1 //===-- tsan_rtl_access.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Definitions of memory access and function entry/exit entry points.
12 //===----------------------------------------------------------------------===//
13
14 #include "tsan_rtl.h"
15
16 namespace __tsan {
17
18 namespace v3 {
19
TryTraceMemoryAccess(ThreadState * thr,uptr pc,uptr addr,uptr size,AccessType typ)20 ALWAYS_INLINE USED bool TryTraceMemoryAccess(ThreadState *thr, uptr pc,
21 uptr addr, uptr size,
22 AccessType typ) {
23 DCHECK(size == 1 || size == 2 || size == 4 || size == 8);
24 if (!kCollectHistory)
25 return true;
26 EventAccess *ev;
27 if (UNLIKELY(!TraceAcquire(thr, &ev)))
28 return false;
29 u64 size_log = size == 1 ? 0 : size == 2 ? 1 : size == 4 ? 2 : 3;
30 uptr pc_delta = pc - thr->trace_prev_pc + (1 << (EventAccess::kPCBits - 1));
31 thr->trace_prev_pc = pc;
32 if (LIKELY(pc_delta < (1 << EventAccess::kPCBits))) {
33 ev->is_access = 1;
34 ev->is_read = !!(typ & kAccessRead);
35 ev->is_atomic = !!(typ & kAccessAtomic);
36 ev->size_log = size_log;
37 ev->pc_delta = pc_delta;
38 DCHECK_EQ(ev->pc_delta, pc_delta);
39 ev->addr = CompressAddr(addr);
40 TraceRelease(thr, ev);
41 return true;
42 }
43 auto *evex = reinterpret_cast<EventAccessExt *>(ev);
44 evex->is_access = 0;
45 evex->is_func = 0;
46 evex->type = EventType::kAccessExt;
47 evex->is_read = !!(typ & kAccessRead);
48 evex->is_atomic = !!(typ & kAccessAtomic);
49 evex->size_log = size_log;
50 evex->addr = CompressAddr(addr);
51 evex->pc = pc;
52 TraceRelease(thr, evex);
53 return true;
54 }
55
TryTraceMemoryAccessRange(ThreadState * thr,uptr pc,uptr addr,uptr size,AccessType typ)56 ALWAYS_INLINE USED bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc,
57 uptr addr, uptr size,
58 AccessType typ) {
59 if (!kCollectHistory)
60 return true;
61 EventAccessRange *ev;
62 if (UNLIKELY(!TraceAcquire(thr, &ev)))
63 return false;
64 thr->trace_prev_pc = pc;
65 ev->is_access = 0;
66 ev->is_func = 0;
67 ev->type = EventType::kAccessRange;
68 ev->is_read = !!(typ & kAccessRead);
69 ev->is_free = !!(typ & kAccessFree);
70 ev->size_lo = size;
71 ev->pc = CompressAddr(pc);
72 ev->addr = CompressAddr(addr);
73 ev->size_hi = size >> EventAccessRange::kSizeLoBits;
74 TraceRelease(thr, ev);
75 return true;
76 }
77
TraceMemoryAccessRange(ThreadState * thr,uptr pc,uptr addr,uptr size,AccessType typ)78 void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
79 AccessType typ) {
80 if (LIKELY(TryTraceMemoryAccessRange(thr, pc, addr, size, typ)))
81 return;
82 TraceSwitchPart(thr);
83 UNUSED bool res = TryTraceMemoryAccessRange(thr, pc, addr, size, typ);
84 DCHECK(res);
85 }
86
TraceFunc(ThreadState * thr,uptr pc)87 void TraceFunc(ThreadState *thr, uptr pc) {
88 if (LIKELY(TryTraceFunc(thr, pc)))
89 return;
90 TraceSwitchPart(thr);
91 UNUSED bool res = TryTraceFunc(thr, pc);
92 DCHECK(res);
93 }
94
TraceMutexLock(ThreadState * thr,EventType type,uptr pc,uptr addr,StackID stk)95 void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
96 StackID stk) {
97 DCHECK(type == EventType::kLock || type == EventType::kRLock);
98 if (!kCollectHistory)
99 return;
100 EventLock ev;
101 ev.is_access = 0;
102 ev.is_func = 0;
103 ev.type = type;
104 ev.pc = CompressAddr(pc);
105 ev.stack_lo = stk;
106 ev.stack_hi = stk >> EventLock::kStackIDLoBits;
107 ev._ = 0;
108 ev.addr = CompressAddr(addr);
109 TraceEvent(thr, ev);
110 }
111
TraceMutexUnlock(ThreadState * thr,uptr addr)112 void TraceMutexUnlock(ThreadState *thr, uptr addr) {
113 if (!kCollectHistory)
114 return;
115 EventUnlock ev;
116 ev.is_access = 0;
117 ev.is_func = 0;
118 ev.type = EventType::kUnlock;
119 ev._ = 0;
120 ev.addr = CompressAddr(addr);
121 TraceEvent(thr, ev);
122 }
123
TraceTime(ThreadState * thr)124 void TraceTime(ThreadState *thr) {
125 if (!kCollectHistory)
126 return;
127 EventTime ev;
128 ev.is_access = 0;
129 ev.is_func = 0;
130 ev.type = EventType::kTime;
131 ev.sid = static_cast<u64>(thr->sid);
132 ev.epoch = static_cast<u64>(thr->epoch);
133 ev._ = 0;
134 TraceEvent(thr, ev);
135 }
136
137 } // namespace v3
138
139 ALWAYS_INLINE
LoadShadow(u64 * p)140 Shadow LoadShadow(u64 *p) {
141 u64 raw = atomic_load((atomic_uint64_t *)p, memory_order_relaxed);
142 return Shadow(raw);
143 }
144
145 ALWAYS_INLINE
StoreShadow(u64 * sp,u64 s)146 void StoreShadow(u64 *sp, u64 s) {
147 atomic_store((atomic_uint64_t *)sp, s, memory_order_relaxed);
148 }
149
150 ALWAYS_INLINE
StoreIfNotYetStored(u64 * sp,u64 * s)151 void StoreIfNotYetStored(u64 *sp, u64 *s) {
152 StoreShadow(sp, *s);
153 *s = 0;
154 }
155
156 extern "C" void __tsan_report_race();
157
158 ALWAYS_INLINE
HandleRace(ThreadState * thr,u64 * shadow_mem,Shadow cur,Shadow old)159 void HandleRace(ThreadState *thr, u64 *shadow_mem, Shadow cur, Shadow old) {
160 thr->racy_state[0] = cur.raw();
161 thr->racy_state[1] = old.raw();
162 thr->racy_shadow_addr = shadow_mem;
163 #if !SANITIZER_GO
164 HACKY_CALL(__tsan_report_race);
165 #else
166 ReportRace(thr);
167 #endif
168 }
169
HappensBefore(Shadow old,ThreadState * thr)170 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
171 return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
172 }
173
174 ALWAYS_INLINE
MemoryAccessImpl1(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)175 void MemoryAccessImpl1(ThreadState *thr, uptr addr, int kAccessSizeLog,
176 bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem,
177 Shadow cur) {
178 // This potentially can live in an MMX/SSE scratch register.
179 // The required intrinsics are:
180 // __m128i _mm_move_epi64(__m128i*);
181 // _mm_storel_epi64(u64*, __m128i);
182 u64 store_word = cur.raw();
183 bool stored = false;
184
185 // scan all the shadow values and dispatch to 4 categories:
186 // same, replace, candidate and race (see comments below).
187 // we consider only 3 cases regarding access sizes:
188 // equal, intersect and not intersect. initially I considered
189 // larger and smaller as well, it allowed to replace some
190 // 'candidates' with 'same' or 'replace', but I think
191 // it's just not worth it (performance- and complexity-wise).
192
193 Shadow old(0);
194
195 // It release mode we manually unroll the loop,
196 // because empirically gcc generates better code this way.
197 // However, we can't afford unrolling in debug mode, because the function
198 // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
199 // threads, which is not enough for the unrolled loop.
200 #if SANITIZER_DEBUG
201 for (int idx = 0; idx < 4; idx++) {
202 # include "tsan_update_shadow_word.inc"
203 }
204 #else
205 int idx = 0;
206 # include "tsan_update_shadow_word.inc"
207 idx = 1;
208 if (stored) {
209 # include "tsan_update_shadow_word.inc"
210 } else {
211 # include "tsan_update_shadow_word.inc"
212 }
213 idx = 2;
214 if (stored) {
215 # include "tsan_update_shadow_word.inc"
216 } else {
217 # include "tsan_update_shadow_word.inc"
218 }
219 idx = 3;
220 if (stored) {
221 # include "tsan_update_shadow_word.inc"
222 } else {
223 # include "tsan_update_shadow_word.inc"
224 }
225 #endif
226
227 // we did not find any races and had already stored
228 // the current access info, so we are done
229 if (LIKELY(stored))
230 return;
231 // choose a random candidate slot and replace it
232 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
233 return;
234 RACE:
235 HandleRace(thr, shadow_mem, cur, old);
236 return;
237 }
238
UnalignedMemoryAccess(ThreadState * thr,uptr pc,uptr addr,uptr size,AccessType typ)239 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
240 AccessType typ) {
241 DCHECK(!(typ & kAccessAtomic));
242 const bool kAccessIsWrite = !(typ & kAccessRead);
243 const bool kIsAtomic = false;
244 while (size) {
245 int size1 = 1;
246 int kAccessSizeLog = kSizeLog1;
247 if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
248 size1 = 8;
249 kAccessSizeLog = kSizeLog8;
250 } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
251 size1 = 4;
252 kAccessSizeLog = kSizeLog4;
253 } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
254 size1 = 2;
255 kAccessSizeLog = kSizeLog2;
256 }
257 MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
258 addr += size1;
259 size -= size1;
260 }
261 }
262
263 ALWAYS_INLINE
ContainsSameAccessSlow(u64 * s,u64 a,u64 sync_epoch,bool is_write)264 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
265 Shadow cur(a);
266 for (uptr i = 0; i < kShadowCnt; i++) {
267 Shadow old(LoadShadow(&s[i]));
268 if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
269 old.TidWithIgnore() == cur.TidWithIgnore() &&
270 old.epoch() > sync_epoch && old.IsAtomic() == cur.IsAtomic() &&
271 old.IsRead() <= cur.IsRead())
272 return true;
273 }
274 return false;
275 }
276
277 #if TSAN_VECTORIZE
278 # define SHUF(v0, v1, i0, i1, i2, i3) \
279 _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v0), \
280 _mm_castsi128_ps(v1), \
281 (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
282 ALWAYS_INLINE
ContainsSameAccessFast(u64 * s,u64 a,u64 sync_epoch,bool is_write)283 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
284 // This is an optimized version of ContainsSameAccessSlow.
285 // load current access into access[0:63]
286 const m128 access = _mm_cvtsi64_si128(a);
287 // duplicate high part of access in addr0:
288 // addr0[0:31] = access[32:63]
289 // addr0[32:63] = access[32:63]
290 // addr0[64:95] = access[32:63]
291 // addr0[96:127] = access[32:63]
292 const m128 addr0 = SHUF(access, access, 1, 1, 1, 1);
293 // load 4 shadow slots
294 const m128 shadow0 = _mm_load_si128((__m128i *)s);
295 const m128 shadow1 = _mm_load_si128((__m128i *)s + 1);
296 // load high parts of 4 shadow slots into addr_vect:
297 // addr_vect[0:31] = shadow0[32:63]
298 // addr_vect[32:63] = shadow0[96:127]
299 // addr_vect[64:95] = shadow1[32:63]
300 // addr_vect[96:127] = shadow1[96:127]
301 m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3);
302 if (!is_write) {
303 // set IsRead bit in addr_vect
304 const m128 rw_mask1 = _mm_cvtsi64_si128(1 << 15);
305 const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
306 addr_vect = _mm_or_si128(addr_vect, rw_mask);
307 }
308 // addr0 == addr_vect?
309 const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect);
310 // epoch1[0:63] = sync_epoch
311 const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch);
312 // epoch[0:31] = sync_epoch[0:31]
313 // epoch[32:63] = sync_epoch[0:31]
314 // epoch[64:95] = sync_epoch[0:31]
315 // epoch[96:127] = sync_epoch[0:31]
316 const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0);
317 // load low parts of shadow cell epochs into epoch_vect:
318 // epoch_vect[0:31] = shadow0[0:31]
319 // epoch_vect[32:63] = shadow0[64:95]
320 // epoch_vect[64:95] = shadow1[0:31]
321 // epoch_vect[96:127] = shadow1[64:95]
322 const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
323 // epoch_vect >= sync_epoch?
324 const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch);
325 // addr_res & epoch_res
326 const m128 res = _mm_and_si128(addr_res, epoch_res);
327 // mask[0] = res[7]
328 // mask[1] = res[15]
329 // ...
330 // mask[15] = res[127]
331 const int mask = _mm_movemask_epi8(res);
332 return mask != 0;
333 }
334 #endif
335
336 ALWAYS_INLINE
ContainsSameAccess(u64 * s,u64 a,u64 sync_epoch,bool is_write)337 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
338 #if TSAN_VECTORIZE
339 bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
340 // NOTE: this check can fail if the shadow is concurrently mutated
341 // by other threads. But it still can be useful if you modify
342 // ContainsSameAccessFast and want to ensure that it's not completely broken.
343 // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
344 return res;
345 #else
346 return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
347 #endif
348 }
349
MemoryAccess(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic)350 ALWAYS_INLINE USED void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
351 int kAccessSizeLog, bool kAccessIsWrite,
352 bool kIsAtomic) {
353 RawShadow *shadow_mem = MemToShadow(addr);
354 DPrintf2(
355 "#%d: MemoryAccess: @%p %p size=%d"
356 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
357 (int)thr->fast_state.tid(), (void *)pc, (void *)addr,
358 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
359 (uptr)shadow_mem[0], (uptr)shadow_mem[1], (uptr)shadow_mem[2],
360 (uptr)shadow_mem[3]);
361 #if SANITIZER_DEBUG
362 if (!IsAppMem(addr)) {
363 Printf("Access to non app mem %zx\n", addr);
364 DCHECK(IsAppMem(addr));
365 }
366 if (!IsShadowMem(shadow_mem)) {
367 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
368 DCHECK(IsShadowMem(shadow_mem));
369 }
370 #endif
371
372 if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
373 // Access to .rodata section, no races here.
374 // Measurements show that it can be 10-20% of all memory accesses.
375 return;
376 }
377
378 FastState fast_state = thr->fast_state;
379 if (UNLIKELY(fast_state.GetIgnoreBit())) {
380 return;
381 }
382
383 Shadow cur(fast_state);
384 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
385 cur.SetWrite(kAccessIsWrite);
386 cur.SetAtomic(kIsAtomic);
387
388 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch,
389 kAccessIsWrite))) {
390 return;
391 }
392
393 if (kCollectHistory) {
394 fast_state.IncrementEpoch();
395 thr->fast_state = fast_state;
396 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
397 cur.IncrementEpoch();
398 }
399
400 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
401 shadow_mem, cur);
402 }
403
404 // Called by MemoryAccessRange in tsan_rtl_thread.cpp
MemoryAccessImpl(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)405 ALWAYS_INLINE USED void MemoryAccessImpl(ThreadState *thr, uptr addr,
406 int kAccessSizeLog,
407 bool kAccessIsWrite, bool kIsAtomic,
408 u64 *shadow_mem, Shadow cur) {
409 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch,
410 kAccessIsWrite))) {
411 return;
412 }
413
414 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
415 shadow_mem, cur);
416 }
417
MemoryRangeSet(ThreadState * thr,uptr pc,uptr addr,uptr size,u64 val)418 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
419 u64 val) {
420 (void)thr;
421 (void)pc;
422 if (size == 0)
423 return;
424 // FIXME: fix me.
425 uptr offset = addr % kShadowCell;
426 if (offset) {
427 offset = kShadowCell - offset;
428 if (size <= offset)
429 return;
430 addr += offset;
431 size -= offset;
432 }
433 DCHECK_EQ(addr % 8, 0);
434 // If a user passes some insane arguments (memset(0)),
435 // let it just crash as usual.
436 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
437 return;
438 // Don't want to touch lots of shadow memory.
439 // If a program maps 10MB stack, there is no need reset the whole range.
440 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
441 // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
442 if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
443 RawShadow *p = MemToShadow(addr);
444 CHECK(IsShadowMem(p));
445 CHECK(IsShadowMem(p + size * kShadowCnt / kShadowCell - 1));
446 // FIXME: may overwrite a part outside the region
447 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
448 p[i++] = val;
449 for (uptr j = 1; j < kShadowCnt; j++) p[i++] = 0;
450 }
451 } else {
452 // The region is big, reset only beginning and end.
453 const uptr kPageSize = GetPageSizeCached();
454 RawShadow *begin = MemToShadow(addr);
455 RawShadow *end = begin + size / kShadowCell * kShadowCnt;
456 RawShadow *p = begin;
457 // Set at least first kPageSize/2 to page boundary.
458 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
459 *p++ = val;
460 for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0;
461 }
462 // Reset middle part.
463 RawShadow *p1 = p;
464 p = RoundDown(end, kPageSize);
465 if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1))
466 Die();
467 // Set the ending.
468 while (p < end) {
469 *p++ = val;
470 for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0;
471 }
472 }
473 }
474
MemoryResetRange(ThreadState * thr,uptr pc,uptr addr,uptr size)475 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
476 MemoryRangeSet(thr, pc, addr, size, 0);
477 }
478
MemoryRangeFreed(ThreadState * thr,uptr pc,uptr addr,uptr size)479 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
480 // Processing more than 1k (4k of shadow) is expensive,
481 // can cause excessive memory consumption (user does not necessary touch
482 // the whole range) and most likely unnecessary.
483 if (size > 1024)
484 size = 1024;
485 CHECK_EQ(thr->is_freeing, false);
486 thr->is_freeing = true;
487 MemoryAccessRange(thr, pc, addr, size, true);
488 thr->is_freeing = false;
489 if (kCollectHistory) {
490 thr->fast_state.IncrementEpoch();
491 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
492 }
493 Shadow s(thr->fast_state);
494 s.ClearIgnoreBit();
495 s.MarkAsFreed();
496 s.SetWrite(true);
497 s.SetAddr0AndSizeLog(0, 3);
498 MemoryRangeSet(thr, pc, addr, size, s.raw());
499 }
500
MemoryRangeImitateWrite(ThreadState * thr,uptr pc,uptr addr,uptr size)501 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
502 if (kCollectHistory) {
503 thr->fast_state.IncrementEpoch();
504 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
505 }
506 Shadow s(thr->fast_state);
507 s.ClearIgnoreBit();
508 s.SetWrite(true);
509 s.SetAddr0AndSizeLog(0, 3);
510 MemoryRangeSet(thr, pc, addr, size, s.raw());
511 }
512
MemoryRangeImitateWriteOrResetRange(ThreadState * thr,uptr pc,uptr addr,uptr size)513 void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
514 uptr size) {
515 if (thr->ignore_reads_and_writes == 0)
516 MemoryRangeImitateWrite(thr, pc, addr, size);
517 else
518 MemoryResetRange(thr, pc, addr, size);
519 }
520
MemoryAccessRange(ThreadState * thr,uptr pc,uptr addr,uptr size,bool is_write)521 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
522 bool is_write) {
523 if (size == 0)
524 return;
525
526 RawShadow *shadow_mem = MemToShadow(addr);
527 DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n", thr->tid,
528 (void *)pc, (void *)addr, (int)size, is_write);
529
530 #if SANITIZER_DEBUG
531 if (!IsAppMem(addr)) {
532 Printf("Access to non app mem %zx\n", addr);
533 DCHECK(IsAppMem(addr));
534 }
535 if (!IsAppMem(addr + size - 1)) {
536 Printf("Access to non app mem %zx\n", addr + size - 1);
537 DCHECK(IsAppMem(addr + size - 1));
538 }
539 if (!IsShadowMem(shadow_mem)) {
540 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
541 DCHECK(IsShadowMem(shadow_mem));
542 }
543 if (!IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1)) {
544 Printf("Bad shadow addr %p (%zx)\n", shadow_mem + size * kShadowCnt / 8 - 1,
545 addr + size - 1);
546 DCHECK(IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1));
547 }
548 #endif
549
550 if (*shadow_mem == kShadowRodata) {
551 DCHECK(!is_write);
552 // Access to .rodata section, no races here.
553 // Measurements show that it can be 10-20% of all memory accesses.
554 return;
555 }
556
557 FastState fast_state = thr->fast_state;
558 if (fast_state.GetIgnoreBit())
559 return;
560
561 fast_state.IncrementEpoch();
562 thr->fast_state = fast_state;
563 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
564
565 bool unaligned = (addr % kShadowCell) != 0;
566
567 // Handle unaligned beginning, if any.
568 for (; addr % kShadowCell && size; addr++, size--) {
569 int const kAccessSizeLog = 0;
570 Shadow cur(fast_state);
571 cur.SetWrite(is_write);
572 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
573 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
574 cur);
575 }
576 if (unaligned)
577 shadow_mem += kShadowCnt;
578 // Handle middle part, if any.
579 for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
580 int const kAccessSizeLog = 3;
581 Shadow cur(fast_state);
582 cur.SetWrite(is_write);
583 cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
584 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
585 cur);
586 shadow_mem += kShadowCnt;
587 }
588 // Handle ending, if any.
589 for (; size; addr++, size--) {
590 int const kAccessSizeLog = 0;
591 Shadow cur(fast_state);
592 cur.SetWrite(is_write);
593 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
594 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
595 cur);
596 }
597 }
598
599 } // namespace __tsan
600
601 #if !SANITIZER_GO
602 // Must be included in this file to make sure everything is inlined.
603 # include "tsan_interface.inc"
604 #endif
605