1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===---------------------------------------------------------------------===// 8 // 9 // This pass analyzes vector computations and removes unnecessary 10 // doubleword swaps (xxswapd instructions). This pass is performed 11 // only for little-endian VSX code generation. 12 // 13 // For this specific case, loads and stores of v4i32, v4f32, v2i64, 14 // and v2f64 vectors are inefficient. These are implemented using 15 // the lxvd2x and stxvd2x instructions, which invert the order of 16 // doublewords in a vector register. Thus code generation inserts 17 // an xxswapd after each such load, and prior to each such store. 18 // 19 // The extra xxswapd instructions reduce performance. The purpose 20 // of this pass is to reduce the number of xxswapd instructions 21 // required for correctness. 22 // 23 // The primary insight is that much code that operates on vectors 24 // does not care about the relative order of elements in a register, 25 // so long as the correct memory order is preserved. If we have a 26 // computation where all input values are provided by lxvd2x/xxswapd, 27 // all outputs are stored using xxswapd/lxvd2x, and all intermediate 28 // computations are lane-insensitive (independent of element order), 29 // then all the xxswapd instructions associated with the loads and 30 // stores may be removed without changing observable semantics. 31 // 32 // This pass uses standard equivalence class infrastructure to create 33 // maximal webs of computations fitting the above description. Each 34 // such web is then optimized by removing its unnecessary xxswapd 35 // instructions. 36 // 37 // There are some lane-sensitive operations for which we can still 38 // permit the optimization, provided we modify those operations 39 // accordingly. Such operations are identified as using "special 40 // handling" within this module. 41 // 42 //===---------------------------------------------------------------------===// 43 44 #include "PPC.h" 45 #include "PPCInstrInfo.h" 46 #include "PPCTargetMachine.h" 47 #include "llvm/ADT/DenseMap.h" 48 #include "llvm/ADT/EquivalenceClasses.h" 49 #include "llvm/CodeGen/MachineFunctionPass.h" 50 #include "llvm/CodeGen/MachineInstrBuilder.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/Config/llvm-config.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/Format.h" 55 #include "llvm/Support/raw_ostream.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "ppc-vsx-swaps" 60 61 namespace { 62 63 // A PPCVSXSwapEntry is created for each machine instruction that 64 // is relevant to a vector computation. 65 struct PPCVSXSwapEntry { 66 // Pointer to the instruction. 67 MachineInstr *VSEMI; 68 69 // Unique ID (position in the swap vector). 70 int VSEId; 71 72 // Attributes of this node. 73 unsigned int IsLoad : 1; 74 unsigned int IsStore : 1; 75 unsigned int IsSwap : 1; 76 unsigned int MentionsPhysVR : 1; 77 unsigned int IsSwappable : 1; 78 unsigned int MentionsPartialVR : 1; 79 unsigned int SpecialHandling : 3; 80 unsigned int WebRejected : 1; 81 unsigned int WillRemove : 1; 82 }; 83 84 enum SHValues { 85 SH_NONE = 0, 86 SH_EXTRACT, 87 SH_INSERT, 88 SH_NOSWAP_LD, 89 SH_NOSWAP_ST, 90 SH_SPLAT, 91 SH_XXPERMDI, 92 SH_COPYWIDEN 93 }; 94 95 struct PPCVSXSwapRemoval : public MachineFunctionPass { 96 97 static char ID; 98 const PPCInstrInfo *TII; 99 MachineFunction *MF; 100 MachineRegisterInfo *MRI; 101 102 // Swap entries are allocated in a vector for better performance. 103 std::vector<PPCVSXSwapEntry> SwapVector; 104 105 // A mapping is maintained between machine instructions and 106 // their swap entries. The key is the address of the MI. 107 DenseMap<MachineInstr*, int> SwapMap; 108 109 // Equivalence classes are used to gather webs of related computation. 110 // Swap entries are represented by their VSEId fields. 111 EquivalenceClasses<int> *EC; 112 113 PPCVSXSwapRemoval() : MachineFunctionPass(ID) { 114 initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry()); 115 } 116 117 private: 118 // Initialize data structures. 119 void initialize(MachineFunction &MFParm); 120 121 // Walk the machine instructions to gather vector usage information. 122 // Return true iff vector mentions are present. 123 bool gatherVectorInstructions(); 124 125 // Add an entry to the swap vector and swap map. 126 int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry); 127 128 // Hunt backwards through COPY and SUBREG_TO_REG chains for a 129 // source register. VecIdx indicates the swap vector entry to 130 // mark as mentioning a physical register if the search leads 131 // to one. 132 unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx); 133 134 // Generate equivalence classes for related computations (webs). 135 void formWebs(); 136 137 // Analyze webs and determine those that cannot be optimized. 138 void recordUnoptimizableWebs(); 139 140 // Record which swap instructions can be safely removed. 141 void markSwapsForRemoval(); 142 143 // Remove swaps and update other instructions requiring special 144 // handling. Return true iff any changes are made. 145 bool removeSwaps(); 146 147 // Insert a swap instruction from SrcReg to DstReg at the given 148 // InsertPoint. 149 void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint, 150 unsigned DstReg, unsigned SrcReg); 151 152 // Update instructions requiring special handling. 153 void handleSpecialSwappables(int EntryIdx); 154 155 // Dump a description of the entries in the swap vector. 156 void dumpSwapVector(); 157 158 // Return true iff the given register is in the given class. 159 bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) { 160 if (Register::isVirtualRegister(Reg)) 161 return RC->hasSubClassEq(MRI->getRegClass(Reg)); 162 return RC->contains(Reg); 163 } 164 165 // Return true iff the given register is a full vector register. 166 bool isVecReg(unsigned Reg) { 167 return (isRegInClass(Reg, &PPC::VSRCRegClass) || 168 isRegInClass(Reg, &PPC::VRRCRegClass)); 169 } 170 171 // Return true iff the given register is a partial vector register. 172 bool isScalarVecReg(unsigned Reg) { 173 return (isRegInClass(Reg, &PPC::VSFRCRegClass) || 174 isRegInClass(Reg, &PPC::VSSRCRegClass)); 175 } 176 177 // Return true iff the given register mentions all or part of a 178 // vector register. Also sets Partial to true if the mention 179 // is for just the floating-point register overlap of the register. 180 bool isAnyVecReg(unsigned Reg, bool &Partial) { 181 if (isScalarVecReg(Reg)) 182 Partial = true; 183 return isScalarVecReg(Reg) || isVecReg(Reg); 184 } 185 186 public: 187 // Main entry point for this pass. 188 bool runOnMachineFunction(MachineFunction &MF) override { 189 if (skipFunction(MF.getFunction())) 190 return false; 191 192 // If we don't have VSX on the subtarget, don't do anything. 193 // Also, on Power 9 the load and store ops preserve element order and so 194 // the swaps are not required. 195 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); 196 if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps()) 197 return false; 198 199 bool Changed = false; 200 initialize(MF); 201 202 if (gatherVectorInstructions()) { 203 formWebs(); 204 recordUnoptimizableWebs(); 205 markSwapsForRemoval(); 206 Changed = removeSwaps(); 207 } 208 209 // FIXME: See the allocation of EC in initialize(). 210 delete EC; 211 return Changed; 212 } 213 }; 214 215 // Initialize data structures for this pass. In particular, clear the 216 // swap vector and allocate the equivalence class mapping before 217 // processing each function. 218 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) { 219 MF = &MFParm; 220 MRI = &MF->getRegInfo(); 221 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 222 223 // An initial vector size of 256 appears to work well in practice. 224 // Small/medium functions with vector content tend not to incur a 225 // reallocation at this size. Three of the vector tests in 226 // projects/test-suite reallocate, which seems like a reasonable rate. 227 const int InitialVectorSize(256); 228 SwapVector.clear(); 229 SwapVector.reserve(InitialVectorSize); 230 231 // FIXME: Currently we allocate EC each time because we don't have 232 // access to the set representation on which to call clear(). Should 233 // consider adding a clear() method to the EquivalenceClasses class. 234 EC = new EquivalenceClasses<int>; 235 } 236 237 // Create an entry in the swap vector for each instruction that mentions 238 // a full vector register, recording various characteristics of the 239 // instructions there. 240 bool PPCVSXSwapRemoval::gatherVectorInstructions() { 241 bool RelevantFunction = false; 242 243 for (MachineBasicBlock &MBB : *MF) { 244 for (MachineInstr &MI : MBB) { 245 246 if (MI.isDebugInstr()) 247 continue; 248 249 bool RelevantInstr = false; 250 bool Partial = false; 251 252 for (const MachineOperand &MO : MI.operands()) { 253 if (!MO.isReg()) 254 continue; 255 Register Reg = MO.getReg(); 256 // All operands need to be checked because there are instructions that 257 // operate on a partial register and produce a full register (such as 258 // XXPERMDIs). 259 if (isAnyVecReg(Reg, Partial)) 260 RelevantInstr = true; 261 } 262 263 if (!RelevantInstr) 264 continue; 265 266 RelevantFunction = true; 267 268 // Create a SwapEntry initialized to zeros, then fill in the 269 // instruction and ID fields before pushing it to the back 270 // of the swap vector. 271 PPCVSXSwapEntry SwapEntry{}; 272 int VecIdx = addSwapEntry(&MI, SwapEntry); 273 274 switch(MI.getOpcode()) { 275 default: 276 // Unless noted otherwise, an instruction is considered 277 // safe for the optimization. There are a large number of 278 // such true-SIMD instructions (all vector math, logical, 279 // select, compare, etc.). However, if the instruction 280 // mentions a partial vector register and does not have 281 // special handling defined, it is not swappable. 282 if (Partial) 283 SwapVector[VecIdx].MentionsPartialVR = 1; 284 else 285 SwapVector[VecIdx].IsSwappable = 1; 286 break; 287 case PPC::XXPERMDI: { 288 // This is a swap if it is of the form XXPERMDI t, s, s, 2. 289 // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we 290 // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2, 291 // for example. We have to look through chains of COPY and 292 // SUBREG_TO_REG to find the real source value for comparison. 293 // If the real source value is a physical register, then mark the 294 // XXPERMDI as mentioning a physical register. 295 int immed = MI.getOperand(3).getImm(); 296 if (immed == 2) { 297 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), 298 VecIdx); 299 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), 300 VecIdx); 301 if (trueReg1 == trueReg2) 302 SwapVector[VecIdx].IsSwap = 1; 303 else { 304 // We can still handle these if the two registers are not 305 // identical, by adjusting the form of the XXPERMDI. 306 SwapVector[VecIdx].IsSwappable = 1; 307 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 308 } 309 // This is a doubleword splat if it is of the form 310 // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we 311 // must look through chains of copy-likes to find the source 312 // register. We turn off the marking for mention of a physical 313 // register, because splatting it is safe; the optimization 314 // will not swap the value in the physical register. Whether 315 // or not the two input registers are identical, we can handle 316 // these by adjusting the form of the XXPERMDI. 317 } else if (immed == 0 || immed == 3) { 318 319 SwapVector[VecIdx].IsSwappable = 1; 320 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 321 322 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), 323 VecIdx); 324 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), 325 VecIdx); 326 if (trueReg1 == trueReg2) 327 SwapVector[VecIdx].MentionsPhysVR = 0; 328 329 } else { 330 // We can still handle these by adjusting the form of the XXPERMDI. 331 SwapVector[VecIdx].IsSwappable = 1; 332 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 333 } 334 break; 335 } 336 case PPC::LVX: 337 // Non-permuting loads are currently unsafe. We can use special 338 // handling for this in the future. By not marking these as 339 // IsSwap, we ensure computations containing them will be rejected 340 // for now. 341 SwapVector[VecIdx].IsLoad = 1; 342 break; 343 case PPC::LXVD2X: 344 case PPC::LXVW4X: 345 // Permuting loads are marked as both load and swap, and are 346 // safe for optimization. 347 SwapVector[VecIdx].IsLoad = 1; 348 SwapVector[VecIdx].IsSwap = 1; 349 break; 350 case PPC::LXSDX: 351 case PPC::LXSSPX: 352 case PPC::XFLOADf64: 353 case PPC::XFLOADf32: 354 // A load of a floating-point value into the high-order half of 355 // a vector register is safe, provided that we introduce a swap 356 // following the load, which will be done by the SUBREG_TO_REG 357 // support. So just mark these as safe. 358 SwapVector[VecIdx].IsLoad = 1; 359 SwapVector[VecIdx].IsSwappable = 1; 360 break; 361 case PPC::STVX: 362 // Non-permuting stores are currently unsafe. We can use special 363 // handling for this in the future. By not marking these as 364 // IsSwap, we ensure computations containing them will be rejected 365 // for now. 366 SwapVector[VecIdx].IsStore = 1; 367 break; 368 case PPC::STXVD2X: 369 case PPC::STXVW4X: 370 // Permuting stores are marked as both store and swap, and are 371 // safe for optimization. 372 SwapVector[VecIdx].IsStore = 1; 373 SwapVector[VecIdx].IsSwap = 1; 374 break; 375 case PPC::COPY: 376 // These are fine provided they are moving between full vector 377 // register classes. 378 if (isVecReg(MI.getOperand(0).getReg()) && 379 isVecReg(MI.getOperand(1).getReg())) 380 SwapVector[VecIdx].IsSwappable = 1; 381 // If we have a copy from one scalar floating-point register 382 // to another, we can accept this even if it is a physical 383 // register. The only way this gets involved is if it feeds 384 // a SUBREG_TO_REG, which is handled by introducing a swap. 385 else if (isScalarVecReg(MI.getOperand(0).getReg()) && 386 isScalarVecReg(MI.getOperand(1).getReg())) 387 SwapVector[VecIdx].IsSwappable = 1; 388 break; 389 case PPC::SUBREG_TO_REG: { 390 // These are fine provided they are moving between full vector 391 // register classes. If they are moving from a scalar 392 // floating-point class to a vector class, we can handle those 393 // as well, provided we introduce a swap. It is generally the 394 // case that we will introduce fewer swaps than we remove, but 395 // (FIXME) a cost model could be used. However, introduced 396 // swaps could potentially be CSEd, so this is not trivial. 397 if (isVecReg(MI.getOperand(0).getReg()) && 398 isVecReg(MI.getOperand(2).getReg())) 399 SwapVector[VecIdx].IsSwappable = 1; 400 else if (isVecReg(MI.getOperand(0).getReg()) && 401 isScalarVecReg(MI.getOperand(2).getReg())) { 402 SwapVector[VecIdx].IsSwappable = 1; 403 SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN; 404 } 405 break; 406 } 407 case PPC::VSPLTB: 408 case PPC::VSPLTH: 409 case PPC::VSPLTW: 410 case PPC::XXSPLTW: 411 // Splats are lane-sensitive, but we can use special handling 412 // to adjust the source lane for the splat. 413 SwapVector[VecIdx].IsSwappable = 1; 414 SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT; 415 break; 416 // The presence of the following lane-sensitive operations in a 417 // web will kill the optimization, at least for now. For these 418 // we do nothing, causing the optimization to fail. 419 // FIXME: Some of these could be permitted with special handling, 420 // and will be phased in as time permits. 421 // FIXME: There is no simple and maintainable way to express a set 422 // of opcodes having a common attribute in TableGen. Should this 423 // change, this is a prime candidate to use such a mechanism. 424 case PPC::INLINEASM: 425 case PPC::INLINEASM_BR: 426 case PPC::EXTRACT_SUBREG: 427 case PPC::INSERT_SUBREG: 428 case PPC::COPY_TO_REGCLASS: 429 case PPC::LVEBX: 430 case PPC::LVEHX: 431 case PPC::LVEWX: 432 case PPC::LVSL: 433 case PPC::LVSR: 434 case PPC::LVXL: 435 case PPC::STVEBX: 436 case PPC::STVEHX: 437 case PPC::STVEWX: 438 case PPC::STVXL: 439 // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX, 440 // by adding special handling for narrowing copies as well as 441 // widening ones. However, I've experimented with this, and in 442 // practice we currently do not appear to use STXSDX fed by 443 // a narrowing copy from a full vector register. Since I can't 444 // generate any useful test cases, I've left this alone for now. 445 case PPC::STXSDX: 446 case PPC::STXSSPX: 447 case PPC::VCIPHER: 448 case PPC::VCIPHERLAST: 449 case PPC::VMRGHB: 450 case PPC::VMRGHH: 451 case PPC::VMRGHW: 452 case PPC::VMRGLB: 453 case PPC::VMRGLH: 454 case PPC::VMRGLW: 455 case PPC::VMULESB: 456 case PPC::VMULESH: 457 case PPC::VMULESW: 458 case PPC::VMULEUB: 459 case PPC::VMULEUH: 460 case PPC::VMULEUW: 461 case PPC::VMULOSB: 462 case PPC::VMULOSH: 463 case PPC::VMULOSW: 464 case PPC::VMULOUB: 465 case PPC::VMULOUH: 466 case PPC::VMULOUW: 467 case PPC::VNCIPHER: 468 case PPC::VNCIPHERLAST: 469 case PPC::VPERM: 470 case PPC::VPERMXOR: 471 case PPC::VPKPX: 472 case PPC::VPKSHSS: 473 case PPC::VPKSHUS: 474 case PPC::VPKSDSS: 475 case PPC::VPKSDUS: 476 case PPC::VPKSWSS: 477 case PPC::VPKSWUS: 478 case PPC::VPKUDUM: 479 case PPC::VPKUDUS: 480 case PPC::VPKUHUM: 481 case PPC::VPKUHUS: 482 case PPC::VPKUWUM: 483 case PPC::VPKUWUS: 484 case PPC::VPMSUMB: 485 case PPC::VPMSUMD: 486 case PPC::VPMSUMH: 487 case PPC::VPMSUMW: 488 case PPC::VRLB: 489 case PPC::VRLD: 490 case PPC::VRLH: 491 case PPC::VRLW: 492 case PPC::VSBOX: 493 case PPC::VSHASIGMAD: 494 case PPC::VSHASIGMAW: 495 case PPC::VSL: 496 case PPC::VSLDOI: 497 case PPC::VSLO: 498 case PPC::VSR: 499 case PPC::VSRO: 500 case PPC::VSUM2SWS: 501 case PPC::VSUM4SBS: 502 case PPC::VSUM4SHS: 503 case PPC::VSUM4UBS: 504 case PPC::VSUMSWS: 505 case PPC::VUPKHPX: 506 case PPC::VUPKHSB: 507 case PPC::VUPKHSH: 508 case PPC::VUPKHSW: 509 case PPC::VUPKLPX: 510 case PPC::VUPKLSB: 511 case PPC::VUPKLSH: 512 case PPC::VUPKLSW: 513 case PPC::XXMRGHW: 514 case PPC::XXMRGLW: 515 // XXSLDWI could be replaced by a general permute with one of three 516 // permute control vectors (for shift values 1, 2, 3). However, 517 // VPERM has a more restrictive register class. 518 case PPC::XXSLDWI: 519 case PPC::XSCVDPSPN: 520 case PPC::XSCVSPDPN: 521 case PPC::MTVSCR: 522 case PPC::MFVSCR: 523 break; 524 } 525 } 526 } 527 528 if (RelevantFunction) { 529 LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n"); 530 LLVM_DEBUG(dumpSwapVector()); 531 } 532 533 return RelevantFunction; 534 } 535 536 // Add an entry to the swap vector and swap map, and make a 537 // singleton equivalence class for the entry. 538 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI, 539 PPCVSXSwapEntry& SwapEntry) { 540 SwapEntry.VSEMI = MI; 541 SwapEntry.VSEId = SwapVector.size(); 542 SwapVector.push_back(SwapEntry); 543 EC->insert(SwapEntry.VSEId); 544 SwapMap[MI] = SwapEntry.VSEId; 545 return SwapEntry.VSEId; 546 } 547 548 // This is used to find the "true" source register for an 549 // XXPERMDI instruction, since MachineCSE does not handle the 550 // "copy-like" operations (Copy and SubregToReg). Returns 551 // the original SrcReg unless it is the target of a copy-like 552 // operation, in which case we chain backwards through all 553 // such operations to the ultimate source register. If a 554 // physical register is encountered, we stop the search and 555 // flag the swap entry indicated by VecIdx (the original 556 // XXPERMDI) as mentioning a physical register. 557 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg, 558 unsigned VecIdx) { 559 MachineInstr *MI = MRI->getVRegDef(SrcReg); 560 if (!MI->isCopyLike()) 561 return SrcReg; 562 563 unsigned CopySrcReg; 564 if (MI->isCopy()) 565 CopySrcReg = MI->getOperand(1).getReg(); 566 else { 567 assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike"); 568 CopySrcReg = MI->getOperand(2).getReg(); 569 } 570 571 if (!Register::isVirtualRegister(CopySrcReg)) { 572 if (!isScalarVecReg(CopySrcReg)) 573 SwapVector[VecIdx].MentionsPhysVR = 1; 574 return CopySrcReg; 575 } 576 577 return lookThruCopyLike(CopySrcReg, VecIdx); 578 } 579 580 // Generate equivalence classes for related computations (webs) by 581 // def-use relationships of virtual registers. Mention of a physical 582 // register terminates the generation of equivalence classes as this 583 // indicates a use of a parameter, definition of a return value, use 584 // of a value returned from a call, or definition of a parameter to a 585 // call. Computations with physical register mentions are flagged 586 // as such so their containing webs will not be optimized. 587 void PPCVSXSwapRemoval::formWebs() { 588 589 LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n"); 590 591 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 592 593 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 594 595 LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " "); 596 LLVM_DEBUG(MI->dump()); 597 598 // It's sufficient to walk vector uses and join them to their unique 599 // definitions. In addition, check full vector register operands 600 // for physical regs. We exclude partial-vector register operands 601 // because we can handle them if copied to a full vector. 602 for (const MachineOperand &MO : MI->operands()) { 603 if (!MO.isReg()) 604 continue; 605 606 Register Reg = MO.getReg(); 607 if (!isVecReg(Reg) && !isScalarVecReg(Reg)) 608 continue; 609 610 if (!Reg.isVirtual()) { 611 if (!(MI->isCopy() && isScalarVecReg(Reg))) 612 SwapVector[EntryIdx].MentionsPhysVR = 1; 613 continue; 614 } 615 616 if (!MO.isUse()) 617 continue; 618 619 MachineInstr* DefMI = MRI->getVRegDef(Reg); 620 assert(SwapMap.contains(DefMI) && 621 "Inconsistency: def of vector reg not found in swap map!"); 622 int DefIdx = SwapMap[DefMI]; 623 (void)EC->unionSets(SwapVector[DefIdx].VSEId, 624 SwapVector[EntryIdx].VSEId); 625 626 LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n", 627 SwapVector[DefIdx].VSEId, 628 SwapVector[EntryIdx].VSEId)); 629 LLVM_DEBUG(dbgs() << " Def: "); 630 LLVM_DEBUG(DefMI->dump()); 631 } 632 } 633 } 634 635 // Walk the swap vector entries looking for conditions that prevent their 636 // containing computations from being optimized. When such conditions are 637 // found, mark the representative of the computation's equivalence class 638 // as rejected. 639 void PPCVSXSwapRemoval::recordUnoptimizableWebs() { 640 641 LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n"); 642 643 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 644 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 645 646 // If representative is already rejected, don't waste further time. 647 if (SwapVector[Repr].WebRejected) 648 continue; 649 650 // Reject webs containing mentions of physical or partial registers, or 651 // containing operations that we don't know how to handle in a lane- 652 // permuted region. 653 if (SwapVector[EntryIdx].MentionsPhysVR || 654 SwapVector[EntryIdx].MentionsPartialVR || 655 !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) { 656 657 SwapVector[Repr].WebRejected = 1; 658 659 LLVM_DEBUG( 660 dbgs() << format("Web %d rejected for physreg, partial reg, or not " 661 "swap[pable]\n", 662 Repr)); 663 LLVM_DEBUG(dbgs() << " in " << EntryIdx << ": "); 664 LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump()); 665 LLVM_DEBUG(dbgs() << "\n"); 666 } 667 668 // Reject webs than contain swapping loads that feed something other 669 // than a swap instruction. 670 else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { 671 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 672 Register DefReg = MI->getOperand(0).getReg(); 673 674 // We skip debug instructions in the analysis. (Note that debug 675 // location information is still maintained by this optimization 676 // because it remains on the LXVD2X and STXVD2X instructions after 677 // the XXPERMDIs are removed.) 678 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 679 int UseIdx = SwapMap[&UseMI]; 680 681 if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad || 682 SwapVector[UseIdx].IsStore) { 683 684 SwapVector[Repr].WebRejected = 1; 685 686 LLVM_DEBUG(dbgs() << format( 687 "Web %d rejected for load not feeding swap\n", Repr)); 688 LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": "); 689 LLVM_DEBUG(MI->dump()); 690 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": "); 691 LLVM_DEBUG(UseMI.dump()); 692 LLVM_DEBUG(dbgs() << "\n"); 693 } 694 695 // It is possible that the load feeds a swap and that swap feeds a 696 // store. In such a case, the code is actually trying to store a swapped 697 // vector. We must reject such webs. 698 if (SwapVector[UseIdx].IsSwap && !SwapVector[UseIdx].IsLoad && 699 !SwapVector[UseIdx].IsStore) { 700 Register SwapDefReg = UseMI.getOperand(0).getReg(); 701 for (MachineInstr &UseOfUseMI : 702 MRI->use_nodbg_instructions(SwapDefReg)) { 703 int UseOfUseIdx = SwapMap[&UseOfUseMI]; 704 if (SwapVector[UseOfUseIdx].IsStore) { 705 SwapVector[Repr].WebRejected = 1; 706 LLVM_DEBUG( 707 dbgs() << format( 708 "Web %d rejected for load/swap feeding a store\n", Repr)); 709 LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": "); 710 LLVM_DEBUG(MI->dump()); 711 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": "); 712 LLVM_DEBUG(UseMI.dump()); 713 LLVM_DEBUG(dbgs() << "\n"); 714 } 715 } 716 } 717 } 718 719 // Reject webs that contain swapping stores that are fed by something 720 // other than a swap instruction. 721 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { 722 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 723 Register UseReg = MI->getOperand(0).getReg(); 724 MachineInstr *DefMI = MRI->getVRegDef(UseReg); 725 Register DefReg = DefMI->getOperand(0).getReg(); 726 int DefIdx = SwapMap[DefMI]; 727 728 if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad || 729 SwapVector[DefIdx].IsStore) { 730 731 SwapVector[Repr].WebRejected = 1; 732 733 LLVM_DEBUG(dbgs() << format( 734 "Web %d rejected for store not fed by swap\n", Repr)); 735 LLVM_DEBUG(dbgs() << " def " << DefIdx << ": "); 736 LLVM_DEBUG(DefMI->dump()); 737 LLVM_DEBUG(dbgs() << " use " << EntryIdx << ": "); 738 LLVM_DEBUG(MI->dump()); 739 LLVM_DEBUG(dbgs() << "\n"); 740 } 741 742 // Ensure all uses of the register defined by DefMI feed store 743 // instructions 744 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 745 int UseIdx = SwapMap[&UseMI]; 746 747 if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) { 748 SwapVector[Repr].WebRejected = 1; 749 750 LLVM_DEBUG( 751 dbgs() << format( 752 "Web %d rejected for swap not feeding only stores\n", Repr)); 753 LLVM_DEBUG(dbgs() << " def " 754 << " : "); 755 LLVM_DEBUG(DefMI->dump()); 756 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": "); 757 LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump()); 758 LLVM_DEBUG(dbgs() << "\n"); 759 } 760 } 761 } 762 } 763 764 LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n"); 765 LLVM_DEBUG(dumpSwapVector()); 766 } 767 768 // Walk the swap vector entries looking for swaps fed by permuting loads 769 // and swaps that feed permuting stores. If the containing computation 770 // has not been marked rejected, mark each such swap for removal. 771 // (Removal is delayed in case optimization has disturbed the pattern, 772 // such that multiple loads feed the same swap, etc.) 773 void PPCVSXSwapRemoval::markSwapsForRemoval() { 774 775 LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n"); 776 777 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 778 779 if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { 780 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 781 782 if (!SwapVector[Repr].WebRejected) { 783 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 784 Register DefReg = MI->getOperand(0).getReg(); 785 786 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 787 int UseIdx = SwapMap[&UseMI]; 788 SwapVector[UseIdx].WillRemove = 1; 789 790 LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: "); 791 LLVM_DEBUG(UseMI.dump()); 792 } 793 } 794 795 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { 796 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 797 798 if (!SwapVector[Repr].WebRejected) { 799 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 800 Register UseReg = MI->getOperand(0).getReg(); 801 MachineInstr *DefMI = MRI->getVRegDef(UseReg); 802 int DefIdx = SwapMap[DefMI]; 803 SwapVector[DefIdx].WillRemove = 1; 804 805 LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: "); 806 LLVM_DEBUG(DefMI->dump()); 807 } 808 809 } else if (SwapVector[EntryIdx].IsSwappable && 810 SwapVector[EntryIdx].SpecialHandling != 0) { 811 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 812 813 if (!SwapVector[Repr].WebRejected) 814 handleSpecialSwappables(EntryIdx); 815 } 816 } 817 } 818 819 // Create an xxswapd instruction and insert it prior to the given point. 820 // MI is used to determine basic block and debug loc information. 821 // FIXME: When inserting a swap, we should check whether SrcReg is 822 // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so, 823 // then instead we should generate a copy from Reg to DstReg. 824 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI, 825 MachineBasicBlock::iterator InsertPoint, 826 unsigned DstReg, unsigned SrcReg) { 827 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 828 TII->get(PPC::XXPERMDI), DstReg) 829 .addReg(SrcReg) 830 .addReg(SrcReg) 831 .addImm(2); 832 } 833 834 // The identified swap entry requires special handling to allow its 835 // containing computation to be optimized. Perform that handling 836 // here. 837 // FIXME: Additional opportunities will be phased in with subsequent 838 // patches. 839 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) { 840 switch (SwapVector[EntryIdx].SpecialHandling) { 841 842 default: 843 llvm_unreachable("Unexpected special handling type"); 844 845 // For splats based on an index into a vector, add N/2 modulo N 846 // to the index, where N is the number of vector elements. 847 case SHValues::SH_SPLAT: { 848 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 849 unsigned NElts; 850 851 LLVM_DEBUG(dbgs() << "Changing splat: "); 852 LLVM_DEBUG(MI->dump()); 853 854 switch (MI->getOpcode()) { 855 default: 856 llvm_unreachable("Unexpected splat opcode"); 857 case PPC::VSPLTB: NElts = 16; break; 858 case PPC::VSPLTH: NElts = 8; break; 859 case PPC::VSPLTW: 860 case PPC::XXSPLTW: NElts = 4; break; 861 } 862 863 unsigned EltNo; 864 if (MI->getOpcode() == PPC::XXSPLTW) 865 EltNo = MI->getOperand(2).getImm(); 866 else 867 EltNo = MI->getOperand(1).getImm(); 868 869 EltNo = (EltNo + NElts / 2) % NElts; 870 if (MI->getOpcode() == PPC::XXSPLTW) 871 MI->getOperand(2).setImm(EltNo); 872 else 873 MI->getOperand(1).setImm(EltNo); 874 875 LLVM_DEBUG(dbgs() << " Into: "); 876 LLVM_DEBUG(MI->dump()); 877 break; 878 } 879 880 // For an XXPERMDI that isn't handled otherwise, we need to 881 // reverse the order of the operands. If the selector operand 882 // has a value of 0 or 3, we need to change it to 3 or 0, 883 // respectively. Otherwise we should leave it alone. (This 884 // is equivalent to reversing the two bits of the selector 885 // operand and complementing the result.) 886 case SHValues::SH_XXPERMDI: { 887 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 888 889 LLVM_DEBUG(dbgs() << "Changing XXPERMDI: "); 890 LLVM_DEBUG(MI->dump()); 891 892 unsigned Selector = MI->getOperand(3).getImm(); 893 if (Selector == 0 || Selector == 3) 894 Selector = 3 - Selector; 895 MI->getOperand(3).setImm(Selector); 896 897 Register Reg1 = MI->getOperand(1).getReg(); 898 Register Reg2 = MI->getOperand(2).getReg(); 899 MI->getOperand(1).setReg(Reg2); 900 MI->getOperand(2).setReg(Reg1); 901 902 // We also need to swap kill flag associated with the register. 903 bool IsKill1 = MI->getOperand(1).isKill(); 904 bool IsKill2 = MI->getOperand(2).isKill(); 905 MI->getOperand(1).setIsKill(IsKill2); 906 MI->getOperand(2).setIsKill(IsKill1); 907 908 LLVM_DEBUG(dbgs() << " Into: "); 909 LLVM_DEBUG(MI->dump()); 910 break; 911 } 912 913 // For a copy from a scalar floating-point register to a vector 914 // register, removing swaps will leave the copied value in the 915 // wrong lane. Insert a swap following the copy to fix this. 916 case SHValues::SH_COPYWIDEN: { 917 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 918 919 LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: "); 920 LLVM_DEBUG(MI->dump()); 921 922 Register DstReg = MI->getOperand(0).getReg(); 923 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 924 Register NewVReg = MRI->createVirtualRegister(DstRC); 925 926 MI->getOperand(0).setReg(NewVReg); 927 LLVM_DEBUG(dbgs() << " Into: "); 928 LLVM_DEBUG(MI->dump()); 929 930 auto InsertPoint = ++MachineBasicBlock::iterator(MI); 931 932 // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG 933 // is copying to a VRRC, we need to be careful to avoid a register 934 // assignment problem. In this case we must copy from VRRC to VSRC 935 // prior to the swap, and from VSRC to VRRC following the swap. 936 // Coalescing will usually remove all this mess. 937 if (DstRC == &PPC::VRRCRegClass) { 938 Register VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass); 939 Register VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass); 940 941 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 942 TII->get(PPC::COPY), VSRCTmp1) 943 .addReg(NewVReg); 944 LLVM_DEBUG(std::prev(InsertPoint)->dump()); 945 946 insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1); 947 LLVM_DEBUG(std::prev(InsertPoint)->dump()); 948 949 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 950 TII->get(PPC::COPY), DstReg) 951 .addReg(VSRCTmp2); 952 LLVM_DEBUG(std::prev(InsertPoint)->dump()); 953 954 } else { 955 insertSwap(MI, InsertPoint, DstReg, NewVReg); 956 LLVM_DEBUG(std::prev(InsertPoint)->dump()); 957 } 958 break; 959 } 960 } 961 } 962 963 // Walk the swap vector and replace each entry marked for removal with 964 // a copy operation. 965 bool PPCVSXSwapRemoval::removeSwaps() { 966 967 LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n"); 968 969 bool Changed = false; 970 971 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 972 if (SwapVector[EntryIdx].WillRemove) { 973 Changed = true; 974 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 975 MachineBasicBlock *MBB = MI->getParent(); 976 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), 977 MI->getOperand(0).getReg()) 978 .add(MI->getOperand(1)); 979 980 LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ", 981 SwapVector[EntryIdx].VSEId)); 982 LLVM_DEBUG(MI->dump()); 983 984 MI->eraseFromParent(); 985 } 986 } 987 988 return Changed; 989 } 990 991 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 992 // For debug purposes, dump the contents of the swap vector. 993 LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() { 994 995 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 996 997 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 998 int ID = SwapVector[EntryIdx].VSEId; 999 1000 dbgs() << format("%6d", ID); 1001 dbgs() << format("%6d", EC->getLeaderValue(ID)); 1002 dbgs() << format(" %bb.%3d", MI->getParent()->getNumber()); 1003 dbgs() << format(" %14s ", TII->getName(MI->getOpcode()).str().c_str()); 1004 1005 if (SwapVector[EntryIdx].IsLoad) 1006 dbgs() << "load "; 1007 if (SwapVector[EntryIdx].IsStore) 1008 dbgs() << "store "; 1009 if (SwapVector[EntryIdx].IsSwap) 1010 dbgs() << "swap "; 1011 if (SwapVector[EntryIdx].MentionsPhysVR) 1012 dbgs() << "physreg "; 1013 if (SwapVector[EntryIdx].MentionsPartialVR) 1014 dbgs() << "partialreg "; 1015 1016 if (SwapVector[EntryIdx].IsSwappable) { 1017 dbgs() << "swappable "; 1018 switch(SwapVector[EntryIdx].SpecialHandling) { 1019 default: 1020 dbgs() << "special:**unknown**"; 1021 break; 1022 case SH_NONE: 1023 break; 1024 case SH_EXTRACT: 1025 dbgs() << "special:extract "; 1026 break; 1027 case SH_INSERT: 1028 dbgs() << "special:insert "; 1029 break; 1030 case SH_NOSWAP_LD: 1031 dbgs() << "special:load "; 1032 break; 1033 case SH_NOSWAP_ST: 1034 dbgs() << "special:store "; 1035 break; 1036 case SH_SPLAT: 1037 dbgs() << "special:splat "; 1038 break; 1039 case SH_XXPERMDI: 1040 dbgs() << "special:xxpermdi "; 1041 break; 1042 case SH_COPYWIDEN: 1043 dbgs() << "special:copywiden "; 1044 break; 1045 } 1046 } 1047 1048 if (SwapVector[EntryIdx].WebRejected) 1049 dbgs() << "rejected "; 1050 if (SwapVector[EntryIdx].WillRemove) 1051 dbgs() << "remove "; 1052 1053 dbgs() << "\n"; 1054 1055 // For no-asserts builds. 1056 (void)MI; 1057 (void)ID; 1058 } 1059 1060 dbgs() << "\n"; 1061 } 1062 #endif 1063 1064 } // end default namespace 1065 1066 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE, 1067 "PowerPC VSX Swap Removal", false, false) 1068 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE, 1069 "PowerPC VSX Swap Removal", false, false) 1070 1071 char PPCVSXSwapRemoval::ID = 0; 1072 FunctionPass* 1073 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); } 1074