xref: /netbsd-src/external/gpl3/gcc/dist/gcc/config/arm/arm.h (revision e9e6e0f6fbc36b8de7586170291cf5fc97cab8b6)
1 /* Definitions of target machine for GNU compiler, for ARM.
2    Copyright (C) 1991-2022 Free Software Foundation, Inc.
3    Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4    and Martin Simmons (@harleqn.co.uk).
5    More major hacks by Richard Earnshaw (rearnsha@arm.com)
6    Minor hacks by Nick Clifton (nickc@cygnus.com)
7 
8    This file is part of GCC.
9 
10    GCC is free software; you can redistribute it and/or modify it
11    under the terms of the GNU General Public License as published
12    by the Free Software Foundation; either version 3, or (at your
13    option) any later version.
14 
15    GCC is distributed in the hope that it will be useful, but WITHOUT
16    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18    License for more details.
19 
20    Under Section 7 of GPL version 3, you are granted additional
21    permissions described in the GCC Runtime Library Exception, version
22    3.1, as published by the Free Software Foundation.
23 
24    You should have received a copy of the GNU General Public License and
25    a copy of the GCC Runtime Library Exception along with this program;
26    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
27    <http://www.gnu.org/licenses/>.  */
28 
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31 
32 /* We can't use machine_mode inside a generator file because it
33    hasn't been created yet; we shouldn't be using any code that
34    needs the real definition though, so this ought to be safe.  */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41 
42 #include "config/vxworks-dummy.h"
43 
44 /* The architecture define.  */
45 extern char arm_arch_name[];
46 
47 /* Target CPU builtins.  */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
49 
50 #include "config/arm/arm-opts.h"
51 
52 /* The processor for which instructions should be scheduled.  */
53 extern enum processor_type arm_tune;
54 
55 typedef enum arm_cond_code
56 {
57   ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
58   ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
59 }
60 arm_cc;
61 
62 extern arm_cc arm_current_cc;
63 
64 #define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
65 
66 /* The maximum number of instructions that is beneficial to
67    conditionally execute. */
68 #undef MAX_CONDITIONAL_EXECUTE
69 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
70 
71 extern int arm_target_label;
72 extern int arm_ccfsm_state;
73 extern GTY(()) rtx arm_target_insn;
74 /* Callback to output language specific object attributes.  */
75 extern void (*arm_lang_output_object_attributes_hook)(void);
76 
77 /* This type is the user-visible __fp16.  We need it in a few places in
78    the backend.  Defined in arm-builtins.cc.  */
79 extern tree arm_fp16_type_node;
80 
81 /* This type is the user-visible __bf16.  We need it in a few places in
82    the backend.  Defined in arm-builtins.cc.  */
83 extern tree arm_bf16_type_node;
84 extern tree arm_bf16_ptr_type_node;
85 
86 
87 #undef  CPP_SPEC
88 #define CPP_SPEC "%(subtarget_cpp_spec)"
89 
90 #ifndef CC1_SPEC
91 #define CC1_SPEC ""
92 #endif
93 
94 /* This macro defines names of additional specifications to put in the specs
95    that can be used in various specifications like CC1_SPEC.  Its definition
96    is an initializer with a subgrouping for each command option.
97 
98    Each subgrouping contains a string constant, that defines the
99    specification name, and a string constant that used by the GCC driver
100    program.
101 
102    Do not define this macro if it does not need to do anything.  */
103 #define EXTRA_SPECS						\
104   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
105   { "asm_cpu_spec",		ASM_CPU_SPEC },			\
106   SUBTARGET_EXTRA_SPECS
107 
108 #ifndef SUBTARGET_EXTRA_SPECS
109 #define SUBTARGET_EXTRA_SPECS
110 #endif
111 
112 #ifndef SUBTARGET_CPP_SPEC
113 #define SUBTARGET_CPP_SPEC      ""
114 #endif
115 
116 /* Tree Target Specification.  */
117 #define TARGET_ARM_P(flags)    (!TARGET_THUMB_P (flags))
118 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
119 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
120 #define TARGET_32BIT_P(flags)  (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
121 
122 /* Run-time Target Specification.  */
123 /* Use hardware floating point instructions. -mgeneral-regs-only prevents
124 the use of floating point instructions and registers but does not prevent
125 emission of floating point pcs attributes.  */
126 #define TARGET_HARD_FLOAT_SUB	(arm_float_abi != ARM_FLOAT_ABI_SOFT	\
127 				 && bitmap_bit_p (arm_active_target.isa, \
128 						  isa_bit_vfpv2) \
129 				 && TARGET_32BIT)
130 
131 #define TARGET_HARD_FLOAT	(TARGET_HARD_FLOAT_SUB		\
132 				 && !TARGET_GENERAL_REGS_ONLY)
133 
134 #define TARGET_SOFT_FLOAT	(!TARGET_HARD_FLOAT_SUB)
135 /* User has permitted use of FP instructions, if they exist for this
136    target.  */
137 #define TARGET_MAYBE_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
138 /* Use hardware floating point calling convention.  */
139 #define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
140 #define TARGET_IWMMXT			(arm_arch_iwmmxt)
141 #define TARGET_IWMMXT2			(arm_arch_iwmmxt2)
142 #define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_32BIT \
143 					 && !TARGET_GENERAL_REGS_ONLY)
144 #define TARGET_REALLY_IWMMXT2		(TARGET_IWMMXT2 && TARGET_32BIT \
145 					 && !TARGET_GENERAL_REGS_ONLY)
146 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
147 #define TARGET_ARM                      (! TARGET_THUMB)
148 #define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
149 #define TARGET_BACKTRACE	        (crtl->is_leaf \
150 				         ? TARGET_TPCS_LEAF_FRAME \
151 				         : TARGET_TPCS_FRAME)
152 #define TARGET_AAPCS_BASED \
153     (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
154 
155 #define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
156 #define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
157 #define TARGET_GNU2_TLS			(target_tls_dialect == TLS_GNU2)
158 
159 /* Only 16-bit thumb code.  */
160 #define TARGET_THUMB1			(TARGET_THUMB && !arm_arch_thumb2)
161 /* Arm or Thumb-2 32-bit code.  */
162 #define TARGET_32BIT			(TARGET_ARM || arm_arch_thumb2)
163 /* 32-bit Thumb-2 code.  */
164 #define TARGET_THUMB2			(TARGET_THUMB && arm_arch_thumb2)
165 /* Thumb-1 only.  */
166 #define TARGET_THUMB1_ONLY		(TARGET_THUMB1 && !arm_arch_notm)
167 
168 #define TARGET_LDRD			(arm_arch5te && ARM_DOUBLEWORD_ALIGN \
169                                          && !TARGET_THUMB1)
170 
171 #define TARGET_CRC32			(arm_arch_crc)
172 
173 /* Thumb-2 but also has some conditional arithmetic instructions like csinc,
174    csinv, etc. */
175 #define TARGET_COND_ARITH		(arm_arch8_1m_main)
176 
177 /* The following two macros concern the ability to execute coprocessor
178    instructions for VFPv3 or NEON.  TARGET_VFP3/TARGET_VFPD32 are currently
179    only ever tested when we know we are generating for VFP hardware; we need
180    to be more careful with TARGET_NEON as noted below.  */
181 
182 /* FPU is has the full VFPv3/NEON register file of 32 D registers.  */
183 #define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
184 
185 /* FPU supports VFPv3 instructions.  */
186 #define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv3))
187 
188 /* FPU supports FPv5 instructions.  */
189 #define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_fpv5))
190 
191 /* FPU only supports VFP single-precision instructions.  */
192 #define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
193 
194 /* FPU supports VFP double-precision instructions.  */
195 #define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
196 
197 /* FPU supports half-precision floating-point with NEON element load/store.  */
198 #define TARGET_NEON_FP16					\
199   (bitmap_bit_p (arm_active_target.isa, isa_bit_neon)		\
200    && bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
201 
202 /* FPU supports VFP half-precision floating-point conversions.  */
203 #define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
204 
205 /* FPU supports converting between HFmode and DFmode in a single hardware
206    step.  */
207 #define TARGET_FP16_TO_DOUBLE						\
208   (TARGET_HARD_FLOAT && TARGET_FP16 && TARGET_VFP5 && TARGET_VFP_DOUBLE)
209 
210 /* FPU supports fused-multiply-add operations.  */
211 #define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv4))
212 
213 /* FPU supports Crypto extensions.  */
214 #define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
215 
216 /* FPU supports Neon instructions.  The setting of this macro gets
217    revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
218    and TARGET_HARD_FLOAT to ensure that NEON instructions are
219    available.  */
220 #define TARGET_NEON							\
221   (TARGET_32BIT && TARGET_HARD_FLOAT					\
222    && bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
223 
224 /* FPU supports ARMv8.1 Adv.SIMD extensions.  */
225 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
226 
227 /* Supports the Dot Product AdvSIMD extensions.  */
228 #define TARGET_DOTPROD (TARGET_NEON && TARGET_VFP5			\
229 			&& bitmap_bit_p (arm_active_target.isa,		\
230 					isa_bit_dotprod)		\
231 			&& arm_arch8_2)
232 
233 /* Supports the Armv8.3-a Complex number AdvSIMD extensions.  */
234 #define TARGET_COMPLEX (TARGET_NEON && arm_arch8_3)
235 
236 /* FPU supports the floating point FP16 instructions for ARMv8.2-A
237    and later.  */
238 #define TARGET_VFP_FP16INST \
239   (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 && arm_fp16_inst)
240 
241 /* Target supports the floating point FP16 instructions from ARMv8.2-A
242    and later.  */
243 #define TARGET_FP16FML (TARGET_NEON					\
244 			&& bitmap_bit_p (arm_active_target.isa,	\
245 					isa_bit_fp16fml)		\
246 			&& arm_arch8_2)
247 
248 /* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later.  */
249 #define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
250 
251 /* FPU supports 8-bit Integer Matrix Multiply (I8MM) AdvSIMD extensions.  */
252 #define TARGET_I8MM (TARGET_NEON && arm_arch8_2 && arm_arch_i8mm)
253 
254 /* FPU supports Brain half-precision floating-point (BFloat16) extension.  */
255 #define TARGET_BF16_FP (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 \
256 			&& arm_arch8_2 && arm_arch_bf16)
257 #define TARGET_BF16_SIMD (TARGET_NEON && TARGET_VFP5 \
258 			  && arm_arch8_2 && arm_arch_bf16)
259 
260 /* Q-bit is present.  */
261 #define TARGET_ARM_QBIT \
262   (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7))
263 /* Saturation operation, e.g. SSAT.  */
264 #define TARGET_ARM_SAT \
265   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
266 /* "DSP" multiply instructions, eg. SMULxy.  */
267 #define TARGET_DSP_MULTIPLY \
268   (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7em))
269 /* Integer SIMD instructions, and extend-accumulate instructions.  */
270 #define TARGET_INT_SIMD \
271   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
272 
273 /* Should MOVW/MOVT be used in preference to a constant pool.  */
274 #define TARGET_USE_MOVT \
275   (TARGET_HAVE_MOVT \
276    && (arm_disable_literal_pool \
277        || (!optimize_size && !current_tune->prefer_constant_pool)))
278 
279 /* Nonzero if this chip provides the DMB instruction.  */
280 #define TARGET_HAVE_DMB		(arm_arch6m || arm_arch7)
281 
282 /* Nonzero if this chip implements a memory barrier via CP15.  */
283 #define TARGET_HAVE_DMB_MCR	(arm_arch6 && ! TARGET_HAVE_DMB \
284 				 && ! TARGET_THUMB1)
285 
286 /* Nonzero if this chip implements a memory barrier instruction.  */
287 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
288 
289 /* Nonzero if this chip supports ldrex and strex */
290 #define TARGET_HAVE_LDREX        ((arm_arch6 && TARGET_ARM)	\
291 				  || arm_arch7			\
292 				  || (arm_arch8 && !arm_arch_notm))
293 
294 /* Nonzero if this chip supports LPAE.  */
295 #define TARGET_HAVE_LPAE (arm_arch_lpae)
296 
297 /* Nonzero if this chip supports ldrex{bh} and strex{bh}.  */
298 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM)		\
299 			     || arm_arch7			\
300 			     || (arm_arch8 && !arm_arch_notm))
301 
302 /* Nonzero if this chip supports ldrexd and strexd.  */
303 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
304 			     || arm_arch7) && arm_arch_notm)
305 
306 /* Nonzero if this chip supports load-acquire and store-release.  */
307 #define TARGET_HAVE_LDACQ	(TARGET_ARM_ARCH >= 8)
308 
309 /* Nonzero if this chip supports LDAEXD and STLEXD.  */
310 #define TARGET_HAVE_LDACQEXD	(TARGET_ARM_ARCH >= 8	\
311 				 && TARGET_32BIT	\
312 				 && arm_arch_notm)
313 
314 /* Nonzero if this chip provides the MOVW and MOVT instructions.  */
315 #define TARGET_HAVE_MOVT	(arm_arch_thumb2 || arm_arch8)
316 
317 /* Nonzero if this chip provides the CBZ and CBNZ instructions.  */
318 #define TARGET_HAVE_CBZ		(arm_arch_thumb2 || arm_arch8)
319 
320 /* Nonzero if this chip provides Armv8.1-M Mainline Security extensions
321    instructions (most are floating-point related).  */
322 #define TARGET_HAVE_FPCXT_CMSE	(arm_arch8_1m_main)
323 
324 #define TARGET_HAVE_MVE (arm_float_abi != ARM_FLOAT_ABI_SOFT \
325 			 && bitmap_bit_p (arm_active_target.isa, \
326 					  isa_bit_mve) \
327 			 && !TARGET_GENERAL_REGS_ONLY)
328 
329 #define TARGET_HAVE_MVE_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT \
330 			       && bitmap_bit_p (arm_active_target.isa, \
331 						isa_bit_mve_float) \
332 			       && !TARGET_GENERAL_REGS_ONLY)
333 
334 /* MVE have few common instructions as VFP, like VLDM alias VPOP, VLDR, VSTM
335    alia VPUSH, VSTR and VMOV, VMSR and VMRS.  In the same manner it updates few
336    registers such as FPCAR, FPCCR, FPDSCR, FPSCR, MVFR0, MVFR1 and MVFR2.  All
337    the VFP instructions, RTL patterns and register are guarded by
338    TARGET_HARD_FLOAT.  But the common instructions, RTL pattern and registers
339    between MVE and VFP will be guarded by the following macro TARGET_VFP_BASE
340    hereafter.  */
341 
342 #define TARGET_VFP_BASE (arm_float_abi != ARM_FLOAT_ABI_SOFT \
343 			 && bitmap_bit_p (arm_active_target.isa, \
344 					  isa_bit_vfp_base) \
345 			 && !TARGET_GENERAL_REGS_ONLY)
346 
347 /* Nonzero if integer division instructions supported.  */
348 #define TARGET_IDIV	((TARGET_ARM && arm_arch_arm_hwdiv)	\
349 			 || (TARGET_THUMB && arm_arch_thumb_hwdiv))
350 
351 /* Nonzero if disallow volatile memory access in IT block.  */
352 #define TARGET_NO_VOLATILE_CE		(arm_arch_no_volatile_ce)
353 
354 /* Nonzero if chip supports the Custom Datapath Extension.  */
355 #define TARGET_CDE	(arm_arch_cde && arm_arch8 && !arm_arch_notm)
356 
357 /* Should constant I be slplit for OP.  */
358 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
359 				((optimize >= 2) \
360 				 && can_create_pseudo_p () \
361 				 && !const_ok_for_op (i, op))
362 
363 /* True iff the full BPABI is being used.  If TARGET_BPABI is true,
364    then TARGET_AAPCS_BASED must be true -- but the converse does not
365    hold.  TARGET_BPABI implies the use of the BPABI runtime library,
366    etc., in addition to just the AAPCS calling conventions.  */
367 #ifndef TARGET_BPABI
368 #define TARGET_BPABI false
369 #endif
370 
371 /* Transform lane numbers on big endian targets. This is used to allow for the
372    endianness difference between NEON architectural lane numbers and those
373    used in RTL */
374 #define NEON_ENDIAN_LANE_N(mode, n)  \
375   (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
376 
377 /* Support for a compile-time default CPU, et cetera.  The rules are:
378    --with-arch is ignored if -march or -mcpu are specified.
379    --with-cpu is ignored if -march or -mcpu are specified, and is overridden
380     by --with-arch.
381    --with-tune is ignored if -mtune or -mcpu are specified (but not affected
382      by -march).
383    --with-float is ignored if -mfloat-abi is specified.
384    --with-fpu is ignored if -mfpu is specified.
385    --with-abi is ignored if -mabi is specified.
386    --with-tls is ignored if -mtls-dialect is specified.
387    Note: --with-mode is not handled here, that has a special rule
388    TARGET_MODE_CHECK that also takes into account the selected CPU and
389    architecture.  */
390 #define OPTION_DEFAULT_SPECS \
391   {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
392   {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
393   {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
394   {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
395   {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
396   {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
397   {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
398 
399 extern const struct arm_fpu_desc
400 {
401   const char *name;
402   enum isa_feature isa_bits[isa_num_bits];
403 } all_fpus[];
404 
405 /* Which floating point hardware to schedule for.  */
406 extern int arm_fpu_attr;
407 
408 #ifndef TARGET_DEFAULT_FLOAT_ABI
409 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
410 #endif
411 
412 #ifndef ARM_DEFAULT_ABI
413 #define ARM_DEFAULT_ABI ARM_ABI_APCS
414 #endif
415 
416 /* AAPCS based ABIs use short enums by default.  */
417 #ifndef ARM_DEFAULT_SHORT_ENUMS
418 #define ARM_DEFAULT_SHORT_ENUMS \
419   (TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
420 #endif
421 
422 /* Map each of the micro-architecture variants to their corresponding
423    major architecture revision.  */
424 
425 enum base_architecture
426 {
427   BASE_ARCH_0 = 0,
428   BASE_ARCH_2 = 2,
429   BASE_ARCH_3 = 3,
430   BASE_ARCH_3M = 3,
431   BASE_ARCH_4 = 4,
432   BASE_ARCH_4T = 4,
433   BASE_ARCH_5T = 5,
434   BASE_ARCH_5TE = 5,
435   BASE_ARCH_5TEJ = 5,
436   BASE_ARCH_6 = 6,
437   BASE_ARCH_6J = 6,
438   BASE_ARCH_6KZ = 6,
439   BASE_ARCH_6K = 6,
440   BASE_ARCH_6T2 = 6,
441   BASE_ARCH_6M = 6,
442   BASE_ARCH_6Z = 6,
443   BASE_ARCH_7 = 7,
444   BASE_ARCH_7A = 7,
445   BASE_ARCH_7R = 7,
446   BASE_ARCH_7M = 7,
447   BASE_ARCH_7EM = 7,
448   BASE_ARCH_8A = 8,
449   BASE_ARCH_8M_BASE = 8,
450   BASE_ARCH_8M_MAIN = 8,
451   BASE_ARCH_8R = 8,
452   BASE_ARCH_9A = 9
453 };
454 
455 /* The major revision number of the ARM Architecture implemented by the target.  */
456 extern enum base_architecture arm_base_arch;
457 
458 /* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
459 extern int arm_arch4;
460 
461 /* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
462 extern int arm_arch4t;
463 
464 /* Nonzero if this chip supports the ARM Architecture 5T extensions.  */
465 extern int arm_arch5t;
466 
467 /* Nonzero if this chip supports the ARM Architecture 5TE extensions.  */
468 extern int arm_arch5te;
469 
470 /* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
471 extern int arm_arch6;
472 
473 /* Nonzero if this chip supports the ARM Architecture 6k extensions.  */
474 extern int arm_arch6k;
475 
476 /* Nonzero if instructions present in ARMv6-M can be used.  */
477 extern int arm_arch6m;
478 
479 /* Nonzero if this chip supports the ARM Architecture 7 extensions.  */
480 extern int arm_arch7;
481 
482 /* Nonzero if instructions not present in the 'M' profile can be used.  */
483 extern int arm_arch_notm;
484 
485 /* Nonzero if instructions present in ARMv7E-M can be used.  */
486 extern int arm_arch7em;
487 
488 /* Nonzero if this chip supports the ARM Architecture 8 extensions.  */
489 extern int arm_arch8;
490 
491 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions.  */
492 extern int arm_arch8_1;
493 
494 /* Nonzero if this chip supports the ARM Architecture 8.2 extensions.  */
495 extern int arm_arch8_2;
496 
497 /* Nonzero if this chip supports the ARM Architecture 8.3 extensions.  */
498 extern int arm_arch8_3;
499 
500 /* Nonzero if this chip supports the ARM Architecture 8.4 extensions.  */
501 extern int arm_arch8_4;
502 
503 /* Nonzero if this chip supports the ARM Architecture 8.1-M Mainline
504    extensions.  */
505 extern int arm_arch8_1m_main;
506 
507 /* Nonzero if this chip supports the FP16 instructions extension of ARM
508    Architecture 8.2.  */
509 extern int arm_fp16_inst;
510 
511 /* Nonzero if this chip can benefit from load scheduling.  */
512 extern int arm_ld_sched;
513 
514 /* Nonzero if this chip is a StrongARM.  */
515 extern int arm_tune_strongarm;
516 
517 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
518 extern int arm_arch_iwmmxt;
519 
520 /* Nonzero if this chip supports Intel Wireless MMX2 technology.  */
521 extern int arm_arch_iwmmxt2;
522 
523 /* Nonzero if this chip is an XScale.  */
524 extern int arm_arch_xscale;
525 
526 /* Nonzero if tuning for XScale.  */
527 extern int arm_tune_xscale;
528 
529 /* Nonzero if tuning for stores via the write buffer.  */
530 extern int arm_tune_wbuf;
531 
532 /* Nonzero if tuning for Cortex-A9.  */
533 extern int arm_tune_cortex_a9;
534 
535 /* Nonzero if we should define __THUMB_INTERWORK__ in the
536    preprocessor.
537    XXX This is a bit of a hack, it's intended to help work around
538    problems in GLD which doesn't understand that armv5t code is
539    interworking clean.  */
540 extern int arm_cpp_interwork;
541 
542 /* Nonzero if chip supports Thumb 1.  */
543 extern int arm_arch_thumb1;
544 
545 /* Nonzero if chip supports Thumb 2.  */
546 extern int arm_arch_thumb2;
547 
548 /* Nonzero if chip supports integer division instruction in ARM mode.  */
549 extern int arm_arch_arm_hwdiv;
550 
551 /* Nonzero if chip supports integer division instruction in Thumb mode.  */
552 extern int arm_arch_thumb_hwdiv;
553 
554 /* Nonzero if chip disallows volatile memory access in IT block.  */
555 extern int arm_arch_no_volatile_ce;
556 
557 /* Nonzero if we shouldn't use literal pools.  */
558 #ifndef USED_FOR_TARGET
559 extern bool arm_disable_literal_pool;
560 #endif
561 
562 /* Nonzero if chip supports the ARMv8 CRC instructions.  */
563 extern int arm_arch_crc;
564 
565 /* Nonzero if chip supports the ARMv8-M Security Extensions.  */
566 extern int arm_arch_cmse;
567 
568 /* Nonzero if chip supports the I8MM instructions.  */
569 extern int arm_arch_i8mm;
570 
571 /* Nonzero if chip supports the BFloat16 instructions.  */
572 extern int arm_arch_bf16;
573 
574 /* Nonzero if chip supports the Custom Datapath Extension.  */
575 extern int arm_arch_cde;
576 extern int arm_arch_cde_coproc;
577 extern const int arm_arch_cde_coproc_bits[];
578 #define ARM_CDE_CONST_COPROC	7
579 #define ARM_CCDE_CONST_1	((1 << 13) - 1)
580 #define ARM_CCDE_CONST_2	((1 << 9 ) - 1)
581 #define ARM_CCDE_CONST_3	((1 << 6 ) - 1)
582 #define ARM_VCDE_CONST_1	((1 << 11) - 1)
583 #define ARM_VCDE_CONST_2	((1 << 6 ) - 1)
584 #define ARM_VCDE_CONST_3	((1 << 3 ) - 1)
585 #define ARM_MVE_CDE_CONST_1	((1 << 12) - 1)
586 #define ARM_MVE_CDE_CONST_2	((1 << 7 ) - 1)
587 #define ARM_MVE_CDE_CONST_3	((1 << 4 ) - 1)
588 
589 #ifndef TARGET_DEFAULT
590 #define TARGET_DEFAULT  (MASK_APCS_FRAME)
591 #endif
592 
593 /* Nonzero if PIC code requires explicit qualifiers to generate
594    PLT and GOT relocs rather than the assembler doing so implicitly.
595    Subtargets can override these if required.  */
596 #ifndef NEED_GOT_RELOC
597 #define NEED_GOT_RELOC	0
598 #endif
599 #ifndef NEED_PLT_RELOC
600 #define NEED_PLT_RELOC	0
601 #endif
602 
603 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
604 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
605 #endif
606 
607 /* Nonzero if we need to refer to the GOT with a PC-relative
608    offset.  In other words, generate
609 
610    .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
611 
612    rather than
613 
614    .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
615 
616    The default is true, which matches NetBSD.  Subtargets can
617    override this if required.  */
618 #ifndef GOT_PCREL
619 #define GOT_PCREL   1
620 #endif
621 
622 /* Target machine storage Layout.  */
623 
624 /* Nonzero if this chip provides Armv8.1-M Mainline
625    LOB (low overhead branch features) extension instructions.  */
626 #define TARGET_HAVE_LOB (arm_arch8_1m_main)
627 
628 /* Define this macro if it is advisable to hold scalars in registers
629    in a wider mode than that declared by the program.  In such cases,
630    the value is constrained to be within the bounds of the declared
631    type, but kept valid in the wider mode.  The signedness of the
632    extension may differ from that of the type.  */
633 
634 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
635   if (GET_MODE_CLASS (MODE) == MODE_INT		\
636       && GET_MODE_SIZE (MODE) < 4)      	\
637     {						\
638       (MODE) = SImode;				\
639     }
640 
641 /* Define this if most significant bit is lowest numbered
642    in instructions that operate on numbered bit-fields.  */
643 #define BITS_BIG_ENDIAN  0
644 
645 /* Define this if most significant byte of a word is the lowest numbered.
646    Most ARM processors are run in little endian mode, so that is the default.
647    If you want to have it run-time selectable, change the definition in a
648    cover file to be TARGET_BIG_ENDIAN.  */
649 #define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
650 
651 /* Define this if most significant word of a multiword number is the lowest
652    numbered.  */
653 #define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN)
654 
655 #define UNITS_PER_WORD	4
656 
657 /* True if natural alignment is used for doubleword types.  */
658 #define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
659 
660 #define DOUBLEWORD_ALIGNMENT 64
661 
662 #define PARM_BOUNDARY  	32
663 
664 #define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
665 
666 #define PREFERRED_STACK_BOUNDARY \
667     (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
668 
669 #define FUNCTION_BOUNDARY_P(flags)  (TARGET_THUMB_P (flags) ? 16 : 32)
670 #define FUNCTION_BOUNDARY           (FUNCTION_BOUNDARY_P (target_flags))
671 
672 /* The lowest bit is used to indicate Thumb-mode functions, so the
673    vbit must go into the delta field of pointers to member
674    functions.  */
675 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
676 
677 #define EMPTY_FIELD_BOUNDARY  32
678 
679 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
680 
681 #define MALLOC_ABI_ALIGNMENT  BIGGEST_ALIGNMENT
682 
683 /* XXX Blah -- this macro is used directly by libobjc.  Since it
684    supports no vector modes, cut out the complexity and fall back
685    on BIGGEST_FIELD_ALIGNMENT.  */
686 #ifdef IN_TARGET_LIBS
687 #define BIGGEST_FIELD_ALIGNMENT 64
688 #endif
689 
690 /* Align definitions of arrays, unions and structures so that
691    initializations and copies can be made more efficient.  This is not
692    ABI-changing, so it only affects places where we can see the
693    definition. Increasing the alignment tends to introduce padding,
694    so don't do this when optimizing for size/conserving stack space. */
695 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN)				\
696   (((COND) && ((ALIGN) < BITS_PER_WORD)					\
697     && (TREE_CODE (EXP) == ARRAY_TYPE					\
698 	|| TREE_CODE (EXP) == UNION_TYPE				\
699 	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
700 
701 /* Align global data. */
702 #define DATA_ALIGNMENT(EXP, ALIGN)			\
703   ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
704 
705 /* Similarly, make sure that objects on the stack are sensibly aligned.  */
706 #define LOCAL_ALIGNMENT(EXP, ALIGN)				\
707   ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
708 
709 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
710    value set in previous versions of this toolchain was 8, which produces more
711    compact structures.  The command line option -mstructure_size_boundary=<n>
712    can be used to change this value.  For compatibility with the ARM SDK
713    however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
714    0020D) page 2-20 says "Structures are aligned on word boundaries".
715    The AAPCS specifies a value of 8.  */
716 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
717 
718 /* This is the value used to initialize arm_structure_size_boundary.  If a
719    particular arm target wants to change the default value it should change
720    the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
721    for an example of this.  */
722 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
723 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
724 #endif
725 
726 /* Nonzero if move instructions will actually fail to work
727    when given unaligned data.  */
728 #define STRICT_ALIGNMENT 1
729 
730 /* wchar_t is unsigned under the AAPCS.  */
731 #ifndef WCHAR_TYPE
732 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
733 
734 #define WCHAR_TYPE_SIZE BITS_PER_WORD
735 #endif
736 
737 /* Sized for fixed-point types.  */
738 
739 #define SHORT_FRACT_TYPE_SIZE 8
740 #define FRACT_TYPE_SIZE 16
741 #define LONG_FRACT_TYPE_SIZE 32
742 #define LONG_LONG_FRACT_TYPE_SIZE 64
743 
744 #define SHORT_ACCUM_TYPE_SIZE 16
745 #define ACCUM_TYPE_SIZE 32
746 #define LONG_ACCUM_TYPE_SIZE 64
747 #define LONG_LONG_ACCUM_TYPE_SIZE 64
748 
749 #define MAX_FIXED_MODE_SIZE 64
750 
751 #ifndef SIZE_TYPE
752 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
753 #endif
754 
755 #ifndef PTRDIFF_TYPE
756 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
757 #endif
758 
759 /* AAPCS requires that structure alignment is affected by bitfields.  */
760 #ifndef PCC_BITFIELD_TYPE_MATTERS
761 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
762 #endif
763 
764 /* The maximum size of the sync library functions supported.  */
765 #ifndef MAX_SYNC_LIBFUNC_SIZE
766 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
767 #endif
768 
769 
770 /* Standard register usage.  */
771 
772 /* Register allocation in ARM Procedure Call Standard
773    (S - saved over call, F - Frame-related).
774 
775 	r0	   *	argument word/integer result
776 	r1-r3		argument word
777 
778 	r4-r8	     S	register variable
779 	r9	     S	(rfp) register variable (real frame pointer)
780 
781 	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
782 	r11 	   F S	(fp) argument pointer
783 	r12		(ip) temp workspace
784 	r13  	   F S	(sp) lower end of current stack frame
785 	r14		(lr) link address/workspace
786 	r15	   F	(pc) program counter
787 
788 	cc		This is NOT a real register, but is used internally
789 	                to represent things that use or set the condition
790 			codes.
791 	sfp             This isn't either.  It is used during rtl generation
792 	                since the offset between the frame pointer and the
793 			auto's isn't known until after register allocation.
794 	afp		Nor this, we only need this because of non-local
795 	                goto.  Without it fp appears to be used and the
796 			elimination code won't get rid of sfp.  It tracks
797 			fp exactly at all times.
798 	apsrq		Nor this, it is used to track operations on the Q bit
799 			of APSR by ACLE saturating intrinsics.
800 	apsrge		Nor this, it is used to track operations on the GE bits
801 			of APSR by ACLE SIMD32 intrinsics
802 
803    *: See TARGET_CONDITIONAL_REGISTER_USAGE  */
804 
805 /*	s0-s15		VFP scratch (aka d0-d7).
806 	s16-s31	      S	VFP variable (aka d8-d15).
807 	vfpcc		Not a real register.  Represents the VFP condition
808 			code flags.
809 	vpr		Used to represent MVE VPR predication.  */
810 
811 /* The stack backtrace structure is as follows:
812   fp points to here:  |  save code pointer  |      [fp]
813                       |  return link value  |      [fp, #-4]
814                       |  return sp value    |      [fp, #-8]
815                       |  return fp value    |      [fp, #-12]
816                      [|  saved r10 value    |]
817                      [|  saved r9 value     |]
818                      [|  saved r8 value     |]
819                      [|  saved r7 value     |]
820                      [|  saved r6 value     |]
821                      [|  saved r5 value     |]
822                      [|  saved r4 value     |]
823                      [|  saved r3 value     |]
824                      [|  saved r2 value     |]
825                      [|  saved r1 value     |]
826                      [|  saved r0 value     |]
827   r0-r3 are not normally saved in a C function.  */
828 
829 /* 1 for registers that have pervasive standard uses
830    and are not available for the register allocator.  */
831 #define FIXED_REGISTERS 	\
832 {				\
833   /* Core regs.  */		\
834   0,0,0,0,0,0,0,0,		\
835   0,0,0,0,0,1,0,1,		\
836   /* VFP regs.  */		\
837   1,1,1,1,1,1,1,1,		\
838   1,1,1,1,1,1,1,1,		\
839   1,1,1,1,1,1,1,1,		\
840   1,1,1,1,1,1,1,1,		\
841   1,1,1,1,1,1,1,1,		\
842   1,1,1,1,1,1,1,1,		\
843   1,1,1,1,1,1,1,1,		\
844   1,1,1,1,1,1,1,1,		\
845   /* IWMMXT regs.  */		\
846   1,1,1,1,1,1,1,1,		\
847   1,1,1,1,1,1,1,1,		\
848   1,1,1,1,			\
849   /* Specials.  */		\
850   1,1,1,1,1,1,1			\
851 }
852 
853 /* 1 for registers not available across function calls.
854    These must include the FIXED_REGISTERS and also any
855    registers that can be used without being saved.
856    The latter must include the registers where values are returned
857    and the register where structure-value addresses are passed.
858    Aside from that, you can include as many other registers as you like.
859    The CC is not preserved over function calls on the ARM 6, so it is
860    easier to assume this for all.  SFP is preserved, since FP is.  */
861 #define CALL_USED_REGISTERS	\
862 {				\
863   /* Core regs.  */		\
864   1,1,1,1,0,0,0,0,		\
865   0,0,0,0,1,1,1,1,		\
866   /* VFP Regs.  */		\
867   1,1,1,1,1,1,1,1,		\
868   1,1,1,1,1,1,1,1,		\
869   1,1,1,1,1,1,1,1,		\
870   1,1,1,1,1,1,1,1,		\
871   1,1,1,1,1,1,1,1,		\
872   1,1,1,1,1,1,1,1,		\
873   1,1,1,1,1,1,1,1,		\
874   1,1,1,1,1,1,1,1,		\
875   /* IWMMXT regs.  */		\
876   1,1,1,1,1,1,1,1,		\
877   1,1,1,1,1,1,1,1,		\
878   1,1,1,1,			\
879   /* Specials.  */		\
880   1,1,1,1,1,1,1			\
881 }
882 
883 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
884 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
885 #endif
886 
887 /* These are a couple of extensions to the formats accepted
888    by asm_fprintf:
889      %@ prints out ASM_COMMENT_START
890      %r prints out REGISTER_PREFIX reg_names[arg]  */
891 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
892   case '@':						\
893     fputs (ASM_COMMENT_START, FILE);			\
894     break;						\
895 							\
896   case 'r':						\
897     fputs (REGISTER_PREFIX, FILE);			\
898     fputs (reg_names [va_arg (ARGS, int)], FILE);	\
899     break;
900 
901 /* Round X up to the nearest word.  */
902 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
903 
904 /* Convert fron bytes to ints.  */
905 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
906 
907 /* The number of (integer) registers required to hold a quantity of type MODE.
908    Also used for VFP registers.  */
909 #define ARM_NUM_REGS(MODE)				\
910   ARM_NUM_INTS (GET_MODE_SIZE (MODE))
911 
912 /* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
913 #define ARM_NUM_REGS2(MODE, TYPE)                   \
914   ARM_NUM_INTS ((MODE) == BLKmode ? 		\
915   int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
916 
917 /* The number of (integer) argument register available.  */
918 #define NUM_ARG_REGS		4
919 
920 /* And similarly for the VFP.  */
921 #define NUM_VFP_ARG_REGS	16
922 
923 /* Return the register number of the N'th (integer) argument.  */
924 #define ARG_REGISTER(N) 	(N - 1)
925 
926 /* Specify the registers used for certain standard purposes.
927    The values of these macros are register numbers.  */
928 
929 /* The number of the last argument register.  */
930 #define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
931 
932 /* The numbers of the Thumb register ranges.  */
933 #define FIRST_LO_REGNUM  	0
934 #define LAST_LO_REGNUM  	7
935 #define FIRST_HI_REGNUM		8
936 #define LAST_HI_REGNUM		11
937 
938 /* Overridden by config/arm/bpabi.h.  */
939 #ifndef ARM_UNWIND_INFO
940 #define ARM_UNWIND_INFO  0
941 #endif
942 
943 /* Overriden by config/arm/netbsd-eabi.h.  */
944 #ifndef ARM_DWARF_UNWIND_TABLES
945 #define ARM_DWARF_UNWIND_TABLES 0
946 #endif
947 
948 /* Use r0 and r1 to pass exception handling information.  */
949 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
950 
951 /* The register that holds the return address in exception handlers.  */
952 #define ARM_EH_STACKADJ_REGNUM	2
953 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
954 
955 #ifndef ARM_TARGET2_DWARF_FORMAT
956 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
957 #endif
958 
959 #if ARM_DWARF_UNWIND_TABLES
960 /* DWARF unwinding uses the normal indirect/pcrel vs absptr format
961    for 32bit platforms. */
962 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
963   (flag_pic ? (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
964             : DW_EH_PE_absptr)
965 #else
966 /* ttype entries (the only interesting data references used)
967    use TARGET2 relocations.  */
968 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
969   (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
970 			       : DW_EH_PE_absptr)
971 #endif
972 
973 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
974    as an invisible last argument (possible since varargs don't exist in
975    Pascal), so the following is not true.  */
976 #define STATIC_CHAIN_REGNUM	12
977 
978 /* r9 is the FDPIC register (base register for GOT and FUNCDESC accesses).  */
979 #define FDPIC_REGNUM		9
980 
981 /* Define this to be where the real frame pointer is if it is not possible to
982    work out the offset between the frame pointer and the automatic variables
983    until after register allocation has taken place.  FRAME_POINTER_REGNUM
984    should point to a special register that we will make sure is eliminated.
985 
986    For the Thumb we have another problem.  The TPCS defines the frame pointer
987    as r11, and GCC believes that it is always possible to use the frame pointer
988    as base register for addressing purposes.  (See comments in
989    find_reloads_address()).  But - the Thumb does not allow high registers,
990    including r11, to be used as base address registers.  Hence our problem.
991 
992    The solution used here, and in the old thumb port is to use r7 instead of
993    r11 as the hard frame pointer and to have special code to generate
994    backtrace structures on the stack (if required to do so via a command line
995    option) using r11.  This is the only 'user visible' use of r11 as a frame
996    pointer.  */
997 #define ARM_HARD_FRAME_POINTER_REGNUM	11
998 #define THUMB_HARD_FRAME_POINTER_REGNUM	 7
999 
1000 #define HARD_FRAME_POINTER_REGNUM		\
1001   (TARGET_ARM					\
1002    ? ARM_HARD_FRAME_POINTER_REGNUM		\
1003    : THUMB_HARD_FRAME_POINTER_REGNUM)
1004 
1005 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1006 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1007 
1008 #define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
1009 
1010 /* Register to use for pushing function arguments.  */
1011 #define STACK_POINTER_REGNUM	SP_REGNUM
1012 
1013 #define FIRST_IWMMXT_REGNUM	(LAST_HI_VFP_REGNUM + 1)
1014 #define LAST_IWMMXT_REGNUM	(FIRST_IWMMXT_REGNUM + 15)
1015 
1016 /* Need to sync with WCGR in iwmmxt.md.  */
1017 #define FIRST_IWMMXT_GR_REGNUM	(LAST_IWMMXT_REGNUM + 1)
1018 #define LAST_IWMMXT_GR_REGNUM	(FIRST_IWMMXT_GR_REGNUM + 3)
1019 
1020 #define IS_IWMMXT_REGNUM(REGNUM) \
1021   (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
1022 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
1023   (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
1024 
1025 /* Base register for access to local variables of the function.  */
1026 #define FRAME_POINTER_REGNUM	102
1027 
1028 /* Base register for access to arguments of the function.  */
1029 #define ARG_POINTER_REGNUM	103
1030 
1031 #define FIRST_VFP_REGNUM	16
1032 #define D7_VFP_REGNUM		(FIRST_VFP_REGNUM + 15)
1033 #define LAST_VFP_REGNUM	\
1034   (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1035 
1036 #define IS_VFP_REGNUM(REGNUM) \
1037   (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1038 
1039 /* VFP registers are split into two types: those defined by VFP versions < 3
1040    have D registers overlaid on consecutive pairs of S registers. VFP version 3
1041    defines 16 new D registers (d16-d31) which, for simplicity and correctness
1042    in various parts of the backend, we implement as "fake" single-precision
1043    registers (which would be S32-S63, but cannot be used in that way).  The
1044    following macros define these ranges of registers.  */
1045 #define LAST_LO_VFP_REGNUM	(FIRST_VFP_REGNUM + 31)
1046 #define FIRST_HI_VFP_REGNUM	(LAST_LO_VFP_REGNUM + 1)
1047 #define LAST_HI_VFP_REGNUM	(FIRST_HI_VFP_REGNUM + 31)
1048 
1049 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1050   ((REGNUM) <= LAST_LO_VFP_REGNUM)
1051 
1052 /* DFmode values are only valid in even register pairs.  */
1053 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1054   ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1055 
1056 /* Neon Quad values must start at a multiple of four registers.  */
1057 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1058   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1059 
1060 /* Neon structures of vectors must be in even register pairs and there
1061    must be enough registers available.  Because of various patterns
1062    requiring quad registers, we require them to start at a multiple of
1063    four.  */
1064 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1065   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1066    && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1067 
1068 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP
1069    + 1 APSRQ + 1 APSRGE + 1 VPR.  */
1070 /* Intel Wireless MMX Technology registers add 16 + 4 more.  */
1071 /* VFP (VFP3) adds 32 (64) + 1 VFPCC.  */
1072 #define FIRST_PSEUDO_REGISTER   107
1073 
1074 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1075 
1076 /* Value should be nonzero if functions must have frame pointers.
1077    Zero means the frame pointer need not be set up (and parms may be accessed
1078    via the stack pointer) in functions that seem suitable.
1079    If we have to have a frame pointer we might as well make use of it.
1080    APCS says that the frame pointer does not need to be pushed in leaf
1081    functions, or simple tail call functions.  */
1082 
1083 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1084 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1085 #endif
1086 
1087 #define VALID_IWMMXT_REG_MODE(MODE) \
1088  (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1089 
1090 /* Modes valid for Neon D registers.  */
1091 #define VALID_NEON_DREG_MODE(MODE) \
1092   ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1093    || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode \
1094    || (MODE) == V4BFmode)
1095 
1096 /* Modes valid for Neon Q registers.  */
1097 #define VALID_NEON_QREG_MODE(MODE) \
1098   ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1099    || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode \
1100    || (MODE) == V8BFmode)
1101 
1102 #define VALID_MVE_MODE(MODE) \
1103   ((MODE) == V2DImode ||(MODE) == V4SImode || (MODE) == V8HImode \
1104    || (MODE) == V16QImode || (MODE) == V8HFmode || (MODE) == V4SFmode \
1105    || (MODE) == V2DFmode)
1106 
1107 #define VALID_MVE_SI_MODE(MODE) \
1108   ((MODE) == V2DImode ||(MODE) == V4SImode || (MODE) == V8HImode \
1109    || (MODE) == V16QImode)
1110 
1111 /* Modes used in MVE's narrowing stores or widening loads.  */
1112 #define MVE_STN_LDW_MODE(MODE) \
1113   ((MODE) == V4QImode || (MODE) == V8QImode || (MODE) == V4HImode)
1114 
1115 #define VALID_MVE_SF_MODE(MODE) \
1116   ((MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DFmode)
1117 
1118 /* Structure modes valid for Neon registers.  */
1119 #define VALID_NEON_STRUCT_MODE(MODE) \
1120   ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1121    || (MODE) == CImode || (MODE) == XImode)
1122 
1123 #define VALID_MVE_STRUCT_MODE(MODE) \
1124   ((MODE) == TImode || (MODE) == OImode || (MODE) == XImode)
1125 
1126 /* The conditions under which vector modes are supported for general
1127    arithmetic using Neon.  */
1128 
1129 #define ARM_HAVE_NEON_V8QI_ARITH TARGET_NEON
1130 #define ARM_HAVE_NEON_V4HI_ARITH TARGET_NEON
1131 #define ARM_HAVE_NEON_V2SI_ARITH TARGET_NEON
1132 
1133 #define ARM_HAVE_NEON_V16QI_ARITH TARGET_NEON
1134 #define ARM_HAVE_NEON_V8HI_ARITH TARGET_NEON
1135 #define ARM_HAVE_NEON_V4SI_ARITH TARGET_NEON
1136 #define ARM_HAVE_NEON_V2DI_ARITH TARGET_NEON
1137 
1138 /* HF operations have their own flush-to-zero control (FPSCR.FZ16).  */
1139 #define ARM_HAVE_NEON_V4HF_ARITH TARGET_NEON_FP16INST
1140 #define ARM_HAVE_NEON_V8HF_ARITH TARGET_NEON_FP16INST
1141 
1142 /* SF operations always flush to zero, regardless of FPSCR.FZ, so we can
1143    only use them for general arithmetic when -funsafe-math-optimizations
1144    is in effect.  */
1145 #define ARM_HAVE_NEON_V2SF_ARITH \
1146   (TARGET_NEON && flag_unsafe_math_optimizations)
1147 #define ARM_HAVE_NEON_V4SF_ARITH ARM_HAVE_NEON_V2SF_ARITH
1148 
1149 /* The conditions under which vector modes are supported for general
1150    arithmetic by any vector extension.  */
1151 
1152 #define ARM_HAVE_V8QI_ARITH (ARM_HAVE_NEON_V8QI_ARITH || TARGET_REALLY_IWMMXT)
1153 #define ARM_HAVE_V4HI_ARITH (ARM_HAVE_NEON_V4HI_ARITH || TARGET_REALLY_IWMMXT)
1154 #define ARM_HAVE_V2SI_ARITH (ARM_HAVE_NEON_V2SI_ARITH || TARGET_REALLY_IWMMXT)
1155 
1156 #define ARM_HAVE_V16QI_ARITH (ARM_HAVE_NEON_V16QI_ARITH || TARGET_HAVE_MVE)
1157 #define ARM_HAVE_V8HI_ARITH (ARM_HAVE_NEON_V8HI_ARITH || TARGET_HAVE_MVE)
1158 #define ARM_HAVE_V4SI_ARITH (ARM_HAVE_NEON_V4SI_ARITH || TARGET_HAVE_MVE)
1159 #define ARM_HAVE_V2DI_ARITH ARM_HAVE_NEON_V2DI_ARITH
1160 
1161 #define ARM_HAVE_V4HF_ARITH ARM_HAVE_NEON_V4HF_ARITH
1162 #define ARM_HAVE_V2SF_ARITH ARM_HAVE_NEON_V2SF_ARITH
1163 
1164 #define ARM_HAVE_V8HF_ARITH (ARM_HAVE_NEON_V8HF_ARITH || TARGET_HAVE_MVE_FLOAT)
1165 #define ARM_HAVE_V4SF_ARITH (ARM_HAVE_NEON_V4SF_ARITH || TARGET_HAVE_MVE_FLOAT)
1166 
1167 /* The conditions under which vector modes are supported by load/store
1168    instructions using Neon.  */
1169 
1170 #define ARM_HAVE_NEON_V8QI_LDST TARGET_NEON
1171 #define ARM_HAVE_NEON_V16QI_LDST TARGET_NEON
1172 #define ARM_HAVE_NEON_V4HI_LDST TARGET_NEON
1173 #define ARM_HAVE_NEON_V8HI_LDST TARGET_NEON
1174 #define ARM_HAVE_NEON_V2SI_LDST TARGET_NEON
1175 #define ARM_HAVE_NEON_V4SI_LDST TARGET_NEON
1176 #define ARM_HAVE_NEON_V4HF_LDST TARGET_NEON_FP16INST
1177 #define ARM_HAVE_NEON_V8HF_LDST TARGET_NEON_FP16INST
1178 #define ARM_HAVE_NEON_V4BF_LDST TARGET_BF16_SIMD
1179 #define ARM_HAVE_NEON_V8BF_LDST TARGET_BF16_SIMD
1180 #define ARM_HAVE_NEON_V2SF_LDST TARGET_NEON
1181 #define ARM_HAVE_NEON_V4SF_LDST TARGET_NEON
1182 #define ARM_HAVE_NEON_DI_LDST TARGET_NEON
1183 #define ARM_HAVE_NEON_V2DI_LDST TARGET_NEON
1184 
1185 /* The conditions under which vector modes are supported by load/store
1186    instructions by any vector extension.  */
1187 
1188 #define ARM_HAVE_V8QI_LDST (ARM_HAVE_NEON_V8QI_LDST || TARGET_REALLY_IWMMXT)
1189 #define ARM_HAVE_V4HI_LDST (ARM_HAVE_NEON_V4HI_LDST || TARGET_REALLY_IWMMXT)
1190 #define ARM_HAVE_V2SI_LDST (ARM_HAVE_NEON_V2SI_LDST || TARGET_REALLY_IWMMXT)
1191 
1192 #define ARM_HAVE_V16QI_LDST (ARM_HAVE_NEON_V16QI_LDST || TARGET_HAVE_MVE)
1193 #define ARM_HAVE_V8HI_LDST (ARM_HAVE_NEON_V8HI_LDST || TARGET_HAVE_MVE)
1194 #define ARM_HAVE_V4SI_LDST (ARM_HAVE_NEON_V4SI_LDST || TARGET_HAVE_MVE)
1195 #define ARM_HAVE_DI_LDST ARM_HAVE_NEON_DI_LDST
1196 #define ARM_HAVE_V2DI_LDST ARM_HAVE_NEON_V2DI_LDST
1197 
1198 #define ARM_HAVE_V4HF_LDST ARM_HAVE_NEON_V4HF_LDST
1199 #define ARM_HAVE_V2SF_LDST ARM_HAVE_NEON_V2SF_LDST
1200 
1201 #define ARM_HAVE_V4BF_LDST ARM_HAVE_NEON_V4BF_LDST
1202 #define ARM_HAVE_V8BF_LDST ARM_HAVE_NEON_V8BF_LDST
1203 
1204 #define ARM_HAVE_V8HF_LDST (ARM_HAVE_NEON_V8HF_LDST || TARGET_HAVE_MVE_FLOAT)
1205 #define ARM_HAVE_V4SF_LDST (ARM_HAVE_NEON_V4SF_LDST || TARGET_HAVE_MVE_FLOAT)
1206 
1207 /* The register numbers in sequence, for passing to arm_gen_load_multiple.  */
1208 extern int arm_regs_in_sequence[];
1209 
1210 /* The order in which register should be allocated.  It is good to use ip
1211    since no saving is required (though calls clobber it) and it never contains
1212    function parameters.  It is quite good to use lr since other calls may
1213    clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
1214    least likely to contain a function parameter; in addition results are
1215    returned in r0.
1216    For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1217    then D8-D15.  The reason for doing this is to attempt to reduce register
1218    pressure when both single- and double-precision registers are used in a
1219    function.  */
1220 
1221 #define VREG(X)  (FIRST_VFP_REGNUM + (X))
1222 #define WREG(X)  (FIRST_IWMMXT_REGNUM + (X))
1223 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1224 
1225 #define REG_ALLOC_ORDER				\
1226 {						\
1227   /* General registers.  */			\
1228   3,  2,  1,  0,  12, 14,  4,  5,		\
1229   6,  7,  8,  9,  10, 11,			\
1230   /* High VFP registers.  */			\
1231   VREG(32), VREG(33), VREG(34), VREG(35),	\
1232   VREG(36), VREG(37), VREG(38), VREG(39),	\
1233   VREG(40), VREG(41), VREG(42), VREG(43),	\
1234   VREG(44), VREG(45), VREG(46), VREG(47),	\
1235   VREG(48), VREG(49), VREG(50), VREG(51),	\
1236   VREG(52), VREG(53), VREG(54), VREG(55),	\
1237   VREG(56), VREG(57), VREG(58), VREG(59),	\
1238   VREG(60), VREG(61), VREG(62), VREG(63),	\
1239   /* VFP argument registers.  */		\
1240   VREG(15), VREG(14), VREG(13), VREG(12),	\
1241   VREG(11), VREG(10), VREG(9),  VREG(8),	\
1242   VREG(7),  VREG(6),  VREG(5),  VREG(4),	\
1243   VREG(3),  VREG(2),  VREG(1),  VREG(0),	\
1244   /* VFP call-saved registers.  */		\
1245   VREG(16), VREG(17), VREG(18), VREG(19),	\
1246   VREG(20), VREG(21), VREG(22), VREG(23),	\
1247   VREG(24), VREG(25), VREG(26), VREG(27),	\
1248   VREG(28), VREG(29), VREG(30), VREG(31),	\
1249   /* IWMMX registers.  */			\
1250   WREG(0),  WREG(1),  WREG(2),  WREG(3),	\
1251   WREG(4),  WREG(5),  WREG(6),  WREG(7),	\
1252   WREG(8),  WREG(9),  WREG(10), WREG(11),	\
1253   WREG(12), WREG(13), WREG(14), WREG(15),	\
1254   WGREG(0), WGREG(1), WGREG(2), WGREG(3),	\
1255   /* Registers not for general use.  */		\
1256   CC_REGNUM, VFPCC_REGNUM,			\
1257   FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,	\
1258   SP_REGNUM, PC_REGNUM, APSRQ_REGNUM,		\
1259   APSRGE_REGNUM, VPR_REGNUM			\
1260 }
1261 
1262 #define IS_VPR_REGNUM(REGNUM) \
1263   ((REGNUM) == VPR_REGNUM)
1264 
1265 /* Use different register alloc ordering for Thumb.  */
1266 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1267 
1268 /* Tell IRA to use the order we define when optimizing for size.  */
1269 #define HONOR_REG_ALLOC_ORDER optimize_function_for_size_p (cfun)
1270 
1271 /* Interrupt functions can only use registers that have already been
1272    saved by the prologue, even if they would normally be
1273    call-clobbered.  */
1274 #define HARD_REGNO_RENAME_OK(SRC, DST)					\
1275 	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
1276 	 df_regs_ever_live_p (DST))
1277 
1278 /* Register and constant classes.  */
1279 
1280 /* Register classes.  */
1281 enum reg_class
1282 {
1283   NO_REGS,
1284   LO_REGS,
1285   STACK_REG,
1286   BASE_REGS,
1287   HI_REGS,
1288   CALLER_SAVE_REGS,
1289   EVEN_REG,
1290   GENERAL_REGS,
1291   CORE_REGS,
1292   VFP_D0_D7_REGS,
1293   VFP_LO_REGS,
1294   VFP_HI_REGS,
1295   VFP_REGS,
1296   IWMMXT_REGS,
1297   IWMMXT_GR_REGS,
1298   CC_REG,
1299   VFPCC_REG,
1300   SFP_REG,
1301   AFP_REG,
1302   VPR_REG,
1303   GENERAL_AND_VPR_REGS,
1304   ALL_REGS,
1305   LIM_REG_CLASSES
1306 };
1307 
1308 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
1309 
1310 /* Give names of register classes as strings for dump file.  */
1311 #define REG_CLASS_NAMES \
1312 {			\
1313   "NO_REGS",		\
1314   "LO_REGS",		\
1315   "STACK_REG",		\
1316   "BASE_REGS",		\
1317   "HI_REGS",		\
1318   "CALLER_SAVE_REGS",	\
1319   "EVEN_REG",		\
1320   "GENERAL_REGS",	\
1321   "CORE_REGS",		\
1322   "VFP_D0_D7_REGS",	\
1323   "VFP_LO_REGS",	\
1324   "VFP_HI_REGS",	\
1325   "VFP_REGS",		\
1326   "IWMMXT_REGS",	\
1327   "IWMMXT_GR_REGS",	\
1328   "CC_REG",		\
1329   "VFPCC_REG",		\
1330   "SFP_REG",		\
1331   "AFP_REG",		\
1332   "VPR_REG",		\
1333   "GENERAL_AND_VPR_REGS", \
1334   "ALL_REGS"		\
1335 }
1336 
1337 /* Define which registers fit in which classes.
1338    This is an initializer for a vector of HARD_REG_SET
1339    of length N_REG_CLASSES.  */
1340 #define REG_CLASS_CONTENTS						\
1341 {									\
1342   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1343   { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */	\
1344   { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1345   { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1346   { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */	\
1347   { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1348   { 0x00005555, 0x00000000, 0x00000000, 0x00000000 }, /* EVEN_REGS.  */ \
1349   { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1350   { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */	\
1351   { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS  */ \
1352   { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS  */ \
1353   { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS  */ \
1354   { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS  */	\
1355   { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */	\
1356   { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1357   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */	\
1358   { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */	\
1359   { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */	\
1360   { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */	\
1361   { 0x00000000, 0x00000000, 0x00000000, 0x00000400 }, /* VPR_REG.  */	\
1362   { 0x00005FFF, 0x00000000, 0x00000000, 0x00000400 }, /* GENERAL_AND_VPR_REGS.  */ \
1363   { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000040F }  /* ALL_REGS.  */	\
1364 }
1365 
1366 #define FP_SYSREGS \
1367   DEF_FP_SYSREG (FPSCR) \
1368   DEF_FP_SYSREG (FPSCR_nzcvqc) \
1369   DEF_FP_SYSREG (VPR) \
1370   DEF_FP_SYSREG (P0) \
1371   DEF_FP_SYSREG (FPCXTNS) \
1372   DEF_FP_SYSREG (FPCXTS)
1373 
1374 #define DEF_FP_SYSREG(reg) reg ## _ENUM,
1375 enum vfp_sysregs_encoding {
1376   FP_SYSREGS
1377   NB_FP_SYSREGS
1378 };
1379 #undef DEF_FP_SYSREG
1380 extern const char *fp_sysreg_names[NB_FP_SYSREGS];
1381 
1382 /* Any of the VFP register classes.  */
1383 #define IS_VFP_CLASS(X) \
1384   ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1385    || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1386 
1387 /* The same information, inverted:
1388    Return the class number of the smallest class containing
1389    reg number REGNO.  This could be a conditional expression
1390    or could index an array.  */
1391 #define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1392 
1393 /* The class value for index registers, and the one for base regs.  */
1394 #define INDEX_REG_CLASS  (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1395 #define BASE_REG_CLASS   (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1396 
1397 /* For the Thumb the high registers cannot be used as base registers
1398    when addressing quantities in QI or HI mode; if we don't know the
1399    mode, then we must be conservative. For MVE we need to load from
1400    memory to low regs based on given modes i.e [Rn], Rn <= LO_REGS.  */
1401 #define MODE_BASE_REG_CLASS(MODE)				\
1402    (TARGET_HAVE_MVE ? arm_mode_base_reg_class (MODE)		\
1403    :(TARGET_32BIT ? CORE_REGS					\
1404    : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS			\
1405    : LO_REGS))
1406 
1407 /* For Thumb we cannot support SP+reg addressing, so we return LO_REGS
1408    instead of BASE_REGS.  */
1409 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1410 
1411 /* When this hook returns true for MODE, the compiler allows
1412    registers explicitly used in the rtl to be used as spill registers
1413    but prevents the compiler from extending the lifetime of these
1414    registers.  */
1415 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1416   arm_small_register_classes_for_mode_p
1417 
1418 /* Must leave BASE_REGS reloads alone */
1419 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1420   (lra_in_progress ? NO_REGS						\
1421    : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS			\
1422       ? ((true_regnum (X) == -1 ? LO_REGS				\
1423          : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS	\
1424          : NO_REGS)) 							\
1425       : NO_REGS))
1426 
1427 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1428   (lra_in_progress ? NO_REGS						\
1429    : (CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1430       ? ((true_regnum (X) == -1 ? LO_REGS				\
1431          : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS	\
1432          : NO_REGS)) 							\
1433       : NO_REGS)
1434 
1435 /* Return the register class of a scratch register needed to copy IN into
1436    or out of a register in CLASS in MODE.  If it can be done directly,
1437    NO_REGS is returned.  */
1438 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1439   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1440   ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS))			\
1441    ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1442    : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1443    ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1444    : TARGET_32BIT						\
1445    ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1446     ? GENERAL_REGS : NO_REGS)					\
1447    : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1448 
1449 /* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1450 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1451   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1452   ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS))			\
1453     ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1454     (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1455     coproc_secondary_reload_class (MODE, X, TRUE) :		\
1456    (TARGET_32BIT ?						\
1457     (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1458      && CONSTANT_P (X))						\
1459     ? GENERAL_REGS :						\
1460     (((MODE) == HImode && ! arm_arch4				\
1461       && (MEM_P (X)					\
1462 	  || ((REG_P (X) || GET_CODE (X) == SUBREG)	\
1463 	      && true_regnum (X) == -1)))			\
1464      ? GENERAL_REGS : NO_REGS)					\
1465     : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1466 
1467 /* Return the maximum number of consecutive registers
1468    needed to represent mode MODE in a register of class CLASS.
1469    ARM regs are UNITS_PER_WORD bits.
1470    FIXME: Is this true for iWMMX?  */
1471 #define CLASS_MAX_NREGS(CLASS, MODE)  \
1472   (CLASS == VPR_REG)		      \
1473   ? CEIL (GET_MODE_SIZE (MODE), 2)    \
1474   : (ARM_NUM_REGS (MODE))
1475 
1476 /* If defined, gives a class of registers that cannot be used as the
1477    operand of a SUBREG that changes the mode of the object illegally.  */
1478 
1479 /* Stack layout; function entry, exit and calling.  */
1480 
1481 /* Define this if pushing a word on the stack
1482    makes the stack pointer a smaller address.  */
1483 #define STACK_GROWS_DOWNWARD  1
1484 
1485 /* Define this to nonzero if the nominal address of the stack frame
1486    is at the high-address end of the local variables;
1487    that is, each additional local variable allocated
1488    goes at a more negative offset in the frame.  */
1489 #define FRAME_GROWS_DOWNWARD 1
1490 
1491 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1492    When present, it is one word in size, and sits at the top of the frame,
1493    between the soft frame pointer and either r7 or r11.
1494 
1495    We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1496    and only then if some outgoing arguments are passed on the stack.  It would
1497    be tempting to also check whether the stack arguments are passed by indirect
1498    calls, but there seems to be no reason in principle why a post-reload pass
1499    couldn't convert a direct call into an indirect one.  */
1500 #define CALLER_INTERWORKING_SLOT_SIZE			\
1501   (TARGET_CALLER_INTERWORKING				\
1502    && maybe_ne (crtl->outgoing_args_size, 0)		\
1503    ? UNITS_PER_WORD : 0)
1504 
1505 /* If we generate an insn to push BYTES bytes,
1506    this says how many the stack pointer really advances by.  */
1507 /* The push insns do not do this rounding implicitly.
1508    So don't define this.  */
1509 /* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1510 
1511 /* Define this if the maximum size of all the outgoing args is to be
1512    accumulated and pushed during the prologue.  The amount can be
1513    found in the variable crtl->outgoing_args_size.  */
1514 #define ACCUMULATE_OUTGOING_ARGS 1
1515 
1516 /* Offset of first parameter from the argument pointer register value.  */
1517 #define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1518 
1519 /* Amount of memory needed for an untyped call to save all possible return
1520    registers.  */
1521 #define APPLY_RESULT_SIZE arm_apply_result_size()
1522 
1523 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1524    values must be in memory.  On the ARM, they need only do so if larger
1525    than a word, or if they contain elements offset from zero in the struct.  */
1526 #define DEFAULT_PCC_STRUCT_RETURN 0
1527 
1528 /* These bits describe the different types of function supported
1529    by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1530    normal function and an interworked function, for example.  Knowing the
1531    type of a function is important for determining its prologue and
1532    epilogue sequences.
1533    Note value 7 is currently unassigned.  Also note that the interrupt
1534    function types all have bit 2 set, so that they can be tested for easily.
1535    Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1536    machine_function structure is initialized (to zero) func_type will
1537    default to unknown.  This will force the first use of arm_current_func_type
1538    to call arm_compute_func_type.  */
1539 #define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1540 #define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1541 #define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1542 #define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1543 #define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1544 #define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1545 
1546 #define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1547 
1548 /* In addition functions can have several type modifiers,
1549    outlined by these bit masks:  */
1550 #define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1551 #define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1552 #define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1553 #define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1554 #define ARM_FT_STACKALIGN	(1 << 6) /* Called with misaligned stack.  */
1555 #define ARM_FT_CMSE_ENTRY	(1 << 7) /* ARMv8-M non-secure entry function.  */
1556 
1557 /* Some macros to test these flags.  */
1558 #define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1559 #define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1560 #define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1561 #define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1562 #define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1563 #define IS_STACKALIGN(t)       	(t & ARM_FT_STACKALIGN)
1564 #define IS_CMSE_ENTRY(t)	(t & ARM_FT_CMSE_ENTRY)
1565 
1566 
1567 /* Structure used to hold the function stack frame layout.  Offsets are
1568    relative to the stack pointer on function entry.  Positive offsets are
1569    in the direction of stack growth.
1570    Only soft_frame is used in thumb mode.  */
1571 
1572 typedef struct GTY(()) arm_stack_offsets
1573 {
1574   int saved_args;	/* ARG_POINTER_REGNUM.  */
1575   int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1576   int saved_regs;
1577   int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1578   int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1579   int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1580   unsigned int saved_regs_mask;
1581 }
1582 arm_stack_offsets;
1583 
1584 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1585 /* A C structure for machine-specific, per-function data.
1586    This is added to the cfun structure.  */
1587 typedef struct GTY(()) machine_function
1588 {
1589   /* Additional stack adjustment in __builtin_eh_throw.  */
1590   rtx eh_epilogue_sp_ofs;
1591   /* Records if LR has to be saved for far jumps.  */
1592   int far_jump_used;
1593   /* Records if ARG_POINTER was ever live.  */
1594   int arg_pointer_live;
1595   /* Records if the save of LR has been eliminated.  */
1596   int lr_save_eliminated;
1597   /* The size of the stack frame.  Only valid after reload.  */
1598   arm_stack_offsets stack_offsets;
1599   /* Records the type of the current function.  */
1600   unsigned long func_type;
1601   /* Record if the function has a variable argument list.  */
1602   int uses_anonymous_args;
1603   /* Records if sibcalls are blocked because an argument
1604      register is needed to preserve stack alignment.  */
1605   int sibcall_blocked;
1606   /* The PIC register for this function.  This might be a pseudo.  */
1607   rtx pic_reg;
1608   /* Labels for per-function Thumb call-via stubs.  One per potential calling
1609      register.  We can never call via LR or PC.  We can call via SP if a
1610      trampoline happens to be on the top of the stack.  */
1611   rtx call_via[14];
1612   /* Set to 1 when a return insn is output, this means that the epilogue
1613      is not needed.  */
1614   int return_used_this_function;
1615   /* When outputting Thumb-1 code, record the last insn that provides
1616      information about condition codes, and the comparison operands.  */
1617   rtx thumb1_cc_insn;
1618   rtx thumb1_cc_op0;
1619   rtx thumb1_cc_op1;
1620   /* Also record the CC mode that is supported.  */
1621   machine_mode thumb1_cc_mode;
1622   /* Set to 1 after arm_reorg has started.  */
1623   int after_arm_reorg;
1624   /* The number of bytes used to store the static chain register on the
1625      stack, above the stack frame.  */
1626   int static_chain_stack_bytes;
1627 }
1628 machine_function;
1629 #endif
1630 
1631 #define ARM_Q_BIT_READ (arm_q_bit_access ())
1632 #define ARM_GE_BITS_READ (arm_ge_bits_access ())
1633 
1634 /* As in the machine_function, a global set of call-via labels, for code
1635    that is in text_section.  */
1636 extern GTY(()) rtx thumb_call_via_label[14];
1637 
1638 /* The number of potential ways of assigning to a co-processor.  */
1639 #define ARM_NUM_COPROC_SLOTS 1
1640 
1641 /* Enumeration of procedure calling standard variants.  We don't really
1642    support all of these yet.  */
1643 enum arm_pcs
1644 {
1645   ARM_PCS_AAPCS,	/* Base standard AAPCS.  */
1646   ARM_PCS_AAPCS_VFP,	/* Use VFP registers for floating point values.  */
1647   ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors.  */
1648   /* This must be the last AAPCS variant.  */
1649   ARM_PCS_AAPCS_LOCAL,	/* Private call within this compilation unit.  */
1650   ARM_PCS_ATPCS,	/* ATPCS.  */
1651   ARM_PCS_APCS,		/* APCS (legacy Linux etc).  */
1652   ARM_PCS_UNKNOWN
1653 };
1654 
1655 /* Default procedure calling standard of current compilation unit. */
1656 extern enum arm_pcs arm_pcs_default;
1657 
1658 #if !defined (USED_FOR_TARGET)
1659 /* A C type for declaring a variable that is used as the first argument of
1660    `FUNCTION_ARG' and other related values.  */
1661 typedef struct
1662 {
1663   /* This is the number of registers of arguments scanned so far.  */
1664   int nregs;
1665   /* This is the number of iWMMXt register arguments scanned so far.  */
1666   int iwmmxt_nregs;
1667   int named_count;
1668   int nargs;
1669   /* Which procedure call variant to use for this call.  */
1670   enum arm_pcs pcs_variant;
1671 
1672   /* AAPCS related state tracking.  */
1673   int aapcs_arg_processed;  /* No need to lay out this argument again.  */
1674   int aapcs_cprc_slot;      /* Index of co-processor rules to handle
1675 			       this argument, or -1 if using core
1676 			       registers.  */
1677   int aapcs_ncrn;
1678   int aapcs_next_ncrn;
1679   rtx aapcs_reg;	    /* Register assigned to this argument.  */
1680   int aapcs_partial;	    /* How many bytes are passed in regs (if
1681 			       split between core regs and stack.
1682 			       Zero otherwise.  */
1683   int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1684   int can_split;	    /* Argument can be split between core regs
1685 			       and the stack.  */
1686   /* Private data for tracking VFP register allocation */
1687   unsigned aapcs_vfp_regs_free;
1688   unsigned aapcs_vfp_reg_alloc;
1689   int aapcs_vfp_rcount;
1690   MACHMODE aapcs_vfp_rmode;
1691 } CUMULATIVE_ARGS;
1692 #endif
1693 
1694 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1695   (arm_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
1696 
1697 /* For AAPCS, padding should never be below the argument. For other ABIs,
1698  * mimic the default.  */
1699 #define PAD_VARARGS_DOWN \
1700   ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1701 
1702 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1703    for a call to a function whose data type is FNTYPE.
1704    For a library call, FNTYPE is 0.
1705    On the ARM, the offset starts at 0.  */
1706 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1707   arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1708 
1709 /* 1 if N is a possible register number for function argument passing.
1710    On the ARM, r0-r3 are used to pass args.  */
1711 #define FUNCTION_ARG_REGNO_P(REGNO)					\
1712    (IN_RANGE ((REGNO), 0, 3)						\
1713     || (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT				\
1714 	&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15))	\
1715     || (TARGET_IWMMXT_ABI						\
1716 	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1717 
1718 
1719 /* If your target environment doesn't prefix user functions with an
1720    underscore, you may wish to re-define this to prevent any conflicts.  */
1721 #ifndef ARM_MCOUNT_NAME
1722 #define ARM_MCOUNT_NAME "*mcount"
1723 #endif
1724 
1725 /* Call the function profiler with a given profile label.  The Acorn
1726    compiler puts this BEFORE the prolog but gcc puts it afterwards.
1727    On the ARM the full profile code will look like:
1728 	.data
1729 	LP1
1730 		.word	0
1731 	.text
1732 		mov	ip, lr
1733 		bl	mcount
1734 		.word	LP1
1735 
1736    profile_function() in final.cc outputs the .data section, FUNCTION_PROFILER
1737    will output the .text section.
1738 
1739    The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1740    ``prof'' doesn't seem to mind about this!
1741 
1742    Note - this version of the code is designed to work in both ARM and
1743    Thumb modes.  */
1744 #ifndef ARM_FUNCTION_PROFILER
1745 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1746 {							\
1747   char temp[20];					\
1748   rtx sym;						\
1749 							\
1750   asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1751 	   IP_REGNUM, LR_REGNUM);			\
1752   assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1753   fputc ('\n', STREAM);					\
1754   ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1755   sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1756   assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1757 }
1758 #endif
1759 
1760 #ifdef THUMB_FUNCTION_PROFILER
1761 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1762   if (TARGET_ARM)					\
1763     ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1764   else							\
1765     THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1766 #else
1767 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1768     ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1769 #endif
1770 
1771 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1772    the stack pointer does not matter.  The value is tested only in
1773    functions that have frame pointers.
1774    No definition is equivalent to always zero.
1775 
1776    On the ARM, the function epilogue recovers the stack pointer from the
1777    frame.  */
1778 #define EXIT_IGNORE_STACK 1
1779 
1780 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1781 
1782 /* Determine if the epilogue should be output as RTL.
1783    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1784 #define USE_RETURN_INSN(ISCOND)				\
1785   (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1786 
1787 /* Definitions for register eliminations.
1788 
1789    This is an array of structures.  Each structure initializes one pair
1790    of eliminable registers.  The "from" register number is given first,
1791    followed by "to".  Eliminations of the same "from" register are listed
1792    in order of preference.
1793 
1794    We have two registers that can be eliminated on the ARM.  First, the
1795    arg pointer register can often be eliminated in favor of the stack
1796    pointer register.  Secondly, the pseudo frame pointer register can always
1797    be eliminated; it is replaced with either the stack or the real frame
1798    pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1799    because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1800 
1801 #define ELIMINABLE_REGS						\
1802 {{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1803  { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1804  { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1805  { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1806  { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1807  { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1808  { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1809 
1810 /* Define the offset between two registers, one to be eliminated, and the
1811    other its replacement, at the start of a routine.  */
1812 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1813   if (TARGET_ARM)							\
1814     (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1815   else									\
1816     (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1817 
1818 /* Special case handling of the location of arguments passed on the stack.  */
1819 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1820 
1821 /* Initialize data used by insn expanders.  This is called from insn_emit,
1822    once for every function before code is generated.  */
1823 #define INIT_EXPANDERS  arm_init_expanders ()
1824 
1825 /* Length in units of the trampoline for entering a nested function.  */
1826 #define TRAMPOLINE_SIZE  (TARGET_FDPIC ? 32 : (TARGET_32BIT ? 16 : 20))
1827 
1828 /* Alignment required for a trampoline in bits.  */
1829 #define TRAMPOLINE_ALIGNMENT  32
1830 
1831 /* Addressing modes, and classification of registers for them.  */
1832 #define HAVE_POST_INCREMENT   1
1833 #define HAVE_PRE_INCREMENT    TARGET_32BIT
1834 #define HAVE_POST_DECREMENT   TARGET_32BIT
1835 #define HAVE_PRE_DECREMENT    TARGET_32BIT
1836 #define HAVE_PRE_MODIFY_DISP  TARGET_32BIT
1837 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1838 #define HAVE_PRE_MODIFY_REG   TARGET_32BIT
1839 #define HAVE_POST_MODIFY_REG  TARGET_32BIT
1840 
1841 enum arm_auto_incmodes
1842   {
1843     ARM_POST_INC,
1844     ARM_PRE_INC,
1845     ARM_POST_DEC,
1846     ARM_PRE_DEC
1847   };
1848 
1849 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1850   (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1851 #define USE_LOAD_POST_INCREMENT(mode) \
1852   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1853 #define USE_LOAD_PRE_INCREMENT(mode)  \
1854   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1855 #define USE_LOAD_POST_DECREMENT(mode) \
1856   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1857 #define USE_LOAD_PRE_DECREMENT(mode)  \
1858   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1859 
1860 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1861 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1862 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1863 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1864 
1865 /* Macros to check register numbers against specific register classes.  */
1866 
1867 /* These assume that REGNO is a hard or pseudo reg number.
1868    They give nonzero only if REGNO is a hard reg of the suitable class
1869    or a pseudo reg currently allocated to a suitable hard reg.  */
1870 #define TEST_REGNO(R, TEST, VALUE) \
1871   ((R TEST VALUE)	\
1872     || (reg_renumber && ((unsigned) reg_renumber[R] TEST VALUE)))
1873 
1874 /* Don't allow the pc to be used.  */
1875 #define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1876   (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1877    || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1878    || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1879 
1880 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1881   (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1882    || (GET_MODE_SIZE (MODE) >= 4				\
1883        && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1884 
1885 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1886   (TARGET_THUMB1					\
1887    ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1888    : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1889 
1890 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1891    For Thumb, we cannot use SP + reg, so reject SP.  */
1892 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1893   REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1894 
1895 /* For ARM code, we don't care about the mode, but for Thumb, the index
1896    must be suitable for use in a QImode load.  */
1897 #define REGNO_OK_FOR_INDEX_P(REGNO)	\
1898   (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1899    && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1900 
1901 /* Maximum number of registers that can appear in a valid memory address.
1902    Shifts in addresses can't be by a register.  */
1903 #define MAX_REGS_PER_ADDRESS 2
1904 
1905 /* Recognize any constant value that is a valid address.  */
1906 /* XXX We can address any constant, eventually...  */
1907 /* ??? Should the TARGET_ARM here also apply to thumb2?  */
1908 #define CONSTANT_ADDRESS_P(X)  			\
1909   (GET_CODE (X) == SYMBOL_REF 			\
1910    && (CONSTANT_POOL_ADDRESS_P (X)		\
1911        || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1912 
1913 /* True if SYMBOL + OFFSET constants must refer to something within
1914    SYMBOL's section.  */
1915 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1916 
1917 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32.  */
1918 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1919 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1920 #endif
1921 
1922 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1923 #define SUBTARGET_NAME_ENCODING_LENGTHS
1924 #endif
1925 
1926 /* This is a C fragment for the inside of a switch statement.
1927    Each case label should return the number of characters to
1928    be stripped from the start of a function's name, if that
1929    name starts with the indicated character.  */
1930 #define ARM_NAME_ENCODING_LENGTHS		\
1931   case '*':  return 1;				\
1932   SUBTARGET_NAME_ENCODING_LENGTHS
1933 
1934 /* This is how to output a reference to a user-level label named NAME.
1935    `assemble_name' uses this.  */
1936 #undef  ASM_OUTPUT_LABELREF
1937 #define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1938    arm_asm_output_labelref (FILE, NAME)
1939 
1940 /* Output IT instructions for conditionally executed Thumb-2 instructions.  */
1941 #define ASM_OUTPUT_OPCODE(STREAM, PTR)	\
1942   if (TARGET_THUMB2)			\
1943     thumb2_asm_output_opcode (STREAM);
1944 
1945 /* The EABI specifies that constructors should go in .init_array.
1946    Other targets use .ctors for compatibility.  */
1947 #ifndef ARM_EABI_CTORS_SECTION_OP
1948 #define ARM_EABI_CTORS_SECTION_OP \
1949   "\t.section\t.init_array,\"aw\",%init_array"
1950 #endif
1951 #ifndef ARM_EABI_DTORS_SECTION_OP
1952 #define ARM_EABI_DTORS_SECTION_OP \
1953   "\t.section\t.fini_array,\"aw\",%fini_array"
1954 #endif
1955 #define ARM_CTORS_SECTION_OP \
1956   "\t.section\t.ctors,\"aw\",%progbits"
1957 #define ARM_DTORS_SECTION_OP \
1958   "\t.section\t.dtors,\"aw\",%progbits"
1959 
1960 /* Define CTORS_SECTION_ASM_OP.  */
1961 #undef CTORS_SECTION_ASM_OP
1962 #undef DTORS_SECTION_ASM_OP
1963 #ifndef IN_LIBGCC2
1964 # define CTORS_SECTION_ASM_OP \
1965    (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1966 # define DTORS_SECTION_ASM_OP \
1967    (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1968 #else /* !defined (IN_LIBGCC2) */
1969 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1970    so we cannot use the definition above.  */
1971 # ifdef __ARM_EABI__
1972 /* The .ctors section is not part of the EABI, so we do not define
1973    CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1974    from trying to use it.  We do define it when doing normal
1975    compilation, as .init_array can be used instead of .ctors.  */
1976 /* There is no need to emit begin or end markers when using
1977    init_array; the dynamic linker will compute the size of the
1978    array itself based on special symbols created by the static
1979    linker.  However, we do need to arrange to set up
1980    exception-handling here.  */
1981 #   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1982 #   define CTOR_LIST_END /* empty */
1983 #   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1984 #   define DTOR_LIST_END /* empty */
1985 # else /* !defined (__ARM_EABI__) */
1986 #   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1987 #   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1988 # endif /* !defined (__ARM_EABI__) */
1989 #endif /* !defined (IN_LIBCC2) */
1990 
1991 /* True if the operating system can merge entities with vague linkage
1992    (e.g., symbols in COMDAT group) during dynamic linking.  */
1993 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1994 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1995 #endif
1996 
1997 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1998 
1999 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2000    and check its validity for a certain class.
2001    We have two alternate definitions for each of them.
2002    The usual definition accepts all pseudo regs; the other rejects
2003    them unless they have been allocated suitable hard regs.
2004    The symbol REG_OK_STRICT causes the latter definition to be used.
2005    Thumb-2 has the same restrictions as arm.  */
2006 #ifndef REG_OK_STRICT
2007 
2008 #define ARM_REG_OK_FOR_BASE_P(X)		\
2009   (REGNO (X) <= LAST_ARM_REGNUM			\
2010    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
2011    || REGNO (X) == FRAME_POINTER_REGNUM		\
2012    || REGNO (X) == ARG_POINTER_REGNUM)
2013 
2014 #define ARM_REG_OK_FOR_INDEX_P(X)		\
2015   ((REGNO (X) <= LAST_ARM_REGNUM		\
2016     && REGNO (X) != STACK_POINTER_REGNUM)	\
2017    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
2018    || REGNO (X) == FRAME_POINTER_REGNUM		\
2019    || REGNO (X) == ARG_POINTER_REGNUM)
2020 
2021 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
2022   (REGNO (X) <= LAST_LO_REGNUM			\
2023    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
2024    || (GET_MODE_SIZE (MODE) >= 4		\
2025        && (REGNO (X) == STACK_POINTER_REGNUM	\
2026 	   || (X) == hard_frame_pointer_rtx	\
2027 	   || (X) == arg_pointer_rtx)))
2028 
2029 #define REG_STRICT_P 0
2030 
2031 #else /* REG_OK_STRICT */
2032 
2033 #define ARM_REG_OK_FOR_BASE_P(X) 		\
2034   ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
2035 
2036 #define ARM_REG_OK_FOR_INDEX_P(X) 		\
2037   ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
2038 
2039 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
2040   THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
2041 
2042 #define REG_STRICT_P 1
2043 
2044 #endif /* REG_OK_STRICT */
2045 
2046 /* Now define some helpers in terms of the above.  */
2047 
2048 #define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
2049   (TARGET_THUMB1				\
2050    ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
2051    : ARM_REG_OK_FOR_BASE_P (X))
2052 
2053 /* For 16-bit Thumb, a valid index register is anything that can be used in
2054    a byte load instruction.  */
2055 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
2056   THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
2057 
2058 /* Nonzero if X is a hard reg that can be used as an index
2059    or if it is a pseudo reg.  On the Thumb, the stack pointer
2060    is not suitable.  */
2061 #define REG_OK_FOR_INDEX_P(X)			\
2062   (TARGET_THUMB1				\
2063    ? THUMB1_REG_OK_FOR_INDEX_P (X)		\
2064    : ARM_REG_OK_FOR_INDEX_P (X))
2065 
2066 /* Nonzero if X can be the base register in a reg+reg addressing mode.
2067    For Thumb, we cannot use SP + reg, so reject SP.  */
2068 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
2069   REG_OK_FOR_INDEX_P (X)
2070 
2071 #define ARM_BASE_REGISTER_RTX_P(X)  \
2072   (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
2073 
2074 #define ARM_INDEX_REGISTER_RTX_P(X)  \
2075   (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
2076 
2077 /* Specify the machine mode that this machine uses
2078    for the index in the tablejump instruction.  */
2079 #define CASE_VECTOR_MODE Pmode
2080 
2081 #define CASE_VECTOR_PC_RELATIVE ((TARGET_THUMB2				\
2082 				  || (TARGET_THUMB1			\
2083 				      && (optimize_size || flag_pic)))	\
2084 				 && (!target_pure_code))
2085 
2086 
2087 #define CASE_VECTOR_SHORTEN_MODE(min, max, body)			\
2088   (TARGET_THUMB1							\
2089    ? (min >= 0 && max < 512						\
2090       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	\
2091       : min >= -256 && max < 256					\
2092       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	\
2093       : min >= 0 && max < 8192						\
2094       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)	\
2095       : min >= -4096 && max < 4096					\
2096       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode)	\
2097       : SImode)								\
2098    : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode		\
2099       : (max >= 0x200) ? HImode						\
2100       : QImode))
2101 
2102 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2103    unsigned is probably best, but may break some code.  */
2104 #ifndef DEFAULT_SIGNED_CHAR
2105 #define DEFAULT_SIGNED_CHAR  0
2106 #endif
2107 
2108 /* Max number of bytes we can move from memory to memory
2109    in one reasonably fast instruction.  */
2110 #define MOVE_MAX 4
2111 
2112 #undef  MOVE_RATIO
2113 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2114 
2115 /* Define if operations between registers always perform the operation
2116    on the full register even if a narrower mode is specified.  */
2117 #define WORD_REGISTER_OPERATIONS 1
2118 
2119 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2120    will either zero-extend or sign-extend.  The value of this macro should
2121    be the code that says which one of the two operations is implicitly
2122    done, UNKNOWN if none.  */
2123 #define LOAD_EXTEND_OP(MODE)						\
2124   (TARGET_THUMB ? ZERO_EXTEND :						\
2125    ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
2126     : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2127 
2128 /* Nonzero if access to memory by bytes is slow and undesirable.  */
2129 #define SLOW_BYTE_ACCESS 0
2130 
2131 /* Immediate shift counts are truncated by the output routines (or was it
2132    the assembler?).  Shift counts in a register are truncated by ARM.  Note
2133    that the native compiler puts too large (> 32) immediate shift counts
2134    into a register and shifts by the register, letting the ARM decide what
2135    to do instead of doing that itself.  */
2136 /* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
2137    code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2138    On the arm, Y in a register is used modulo 256 for the shift. Only for
2139    rotates is modulo 32 used.  */
2140 /* #define SHIFT_COUNT_TRUNCATED 1 */
2141 
2142 /* Calling from registers is a massive pain.  */
2143 #define NO_FUNCTION_CSE 1
2144 
2145 /* The machine modes of pointers and functions */
2146 #define Pmode  SImode
2147 #define FUNCTION_MODE  Pmode
2148 
2149 #define ARM_FRAME_RTX(X)					\
2150   (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
2151    || (X) == arg_pointer_rtx)
2152 
2153 /* Try to generate sequences that don't involve branches, we can then use
2154    conditional instructions.  */
2155 #define BRANCH_COST(speed_p, predictable_p)			\
2156   ((arm_branch_cost != -1) ? arm_branch_cost :			\
2157    (current_tune->branch_cost (speed_p, predictable_p)))
2158 
2159 /* False if short circuit operation is preferred.  */
2160 #define LOGICAL_OP_NON_SHORT_CIRCUIT					\
2161   ((optimize_size)							\
2162    ? (TARGET_THUMB ? false : true)					\
2163    : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
2164    : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
2165 
2166 
2167 /* Position Independent Code.  */
2168 /* We decide which register to use based on the compilation options and
2169    the assembler in use; this is more general than the APCS restriction of
2170    using sb (r9) all the time.  */
2171 extern unsigned arm_pic_register;
2172 
2173 /* The register number of the register used to address a table of static
2174    data addresses in memory.  */
2175 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2176 
2177 /* For FDPIC, the FDPIC register is call-clobbered (otherwise PLT
2178    entries would need to handle saving and restoring it).  */
2179 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED TARGET_FDPIC
2180 
2181 /* We can't directly access anything that contains a symbol,
2182    nor can we indirect via the constant pool.  One exception is
2183    UNSPEC_TLS, which is always PIC.  */
2184 #define LEGITIMATE_PIC_OPERAND_P(X)					\
2185 	(!(symbol_mentioned_p (X)					\
2186 	   || label_mentioned_p (X)					\
2187 	   || (GET_CODE (X) == SYMBOL_REF				\
2188 	       && CONSTANT_POOL_ADDRESS_P (X)				\
2189 	       && (symbol_mentioned_p (get_pool_constant (X))		\
2190 		   || label_mentioned_p (get_pool_constant (X)))))	\
2191 	 || tls_mentioned_p (X))
2192 
2193 /* We may want to save the PIC register if it is a dedicated one.  */
2194 #define PIC_REGISTER_MAY_NEED_SAVING			\
2195   (flag_pic						\
2196    && !TARGET_SINGLE_PIC_BASE				\
2197    && !TARGET_FDPIC					\
2198    && arm_pic_register != INVALID_REGNUM)
2199 
2200 /* We need to know when we are making a constant pool; this determines
2201    whether data needs to be in the GOT or can be referenced via a GOT
2202    offset.  */
2203 extern int making_const_table;
2204 
2205 /* Handle pragmas for compatibility with Intel's compilers.  */
2206 /* Also abuse this to register additional C specific EABI attributes.  */
2207 #define REGISTER_TARGET_PRAGMAS() do {					\
2208   c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
2209   c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
2210   c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
2211   arm_lang_object_attributes_init();					\
2212   arm_register_target_pragmas();                                       \
2213 } while (0)
2214 
2215 /* Condition code information.  */
2216 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2217    return the mode to be used for the comparison.  */
2218 
2219 #define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
2220 
2221 #define REVERSIBLE_CC_MODE(MODE) 1
2222 
2223 #define REVERSE_CONDITION(CODE,MODE) \
2224   (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2225    ? reverse_condition_maybe_unordered (code) \
2226    : reverse_condition (code))
2227 
2228 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2229   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2230 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2231   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2232 
2233 #define CC_STATUS_INIT \
2234   do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2235 
2236 #undef ASM_APP_ON
2237 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2238 		    "\t.syntax divided\n")
2239 
2240 #undef  ASM_APP_OFF
2241 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
2242 		     "\t.thumb\n\t.syntax unified\n")
2243 
2244 /* Output a push or a pop instruction (only used when profiling).
2245    We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1.  We know
2246    that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2247    that r7 isn't used by the function profiler, so we can use it as a
2248    scratch reg.  WARNING: This isn't safe in the general case!  It may be
2249    sensitive to future changes in final.cc:profile_function.  */
2250 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2251   do							\
2252     {							\
2253       if (TARGET_THUMB1					\
2254 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2255 	{						\
2256 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2257 	  asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2258 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2259 	}						\
2260       else						\
2261 	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2262     } while (0)
2263 
2264 
2265 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue.  */
2266 #define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2267   do							\
2268     {							\
2269       if (TARGET_THUMB1					\
2270 	  && (REGNO) == STATIC_CHAIN_REGNUM)		\
2271 	{						\
2272 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2273 	  asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2274 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2275 	}						\
2276       else						\
2277 	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2278     } while (0)
2279 
2280 #define ADDR_VEC_ALIGN(JUMPTABLE)	\
2281   ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2282 
2283 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2284    default alignment from elfos.h.  */
2285 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2286 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty.  */
2287 
2288 #define LABEL_ALIGN_AFTER_BARRIER(LABEL)                \
2289    (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2290    ? 1 : 0)
2291 
2292 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2293   arm_declare_function_name ((STREAM), (NAME), (DECL));
2294 
2295 /* For aliases of functions we use .thumb_set instead.  */
2296 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2297   do						   		\
2298     {								\
2299       const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2300       const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2301 								\
2302       if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2303 	{							\
2304 	  fprintf (FILE, "\t.thumb_set ");			\
2305 	  assemble_name (FILE, LABEL1);			   	\
2306 	  fprintf (FILE, ",");			   		\
2307 	  assemble_name (FILE, LABEL2);		   		\
2308 	  fprintf (FILE, "\n");					\
2309 	}							\
2310       else							\
2311 	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2312     }								\
2313   while (0)
2314 
2315 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2316 /* To support -falign-* switches we need to use .p2align so
2317    that alignment directives in code sections will be padded
2318    with no-op instructions, rather than zeroes.  */
2319 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2320   if ((LOG) != 0)						\
2321     {								\
2322       if ((MAX_SKIP) == 0)					\
2323         fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2324       else							\
2325         fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2326                  (int) (LOG), (int) (MAX_SKIP));		\
2327     }
2328 #endif
2329 
2330 /* Add two bytes to the length of conditionally executed Thumb-2
2331    instructions for the IT instruction.  */
2332 #define ADJUST_INSN_LENGTH(insn, length) \
2333   if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2334     length += 2;
2335 
2336 /* Only perform branch elimination (by making instructions conditional) if
2337    we're optimizing.  For Thumb-2 check if any IT instructions need
2338    outputting.  */
2339 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2340   if (TARGET_ARM && optimize)				\
2341     arm_final_prescan_insn (INSN);			\
2342   else if (TARGET_THUMB2)				\
2343     thumb2_final_prescan_insn (INSN);			\
2344   else if (TARGET_THUMB1)				\
2345     thumb1_final_prescan_insn (INSN)
2346 
2347 #define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2348   (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2349    : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2350       ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2351        ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2352 	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2353        : 0))))
2354 
2355 /* A C expression whose value is RTL representing the value of the return
2356    address for the frame COUNT steps up from the current frame.  */
2357 
2358 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2359   arm_return_addr (COUNT, FRAME)
2360 
2361 /* Mask of the bits in the PC that contain the real return address
2362    when running in 26-bit mode.  */
2363 #define RETURN_ADDR_MASK26 (0x03fffffc)
2364 
2365 /* Pick up the return address upon entry to a procedure. Used for
2366    dwarf2 unwind information.  This also enables the table driven
2367    mechanism.  */
2368 #define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2369 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2370 
2371 /* Used to mask out junk bits from the return address, such as
2372    processor state, interrupt status, condition codes and the like.  */
2373 #define MASK_RETURN_ADDR \
2374   /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2375      in 26 bit mode, the condition codes must be masked out of the	\
2376      return address.  This does not apply to ARM6 and later processors	\
2377      when running in 32 bit mode.  */					\
2378   ((arm_arch4 || TARGET_THUMB)						\
2379    ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2380    : arm_gen_return_addr_mask ())
2381 
2382 
2383 /* Do not emit .note.GNU-stack by default.  */
2384 #ifndef NEED_INDICATE_EXEC_STACK
2385 #define NEED_INDICATE_EXEC_STACK	0
2386 #endif
2387 
2388 #define TARGET_ARM_ARCH	\
2389   (arm_base_arch)	\
2390 
2391 /* The highest Thumb instruction set version supported by the chip.  */
2392 #define TARGET_ARM_ARCH_ISA_THUMB		\
2393   (arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
2394 
2395 /* Expands to an upper-case char of the target's architectural
2396    profile.  */
2397 #define TARGET_ARM_ARCH_PROFILE				\
2398   (arm_active_target.profile)
2399 
2400 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2401    Bit 0 for bytes, up to bit 3 for double-words.  */
2402 #define TARGET_ARM_FEATURE_LDREX				\
2403   ((TARGET_HAVE_LDREX ? 4 : 0)					\
2404    | (TARGET_HAVE_LDREXBH ? 3 : 0)				\
2405    | (TARGET_HAVE_LDREXD ? 8 : 0))
2406 
2407 /* Set as a bit mask indicating the available widths of hardware floating
2408    point types.  Where bit 1 indicates 16-bit support, bit 2 indicates
2409    32-bit support, bit 3 indicates 64-bit support.  */
2410 #define TARGET_ARM_FP			\
2411   (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4		\
2412 			: (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2413 		      : 0)
2414 
2415 
2416 /* Set as a bit mask indicating the available widths of floating point
2417    types for hardware NEON floating point.  This is the same as
2418    TARGET_ARM_FP without the 64-bit bit set.  */
2419 #define TARGET_NEON_FP				 \
2420   (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2421 	       : 0)
2422 
2423 /* Name of the automatic fpu-selection option.  */
2424 #define FPUTYPE_AUTO "auto"
2425 
2426 /* The maximum number of parallel loads or stores we support in an ldm/stm
2427    instruction.  */
2428 #define MAX_LDM_STM_OPS 4
2429 
2430 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2431 extern const char *arm_rewrite_march (int argc, const char **argv);
2432 extern const char *arm_asm_auto_mfpu (int argc, const char **argv);
2433 #define ASM_CPU_SPEC_FUNCTIONS			\
2434   { "rewrite_mcpu", arm_rewrite_mcpu },	\
2435   { "rewrite_march", arm_rewrite_march },	\
2436   { "asm_auto_mfpu", arm_asm_auto_mfpu },
2437 
2438 #define ASM_CPU_SPEC							\
2439   " %{mfpu=auto:%<mfpu=auto %:asm_auto_mfpu(%{march=*: arch %*})}"	\
2440   " %{mcpu=generic-*:-march=%:rewrite_march(%{mcpu=generic-*:%*});"	\
2441   "   march=*:-march=%:rewrite_march(%{march=*:%*});"			\
2442   "   mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})"			\
2443   " }"
2444 
2445 extern const char *arm_target_mode (int argc, const char **argv);
2446 #define TARGET_MODE_SPEC_FUNCTIONS			\
2447   { "target_mode_check", arm_target_mode },
2448 
2449 /* -mcpu=native handling only makes sense with compiler running on
2450    an ARM chip.  */
2451 #if defined(__arm__) && defined(__linux__)
2452 extern const char *host_detect_local_cpu (int argc, const char **argv);
2453 #define HAVE_LOCAL_CPU_DETECT
2454 # define MCPU_MTUNE_NATIVE_FUNCTIONS			\
2455   { "local_cpu_detect", host_detect_local_cpu },
2456 # define MCPU_MTUNE_NATIVE_SPECS				\
2457    " %{march=native:%<march=native %:local_cpu_detect(arch)}"	\
2458    " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}"	\
2459    " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2460 #else
2461 # define MCPU_MTUNE_NATIVE_FUNCTIONS
2462 # define MCPU_MTUNE_NATIVE_SPECS ""
2463 #endif
2464 
2465 const char *arm_canon_arch_option (int argc, const char **argv);
2466 const char *arm_canon_arch_multilib_option (int argc, const char **argv);
2467 
2468 #define CANON_ARCH_SPEC_FUNCTION		\
2469   { "canon_arch", arm_canon_arch_option },
2470 
2471 #define CANON_ARCH_MULTILIB_SPEC_FUNCTION		\
2472   { "canon_arch_multilib", arm_canon_arch_multilib_option },
2473 
2474 const char *arm_be8_option (int argc, const char **argv);
2475 #define BE8_SPEC_FUNCTION			\
2476   { "be8_linkopt", arm_be8_option },
2477 
2478 # define EXTRA_SPEC_FUNCTIONS			\
2479   MCPU_MTUNE_NATIVE_FUNCTIONS			\
2480   ASM_CPU_SPEC_FUNCTIONS			\
2481   CANON_ARCH_SPEC_FUNCTION			\
2482   CANON_ARCH_MULTILIB_SPEC_FUNCTION		\
2483   TARGET_MODE_SPEC_FUNCTIONS			\
2484   BE8_SPEC_FUNCTION
2485 
2486 /* Automatically add -mthumb for Thumb-only targets if mode isn't specified
2487    via the configuration option --with-mode or via the command line. The
2488    function target_mode_check is called to do the check with either:
2489    - an array of -march values if any is given;
2490    - an array of -mcpu values if any is given;
2491    - an empty array.  */
2492 #define TARGET_MODE_SPECS						\
2493   " %{!marm:%{!mthumb:%:target_mode_check(%{march=*:arch %*;mcpu=*:cpu %*;:})}}"
2494 
2495 /* Generate a canonical string to represent the architecture selected.  */
2496 #define ARCH_CANONICAL_SPECS				\
2497   " -march=%:canon_arch(%{mcpu=*: cpu %*} "		\
2498   "                     %{march=*: arch %*} "		\
2499   "                     %{mfpu=*: fpu %*} "		\
2500   "                     %{mfloat-abi=*: abi %*}"	\
2501   "                     %<march=*) "
2502 
2503 /* Generate a canonical string to represent the architecture selected ignoring
2504    the options not required for multilib linking.  */
2505 #define MULTILIB_ARCH_CANONICAL_SPECS				\
2506   "-mlibarch=%:canon_arch_multilib(%{mcpu=*: cpu %*} "		\
2507   "				   %{march=*: arch %*} "	\
2508   "				   %{mfpu=*: fpu %*} "		\
2509   "				   %{mfloat-abi=*: abi %*}"	\
2510   "				   %<mlibarch=*) "
2511 
2512 /* Complete set of specs for the driver.  Commas separate the
2513    individual rules so that any option suppression (%<opt...)is
2514    completed before starting subsequent rules.  */
2515 #define DRIVER_SELF_SPECS			\
2516   MCPU_MTUNE_NATIVE_SPECS,			\
2517   TARGET_MODE_SPECS,				\
2518   MULTILIB_ARCH_CANONICAL_SPECS,		\
2519   ARCH_CANONICAL_SPECS
2520 
2521 #define TARGET_SUPPORTS_WIDE_INT 1
2522 
2523 /* For switching between functions with different target attributes.  */
2524 #define SWITCHABLE_TARGET 1
2525 
2526 /* Define SECTION_ARM_PURECODE as the ARM specific section attribute
2527    representation for SHF_ARM_PURECODE in GCC.  */
2528 #define SECTION_ARM_PURECODE SECTION_MACH_DEP
2529 
2530 #endif /* ! GCC_ARM_H */
2531