xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
run(Module & M,ModuleAnalysisManager & AM)128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
RewriteStatepointsForGCLegacyPass()169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
runOnModule(Module & M)174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
getAnalysisUsage(AnalysisUsage & AU) const205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
createRewriteStatepointsForGCLegacyPass()218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
GetDeoptBundleOperands(const CallBase * Call)288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
isGCPointerType(Type * T)313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
isHandledGCPointerType(Type * T)326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
containsGCPtrType(Type * Ty)341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
isUnhandledGCPointerType(Type * Ty)356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
suffixed_name_or(Value * V,StringRef Suffix,StringRef DefaultName)363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
analyzeParsePointLiveness(DominatorTree & DT,GCPtrLivenessData & OriginalLivenessData,CallBase * Call,PartiallyConstructedSafepointRecord & Result)372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
BaseDefiningValueResult__anon7262c22f0311::BaseDefiningValueResult415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
findBaseDefiningValueOfVector(Value * I)440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
findBaseDefiningValue(Value * I)498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   if (CastInst *CI = dyn_cast<CastInst>(I)) {
526     Value *Def = CI->stripPointerCasts();
527     // If stripping pointer casts changes the address space there is an
528     // addrspacecast in between.
529     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
530                cast<PointerType>(CI->getType())->getAddressSpace() &&
531            "unsupported addrspacecast");
532     // If we find a cast instruction here, it means we've found a cast which is
533     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
534     // handle int->ptr conversion.
535     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
536     return findBaseDefiningValue(Def);
537   }
538 
539   if (isa<LoadInst>(I))
540     // The value loaded is an gc base itself
541     return BaseDefiningValueResult(I, true);
542 
543   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
544     // The base of this GEP is the base
545     return findBaseDefiningValue(GEP->getPointerOperand());
546 
547   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
548     switch (II->getIntrinsicID()) {
549     default:
550       // fall through to general call handling
551       break;
552     case Intrinsic::experimental_gc_statepoint:
553       llvm_unreachable("statepoints don't produce pointers");
554     case Intrinsic::experimental_gc_relocate:
555       // Rerunning safepoint insertion after safepoints are already
556       // inserted is not supported.  It could probably be made to work,
557       // but why are you doing this?  There's no good reason.
558       llvm_unreachable("repeat safepoint insertion is not supported");
559     case Intrinsic::gcroot:
560       // Currently, this mechanism hasn't been extended to work with gcroot.
561       // There's no reason it couldn't be, but I haven't thought about the
562       // implications much.
563       llvm_unreachable(
564           "interaction with the gcroot mechanism is not supported");
565     }
566   }
567   // We assume that functions in the source language only return base
568   // pointers.  This should probably be generalized via attributes to support
569   // both source language and internal functions.
570   if (isa<CallInst>(I) || isa<InvokeInst>(I))
571     return BaseDefiningValueResult(I, true);
572 
573   // TODO: I have absolutely no idea how to implement this part yet.  It's not
574   // necessarily hard, I just haven't really looked at it yet.
575   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
576 
577   if (isa<AtomicCmpXchgInst>(I))
578     // A CAS is effectively a atomic store and load combined under a
579     // predicate.  From the perspective of base pointers, we just treat it
580     // like a load.
581     return BaseDefiningValueResult(I, true);
582 
583   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
584                                    "binary ops which don't apply to pointers");
585 
586   // The aggregate ops.  Aggregates can either be in the heap or on the
587   // stack, but in either case, this is simply a field load.  As a result,
588   // this is a defining definition of the base just like a load is.
589   if (isa<ExtractValueInst>(I))
590     return BaseDefiningValueResult(I, true);
591 
592   // We should never see an insert vector since that would require we be
593   // tracing back a struct value not a pointer value.
594   assert(!isa<InsertValueInst>(I) &&
595          "Base pointer for a struct is meaningless");
596 
597   // An extractelement produces a base result exactly when it's input does.
598   // We may need to insert a parallel instruction to extract the appropriate
599   // element out of the base vector corresponding to the input. Given this,
600   // it's analogous to the phi and select case even though it's not a merge.
601   if (isa<ExtractElementInst>(I))
602     // Note: There a lot of obvious peephole cases here.  This are deliberately
603     // handled after the main base pointer inference algorithm to make writing
604     // test cases to exercise that code easier.
605     return BaseDefiningValueResult(I, false);
606 
607   // The last two cases here don't return a base pointer.  Instead, they
608   // return a value which dynamically selects from among several base
609   // derived pointers (each with it's own base potentially).  It's the job of
610   // the caller to resolve these.
611   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
612          "missing instruction case in findBaseDefiningValing");
613   return BaseDefiningValueResult(I, false);
614 }
615 
616 /// Returns the base defining value for this value.
findBaseDefiningValueCached(Value * I,DefiningValueMapTy & Cache)617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
618   Value *&Cached = Cache[I];
619   if (!Cached) {
620     Cached = findBaseDefiningValue(I).BDV;
621     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
622                       << Cached->getName() << "\n");
623   }
624   assert(Cache[I] != nullptr);
625   return Cached;
626 }
627 
628 /// Return a base pointer for this value if known.  Otherwise, return it's
629 /// base defining value.
findBaseOrBDV(Value * I,DefiningValueMapTy & Cache)630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
631   Value *Def = findBaseDefiningValueCached(I, Cache);
632   auto Found = Cache.find(Def);
633   if (Found != Cache.end()) {
634     // Either a base-of relation, or a self reference.  Caller must check.
635     return Found->second;
636   }
637   // Only a BDV available
638   return Def;
639 }
640 
641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
642 /// exists in the code.
isOriginalBaseResult(Value * V)643 static bool isOriginalBaseResult(Value *V) {
644   // no recursion possible
645   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
646          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
647          !isa<ShuffleVectorInst>(V);
648 }
649 
650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
651 /// is it known to be a base pointer?  Or do we need to continue searching.
isKnownBaseResult(Value * V)652 static bool isKnownBaseResult(Value *V) {
653   if (isOriginalBaseResult(V))
654     return true;
655   if (isa<Instruction>(V) &&
656       cast<Instruction>(V)->getMetadata("is_base_value")) {
657     // This is a previously inserted base phi or select.  We know
658     // that this is a base value.
659     return true;
660   }
661 
662   // We need to keep searching
663   return false;
664 }
665 
666 // Returns true if First and Second values are both scalar or both vector.
areBothVectorOrScalar(Value * First,Value * Second)667 static bool areBothVectorOrScalar(Value *First, Value *Second) {
668   return isa<VectorType>(First->getType()) ==
669          isa<VectorType>(Second->getType());
670 }
671 
672 namespace {
673 
674 /// Models the state of a single base defining value in the findBasePointer
675 /// algorithm for determining where a new instruction is needed to propagate
676 /// the base of this BDV.
677 class BDVState {
678 public:
679   enum StatusTy {
680      // Starting state of lattice
681      Unknown,
682      // Some specific base value -- does *not* mean that instruction
683      // propagates the base of the object
684      // ex: gep %arg, 16 -> %arg is the base value
685      Base,
686      // Need to insert a node to represent a merge.
687      Conflict
688   };
689 
BDVState()690   BDVState() {
691     llvm_unreachable("missing state in map");
692   }
693 
BDVState(Value * OriginalValue)694   explicit BDVState(Value *OriginalValue)
695     : OriginalValue(OriginalValue) {}
BDVState(Value * OriginalValue,StatusTy Status,Value * BaseValue=nullptr)696   explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
697     : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
698     assert(Status != Base || BaseValue);
699   }
700 
getStatus() const701   StatusTy getStatus() const { return Status; }
getOriginalValue() const702   Value *getOriginalValue() const { return OriginalValue; }
getBaseValue() const703   Value *getBaseValue() const { return BaseValue; }
704 
isBase() const705   bool isBase() const { return getStatus() == Base; }
isUnknown() const706   bool isUnknown() const { return getStatus() == Unknown; }
isConflict() const707   bool isConflict() const { return getStatus() == Conflict; }
708 
709   // Values of type BDVState form a lattice, and this function implements the
710   // meet
711   // operation.
meet(const BDVState & Other)712   void meet(const BDVState &Other) {
713     auto markConflict = [&]() {
714       Status = BDVState::Conflict;
715       BaseValue = nullptr;
716     };
717     // Conflict is a final state.
718     if (isConflict())
719       return;
720     // if we are not known - just take other state.
721     if (isUnknown()) {
722       Status = Other.getStatus();
723       BaseValue = Other.getBaseValue();
724       return;
725     }
726     // We are base.
727     assert(isBase() && "Unknown state");
728     // If other is unknown - just keep our state.
729     if (Other.isUnknown())
730       return;
731     // If other is conflict - it is a final state.
732     if (Other.isConflict())
733       return markConflict();
734     // Other is base as well.
735     assert(Other.isBase() && "Unknown state");
736     // If bases are different - Conflict.
737     if (getBaseValue() != Other.getBaseValue())
738       return markConflict();
739     // We are identical, do nothing.
740   }
741 
operator ==(const BDVState & Other) const742   bool operator==(const BDVState &Other) const {
743     return OriginalValue == OriginalValue && BaseValue == Other.BaseValue &&
744       Status == Other.Status;
745   }
746 
operator !=(const BDVState & other) const747   bool operator!=(const BDVState &other) const { return !(*this == other); }
748 
749   LLVM_DUMP_METHOD
dump() const750   void dump() const {
751     print(dbgs());
752     dbgs() << '\n';
753   }
754 
print(raw_ostream & OS) const755   void print(raw_ostream &OS) const {
756     switch (getStatus()) {
757     case Unknown:
758       OS << "U";
759       break;
760     case Base:
761       OS << "B";
762       break;
763     case Conflict:
764       OS << "C";
765       break;
766     }
767     OS << " (base " << getBaseValue() << " - "
768        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
769        << " for  "  << OriginalValue->getName() << ":";
770   }
771 
772 private:
773   AssertingVH<Value> OriginalValue; // instruction this state corresponds to
774   StatusTy Status = Unknown;
775   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
776 };
777 
778 } // end anonymous namespace
779 
780 #ifndef NDEBUG
operator <<(raw_ostream & OS,const BDVState & State)781 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
782   State.print(OS);
783   return OS;
784 }
785 #endif
786 
787 /// For a given value or instruction, figure out what base ptr its derived from.
788 /// For gc objects, this is simply itself.  On success, returns a value which is
789 /// the base pointer.  (This is reliable and can be used for relocation.)  On
790 /// failure, returns nullptr.
findBasePointer(Value * I,DefiningValueMapTy & Cache)791 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
792   Value *Def = findBaseOrBDV(I, Cache);
793 
794   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
795     return Def;
796 
797   // Here's the rough algorithm:
798   // - For every SSA value, construct a mapping to either an actual base
799   //   pointer or a PHI which obscures the base pointer.
800   // - Construct a mapping from PHI to unknown TOP state.  Use an
801   //   optimistic algorithm to propagate base pointer information.  Lattice
802   //   looks like:
803   //   UNKNOWN
804   //   b1 b2 b3 b4
805   //   CONFLICT
806   //   When algorithm terminates, all PHIs will either have a single concrete
807   //   base or be in a conflict state.
808   // - For every conflict, insert a dummy PHI node without arguments.  Add
809   //   these to the base[Instruction] = BasePtr mapping.  For every
810   //   non-conflict, add the actual base.
811   //  - For every conflict, add arguments for the base[a] of each input
812   //   arguments.
813   //
814   // Note: A simpler form of this would be to add the conflict form of all
815   // PHIs without running the optimistic algorithm.  This would be
816   // analogous to pessimistic data flow and would likely lead to an
817   // overall worse solution.
818 
819 #ifndef NDEBUG
820   auto isExpectedBDVType = [](Value *BDV) {
821     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
822            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
823            isa<ShuffleVectorInst>(BDV);
824   };
825 #endif
826 
827   // Once populated, will contain a mapping from each potentially non-base BDV
828   // to a lattice value (described above) which corresponds to that BDV.
829   // We use the order of insertion (DFS over the def/use graph) to provide a
830   // stable deterministic ordering for visiting DenseMaps (which are unordered)
831   // below.  This is important for deterministic compilation.
832   MapVector<Value *, BDVState> States;
833 
834 #ifndef NDEBUG
835   auto VerifyStates = [&]() {
836     for (auto &Entry : States) {
837       assert(Entry.first == Entry.second.getOriginalValue());
838     }
839   };
840 #endif
841 
842   auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
843     if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
844       for (Value *InVal : PN->incoming_values())
845         F(InVal);
846     } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
847       F(SI->getTrueValue());
848       F(SI->getFalseValue());
849     } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
850       F(EE->getVectorOperand());
851     } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
852       F(IE->getOperand(0));
853       F(IE->getOperand(1));
854     } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
855       // For a canonical broadcast, ignore the undef argument
856       // (without this, we insert a parallel base shuffle for every broadcast)
857       F(SV->getOperand(0));
858       if (!SV->isZeroEltSplat())
859         F(SV->getOperand(1));
860     } else {
861       llvm_unreachable("unexpected BDV type");
862     }
863   };
864 
865 
866   // Recursively fill in all base defining values reachable from the initial
867   // one for which we don't already know a definite base value for
868   /* scope */ {
869     SmallVector<Value*, 16> Worklist;
870     Worklist.push_back(Def);
871     States.insert({Def, BDVState(Def)});
872     while (!Worklist.empty()) {
873       Value *Current = Worklist.pop_back_val();
874       assert(!isOriginalBaseResult(Current) && "why did it get added?");
875 
876       auto visitIncomingValue = [&](Value *InVal) {
877         Value *Base = findBaseOrBDV(InVal, Cache);
878         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
879           // Known bases won't need new instructions introduced and can be
880           // ignored safely. However, this can only be done when InVal and Base
881           // are both scalar or both vector. Otherwise, we need to find a
882           // correct BDV for InVal, by creating an entry in the lattice
883           // (States).
884           return;
885         assert(isExpectedBDVType(Base) && "the only non-base values "
886                "we see should be base defining values");
887         if (States.insert(std::make_pair(Base, BDVState(Base))).second)
888           Worklist.push_back(Base);
889       };
890 
891       visitBDVOperands(Current, visitIncomingValue);
892     }
893   }
894 
895 #ifndef NDEBUG
896   VerifyStates();
897   LLVM_DEBUG(dbgs() << "States after initialization:\n");
898   for (auto Pair : States) {
899     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
900   }
901 #endif
902 
903   // Iterate forward through the value graph pruning any node from the state
904   // list where all of the inputs are base pointers.  The purpose of this is to
905   // reuse existing values when the derived pointer we were asked to materialize
906   // a base pointer for happens to be a base pointer itself.  (Or a sub-graph
907   // feeding it does.)
908   SmallVector<Value *> ToRemove;
909   do {
910     ToRemove.clear();
911     for (auto Pair : States) {
912       Value *BDV = Pair.first;
913       auto canPruneInput = [&](Value *V) {
914         Value *BDV = findBaseOrBDV(V, Cache);
915         if (V->stripPointerCasts() != BDV)
916           return false;
917         // The assumption is that anything not in the state list is
918         // propagates a base pointer.
919         return States.count(BDV) == 0;
920       };
921 
922       bool CanPrune = true;
923       visitBDVOperands(BDV, [&](Value *Op) {
924         CanPrune = CanPrune && canPruneInput(Op);
925       });
926       if (CanPrune)
927         ToRemove.push_back(BDV);
928     }
929     for (Value *V : ToRemove) {
930       States.erase(V);
931       // Cache the fact V is it's own base for later usage.
932       Cache[V] = V;
933     }
934   } while (!ToRemove.empty());
935 
936   // Did we manage to prove that Def itself must be a base pointer?
937   if (!States.count(Def))
938     return Def;
939 
940   // Return a phi state for a base defining value.  We'll generate a new
941   // base state for known bases and expect to find a cached state otherwise.
942   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
943     auto I = States.find(BaseValue);
944     if (I != States.end())
945       return I->second;
946     assert(areBothVectorOrScalar(BaseValue, Input));
947     return BDVState(BaseValue, BDVState::Base, BaseValue);
948   };
949 
950   bool Progress = true;
951   while (Progress) {
952 #ifndef NDEBUG
953     const size_t OldSize = States.size();
954 #endif
955     Progress = false;
956     // We're only changing values in this loop, thus safe to keep iterators.
957     // Since this is computing a fixed point, the order of visit does not
958     // effect the result.  TODO: We could use a worklist here and make this run
959     // much faster.
960     for (auto Pair : States) {
961       Value *BDV = Pair.first;
962       // Only values that do not have known bases or those that have differing
963       // type (scalar versus vector) from a possible known base should be in the
964       // lattice.
965       assert((!isKnownBaseResult(BDV) ||
966              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
967                  "why did it get added?");
968 
969       BDVState NewState(BDV);
970       visitBDVOperands(BDV, [&](Value *Op) {
971         Value *BDV = findBaseOrBDV(Op, Cache);
972         auto OpState = GetStateForBDV(BDV, Op);
973         NewState.meet(OpState);
974       });
975 
976       BDVState OldState = States[BDV];
977       if (OldState != NewState) {
978         Progress = true;
979         States[BDV] = NewState;
980       }
981     }
982 
983     assert(OldSize == States.size() &&
984            "fixed point shouldn't be adding any new nodes to state");
985   }
986 
987 #ifndef NDEBUG
988   VerifyStates();
989   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
990   for (auto Pair : States) {
991     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
992   }
993 #endif
994 
995   // Handle all instructions that have a vector BDV, but the instruction itself
996   // is of scalar type.
997   for (auto Pair : States) {
998     Instruction *I = cast<Instruction>(Pair.first);
999     BDVState State = Pair.second;
1000     auto *BaseValue = State.getBaseValue();
1001     // Only values that do not have known bases or those that have differing
1002     // type (scalar versus vector) from a possible known base should be in the
1003     // lattice.
1004     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
1005            "why did it get added?");
1006     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1007 
1008     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
1009       continue;
1010     // extractelement instructions are a bit special in that we may need to
1011     // insert an extract even when we know an exact base for the instruction.
1012     // The problem is that we need to convert from a vector base to a scalar
1013     // base for the particular indice we're interested in.
1014     if (isa<ExtractElementInst>(I)) {
1015       auto *EE = cast<ExtractElementInst>(I);
1016       // TODO: In many cases, the new instruction is just EE itself.  We should
1017       // exploit this, but can't do it here since it would break the invariant
1018       // about the BDV not being known to be a base.
1019       auto *BaseInst = ExtractElementInst::Create(
1020           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
1021       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1022       States[I] = BDVState(I, BDVState::Base, BaseInst);
1023     } else if (!isa<VectorType>(I->getType())) {
1024       // We need to handle cases that have a vector base but the instruction is
1025       // a scalar type (these could be phis or selects or any instruction that
1026       // are of scalar type, but the base can be a vector type).  We
1027       // conservatively set this as conflict.  Setting the base value for these
1028       // conflicts is handled in the next loop which traverses States.
1029       States[I] = BDVState(I, BDVState::Conflict);
1030     }
1031   }
1032 
1033 #ifndef NDEBUG
1034   VerifyStates();
1035 #endif
1036 
1037   // Insert Phis for all conflicts
1038   // TODO: adjust naming patterns to avoid this order of iteration dependency
1039   for (auto Pair : States) {
1040     Instruction *I = cast<Instruction>(Pair.first);
1041     BDVState State = Pair.second;
1042     // Only values that do not have known bases or those that have differing
1043     // type (scalar versus vector) from a possible known base should be in the
1044     // lattice.
1045     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1046            "why did it get added?");
1047     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1048 
1049     // Since we're joining a vector and scalar base, they can never be the
1050     // same.  As a result, we should always see insert element having reached
1051     // the conflict state.
1052     assert(!isa<InsertElementInst>(I) || State.isConflict());
1053 
1054     if (!State.isConflict())
1055       continue;
1056 
1057     auto getMangledName = [](Instruction *I) -> std::string {
1058       if (isa<PHINode>(I)) {
1059         return suffixed_name_or(I, ".base", "base_phi");
1060       } else if (isa<SelectInst>(I)) {
1061         return suffixed_name_or(I, ".base", "base_select");
1062       } else if (isa<ExtractElementInst>(I)) {
1063         return suffixed_name_or(I, ".base", "base_ee");
1064       } else if (isa<InsertElementInst>(I)) {
1065         return suffixed_name_or(I, ".base", "base_ie");
1066       } else {
1067         return suffixed_name_or(I, ".base", "base_sv");
1068       }
1069     };
1070 
1071     Instruction *BaseInst = I->clone();
1072     BaseInst->insertBefore(I);
1073     BaseInst->setName(getMangledName(I));
1074     // Add metadata marking this as a base value
1075     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1076     States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1077   }
1078 
1079 #ifndef NDEBUG
1080   VerifyStates();
1081 #endif
1082 
1083   // Returns a instruction which produces the base pointer for a given
1084   // instruction.  The instruction is assumed to be an input to one of the BDVs
1085   // seen in the inference algorithm above.  As such, we must either already
1086   // know it's base defining value is a base, or have inserted a new
1087   // instruction to propagate the base of it's BDV and have entered that newly
1088   // introduced instruction into the state table.  In either case, we are
1089   // assured to be able to determine an instruction which produces it's base
1090   // pointer.
1091   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1092     Value *BDV = findBaseOrBDV(Input, Cache);
1093     Value *Base = nullptr;
1094     if (!States.count(BDV)) {
1095       assert(areBothVectorOrScalar(BDV, Input));
1096       Base = BDV;
1097     } else {
1098       // Either conflict or base.
1099       assert(States.count(BDV));
1100       Base = States[BDV].getBaseValue();
1101     }
1102     assert(Base && "Can't be null");
1103     // The cast is needed since base traversal may strip away bitcasts
1104     if (Base->getType() != Input->getType() && InsertPt)
1105       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1106     return Base;
1107   };
1108 
1109   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1110   // deterministic and predictable because we're naming newly created
1111   // instructions.
1112   for (auto Pair : States) {
1113     Instruction *BDV = cast<Instruction>(Pair.first);
1114     BDVState State = Pair.second;
1115 
1116     // Only values that do not have known bases or those that have differing
1117     // type (scalar versus vector) from a possible known base should be in the
1118     // lattice.
1119     assert((!isKnownBaseResult(BDV) ||
1120             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1121            "why did it get added?");
1122     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1123     if (!State.isConflict())
1124       continue;
1125 
1126     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1127       PHINode *PN = cast<PHINode>(BDV);
1128       const unsigned NumPHIValues = PN->getNumIncomingValues();
1129 
1130       // The IR verifier requires phi nodes with multiple entries from the
1131       // same basic block to have the same incoming value for each of those
1132       // entries.  Since we're inserting bitcasts in the loop, make sure we
1133       // do so at least once per incoming block.
1134       DenseMap<BasicBlock *, Value*> BlockToValue;
1135       for (unsigned i = 0; i < NumPHIValues; i++) {
1136         Value *InVal = PN->getIncomingValue(i);
1137         BasicBlock *InBB = PN->getIncomingBlock(i);
1138         if (!BlockToValue.count(InBB))
1139           BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
1140         else {
1141 #ifndef NDEBUG
1142           Value *OldBase = BlockToValue[InBB];
1143           Value *Base = getBaseForInput(InVal, nullptr);
1144           // In essence this assert states: the only way two values
1145           // incoming from the same basic block may be different is by
1146           // being different bitcasts of the same value.  A cleanup
1147           // that remains TODO is changing findBaseOrBDV to return an
1148           // llvm::Value of the correct type (and still remain pure).
1149           // This will remove the need to add bitcasts.
1150           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1151                  "Sanity -- findBaseOrBDV should be pure!");
1152 #endif
1153         }
1154         Value *Base = BlockToValue[InBB];
1155         BasePHI->setIncomingValue(i, Base);
1156       }
1157     } else if (SelectInst *BaseSI =
1158                    dyn_cast<SelectInst>(State.getBaseValue())) {
1159       SelectInst *SI = cast<SelectInst>(BDV);
1160 
1161       // Find the instruction which produces the base for each input.
1162       // We may need to insert a bitcast.
1163       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1164       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1165     } else if (auto *BaseEE =
1166                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1167       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1168       // Find the instruction which produces the base for each input.  We may
1169       // need to insert a bitcast.
1170       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1171     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1172       auto *BdvIE = cast<InsertElementInst>(BDV);
1173       auto UpdateOperand = [&](int OperandIdx) {
1174         Value *InVal = BdvIE->getOperand(OperandIdx);
1175         Value *Base = getBaseForInput(InVal, BaseIE);
1176         BaseIE->setOperand(OperandIdx, Base);
1177       };
1178       UpdateOperand(0); // vector operand
1179       UpdateOperand(1); // scalar operand
1180     } else {
1181       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1182       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1183       auto UpdateOperand = [&](int OperandIdx) {
1184         Value *InVal = BdvSV->getOperand(OperandIdx);
1185         Value *Base = getBaseForInput(InVal, BaseSV);
1186         BaseSV->setOperand(OperandIdx, Base);
1187       };
1188       UpdateOperand(0); // vector operand
1189       if (!BdvSV->isZeroEltSplat())
1190         UpdateOperand(1); // vector operand
1191       else {
1192         // Never read, so just use undef
1193         Value *InVal = BdvSV->getOperand(1);
1194         BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
1195       }
1196     }
1197   }
1198 
1199 #ifndef NDEBUG
1200   VerifyStates();
1201 #endif
1202 
1203   // Cache all of our results so we can cheaply reuse them
1204   // NOTE: This is actually two caches: one of the base defining value
1205   // relation and one of the base pointer relation!  FIXME
1206   for (auto Pair : States) {
1207     auto *BDV = Pair.first;
1208     Value *Base = Pair.second.getBaseValue();
1209     assert(BDV && Base);
1210     // Only values that do not have known bases or those that have differing
1211     // type (scalar versus vector) from a possible known base should be in the
1212     // lattice.
1213     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1214            "why did it get added?");
1215 
1216     LLVM_DEBUG(
1217         dbgs() << "Updating base value cache"
1218                << " for: " << BDV->getName() << " from: "
1219                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1220                << " to: " << Base->getName() << "\n");
1221 
1222     Cache[BDV] = Base;
1223   }
1224   assert(Cache.count(Def));
1225   return Cache[Def];
1226 }
1227 
1228 // For a set of live pointers (base and/or derived), identify the base
1229 // pointer of the object which they are derived from.  This routine will
1230 // mutate the IR graph as needed to make the 'base' pointer live at the
1231 // definition site of 'derived'.  This ensures that any use of 'derived' can
1232 // also use 'base'.  This may involve the insertion of a number of
1233 // additional PHI nodes.
1234 //
1235 // preconditions: live is a set of pointer type Values
1236 //
1237 // side effects: may insert PHI nodes into the existing CFG, will preserve
1238 // CFG, will not remove or mutate any existing nodes
1239 //
1240 // post condition: PointerToBase contains one (derived, base) pair for every
1241 // pointer in live.  Note that derived can be equal to base if the original
1242 // pointer was a base pointer.
1243 static void
findBasePointers(const StatepointLiveSetTy & live,MapVector<Value *,Value * > & PointerToBase,DominatorTree * DT,DefiningValueMapTy & DVCache)1244 findBasePointers(const StatepointLiveSetTy &live,
1245                  MapVector<Value *, Value *> &PointerToBase,
1246                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1247   for (Value *ptr : live) {
1248     Value *base = findBasePointer(ptr, DVCache);
1249     assert(base && "failed to find base pointer");
1250     PointerToBase[ptr] = base;
1251     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1252             DT->dominates(cast<Instruction>(base)->getParent(),
1253                           cast<Instruction>(ptr)->getParent())) &&
1254            "The base we found better dominate the derived pointer");
1255   }
1256 }
1257 
1258 /// Find the required based pointers (and adjust the live set) for the given
1259 /// parse point.
findBasePointers(DominatorTree & DT,DefiningValueMapTy & DVCache,CallBase * Call,PartiallyConstructedSafepointRecord & result)1260 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1261                              CallBase *Call,
1262                              PartiallyConstructedSafepointRecord &result) {
1263   MapVector<Value *, Value *> PointerToBase;
1264   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1265   // We assume that all pointers passed to deopt are base pointers; as an
1266   // optimization, we can use this to avoid seperately materializing the base
1267   // pointer graph.  This is only relevant since we're very conservative about
1268   // generating new conflict nodes during base pointer insertion.  If we were
1269   // smarter there, this would be irrelevant.
1270   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1271     for (Value *V : Opt->Inputs) {
1272       if (!PotentiallyDerivedPointers.count(V))
1273         continue;
1274       PotentiallyDerivedPointers.remove(V);
1275       PointerToBase[V] = V;
1276     }
1277   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
1278 
1279   if (PrintBasePointers) {
1280     errs() << "Base Pairs (w/o Relocation):\n";
1281     for (auto &Pair : PointerToBase) {
1282       errs() << " derived ";
1283       Pair.first->printAsOperand(errs(), false);
1284       errs() << " base ";
1285       Pair.second->printAsOperand(errs(), false);
1286       errs() << "\n";;
1287     }
1288   }
1289 
1290   result.PointerToBase = PointerToBase;
1291 }
1292 
1293 /// Given an updated version of the dataflow liveness results, update the
1294 /// liveset and base pointer maps for the call site CS.
1295 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1296                                   CallBase *Call,
1297                                   PartiallyConstructedSafepointRecord &result);
1298 
recomputeLiveInValues(Function & F,DominatorTree & DT,ArrayRef<CallBase * > toUpdate,MutableArrayRef<struct PartiallyConstructedSafepointRecord> records)1299 static void recomputeLiveInValues(
1300     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1301     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1302   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1303   // again.  The old values are still live and will help it stabilize quickly.
1304   GCPtrLivenessData RevisedLivenessData;
1305   computeLiveInValues(DT, F, RevisedLivenessData);
1306   for (size_t i = 0; i < records.size(); i++) {
1307     struct PartiallyConstructedSafepointRecord &info = records[i];
1308     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1309   }
1310 }
1311 
1312 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1313 // no uses of the original value / return value between the gc.statepoint and
1314 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1315 // starting one of the successor blocks.  We also need to be able to insert the
1316 // gc.relocates only on the path which goes through the statepoint.  We might
1317 // need to split an edge to make this possible.
1318 static BasicBlock *
normalizeForInvokeSafepoint(BasicBlock * BB,BasicBlock * InvokeParent,DominatorTree & DT)1319 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1320                             DominatorTree &DT) {
1321   BasicBlock *Ret = BB;
1322   if (!BB->getUniquePredecessor())
1323     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1324 
1325   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1326   // from it
1327   FoldSingleEntryPHINodes(Ret);
1328   assert(!isa<PHINode>(Ret->begin()) &&
1329          "All PHI nodes should have been removed!");
1330 
1331   // At this point, we can safely insert a gc.relocate or gc.result as the first
1332   // instruction in Ret if needed.
1333   return Ret;
1334 }
1335 
1336 // List of all function attributes which must be stripped when lowering from
1337 // abstract machine model to physical machine model.  Essentially, these are
1338 // all the effects a safepoint might have which we ignored in the abstract
1339 // machine model for purposes of optimization.  We have to strip these on
1340 // both function declarations and call sites.
1341 static constexpr Attribute::AttrKind FnAttrsToStrip[] =
1342   {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly,
1343    Attribute::ArgMemOnly, Attribute::InaccessibleMemOnly,
1344    Attribute::InaccessibleMemOrArgMemOnly,
1345    Attribute::NoSync, Attribute::NoFree};
1346 
1347 // List of all parameter and return attributes which must be stripped when
1348 // lowering from the abstract machine model.  Note that we list attributes
1349 // here which aren't valid as return attributes, that is okay.  There are
1350 // also some additional attributes with arguments which are handled
1351 // explicitly and are not in this list.
1352 static constexpr Attribute::AttrKind ParamAttrsToStrip[] =
1353   {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly,
1354    Attribute::NoAlias, Attribute::NoFree};
1355 
1356 
1357 // Create new attribute set containing only attributes which can be transferred
1358 // from original call to the safepoint.
legalizeCallAttributes(LLVMContext & Ctx,AttributeList AL)1359 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1360                                             AttributeList AL) {
1361   if (AL.isEmpty())
1362     return AL;
1363 
1364   // Remove the readonly, readnone, and statepoint function attributes.
1365   AttrBuilder FnAttrs = AL.getFnAttributes();
1366   for (auto Attr : FnAttrsToStrip)
1367     FnAttrs.removeAttribute(Attr);
1368 
1369   for (Attribute A : AL.getFnAttributes()) {
1370     if (isStatepointDirectiveAttr(A))
1371       FnAttrs.remove(A);
1372   }
1373 
1374   // Just skip parameter and return attributes for now
1375   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1376                             AttributeSet::get(Ctx, FnAttrs));
1377 }
1378 
1379 /// Helper function to place all gc relocates necessary for the given
1380 /// statepoint.
1381 /// Inputs:
1382 ///   liveVariables - list of variables to be relocated.
1383 ///   basePtrs - base pointers.
1384 ///   statepointToken - statepoint instruction to which relocates should be
1385 ///   bound.
1386 ///   Builder - Llvm IR builder to be used to construct new calls.
CreateGCRelocates(ArrayRef<Value * > LiveVariables,ArrayRef<Value * > BasePtrs,Instruction * StatepointToken,IRBuilder<> & Builder)1387 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1388                               ArrayRef<Value *> BasePtrs,
1389                               Instruction *StatepointToken,
1390                               IRBuilder<> &Builder) {
1391   if (LiveVariables.empty())
1392     return;
1393 
1394   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1395     auto ValIt = llvm::find(LiveVec, Val);
1396     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1397     size_t Index = std::distance(LiveVec.begin(), ValIt);
1398     assert(Index < LiveVec.size() && "Bug in std::find?");
1399     return Index;
1400   };
1401   Module *M = StatepointToken->getModule();
1402 
1403   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1404   // element type is i8 addrspace(1)*). We originally generated unique
1405   // declarations for each pointer type, but this proved problematic because
1406   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1407   // towards a single unified pointer type anyways, we can just cast everything
1408   // to an i8* of the right address space.  A bitcast is added later to convert
1409   // gc_relocate to the actual value's type.
1410   auto getGCRelocateDecl = [&] (Type *Ty) {
1411     assert(isHandledGCPointerType(Ty));
1412     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1413     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1414     if (auto *VT = dyn_cast<VectorType>(Ty))
1415       NewTy = FixedVectorType::get(NewTy,
1416                                    cast<FixedVectorType>(VT)->getNumElements());
1417     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1418                                      {NewTy});
1419   };
1420 
1421   // Lazily populated map from input types to the canonicalized form mentioned
1422   // in the comment above.  This should probably be cached somewhere more
1423   // broadly.
1424   DenseMap<Type *, Function *> TypeToDeclMap;
1425 
1426   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1427     // Generate the gc.relocate call and save the result
1428     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1429     Value *LiveIdx = Builder.getInt32(i);
1430 
1431     Type *Ty = LiveVariables[i]->getType();
1432     if (!TypeToDeclMap.count(Ty))
1433       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1434     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1435 
1436     // only specify a debug name if we can give a useful one
1437     CallInst *Reloc = Builder.CreateCall(
1438         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1439         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1440     // Trick CodeGen into thinking there are lots of free registers at this
1441     // fake call.
1442     Reloc->setCallingConv(CallingConv::Cold);
1443   }
1444 }
1445 
1446 namespace {
1447 
1448 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1449 /// avoids having to worry about keeping around dangling pointers to Values.
1450 class DeferredReplacement {
1451   AssertingVH<Instruction> Old;
1452   AssertingVH<Instruction> New;
1453   bool IsDeoptimize = false;
1454 
1455   DeferredReplacement() = default;
1456 
1457 public:
createRAUW(Instruction * Old,Instruction * New)1458   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1459     assert(Old != New && Old && New &&
1460            "Cannot RAUW equal values or to / from null!");
1461 
1462     DeferredReplacement D;
1463     D.Old = Old;
1464     D.New = New;
1465     return D;
1466   }
1467 
createDelete(Instruction * ToErase)1468   static DeferredReplacement createDelete(Instruction *ToErase) {
1469     DeferredReplacement D;
1470     D.Old = ToErase;
1471     return D;
1472   }
1473 
createDeoptimizeReplacement(Instruction * Old)1474   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1475 #ifndef NDEBUG
1476     auto *F = cast<CallInst>(Old)->getCalledFunction();
1477     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1478            "Only way to construct a deoptimize deferred replacement");
1479 #endif
1480     DeferredReplacement D;
1481     D.Old = Old;
1482     D.IsDeoptimize = true;
1483     return D;
1484   }
1485 
1486   /// Does the task represented by this instance.
doReplacement()1487   void doReplacement() {
1488     Instruction *OldI = Old;
1489     Instruction *NewI = New;
1490 
1491     assert(OldI != NewI && "Disallowed at construction?!");
1492     assert((!IsDeoptimize || !New) &&
1493            "Deoptimize intrinsics are not replaced!");
1494 
1495     Old = nullptr;
1496     New = nullptr;
1497 
1498     if (NewI)
1499       OldI->replaceAllUsesWith(NewI);
1500 
1501     if (IsDeoptimize) {
1502       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1503       // not necessarily be followed by the matching return.
1504       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1505       new UnreachableInst(RI->getContext(), RI);
1506       RI->eraseFromParent();
1507     }
1508 
1509     OldI->eraseFromParent();
1510   }
1511 };
1512 
1513 } // end anonymous namespace
1514 
getDeoptLowering(CallBase * Call)1515 static StringRef getDeoptLowering(CallBase *Call) {
1516   const char *DeoptLowering = "deopt-lowering";
1517   if (Call->hasFnAttr(DeoptLowering)) {
1518     // FIXME: Calls have a *really* confusing interface around attributes
1519     // with values.
1520     const AttributeList &CSAS = Call->getAttributes();
1521     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1522       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1523           .getValueAsString();
1524     Function *F = Call->getCalledFunction();
1525     assert(F && F->hasFnAttribute(DeoptLowering));
1526     return F->getFnAttribute(DeoptLowering).getValueAsString();
1527   }
1528   return "live-through";
1529 }
1530 
1531 static void
makeStatepointExplicitImpl(CallBase * Call,const SmallVectorImpl<Value * > & BasePtrs,const SmallVectorImpl<Value * > & LiveVariables,PartiallyConstructedSafepointRecord & Result,std::vector<DeferredReplacement> & Replacements)1532 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1533                            const SmallVectorImpl<Value *> &BasePtrs,
1534                            const SmallVectorImpl<Value *> &LiveVariables,
1535                            PartiallyConstructedSafepointRecord &Result,
1536                            std::vector<DeferredReplacement> &Replacements) {
1537   assert(BasePtrs.size() == LiveVariables.size());
1538 
1539   // Then go ahead and use the builder do actually do the inserts.  We insert
1540   // immediately before the previous instruction under the assumption that all
1541   // arguments will be available here.  We can't insert afterwards since we may
1542   // be replacing a terminator.
1543   IRBuilder<> Builder(Call);
1544 
1545   ArrayRef<Value *> GCArgs(LiveVariables);
1546   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1547   uint32_t NumPatchBytes = 0;
1548   uint32_t Flags = uint32_t(StatepointFlags::None);
1549 
1550   SmallVector<Value *, 8> CallArgs(Call->args());
1551   Optional<ArrayRef<Use>> DeoptArgs;
1552   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1553     DeoptArgs = Bundle->Inputs;
1554   Optional<ArrayRef<Use>> TransitionArgs;
1555   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1556     TransitionArgs = Bundle->Inputs;
1557     // TODO: This flag no longer serves a purpose and can be removed later
1558     Flags |= uint32_t(StatepointFlags::GCTransition);
1559   }
1560 
1561   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1562   // with a return value, we lower then as never returning calls to
1563   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1564   bool IsDeoptimize = false;
1565 
1566   StatepointDirectives SD =
1567       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1568   if (SD.NumPatchBytes)
1569     NumPatchBytes = *SD.NumPatchBytes;
1570   if (SD.StatepointID)
1571     StatepointID = *SD.StatepointID;
1572 
1573   // Pass through the requested lowering if any.  The default is live-through.
1574   StringRef DeoptLowering = getDeoptLowering(Call);
1575   if (DeoptLowering.equals("live-in"))
1576     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1577   else {
1578     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1579   }
1580 
1581   Value *CallTarget = Call->getCalledOperand();
1582   if (Function *F = dyn_cast<Function>(CallTarget)) {
1583     auto IID = F->getIntrinsicID();
1584     if (IID == Intrinsic::experimental_deoptimize) {
1585       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1586       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1587       // verifier does not allow taking the address of an intrinsic function.
1588 
1589       SmallVector<Type *, 8> DomainTy;
1590       for (Value *Arg : CallArgs)
1591         DomainTy.push_back(Arg->getType());
1592       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1593                                     /* isVarArg = */ false);
1594 
1595       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1596       // calls to @llvm.experimental.deoptimize with different argument types in
1597       // the same module.  This is fine -- we assume the frontend knew what it
1598       // was doing when generating this kind of IR.
1599       CallTarget = F->getParent()
1600                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1601                        .getCallee();
1602 
1603       IsDeoptimize = true;
1604     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1605                IID == Intrinsic::memmove_element_unordered_atomic) {
1606       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1607       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1608       // Specifically, these calls should be lowered to the
1609       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1610       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1611       // verifier does not allow taking the address of an intrinsic function.
1612       //
1613       // Moreover we need to shuffle the arguments for the call in order to
1614       // accommodate GC. The underlying source and destination objects might be
1615       // relocated during copy operation should the GC occur. To relocate the
1616       // derived source and destination pointers the implementation of the
1617       // intrinsic should know the corresponding base pointers.
1618       //
1619       // To make the base pointers available pass them explicitly as arguments:
1620       //   memcpy(dest_derived, source_derived, ...) =>
1621       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1622       auto &Context = Call->getContext();
1623       auto &DL = Call->getModule()->getDataLayout();
1624       auto GetBaseAndOffset = [&](Value *Derived) {
1625         assert(Result.PointerToBase.count(Derived));
1626         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1627         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1628         Value *Base = Result.PointerToBase.find(Derived)->second;
1629         Value *Base_int = Builder.CreatePtrToInt(
1630             Base, Type::getIntNTy(Context, IntPtrSize));
1631         Value *Derived_int = Builder.CreatePtrToInt(
1632             Derived, Type::getIntNTy(Context, IntPtrSize));
1633         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1634       };
1635 
1636       auto *Dest = CallArgs[0];
1637       Value *DestBase, *DestOffset;
1638       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1639 
1640       auto *Source = CallArgs[1];
1641       Value *SourceBase, *SourceOffset;
1642       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1643 
1644       auto *LengthInBytes = CallArgs[2];
1645       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1646 
1647       CallArgs.clear();
1648       CallArgs.push_back(DestBase);
1649       CallArgs.push_back(DestOffset);
1650       CallArgs.push_back(SourceBase);
1651       CallArgs.push_back(SourceOffset);
1652       CallArgs.push_back(LengthInBytes);
1653 
1654       SmallVector<Type *, 8> DomainTy;
1655       for (Value *Arg : CallArgs)
1656         DomainTy.push_back(Arg->getType());
1657       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1658                                     /* isVarArg = */ false);
1659 
1660       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1661         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1662         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1663           switch (ElementSize) {
1664           case 1:
1665             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1666           case 2:
1667             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1668           case 4:
1669             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1670           case 8:
1671             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1672           case 16:
1673             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1674           default:
1675             llvm_unreachable("unexpected element size!");
1676           }
1677         }
1678         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1679         switch (ElementSize) {
1680         case 1:
1681           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1682         case 2:
1683           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1684         case 4:
1685           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1686         case 8:
1687           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1688         case 16:
1689           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1690         default:
1691           llvm_unreachable("unexpected element size!");
1692         }
1693       };
1694 
1695       CallTarget =
1696           F->getParent()
1697               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1698               .getCallee();
1699     }
1700   }
1701 
1702   // Create the statepoint given all the arguments
1703   GCStatepointInst *Token = nullptr;
1704   if (auto *CI = dyn_cast<CallInst>(Call)) {
1705     CallInst *SPCall = Builder.CreateGCStatepointCall(
1706         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1707         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1708 
1709     SPCall->setTailCallKind(CI->getTailCallKind());
1710     SPCall->setCallingConv(CI->getCallingConv());
1711 
1712     // Currently we will fail on parameter attributes and on certain
1713     // function attributes.  In case if we can handle this set of attributes -
1714     // set up function attrs directly on statepoint and return attrs later for
1715     // gc_result intrinsic.
1716     SPCall->setAttributes(
1717         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1718 
1719     Token = cast<GCStatepointInst>(SPCall);
1720 
1721     // Put the following gc_result and gc_relocate calls immediately after the
1722     // the old call (which we're about to delete)
1723     assert(CI->getNextNode() && "Not a terminator, must have next!");
1724     Builder.SetInsertPoint(CI->getNextNode());
1725     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1726   } else {
1727     auto *II = cast<InvokeInst>(Call);
1728 
1729     // Insert the new invoke into the old block.  We'll remove the old one in a
1730     // moment at which point this will become the new terminator for the
1731     // original block.
1732     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1733         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1734         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1735         "statepoint_token");
1736 
1737     SPInvoke->setCallingConv(II->getCallingConv());
1738 
1739     // Currently we will fail on parameter attributes and on certain
1740     // function attributes.  In case if we can handle this set of attributes -
1741     // set up function attrs directly on statepoint and return attrs later for
1742     // gc_result intrinsic.
1743     SPInvoke->setAttributes(
1744         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1745 
1746     Token = cast<GCStatepointInst>(SPInvoke);
1747 
1748     // Generate gc relocates in exceptional path
1749     BasicBlock *UnwindBlock = II->getUnwindDest();
1750     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1751            UnwindBlock->getUniquePredecessor() &&
1752            "can't safely insert in this block!");
1753 
1754     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1755     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1756 
1757     // Attach exceptional gc relocates to the landingpad.
1758     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1759     Result.UnwindToken = ExceptionalToken;
1760 
1761     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1762 
1763     // Generate gc relocates and returns for normal block
1764     BasicBlock *NormalDest = II->getNormalDest();
1765     assert(!isa<PHINode>(NormalDest->begin()) &&
1766            NormalDest->getUniquePredecessor() &&
1767            "can't safely insert in this block!");
1768 
1769     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1770 
1771     // gc relocates will be generated later as if it were regular call
1772     // statepoint
1773   }
1774   assert(Token && "Should be set in one of the above branches!");
1775 
1776   if (IsDeoptimize) {
1777     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1778     // transform the tail-call like structure to a call to a void function
1779     // followed by unreachable to get better codegen.
1780     Replacements.push_back(
1781         DeferredReplacement::createDeoptimizeReplacement(Call));
1782   } else {
1783     Token->setName("statepoint_token");
1784     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1785       StringRef Name = Call->hasName() ? Call->getName() : "";
1786       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1787       GCResult->setAttributes(
1788           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1789                              Call->getAttributes().getRetAttributes()));
1790 
1791       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1792       // live set of some other safepoint, in which case that safepoint's
1793       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1794       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1795       // after the live sets have been made explicit in the IR, and we no longer
1796       // have raw pointers to worry about.
1797       Replacements.emplace_back(
1798           DeferredReplacement::createRAUW(Call, GCResult));
1799     } else {
1800       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1801     }
1802   }
1803 
1804   Result.StatepointToken = Token;
1805 
1806   // Second, create a gc.relocate for every live variable
1807   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1808 }
1809 
1810 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1811 // which make the relocations happening at this safepoint explicit.
1812 //
1813 // WARNING: Does not do any fixup to adjust users of the original live
1814 // values.  That's the callers responsibility.
1815 static void
makeStatepointExplicit(DominatorTree & DT,CallBase * Call,PartiallyConstructedSafepointRecord & Result,std::vector<DeferredReplacement> & Replacements)1816 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1817                        PartiallyConstructedSafepointRecord &Result,
1818                        std::vector<DeferredReplacement> &Replacements) {
1819   const auto &LiveSet = Result.LiveSet;
1820   const auto &PointerToBase = Result.PointerToBase;
1821 
1822   // Convert to vector for efficient cross referencing.
1823   SmallVector<Value *, 64> BaseVec, LiveVec;
1824   LiveVec.reserve(LiveSet.size());
1825   BaseVec.reserve(LiveSet.size());
1826   for (Value *L : LiveSet) {
1827     LiveVec.push_back(L);
1828     assert(PointerToBase.count(L));
1829     Value *Base = PointerToBase.find(L)->second;
1830     BaseVec.push_back(Base);
1831   }
1832   assert(LiveVec.size() == BaseVec.size());
1833 
1834   // Do the actual rewriting and delete the old statepoint
1835   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1836 }
1837 
1838 // Helper function for the relocationViaAlloca.
1839 //
1840 // It receives iterator to the statepoint gc relocates and emits a store to the
1841 // assigned location (via allocaMap) for the each one of them.  It adds the
1842 // visited values into the visitedLiveValues set, which we will later use them
1843 // for sanity checking.
1844 static void
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,DenseMap<Value *,AllocaInst * > & AllocaMap,DenseSet<Value * > & VisitedLiveValues)1845 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1846                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1847                        DenseSet<Value *> &VisitedLiveValues) {
1848   for (User *U : GCRelocs) {
1849     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1850     if (!Relocate)
1851       continue;
1852 
1853     Value *OriginalValue = Relocate->getDerivedPtr();
1854     assert(AllocaMap.count(OriginalValue));
1855     Value *Alloca = AllocaMap[OriginalValue];
1856 
1857     // Emit store into the related alloca
1858     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1859     // the correct type according to alloca.
1860     assert(Relocate->getNextNode() &&
1861            "Should always have one since it's not a terminator");
1862     IRBuilder<> Builder(Relocate->getNextNode());
1863     Value *CastedRelocatedValue =
1864       Builder.CreateBitCast(Relocate,
1865                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1866                             suffixed_name_or(Relocate, ".casted", ""));
1867 
1868     new StoreInst(CastedRelocatedValue, Alloca,
1869                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1870 
1871 #ifndef NDEBUG
1872     VisitedLiveValues.insert(OriginalValue);
1873 #endif
1874   }
1875 }
1876 
1877 // Helper function for the "relocationViaAlloca". Similar to the
1878 // "insertRelocationStores" but works for rematerialized values.
insertRematerializationStores(const RematerializedValueMapTy & RematerializedValues,DenseMap<Value *,AllocaInst * > & AllocaMap,DenseSet<Value * > & VisitedLiveValues)1879 static void insertRematerializationStores(
1880     const RematerializedValueMapTy &RematerializedValues,
1881     DenseMap<Value *, AllocaInst *> &AllocaMap,
1882     DenseSet<Value *> &VisitedLiveValues) {
1883   for (auto RematerializedValuePair: RematerializedValues) {
1884     Instruction *RematerializedValue = RematerializedValuePair.first;
1885     Value *OriginalValue = RematerializedValuePair.second;
1886 
1887     assert(AllocaMap.count(OriginalValue) &&
1888            "Can not find alloca for rematerialized value");
1889     Value *Alloca = AllocaMap[OriginalValue];
1890 
1891     new StoreInst(RematerializedValue, Alloca,
1892                   RematerializedValue->getNextNode());
1893 
1894 #ifndef NDEBUG
1895     VisitedLiveValues.insert(OriginalValue);
1896 #endif
1897   }
1898 }
1899 
1900 /// Do all the relocation update via allocas and mem2reg
relocationViaAlloca(Function & F,DominatorTree & DT,ArrayRef<Value * > Live,ArrayRef<PartiallyConstructedSafepointRecord> Records)1901 static void relocationViaAlloca(
1902     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1903     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1904 #ifndef NDEBUG
1905   // record initial number of (static) allocas; we'll check we have the same
1906   // number when we get done.
1907   int InitialAllocaNum = 0;
1908   for (Instruction &I : F.getEntryBlock())
1909     if (isa<AllocaInst>(I))
1910       InitialAllocaNum++;
1911 #endif
1912 
1913   // TODO-PERF: change data structures, reserve
1914   DenseMap<Value *, AllocaInst *> AllocaMap;
1915   SmallVector<AllocaInst *, 200> PromotableAllocas;
1916   // Used later to chack that we have enough allocas to store all values
1917   std::size_t NumRematerializedValues = 0;
1918   PromotableAllocas.reserve(Live.size());
1919 
1920   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1921   // "PromotableAllocas"
1922   const DataLayout &DL = F.getParent()->getDataLayout();
1923   auto emitAllocaFor = [&](Value *LiveValue) {
1924     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1925                                         DL.getAllocaAddrSpace(), "",
1926                                         F.getEntryBlock().getFirstNonPHI());
1927     AllocaMap[LiveValue] = Alloca;
1928     PromotableAllocas.push_back(Alloca);
1929   };
1930 
1931   // Emit alloca for each live gc pointer
1932   for (Value *V : Live)
1933     emitAllocaFor(V);
1934 
1935   // Emit allocas for rematerialized values
1936   for (const auto &Info : Records)
1937     for (auto RematerializedValuePair : Info.RematerializedValues) {
1938       Value *OriginalValue = RematerializedValuePair.second;
1939       if (AllocaMap.count(OriginalValue) != 0)
1940         continue;
1941 
1942       emitAllocaFor(OriginalValue);
1943       ++NumRematerializedValues;
1944     }
1945 
1946   // The next two loops are part of the same conceptual operation.  We need to
1947   // insert a store to the alloca after the original def and at each
1948   // redefinition.  We need to insert a load before each use.  These are split
1949   // into distinct loops for performance reasons.
1950 
1951   // Update gc pointer after each statepoint: either store a relocated value or
1952   // null (if no relocated value was found for this gc pointer and it is not a
1953   // gc_result).  This must happen before we update the statepoint with load of
1954   // alloca otherwise we lose the link between statepoint and old def.
1955   for (const auto &Info : Records) {
1956     Value *Statepoint = Info.StatepointToken;
1957 
1958     // This will be used for consistency check
1959     DenseSet<Value *> VisitedLiveValues;
1960 
1961     // Insert stores for normal statepoint gc relocates
1962     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1963 
1964     // In case if it was invoke statepoint
1965     // we will insert stores for exceptional path gc relocates.
1966     if (isa<InvokeInst>(Statepoint)) {
1967       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1968                              VisitedLiveValues);
1969     }
1970 
1971     // Do similar thing with rematerialized values
1972     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1973                                   VisitedLiveValues);
1974 
1975     if (ClobberNonLive) {
1976       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1977       // the gc.statepoint.  This will turn some subtle GC problems into
1978       // slightly easier to debug SEGVs.  Note that on large IR files with
1979       // lots of gc.statepoints this is extremely costly both memory and time
1980       // wise.
1981       SmallVector<AllocaInst *, 64> ToClobber;
1982       for (auto Pair : AllocaMap) {
1983         Value *Def = Pair.first;
1984         AllocaInst *Alloca = Pair.second;
1985 
1986         // This value was relocated
1987         if (VisitedLiveValues.count(Def)) {
1988           continue;
1989         }
1990         ToClobber.push_back(Alloca);
1991       }
1992 
1993       auto InsertClobbersAt = [&](Instruction *IP) {
1994         for (auto *AI : ToClobber) {
1995           auto PT = cast<PointerType>(AI->getAllocatedType());
1996           Constant *CPN = ConstantPointerNull::get(PT);
1997           new StoreInst(CPN, AI, IP);
1998         }
1999       };
2000 
2001       // Insert the clobbering stores.  These may get intermixed with the
2002       // gc.results and gc.relocates, but that's fine.
2003       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
2004         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
2005         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
2006       } else {
2007         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
2008       }
2009     }
2010   }
2011 
2012   // Update use with load allocas and add store for gc_relocated.
2013   for (auto Pair : AllocaMap) {
2014     Value *Def = Pair.first;
2015     AllocaInst *Alloca = Pair.second;
2016 
2017     // We pre-record the uses of allocas so that we dont have to worry about
2018     // later update that changes the user information..
2019 
2020     SmallVector<Instruction *, 20> Uses;
2021     // PERF: trade a linear scan for repeated reallocation
2022     Uses.reserve(Def->getNumUses());
2023     for (User *U : Def->users()) {
2024       if (!isa<ConstantExpr>(U)) {
2025         // If the def has a ConstantExpr use, then the def is either a
2026         // ConstantExpr use itself or null.  In either case
2027         // (recursively in the first, directly in the second), the oop
2028         // it is ultimately dependent on is null and this particular
2029         // use does not need to be fixed up.
2030         Uses.push_back(cast<Instruction>(U));
2031       }
2032     }
2033 
2034     llvm::sort(Uses);
2035     auto Last = std::unique(Uses.begin(), Uses.end());
2036     Uses.erase(Last, Uses.end());
2037 
2038     for (Instruction *Use : Uses) {
2039       if (isa<PHINode>(Use)) {
2040         PHINode *Phi = cast<PHINode>(Use);
2041         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2042           if (Def == Phi->getIncomingValue(i)) {
2043             LoadInst *Load =
2044                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2045                              Phi->getIncomingBlock(i)->getTerminator());
2046             Phi->setIncomingValue(i, Load);
2047           }
2048         }
2049       } else {
2050         LoadInst *Load =
2051             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2052         Use->replaceUsesOfWith(Def, Load);
2053       }
2054     }
2055 
2056     // Emit store for the initial gc value.  Store must be inserted after load,
2057     // otherwise store will be in alloca's use list and an extra load will be
2058     // inserted before it.
2059     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2060                                      DL.getABITypeAlign(Def->getType()));
2061     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2062       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2063         // InvokeInst is a terminator so the store need to be inserted into its
2064         // normal destination block.
2065         BasicBlock *NormalDest = Invoke->getNormalDest();
2066         Store->insertBefore(NormalDest->getFirstNonPHI());
2067       } else {
2068         assert(!Inst->isTerminator() &&
2069                "The only terminator that can produce a value is "
2070                "InvokeInst which is handled above.");
2071         Store->insertAfter(Inst);
2072       }
2073     } else {
2074       assert(isa<Argument>(Def));
2075       Store->insertAfter(cast<Instruction>(Alloca));
2076     }
2077   }
2078 
2079   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2080          "we must have the same allocas with lives");
2081   if (!PromotableAllocas.empty()) {
2082     // Apply mem2reg to promote alloca to SSA
2083     PromoteMemToReg(PromotableAllocas, DT);
2084   }
2085 
2086 #ifndef NDEBUG
2087   for (auto &I : F.getEntryBlock())
2088     if (isa<AllocaInst>(I))
2089       InitialAllocaNum--;
2090   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2091 #endif
2092 }
2093 
2094 /// Implement a unique function which doesn't require we sort the input
2095 /// vector.  Doing so has the effect of changing the output of a couple of
2096 /// tests in ways which make them less useful in testing fused safepoints.
unique_unsorted(SmallVectorImpl<T> & Vec)2097 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2098   SmallSet<T, 8> Seen;
2099   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2100 }
2101 
2102 /// Insert holders so that each Value is obviously live through the entire
2103 /// lifetime of the call.
insertUseHolderAfter(CallBase * Call,const ArrayRef<Value * > Values,SmallVectorImpl<CallInst * > & Holders)2104 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2105                                  SmallVectorImpl<CallInst *> &Holders) {
2106   if (Values.empty())
2107     // No values to hold live, might as well not insert the empty holder
2108     return;
2109 
2110   Module *M = Call->getModule();
2111   // Use a dummy vararg function to actually hold the values live
2112   FunctionCallee Func = M->getOrInsertFunction(
2113       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2114   if (isa<CallInst>(Call)) {
2115     // For call safepoints insert dummy calls right after safepoint
2116     Holders.push_back(
2117         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2118     return;
2119   }
2120   // For invoke safepooints insert dummy calls both in normal and
2121   // exceptional destination blocks
2122   auto *II = cast<InvokeInst>(Call);
2123   Holders.push_back(CallInst::Create(
2124       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2125   Holders.push_back(CallInst::Create(
2126       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2127 }
2128 
findLiveReferences(Function & F,DominatorTree & DT,ArrayRef<CallBase * > toUpdate,MutableArrayRef<struct PartiallyConstructedSafepointRecord> records)2129 static void findLiveReferences(
2130     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2131     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2132   GCPtrLivenessData OriginalLivenessData;
2133   computeLiveInValues(DT, F, OriginalLivenessData);
2134   for (size_t i = 0; i < records.size(); i++) {
2135     struct PartiallyConstructedSafepointRecord &info = records[i];
2136     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2137   }
2138 }
2139 
2140 // Helper function for the "rematerializeLiveValues". It walks use chain
2141 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2142 // the base or a value it cannot process. Only "simple" values are processed
2143 // (currently it is GEP's and casts). The returned root is  examined by the
2144 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2145 // with all visited values.
findRematerializableChainToBasePointer(SmallVectorImpl<Instruction * > & ChainToBase,Value * CurrentValue)2146 static Value* findRematerializableChainToBasePointer(
2147   SmallVectorImpl<Instruction*> &ChainToBase,
2148   Value *CurrentValue) {
2149   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2150     ChainToBase.push_back(GEP);
2151     return findRematerializableChainToBasePointer(ChainToBase,
2152                                                   GEP->getPointerOperand());
2153   }
2154 
2155   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2156     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2157       return CI;
2158 
2159     ChainToBase.push_back(CI);
2160     return findRematerializableChainToBasePointer(ChainToBase,
2161                                                   CI->getOperand(0));
2162   }
2163 
2164   // We have reached the root of the chain, which is either equal to the base or
2165   // is the first unsupported value along the use chain.
2166   return CurrentValue;
2167 }
2168 
2169 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2170 // chain we are going to rematerialize.
2171 static InstructionCost
chainToBasePointerCost(SmallVectorImpl<Instruction * > & Chain,TargetTransformInfo & TTI)2172 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2173                        TargetTransformInfo &TTI) {
2174   InstructionCost Cost = 0;
2175 
2176   for (Instruction *Instr : Chain) {
2177     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2178       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2179              "non noop cast is found during rematerialization");
2180 
2181       Type *SrcTy = CI->getOperand(0)->getType();
2182       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2183                                    TTI::getCastContextHint(CI),
2184                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2185 
2186     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2187       // Cost of the address calculation
2188       Type *ValTy = GEP->getSourceElementType();
2189       Cost += TTI.getAddressComputationCost(ValTy);
2190 
2191       // And cost of the GEP itself
2192       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2193       //       allowed for the external usage)
2194       if (!GEP->hasAllConstantIndices())
2195         Cost += 2;
2196 
2197     } else {
2198       llvm_unreachable("unsupported instruction type during rematerialization");
2199     }
2200   }
2201 
2202   return Cost;
2203 }
2204 
AreEquivalentPhiNodes(PHINode & OrigRootPhi,PHINode & AlternateRootPhi)2205 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2206   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2207   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2208       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2209     return false;
2210   // Map of incoming values and their corresponding basic blocks of
2211   // OrigRootPhi.
2212   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2213   for (unsigned i = 0; i < PhiNum; i++)
2214     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2215         OrigRootPhi.getIncomingBlock(i);
2216 
2217   // Both current and base PHIs should have same incoming values and
2218   // the same basic blocks corresponding to the incoming values.
2219   for (unsigned i = 0; i < PhiNum; i++) {
2220     auto CIVI =
2221         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2222     if (CIVI == CurrentIncomingValues.end())
2223       return false;
2224     BasicBlock *CurrentIncomingBB = CIVI->second;
2225     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2226       return false;
2227   }
2228   return true;
2229 }
2230 
2231 // From the statepoint live set pick values that are cheaper to recompute then
2232 // to relocate. Remove this values from the live set, rematerialize them after
2233 // statepoint and record them in "Info" structure. Note that similar to
2234 // relocated values we don't do any user adjustments here.
rematerializeLiveValues(CallBase * Call,PartiallyConstructedSafepointRecord & Info,TargetTransformInfo & TTI)2235 static void rematerializeLiveValues(CallBase *Call,
2236                                     PartiallyConstructedSafepointRecord &Info,
2237                                     TargetTransformInfo &TTI) {
2238   const unsigned int ChainLengthThreshold = 10;
2239 
2240   // Record values we are going to delete from this statepoint live set.
2241   // We can not di this in following loop due to iterator invalidation.
2242   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2243 
2244   for (Value *LiveValue: Info.LiveSet) {
2245     // For each live pointer find its defining chain
2246     SmallVector<Instruction *, 3> ChainToBase;
2247     assert(Info.PointerToBase.count(LiveValue));
2248     Value *RootOfChain =
2249       findRematerializableChainToBasePointer(ChainToBase,
2250                                              LiveValue);
2251 
2252     // Nothing to do, or chain is too long
2253     if ( ChainToBase.size() == 0 ||
2254         ChainToBase.size() > ChainLengthThreshold)
2255       continue;
2256 
2257     // Handle the scenario where the RootOfChain is not equal to the
2258     // Base Value, but they are essentially the same phi values.
2259     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2260       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2261       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2262       if (!OrigRootPhi || !AlternateRootPhi)
2263         continue;
2264       // PHI nodes that have the same incoming values, and belonging to the same
2265       // basic blocks are essentially the same SSA value.  When the original phi
2266       // has incoming values with different base pointers, the original phi is
2267       // marked as conflict, and an additional `AlternateRootPhi` with the same
2268       // incoming values get generated by the findBasePointer function. We need
2269       // to identify the newly generated AlternateRootPhi (.base version of phi)
2270       // and RootOfChain (the original phi node itself) are the same, so that we
2271       // can rematerialize the gep and casts. This is a workaround for the
2272       // deficiency in the findBasePointer algorithm.
2273       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2274         continue;
2275       // Now that the phi nodes are proved to be the same, assert that
2276       // findBasePointer's newly generated AlternateRootPhi is present in the
2277       // liveset of the call.
2278       assert(Info.LiveSet.count(AlternateRootPhi));
2279     }
2280     // Compute cost of this chain
2281     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2282     // TODO: We can also account for cases when we will be able to remove some
2283     //       of the rematerialized values by later optimization passes. I.e if
2284     //       we rematerialized several intersecting chains. Or if original values
2285     //       don't have any uses besides this statepoint.
2286 
2287     // For invokes we need to rematerialize each chain twice - for normal and
2288     // for unwind basic blocks. Model this by multiplying cost by two.
2289     if (isa<InvokeInst>(Call)) {
2290       Cost *= 2;
2291     }
2292     // If it's too expensive - skip it
2293     if (Cost >= RematerializationThreshold)
2294       continue;
2295 
2296     // Remove value from the live set
2297     LiveValuesToBeDeleted.push_back(LiveValue);
2298 
2299     // Clone instructions and record them inside "Info" structure
2300 
2301     // Walk backwards to visit top-most instructions first
2302     std::reverse(ChainToBase.begin(), ChainToBase.end());
2303 
2304     // Utility function which clones all instructions from "ChainToBase"
2305     // and inserts them before "InsertBefore". Returns rematerialized value
2306     // which should be used after statepoint.
2307     auto rematerializeChain = [&ChainToBase](
2308         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2309       Instruction *LastClonedValue = nullptr;
2310       Instruction *LastValue = nullptr;
2311       for (Instruction *Instr: ChainToBase) {
2312         // Only GEP's and casts are supported as we need to be careful to not
2313         // introduce any new uses of pointers not in the liveset.
2314         // Note that it's fine to introduce new uses of pointers which were
2315         // otherwise not used after this statepoint.
2316         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2317 
2318         Instruction *ClonedValue = Instr->clone();
2319         ClonedValue->insertBefore(InsertBefore);
2320         ClonedValue->setName(Instr->getName() + ".remat");
2321 
2322         // If it is not first instruction in the chain then it uses previously
2323         // cloned value. We should update it to use cloned value.
2324         if (LastClonedValue) {
2325           assert(LastValue);
2326           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2327 #ifndef NDEBUG
2328           for (auto OpValue : ClonedValue->operand_values()) {
2329             // Assert that cloned instruction does not use any instructions from
2330             // this chain other than LastClonedValue
2331             assert(!is_contained(ChainToBase, OpValue) &&
2332                    "incorrect use in rematerialization chain");
2333             // Assert that the cloned instruction does not use the RootOfChain
2334             // or the AlternateLiveBase.
2335             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2336           }
2337 #endif
2338         } else {
2339           // For the first instruction, replace the use of unrelocated base i.e.
2340           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2341           // live set. They have been proved to be the same PHI nodes.  Note
2342           // that the *only* use of the RootOfChain in the ChainToBase list is
2343           // the first Value in the list.
2344           if (RootOfChain != AlternateLiveBase)
2345             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2346         }
2347 
2348         LastClonedValue = ClonedValue;
2349         LastValue = Instr;
2350       }
2351       assert(LastClonedValue);
2352       return LastClonedValue;
2353     };
2354 
2355     // Different cases for calls and invokes. For invokes we need to clone
2356     // instructions both on normal and unwind path.
2357     if (isa<CallInst>(Call)) {
2358       Instruction *InsertBefore = Call->getNextNode();
2359       assert(InsertBefore);
2360       Instruction *RematerializedValue = rematerializeChain(
2361           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2362       Info.RematerializedValues[RematerializedValue] = LiveValue;
2363     } else {
2364       auto *Invoke = cast<InvokeInst>(Call);
2365 
2366       Instruction *NormalInsertBefore =
2367           &*Invoke->getNormalDest()->getFirstInsertionPt();
2368       Instruction *UnwindInsertBefore =
2369           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2370 
2371       Instruction *NormalRematerializedValue = rematerializeChain(
2372           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2373       Instruction *UnwindRematerializedValue = rematerializeChain(
2374           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2375 
2376       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2377       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2378     }
2379   }
2380 
2381   // Remove rematerializaed values from the live set
2382   for (auto LiveValue: LiveValuesToBeDeleted) {
2383     Info.LiveSet.remove(LiveValue);
2384   }
2385 }
2386 
insertParsePoints(Function & F,DominatorTree & DT,TargetTransformInfo & TTI,SmallVectorImpl<CallBase * > & ToUpdate)2387 static bool insertParsePoints(Function &F, DominatorTree &DT,
2388                               TargetTransformInfo &TTI,
2389                               SmallVectorImpl<CallBase *> &ToUpdate) {
2390 #ifndef NDEBUG
2391   // sanity check the input
2392   std::set<CallBase *> Uniqued;
2393   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2394   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2395 
2396   for (CallBase *Call : ToUpdate)
2397     assert(Call->getFunction() == &F);
2398 #endif
2399 
2400   // When inserting gc.relocates for invokes, we need to be able to insert at
2401   // the top of the successor blocks.  See the comment on
2402   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2403   // may restructure the CFG.
2404   for (CallBase *Call : ToUpdate) {
2405     auto *II = dyn_cast<InvokeInst>(Call);
2406     if (!II)
2407       continue;
2408     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2409     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2410   }
2411 
2412   // A list of dummy calls added to the IR to keep various values obviously
2413   // live in the IR.  We'll remove all of these when done.
2414   SmallVector<CallInst *, 64> Holders;
2415 
2416   // Insert a dummy call with all of the deopt operands we'll need for the
2417   // actual safepoint insertion as arguments.  This ensures reference operands
2418   // in the deopt argument list are considered live through the safepoint (and
2419   // thus makes sure they get relocated.)
2420   for (CallBase *Call : ToUpdate) {
2421     SmallVector<Value *, 64> DeoptValues;
2422 
2423     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2424       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2425              "support for FCA unimplemented");
2426       if (isHandledGCPointerType(Arg->getType()))
2427         DeoptValues.push_back(Arg);
2428     }
2429 
2430     insertUseHolderAfter(Call, DeoptValues, Holders);
2431   }
2432 
2433   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2434 
2435   // A) Identify all gc pointers which are statically live at the given call
2436   // site.
2437   findLiveReferences(F, DT, ToUpdate, Records);
2438 
2439   // B) Find the base pointers for each live pointer
2440   /* scope for caching */ {
2441     // Cache the 'defining value' relation used in the computation and
2442     // insertion of base phis and selects.  This ensures that we don't insert
2443     // large numbers of duplicate base_phis.
2444     DefiningValueMapTy DVCache;
2445 
2446     for (size_t i = 0; i < Records.size(); i++) {
2447       PartiallyConstructedSafepointRecord &info = Records[i];
2448       findBasePointers(DT, DVCache, ToUpdate[i], info);
2449     }
2450   } // end of cache scope
2451 
2452   // The base phi insertion logic (for any safepoint) may have inserted new
2453   // instructions which are now live at some safepoint.  The simplest such
2454   // example is:
2455   // loop:
2456   //   phi a  <-- will be a new base_phi here
2457   //   safepoint 1 <-- that needs to be live here
2458   //   gep a + 1
2459   //   safepoint 2
2460   //   br loop
2461   // We insert some dummy calls after each safepoint to definitely hold live
2462   // the base pointers which were identified for that safepoint.  We'll then
2463   // ask liveness for _every_ base inserted to see what is now live.  Then we
2464   // remove the dummy calls.
2465   Holders.reserve(Holders.size() + Records.size());
2466   for (size_t i = 0; i < Records.size(); i++) {
2467     PartiallyConstructedSafepointRecord &Info = Records[i];
2468 
2469     SmallVector<Value *, 128> Bases;
2470     for (auto Pair : Info.PointerToBase)
2471       Bases.push_back(Pair.second);
2472 
2473     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2474   }
2475 
2476   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2477   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2478   // not the key issue.
2479   recomputeLiveInValues(F, DT, ToUpdate, Records);
2480 
2481   if (PrintBasePointers) {
2482     for (auto &Info : Records) {
2483       errs() << "Base Pairs: (w/Relocation)\n";
2484       for (auto Pair : Info.PointerToBase) {
2485         errs() << " derived ";
2486         Pair.first->printAsOperand(errs(), false);
2487         errs() << " base ";
2488         Pair.second->printAsOperand(errs(), false);
2489         errs() << "\n";
2490       }
2491     }
2492   }
2493 
2494   // It is possible that non-constant live variables have a constant base.  For
2495   // example, a GEP with a variable offset from a global.  In this case we can
2496   // remove it from the liveset.  We already don't add constants to the liveset
2497   // because we assume they won't move at runtime and the GC doesn't need to be
2498   // informed about them.  The same reasoning applies if the base is constant.
2499   // Note that the relocation placement code relies on this filtering for
2500   // correctness as it expects the base to be in the liveset, which isn't true
2501   // if the base is constant.
2502   for (auto &Info : Records)
2503     for (auto &BasePair : Info.PointerToBase)
2504       if (isa<Constant>(BasePair.second))
2505         Info.LiveSet.remove(BasePair.first);
2506 
2507   for (CallInst *CI : Holders)
2508     CI->eraseFromParent();
2509 
2510   Holders.clear();
2511 
2512   // In order to reduce live set of statepoint we might choose to rematerialize
2513   // some values instead of relocating them. This is purely an optimization and
2514   // does not influence correctness.
2515   for (size_t i = 0; i < Records.size(); i++)
2516     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2517 
2518   // We need this to safely RAUW and delete call or invoke return values that
2519   // may themselves be live over a statepoint.  For details, please see usage in
2520   // makeStatepointExplicitImpl.
2521   std::vector<DeferredReplacement> Replacements;
2522 
2523   // Now run through and replace the existing statepoints with new ones with
2524   // the live variables listed.  We do not yet update uses of the values being
2525   // relocated. We have references to live variables that need to
2526   // survive to the last iteration of this loop.  (By construction, the
2527   // previous statepoint can not be a live variable, thus we can and remove
2528   // the old statepoint calls as we go.)
2529   for (size_t i = 0; i < Records.size(); i++)
2530     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2531 
2532   ToUpdate.clear(); // prevent accident use of invalid calls.
2533 
2534   for (auto &PR : Replacements)
2535     PR.doReplacement();
2536 
2537   Replacements.clear();
2538 
2539   for (auto &Info : Records) {
2540     // These live sets may contain state Value pointers, since we replaced calls
2541     // with operand bundles with calls wrapped in gc.statepoint, and some of
2542     // those calls may have been def'ing live gc pointers.  Clear these out to
2543     // avoid accidentally using them.
2544     //
2545     // TODO: We should create a separate data structure that does not contain
2546     // these live sets, and migrate to using that data structure from this point
2547     // onward.
2548     Info.LiveSet.clear();
2549     Info.PointerToBase.clear();
2550   }
2551 
2552   // Do all the fixups of the original live variables to their relocated selves
2553   SmallVector<Value *, 128> Live;
2554   for (size_t i = 0; i < Records.size(); i++) {
2555     PartiallyConstructedSafepointRecord &Info = Records[i];
2556 
2557     // We can't simply save the live set from the original insertion.  One of
2558     // the live values might be the result of a call which needs a safepoint.
2559     // That Value* no longer exists and we need to use the new gc_result.
2560     // Thankfully, the live set is embedded in the statepoint (and updated), so
2561     // we just grab that.
2562     llvm::append_range(Live, Info.StatepointToken->gc_args());
2563 #ifndef NDEBUG
2564     // Do some basic sanity checks on our liveness results before performing
2565     // relocation.  Relocation can and will turn mistakes in liveness results
2566     // into non-sensical code which is must harder to debug.
2567     // TODO: It would be nice to test consistency as well
2568     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2569            "statepoint must be reachable or liveness is meaningless");
2570     for (Value *V : Info.StatepointToken->gc_args()) {
2571       if (!isa<Instruction>(V))
2572         // Non-instruction values trivial dominate all possible uses
2573         continue;
2574       auto *LiveInst = cast<Instruction>(V);
2575       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2576              "unreachable values should never be live");
2577       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2578              "basic SSA liveness expectation violated by liveness analysis");
2579     }
2580 #endif
2581   }
2582   unique_unsorted(Live);
2583 
2584 #ifndef NDEBUG
2585   // sanity check
2586   for (auto *Ptr : Live)
2587     assert(isHandledGCPointerType(Ptr->getType()) &&
2588            "must be a gc pointer type");
2589 #endif
2590 
2591   relocationViaAlloca(F, DT, Live, Records);
2592   return !Records.empty();
2593 }
2594 
2595 // Handles both return values and arguments for Functions and calls.
2596 template <typename AttrHolder>
RemoveNonValidAttrAtIndex(LLVMContext & Ctx,AttrHolder & AH,unsigned Index)2597 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2598                                       unsigned Index) {
2599   AttrBuilder R;
2600   if (AH.getDereferenceableBytes(Index))
2601     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2602                                   AH.getDereferenceableBytes(Index)));
2603   if (AH.getDereferenceableOrNullBytes(Index))
2604     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2605                                   AH.getDereferenceableOrNullBytes(Index)));
2606   for (auto Attr : ParamAttrsToStrip)
2607     if (AH.getAttributes().hasAttribute(Index, Attr))
2608       R.addAttribute(Attr);
2609 
2610   if (!R.empty())
2611     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2612 }
2613 
stripNonValidAttributesFromPrototype(Function & F)2614 static void stripNonValidAttributesFromPrototype(Function &F) {
2615   LLVMContext &Ctx = F.getContext();
2616 
2617   // Intrinsics are very delicate.  Lowering sometimes depends the presence
2618   // of certain attributes for correctness, but we may have also inferred
2619   // additional ones in the abstract machine model which need stripped.  This
2620   // assumes that the attributes defined in Intrinsic.td are conservatively
2621   // correct for both physical and abstract model.
2622   if (Intrinsic::ID id = F.getIntrinsicID()) {
2623     F.setAttributes(Intrinsic::getAttributes(Ctx, id));
2624     return;
2625   }
2626 
2627   for (Argument &A : F.args())
2628     if (isa<PointerType>(A.getType()))
2629       RemoveNonValidAttrAtIndex(Ctx, F,
2630                                 A.getArgNo() + AttributeList::FirstArgIndex);
2631 
2632   if (isa<PointerType>(F.getReturnType()))
2633     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2634 
2635   for (auto Attr : FnAttrsToStrip)
2636     F.removeFnAttr(Attr);
2637 }
2638 
2639 /// Certain metadata on instructions are invalid after running RS4GC.
2640 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2641 /// optimize functions. We drop such metadata on the instruction.
stripInvalidMetadataFromInstruction(Instruction & I)2642 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2643   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2644     return;
2645   // These are the attributes that are still valid on loads and stores after
2646   // RS4GC.
2647   // The metadata implying dereferenceability and noalias are (conservatively)
2648   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2649   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2650   // touch the entire heap including noalias objects. Note: The reasoning is
2651   // same as stripping the dereferenceability and noalias attributes that are
2652   // analogous to the metadata counterparts.
2653   // We also drop the invariant.load metadata on the load because that metadata
2654   // implies the address operand to the load points to memory that is never
2655   // changed once it became dereferenceable. This is no longer true after RS4GC.
2656   // Similar reasoning applies to invariant.group metadata, which applies to
2657   // loads within a group.
2658   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2659                          LLVMContext::MD_range,
2660                          LLVMContext::MD_alias_scope,
2661                          LLVMContext::MD_nontemporal,
2662                          LLVMContext::MD_nonnull,
2663                          LLVMContext::MD_align,
2664                          LLVMContext::MD_type};
2665 
2666   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2667   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2668 }
2669 
stripNonValidDataFromBody(Function & F)2670 static void stripNonValidDataFromBody(Function &F) {
2671   if (F.empty())
2672     return;
2673 
2674   LLVMContext &Ctx = F.getContext();
2675   MDBuilder Builder(Ctx);
2676 
2677   // Set of invariantstart instructions that we need to remove.
2678   // Use this to avoid invalidating the instruction iterator.
2679   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2680 
2681   for (Instruction &I : instructions(F)) {
2682     // invariant.start on memory location implies that the referenced memory
2683     // location is constant and unchanging. This is no longer true after
2684     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2685     // which frees the entire heap and the presence of invariant.start allows
2686     // the optimizer to sink the load of a memory location past a statepoint,
2687     // which is incorrect.
2688     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2689       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2690         InvariantStartInstructions.push_back(II);
2691         continue;
2692       }
2693 
2694     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2695       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2696       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2697     }
2698 
2699     stripInvalidMetadataFromInstruction(I);
2700 
2701     if (auto *Call = dyn_cast<CallBase>(&I)) {
2702       for (int i = 0, e = Call->arg_size(); i != e; i++)
2703         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2704           RemoveNonValidAttrAtIndex(Ctx, *Call,
2705                                     i + AttributeList::FirstArgIndex);
2706       if (isa<PointerType>(Call->getType()))
2707         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2708     }
2709   }
2710 
2711   // Delete the invariant.start instructions and RAUW undef.
2712   for (auto *II : InvariantStartInstructions) {
2713     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2714     II->eraseFromParent();
2715   }
2716 }
2717 
2718 /// Returns true if this function should be rewritten by this pass.  The main
2719 /// point of this function is as an extension point for custom logic.
shouldRewriteStatepointsIn(Function & F)2720 static bool shouldRewriteStatepointsIn(Function &F) {
2721   // TODO: This should check the GCStrategy
2722   if (F.hasGC()) {
2723     const auto &FunctionGCName = F.getGC();
2724     const StringRef StatepointExampleName("statepoint-example");
2725     const StringRef CoreCLRName("coreclr");
2726     return (StatepointExampleName == FunctionGCName) ||
2727            (CoreCLRName == FunctionGCName);
2728   } else
2729     return false;
2730 }
2731 
stripNonValidData(Module & M)2732 static void stripNonValidData(Module &M) {
2733 #ifndef NDEBUG
2734   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2735 #endif
2736 
2737   for (Function &F : M)
2738     stripNonValidAttributesFromPrototype(F);
2739 
2740   for (Function &F : M)
2741     stripNonValidDataFromBody(F);
2742 }
2743 
runOnFunction(Function & F,DominatorTree & DT,TargetTransformInfo & TTI,const TargetLibraryInfo & TLI)2744 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2745                                             TargetTransformInfo &TTI,
2746                                             const TargetLibraryInfo &TLI) {
2747   assert(!F.isDeclaration() && !F.empty() &&
2748          "need function body to rewrite statepoints in");
2749   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2750 
2751   auto NeedsRewrite = [&TLI](Instruction &I) {
2752     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2753       if (isa<GCStatepointInst>(Call))
2754         return false;
2755       if (callsGCLeafFunction(Call, TLI))
2756         return false;
2757 
2758       // Normally it's up to the frontend to make sure that non-leaf calls also
2759       // have proper deopt state if it is required. We make an exception for
2760       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2761       // these are non-leaf by default. They might be generated by the optimizer
2762       // which doesn't know how to produce a proper deopt state. So if we see a
2763       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2764       // copy and don't produce a statepoint.
2765       if (!AllowStatepointWithNoDeoptInfo &&
2766           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2767         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2768                "Don't expect any other calls here!");
2769         return false;
2770       }
2771       return true;
2772     }
2773     return false;
2774   };
2775 
2776   // Delete any unreachable statepoints so that we don't have unrewritten
2777   // statepoints surviving this pass.  This makes testing easier and the
2778   // resulting IR less confusing to human readers.
2779   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2780   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2781   // Flush the Dominator Tree.
2782   DTU.getDomTree();
2783 
2784   // Gather all the statepoints which need rewritten.  Be careful to only
2785   // consider those in reachable code since we need to ask dominance queries
2786   // when rewriting.  We'll delete the unreachable ones in a moment.
2787   SmallVector<CallBase *, 64> ParsePointNeeded;
2788   for (Instruction &I : instructions(F)) {
2789     // TODO: only the ones with the flag set!
2790     if (NeedsRewrite(I)) {
2791       // NOTE removeUnreachableBlocks() is stronger than
2792       // DominatorTree::isReachableFromEntry(). In other words
2793       // removeUnreachableBlocks can remove some blocks for which
2794       // isReachableFromEntry() returns true.
2795       assert(DT.isReachableFromEntry(I.getParent()) &&
2796             "no unreachable blocks expected");
2797       ParsePointNeeded.push_back(cast<CallBase>(&I));
2798     }
2799   }
2800 
2801   // Return early if no work to do.
2802   if (ParsePointNeeded.empty())
2803     return MadeChange;
2804 
2805   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2806   // These are created by LCSSA.  They have the effect of increasing the size
2807   // of liveness sets for no good reason.  It may be harder to do this post
2808   // insertion since relocations and base phis can confuse things.
2809   for (BasicBlock &BB : F)
2810     if (BB.getUniquePredecessor())
2811       MadeChange |= FoldSingleEntryPHINodes(&BB);
2812 
2813   // Before we start introducing relocations, we want to tweak the IR a bit to
2814   // avoid unfortunate code generation effects.  The main example is that we
2815   // want to try to make sure the comparison feeding a branch is after any
2816   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2817   // values feeding a branch after relocation.  This is semantically correct,
2818   // but results in extra register pressure since both the pre-relocation and
2819   // post-relocation copies must be available in registers.  For code without
2820   // relocations this is handled elsewhere, but teaching the scheduler to
2821   // reverse the transform we're about to do would be slightly complex.
2822   // Note: This may extend the live range of the inputs to the icmp and thus
2823   // increase the liveset of any statepoint we move over.  This is profitable
2824   // as long as all statepoints are in rare blocks.  If we had in-register
2825   // lowering for live values this would be a much safer transform.
2826   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2827     if (auto *BI = dyn_cast<BranchInst>(TI))
2828       if (BI->isConditional())
2829         return dyn_cast<Instruction>(BI->getCondition());
2830     // TODO: Extend this to handle switches
2831     return nullptr;
2832   };
2833   for (BasicBlock &BB : F) {
2834     Instruction *TI = BB.getTerminator();
2835     if (auto *Cond = getConditionInst(TI))
2836       // TODO: Handle more than just ICmps here.  We should be able to move
2837       // most instructions without side effects or memory access.
2838       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2839         MadeChange = true;
2840         Cond->moveBefore(TI);
2841       }
2842   }
2843 
2844   // Nasty workaround - The base computation code in the main algorithm doesn't
2845   // consider the fact that a GEP can be used to convert a scalar to a vector.
2846   // The right fix for this is to integrate GEPs into the base rewriting
2847   // algorithm properly, this is just a short term workaround to prevent
2848   // crashes by canonicalizing such GEPs into fully vector GEPs.
2849   for (Instruction &I : instructions(F)) {
2850     if (!isa<GetElementPtrInst>(I))
2851       continue;
2852 
2853     unsigned VF = 0;
2854     for (unsigned i = 0; i < I.getNumOperands(); i++)
2855       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2856         assert(VF == 0 ||
2857                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2858         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2859       }
2860 
2861     // It's the vector to scalar traversal through the pointer operand which
2862     // confuses base pointer rewriting, so limit ourselves to that case.
2863     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2864       IRBuilder<> B(&I);
2865       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2866       I.setOperand(0, Splat);
2867       MadeChange = true;
2868     }
2869   }
2870 
2871   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2872   return MadeChange;
2873 }
2874 
2875 // liveness computation via standard dataflow
2876 // -------------------------------------------------------------------
2877 
2878 // TODO: Consider using bitvectors for liveness, the set of potentially
2879 // interesting values should be small and easy to pre-compute.
2880 
2881 /// Compute the live-in set for the location rbegin starting from
2882 /// the live-out set of the basic block
computeLiveInValues(BasicBlock::reverse_iterator Begin,BasicBlock::reverse_iterator End,SetVector<Value * > & LiveTmp)2883 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2884                                 BasicBlock::reverse_iterator End,
2885                                 SetVector<Value *> &LiveTmp) {
2886   for (auto &I : make_range(Begin, End)) {
2887     // KILL/Def - Remove this definition from LiveIn
2888     LiveTmp.remove(&I);
2889 
2890     // Don't consider *uses* in PHI nodes, we handle their contribution to
2891     // predecessor blocks when we seed the LiveOut sets
2892     if (isa<PHINode>(I))
2893       continue;
2894 
2895     // USE - Add to the LiveIn set for this instruction
2896     for (Value *V : I.operands()) {
2897       assert(!isUnhandledGCPointerType(V->getType()) &&
2898              "support for FCA unimplemented");
2899       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2900         // The choice to exclude all things constant here is slightly subtle.
2901         // There are two independent reasons:
2902         // - We assume that things which are constant (from LLVM's definition)
2903         // do not move at runtime.  For example, the address of a global
2904         // variable is fixed, even though it's contents may not be.
2905         // - Second, we can't disallow arbitrary inttoptr constants even
2906         // if the language frontend does.  Optimization passes are free to
2907         // locally exploit facts without respect to global reachability.  This
2908         // can create sections of code which are dynamically unreachable and
2909         // contain just about anything.  (see constants.ll in tests)
2910         LiveTmp.insert(V);
2911       }
2912     }
2913   }
2914 }
2915 
computeLiveOutSeed(BasicBlock * BB,SetVector<Value * > & LiveTmp)2916 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2917   for (BasicBlock *Succ : successors(BB)) {
2918     for (auto &I : *Succ) {
2919       PHINode *PN = dyn_cast<PHINode>(&I);
2920       if (!PN)
2921         break;
2922 
2923       Value *V = PN->getIncomingValueForBlock(BB);
2924       assert(!isUnhandledGCPointerType(V->getType()) &&
2925              "support for FCA unimplemented");
2926       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2927         LiveTmp.insert(V);
2928     }
2929   }
2930 }
2931 
computeKillSet(BasicBlock * BB)2932 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2933   SetVector<Value *> KillSet;
2934   for (Instruction &I : *BB)
2935     if (isHandledGCPointerType(I.getType()))
2936       KillSet.insert(&I);
2937   return KillSet;
2938 }
2939 
2940 #ifndef NDEBUG
2941 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2942 /// sanity check for the liveness computation.
checkBasicSSA(DominatorTree & DT,SetVector<Value * > & Live,Instruction * TI,bool TermOkay=false)2943 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2944                           Instruction *TI, bool TermOkay = false) {
2945   for (Value *V : Live) {
2946     if (auto *I = dyn_cast<Instruction>(V)) {
2947       // The terminator can be a member of the LiveOut set.  LLVM's definition
2948       // of instruction dominance states that V does not dominate itself.  As
2949       // such, we need to special case this to allow it.
2950       if (TermOkay && TI == I)
2951         continue;
2952       assert(DT.dominates(I, TI) &&
2953              "basic SSA liveness expectation violated by liveness analysis");
2954     }
2955   }
2956 }
2957 
2958 /// Check that all the liveness sets used during the computation of liveness
2959 /// obey basic SSA properties.  This is useful for finding cases where we miss
2960 /// a def.
checkBasicSSA(DominatorTree & DT,GCPtrLivenessData & Data,BasicBlock & BB)2961 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2962                           BasicBlock &BB) {
2963   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2964   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2965   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2966 }
2967 #endif
2968 
computeLiveInValues(DominatorTree & DT,Function & F,GCPtrLivenessData & Data)2969 static void computeLiveInValues(DominatorTree &DT, Function &F,
2970                                 GCPtrLivenessData &Data) {
2971   SmallSetVector<BasicBlock *, 32> Worklist;
2972 
2973   // Seed the liveness for each individual block
2974   for (BasicBlock &BB : F) {
2975     Data.KillSet[&BB] = computeKillSet(&BB);
2976     Data.LiveSet[&BB].clear();
2977     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2978 
2979 #ifndef NDEBUG
2980     for (Value *Kill : Data.KillSet[&BB])
2981       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2982 #endif
2983 
2984     Data.LiveOut[&BB] = SetVector<Value *>();
2985     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2986     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2987     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2988     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2989     if (!Data.LiveIn[&BB].empty())
2990       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2991   }
2992 
2993   // Propagate that liveness until stable
2994   while (!Worklist.empty()) {
2995     BasicBlock *BB = Worklist.pop_back_val();
2996 
2997     // Compute our new liveout set, then exit early if it hasn't changed despite
2998     // the contribution of our successor.
2999     SetVector<Value *> LiveOut = Data.LiveOut[BB];
3000     const auto OldLiveOutSize = LiveOut.size();
3001     for (BasicBlock *Succ : successors(BB)) {
3002       assert(Data.LiveIn.count(Succ));
3003       LiveOut.set_union(Data.LiveIn[Succ]);
3004     }
3005     // assert OutLiveOut is a subset of LiveOut
3006     if (OldLiveOutSize == LiveOut.size()) {
3007       // If the sets are the same size, then we didn't actually add anything
3008       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
3009       // hasn't changed.
3010       continue;
3011     }
3012     Data.LiveOut[BB] = LiveOut;
3013 
3014     // Apply the effects of this basic block
3015     SetVector<Value *> LiveTmp = LiveOut;
3016     LiveTmp.set_union(Data.LiveSet[BB]);
3017     LiveTmp.set_subtract(Data.KillSet[BB]);
3018 
3019     assert(Data.LiveIn.count(BB));
3020     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
3021     // assert: OldLiveIn is a subset of LiveTmp
3022     if (OldLiveIn.size() != LiveTmp.size()) {
3023       Data.LiveIn[BB] = LiveTmp;
3024       Worklist.insert(pred_begin(BB), pred_end(BB));
3025     }
3026   } // while (!Worklist.empty())
3027 
3028 #ifndef NDEBUG
3029   // Sanity check our output against SSA properties.  This helps catch any
3030   // missing kills during the above iteration.
3031   for (BasicBlock &BB : F)
3032     checkBasicSSA(DT, Data, BB);
3033 #endif
3034 }
3035 
findLiveSetAtInst(Instruction * Inst,GCPtrLivenessData & Data,StatepointLiveSetTy & Out)3036 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
3037                               StatepointLiveSetTy &Out) {
3038   BasicBlock *BB = Inst->getParent();
3039 
3040   // Note: The copy is intentional and required
3041   assert(Data.LiveOut.count(BB));
3042   SetVector<Value *> LiveOut = Data.LiveOut[BB];
3043 
3044   // We want to handle the statepoint itself oddly.  It's
3045   // call result is not live (normal), nor are it's arguments
3046   // (unless they're used again later).  This adjustment is
3047   // specifically what we need to relocate
3048   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
3049                       LiveOut);
3050   LiveOut.remove(Inst);
3051   Out.insert(LiveOut.begin(), LiveOut.end());
3052 }
3053 
recomputeLiveInValues(GCPtrLivenessData & RevisedLivenessData,CallBase * Call,PartiallyConstructedSafepointRecord & Info)3054 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3055                                   CallBase *Call,
3056                                   PartiallyConstructedSafepointRecord &Info) {
3057   StatepointLiveSetTy Updated;
3058   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
3059 
3060   // We may have base pointers which are now live that weren't before.  We need
3061   // to update the PointerToBase structure to reflect this.
3062   for (auto V : Updated)
3063     Info.PointerToBase.insert({V, V});
3064 
3065 #ifndef NDEBUG
3066   for (auto V : Updated)
3067     assert(Info.PointerToBase.count(V) &&
3068            "Must be able to find base for live value!");
3069 #endif
3070 
3071   // Remove any stale base mappings - this can happen since our liveness is
3072   // more precise then the one inherent in the base pointer analysis.
3073   DenseSet<Value *> ToErase;
3074   for (auto KVPair : Info.PointerToBase)
3075     if (!Updated.count(KVPair.first))
3076       ToErase.insert(KVPair.first);
3077 
3078   for (auto *V : ToErase)
3079     Info.PointerToBase.erase(V);
3080 
3081 #ifndef NDEBUG
3082   for (auto KVPair : Info.PointerToBase)
3083     assert(Updated.count(KVPair.first) && "record for non-live value");
3084 #endif
3085 
3086   Info.LiveSet = Updated;
3087 }
3088