xref: /netbsd-src/external/gpl3/gcc/dist/gcc/config/rs6000/rs6000.h (revision 0a3071956a3a9fdebdbf7f338cf2d439b45fc728)
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2    Copyright (C) 1992-2022 Free Software Foundation, Inc.
3    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    Under Section 7 of GPL version 3, you are granted additional
18    permissions described in the GCC Runtime Library Exception, version
19    3.1, as published by the Free Software Foundation.
20 
21    You should have received a copy of the GNU General Public License and
22    a copy of the GCC Runtime Library Exception along with this program;
23    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24    <http://www.gnu.org/licenses/>.  */
25 
26 /* Note that some other tm.h files include this one and then override
27    many of the definitions.  */
28 
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32 
33 /* 128-bit floating point precision values.  */
34 #ifndef RS6000_MODES_H
35 #include "config/rs6000/rs6000-modes.h"
36 #endif
37 
38 /* Definitions for the object file format.  These are set at
39    compile-time.  */
40 
41 #define OBJECT_XCOFF 1
42 #define OBJECT_ELF 2
43 #define OBJECT_MACHO 4
44 
45 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
46 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
47 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
48 
49 #ifndef TARGET_AIX
50 #define TARGET_AIX 0
51 #endif
52 
53 #ifndef TARGET_AIX_OS
54 #define TARGET_AIX_OS 0
55 #endif
56 
57 /* Turn off TOC support if pc-relative addressing is used.  */
58 #define TARGET_TOC             (TARGET_HAS_TOC && !TARGET_PCREL)
59 
60 /* On 32-bit systems without a TOC or pc-relative addressing, we need to use
61    ADDIS/ADDI to load up the address of a symbol.  */
62 #define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL)
63 
64 /* Control whether function entry points use a "dot" symbol when
65    ABI_AIX.  */
66 #define DOT_SYMBOLS 1
67 
68 /* Default string to use for cpu if not specified.  */
69 #ifndef TARGET_CPU_DEFAULT
70 #define TARGET_CPU_DEFAULT ((char *)0)
71 #endif
72 
73 /* If configured for PPC405, support PPC405CR Erratum77.  */
74 #ifdef CONFIG_PPC405CR
75 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
76 #else
77 #define PPC405_ERRATUM77 0
78 #endif
79 
80 #ifndef SUBTARGET_DRIVER_SELF_SPECS
81 # define SUBTARGET_DRIVER_SELF_SPECS ""
82 #endif
83 
84 /* Only for use in the testsuite: -mdejagnu-cpu=<value> filters out all
85    -mcpu= as well as -mtune= options then simply adds -mcpu=<value>,
86    while -mdejagnu-tune=<value> filters out all -mtune= options then
87    simply adds -mtune=<value>.
88    With older versions of Dejagnu the command line arguments you set in
89    RUNTESTFLAGS override those set in the testcases; with these options,
90    the testcase will always win.  */
91 #define DRIVER_SELF_SPECS \
92   "%{mdejagnu-cpu=*: %<mcpu=* %<mtune=* -mcpu=%*}", \
93   "%{mdejagnu-tune=*: %<mtune=* -mtune=%*}", \
94   "%{mdejagnu-*: %<mdejagnu-*}", \
95    SUBTARGET_DRIVER_SELF_SPECS
96 
97 #if CHECKING_P
98 #define ASM_OPT_ANY ""
99 #else
100 #define ASM_OPT_ANY " -many"
101 #endif
102 
103 /* Common ASM definitions used by ASM_SPEC among the various targets for
104    handling -mcpu=xxx switches.  There is a parallel list in driver-rs6000.cc to
105    provide the default assembler options if the user uses -mcpu=native, so if
106    you make changes here, make them also there.  PR63177: Do not pass -mpower8
107    to the assembler if -mpower9-vector was also used.  */
108 #define ASM_CPU_SPEC \
109 "%{mcpu=native: %(asm_cpu_native); \
110   mcpu=power10: -mpower10; \
111   mcpu=power9: -mpower9; \
112   mcpu=power8|mcpu=powerpc64le: %{mpower9-vector: -mpower9;: -mpower8}; \
113   mcpu=power7: -mpower7; \
114   mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
115   mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
116   mcpu=power5+: -mpower5; \
117   mcpu=power5: -mpower5; \
118   mcpu=power4: -mpower4; \
119   mcpu=power3: -mppc64; \
120   mcpu=powerpc: -mppc; \
121   mcpu=powerpc64: -mppc64; \
122   mcpu=a2: -ma2; \
123   mcpu=cell: -mcell; \
124   mcpu=rs64: -mppc64; \
125   mcpu=401: -mppc; \
126   mcpu=403: -m403; \
127   mcpu=405: -m405; \
128   mcpu=405fp: -m405; \
129   mcpu=440: -m440; \
130   mcpu=440fp: -m440; \
131   mcpu=464: -m440; \
132   mcpu=464fp: -m440; \
133   mcpu=476: -m476; \
134   mcpu=476fp: -m476; \
135   mcpu=505: -mppc; \
136   mcpu=601: -m601; \
137   mcpu=602: -mppc; \
138   mcpu=603: -mppc; \
139   mcpu=603e: -mppc; \
140   mcpu=ec603e: -mppc; \
141   mcpu=604: -mppc; \
142   mcpu=604e: -mppc; \
143   mcpu=620: -mppc64; \
144   mcpu=630: -mppc64; \
145   mcpu=740: -mppc; \
146   mcpu=750: -mppc; \
147   mcpu=G3: -mppc; \
148   mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
149   mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
150   mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
151   mcpu=801: -mppc; \
152   mcpu=821: -mppc; \
153   mcpu=823: -mppc; \
154   mcpu=860: -mppc; \
155   mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
156   mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
157   mcpu=8540: -me500; \
158   mcpu=8548: -me500; \
159   mcpu=e300c2: -me300; \
160   mcpu=e300c3: -me300; \
161   mcpu=e500mc: -me500mc; \
162   mcpu=e500mc64: -me500mc64; \
163   mcpu=e5500: -me5500; \
164   mcpu=e6500: -me6500; \
165   mcpu=titan: -mtitan; \
166   !mcpu*: %{mpower9-vector: -mpower9; \
167 	    mpower8-vector|mcrypto|mdirect-move|mhtm: -mpower8; \
168 	    mvsx: -mpower7; \
169 	    mpowerpc64: -mppc64;: %(asm_default)}; \
170   :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \
171 %{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \
172 ASM_OPT_ANY
173 
174 #define CPP_DEFAULT_SPEC ""
175 
176 #define ASM_DEFAULT_SPEC ""
177 #define ASM_DEFAULT_EXTRA ""
178 
179 /* This macro defines names of additional specifications to put in the specs
180    that can be used in various specifications like CC1_SPEC.  Its definition
181    is an initializer with a subgrouping for each command option.
182 
183    Each subgrouping contains a string constant, that defines the
184    specification name, and a string constant that used by the GCC driver
185    program.
186 
187    Do not define this macro if it does not need to do anything.  */
188 
189 #define SUBTARGET_EXTRA_SPECS
190 
191 #define EXTRA_SPECS							\
192   { "cpp_default",		CPP_DEFAULT_SPEC },			\
193   { "asm_cpu",			ASM_CPU_SPEC },				\
194   { "asm_cpu_native",		ASM_CPU_NATIVE_SPEC },			\
195   { "asm_default",		ASM_DEFAULT_SPEC ASM_DEFAULT_EXTRA },	\
196   { "cc1_cpu",			CC1_CPU_SPEC },				\
197   SUBTARGET_EXTRA_SPECS
198 
199 /* -mcpu=native handling only makes sense with compiler running on
200    an PowerPC chip.  If changing this condition, also change
201    the condition in driver-rs6000.cc.  */
202 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
203 /* In driver-rs6000.cc.  */
204 extern const char *host_detect_local_cpu (int argc, const char **argv);
205 #define EXTRA_SPEC_FUNCTIONS \
206   { "local_cpu_detect", host_detect_local_cpu },
207 #define HAVE_LOCAL_CPU_DETECT
208 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
209 
210 #else
211 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
212 #endif
213 
214 #ifndef CC1_CPU_SPEC
215 #ifdef HAVE_LOCAL_CPU_DETECT
216 #define CC1_CPU_SPEC \
217 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
218  %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
219 #else
220 #define CC1_CPU_SPEC ""
221 #endif
222 #endif
223 
224 /* Architecture type.  */
225 
226 /* Define TARGET_MFCRF if the target assembler does not support the
227    optional field operand for mfcr.  */
228 
229 #ifndef HAVE_AS_MFCRF
230 #undef  TARGET_MFCRF
231 #define TARGET_MFCRF 0
232 #endif
233 
234 #ifndef TARGET_SECURE_PLT
235 #define TARGET_SECURE_PLT 0
236 #endif
237 
238 #ifndef TARGET_CMODEL
239 #define TARGET_CMODEL CMODEL_SMALL
240 #endif
241 
242 #define TARGET_32BIT		(! TARGET_64BIT)
243 
244 #ifndef HAVE_AS_TLS
245 #define HAVE_AS_TLS 0
246 #endif
247 
248 #ifndef HAVE_AS_PLTSEQ
249 #define HAVE_AS_PLTSEQ 0
250 #endif
251 
252 #ifndef TARGET_PLTSEQ
253 #define TARGET_PLTSEQ 0
254 #endif
255 
256 #ifndef TARGET_LINK_STACK
257 #define TARGET_LINK_STACK 0
258 #endif
259 
260 #ifndef SET_TARGET_LINK_STACK
261 #define SET_TARGET_LINK_STACK(X) do { } while (0)
262 #endif
263 
264 #ifndef TARGET_FLOAT128_ENABLE_TYPE
265 #define TARGET_FLOAT128_ENABLE_TYPE 0
266 #endif
267 
268 /* Return 1 for a symbol ref for a thread-local storage symbol.  */
269 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
270   (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0)
271 
272 #ifdef IN_LIBGCC2
273 /* For libgcc2 we make sure this is a compile time constant */
274 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
275 #undef TARGET_POWERPC64
276 #define TARGET_POWERPC64	1
277 #else
278 #undef TARGET_POWERPC64
279 #define TARGET_POWERPC64	0
280 #endif
281 #else
282     /* The option machinery will define this.  */
283 #endif
284 
285 #define TARGET_DEFAULT (MASK_MULTIPLE)
286 
287 /* Define generic processor types based upon current deployment.  */
288 #define PROCESSOR_COMMON    PROCESSOR_PPC601
289 #define PROCESSOR_POWERPC   PROCESSOR_PPC604
290 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
291 
292 /* Define the default processor.  This is overridden by other tm.h files.  */
293 #define PROCESSOR_DEFAULT   PROCESSOR_PPC603
294 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
295 
296 /* Specify the dialect of assembler to use.  Only new mnemonics are supported
297    starting with GCC 4.8, i.e. just one dialect, but for backwards
298    compatibility with older inline asm ASSEMBLER_DIALECT needs to be
299    defined.  */
300 #define ASSEMBLER_DIALECT 1
301 
302 /* Debug support */
303 #define MASK_DEBUG_STACK	0x01	/* debug stack applications */
304 #define	MASK_DEBUG_ARG		0x02	/* debug argument handling */
305 #define MASK_DEBUG_REG		0x04	/* debug register handling */
306 #define MASK_DEBUG_ADDR		0x08	/* debug memory addressing */
307 #define MASK_DEBUG_COST		0x10	/* debug rtx codes */
308 #define MASK_DEBUG_TARGET	0x20	/* debug target attribute/pragma */
309 #define MASK_DEBUG_BUILTIN	0x40	/* debug builtins */
310 #define MASK_DEBUG_ALL		(MASK_DEBUG_STACK \
311 				 | MASK_DEBUG_ARG \
312 				 | MASK_DEBUG_REG \
313 				 | MASK_DEBUG_ADDR \
314 				 | MASK_DEBUG_COST \
315 				 | MASK_DEBUG_TARGET \
316 				 | MASK_DEBUG_BUILTIN)
317 
318 #define	TARGET_DEBUG_STACK	(rs6000_debug & MASK_DEBUG_STACK)
319 #define	TARGET_DEBUG_ARG	(rs6000_debug & MASK_DEBUG_ARG)
320 #define TARGET_DEBUG_REG	(rs6000_debug & MASK_DEBUG_REG)
321 #define TARGET_DEBUG_ADDR	(rs6000_debug & MASK_DEBUG_ADDR)
322 #define TARGET_DEBUG_COST	(rs6000_debug & MASK_DEBUG_COST)
323 #define TARGET_DEBUG_TARGET	(rs6000_debug & MASK_DEBUG_TARGET)
324 #define TARGET_DEBUG_BUILTIN	(rs6000_debug & MASK_DEBUG_BUILTIN)
325 
326 /* Helper macros for TFmode.  Quad floating point (TFmode) can be either IBM
327    long double format that uses a pair of doubles, or IEEE 128-bit floating
328    point.  KFmode was added as a way to represent IEEE 128-bit floating point,
329    even if the default for long double is the IBM long double format.
330    Similarly IFmode is the IBM long double format even if the default is IEEE
331    128-bit.  Don't allow IFmode if -msoft-float.  */
332 #define FLOAT128_IEEE_P(MODE)						\
333   ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
334     && ((MODE) == TFmode || (MODE) == TCmode))				\
335    || ((MODE) == KFmode) || ((MODE) == KCmode))
336 
337 #define FLOAT128_IBM_P(MODE)						\
338   ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
339     && ((MODE) == TFmode || (MODE) == TCmode))				\
340    || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
341 
342 /* Helper macros to say whether a 128-bit floating point type can go in a
343    single vector register, or whether it needs paired scalar values.  */
344 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
345 
346 #define FLOAT128_2REG_P(MODE)						\
347   (FLOAT128_IBM_P (MODE)						\
348    || ((MODE) == TDmode)						\
349    || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
350 
351 /* Return true for floating point that does not use a vector register.  */
352 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE)				\
353   (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
354 
355 /* Describe the vector unit used for arithmetic operations.  */
356 extern enum rs6000_vector rs6000_vector_unit[];
357 
358 #define VECTOR_UNIT_NONE_P(MODE)			\
359   (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
360 
361 #define VECTOR_UNIT_VSX_P(MODE)				\
362   (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
363 
364 #define VECTOR_UNIT_P8_VECTOR_P(MODE)			\
365   (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
366 
367 #define VECTOR_UNIT_ALTIVEC_P(MODE)			\
368   (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
369 
370 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE)		\
371   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
372 	     (int)VECTOR_VSX,				\
373 	     (int)VECTOR_P8_VECTOR))
374 
375 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
376    altivec (VMX) or VSX vector instructions.  P8 vector support is upwards
377    compatible, so allow it as well, rather than changing all of the uses of the
378    macro.  */
379 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE)		\
380   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
381 	     (int)VECTOR_ALTIVEC,			\
382 	     (int)VECTOR_P8_VECTOR))
383 
384 /* Describe whether to use VSX loads or Altivec loads.  For now, just use the
385    same unit as the vector unit we are using, but we may want to migrate to
386    using VSX style loads even for types handled by altivec.  */
387 extern enum rs6000_vector rs6000_vector_mem[];
388 
389 #define VECTOR_MEM_NONE_P(MODE)				\
390   (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
391 
392 #define VECTOR_MEM_VSX_P(MODE)				\
393   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
394 
395 #define VECTOR_MEM_P8_VECTOR_P(MODE)			\
396   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
397 
398 #define VECTOR_MEM_ALTIVEC_P(MODE)			\
399   (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
400 
401 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE)		\
402   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
403 	     (int)VECTOR_VSX,				\
404 	     (int)VECTOR_P8_VECTOR))
405 
406 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE)		\
407   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
408 	     (int)VECTOR_ALTIVEC,			\
409 	     (int)VECTOR_P8_VECTOR))
410 
411 /* Return the alignment of a given vector type, which is set based on the
412    vector unit use.  VSX for instance can load 32 or 64 bit aligned words
413    without problems, while Altivec requires 128-bit aligned vectors.  */
414 extern int rs6000_vector_align[];
415 
416 #define VECTOR_ALIGN(MODE)						\
417   ((rs6000_vector_align[(MODE)] != 0)					\
418    ? rs6000_vector_align[(MODE)]					\
419    : (int)GET_MODE_BITSIZE ((MODE)))
420 
421 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
422    with scalar instructions.  */
423 #define VECTOR_ELEMENT_SCALAR_64BIT	((BYTES_BIG_ENDIAN) ? 0 : 1)
424 
425 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
426    with the ISA 3.0 MFVSRLD instructions.  */
427 #define VECTOR_ELEMENT_MFVSRLD_64BIT	((BYTES_BIG_ENDIAN) ? 1 : 0)
428 
429 /* Alignment options for fields in structures for sub-targets following
430    AIX-like ABI.
431    ALIGN_POWER word-aligns FP doubles (default AIX ABI).
432    ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
433 
434    Override the macro definitions when compiling libobjc to avoid undefined
435    reference to rs6000_alignment_flags due to library's use of GCC alignment
436    macros which use the macros below.  */
437 
438 #ifndef IN_TARGET_LIBS
439 #define MASK_ALIGN_POWER   0x00000000
440 #define MASK_ALIGN_NATURAL 0x00000001
441 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
442 #else
443 #define TARGET_ALIGN_NATURAL 0
444 #endif
445 
446 /* We use values 126..128 to pick the appropriate long double type (IFmode,
447    KFmode, TFmode).  */
448 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
449 #define TARGET_IEEEQUAD rs6000_ieeequad
450 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
451 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
452 
453 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
454    Enable 32-bit fcfid's on any of the switches for newer ISA machines.  */
455 #define TARGET_FCFID	(TARGET_POWERPC64				\
456 			 || TARGET_PPC_GPOPT	/* 970/power4 */	\
457 			 || TARGET_POPCNTB	/* ISA 2.02 */		\
458 			 || TARGET_CMPB		/* ISA 2.05 */		\
459 			 || TARGET_POPCNTD)	/* ISA 2.06 */
460 
461 #define TARGET_FCTIDZ	TARGET_FCFID
462 #define TARGET_STFIWX	TARGET_PPC_GFXOPT
463 #define TARGET_LFIWAX	TARGET_CMPB
464 #define TARGET_LFIWZX	TARGET_POPCNTD
465 #define TARGET_FCFIDS	TARGET_POPCNTD
466 #define TARGET_FCFIDU	TARGET_POPCNTD
467 #define TARGET_FCFIDUS	TARGET_POPCNTD
468 #define TARGET_FCTIDUZ	TARGET_POPCNTD
469 #define TARGET_FCTIWUZ	TARGET_POPCNTD
470 #define TARGET_CTZ	TARGET_MODULO
471 #define TARGET_EXTSWSLI	(TARGET_MODULO && TARGET_POWERPC64)
472 #define TARGET_MADDLD	TARGET_MODULO
473 
474 /* TARGET_DIRECT_MOVE is redundant to TARGET_P8_VECTOR, so alias it to that.  */
475 #define TARGET_DIRECT_MOVE	TARGET_P8_VECTOR
476 #define TARGET_XSCVDPSPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
477 #define TARGET_XSCVSPDPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
478 #define TARGET_VADDUQM		(TARGET_P8_VECTOR && TARGET_POWERPC64)
479 #define TARGET_DIRECT_MOVE_128	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
480 				 && TARGET_POWERPC64)
481 #define TARGET_VEXTRACTUB	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
482 				 && TARGET_POWERPC64)
483 
484 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI).  */
485 #define TARGET_NO_SF_SUBREG	TARGET_DIRECT_MOVE_64BIT
486 #define TARGET_ALLOW_SF_SUBREG	(!TARGET_DIRECT_MOVE_64BIT)
487 
488 /* This wants to be set for p8 and newer.  On p7, overlapping unaligned
489    loads are slow. */
490 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
491 
492 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
493    in power7, so conditionalize them on p8 features.  TImode syncs need quad
494    memory support.  */
495 #define TARGET_SYNC_HI_QI	(TARGET_QUAD_MEMORY			\
496 				 || TARGET_QUAD_MEMORY_ATOMIC		\
497 				 || TARGET_POWER8)
498 
499 #define TARGET_SYNC_TI		TARGET_QUAD_MEMORY_ATOMIC
500 
501 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
502    to allocate the SDmode stack slot to get the value into the proper location
503    in the register.  */
504 #define TARGET_NO_SDMODE_STACK	(TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
505 
506 /* ISA 3.0 has new min/max functions that don't need fast math that are being
507    phased in.  Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
508    answers if the arguments are not in the normal range.  */
509 #define TARGET_MINMAX	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT		\
510 			 && (TARGET_P9_MINMAX || !flag_trapping_math))
511 
512 /* In switching from using target_flags to using rs6000_isa_flags, the options
513    machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>.  For now map
514    OPTION_MASK_<xxx> back into MASK_<xxx>.  */
515 #define MASK_ALTIVEC			OPTION_MASK_ALTIVEC
516 #define MASK_CMPB			OPTION_MASK_CMPB
517 #define MASK_CRYPTO			OPTION_MASK_CRYPTO
518 #define MASK_DFP			OPTION_MASK_DFP
519 #define MASK_DIRECT_MOVE		OPTION_MASK_DIRECT_MOVE
520 #define MASK_DLMZB			OPTION_MASK_DLMZB
521 #define MASK_EABI			OPTION_MASK_EABI
522 #define MASK_FLOAT128_KEYWORD		OPTION_MASK_FLOAT128_KEYWORD
523 #define MASK_FLOAT128_HW		OPTION_MASK_FLOAT128_HW
524 #define MASK_FPRND			OPTION_MASK_FPRND
525 #define MASK_P8_FUSION			OPTION_MASK_P8_FUSION
526 #define MASK_HARD_FLOAT			OPTION_MASK_HARD_FLOAT
527 #define MASK_HTM			OPTION_MASK_HTM
528 #define MASK_ISEL			OPTION_MASK_ISEL
529 #define MASK_MFCRF			OPTION_MASK_MFCRF
530 #define MASK_MMA			OPTION_MASK_MMA
531 #define MASK_MULHW			OPTION_MASK_MULHW
532 #define MASK_MULTIPLE			OPTION_MASK_MULTIPLE
533 #define MASK_NO_UPDATE			OPTION_MASK_NO_UPDATE
534 #define MASK_P8_VECTOR			OPTION_MASK_P8_VECTOR
535 #define MASK_P9_VECTOR			OPTION_MASK_P9_VECTOR
536 #define MASK_P9_MISC			OPTION_MASK_P9_MISC
537 #define MASK_POPCNTB			OPTION_MASK_POPCNTB
538 #define MASK_POPCNTD			OPTION_MASK_POPCNTD
539 #define MASK_PPC_GFXOPT			OPTION_MASK_PPC_GFXOPT
540 #define MASK_PPC_GPOPT			OPTION_MASK_PPC_GPOPT
541 #define MASK_RECIP_PRECISION		OPTION_MASK_RECIP_PRECISION
542 #define MASK_SOFT_FLOAT			OPTION_MASK_SOFT_FLOAT
543 #define MASK_STRICT_ALIGN		OPTION_MASK_STRICT_ALIGN
544 #define MASK_UPDATE			OPTION_MASK_UPDATE
545 #define MASK_VSX			OPTION_MASK_VSX
546 #define MASK_POWER10			OPTION_MASK_POWER10
547 #define MASK_P10_FUSION			OPTION_MASK_P10_FUSION
548 
549 #ifndef IN_LIBGCC2
550 #define MASK_POWERPC64			OPTION_MASK_POWERPC64
551 #endif
552 
553 #ifdef TARGET_64BIT
554 #define MASK_64BIT			OPTION_MASK_64BIT
555 #endif
556 
557 #ifdef TARGET_LITTLE_ENDIAN
558 #define MASK_LITTLE_ENDIAN		OPTION_MASK_LITTLE_ENDIAN
559 #endif
560 
561 #ifdef TARGET_REGNAMES
562 #define MASK_REGNAMES			OPTION_MASK_REGNAMES
563 #endif
564 
565 #ifdef TARGET_PROTOTYPE
566 #define MASK_PROTOTYPE			OPTION_MASK_PROTOTYPE
567 #endif
568 
569 #ifdef TARGET_MODULO
570 #define RS6000_BTM_MODULO		OPTION_MASK_MODULO
571 #endif
572 
573 
574 /* For power systems, we want to enable Altivec and VSX builtins even if the
575    user did not use -maltivec or -mvsx to allow the builtins to be used inside
576    of #pragma GCC target or the target attribute to change the code level for a
577    given system.  */
578 
579 #define TARGET_EXTRA_BUILTINS	(TARGET_POWERPC64			 \
580 				 || TARGET_PPC_GPOPT /* 970/power4 */	 \
581 				 || TARGET_POPCNTB   /* ISA 2.02 */	 \
582 				 || TARGET_CMPB      /* ISA 2.05 */	 \
583 				 || TARGET_POPCNTD   /* ISA 2.06 */	 \
584 				 || TARGET_ALTIVEC			 \
585 				 || TARGET_VSX				 \
586 				 || TARGET_HARD_FLOAT)
587 
588 /* E500 cores only support plain "sync", not lwsync.  */
589 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
590 			  || rs6000_cpu == PROCESSOR_PPC8548)
591 
592 
593 /* Which machine supports the various reciprocal estimate instructions.  */
594 #define TARGET_FRES	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
595 
596 #define TARGET_FRE	(TARGET_HARD_FLOAT \
597 			 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
598 
599 #define TARGET_FRSQRTES	(TARGET_HARD_FLOAT && TARGET_POPCNTB \
600 			 && TARGET_PPC_GFXOPT)
601 
602 #define TARGET_FRSQRTE	(TARGET_HARD_FLOAT \
603 			 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
604 
605 /* Macro to say whether we can do optimizations where we need to do parts of
606    the calculation in 64-bit GPRs and then is transfered to the vector
607    registers.  */
608 #define TARGET_DIRECT_MOVE_64BIT	(TARGET_DIRECT_MOVE		\
609 					 && TARGET_P8_VECTOR		\
610 					 && TARGET_POWERPC64)
611 
612 /* Inlining allows targets to define the meanings of bits in target_info
613    field of ipa_fn_summary by itself, the used bits for rs6000 are listed
614    below.  */
615 #define RS6000_FN_TARGET_INFO_HTM 1
616 
617 /* Whether the various reciprocal divide/square root estimate instructions
618    exist, and whether we should automatically generate code for the instruction
619    by default.  */
620 #define RS6000_RECIP_MASK_HAVE_RE	0x1	/* have RE instruction.  */
621 #define RS6000_RECIP_MASK_AUTO_RE	0x2	/* generate RE by default.  */
622 #define RS6000_RECIP_MASK_HAVE_RSQRTE	0x4	/* have RSQRTE instruction.  */
623 #define RS6000_RECIP_MASK_AUTO_RSQRTE	0x8	/* gen. RSQRTE by default.  */
624 
625 extern unsigned char rs6000_recip_bits[];
626 
627 #define RS6000_RECIP_HAVE_RE_P(MODE) \
628   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
629 
630 #define RS6000_RECIP_AUTO_RE_P(MODE) \
631   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
632 
633 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
634   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
635 
636 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
637   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
638 
639 /* The default CPU for TARGET_OPTION_OVERRIDE.  */
640 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
641 
642 /* Target pragma.  */
643 #define REGISTER_TARGET_PRAGMAS() do {				\
644   c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
645   targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
646   targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
647   rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
648 } while (0)
649 
650 /* Target #defines.  */
651 #define TARGET_CPU_CPP_BUILTINS() \
652   rs6000_cpu_cpp_builtins (pfile)
653 
654 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
655    we're compiling for.  Some configurations may need to override it.  */
656 #define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
657   do						\
658     {						\
659       if (BYTES_BIG_ENDIAN)			\
660 	{					\
661 	  builtin_define ("__BIG_ENDIAN__");	\
662 	  builtin_define ("_BIG_ENDIAN");	\
663 	  builtin_assert ("machine=bigendian");	\
664 	}					\
665       else					\
666 	{					\
667 	  builtin_define ("__LITTLE_ENDIAN__");	\
668 	  builtin_define ("_LITTLE_ENDIAN");	\
669 	  builtin_assert ("machine=littleendian"); \
670 	}					\
671     }						\
672   while (0)
673 
674 /* Target machine storage layout.  */
675 
676 /* Define this if most significant bit is lowest numbered
677    in instructions that operate on numbered bit-fields.  */
678 /* That is true on RS/6000.  */
679 #define BITS_BIG_ENDIAN 1
680 
681 /* Define this if most significant byte of a word is the lowest numbered.  */
682 /* That is true on RS/6000.  */
683 #define BYTES_BIG_ENDIAN 1
684 
685 /* Define this if most significant word of a multiword number is lowest
686    numbered.
687 
688    For RS/6000 we can decide arbitrarily since there are no machine
689    instructions for them.  Might as well be consistent with bits and bytes.  */
690 #define WORDS_BIG_ENDIAN 1
691 
692 /* This says that for the IBM long double the larger magnitude double
693    comes first.  It's really a two element double array, and arrays
694    don't index differently between little- and big-endian.  */
695 #define LONG_DOUBLE_LARGE_FIRST 1
696 
697 #define MAX_BITS_PER_WORD 64
698 
699 /* Width of a word, in units (bytes).  */
700 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
701 #ifdef IN_LIBGCC2
702 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
703 #else
704 #define MIN_UNITS_PER_WORD 4
705 #endif
706 #define UNITS_PER_FP_WORD 8
707 #define UNITS_PER_ALTIVEC_WORD 16
708 #define UNITS_PER_VSX_WORD 16
709 
710 /* Type used for ptrdiff_t, as a string used in a declaration.  */
711 #define PTRDIFF_TYPE "int"
712 
713 /* Type used for size_t, as a string used in a declaration.  */
714 #define SIZE_TYPE "long unsigned int"
715 
716 /* Type used for wchar_t, as a string used in a declaration.  */
717 #define WCHAR_TYPE "short unsigned int"
718 
719 /* Width of wchar_t in bits.  */
720 #define WCHAR_TYPE_SIZE 16
721 
722 /* A C expression for the size in bits of the type `short' on the
723    target machine.  If you don't define this, the default is half a
724    word.  (If this would be less than one storage unit, it is
725    rounded up to one unit.)  */
726 #define SHORT_TYPE_SIZE 16
727 
728 /* A C expression for the size in bits of the type `int' on the
729    target machine.  If you don't define this, the default is one
730    word.  */
731 #define INT_TYPE_SIZE 32
732 
733 /* A C expression for the size in bits of the type `long' on the
734    target machine.  If you don't define this, the default is one
735    word.  */
736 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
737 
738 /* A C expression for the size in bits of the type `long long' on the
739    target machine.  If you don't define this, the default is two
740    words.  */
741 #define LONG_LONG_TYPE_SIZE 64
742 
743 /* A C expression for the size in bits of the type `float' on the
744    target machine.  If you don't define this, the default is one
745    word.  */
746 #define FLOAT_TYPE_SIZE 32
747 
748 /* A C expression for the size in bits of the type `double' on the
749    target machine.  If you don't define this, the default is two
750    words.  */
751 #define DOUBLE_TYPE_SIZE 64
752 
753 /* A C expression for the size in bits of the type `long double' on the target
754    machine.  If you don't define this, the default is two words.  */
755 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
756 
757 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.cc.  */
758 #define WIDEST_HARDWARE_FP_SIZE 64
759 
760 /* Width in bits of a pointer.
761    See also the macro `Pmode' defined below.  */
762 extern unsigned rs6000_pointer_size;
763 #define POINTER_SIZE rs6000_pointer_size
764 
765 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
766 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
767 
768 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
769 #define STACK_BOUNDARY	\
770   ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
771     ? 64 : 128)
772 
773 /* Allocation boundary (in *bits*) for the code of a function.  */
774 #define FUNCTION_BOUNDARY 32
775 
776 /* No data type is required to be aligned rounder than this.  Warning, if
777    BIGGEST_ALIGNMENT is changed, then this may be an ABI break.  An example
778    of where this can break an ABI is in GLIBC's struct _Unwind_Exception.  */
779 #define BIGGEST_ALIGNMENT 128
780 
781 /* Alignment of field after `int : 0' in a structure.  */
782 #define EMPTY_FIELD_BOUNDARY 32
783 
784 /* Every structure's size must be a multiple of this.  */
785 #define STRUCTURE_SIZE_BOUNDARY 8
786 
787 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
788 #define PCC_BITFIELD_TYPE_MATTERS 1
789 
790 enum data_align { align_abi, align_opt, align_both };
791 
792 /* A C expression to compute the alignment for a variables in the
793    local store.  TYPE is the data type, and ALIGN is the alignment
794    that the object would ordinarily have.  */
795 #define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
796   rs6000_data_alignment (TYPE, ALIGN, align_both)
797 
798 /* Make arrays of chars word-aligned for the same reasons.  */
799 #define DATA_ALIGNMENT(TYPE, ALIGN) \
800   rs6000_data_alignment (TYPE, ALIGN, align_opt)
801 
802 /* Align vectors to 128 bits.  */
803 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
804   rs6000_data_alignment (TYPE, ALIGN, align_abi)
805 
806 /* Nonzero if move instructions will actually fail to work
807    when given unaligned data.  */
808 #define STRICT_ALIGNMENT 0
809 
810 /* Standard register usage.  */
811 
812 /* Number of actual hardware registers.
813    The hardware registers are assigned numbers for the compiler
814    from 0 to just below FIRST_PSEUDO_REGISTER.
815    All registers that the compiler knows about must be given numbers,
816    even those that are not normally considered general registers.
817 
818    RS/6000 has 32 fixed-point registers, 32 floating-point registers,
819    a count register, a link register, and 8 condition register fields,
820    which we view here as separate registers.  AltiVec adds 32 vector
821    registers and a VRsave register.
822 
823    In addition, the difference between the frame and argument pointers is
824    a function of the number of registers saved, so we need to have a
825    register for AP that will later be eliminated in favor of SP or FP.
826    This is a normal register, but it is fixed.
827 
828    We also create a pseudo register for float/int conversions, that will
829    really represent the memory location used.  It is represented here as
830    a register, in order to work around problems in allocating stack storage
831    in inline functions.
832 
833    Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
834    pointer, which is eventually eliminated in favor of SP or FP.  */
835 
836 #define FIRST_PSEUDO_REGISTER 111
837 
838 /* Use standard DWARF numbering for DWARF debugging information.  */
839 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
840 
841 /* Use gcc hard register numbering for eh_frame.  */
842 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
843 
844 /* Map register numbers held in the call frame info that gcc has
845    collected using DWARF_FRAME_REGNUM to those that should be output in
846    .debug_frame and .eh_frame.  */
847 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
848   rs6000_dbx_register_number ((REGNO), (FOR_EH) ? 2 : 1)
849 
850 /* 1 for registers that have pervasive standard uses
851    and are not available for the register allocator.
852 
853    On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
854    as a local register; for all other OS's r2 is the TOC pointer.
855 
856    On System V implementations, r13 is fixed and not available for use.  */
857 
858 #define FIXED_REGISTERS  \
859   {/* GPRs */					   \
860    0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
861    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
862    /* FPRs */					   \
863    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
864    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
865    /* VRs */					   \
866    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
867    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
868    /* lr ctr ca ap */				   \
869    0, 0, 1, 1,					   \
870    /* cr0..cr7 */				   \
871    0, 0, 0, 0, 0, 0, 0, 0,			   \
872    /* vrsave vscr sfp */			   \
873    1, 1, 1					   \
874 }
875 
876 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
877    the entire set of `FIXED_REGISTERS' be included.
878    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
879    This macro is optional.  If not specified, it defaults to the value
880    of `CALL_USED_REGISTERS'.  */
881 
882 #define CALL_REALLY_USED_REGISTERS  \
883   {/* GPRs */					   \
884    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
885    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
886    /* FPRs */					   \
887    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
888    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
889    /* VRs */					   \
890    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
891    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
892    /* lr ctr ca ap */				   \
893    1, 1, 1, 1,					   \
894    /* cr0..cr7 */				   \
895    1, 1, 0, 0, 0, 1, 1, 1,			   \
896    /* vrsave vscr sfp */			   \
897    0, 0, 0					   \
898 }
899 
900 #define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
901 
902 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
903 #define FIRST_SAVED_FP_REGNO	  (14+32)
904 #define FIRST_SAVED_GP_REGNO	  (FIXED_R13 ? 14 : 13)
905 
906 /* List the order in which to allocate registers.  Each register must be
907    listed once, even those in FIXED_REGISTERS.
908 
909    We allocate in the following order:
910 	fp0		(not saved or used for anything)
911 	fp13 - fp2	(not saved; incoming fp arg registers)
912 	fp1		(not saved; return value)
913 	fp31 - fp14	(saved; order given to save least number)
914 	cr7, cr5	(not saved or special)
915 	cr6		(not saved, but used for vector operations)
916 	cr1		(not saved, but used for FP operations)
917 	cr0		(not saved, but used for arithmetic operations)
918 	cr4, cr3, cr2	(saved)
919 	r9		(not saved; best for TImode)
920 	r10, r8-r4	(not saved; highest first for less conflict with params)
921 	r3		(not saved; return value register)
922 	r11		(not saved; later alloc to help shrink-wrap)
923 	r0		(not saved; cannot be base reg)
924 	r31 - r13	(saved; order given to save least number)
925 	r12		(not saved; if used for DImode or DFmode would use r13)
926 	ctr		(not saved; when we have the choice ctr is better)
927 	lr		(saved)
928 	r1, r2, ap, ca	(fixed)
929 	v0 - v1		(not saved or used for anything)
930 	v13 - v3	(not saved; incoming vector arg registers)
931 	v2		(not saved; incoming vector arg reg; return value)
932 	v19 - v14	(not saved or used for anything)
933 	v31 - v20	(saved; order given to save least number)
934 	vrsave, vscr	(fixed)
935 	sfp		(fixed)
936 */
937 
938 #if FIXED_R2 == 1
939 #define MAYBE_R2_AVAILABLE
940 #define MAYBE_R2_FIXED 2,
941 #else
942 #define MAYBE_R2_AVAILABLE 2,
943 #define MAYBE_R2_FIXED
944 #endif
945 
946 #if FIXED_R13 == 1
947 #define EARLY_R12 12,
948 #define LATE_R12
949 #else
950 #define EARLY_R12
951 #define LATE_R12 12,
952 #endif
953 
954 #define REG_ALLOC_ORDER						\
955   {32,								\
956    /* move fr13 (ie 45) later, so if we need TFmode, it does */	\
957    /* not use fr14 which is a saved register.  */		\
958    44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45,		\
959    33,								\
960    63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		\
961    50, 49, 48, 47, 46,						\
962    100, 107, 105, 106, 101, 104, 103, 102,			\
963    MAYBE_R2_AVAILABLE						\
964    9, 10, 8, 7, 6, 5, 4,					\
965    3, EARLY_R12 11, 0,						\
966    31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,		\
967    18, 17, 16, 15, 14, 13, LATE_R12				\
968    97, 96,							\
969    1, MAYBE_R2_FIXED 99, 98,					\
970    /* AltiVec registers.  */					\
971    64, 65,							\
972    77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67,			\
973    66,								\
974    83, 82, 81, 80, 79, 78,					\
975    95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84,		\
976    108, 109,							\
977    110								\
978 }
979 
980 /* True if register is floating-point.  */
981 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
982 
983 /* True if register is a condition register.  */
984 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
985 
986 /* True if register is a condition register, but not cr0.  */
987 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
988 
989 /* True if register is an integer register.  */
990 #define INT_REGNO_P(N) \
991   ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
992 
993 /* True if register is the CA register.  */
994 #define CA_REGNO_P(N) ((N) == CA_REGNO)
995 
996 /* True if register is an AltiVec register.  */
997 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
998 
999 /* True if register is a VSX register.  */
1000 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1001 
1002 /* Alternate name for any vector register supporting floating point, no matter
1003    which instruction set(s) are available.  */
1004 #define VFLOAT_REGNO_P(N) \
1005   (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1006 
1007 /* Alternate name for any vector register supporting integer, no matter which
1008    instruction set(s) are available.  */
1009 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1010 
1011 /* Alternate name for any vector register supporting logical operations, no
1012    matter which instruction set(s) are available.  Allow GPRs as well as the
1013    vector registers.  */
1014 #define VLOGICAL_REGNO_P(N)						\
1015   (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N)				\
1016    || (TARGET_VSX && FP_REGNO_P (N)))					\
1017 
1018 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1019    enough space to account for vectors in FP regs.  However, TFmode/TDmode
1020    should not use VSX instructions to do a caller save. */
1021 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1022   ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO]			\
1023    ? (MODE)								\
1024    : TARGET_VSX								\
1025      && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE))	\
1026      && FP_REGNO_P (REGNO)						\
1027    ? V2DFmode								\
1028    : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO)			\
1029    ? DFmode								\
1030    : (MODE) == TDmode && FP_REGNO_P (REGNO)				\
1031    ? DImode								\
1032    : choose_hard_reg_mode ((REGNO), (NREGS), NULL))
1033 
1034 #define VSX_VECTOR_MODE(MODE)		\
1035 	 ((MODE) == V4SFmode		\
1036 	  || (MODE) == V2DFmode)	\
1037 
1038 /* Modes that are not vectors, but require vector alignment.  Treat these like
1039    vectors in terms of loads and stores.  */
1040 #define VECTOR_ALIGNMENT_P(MODE)					\
1041   (FLOAT128_VECTOR_P (MODE) || (MODE) == OOmode || (MODE) == XOmode)
1042 
1043 #define ALTIVEC_VECTOR_MODE(MODE)					\
1044   ((MODE) == V16QImode							\
1045    || (MODE) == V8HImode						\
1046    || (MODE) == V4SFmode						\
1047    || (MODE) == V4SImode						\
1048    || VECTOR_ALIGNMENT_P (MODE))
1049 
1050 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE)				\
1051   (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE)			\
1052    || (MODE) == V2DImode || (MODE) == V1TImode)
1053 
1054 /* Post-reload, we can't use any new AltiVec registers, as we already
1055    emitted the vrsave mask.  */
1056 
1057 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1058   (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1059 
1060 /* Specify the cost of a branch insn; roughly the number of extra insns that
1061    should be added to avoid a branch.
1062 
1063    Set this to 3 on the RS/6000 since that is roughly the average cost of an
1064    unscheduled conditional branch.  */
1065 
1066 #define BRANCH_COST(speed_p, predictable_p) 3
1067 
1068 /* Override BRANCH_COST heuristic which empirically produces worse
1069    performance for removing short circuiting from the logical ops.  */
1070 
1071 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1072 
1073 /* Specify the registers used for certain standard purposes.
1074    The values of these macros are register numbers.  */
1075 
1076 /* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1077 /* #define PC_REGNUM  */
1078 
1079 /* Register to use for pushing function arguments.  */
1080 #define STACK_POINTER_REGNUM 1
1081 
1082 /* Base register for access to local variables of the function.  */
1083 #define HARD_FRAME_POINTER_REGNUM 31
1084 
1085 /* Base register for access to local variables of the function.  */
1086 #define FRAME_POINTER_REGNUM 110
1087 
1088 /* Base register for access to arguments of the function.  */
1089 #define ARG_POINTER_REGNUM 99
1090 
1091 /* Place to put static chain when calling a function that requires it.  */
1092 #define STATIC_CHAIN_REGNUM 11
1093 
1094 /* Base register for access to thread local storage variables.  */
1095 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1096 
1097 
1098 /* Define the classes of registers for register constraints in the
1099    machine description.  Also define ranges of constants.
1100 
1101    One of the classes must always be named ALL_REGS and include all hard regs.
1102    If there is more than one class, another class must be named NO_REGS
1103    and contain no registers.
1104 
1105    The name GENERAL_REGS must be the name of a class (or an alias for
1106    another name such as ALL_REGS).  This is the class of registers
1107    that is allowed by "g" or "r" in a register constraint.
1108    Also, registers outside this class are allocated only when
1109    instructions express preferences for them.
1110 
1111    The classes must be numbered in nondecreasing order; that is,
1112    a larger-numbered class must never be contained completely
1113    in a smaller-numbered class.
1114 
1115    For any two classes, it is very desirable that there be another
1116    class that represents their union.  */
1117 
1118 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1119    condition registers, plus three special registers, CTR, and the link
1120    register.  AltiVec adds a vector register class.  VSX registers overlap the
1121    FPR registers and the Altivec registers.
1122 
1123    However, r0 is special in that it cannot be used as a base register.
1124    So make a class for registers valid as base registers.
1125 
1126    Also, cr0 is the only condition code register that can be used in
1127    arithmetic insns, so make a separate class for it.  */
1128 
1129 enum reg_class
1130 {
1131   NO_REGS,
1132   BASE_REGS,
1133   GENERAL_REGS,
1134   FLOAT_REGS,
1135   ALTIVEC_REGS,
1136   VSX_REGS,
1137   VRSAVE_REGS,
1138   VSCR_REGS,
1139   GEN_OR_FLOAT_REGS,
1140   GEN_OR_VSX_REGS,
1141   LINK_REGS,
1142   CTR_REGS,
1143   LINK_OR_CTR_REGS,
1144   SPECIAL_REGS,
1145   SPEC_OR_GEN_REGS,
1146   CR0_REGS,
1147   CR_REGS,
1148   NON_FLOAT_REGS,
1149   CA_REGS,
1150   ALL_REGS,
1151   LIM_REG_CLASSES
1152 };
1153 
1154 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1155 
1156 /* Give names of register classes as strings for dump file.  */
1157 
1158 #define REG_CLASS_NAMES							\
1159 {									\
1160   "NO_REGS",								\
1161   "BASE_REGS",								\
1162   "GENERAL_REGS",							\
1163   "FLOAT_REGS",								\
1164   "ALTIVEC_REGS",							\
1165   "VSX_REGS",								\
1166   "VRSAVE_REGS",							\
1167   "VSCR_REGS",								\
1168   "GEN_OR_FLOAT_REGS",							\
1169   "GEN_OR_VSX_REGS",							\
1170   "LINK_REGS",								\
1171   "CTR_REGS",								\
1172   "LINK_OR_CTR_REGS",							\
1173   "SPECIAL_REGS",							\
1174   "SPEC_OR_GEN_REGS",							\
1175   "CR0_REGS",								\
1176   "CR_REGS",								\
1177   "NON_FLOAT_REGS",							\
1178   "CA_REGS",								\
1179   "ALL_REGS"								\
1180 }
1181 
1182 /* Define which registers fit in which classes.
1183    This is an initializer for a vector of HARD_REG_SET
1184    of length N_REG_CLASSES.  */
1185 
1186 #define REG_CLASS_CONTENTS						\
1187 {									\
1188   /* NO_REGS.  */							\
1189   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 },			\
1190   /* BASE_REGS.  */							\
1191   { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 },			\
1192   /* GENERAL_REGS.  */							\
1193   { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 },			\
1194   /* FLOAT_REGS.  */							\
1195   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 },			\
1196   /* ALTIVEC_REGS.  */							\
1197   { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 },			\
1198   /* VSX_REGS.  */							\
1199   { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },			\
1200   /* VRSAVE_REGS.  */							\
1201   { 0x00000000, 0x00000000, 0x00000000, 0x00001000 },			\
1202   /* VSCR_REGS.  */							\
1203   { 0x00000000, 0x00000000, 0x00000000, 0x00002000 },			\
1204   /* GEN_OR_FLOAT_REGS.  */						\
1205   { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 },			\
1206   /* GEN_OR_VSX_REGS.  */						\
1207   { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 },			\
1208   /* LINK_REGS.  */							\
1209   { 0x00000000, 0x00000000, 0x00000000, 0x00000001 },			\
1210   /* CTR_REGS.  */							\
1211   { 0x00000000, 0x00000000, 0x00000000, 0x00000002 },			\
1212   /* LINK_OR_CTR_REGS.  */						\
1213   { 0x00000000, 0x00000000, 0x00000000, 0x00000003 },			\
1214   /* SPECIAL_REGS.  */							\
1215   { 0x00000000, 0x00000000, 0x00000000, 0x00001003 },			\
1216   /* SPEC_OR_GEN_REGS.  */						\
1217   { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b },			\
1218   /* CR0_REGS.  */							\
1219   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 },			\
1220   /* CR_REGS.  */							\
1221   { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 },			\
1222   /* NON_FLOAT_REGS.  */						\
1223   { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb },			\
1224   /* CA_REGS.  */							\
1225   { 0x00000000, 0x00000000, 0x00000000, 0x00000004 },			\
1226   /* ALL_REGS.  */							\
1227   { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff }			\
1228 }
1229 
1230 /* The same information, inverted:
1231    Return the class number of the smallest class containing
1232    reg number REGNO.  This could be a conditional expression
1233    or could index an array.  */
1234 
1235 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1236 
1237 #define REGNO_REG_CLASS(REGNO) 						\
1238   (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1239    rs6000_regno_regclass[(REGNO)])
1240 
1241 /* Register classes for various constraints that are based on the target
1242    switches.  */
1243 enum r6000_reg_class_enum {
1244   RS6000_CONSTRAINT_d,		/* fpr registers for double values */
1245   RS6000_CONSTRAINT_f,		/* fpr registers for single values */
1246   RS6000_CONSTRAINT_v,		/* Altivec registers */
1247   RS6000_CONSTRAINT_wa,		/* Any VSX register */
1248   RS6000_CONSTRAINT_we,		/* VSX register if ISA 3.0 vector. */
1249   RS6000_CONSTRAINT_wr,		/* GPR register if 64-bit  */
1250   RS6000_CONSTRAINT_wx,		/* FPR register for STFIWX */
1251   RS6000_CONSTRAINT_wA,		/* BASE_REGS if 64-bit.  */
1252   RS6000_CONSTRAINT_MAX
1253 };
1254 
1255 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1256 
1257 /* The class value for index registers, and the one for base regs.  */
1258 #define INDEX_REG_CLASS GENERAL_REGS
1259 #define BASE_REG_CLASS BASE_REGS
1260 
1261 /* Return whether a given register class can hold VSX objects.  */
1262 #define VSX_REG_CLASS_P(CLASS)			\
1263   ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1264 
1265 /* Return whether a given register class targets general purpose registers.  */
1266 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1267 
1268 /* Given an rtx X being reloaded into a reg required to be
1269    in class CLASS, return the class of reg to actually use.
1270    In general this is just CLASS; but on some machines
1271    in some cases it is preferable to use a more restrictive class.
1272 
1273    On the RS/6000, we have to return NO_REGS when we want to reload a
1274    floating-point CONST_DOUBLE to force it to be copied to memory.
1275 
1276    We also don't want to reload integer values into floating-point
1277    registers if we can at all help it.  In fact, this can
1278    cause reload to die, if it tries to generate a reload of CTR
1279    into a FP register and discovers it doesn't have the memory location
1280    required.
1281 
1282    ??? Would it be a good idea to have reload do the converse, that is
1283    try to reload floating modes into FP registers if possible?
1284  */
1285 
1286 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1287   rs6000_preferred_reload_class_ptr (X, CLASS)
1288 
1289 /* Return the register class of a scratch register needed to copy IN into
1290    or out of a register in CLASS in MODE.  If it can be done directly,
1291    NO_REGS is returned.  */
1292 
1293 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1294   rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1295 
1296 /* Return the maximum number of consecutive registers
1297    needed to represent mode MODE in a register of class CLASS.
1298 
1299    On RS/6000, this is the size of MODE in words, except in the FP regs, where
1300    a single reg is enough for two words, unless we have VSX, where the FP
1301    registers can hold 128 bits.  */
1302 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1303 
1304 /* Stack layout; function entry, exit and calling.  */
1305 
1306 /* Define this if pushing a word on the stack
1307    makes the stack pointer a smaller address.  */
1308 #define STACK_GROWS_DOWNWARD 1
1309 
1310 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1311 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1312 
1313 /* Define this to nonzero if the nominal address of the stack frame
1314    is at the high-address end of the local variables;
1315    that is, each additional local variable allocated
1316    goes at a more negative offset in the frame.
1317 
1318    On the RS/6000, we grow upwards, from the area after the outgoing
1319    arguments.  */
1320 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0			\
1321 			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1322 
1323 /* Size of the fixed area on the stack */
1324 #define RS6000_SAVE_AREA \
1325   ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24)	\
1326    << (TARGET_64BIT ? 1 : 0))
1327 
1328 /* Stack offset for toc save slot.  */
1329 #define RS6000_TOC_SAVE_SLOT \
1330   ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1331 
1332 /* Align an address */
1333 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1334 
1335 /* Offset within stack frame to start allocating local variables at.
1336    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1337    first local allocated.  Otherwise, it is the offset to the BEGINNING
1338    of the first local allocated.
1339 
1340    On the RS/6000, the frame pointer is the same as the stack pointer,
1341    except for dynamic allocations.  So we start after the fixed area and
1342    outgoing parameter area.
1343 
1344    If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1345    space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1346    sizes of the fixed area and the parameter area must be a multiple of
1347    STACK_BOUNDARY.  */
1348 
1349 #define RS6000_STARTING_FRAME_OFFSET					\
1350   (cfun->calls_alloca							\
1351    ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA,	\
1352 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 ))		\
1353    : (RS6000_ALIGN (crtl->outgoing_args_size,				\
1354 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)		\
1355       + RS6000_SAVE_AREA))
1356 
1357 /* Offset from the stack pointer register to an item dynamically
1358    allocated on the stack, e.g., by `alloca'.
1359 
1360    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1361    length of the outgoing arguments.  The default is correct for most
1362    machines.  See `function.cc' for details.
1363 
1364    This value must be a multiple of STACK_BOUNDARY (hard coded in
1365    `emit-rtl.cc').  */
1366 #define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1367   RS6000_ALIGN (crtl->outgoing_args_size.to_constant ()			\
1368 		+ STACK_POINTER_OFFSET,					\
1369 		(TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1370 
1371 /* If we generate an insn to push BYTES bytes,
1372    this says how many the stack pointer really advances by.
1373    On RS/6000, don't define this because there are no push insns.  */
1374 /*  #define PUSH_ROUNDING(BYTES) */
1375 
1376 /* Offset of first parameter from the argument pointer register value.
1377    On the RS/6000, we define the argument pointer to the start of the fixed
1378    area.  */
1379 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1380 
1381 /* Offset from the argument pointer register value to the top of
1382    stack.  This is different from FIRST_PARM_OFFSET because of the
1383    register save area.  */
1384 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1385 
1386 /* Define this if stack space is still allocated for a parameter passed
1387    in a register.  The value is the number of bytes allocated to this
1388    area.  */
1389 #define REG_PARM_STACK_SPACE(FNDECL) \
1390   rs6000_reg_parm_stack_space ((FNDECL), false)
1391 
1392 /* Define this macro if space guaranteed when compiling a function body
1393    is different to space required when making a call, a situation that
1394    can arise with K&R style function definitions.  */
1395 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1396   rs6000_reg_parm_stack_space ((FNDECL), true)
1397 
1398 /* Define this if the above stack space is to be considered part of the
1399    space allocated by the caller.  */
1400 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1401 
1402 /* This is the difference between the logical top of stack and the actual sp.
1403 
1404    For the RS/6000, sp points past the fixed area.  */
1405 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1406 
1407 /* Define this if the maximum size of all the outgoing args is to be
1408    accumulated and pushed during the prologue.  The amount can be
1409    found in the variable crtl->outgoing_args_size.  */
1410 #define ACCUMULATE_OUTGOING_ARGS 1
1411 
1412 /* Define how to find the value returned by a library function
1413    assuming the value has mode MODE.  */
1414 
1415 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1416 
1417 /* DRAFT_V4_STRUCT_RET defaults off.  */
1418 #define DRAFT_V4_STRUCT_RET 0
1419 
1420 /* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1421 #define DEFAULT_PCC_STRUCT_RETURN 0
1422 
1423 /* Mode of stack savearea.
1424    FUNCTION is VOIDmode because calling convention maintains SP.
1425    BLOCK needs Pmode for SP.
1426    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1427 #define STACK_SAVEAREA_MODE(LEVEL)	\
1428   (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1429   : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1430 
1431 /* Minimum and maximum general purpose registers used to hold arguments.  */
1432 #define GP_ARG_MIN_REG 3
1433 #define GP_ARG_MAX_REG 10
1434 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1435 
1436 /* Minimum and maximum floating point registers used to hold arguments.  */
1437 #define FP_ARG_MIN_REG 33
1438 #define	FP_ARG_AIX_MAX_REG 45
1439 #define	FP_ARG_V4_MAX_REG  40
1440 #define	FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4				\
1441 			? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1442 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1443 
1444 /* Minimum and maximum AltiVec registers used to hold arguments.  */
1445 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1446 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1447 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1448 
1449 /* Maximum number of registers per ELFv2 homogeneous aggregate argument.  */
1450 #define AGGR_ARG_NUM_REG 8
1451 
1452 /* Return registers */
1453 #define GP_ARG_RETURN GP_ARG_MIN_REG
1454 #define FP_ARG_RETURN FP_ARG_MIN_REG
1455 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1456 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN	\
1457 			   : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1458 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2		\
1459 				? (ALTIVEC_ARG_RETURN			\
1460 				   + (TARGET_FLOAT128_TYPE ? 1 : 0))	\
1461 			        : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1462 
1463 /* Flags for the call/call_value rtl operations set up by function_arg */
1464 #define CALL_NORMAL		0x00000000	/* no special processing */
1465 /* Bits in 0x00000001 are unused.  */
1466 #define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1467 #define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1468 #define CALL_LONG		0x00000008	/* always call indirect */
1469 #define CALL_LIBCALL		0x00000010	/* libcall */
1470 
1471 /* Identify PLT sequence for rs6000_pltseq_template.  */
1472 enum rs6000_pltseq_enum {
1473   RS6000_PLTSEQ_TOCSAVE,
1474   RS6000_PLTSEQ_PLT16_HA,
1475   RS6000_PLTSEQ_PLT16_LO,
1476   RS6000_PLTSEQ_MTCTR,
1477   RS6000_PLTSEQ_PLT_PCREL34
1478 };
1479 
1480 #define IS_V4_FP_ARGS(OP) \
1481   ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0)
1482 
1483 /* We don't have prologue and epilogue functions to save/restore
1484    everything for most ABIs.  */
1485 #define WORLD_SAVE_P(INFO) 0
1486 
1487 /* 1 if N is a possible register number for a function value
1488    as seen by the caller.
1489 
1490    On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1491 #define FUNCTION_VALUE_REGNO_P(N)					\
1492   ((N) == GP_ARG_RETURN							\
1493    || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN)			\
1494        && TARGET_HARD_FLOAT)						\
1495    || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN)	\
1496        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1497 
1498 /* 1 if N is a possible register number for function argument passing.
1499    On RS/6000, these are r3-r10 and fp1-fp13.
1500    On AltiVec, v2 - v13 are used for passing vectors.  */
1501 #define FUNCTION_ARG_REGNO_P(N)						\
1502   (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG)			\
1503    || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG)		\
1504        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1505    || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG)			\
1506        && TARGET_HARD_FLOAT))
1507 
1508 /* Define a data type for recording info about an argument list
1509    during the scan of that argument list.  This data type should
1510    hold all necessary information about the function itself
1511    and about the args processed so far, enough to enable macros
1512    such as FUNCTION_ARG to determine where the next arg should go.
1513 
1514    On the RS/6000, this is a structure.  The first element is the number of
1515    total argument words, the second is used to store the next
1516    floating-point register number, and the third says how many more args we
1517    have prototype types for.
1518 
1519    For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1520    the next available GP register, `fregno' is the next available FP
1521    register, and `words' is the number of words used on the stack.
1522 
1523    The varargs/stdarg support requires that this structure's size
1524    be a multiple of sizeof(int).  */
1525 
1526 typedef struct rs6000_args
1527 {
1528   int words;			/* # words used for passing GP registers */
1529   int fregno;			/* next available FP register */
1530   int vregno;			/* next available AltiVec register */
1531   int nargs_prototype;		/* # args left in the current prototype */
1532   int prototype;		/* Whether a prototype was defined */
1533   int stdarg;			/* Whether function is a stdarg function.  */
1534   int call_cookie;		/* Do special things for this call */
1535   int sysv_gregno;		/* next available GP register */
1536   int intoffset;		/* running offset in struct (darwin64) */
1537   int use_stack;		/* any part of struct on stack (darwin64) */
1538   int floats_in_gpr;		/* count of SFmode floats taking up
1539 				   GPR space (darwin64) */
1540   int named;			/* false for varargs params */
1541   int escapes;			/* if function visible outside tu */
1542   int libcall;			/* If this is a compiler generated call.  */
1543 } CUMULATIVE_ARGS;
1544 
1545 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1546    for a call to a function whose data type is FNTYPE.
1547    For a library call, FNTYPE is 0.  */
1548 
1549 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1550   init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1551 			N_NAMED_ARGS, FNDECL, VOIDmode)
1552 
1553 /* Similar, but when scanning the definition of a procedure.  We always
1554    set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1555 
1556 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1557   init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1558 			1000, current_function_decl, VOIDmode)
1559 
1560 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1561 
1562 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1563   init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1564 			0, NULL_TREE, MODE)
1565 
1566 #define PAD_VARARGS_DOWN \
1567   (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1568 
1569 /* Output assembler code to FILE to increment profiler label # LABELNO
1570    for profiling a function entry.  */
1571 
1572 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1573   output_function_profiler ((FILE), (LABELNO));
1574 
1575 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1576    the stack pointer does not matter. No definition is equivalent to
1577    always zero.
1578 
1579    On the RS/6000, this is nonzero because we can restore the stack from
1580    its backpointer, which we maintain.  */
1581 #define EXIT_IGNORE_STACK	1
1582 
1583 /* Define this macro as a C expression that is nonzero for registers
1584    that are used by the epilogue or the return' pattern.  The stack
1585    and frame pointer registers are already be assumed to be used as
1586    needed.  */
1587 
1588 #define	EPILOGUE_USES(REGNO)					\
1589   ((reload_completed && (REGNO) == LR_REGNO)			\
1590    || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1591    || (crtl->calls_eh_return					\
1592        && TARGET_AIX						\
1593        && (REGNO) == 2))
1594 
1595 
1596 /* Length in units of the trampoline for entering a nested function.  */
1597 
1598 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1599 
1600 /* Definitions for __builtin_return_address and __builtin_frame_address.
1601    __builtin_return_address (0) should give link register (LR_REGNO), enable
1602    this.  */
1603 /* This should be uncommented, so that the link register is used, but
1604    currently this would result in unmatched insns and spilling fixed
1605    registers so we'll leave it for another day.  When these problems are
1606    taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1607    (mrs) */
1608 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1609 
1610 /* Number of bytes into the frame return addresses can be found.  See
1611    rs6000_stack_info in rs6000.cc for more information on how the different
1612    abi's store the return address.  */
1613 #define RETURN_ADDRESS_OFFSET \
1614   ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1615 
1616 /* The current return address is in the link register.  The return address
1617    of anything farther back is accessed normally at an offset of 8 from the
1618    frame pointer.  */
1619 #define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1620   (rs6000_return_addr (COUNT, FRAME))
1621 
1622 
1623 /* Definitions for register eliminations.
1624 
1625    We have two registers that can be eliminated on the RS/6000.  First, the
1626    frame pointer register can often be eliminated in favor of the stack
1627    pointer register.  Secondly, the argument pointer register can always be
1628    eliminated; it is replaced with either the stack or frame pointer.
1629 
1630    In addition, we use the elimination mechanism to see if r30 is needed
1631    Initially we assume that it isn't.  If it is, we spill it.  This is done
1632    by making it an eliminable register.  We replace it with itself so that
1633    if it isn't needed, then existing uses won't be modified.  */
1634 
1635 /* This is an array of structures.  Each structure initializes one pair
1636    of eliminable registers.  The "from" register number is given first,
1637    followed by "to".  Eliminations of the same "from" register are listed
1638    in order of preference.  */
1639 #define ELIMINABLE_REGS					\
1640 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1641  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1642  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1643  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1644  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1645  { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1646 
1647 /* Define the offset between two registers, one to be eliminated, and the other
1648    its replacement, at the start of a routine.  */
1649 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1650   ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1651 
1652 /* Addressing modes, and classification of registers for them.  */
1653 
1654 #define HAVE_PRE_DECREMENT 1
1655 #define HAVE_PRE_INCREMENT 1
1656 #define HAVE_PRE_MODIFY_DISP 1
1657 #define HAVE_PRE_MODIFY_REG 1
1658 
1659 /* Macros to check register numbers against specific register classes.  */
1660 
1661 /* These assume that REGNO is a hard or pseudo reg number.
1662    They give nonzero only if REGNO is a hard reg of the suitable class
1663    or a pseudo reg currently allocated to a suitable hard reg.
1664    Since they use reg_renumber, they are safe only once reg_renumber
1665    has been allocated, which happens in reginfo.cc during register
1666    allocation.  */
1667 
1668 #define REGNO_OK_FOR_INDEX_P(REGNO)				\
1669 (HARD_REGISTER_NUM_P (REGNO)					\
1670  ? (REGNO) <= 31						\
1671    || (REGNO) == ARG_POINTER_REGNUM				\
1672    || (REGNO) == FRAME_POINTER_REGNUM				\
1673  : (reg_renumber[REGNO] >= 0					\
1674     && (reg_renumber[REGNO] <= 31				\
1675 	|| reg_renumber[REGNO] == ARG_POINTER_REGNUM		\
1676 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1677 
1678 #define REGNO_OK_FOR_BASE_P(REGNO)				\
1679 (HARD_REGISTER_NUM_P (REGNO)					\
1680  ? ((REGNO) > 0 && (REGNO) <= 31)				\
1681    || (REGNO) == ARG_POINTER_REGNUM				\
1682    || (REGNO) == FRAME_POINTER_REGNUM				\
1683  : (reg_renumber[REGNO] > 0					\
1684     && (reg_renumber[REGNO] <= 31				\
1685 	|| reg_renumber[REGNO] == ARG_POINTER_REGNUM		\
1686 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1687 
1688 /* Nonzero if X is a hard reg that can be used as an index
1689    or if it is a pseudo reg in the non-strict case.  */
1690 #define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1691   ((!(STRICT) && !HARD_REGISTER_P (X))				\
1692    || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1693 
1694 /* Nonzero if X is a hard reg that can be used as a base reg
1695    or if it is a pseudo reg in the non-strict case.  */
1696 #define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1697   ((!(STRICT) && !HARD_REGISTER_P (X))				\
1698    || REGNO_OK_FOR_BASE_P (REGNO (X)))
1699 
1700 
1701 /* Maximum number of registers that can appear in a valid memory address.  */
1702 
1703 #define MAX_REGS_PER_ADDRESS 2
1704 
1705 /* Recognize any constant value that is a valid address.  */
1706 
1707 #define CONSTANT_ADDRESS_P(X)   \
1708   (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X)			\
1709    || CONST_INT_P (X) || GET_CODE (X) == CONST				\
1710    || GET_CODE (X) == HIGH)
1711 
1712 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1713 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))	\
1714 				    && EASY_VECTOR_15((n) >> 1) \
1715 				    && ((n) & 1) == 0)
1716 
1717 #define EASY_VECTOR_MSB(n,mode)						\
1718   ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) ==		\
1719    ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1720 
1721 
1722 #define FIND_BASE_TERM rs6000_find_base_term
1723 
1724 /* The register number of the register used to address a table of
1725    static data addresses in memory.  In some cases this register is
1726    defined by a processor's "application binary interface" (ABI).
1727    When this macro is defined, RTL is generated for this register
1728    once, as with the stack pointer and frame pointer registers.  If
1729    this macro is not defined, it is up to the machine-dependent files
1730    to allocate such a register (if necessary).  */
1731 
1732 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1733 #define PIC_OFFSET_TABLE_REGNUM \
1734   (TARGET_TOC ? TOC_REGISTER			\
1735    : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM	\
1736    : INVALID_REGNUM)
1737 
1738 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1739 
1740 /* Define this macro if the register defined by
1741    `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1742    this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1743 
1744 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1745 
1746 /* A C expression that is nonzero if X is a legitimate immediate
1747    operand on the target machine when generating position independent
1748    code.  You can assume that X satisfies `CONSTANT_P', so you need
1749    not check this.  You can also assume FLAG_PIC is true, so you need
1750    not check it either.  You need not define this macro if all
1751    constants (including `SYMBOL_REF') can be immediate operands when
1752    generating position independent code.  */
1753 
1754 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1755 
1756 /* Define as C expression which evaluates to nonzero if the tablejump
1757    instruction expects the table to contain offsets from the address of the
1758    table.
1759    Do not define this if the table should contain absolute addresses.  */
1760 #define CASE_VECTOR_PC_RELATIVE rs6000_relative_jumptables
1761 
1762 /* Specify the machine mode that this machine uses
1763    for the index in the tablejump instruction.  */
1764 #define CASE_VECTOR_MODE (rs6000_relative_jumptables ? SImode : Pmode)
1765 
1766 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1767 #define DEFAULT_SIGNED_CHAR 0
1768 
1769 /* An integer expression for the size in bits of the largest integer machine
1770    mode that should actually be used.  */
1771 
1772 /* Allow pairs of registers to be used, which is the intent of the default.  */
1773 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1774 
1775 /* Max number of bytes we can move from memory to memory
1776    in one reasonably fast instruction.  */
1777 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1778 #define MAX_MOVE_MAX 8
1779 
1780 /* Nonzero if access to memory by bytes is no faster than for words.
1781    Also nonzero if doing byte operations (specifically shifts) in registers
1782    is undesirable.  */
1783 #define SLOW_BYTE_ACCESS 1
1784 
1785 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1786    will either zero-extend or sign-extend.  The value of this macro should
1787    be the code that says which one of the two operations is implicitly
1788    done, UNKNOWN if none.  */
1789 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1790 
1791 /* Define if loading short immediate values into registers sign extends.  */
1792 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1793 
1794 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1795 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1796   ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1797 
1798 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1799    zero.  The hardware instructions added in Power9 and the sequences using
1800    popcount return 32 or 64.  */
1801 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)				\
1802   (TARGET_CTZ || TARGET_POPCNTD						\
1803    ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2)				\
1804    : ((VALUE) = -1, 2))
1805 
1806 /* Specify the machine mode that pointers have.
1807    After generation of rtl, the compiler makes no further distinction
1808    between pointers and any other objects of this machine mode.  */
1809 extern scalar_int_mode rs6000_pmode;
1810 #define Pmode rs6000_pmode
1811 
1812 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
1813 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1814 
1815 /* Mode of a function address in a call instruction (for indexing purposes).
1816    Doesn't matter on RS/6000.  */
1817 #define FUNCTION_MODE SImode
1818 
1819 /* Define this if addresses of constant functions
1820    shouldn't be put through pseudo regs where they can be cse'd.
1821    Desirable on machines where ordinary constants are expensive
1822    but a CALL with constant address is cheap.  */
1823 #define NO_FUNCTION_CSE 1
1824 
1825 /* Define this to be nonzero if shift instructions ignore all but the low-order
1826    few bits.
1827 
1828    The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1829    have been dropped from the PowerPC architecture.  */
1830 #define SHIFT_COUNT_TRUNCATED 0
1831 
1832 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
1833    should be adjusted to reflect any required changes.  This macro is used when
1834    there is some systematic length adjustment required that would be difficult
1835    to express in the length attribute.
1836 
1837    In the PowerPC, we use this to adjust the length of an instruction if one or
1838    more prefixed instructions are generated, using the attribute
1839    num_prefixed_insns.  A prefixed instruction is 8 bytes instead of 4, but the
1840    hardware requires that a prefied instruciton does not cross a 64-byte
1841    boundary.  This means the compiler has to assume the length of the first
1842    prefixed instruction is 12 bytes instead of 8 bytes.  Since the length is
1843    already set for the non-prefixed instruction, we just need to udpate for the
1844    difference.  */
1845 
1846 #define ADJUST_INSN_LENGTH(INSN,LENGTH)					\
1847   (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH))
1848 
1849 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1850    COMPARE, return the mode to be used for the comparison.  For
1851    floating-point, CCFPmode should be used.  CCUNSmode should be used
1852    for unsigned comparisons.  CCEQmode should be used when we are
1853    doing an inequality comparison on the result of a
1854    comparison.  CCmode should be used in all other cases.  */
1855 
1856 #define SELECT_CC_MODE(OP,X,Y) \
1857   (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode	\
1858    : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1859    : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)			  \
1860       ? CCEQmode : CCmode))
1861 
1862 /* Can the condition code MODE be safely reversed?  This is safe in
1863    all cases on this port, because at present it doesn't use the
1864    trapping FP comparisons (fcmpo).  */
1865 #define REVERSIBLE_CC_MODE(MODE) 1
1866 
1867 /* Given a condition code and a mode, return the inverse condition.  */
1868 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1869 
1870 
1871 /* Target cpu costs.  */
1872 
1873 struct processor_costs {
1874   const int mulsi;	  /* cost of SImode multiplication.  */
1875   const int mulsi_const;  /* cost of SImode multiplication by constant.  */
1876   const int mulsi_const9; /* cost of SImode mult by short constant.  */
1877   const int muldi;	  /* cost of DImode multiplication.  */
1878   const int divsi;	  /* cost of SImode division.  */
1879   const int divdi;	  /* cost of DImode division.  */
1880   const int fp;		  /* cost of simple SFmode and DFmode insns.  */
1881   const int dmul;	  /* cost of DFmode multiplication (and fmadd).  */
1882   const int sdiv;	  /* cost of SFmode division (fdivs).  */
1883   const int ddiv;	  /* cost of DFmode division (fdiv).  */
1884   const int cache_line_size;    /* cache line size in bytes. */
1885   const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
1886   const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
1887   const int simultaneous_prefetches; /* number of parallel prefetch
1888 					operations.  */
1889   const int sfdf_convert;	/* cost of SF->DF conversion.  */
1890 };
1891 
1892 extern const struct processor_costs *rs6000_cost;
1893 
1894 /* Control the assembler format that we output.  */
1895 
1896 /* A C string constant describing how to begin a comment in the target
1897    assembler language.  The compiler assumes that the comment will end at
1898    the end of the line.  */
1899 #define ASM_COMMENT_START " #"
1900 
1901 /* Flag to say the TOC is initialized */
1902 extern int toc_initialized;
1903 
1904 /* Macro to output a special constant pool entry.  Go to WIN if we output
1905    it.  Otherwise, it is written the usual way.
1906 
1907    On the RS/6000, toc entries are handled this way.  */
1908 
1909 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1910 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
1911     {									  \
1912       output_toc (FILE, X, LABELNO, MODE);				  \
1913       goto WIN;								  \
1914     }									  \
1915 }
1916 
1917 #ifdef HAVE_GAS_WEAK
1918 #define RS6000_WEAK 1
1919 #else
1920 #define RS6000_WEAK 0
1921 #endif
1922 
1923 #if RS6000_WEAK
1924 /* Used in lieu of ASM_WEAKEN_LABEL.  */
1925 #define        ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1926   rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1927 #endif
1928 
1929 #if HAVE_GAS_WEAKREF
1930 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)			\
1931   do									\
1932     {									\
1933       fputs ("\t.weakref\t", (FILE));					\
1934       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
1935       fputs (", ", (FILE));						\
1936       RS6000_OUTPUT_BASENAME ((FILE), (VALUE));				\
1937       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
1938 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1939 	{								\
1940 	  fputs ("\n\t.weakref\t.", (FILE));				\
1941 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
1942 	  fputs (", .", (FILE));					\
1943 	  RS6000_OUTPUT_BASENAME ((FILE), (VALUE));			\
1944 	}								\
1945       fputc ('\n', (FILE));						\
1946     } while (0)
1947 #endif
1948 
1949 /* This implements the `alias' attribute.  */
1950 #undef	ASM_OUTPUT_DEF_FROM_DECLS
1951 #define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
1952   do									\
1953     {									\
1954       const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
1955       const char *name = IDENTIFIER_POINTER (TARGET);			\
1956       if (TREE_CODE (DECL) == FUNCTION_DECL				\
1957 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1958 	{								\
1959 	  if (TREE_PUBLIC (DECL))					\
1960 	    {								\
1961 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1962 		{							\
1963 		  fputs ("\t.globl\t.", FILE);				\
1964 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1965 		  putc ('\n', FILE);					\
1966 		}							\
1967 	    }								\
1968 	  else if (TARGET_XCOFF)					\
1969 	    {								\
1970 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1971 		{							\
1972 		  fputs ("\t.lglobl\t.", FILE);				\
1973 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1974 		  putc ('\n', FILE);					\
1975 		  fputs ("\t.lglobl\t", FILE);				\
1976 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1977 		  putc ('\n', FILE);					\
1978 		}							\
1979 	    }								\
1980 	  fputs ("\t.set\t.", FILE);					\
1981 	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
1982 	  fputs (",.", FILE);						\
1983 	  RS6000_OUTPUT_BASENAME (FILE, name);				\
1984 	  fputc ('\n', FILE);						\
1985 	}								\
1986       ASM_OUTPUT_DEF (FILE, alias, name);				\
1987     }									\
1988    while (0)
1989 
1990 #define TARGET_ASM_FILE_START rs6000_file_start
1991 
1992 /* Output to assembler file text saying following lines
1993    may contain character constants, extra white space, comments, etc.  */
1994 
1995 #define ASM_APP_ON ""
1996 
1997 /* Output to assembler file text saying following lines
1998    no longer contain unusual constructs.  */
1999 
2000 #define ASM_APP_OFF ""
2001 
2002 /* How to refer to registers in assembler output.
2003    This sequence is indexed by compiler's hard-register-number (see above).  */
2004 
2005 extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2006 
2007 #define REGISTER_NAMES							\
2008 {									\
2009   &rs6000_reg_names[ 0][0],	/* r0   */				\
2010   &rs6000_reg_names[ 1][0],	/* r1	*/				\
2011   &rs6000_reg_names[ 2][0],	/* r2	*/				\
2012   &rs6000_reg_names[ 3][0],	/* r3	*/				\
2013   &rs6000_reg_names[ 4][0],	/* r4	*/				\
2014   &rs6000_reg_names[ 5][0],	/* r5	*/				\
2015   &rs6000_reg_names[ 6][0],	/* r6	*/				\
2016   &rs6000_reg_names[ 7][0],	/* r7	*/				\
2017   &rs6000_reg_names[ 8][0],	/* r8	*/				\
2018   &rs6000_reg_names[ 9][0],	/* r9	*/				\
2019   &rs6000_reg_names[10][0],	/* r10  */				\
2020   &rs6000_reg_names[11][0],	/* r11  */				\
2021   &rs6000_reg_names[12][0],	/* r12  */				\
2022   &rs6000_reg_names[13][0],	/* r13  */				\
2023   &rs6000_reg_names[14][0],	/* r14  */				\
2024   &rs6000_reg_names[15][0],	/* r15  */				\
2025   &rs6000_reg_names[16][0],	/* r16  */				\
2026   &rs6000_reg_names[17][0],	/* r17  */				\
2027   &rs6000_reg_names[18][0],	/* r18  */				\
2028   &rs6000_reg_names[19][0],	/* r19  */				\
2029   &rs6000_reg_names[20][0],	/* r20  */				\
2030   &rs6000_reg_names[21][0],	/* r21  */				\
2031   &rs6000_reg_names[22][0],	/* r22  */				\
2032   &rs6000_reg_names[23][0],	/* r23  */				\
2033   &rs6000_reg_names[24][0],	/* r24  */				\
2034   &rs6000_reg_names[25][0],	/* r25  */				\
2035   &rs6000_reg_names[26][0],	/* r26  */				\
2036   &rs6000_reg_names[27][0],	/* r27  */				\
2037   &rs6000_reg_names[28][0],	/* r28  */				\
2038   &rs6000_reg_names[29][0],	/* r29  */				\
2039   &rs6000_reg_names[30][0],	/* r30  */				\
2040   &rs6000_reg_names[31][0],	/* r31  */				\
2041 									\
2042   &rs6000_reg_names[32][0],	/* fr0  */				\
2043   &rs6000_reg_names[33][0],	/* fr1  */				\
2044   &rs6000_reg_names[34][0],	/* fr2  */				\
2045   &rs6000_reg_names[35][0],	/* fr3  */				\
2046   &rs6000_reg_names[36][0],	/* fr4  */				\
2047   &rs6000_reg_names[37][0],	/* fr5  */				\
2048   &rs6000_reg_names[38][0],	/* fr6  */				\
2049   &rs6000_reg_names[39][0],	/* fr7  */				\
2050   &rs6000_reg_names[40][0],	/* fr8  */				\
2051   &rs6000_reg_names[41][0],	/* fr9  */				\
2052   &rs6000_reg_names[42][0],	/* fr10 */				\
2053   &rs6000_reg_names[43][0],	/* fr11 */				\
2054   &rs6000_reg_names[44][0],	/* fr12 */				\
2055   &rs6000_reg_names[45][0],	/* fr13 */				\
2056   &rs6000_reg_names[46][0],	/* fr14 */				\
2057   &rs6000_reg_names[47][0],	/* fr15 */				\
2058   &rs6000_reg_names[48][0],	/* fr16 */				\
2059   &rs6000_reg_names[49][0],	/* fr17 */				\
2060   &rs6000_reg_names[50][0],	/* fr18 */				\
2061   &rs6000_reg_names[51][0],	/* fr19 */				\
2062   &rs6000_reg_names[52][0],	/* fr20 */				\
2063   &rs6000_reg_names[53][0],	/* fr21 */				\
2064   &rs6000_reg_names[54][0],	/* fr22 */				\
2065   &rs6000_reg_names[55][0],	/* fr23 */				\
2066   &rs6000_reg_names[56][0],	/* fr24 */				\
2067   &rs6000_reg_names[57][0],	/* fr25 */				\
2068   &rs6000_reg_names[58][0],	/* fr26 */				\
2069   &rs6000_reg_names[59][0],	/* fr27 */				\
2070   &rs6000_reg_names[60][0],	/* fr28 */				\
2071   &rs6000_reg_names[61][0],	/* fr29 */				\
2072   &rs6000_reg_names[62][0],	/* fr30 */				\
2073   &rs6000_reg_names[63][0],	/* fr31 */				\
2074 									\
2075   &rs6000_reg_names[64][0],	/* vr0  */				\
2076   &rs6000_reg_names[65][0],	/* vr1  */				\
2077   &rs6000_reg_names[66][0],	/* vr2  */				\
2078   &rs6000_reg_names[67][0],	/* vr3  */				\
2079   &rs6000_reg_names[68][0],	/* vr4  */				\
2080   &rs6000_reg_names[69][0],	/* vr5  */				\
2081   &rs6000_reg_names[70][0],	/* vr6  */				\
2082   &rs6000_reg_names[71][0],	/* vr7  */				\
2083   &rs6000_reg_names[72][0],	/* vr8  */				\
2084   &rs6000_reg_names[73][0],	/* vr9  */				\
2085   &rs6000_reg_names[74][0],	/* vr10 */				\
2086   &rs6000_reg_names[75][0],	/* vr11 */				\
2087   &rs6000_reg_names[76][0],	/* vr12 */				\
2088   &rs6000_reg_names[77][0],	/* vr13 */				\
2089   &rs6000_reg_names[78][0],	/* vr14 */				\
2090   &rs6000_reg_names[79][0],	/* vr15 */				\
2091   &rs6000_reg_names[80][0],	/* vr16 */				\
2092   &rs6000_reg_names[81][0],	/* vr17 */				\
2093   &rs6000_reg_names[82][0],	/* vr18 */				\
2094   &rs6000_reg_names[83][0],	/* vr19 */				\
2095   &rs6000_reg_names[84][0],	/* vr20 */				\
2096   &rs6000_reg_names[85][0],	/* vr21 */				\
2097   &rs6000_reg_names[86][0],	/* vr22 */				\
2098   &rs6000_reg_names[87][0],	/* vr23 */				\
2099   &rs6000_reg_names[88][0],	/* vr24 */				\
2100   &rs6000_reg_names[89][0],	/* vr25 */				\
2101   &rs6000_reg_names[90][0],	/* vr26 */				\
2102   &rs6000_reg_names[91][0],	/* vr27 */				\
2103   &rs6000_reg_names[92][0],	/* vr28 */				\
2104   &rs6000_reg_names[93][0],	/* vr29 */				\
2105   &rs6000_reg_names[94][0],	/* vr30 */				\
2106   &rs6000_reg_names[95][0],	/* vr31 */				\
2107 									\
2108   &rs6000_reg_names[96][0],	/* lr   */				\
2109   &rs6000_reg_names[97][0],	/* ctr  */				\
2110   &rs6000_reg_names[98][0],	/* ca  */				\
2111   &rs6000_reg_names[99][0],	/* ap   */				\
2112 									\
2113   &rs6000_reg_names[100][0],	/* cr0  */				\
2114   &rs6000_reg_names[101][0],	/* cr1  */				\
2115   &rs6000_reg_names[102][0],	/* cr2  */				\
2116   &rs6000_reg_names[103][0],	/* cr3  */				\
2117   &rs6000_reg_names[104][0],	/* cr4  */				\
2118   &rs6000_reg_names[105][0],	/* cr5  */				\
2119   &rs6000_reg_names[106][0],	/* cr6  */				\
2120   &rs6000_reg_names[107][0],	/* cr7  */				\
2121 									\
2122   &rs6000_reg_names[108][0],	/* vrsave  */				\
2123   &rs6000_reg_names[109][0],	/* vscr  */				\
2124 									\
2125   &rs6000_reg_names[110][0]	/* sfp  */				\
2126 }
2127 
2128 /* Table of additional register names to use in user input.  */
2129 
2130 #define ADDITIONAL_REGISTER_NAMES \
2131  {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2132   {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2133   {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2134   {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2135   {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2136   {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2137   {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2138   {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2139   {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2140   {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2141   {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2142   {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2143   {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2144   {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2145   {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2146   {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2147   {"v0",   64}, {"v1",   65}, {"v2",   66}, {"v3",   67},	\
2148   {"v4",   68}, {"v5",   69}, {"v6",   70}, {"v7",   71},	\
2149   {"v8",   72}, {"v9",   73}, {"v10",  74}, {"v11",  75},	\
2150   {"v12",  76}, {"v13",  77}, {"v14",  78}, {"v15",  79},	\
2151   {"v16",  80}, {"v17",  81}, {"v18",  82}, {"v19",  83},	\
2152   {"v20",  84}, {"v21",  85}, {"v22",  86}, {"v23",  87},	\
2153   {"v24",  88}, {"v25",  89}, {"v26",  90}, {"v27",  91},	\
2154   {"v28",  92}, {"v29",  93}, {"v30",  94}, {"v31",  95},	\
2155   {"vrsave", 108}, {"vscr", 109},				\
2156   /* no additional names for: lr, ctr, ap */			\
2157   {"cr0",  100},{"cr1",  101},{"cr2",  102},{"cr3",  103},	\
2158   {"cr4",  104},{"cr5",  105},{"cr6",  106},{"cr7",  107},	\
2159   {"cc",   100},{"sp",    1}, {"toc",   2},			\
2160   /* CA is only part of XER, but we do not model the other parts (yet).  */ \
2161   {"xer",  98},							\
2162   /* VSX registers overlaid on top of FR, Altivec registers */	\
2163   {"vs0",  32}, {"vs1",  33}, {"vs2",  34}, {"vs3",  35},	\
2164   {"vs4",  36}, {"vs5",  37}, {"vs6",  38}, {"vs7",  39},	\
2165   {"vs8",  40}, {"vs9",  41}, {"vs10", 42}, {"vs11", 43},	\
2166   {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47},	\
2167   {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51},	\
2168   {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55},	\
2169   {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59},	\
2170   {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63},	\
2171   {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67},	\
2172   {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71},	\
2173   {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75},	\
2174   {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79},	\
2175   {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83},	\
2176   {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87},	\
2177   {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91},	\
2178   {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95},	\
2179 }
2180 
2181 /* This is how to output an element of a case-vector that is relative.  */
2182 
2183 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2184   do { char buf[100];					\
2185        fputs ("\t.long ", FILE);			\
2186        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2187        assemble_name (FILE, buf);			\
2188        putc ('-', FILE);				\
2189        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2190        assemble_name (FILE, buf);			\
2191        putc ('\n', FILE);				\
2192      } while (0)
2193 
2194 /* This is how to output an element of a case-vector
2195    that is non-relative.  */
2196 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2197   rs6000_output_addr_vec_elt ((FILE), (VALUE))
2198 
2199 /* This is how to output an assembler line
2200    that says to advance the location counter
2201    to a multiple of 2**LOG bytes.  */
2202 
2203 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2204   if ((LOG) != 0)			\
2205     fprintf (FILE, "\t.align %d\n", (LOG))
2206 
2207 /* How to align the given loop. */
2208 #define LOOP_ALIGN(LABEL)  rs6000_loop_align(LABEL)
2209 
2210 /* Alignment guaranteed by __builtin_malloc.  */
2211 /* FIXME:  128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2212    However, specifying the stronger guarantee currently leads to
2213    a regression in SPEC CPU2006 437.leslie3d.  The stronger
2214    guarantee should be implemented here once that's fixed.  */
2215 #define MALLOC_ABI_ALIGNMENT (64)
2216 
2217 /* Pick up the return address upon entry to a procedure. Used for
2218    dwarf2 unwind information.  This also enables the table driven
2219    mechanism.  */
2220 
2221 #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LR_REGNO)
2222 #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LR_REGNO)
2223 
2224 /* Describe how we implement __builtin_eh_return.  */
2225 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2226 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2227 
2228 /* Print operand X (an rtx) in assembler syntax to file FILE.
2229    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2230    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2231 
2232 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2233 
2234 /* Define which CODE values are valid.  */
2235 
2236 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)  ((CODE) == '&')
2237 
2238 /* Print a memory address as an operand to reference that memory location.  */
2239 
2240 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2241 
2242 /* For switching between functions with different target attributes.  */
2243 #define SWITCHABLE_TARGET 1
2244 
2245 /* uncomment for disabling the corresponding default options */
2246 /* #define  MACHINE_no_sched_interblock */
2247 /* #define  MACHINE_no_sched_speculative */
2248 /* #define  MACHINE_no_sched_speculative_load */
2249 
2250 /* General flags.  */
2251 extern int frame_pointer_needed;
2252 
2253 /* Classification of the builtin functions as to which switches enable the
2254    builtin, and what attributes it should have.  We used to use the target
2255    flags macros, but we've run out of bits, so we now map the options into new
2256    settings used here.  */
2257 
2258 /* Builtin operand count.  */
2259 #define RS6000_BTC_UNARY	0x00000001	/* normal unary function.  */
2260 #define RS6000_BTC_BINARY	0x00000002	/* normal binary function.  */
2261 #define RS6000_BTC_TERNARY	0x00000003	/* normal ternary function.  */
2262 #define RS6000_BTC_QUATERNARY	0x00000004	/* normal quaternary
2263 						   function. */
2264 #define RS6000_BTC_QUINARY	0x00000005	/* normal quinary function.  */
2265 #define RS6000_BTC_SENARY	0x00000006	/* normal senary function.  */
2266 #define RS6000_BTC_OPND_MASK	0x00000007	/* Mask to isolate operands. */
2267 
2268 /* Builtin attributes.  */
2269 #define RS6000_BTC_SPECIAL	0x00000000	/* Special function.  */
2270 #define RS6000_BTC_PREDICATE	0x00000008	/* predicate function.  */
2271 #define RS6000_BTC_ABS		0x00000010	/* Altivec/VSX ABS
2272 						   function.  */
2273 #define RS6000_BTC_DST		0x00000020	/* Altivec DST function.  */
2274 
2275 #define RS6000_BTC_TYPE_MASK	0x0000003f	/* Mask to isolate types */
2276 
2277 #define RS6000_BTC_MISC		0x00000000	/* No special attributes.  */
2278 #define RS6000_BTC_CONST	0x00000100	/* Neither uses, nor
2279 						   modifies global state.  */
2280 #define RS6000_BTC_PURE		0x00000200	/* reads global
2281 						   state/mem and does
2282 						   not modify global state.  */
2283 #define RS6000_BTC_FP		0x00000400	/* depends on rounding mode.  */
2284 #define RS6000_BTC_QUAD		0x00000800	/* Uses a register quad.  */
2285 #define RS6000_BTC_PAIR		0x00001000	/* Uses a register pair.  */
2286 #define RS6000_BTC_QUADPAIR	0x00001800	/* Uses a quad and a pair.  */
2287 #define RS6000_BTC_ATTR_MASK	0x00001f00	/* Mask of the attributes.  */
2288 
2289 /* Miscellaneous information.  */
2290 #define RS6000_BTC_SPR		0x01000000	/* function references SPRs.  */
2291 #define RS6000_BTC_VOID		0x02000000	/* function has no return value.  */
2292 #define RS6000_BTC_CR		0x04000000	/* function references a CR.  */
2293 #define RS6000_BTC_OVERLOADED	0x08000000	/* function is overloaded.  */
2294 #define RS6000_BTC_GIMPLE	0x10000000	/* function should be expanded
2295 						   into gimple.  */
2296 #define RS6000_BTC_MISC_MASK	0x1f000000	/* Mask of the misc info.  */
2297 
2298 /* Convenience macros to document the instruction type.  */
2299 #define RS6000_BTC_MEM		RS6000_BTC_MISC	/* load/store touches mem.  */
2300 #define RS6000_BTC_SAT		RS6000_BTC_MISC	/* saturate sets VSCR.  */
2301 
2302 /* Builtin targets.  For now, we reuse the masks for those options that are in
2303    target flags, and pick a random bit for ldbl128, which isn't in
2304    target_flags.  */
2305 #define RS6000_BTM_ALWAYS	0		/* Always enabled.  */
2306 #define RS6000_BTM_ALTIVEC	MASK_ALTIVEC	/* VMX/altivec vectors.  */
2307 #define RS6000_BTM_CMPB		MASK_CMPB	/* ISA 2.05: compare bytes.  */
2308 #define RS6000_BTM_VSX		MASK_VSX	/* VSX (vector/scalar).  */
2309 #define RS6000_BTM_P8_VECTOR	MASK_P8_VECTOR	/* ISA 2.07 vector.  */
2310 #define RS6000_BTM_P9_VECTOR	MASK_P9_VECTOR	/* ISA 3.0 vector.  */
2311 #define RS6000_BTM_P9_MISC	MASK_P9_MISC	/* ISA 3.0 misc. non-vector */
2312 #define RS6000_BTM_CRYPTO	MASK_CRYPTO	/* crypto funcs.  */
2313 #define RS6000_BTM_HTM		MASK_HTM	/* hardware TM funcs.  */
2314 #define RS6000_BTM_FRE		MASK_POPCNTB	/* FRE instruction.  */
2315 #define RS6000_BTM_FRES		MASK_PPC_GFXOPT	/* FRES instruction.  */
2316 #define RS6000_BTM_FRSQRTE	MASK_PPC_GFXOPT	/* FRSQRTE instruction.  */
2317 #define RS6000_BTM_FRSQRTES	MASK_POPCNTB	/* FRSQRTES instruction.  */
2318 #define RS6000_BTM_POPCNTD	MASK_POPCNTD	/* Target supports ISA 2.06.  */
2319 #define RS6000_BTM_CELL		MASK_FPRND	/* Target is cell powerpc.  */
2320 #define RS6000_BTM_DFP		MASK_DFP	/* Decimal floating point.  */
2321 #define RS6000_BTM_HARD_FLOAT	MASK_SOFT_FLOAT	/* Hardware floating point.  */
2322 #define RS6000_BTM_LDBL128	MASK_MULTIPLE	/* 128-bit long double.  */
2323 #define RS6000_BTM_64BIT	MASK_64BIT	/* 64-bit addressing.  */
2324 #define RS6000_BTM_POWERPC64	MASK_POWERPC64	/* 64-bit registers.  */
2325 #define RS6000_BTM_FLOAT128	MASK_FLOAT128_KEYWORD /* IEEE 128-bit float.  */
2326 #define RS6000_BTM_FLOAT128_HW	MASK_FLOAT128_HW /* IEEE 128-bit float h/w.  */
2327 #define RS6000_BTM_MMA		MASK_MMA	/* ISA 3.1 MMA.  */
2328 #define RS6000_BTM_P10		MASK_POWER10
2329 
2330 #define RS6000_BTM_COMMON	(RS6000_BTM_ALTIVEC			\
2331 				 | RS6000_BTM_VSX			\
2332 				 | RS6000_BTM_P8_VECTOR			\
2333 				 | RS6000_BTM_P9_VECTOR			\
2334 				 | RS6000_BTM_P9_MISC			\
2335 				 | RS6000_BTM_MODULO                    \
2336 				 | RS6000_BTM_CRYPTO			\
2337 				 | RS6000_BTM_FRE			\
2338 				 | RS6000_BTM_FRES			\
2339 				 | RS6000_BTM_FRSQRTE			\
2340 				 | RS6000_BTM_FRSQRTES			\
2341 				 | RS6000_BTM_HTM			\
2342 				 | RS6000_BTM_POPCNTD			\
2343 				 | RS6000_BTM_CELL			\
2344 				 | RS6000_BTM_DFP			\
2345 				 | RS6000_BTM_HARD_FLOAT		\
2346 				 | RS6000_BTM_LDBL128			\
2347 				 | RS6000_BTM_POWERPC64			\
2348 				 | RS6000_BTM_FLOAT128			\
2349 				 | RS6000_BTM_FLOAT128_HW		\
2350 				 | RS6000_BTM_MMA			\
2351 				 | RS6000_BTM_P10)
2352 
2353 enum rs6000_builtin_type_index
2354 {
2355   RS6000_BTI_NOT_OPAQUE,
2356   RS6000_BTI_opaque_V4SI,
2357   RS6000_BTI_V16QI,              /* __vector signed char */
2358   RS6000_BTI_V1TI,
2359   RS6000_BTI_V2DI,
2360   RS6000_BTI_V2DF,
2361   RS6000_BTI_V4HI,
2362   RS6000_BTI_V4SI,
2363   RS6000_BTI_V4SF,
2364   RS6000_BTI_V8HI,
2365   RS6000_BTI_unsigned_V16QI,     /* __vector unsigned char */
2366   RS6000_BTI_unsigned_V1TI,
2367   RS6000_BTI_unsigned_V8HI,
2368   RS6000_BTI_unsigned_V4SI,
2369   RS6000_BTI_unsigned_V2DI,
2370   RS6000_BTI_bool_char,          /* __bool char */
2371   RS6000_BTI_bool_short,         /* __bool short */
2372   RS6000_BTI_bool_int,           /* __bool int */
2373   RS6000_BTI_bool_long_long,     /* __bool long long */
2374   RS6000_BTI_pixel,              /* __pixel (16 bits arranged as 4
2375 				    channels of 1, 5, 5, and 5 bits
2376 				    respectively as packed with the
2377 				    vpkpx insn.  __pixel is only
2378 				    meaningful as a vector type.
2379 				    There is no corresponding scalar
2380 				    __pixel data type.)  */
2381   RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2382   RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2383   RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2384   RS6000_BTI_bool_V2DI,          /* __vector __bool long */
2385   RS6000_BTI_bool_V1TI,          /* __vector __bool 128-bit */
2386   RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2387   RS6000_BTI_long,	         /* long_integer_type_node */
2388   RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2389   RS6000_BTI_long_long,	         /* long_long_integer_type_node */
2390   RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2391   RS6000_BTI_INTQI,	         /* (signed) intQI_type_node */
2392   RS6000_BTI_UINTQI,		 /* unsigned_intQI_type_node */
2393   RS6000_BTI_INTHI,	         /* intHI_type_node */
2394   RS6000_BTI_UINTHI,		 /* unsigned_intHI_type_node */
2395   RS6000_BTI_INTSI,		 /* intSI_type_node (signed) */
2396   RS6000_BTI_UINTSI,		 /* unsigned_intSI_type_node */
2397   RS6000_BTI_INTDI,		 /* intDI_type_node */
2398   RS6000_BTI_UINTDI,		 /* unsigned_intDI_type_node */
2399   RS6000_BTI_INTTI,		 /* intTI_type_node */
2400   RS6000_BTI_UINTTI,		 /* unsigned_intTI_type_node */
2401   RS6000_BTI_float,	         /* float_type_node */
2402   RS6000_BTI_double,	         /* double_type_node */
2403   RS6000_BTI_long_double,        /* long_double_type_node */
2404   RS6000_BTI_dfloat64,		 /* dfloat64_type_node */
2405   RS6000_BTI_dfloat128,		 /* dfloat128_type_node */
2406   RS6000_BTI_void,	         /* void_type_node */
2407   RS6000_BTI_ieee128_float,	 /* ieee 128-bit floating point */
2408   RS6000_BTI_ibm128_float,	 /* IBM 128-bit floating point */
2409   RS6000_BTI_const_str,		 /* pointer to const char * */
2410   RS6000_BTI_vector_pair,	 /* unsigned 256-bit types (vector pair).  */
2411   RS6000_BTI_vector_quad,	 /* unsigned 512-bit types (vector quad).  */
2412   RS6000_BTI_const_ptr_void,     /* const pointer to void */
2413   RS6000_BTI_ptr_V16QI,
2414   RS6000_BTI_ptr_V1TI,
2415   RS6000_BTI_ptr_V2DI,
2416   RS6000_BTI_ptr_V2DF,
2417   RS6000_BTI_ptr_V4SI,
2418   RS6000_BTI_ptr_V4SF,
2419   RS6000_BTI_ptr_V8HI,
2420   RS6000_BTI_ptr_unsigned_V16QI,
2421   RS6000_BTI_ptr_unsigned_V1TI,
2422   RS6000_BTI_ptr_unsigned_V8HI,
2423   RS6000_BTI_ptr_unsigned_V4SI,
2424   RS6000_BTI_ptr_unsigned_V2DI,
2425   RS6000_BTI_ptr_bool_V16QI,
2426   RS6000_BTI_ptr_bool_V8HI,
2427   RS6000_BTI_ptr_bool_V4SI,
2428   RS6000_BTI_ptr_bool_V2DI,
2429   RS6000_BTI_ptr_bool_V1TI,
2430   RS6000_BTI_ptr_pixel_V8HI,
2431   RS6000_BTI_ptr_INTQI,
2432   RS6000_BTI_ptr_UINTQI,
2433   RS6000_BTI_ptr_INTHI,
2434   RS6000_BTI_ptr_UINTHI,
2435   RS6000_BTI_ptr_INTSI,
2436   RS6000_BTI_ptr_UINTSI,
2437   RS6000_BTI_ptr_INTDI,
2438   RS6000_BTI_ptr_UINTDI,
2439   RS6000_BTI_ptr_INTTI,
2440   RS6000_BTI_ptr_UINTTI,
2441   RS6000_BTI_ptr_long_integer,
2442   RS6000_BTI_ptr_long_unsigned,
2443   RS6000_BTI_ptr_float,
2444   RS6000_BTI_ptr_double,
2445   RS6000_BTI_ptr_long_double,
2446   RS6000_BTI_ptr_dfloat64,
2447   RS6000_BTI_ptr_dfloat128,
2448   RS6000_BTI_ptr_vector_pair,
2449   RS6000_BTI_ptr_vector_quad,
2450   RS6000_BTI_ptr_long_long,
2451   RS6000_BTI_ptr_long_long_unsigned,
2452   RS6000_BTI_MAX
2453 };
2454 
2455 
2456 #define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2457 #define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2458 #define V1TI_type_node                (rs6000_builtin_types[RS6000_BTI_V1TI])
2459 #define V2DI_type_node                (rs6000_builtin_types[RS6000_BTI_V2DI])
2460 #define V2DF_type_node                (rs6000_builtin_types[RS6000_BTI_V2DF])
2461 #define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2462 #define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2463 #define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2464 #define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2465 #define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2466 #define unsigned_V1TI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2467 #define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2468 #define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2469 #define unsigned_V2DI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2470 #define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2471 #define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2472 #define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2473 #define bool_long_long_type_node      (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2474 #define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2475 #define bool_V16QI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2476 #define bool_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2477 #define bool_V4SI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2478 #define bool_V2DI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2479 #define bool_V1TI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V1TI])
2480 #define pixel_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2481 
2482 #define long_long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long_long])
2483 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2484 #define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2485 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2486 #define intQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTQI])
2487 #define uintQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTQI])
2488 #define intHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTHI])
2489 #define uintHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTHI])
2490 #define intSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTSI])
2491 #define uintSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTSI])
2492 #define intDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTDI])
2493 #define uintDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTDI])
2494 #define intTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTTI])
2495 #define uintTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTTI])
2496 #define float_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_float])
2497 #define double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_double])
2498 #define long_double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_long_double])
2499 #define dfloat64_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat64])
2500 #define dfloat128_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat128])
2501 #define void_type_internal_node		 (rs6000_builtin_types[RS6000_BTI_void])
2502 #define ieee128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2503 #define ibm128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2504 #define const_str_type_node		 (rs6000_builtin_types[RS6000_BTI_const_str])
2505 #define vector_pair_type_node		 (rs6000_builtin_types[RS6000_BTI_vector_pair])
2506 #define vector_quad_type_node		 (rs6000_builtin_types[RS6000_BTI_vector_quad])
2507 #define pcvoid_type_node		 (rs6000_builtin_types[RS6000_BTI_const_ptr_void])
2508 #define ptr_V16QI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V16QI])
2509 #define ptr_V1TI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V1TI])
2510 #define ptr_V2DI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V2DI])
2511 #define ptr_V2DF_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V2DF])
2512 #define ptr_V4SI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V4SI])
2513 #define ptr_V4SF_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V4SF])
2514 #define ptr_V8HI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V8HI])
2515 #define ptr_unsigned_V16QI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V16QI])
2516 #define ptr_unsigned_V1TI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V1TI])
2517 #define ptr_unsigned_V8HI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V8HI])
2518 #define ptr_unsigned_V4SI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V4SI])
2519 #define ptr_unsigned_V2DI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V2DI])
2520 #define ptr_bool_V16QI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_bool_V16QI])
2521 #define ptr_bool_V8HI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_bool_V8HI])
2522 #define ptr_bool_V4SI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_bool_V4SI])
2523 #define ptr_bool_V2DI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_bool_V2DI])
2524 #define ptr_bool_V1TI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_bool_V1TI])
2525 #define ptr_pixel_V8HI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_pixel_V8HI])
2526 #define ptr_intQI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_INTQI])
2527 #define ptr_uintQI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_UINTQI])
2528 #define ptr_intHI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_INTHI])
2529 #define ptr_uintHI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_UINTHI])
2530 #define ptr_intSI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_INTSI])
2531 #define ptr_uintSI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_UINTSI])
2532 #define ptr_intDI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_INTDI])
2533 #define ptr_uintDI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_UINTDI])
2534 #define ptr_intTI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_INTTI])
2535 #define ptr_uintTI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_UINTTI])
2536 #define ptr_long_integer_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_long_integer])
2537 #define ptr_long_unsigned_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_long_unsigned])
2538 #define ptr_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_float])
2539 #define ptr_double_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_double])
2540 #define ptr_long_double_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_long_double])
2541 #define ptr_dfloat64_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_dfloat64])
2542 #define ptr_dfloat128_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_dfloat128])
2543 #define ptr_vector_pair_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_vector_pair])
2544 #define ptr_vector_quad_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_vector_quad])
2545 #define ptr_long_long_integer_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_long_long])
2546 #define ptr_long_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long_unsigned])
2547 
2548 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2549 
2550 #ifndef USED_FOR_TARGET
2551 extern GTY(()) tree altivec_builtin_mask_for_load;
2552 extern GTY(()) section *toc_section;
2553 
2554 /* A C structure for machine-specific, per-function data.
2555    This is added to the cfun structure.  */
2556 typedef struct GTY(()) machine_function
2557 {
2558   /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
2559   int ra_needs_full_frame;
2560   /* Flags if __builtin_return_address (0) was used.  */
2561   int ra_need_lr;
2562   /* Cache lr_save_p after expansion of builtin_eh_return.  */
2563   int lr_save_state;
2564   /* Whether we need to save the TOC to the reserved stack location in the
2565      function prologue.  */
2566   bool save_toc_in_prologue;
2567   /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
2568      varargs save area.  */
2569   HOST_WIDE_INT varargs_save_offset;
2570   /* Alternative internal arg pointer for -fsplit-stack.  */
2571   rtx split_stack_arg_pointer;
2572   bool split_stack_argp_used;
2573   /* Flag if r2 setup is needed with ELFv2 ABI.  */
2574   bool r2_setup_needed;
2575   /* The number of components we use for separate shrink-wrapping.  */
2576   int n_components;
2577   /* The components already handled by separate shrink-wrapping, which should
2578      not be considered by the prologue and epilogue.  */
2579   bool gpr_is_wrapped_separately[32];
2580   bool fpr_is_wrapped_separately[32];
2581   bool lr_is_wrapped_separately;
2582   bool toc_is_wrapped_separately;
2583   bool mma_return_type_error;
2584 } machine_function;
2585 #endif
2586 
2587 
2588 #define TARGET_SUPPORTS_WIDE_INT 1
2589 
2590 #if (GCC_VERSION >= 3000)
2591 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2592 #endif
2593 
2594 /* Whether a given VALUE is a valid 16 or 34-bit signed integer.  */
2595 #define SIGNED_INTEGER_NBIT_P(VALUE, N)					\
2596   IN_RANGE ((VALUE),							\
2597 	    -(HOST_WIDE_INT_1 << ((N)-1)),				\
2598 	    (HOST_WIDE_INT_1 << ((N)-1)) - 1)
2599 
2600 #define SIGNED_INTEGER_16BIT_P(VALUE)	SIGNED_INTEGER_NBIT_P (VALUE, 16)
2601 #define SIGNED_INTEGER_34BIT_P(VALUE)	SIGNED_INTEGER_NBIT_P (VALUE, 34)
2602 
2603 /* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra
2604    argument that gives a length to validate a range of addresses, to allow for
2605    splitting insns into several insns, each of which has an offsettable
2606    address.  */
2607 #define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA)			\
2608   IN_RANGE ((VALUE),							\
2609 	    -(HOST_WIDE_INT_1 << 15),					\
2610 	    (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA))
2611 
2612 #define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA)			\
2613   IN_RANGE ((VALUE),							\
2614 	    -(HOST_WIDE_INT_1 << 33),					\
2615 	    (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA))
2616 
2617 /* Define this if some processing needs to be done before outputting the
2618    assembler code.  On the PowerPC, we remember if the current insn is a normal
2619    prefixed insn where we need to emit a 'p' before the insn.  */
2620 #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS)			\
2621 do									\
2622   {									\
2623     if (TARGET_PREFIXED)						\
2624       rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS);		\
2625   }									\
2626 while (0)
2627 
2628 /* Do anything special before emitting an opcode.  We use it to emit a 'p' for
2629    prefixed insns that is set in FINAL_PRESCAN_INSN.  */
2630 #define ASM_OUTPUT_OPCODE(STREAM, OPCODE)				\
2631   do									\
2632     {									\
2633      if (TARGET_PREFIXED)						\
2634        rs6000_asm_output_opcode (STREAM);				\
2635     }									\
2636   while (0)
2637 
2638 /* Disable generation of scalar modulo instructions due to performance issues
2639    with certain input values.  This can be removed in the future when the
2640    issues have been resolved.  */
2641 #define RS6000_DISABLE_SCALAR_MODULO 1
2642 
2643