl)) : std::nullopt;
198 }
199 
200 //===----------------------------------------------------------------------===//
201 // Forward-decl so that we can declare methods of `Ranks` and `VarSet`.
202 class DimLvlExpr;
203 
204 //===----------------------------------------------------------------------===//
205 class Ranks final {
206   // Not using `VarKindArray` since `EnumeratedArray` doesn't support constexpr.
207   unsigned impl[3];
208 
to_index(VarKind vk)209   static constexpr unsigned to_index(VarKind vk) {
210     assert(isWF(vk) && "unknown VarKind");
211     return static_cast<unsigned>(llvm::to_underlying(vk));
212   }
213 
214 public:
Ranks(unsigned symRank,unsigned dimRank,unsigned lvlRank)215   constexpr Ranks(unsigned symRank, unsigned dimRank, unsigned lvlRank)
216       : impl() {
217     impl[to_index(VarKind::Symbol)] = symRank;
218     impl[to_index(VarKind::Dimension)] = dimRank;
219     impl[to_index(VarKind::Level)] = lvlRank;
220   }
Ranks(VarKindArray<unsigned> const & ranks)221   Ranks(VarKindArray<unsigned> const &ranks)
222       : Ranks(ranks[VarKind::Symbol], ranks[VarKind::Dimension],
223               ranks[VarKind::Level]) {}
224 
225   bool operator==(Ranks const &other) const;
226   bool operator!=(Ranks const &other) const { return !(*this == other); }
227 
getRank(VarKind vk)228   constexpr unsigned getRank(VarKind vk) const { return impl[to_index(vk)]; }
getSymRank()229   constexpr unsigned getSymRank() const { return getRank(VarKind::Symbol); }
getDimRank()230   constexpr unsigned getDimRank() const { return getRank(VarKind::Dimension); }
getLvlRank()231   constexpr unsigned getLvlRank() const { return getRank(VarKind::Level); }
232 
isValid(Var var)233   [[nodiscard]] constexpr bool isValid(Var var) const {
234     return var.getNum() < getRank(var.getKind());
235   }
236   [[nodiscard]] bool isValid(DimLvlExpr expr) const;
237 };
238 static_assert(IsZeroCostAbstraction<Ranks>);
239 
240 //===----------------------------------------------------------------------===//
241 /// Efficient representation of a set of `Var`.
242 class VarSet final {
243   VarKindArray<llvm::SmallBitVector> impl;
244 
245 public:
246   explicit VarSet(Ranks const &ranks);
247 
getRank(VarKind vk)248   unsigned getRank(VarKind vk) const { return impl[vk].size(); }
getSymRank()249   unsigned getSymRank() const { return getRank(VarKind::Symbol); }
getDimRank()250   unsigned getDimRank() const { return getRank(VarKind::Dimension); }
getLvlRank()251   unsigned getLvlRank() const { return getRank(VarKind::Level); }
getRanks()252   Ranks getRanks() const {
253     return Ranks(getSymRank(), getDimRank(), getLvlRank());
254   }
255   /// For the `contains` method: if variables occurring in
256   /// the method parameter are OOB for the `VarSet`, then these methods will
257   /// always return false.
258   bool contains(Var var) const;
259 
260   /// For the `add` methods: OOB parameters cause undefined behavior.
261   /// Currently the `add` methods will raise an assertion error.
262   void add(Var var);
263   void add(VarSet const &vars);
264   void add(DimLvlExpr expr);
265 };
266 
267 //===----------------------------------------------------------------------===//
268 /// A record of metadata for/about a variable, used by `VarEnv`.
269 /// The principal goal of this record is to enable `VarEnv` to be used for
270 /// incremental parsing; in particular, `VarInfo` allows the `Var::Num` to
271 /// remain unknown, since each record is instead identified by `VarInfo::ID`.
272 /// Therefore the `VarEnv` can freely allocate `VarInfo::ID` in whatever
273 /// order it likes, irrespective of the binding order (`Var::Num`) of the
274 /// associated variable.
275 class VarInfo final {
276 public:
277   /// Newtype for unique identifiers of `VarInfo` records, to ensure
278   /// they aren't confused with `Var::Num`.
279   enum class ID : unsigned {};
280 
281 private:
282   StringRef name;              // The bare-id used in the MLIR source.
283   llvm::SMLoc loc;             // The location of the first occurence.
284   ID id;                       // The unique `VarInfo`-identifier.
285   std::optional<Var::Num> num; // The unique `Var`-identifier (if resolved).
286   VarKind kind;                // The kind of variable.
287 
288 public:
289   constexpr VarInfo(ID id, StringRef name, llvm::SMLoc loc, VarKind vk,
290                     std::optional<Var::Num> n = {})
name(name)291       : name(name), loc(loc), id(id), num(n), kind(vk) {
292     assert(!name.empty() && "null StringRef");
293     assert(loc.isValid() && "null SMLoc");
294     assert(isWF(vk) && "unknown VarKind");
295     assert((!n || Var::isWF_Num(*n)) && "Var::Num is too large");
296   }
297 
getName()298   constexpr StringRef getName() const { return name; }
getLoc()299   constexpr llvm::SMLoc getLoc() const { return loc; }
getLocation(AsmParser & parser)300   Location getLocation(AsmParser &parser) const {
301     return parser.getEncodedSourceLoc(loc);
302   }
getID()303   constexpr ID getID() const { return id; }
getKind()304   constexpr VarKind getKind() const { return kind; }
getNum()305   constexpr std::optional<Var::Num> getNum() const { return num; }
hasNum()306   constexpr bool hasNum() const { return num.has_value(); }
307   void setNum(Var::Num n);
getVar()308   constexpr Var getVar() const {
309     assert(hasNum());
310     return Var(kind, *num);
311   }
312 };
313 
314 //===----------------------------------------------------------------------===//
315 enum class Policy { MustNot, May, Must };
316 
317 //===----------------------------------------------------------------------===//
318 class VarEnv final {
319   /// Map from `VarKind` to the next free `Var::Num`; used by `bindVar`.
320   VarKindArray<Var::Num> nextNum;
321   /// Map from `VarInfo::ID` to shared storage for the actual `VarInfo` objects.
322   SmallVector<VarInfo> vars;
323   /// Map from variable names to their `VarInfo::ID`.
324   llvm::StringMap<VarInfo::ID> ids;
325 
nextID()326   VarInfo::ID nextID() const { return static_cast<VarInfo::ID>(vars.size()); }
327 
328 public:
VarEnv()329   VarEnv() : nextNum(0) {}
330 
331   /// Gets the underlying storage for the `VarInfo` identified by
332   /// the `VarInfo::ID`.
333   ///
334   /// NOTE: The returned reference can become dangling if the `VarEnv`
335   /// object is mutated during the lifetime of the pointer.  Therefore,
336   /// client code should not store the reference nor otherwise allow it
337   /// to live too long.
access(VarInfo::ID id)338   VarInfo const &access(VarInfo::ID id) const {
339     // `SmallVector::operator[]` already asserts the index is in-bounds.
340     return vars[llvm::to_underlying(id)];
341   }
access(std::optional<VarInfo::ID> oid)342   VarInfo const *access(std::optional<VarInfo::ID> oid) const {
343     return oid ? &access(*oid) : nullptr;
344   }
345 
346 private:
access(VarInfo::ID id)347   VarInfo &access(VarInfo::ID id) {
348     return const_cast<VarInfo &>(std::as_const(*this).access(id));
349   }
access(std::optional<VarInfo::ID> oid)350   VarInfo *access(std::optional<VarInfo::ID> oid) {
351     return const_cast<VarInfo *>(std::as_const(*this).access(oid));
352   }
353 
354 public:
355   /// Looks up the variable with the given name.
356   std::optional<VarInfo::ID> lookup(StringRef name) const;
357 
358   /// Creates a new currently-unbound variable.  When a variable
359   /// of that name already exists: if `verifyUsage` is true, then will assert
360   /// that the variable has the same kind and a consistent location; otherwise,
361   /// when `verifyUsage` is false, this is a noop.  Returns the identifier
362   /// for the variable with the given name, and a bool indicating whether
363   /// a new variable was created.
364   std::optional<std::pair<VarInfo::ID, bool>>
365   create(StringRef name, llvm::SMLoc loc, VarKind vk, bool verifyUsage = false);
366 
367   /// Looks up or creates a variable according to the given
368   /// `Policy`.  Returns nullopt in one of two circumstances:
369   /// (1) the policy says we `Must` create, yet the variable already exists;
370   /// (2) the policy says we `MustNot` create, yet no such variable exists.
371   /// Otherwise, if the variable already exists then it is validated against
372   /// the given kind and location to ensure consistency.
373   std::optional<std::pair<VarInfo::ID, bool>>
374   lookupOrCreate(Policy creationPolicy, StringRef name, llvm::SMLoc loc,
375                  VarKind vk);
376 
377   /// Binds the given variable to the next free `Var::Num` for its `VarKind`.
378   Var bindVar(VarInfo::ID id);
379 
380   /// Creates a new variable of the given kind and immediately binds it.
381   /// This should only be used whenever the variable is known to be unused
382   /// and therefore does not have a name.
383   Var bindUnusedVar(VarKind vk);
384 
385   InFlightDiagnostic emitErrorIfAnyUnbound(AsmParser &parser) const;
386 
387   /// Returns the current ranks of bound variables.  This method should
388   /// only be used after the environment is "finished", since binding new
389   /// variables will (semantically) invalidate any previously returned `Ranks`.
getRanks()390   Ranks getRanks() const { return Ranks(nextNum); }
391 
392   /// Gets the `Var` identified by the `VarInfo::ID`, raising an assertion
393   /// failure if the variable is not bound.
getVar(VarInfo::ID id)394   Var getVar(VarInfo::ID id) const { return access(id).getVar(); }
395 };
396 
397 //===----------------------------------------------------------------------===//
398 
399 } // namespace ir_detail
400 } // namespace sparse_tensor
401 } // namespace mlir
402 
403 #endif // MLIR_DIALECT_SPARSETENSOR_IR_DETAIL_VAR_H
404