xref: /openbsd-src/gnu/usr.bin/gcc/gcc/config/vax/vax.h (revision 827d5b5a1fd0468b743c975020f9335c8f040f1b)
1 /* Definitions of target machine for GNU compiler.  VAX version.
2    Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 
5 This file is part of GNU CC.
6 
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11 
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA.  */
21 
22 
23 /* Target CPU builtins.  */
24 #define TARGET_CPU_CPP_BUILTINS()		\
25   do						\
26     {						\
27       builtin_define ("__vax__");		\
28       builtin_assert ("cpu=vax");		\
29       builtin_assert ("machine=vax");		\
30       if (TARGET_G_FLOAT)			\
31 	{					\
32 	  builtin_define ("__GFLOAT");		\
33 	  builtin_define ("__GFLOAT__");	\
34 	}					\
35     }						\
36   while (0)
37 
38 #define VMS_TARGET 0
39 
40 /* Use -J option for long branch support with Unix assembler.  */
41 
42 #define ASM_SPEC "-J"
43 
44 /* Choose proper libraries depending on float format.
45    Note that there are no profiling libraries for g-format.
46    Also use -lg for the sake of dbx.  */
47 
48 #define LIB_SPEC "%{g:-lg}\
49  %{mg:%{lm:-lmg} -lcg \
50   %{p:%eprofiling not supported with -mg\n}\
51   %{pg:%eprofiling not supported with -mg\n}}\
52  %{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
53 
54 /* Print subsidiary information on the compiler version in use.  */
55 
56 #ifndef TARGET_NAME	/* A more specific value might be supplied via -D.  */
57 #define TARGET_NAME "vax"
58 #endif
59 #define TARGET_VERSION fprintf (stderr, " (%s)", TARGET_NAME)
60 
61 /* Run-time compilation parameters selecting different hardware subsets.  */
62 
63 extern int target_flags;
64 
65 #define MASK_UNIX_ASM		1
66 #define MASK_VAXC_ALIGNMENT	2
67 #define MASK_G_FLOAT		4
68 
69 
70 /* Macros used in the machine description to test the flags.  */
71 
72 /* Nonzero if compiling code that Unix assembler can assemble.  */
73 #define TARGET_UNIX_ASM (target_flags & MASK_UNIX_ASM)
74 
75 /* Nonzero if compiling with VAX-11 "C" style structure alignment */
76 #define	TARGET_VAXC_ALIGNMENT (target_flags & MASK_VAXC_ALIGNMENT)
77 
78 /* Nonzero if compiling with `G'-format floating point */
79 #define TARGET_G_FLOAT (target_flags & MASK_G_FLOAT)
80 
81 /* Macro to define tables used to set the flags.
82    This is a list in braces of pairs in braces,
83    each pair being { "NAME", VALUE }
84    where VALUE is the bits to set or minus the bits to clear.
85    An empty string NAME is used to identify the default VALUE.  */
86 
87 #define TARGET_SWITCHES						\
88   { {"unix", MASK_UNIX_ASM,					\
89      "Generate code for UNIX assembler"},  			\
90     {"gnu", -MASK_UNIX_ASM,					\
91      "Generate code for GNU assembler (gas)"},  		\
92     {"vaxc-alignment", MASK_VAXC_ALIGNMENT,			\
93      "Use VAXC structure conventions"}, 			\
94     {"g", MASK_G_FLOAT,						\
95      "Generate GFLOAT double precision code"},			\
96     {"g-float", MASK_G_FLOAT,					\
97      "Generate GFLOAT double precision code"},			\
98     {"d", -MASK_G_FLOAT,					\
99      "Generate DFLOAT double precision code"},			\
100     {"d-float", -MASK_G_FLOAT,					\
101      "Generate DFLOAT double precision code"},			\
102     { "", TARGET_DEFAULT, 0}}
103 
104 /* Default target_flags if no switches specified.  */
105 
106 #ifndef TARGET_DEFAULT
107 #define TARGET_DEFAULT (MASK_UNIX_ASM)
108 #endif
109 
110 #define OVERRIDE_OPTIONS override_options ()
111 
112 
113 /* Target machine storage layout */
114 
115 /* Define this if most significant bit is lowest numbered
116    in instructions that operate on numbered bit-fields.
117    This is not true on the VAX.  */
118 #define BITS_BIG_ENDIAN 0
119 
120 /* Define this if most significant byte of a word is the lowest numbered.  */
121 /* That is not true on the VAX.  */
122 #define BYTES_BIG_ENDIAN 0
123 
124 /* Define this if most significant word of a multiword number is the lowest
125    numbered.  */
126 /* This is not true on the VAX.  */
127 #define WORDS_BIG_ENDIAN 0
128 
129 /* Width of a word, in units (bytes).  */
130 #define UNITS_PER_WORD 4
131 
132 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
133 #define PARM_BOUNDARY 32
134 
135 /* Allocation boundary (in *bits*) for the code of a function.  */
136 #define FUNCTION_BOUNDARY 16
137 
138 /* Alignment of field after `int : 0' in a structure.  */
139 #define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
140 
141 /* Every structure's size must be a multiple of this.  */
142 #define STRUCTURE_SIZE_BOUNDARY 8
143 
144 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
145 #define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
146 
147 /* No data type wants to be aligned rounder than this.  */
148 #define BIGGEST_ALIGNMENT 32
149 
150 /* No structure field wants to be aligned rounder than this.  */
151 #define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
152 
153 /* Set this nonzero if move instructions will actually fail to work
154    when given unaligned data.  */
155 #define STRICT_ALIGNMENT 0
156 
157 /* Let's keep the stack somewhat aligned.  */
158 #define STACK_BOUNDARY 32
159 
160 /* The table of an ADDR_DIFF_VEC must be contiguous with the case
161    opcode, it is part of the case instruction.  */
162 #define ADDR_VEC_ALIGN(ADDR_VEC) 0
163 
164 /* Standard register usage.  */
165 
166 /* Number of actual hardware registers.
167    The hardware registers are assigned numbers for the compiler
168    from 0 to just below FIRST_PSEUDO_REGISTER.
169    All registers that the compiler knows about must be given numbers,
170    even those that are not normally considered general registers.  */
171 #define FIRST_PSEUDO_REGISTER 16
172 
173 /* 1 for registers that have pervasive standard uses
174    and are not available for the register allocator.
175    On the VAX, these are the AP, FP, SP and PC.  */
176 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
177 
178 /* 1 for registers not available across function calls.
179    These must include the FIXED_REGISTERS and also any
180    registers that can be used without being saved.
181    The latter must include the registers where values are returned
182    and the register where structure-value addresses are passed.
183    Aside from that, you can include as many other registers as you like.  */
184 #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
185 
186 /* Return number of consecutive hard regs needed starting at reg REGNO
187    to hold something of mode MODE.
188    This is ordinarily the length in words of a value of mode MODE
189    but can be less for certain modes in special long registers.
190    On the VAX, all registers are one word long.  */
191 #define HARD_REGNO_NREGS(REGNO, MODE)   \
192  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
193 
194 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
195    On the VAX, all registers can hold all modes.  */
196 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
197 
198 /* Value is 1 if it is a good idea to tie two pseudo registers
199    when one has mode MODE1 and one has mode MODE2.
200    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
201    for any hard reg, then this must be 0 for correct output.  */
202 #define MODES_TIEABLE_P(MODE1, MODE2)  1
203 
204 /* Specify the registers used for certain standard purposes.
205    The values of these macros are register numbers.  */
206 
207 /* VAX pc is overloaded on a register.  */
208 #define PC_REGNUM 15
209 
210 /* Register to use for pushing function arguments.  */
211 #define STACK_POINTER_REGNUM 14
212 
213 /* Base register for access to local variables of the function.  */
214 #define FRAME_POINTER_REGNUM 13
215 
216 /* Value should be nonzero if functions must have frame pointers.
217    Zero means the frame pointer need not be set up (and parms
218    may be accessed via the stack pointer) in functions that seem suitable.
219    This is computed in `reload', in reload1.c.  */
220 #define FRAME_POINTER_REQUIRED 1
221 
222 /* Base register for access to arguments of the function.  */
223 #define ARG_POINTER_REGNUM 12
224 
225 /* Register in which static-chain is passed to a function.  */
226 #define STATIC_CHAIN_REGNUM 0
227 
228 /* Register in which address to store a structure value
229    is passed to a function.  */
230 #define STRUCT_VALUE_REGNUM 1
231 
232 /* Define the classes of registers for register constraints in the
233    machine description.  Also define ranges of constants.
234 
235    One of the classes must always be named ALL_REGS and include all hard regs.
236    If there is more than one class, another class must be named NO_REGS
237    and contain no registers.
238 
239    The name GENERAL_REGS must be the name of a class (or an alias for
240    another name such as ALL_REGS).  This is the class of registers
241    that is allowed by "g" or "r" in a register constraint.
242    Also, registers outside this class are allocated only when
243    instructions express preferences for them.
244 
245    The classes must be numbered in nondecreasing order; that is,
246    a larger-numbered class must never be contained completely
247    in a smaller-numbered class.
248 
249    For any two classes, it is very desirable that there be another
250    class that represents their union.  */
251 
252 /* The VAX has only one kind of registers, so NO_REGS and ALL_REGS
253    are the only classes.  */
254 
255 enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
256 
257 #define N_REG_CLASSES (int) LIM_REG_CLASSES
258 
259 /* Since GENERAL_REGS is the same class as ALL_REGS,
260    don't give it a different class number; just make it an alias.  */
261 
262 #define GENERAL_REGS ALL_REGS
263 
264 /* Give names of register classes as strings for dump file.  */
265 
266 #define REG_CLASS_NAMES \
267  {"NO_REGS", "ALL_REGS" }
268 
269 /* Define which registers fit in which classes.
270    This is an initializer for a vector of HARD_REG_SET
271    of length N_REG_CLASSES.  */
272 
273 #define REG_CLASS_CONTENTS {{0}, {0xffff}}
274 
275 /* The same information, inverted:
276    Return the class number of the smallest class containing
277    reg number REGNO.  This could be a conditional expression
278    or could index an array.  */
279 
280 #define REGNO_REG_CLASS(REGNO) ALL_REGS
281 
282 /* The class value for index registers, and the one for base regs.  */
283 
284 #define INDEX_REG_CLASS ALL_REGS
285 #define BASE_REG_CLASS ALL_REGS
286 
287 /* Get reg_class from a letter such as appears in the machine description.  */
288 
289 #define REG_CLASS_FROM_LETTER(C) NO_REGS
290 
291 /* The letters I, J, K, L, M, N, and O in a register constraint string
292    can be used to stand for particular ranges of immediate operands.
293    This macro defines what the ranges are.
294    C is the letter, and VALUE is a constant value.
295    Return 1 if VALUE is in the range specified by C.
296 
297    `I' is the constant zero.
298    `J' is a value between 0 .. 63 (inclusive)
299    `K' is a value between -128 and 127 (inclusive)
300    'L' is a value between -32768 and 32767 (inclusive)
301    `M' is a value between 0 and 255 (inclusive)
302    'N' is a value between 0 and 65535 (inclusive)
303    `O' is a value between -63 and -1 (inclusive)  */
304 
305 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
306   (  (C) == 'I' ?	(VALUE) == 0				\
307    : (C) == 'J' ?	0 <= (VALUE) && (VALUE) < 64		\
308    : (C) == 'O' ?	-63 <= (VALUE) && (VALUE) < 0		\
309    : (C) == 'K' ?	-128 <= (VALUE) && (VALUE) < 128	\
310    : (C) == 'M' ?	0 <= (VALUE) && (VALUE) < 256		\
311    : (C) == 'L' ?	-32768 <= (VALUE) && (VALUE) < 32768	\
312    : (C) == 'N' ?	0 <= (VALUE) && (VALUE) < 65536		\
313    : 0)
314 
315 /* Similar, but for floating constants, and defining letters G and H.
316    Here VALUE is the CONST_DOUBLE rtx itself.
317 
318    `G' is a floating-point zero.  */
319 
320 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
321   ((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode)		\
322 		 || (VALUE) == CONST0_RTX (SFmode))	\
323    : 0)
324 
325 /* Given an rtx X being reloaded into a reg required to be
326    in class CLASS, return the class of reg to actually use.
327    In general this is just CLASS; but on some machines
328    in some cases it is preferable to use a more restrictive class.  */
329 
330 #define PREFERRED_RELOAD_CLASS(X,CLASS)  (CLASS)
331 
332 /* Return the maximum number of consecutive registers
333    needed to represent mode MODE in a register of class CLASS.  */
334 /* On the VAX, this is always the size of MODE in words,
335    since all registers are the same size.  */
336 #define CLASS_MAX_NREGS(CLASS, MODE)	\
337  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
338 
339 /* Stack layout; function entry, exit and calling.  */
340 
341 /* Define this if pushing a word on the stack
342    makes the stack pointer a smaller address.  */
343 #define STACK_GROWS_DOWNWARD
344 
345 /* Define this if the nominal address of the stack frame
346    is at the high-address end of the local variables;
347    that is, each additional local variable allocated
348    goes at a more negative offset in the frame.  */
349 #define FRAME_GROWS_DOWNWARD
350 
351 /* Offset within stack frame to start allocating local variables at.
352    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
353    first local allocated.  Otherwise, it is the offset to the BEGINNING
354    of the first local allocated.  */
355 #define STARTING_FRAME_OFFSET 0
356 
357 /* Given an rtx for the address of a frame,
358    return an rtx for the address of the word in the frame
359    that holds the dynamic chain--the previous frame's address.  */
360 #define DYNAMIC_CHAIN_ADDRESS(FRAME) plus_constant ((FRAME), 12)
361 
362 /* If we generate an insn to push BYTES bytes,
363    this says how many the stack pointer really advances by.
364    On the VAX, -(sp) pushes only the bytes of the operands.  */
365 #define PUSH_ROUNDING(BYTES) (BYTES)
366 
367 /* Offset of first parameter from the argument pointer register value.  */
368 #define FIRST_PARM_OFFSET(FNDECL) 4
369 
370 /* Value is the number of bytes of arguments automatically
371    popped when returning from a subroutine call.
372    FUNDECL is the declaration node of the function (as a tree),
373    FUNTYPE is the data type of the function (as a tree),
374    or for a library call it is an identifier node for the subroutine name.
375    SIZE is the number of bytes of arguments passed on the stack.
376 
377    On the VAX, the RET insn pops a maximum of 255 args for any function.  */
378 
379 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
380   ((SIZE) > 255*4 ? 0 : (SIZE))
381 
382 /* Define how to find the value returned by a function.
383    VALTYPE is the data type of the value (as a tree).
384    If the precise function being called is known, FUNC is its FUNCTION_DECL;
385    otherwise, FUNC is 0.  */
386 
387 /* On the VAX the return value is in R0 regardless.  */
388 
389 #define FUNCTION_VALUE(VALTYPE, FUNC)  \
390   gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
391 
392 /* Define how to find the value returned by a library function
393    assuming the value has mode MODE.  */
394 
395 /* On the VAX the return value is in R0 regardless.  */
396 
397 #define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, 0)
398 
399 /* Define this if PCC uses the nonreentrant convention for returning
400    structure and union values.  */
401 
402 #define PCC_STATIC_STRUCT_RETURN
403 
404 /* 1 if N is a possible register number for a function value.
405    On the VAX, R0 is the only register thus used.  */
406 
407 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
408 
409 /* 1 if N is a possible register number for function argument passing.
410    On the VAX, no registers are used in this way.  */
411 
412 #define FUNCTION_ARG_REGNO_P(N) 0
413 
414 /* Define a data type for recording info about an argument list
415    during the scan of that argument list.  This data type should
416    hold all necessary information about the function itself
417    and about the args processed so far, enough to enable macros
418    such as FUNCTION_ARG to determine where the next arg should go.
419 
420    On the VAX, this is a single integer, which is a number of bytes
421    of arguments scanned so far.  */
422 
423 #define CUMULATIVE_ARGS int
424 
425 /* Initialize a variable CUM of type CUMULATIVE_ARGS
426    for a call to a function whose data type is FNTYPE.
427    For a library call, FNTYPE is 0.
428 
429    On the VAX, the offset starts at 0.  */
430 
431 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)	\
432  ((CUM) = 0)
433 
434 /* Update the data in CUM to advance over an argument
435    of mode MODE and data type TYPE.
436    (TYPE is null for libcalls where that information may not be available.)  */
437 
438 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
439  ((CUM) += ((MODE) != BLKmode			\
440 	    ? (GET_MODE_SIZE (MODE) + 3) & ~3	\
441 	    : (int_size_in_bytes (TYPE) + 3) & ~3))
442 
443 /* Define where to put the arguments to a function.
444    Value is zero to push the argument on the stack,
445    or a hard register in which to store the argument.
446 
447    MODE is the argument's machine mode.
448    TYPE is the data type of the argument (as a tree).
449     This is null for libcalls where that information may
450     not be available.
451    CUM is a variable of type CUMULATIVE_ARGS which gives info about
452     the preceding args and about the function being called.
453    NAMED is nonzero if this argument is a named parameter
454     (otherwise it is an extra parameter matching an ellipsis).  */
455 
456 /* On the VAX all args are pushed.  */
457 
458 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
459 
460 /* Output assembler code to FILE to increment profiler label # LABELNO
461    for profiling a function entry.  */
462 
463 #define VAX_FUNCTION_PROFILER_NAME "mcount"
464 #define FUNCTION_PROFILER(FILE, LABELNO)			\
465   do								\
466     {								\
467       char label[256];						\
468       ASM_GENERATE_INTERNAL_LABEL (label, "LP", (LABELNO));	\
469       fprintf (FILE, "\tmovab ");				\
470       assemble_name (FILE, label);				\
471       asm_fprintf (FILE, ",%Rr0\n\tjsb %s\n",			\
472 		   VAX_FUNCTION_PROFILER_NAME);			\
473     }								\
474   while (0)
475 
476 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
477    the stack pointer does not matter.  The value is tested only in
478    functions that have frame pointers.
479    No definition is equivalent to always zero.  */
480 
481 #define EXIT_IGNORE_STACK 1
482 
483 /* Store in the variable DEPTH the initial difference between the
484    frame pointer reg contents and the stack pointer reg contents,
485    as of the start of the function body.  This depends on the layout
486    of the fixed parts of the stack frame and on how registers are saved.
487 
488    On the VAX, FRAME_POINTER_REQUIRED is always 1, so the definition of this
489    macro doesn't matter.  But it must be defined.  */
490 
491 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
492 
493 /* Output assembler code for a block containing the constant parts
494    of a trampoline, leaving space for the variable parts.  */
495 
496 /* On the VAX, the trampoline contains an entry mask and two instructions:
497      .word NN
498      movl $STATIC,r0   (store the functions static chain)
499      jmp  *$FUNCTION   (jump to function code at address FUNCTION)  */
500 
501 #define TRAMPOLINE_TEMPLATE(FILE)					\
502 {									\
503   assemble_aligned_integer (2, const0_rtx);				\
504   assemble_aligned_integer (2, GEN_INT (0x8fd0));			\
505   assemble_aligned_integer (4, const0_rtx);				\
506   assemble_aligned_integer (1, GEN_INT (0x50 + STATIC_CHAIN_REGNUM));	\
507   assemble_aligned_integer (2, GEN_INT (0x9f17));			\
508   assemble_aligned_integer (4, const0_rtx);				\
509 }
510 
511 /* Length in units of the trampoline for entering a nested function.  */
512 
513 #define TRAMPOLINE_SIZE 15
514 
515 /* Emit RTL insns to initialize the variable parts of a trampoline.
516    FNADDR is an RTX for the address of the function's pure code.
517    CXT is an RTX for the static chain value for the function.  */
518 
519 /* We copy the register-mask from the function's pure code
520    to the start of the trampoline.  */
521 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
522 {									\
523   emit_move_insn (gen_rtx_MEM (HImode, TRAMP),				\
524 		  gen_rtx_MEM (HImode, FNADDR));			\
525   emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), CXT);	\
526   emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 11)),	\
527 		  plus_constant (FNADDR, 2));				\
528   emit_insn (gen_sync_istream ());					\
529 }
530 
531 /* Byte offset of return address in a stack frame.  The "saved PC" field
532    is in element [4] when treating the frame as an array of longwords.  */
533 
534 #define RETURN_ADDRESS_OFFSET	(4 * UNITS_PER_WORD)	/* 16 */
535 
536 /* A C expression whose value is RTL representing the value of the return
537    address for the frame COUNT steps up from the current frame.
538    FRAMEADDR is already the frame pointer of the COUNT frame, so we
539    can ignore COUNT.  */
540 
541 #define RETURN_ADDR_RTX(COUNT, FRAME)	\
542   ((COUNT == 0)				\
543    ? gen_rtx_MEM (Pmode, plus_constant (FRAME, RETURN_ADDRESS_OFFSET)) \
544    : (rtx) 0)
545 
546 
547 /* Addressing modes, and classification of registers for them.  */
548 
549 #define HAVE_POST_INCREMENT 1
550 /* #define HAVE_POST_DECREMENT 0 */
551 
552 #define HAVE_PRE_DECREMENT 1
553 /* #define HAVE_PRE_INCREMENT 0 */
554 
555 /* Macros to check register numbers against specific register classes.  */
556 
557 /* These assume that REGNO is a hard or pseudo reg number.
558    They give nonzero only if REGNO is a hard reg of the suitable class
559    or a pseudo reg currently allocated to a suitable hard reg.
560    Since they use reg_renumber, they are safe only once reg_renumber
561    has been allocated, which happens in local-alloc.c.  */
562 
563 #define REGNO_OK_FOR_INDEX_P(regno)  \
564 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
565 #define REGNO_OK_FOR_BASE_P(regno) \
566 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
567 
568 /* Maximum number of registers that can appear in a valid memory address.  */
569 
570 #define MAX_REGS_PER_ADDRESS 2
571 
572 /* 1 if X is an rtx for a constant that is a valid address.  */
573 
574 #define CONSTANT_ADDRESS_P(X)   \
575   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
576    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
577    || GET_CODE (X) == HIGH)
578 
579 /* Nonzero if the constant value X is a legitimate general operand.
580    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
581 
582 #define LEGITIMATE_CONSTANT_P(X) 1
583 
584 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
585    and check its validity for a certain class.
586    We have two alternate definitions for each of them.
587    The usual definition accepts all pseudo regs; the other rejects
588    them unless they have been allocated suitable hard regs.
589    The symbol REG_OK_STRICT causes the latter definition to be used.
590 
591    Most source files want to accept pseudo regs in the hope that
592    they will get allocated to the class that the insn wants them to be in.
593    Source files for reload pass need to be strict.
594    After reload, it makes no difference, since pseudo regs have
595    been eliminated by then.  */
596 
597 #ifndef REG_OK_STRICT
598 
599 /* Nonzero if X is a hard reg that can be used as an index
600    or if it is a pseudo reg.  */
601 #define REG_OK_FOR_INDEX_P(X) 1
602 /* Nonzero if X is a hard reg that can be used as a base reg
603    or if it is a pseudo reg.  */
604 #define REG_OK_FOR_BASE_P(X) 1
605 
606 #else
607 
608 /* Nonzero if X is a hard reg that can be used as an index.  */
609 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
610 /* Nonzero if X is a hard reg that can be used as a base reg.  */
611 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
612 
613 #endif
614 
615 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
616    that is a valid memory address for an instruction.
617    The MODE argument is the machine mode for the MEM expression
618    that wants to use this address.
619 
620    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
621    except for CONSTANT_ADDRESS_P which is actually machine-independent.  */
622 
623 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS
624 
625 /* Zero if this contains a (CONST (PLUS (SYMBOL_REF) (...))) and the
626    symbol in the SYMBOL_REF is an external symbol.  */
627 
628 #define INDIRECTABLE_CONSTANT_P(X) \
629  (! (GET_CODE ((X)) == CONST					\
630      && GET_CODE (XEXP ((X), 0)) == PLUS			\
631      && GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF	\
632      && SYMBOL_REF_FLAG (XEXP (XEXP ((X), 0), 0))))
633 
634 /* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
635    are no SYMBOL_REFs for external symbols present.  */
636 
637 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X)   				\
638   (GET_CODE (X) == LABEL_REF 						\
639    || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_FLAG (X))		\
640    || (GET_CODE (X) == CONST && INDIRECTABLE_CONSTANT_P(X))		\
641    || GET_CODE (X) == CONST_INT)
642 
643 
644 /* Nonzero if X is an address which can be indirected.  External symbols
645    could be in a sharable image library, so we disallow those.  */
646 
647 #define INDIRECTABLE_ADDRESS_P(X)  \
648   (INDIRECTABLE_CONSTANT_ADDRESS_P (X) 					\
649    || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
650    || (GET_CODE (X) == PLUS						\
651        && GET_CODE (XEXP (X, 0)) == REG					\
652        && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
653        && INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
654 
655 #else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
656 
657 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
658 
659 /* Nonzero if X is an address which can be indirected.  */
660 #define INDIRECTABLE_ADDRESS_P(X)  \
661   (CONSTANT_ADDRESS_P (X)						\
662    || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
663    || (GET_CODE (X) == PLUS						\
664        && GET_CODE (XEXP (X, 0)) == REG					\
665        && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
666        && CONSTANT_ADDRESS_P (XEXP (X, 1))))
667 
668 #endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
669 
670 /* Go to ADDR if X is a valid address not using indexing.
671    (This much is the easy part.)  */
672 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR)  \
673 { register rtx xfoob = (X);						\
674   if (GET_CODE (xfoob) == REG)						\
675     {									\
676       extern rtx *reg_equiv_mem;					\
677       if (! reload_in_progress						\
678 	  || reg_equiv_mem[REGNO (xfoob)] == 0				\
679 	  || INDIRECTABLE_ADDRESS_P (reg_equiv_mem[REGNO (xfoob)]))	\
680 	goto ADDR;							\
681     }									\
682   if (CONSTANT_ADDRESS_P (xfoob)) goto ADDR;				\
683   if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR;			\
684   xfoob = XEXP (X, 0);							\
685   if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob))		\
686     goto ADDR;								\
687   if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC)		\
688       && GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob))		\
689     goto ADDR; }
690 
691 /* 1 if PROD is either a reg times size of mode MODE and MODE is less
692    than or equal 8 bytes, or just a reg if MODE is one byte.
693    This macro's expansion uses the temporary variables xfoo0 and xfoo1
694    that must be declared in the surrounding context.  */
695 #define INDEX_TERM_P(PROD, MODE)   \
696 (GET_MODE_SIZE (MODE) == 1						\
697  ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD))			\
698  : (GET_CODE (PROD) == MULT && GET_MODE_SIZE (MODE) <= 8		\
699     &&									\
700     (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1),			\
701      ((((GET_CODE (xfoo0) == CONST_INT					\
702          && GET_CODE (xfoo1) == REG)					\
703          && INTVAL (xfoo0) == (int)GET_MODE_SIZE (MODE))		\
704          && REG_OK_FOR_INDEX_P (xfoo1))					\
705         ||								\
706       (((GET_CODE (xfoo1) == CONST_INT					\
707          && GET_CODE (xfoo0) == REG)					\
708          && INTVAL (xfoo1) == (int)GET_MODE_SIZE (MODE))		\
709          && REG_OK_FOR_INDEX_P (xfoo0))))))
710 
711 /* Go to ADDR if X is the sum of a register
712    and a valid index term for mode MODE.  */
713 #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR)	\
714 { register rtx xfooa;							\
715   if (GET_CODE (X) == PLUS)						\
716     { if (GET_CODE (XEXP (X, 0)) == REG					\
717 	  && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
718 	  && (xfooa = XEXP (X, 1),					\
719 	      INDEX_TERM_P (xfooa, MODE)))				\
720 	goto ADDR;							\
721       if (GET_CODE (XEXP (X, 1)) == REG					\
722 	  && REG_OK_FOR_BASE_P (XEXP (X, 1))				\
723 	  && (xfooa = XEXP (X, 0),					\
724 	      INDEX_TERM_P (xfooa, MODE)))				\
725 	goto ADDR; } }
726 
727 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)  \
728 { register rtx xfoo, xfoo0, xfoo1;					\
729   GO_IF_NONINDEXED_ADDRESS (X, ADDR);					\
730   if (GET_CODE (X) == PLUS)						\
731     { /* Handle <address>[index] represented with index-sum outermost */\
732       xfoo = XEXP (X, 0);						\
733       if (INDEX_TERM_P (xfoo, MODE))					\
734 	{ GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); }		\
735       xfoo = XEXP (X, 1);						\
736       if (INDEX_TERM_P (xfoo, MODE))					\
737 	{ GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); }		\
738       /* Handle offset(reg)[index] with offset added outermost */	\
739       if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0)))		\
740 	{ if (GET_CODE (XEXP (X, 1)) == REG				\
741 	      && REG_OK_FOR_BASE_P (XEXP (X, 1)))			\
742 	    goto ADDR;							\
743 	  GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); }		\
744       if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1)))		\
745 	{ if (GET_CODE (XEXP (X, 0)) == REG				\
746 	      && REG_OK_FOR_BASE_P (XEXP (X, 0)))			\
747 	    goto ADDR;							\
748 	  GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
749 
750 /* Try machine-dependent ways of modifying an illegitimate address
751    to be legitimate.  If we find one, return the new, valid address.
752    This macro is used in only one place: `memory_address' in explow.c.
753 
754    OLDX is the address as it was before break_out_memory_refs was called.
755    In some cases it is useful to look at this to decide what needs to be done.
756 
757    MODE and WIN are passed so that this macro can use
758    GO_IF_LEGITIMATE_ADDRESS.
759 
760    It is always safe for this macro to do nothing.  It exists to recognize
761    opportunities to optimize the output.
762 
763    For the VAX, nothing needs to be done.  */
764 
765 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)  {}
766 
767 /* Go to LABEL if ADDR (a legitimate address expression)
768    has an effect that depends on the machine mode it is used for.
769    On the VAX, the predecrement and postincrement address depend thus
770    (the amount of decrement or increment being the length of the operand)
771    and all indexed address depend thus (because the index scale factor
772    is the length of the operand).  */
773 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
774  { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC)	\
775      goto LABEL; 							\
776    if (GET_CODE (ADDR) == PLUS)						\
777      { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0))				\
778 	   && GET_CODE (XEXP (ADDR, 1)) == REG);			\
779        else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1))			\
780 		&& GET_CODE (XEXP (ADDR, 0)) == REG);			\
781        else goto LABEL; }}
782 
783 /* Specify the machine mode that this machine uses
784    for the index in the tablejump instruction.  */
785 #define CASE_VECTOR_MODE HImode
786 
787 /* Define as C expression which evaluates to nonzero if the tablejump
788    instruction expects the table to contain offsets from the address of the
789    table.
790    Do not define this if the table should contain absolute addresses.  */
791 #define CASE_VECTOR_PC_RELATIVE 1
792 
793 /* Indicate that jump tables go in the text section.  This is
794    necessary when compiling PIC code.  */
795 #define JUMP_TABLES_IN_TEXT_SECTION 1
796 
797 /* Define this as 1 if `char' should by default be signed; else as 0.  */
798 #define DEFAULT_SIGNED_CHAR 1
799 
800 /* This flag, if defined, says the same insns that convert to a signed fixnum
801    also convert validly to an unsigned one.  */
802 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
803 
804 /* Max number of bytes we can move from memory to memory
805    in one reasonably fast instruction.  */
806 #define MOVE_MAX 8
807 
808 /* Nonzero if access to memory by bytes is slow and undesirable.  */
809 #define SLOW_BYTE_ACCESS 0
810 
811 /* Define if shifts truncate the shift count
812    which implies one can omit a sign-extension or zero-extension
813    of a shift count.  */
814 /* #define SHIFT_COUNT_TRUNCATED */
815 
816 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
817    is done just by pretending it is already truncated.  */
818 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
819 
820 /* When a prototype says `char' or `short', really pass an `int'.
821    (On the VAX, this is required for system-library compatibility.)  */
822 #define PROMOTE_PROTOTYPES 1
823 
824 /* Specify the machine mode that pointers have.
825    After generation of rtl, the compiler makes no further distinction
826    between pointers and any other objects of this machine mode.  */
827 #define Pmode SImode
828 
829 /* A function address in a call instruction
830    is a byte address (for indexing purposes)
831    so give the MEM rtx a byte's mode.  */
832 #define FUNCTION_MODE QImode
833 
834 /* This machine doesn't use IEEE floats.  */
835 
836 #define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
837 
838 /* Compute the cost of computing a constant rtl expression RTX
839    whose rtx-code is CODE.  The body of this macro is a portion
840    of a switch statement.  If the code is computed here,
841    return it with a return statement.  Otherwise, break from the switch.  */
842 
843 /* On a VAX, constants from 0..63 are cheap because they can use the
844    1 byte literal constant format.  compare to -1 should be made cheap
845    so that decrement-and-branch insns can be formed more easily (if
846    the value -1 is copied to a register some decrement-and-branch patterns
847    will not match).  */
848 
849 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
850   case CONST_INT:						\
851     if (INTVAL (RTX) == 0) return 0;				\
852     if ((OUTER_CODE) == AND)					\
853       return ((unsigned) ~INTVAL (RTX) <= 077) ? 1 : 2;		\
854     if ((unsigned) INTVAL (RTX) <= 077) return 1;		\
855     if ((OUTER_CODE) == COMPARE && INTVAL (RTX) == -1)		\
856       return 1;							\
857     if ((OUTER_CODE) == PLUS && (unsigned) -INTVAL (RTX) <= 077)\
858       return 1;							\
859   case CONST:							\
860   case LABEL_REF:						\
861   case SYMBOL_REF:						\
862     return 3;							\
863   case CONST_DOUBLE:						\
864     if (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT)		\
865       return vax_float_literal (RTX) ? 5 : 8;			\
866     else							\
867       return (((CONST_DOUBLE_HIGH (RTX) == 0			\
868 		&& (unsigned) CONST_DOUBLE_LOW (RTX) < 64)	\
869 	       || ((OUTER_CODE) == PLUS				\
870 		   && CONST_DOUBLE_HIGH (RTX) == -1		\
871 		   && (unsigned)-CONST_DOUBLE_LOW (RTX) < 64))	\
872 	      ? 2 : 5);
873 
874 #define RTX_COSTS(RTX,CODE,OUTER_CODE) case FIX: case FLOAT:	\
875  case MULT: case DIV: case UDIV: case MOD: case UMOD:		\
876  case ASHIFT: case LSHIFTRT: case ASHIFTRT:			\
877  case ROTATE: case ROTATERT: case PLUS: case MINUS: case IOR:	\
878  case XOR: case AND: case NEG: case NOT: case ZERO_EXTRACT:	\
879  case SIGN_EXTRACT: case MEM: return vax_rtx_cost(RTX)
880 
881 #define	ADDRESS_COST(RTX) (1 + (GET_CODE (RTX) == REG ? 0 : vax_address_cost(RTX)))
882 
883 /* Specify the cost of a branch insn; roughly the number of extra insns that
884    should be added to avoid a branch.
885 
886    Branches are extremely cheap on the VAX while the shift insns often
887    used to replace branches can be expensive.  */
888 
889 #define BRANCH_COST 0
890 
891 /*
892  * We can use the BSD C library routines for the libgcc calls that are
893  * still generated, since that's what they boil down to anyways.
894  */
895 
896 #define UDIVSI3_LIBCALL "*udiv"
897 #define UMODSI3_LIBCALL "*urem"
898 
899 /* Tell final.c how to eliminate redundant test instructions.  */
900 
901 /* Here we define machine-dependent flags and fields in cc_status
902    (see `conditions.h').  No extra ones are needed for the VAX.  */
903 
904 /* Store in cc_status the expressions
905    that the condition codes will describe
906    after execution of an instruction whose pattern is EXP.
907    Do not alter them if the instruction would not alter the cc's.  */
908 
909 #define NOTICE_UPDATE_CC(EXP, INSN) \
910 { if (GET_CODE (EXP) == SET)					\
911     { if (GET_CODE (SET_SRC (EXP)) == CALL)			\
912 	CC_STATUS_INIT;						\
913       else if (GET_CODE (SET_DEST (EXP)) != ZERO_EXTRACT	\
914 	       && GET_CODE (SET_DEST (EXP)) != PC)		\
915 	{							\
916 	  cc_status.flags = 0;					\
917 	  /* The integer operations below don't set carry or	\
918 	     set it in an incompatible way.  That's ok though	\
919 	     as the Z bit is all we need when doing unsigned	\
920 	     comparisons on the result of these insns (since	\
921 	     they're always with 0).  Set CC_NO_OVERFLOW to	\
922 	     generate the correct unsigned branches.  */	\
923 	  switch (GET_CODE (SET_SRC (EXP)))			\
924 	    {							\
925 	    case NEG:						\
926 	      if (GET_MODE_CLASS (GET_MODE (EXP)) == MODE_FLOAT)\
927 	 	break;						\
928 	    case AND:						\
929 	    case IOR:						\
930 	    case XOR:						\
931 	    case NOT:						\
932 	    case MEM:						\
933 	    case REG:						\
934 	      cc_status.flags = CC_NO_OVERFLOW;			\
935 	      break;						\
936 	    default:						\
937 	      break;						\
938 	    }							\
939 	  cc_status.value1 = SET_DEST (EXP);			\
940 	  cc_status.value2 = SET_SRC (EXP); } }			\
941   else if (GET_CODE (EXP) == PARALLEL				\
942 	   && GET_CODE (XVECEXP (EXP, 0, 0)) == SET)		\
943     {								\
944       if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL)	\
945 	CC_STATUS_INIT;					        \
946       else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
947 	{ cc_status.flags = 0;					\
948 	  cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0));	\
949 	  cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); }   \
950       else							\
951 	/* PARALLELs whose first element sets the PC are aob,   \
952 	   sob insns.  They do change the cc's.  */		\
953 	CC_STATUS_INIT; }					\
954   else CC_STATUS_INIT;						\
955   if (cc_status.value1 && GET_CODE (cc_status.value1) == REG	\
956       && cc_status.value2					\
957       && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))	\
958     cc_status.value2 = 0;					\
959   if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM	\
960       && cc_status.value2					\
961       && GET_CODE (cc_status.value2) == MEM)			\
962     cc_status.value2 = 0; }
963 /* Actual condition, one line up, should be that value2's address
964    depends on value1, but that is too much of a pain.  */
965 
966 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV)  \
967 { if (cc_status.flags & CC_NO_OVERFLOW)				\
968     return NO_OV;						\
969   return NORMAL; }
970 
971 /* Control the assembler format that we output.  */
972 
973 /* Output at beginning of assembler file.  */
974 /* When debugging, we want to output an extra dummy label so that gas
975    can distinguish between D_float and G_float prior to processing the
976    .stabs directive identifying type double.  */
977 
978 #define ASM_FILE_START(FILE) \
979   do {								\
980     fputs (ASM_APP_OFF, FILE);					\
981     if (write_symbols == DBX_DEBUG)				\
982       fprintf (FILE, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR);	\
983   } while (0)
984 
985 
986 /* Output to assembler file text saying following lines
987    may contain character constants, extra white space, comments, etc.  */
988 
989 #define ASM_APP_ON "#APP\n"
990 
991 /* Output to assembler file text saying following lines
992    no longer contain unusual constructs.  */
993 
994 #define ASM_APP_OFF "#NO_APP\n"
995 
996 /* Output before read-only data.  */
997 
998 #define TEXT_SECTION_ASM_OP "\t.text"
999 
1000 /* Output before writable data.  */
1001 
1002 #define DATA_SECTION_ASM_OP "\t.data"
1003 
1004 /* How to refer to registers in assembler output.
1005    This sequence is indexed by compiler's hard-register-number (see above).
1006    The register names will be prefixed by REGISTER_PREFIX, if any.  */
1007 
1008 #define REGISTER_PREFIX ""
1009 #define REGISTER_NAMES \
1010 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
1011  "r9", "r10", "r11", "ap", "fp", "sp", "pc"}
1012 
1013 /* This is BSD, so it wants DBX format.  */
1014 
1015 #define DBX_DEBUGGING_INFO 1
1016 
1017 /* Do not break .stabs pseudos into continuations.  */
1018 
1019 #define DBX_CONTIN_LENGTH 0
1020 
1021 /* This is the char to use for continuation (in case we need to turn
1022    continuation back on).  */
1023 
1024 #define DBX_CONTIN_CHAR '?'
1025 
1026 /* Don't use the `xsfoo;' construct in DBX output; this system
1027    doesn't support it.  */
1028 
1029 #define DBX_NO_XREFS
1030 
1031 /* Output the .stabs for a C `static' variable in the data section.  */
1032 #define DBX_STATIC_STAB_DATA_SECTION
1033 
1034 /* VAX specific: which type character is used for type double?  */
1035 
1036 #define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
1037 
1038 /* This is how to output a command to make the user-level label named NAME
1039    defined for reference from other files.  */
1040 
1041 /* Globalizing directive for a label.  */
1042 #define GLOBAL_ASM_OP ".globl "
1043 
1044 /* The prefix to add to user-visible assembler symbols.  */
1045 
1046 #define USER_LABEL_PREFIX "_"
1047 
1048 /* This is how to output an internal numbered label where
1049    PREFIX is the class of label and NUM is the number within the class.  */
1050 
1051 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
1052   fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1053 
1054 /* This is how to store into the string LABEL
1055    the symbol_ref name of an internal numbered label where
1056    PREFIX is the class of label and NUM is the number within the class.
1057    This is suitable for output with `assemble_name'.  */
1058 
1059 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1060   sprintf (LABEL, "*%s%d", PREFIX, NUM)
1061 
1062 /* This is how to output an insn to push a register on the stack.
1063    It need not be very fast code.  */
1064 
1065 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
1066   fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
1067 
1068 /* This is how to output an insn to pop a register from the stack.
1069    It need not be very fast code.  */
1070 
1071 #define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
1072   fprintf (FILE, "\tmovl (%s)+,%s\n", reg_names[STACK_POINTER_REGNUM], \
1073 	   reg_names[REGNO])
1074 
1075 /* This is how to output an element of a case-vector that is absolute.
1076    (The VAX does not use such vectors,
1077    but we must define this macro anyway.)  */
1078 
1079 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)		\
1080   do							\
1081     {							\
1082       char label[256];					\
1083       ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));\
1084       fprintf (FILE, "\t.long ");			\
1085       assemble_name (FILE, label);			\
1086       fprintf (FILE, "\n");				\
1087     }							\
1088   while (0)
1089 
1090 /* This is how to output an element of a case-vector that is relative.  */
1091 
1092 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)	\
1093   do								\
1094     {								\
1095       char label[256];						\
1096       ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));	\
1097       fprintf (FILE, "\t.word ");				\
1098       assemble_name (FILE, label);				\
1099       ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));		\
1100       fprintf (FILE, "-");					\
1101       assemble_name (FILE, label);				\
1102       fprintf (FILE, "\n");					\
1103     }								\
1104   while (0)
1105 
1106 /* This is how to output an assembler line
1107    that says to advance the location counter
1108    to a multiple of 2**LOG bytes.  */
1109 
1110 #define ASM_OUTPUT_ALIGN(FILE,LOG)  \
1111   fprintf (FILE, "\t.align %d\n", (LOG))
1112 
1113 /* This is how to output an assembler line
1114    that says to advance the location counter by SIZE bytes.  */
1115 
1116 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1117   fprintf (FILE, "\t.space %u\n", (SIZE))
1118 
1119 /* This says how to output an assembler line
1120    to define a global common symbol.  */
1121 
1122 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1123 ( fputs (".comm ", (FILE)),			\
1124   assemble_name ((FILE), (NAME)),		\
1125   fprintf ((FILE), ",%u\n", (ROUNDED)))
1126 
1127 /* This says how to output an assembler line
1128    to define a local common symbol.  */
1129 
1130 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
1131 ( fputs (".lcomm ", (FILE)),			\
1132   assemble_name ((FILE), (NAME)),		\
1133   fprintf ((FILE), ",%u\n", (ROUNDED)))
1134 
1135 /* Store in OUTPUT a string (made with alloca) containing
1136    an assembler-name for a local static variable named NAME.
1137    LABELNO is an integer which is different for each call.  */
1138 
1139 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
1140 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
1141   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1142 
1143 /* Print an instruction operand X on file FILE.
1144    CODE is the code from the %-spec that requested printing this operand;
1145    if `%z3' was used to print operand 3, then CODE is 'z'.
1146 
1147 VAX operand formatting codes:
1148 
1149  letter	   print
1150    C	reverse branch condition
1151    D	64-bit immediate operand
1152    B	the low 8 bits of the complement of a constant operand
1153    H	the low 16 bits of the complement of a constant operand
1154    M	a mask for the N highest bits of a word
1155    N	the complement of a constant integer operand
1156    P	constant operand plus 1
1157    R	32 - constant operand
1158    b	the low 8 bits of a negated constant operand
1159    h	the low 16 bits of a negated constant operand
1160    #	'd' or 'g' depending on whether dfloat or gfloat is used
1161    |	register prefix  */
1162 
1163 /* The purpose of D is to get around a quirk or bug in VAX assembler
1164    whereby -1 in a 64-bit immediate operand means 0x00000000ffffffff,
1165    which is not a 64-bit minus one.  */
1166 
1167 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)				\
1168   ((CODE) == '#' || (CODE) == '|')
1169 
1170 #define PRINT_OPERAND(FILE, X, CODE)  \
1171 { if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE);			\
1172   else if (CODE == '|')							\
1173     fputs (REGISTER_PREFIX, FILE);					\
1174   else if (CODE == 'C')							\
1175     fputs (rev_cond_name (X), FILE);					\
1176   else if (CODE == 'D' && GET_CODE (X) == CONST_INT && INTVAL (X) < 0)	\
1177     fprintf (FILE, "$0xffffffff%08x", INTVAL (X));			\
1178   else if (CODE == 'P' && GET_CODE (X) == CONST_INT)			\
1179     fprintf (FILE, "$%d", INTVAL (X) + 1);				\
1180   else if (CODE == 'N' && GET_CODE (X) == CONST_INT)			\
1181     fprintf (FILE, "$%d", ~ INTVAL (X));				\
1182   /* rotl instruction cannot deal with negative arguments.  */		\
1183   else if (CODE == 'R' && GET_CODE (X) == CONST_INT)			\
1184     fprintf (FILE, "$%d", 32 - INTVAL (X));				\
1185   else if (CODE == 'H' && GET_CODE (X) == CONST_INT)			\
1186     fprintf (FILE, "$%d", 0xffff & ~ INTVAL (X));			\
1187   else if (CODE == 'h' && GET_CODE (X) == CONST_INT)			\
1188     fprintf (FILE, "$%d", (short) - INTVAL (x));			\
1189   else if (CODE == 'B' && GET_CODE (X) == CONST_INT)			\
1190     fprintf (FILE, "$%d", 0xff & ~ INTVAL (X));				\
1191   else if (CODE == 'b' && GET_CODE (X) == CONST_INT)			\
1192     fprintf (FILE, "$%d", 0xff & - INTVAL (X));				\
1193   else if (CODE == 'M' && GET_CODE (X) == CONST_INT)			\
1194     fprintf (FILE, "$%d", ~((1 << INTVAL (x)) - 1));			\
1195   else if (GET_CODE (X) == REG)						\
1196     fprintf (FILE, "%s", reg_names[REGNO (X)]);				\
1197   else if (GET_CODE (X) == MEM)						\
1198     output_address (XEXP (X, 0));					\
1199   else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode)	\
1200     { char dstr[30];							\
1201       real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (X),		\
1202 		       sizeof (dstr), 0, 1);				\
1203       fprintf (FILE, "$0f%s", dstr); }					\
1204   else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode)	\
1205     { char dstr[30];							\
1206       real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (X),		\
1207 		       sizeof (dstr), 0, 1);				\
1208       fprintf (FILE, "$0%c%s", ASM_DOUBLE_CHAR, dstr); }		\
1209   else { putc ('$', FILE); output_addr_const (FILE, X); }}
1210 
1211 /* Print a memory operand whose address is X, on file FILE.
1212    This uses a function in output-vax.c.  */
1213 
1214 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1215  print_operand_address (FILE, ADDR)
1216 
1217 /* This is a blatent lie.  However, it's good enough, since we don't
1218    actually have any code whatsoever for which this isn't overridden
1219    by the proper FDE definition.  */
1220 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, PC_REGNUM)
1221 
1222 /* Tell flow.c not to try and optimize away MEM dead stores, as its
1223    logic is confused by some of the addressing modes of the VAX.  */
1224 #define FLOW_DEAD_STORES_BROKEN_P
1225