1 //===- HexagonExpandCondsets.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 // Replace mux instructions with the corresponding legal instructions. 10 // It is meant to work post-SSA, but still on virtual registers. It was 11 // originally placed between register coalescing and machine instruction 12 // scheduler. 13 // In this place in the optimization sequence, live interval analysis had 14 // been performed, and the live intervals should be preserved. A large part 15 // of the code deals with preserving the liveness information. 16 // 17 // Liveness tracking aside, the main functionality of this pass is divided 18 // into two steps. The first step is to replace an instruction 19 // %0 = C2_mux %1, %2, %3 20 // with a pair of conditional transfers 21 // %0 = A2_tfrt %1, %2 22 // %0 = A2_tfrf %1, %3 23 // It is the intention that the execution of this pass could be terminated 24 // after this step, and the code generated would be functionally correct. 25 // 26 // If the uses of the source values %1 and %2 are kills, and their 27 // definitions are predicable, then in the second step, the conditional 28 // transfers will then be rewritten as predicated instructions. E.g. 29 // %0 = A2_or %1, %2 30 // %3 = A2_tfrt %99, killed %0 31 // will be rewritten as 32 // %3 = A2_port %99, %1, %2 33 // 34 // This replacement has two variants: "up" and "down". Consider this case: 35 // %0 = A2_or %1, %2 36 // ... [intervening instructions] ... 37 // %3 = A2_tfrt %99, killed %0 38 // variant "up": 39 // %3 = A2_port %99, %1, %2 40 // ... [intervening instructions, %0->vreg3] ... 41 // [deleted] 42 // variant "down": 43 // [deleted] 44 // ... [intervening instructions] ... 45 // %3 = A2_port %99, %1, %2 46 // 47 // Both, one or none of these variants may be valid, and checks are made 48 // to rule out inapplicable variants. 49 // 50 // As an additional optimization, before either of the two steps above is 51 // executed, the pass attempts to coalesce the target register with one of 52 // the source registers, e.g. given an instruction 53 // %3 = C2_mux %0, %1, %2 54 // %3 will be coalesced with either %1 or %2. If this succeeds, 55 // the instruction would then be (for example) 56 // %3 = C2_mux %0, %3, %2 57 // and, under certain circumstances, this could result in only one predicated 58 // instruction: 59 // %3 = A2_tfrf %0, %2 60 // 61 62 // Splitting a definition of a register into two predicated transfers 63 // creates a complication in liveness tracking. Live interval computation 64 // will see both instructions as actual definitions, and will mark the 65 // first one as dead. The definition is not actually dead, and this 66 // situation will need to be fixed. For example: 67 // dead %1 = A2_tfrt ... ; marked as dead 68 // %1 = A2_tfrf ... 69 // 70 // Since any of the individual predicated transfers may end up getting 71 // removed (in case it is an identity copy), some pre-existing def may 72 // be marked as dead after live interval recomputation: 73 // dead %1 = ... ; marked as dead 74 // ... 75 // %1 = A2_tfrf ... ; if A2_tfrt is removed 76 // This case happens if %1 was used as a source in A2_tfrt, which means 77 // that is it actually live at the A2_tfrf, and so the now dead definition 78 // of %1 will need to be updated to non-dead at some point. 79 // 80 // This issue could be remedied by adding implicit uses to the predicated 81 // transfers, but this will create a problem with subsequent predication, 82 // since the transfers will no longer be possible to reorder. To avoid 83 // that, the initial splitting will not add any implicit uses. These 84 // implicit uses will be added later, after predication. The extra price, 85 // however, is that finding the locations where the implicit uses need 86 // to be added, and updating the live ranges will be more involved. 87 88 #include "HexagonInstrInfo.h" 89 #include "HexagonRegisterInfo.h" 90 #include "llvm/ADT/DenseMap.h" 91 #include "llvm/ADT/SetVector.h" 92 #include "llvm/ADT/SmallVector.h" 93 #include "llvm/ADT/StringRef.h" 94 #include "llvm/CodeGen/LiveInterval.h" 95 #include "llvm/CodeGen/LiveIntervals.h" 96 #include "llvm/CodeGen/MachineBasicBlock.h" 97 #include "llvm/CodeGen/MachineDominators.h" 98 #include "llvm/CodeGen/MachineFunction.h" 99 #include "llvm/CodeGen/MachineFunctionPass.h" 100 #include "llvm/CodeGen/MachineInstr.h" 101 #include "llvm/CodeGen/MachineInstrBuilder.h" 102 #include "llvm/CodeGen/MachineOperand.h" 103 #include "llvm/CodeGen/MachineRegisterInfo.h" 104 #include "llvm/CodeGen/SlotIndexes.h" 105 #include "llvm/CodeGen/TargetRegisterInfo.h" 106 #include "llvm/CodeGen/TargetSubtargetInfo.h" 107 #include "llvm/IR/DebugLoc.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/InitializePasses.h" 110 #include "llvm/MC/LaneBitmask.h" 111 #include "llvm/Pass.h" 112 #include "llvm/Support/CommandLine.h" 113 #include "llvm/Support/Debug.h" 114 #include "llvm/Support/ErrorHandling.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include <cassert> 117 #include <iterator> 118 #include <map> 119 #include <set> 120 #include <utility> 121 122 #define DEBUG_TYPE "expand-condsets" 123 124 using namespace llvm; 125 126 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit", 127 cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions")); 128 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit", 129 cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings")); 130 131 namespace llvm { 132 133 void initializeHexagonExpandCondsetsPass(PassRegistry&); 134 FunctionPass *createHexagonExpandCondsets(); 135 136 } // end namespace llvm 137 138 namespace { 139 140 class HexagonExpandCondsets : public MachineFunctionPass { 141 public: 142 static char ID; 143 144 HexagonExpandCondsets() : MachineFunctionPass(ID) { 145 if (OptCoaLimit.getPosition()) 146 CoaLimitActive = true, CoaLimit = OptCoaLimit; 147 if (OptTfrLimit.getPosition()) 148 TfrLimitActive = true, TfrLimit = OptTfrLimit; 149 initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry()); 150 } 151 152 StringRef getPassName() const override { return "Hexagon Expand Condsets"; } 153 154 void getAnalysisUsage(AnalysisUsage &AU) const override { 155 AU.addRequired<LiveIntervalsWrapperPass>(); 156 AU.addPreserved<LiveIntervalsWrapperPass>(); 157 AU.addPreserved<SlotIndexesWrapperPass>(); 158 AU.addRequired<MachineDominatorTreeWrapperPass>(); 159 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 160 MachineFunctionPass::getAnalysisUsage(AU); 161 } 162 163 bool runOnMachineFunction(MachineFunction &MF) override; 164 165 private: 166 const HexagonInstrInfo *HII = nullptr; 167 const TargetRegisterInfo *TRI = nullptr; 168 MachineDominatorTree *MDT; 169 MachineRegisterInfo *MRI = nullptr; 170 LiveIntervals *LIS = nullptr; 171 bool CoaLimitActive = false; 172 bool TfrLimitActive = false; 173 unsigned CoaLimit; 174 unsigned TfrLimit; 175 unsigned CoaCounter = 0; 176 unsigned TfrCounter = 0; 177 178 // FIXME: Consolidate duplicate definitions of RegisterRef 179 struct RegisterRef { 180 RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()), 181 Sub(Op.getSubReg()) {} 182 RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {} 183 184 bool operator== (RegisterRef RR) const { 185 return Reg == RR.Reg && Sub == RR.Sub; 186 } 187 bool operator!= (RegisterRef RR) const { return !operator==(RR); } 188 bool operator< (RegisterRef RR) const { 189 return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub); 190 } 191 192 Register Reg; 193 unsigned Sub; 194 }; 195 196 using ReferenceMap = DenseMap<unsigned, unsigned>; 197 enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) }; 198 enum { Exec_Then = 0x10, Exec_Else = 0x20 }; 199 200 unsigned getMaskForSub(unsigned Sub); 201 bool isCondset(const MachineInstr &MI); 202 LaneBitmask getLaneMask(Register Reg, unsigned Sub); 203 204 void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec); 205 bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec); 206 207 void updateDeadsInRange(Register Reg, LaneBitmask LM, LiveRange &Range); 208 void updateKillFlags(Register Reg); 209 void updateDeadFlags(Register Reg); 210 void recalculateLiveInterval(Register Reg); 211 void removeInstr(MachineInstr &MI); 212 void updateLiveness(const std::set<Register> &RegSet, bool Recalc, 213 bool UpdateKills, bool UpdateDeads); 214 void distributeLiveIntervals(const std::set<Register> &Regs); 215 216 unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond); 217 MachineInstr *genCondTfrFor(MachineOperand &SrcOp, 218 MachineBasicBlock::iterator At, unsigned DstR, 219 unsigned DstSR, const MachineOperand &PredOp, bool PredSense, 220 bool ReadUndef, bool ImpUse); 221 bool split(MachineInstr &MI, std::set<Register> &UpdRegs); 222 223 bool isPredicable(MachineInstr *MI); 224 MachineInstr *getReachingDefForPred(RegisterRef RD, 225 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond); 226 bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses); 227 bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown); 228 void predicateAt(const MachineOperand &DefOp, MachineInstr &MI, 229 MachineBasicBlock::iterator Where, 230 const MachineOperand &PredOp, bool Cond, 231 std::set<Register> &UpdRegs); 232 void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, 233 bool Cond, MachineBasicBlock::iterator First, 234 MachineBasicBlock::iterator Last); 235 bool predicate(MachineInstr &TfrI, bool Cond, std::set<Register> &UpdRegs); 236 bool predicateInBlock(MachineBasicBlock &B, std::set<Register> &UpdRegs); 237 238 bool isIntReg(RegisterRef RR, unsigned &BW); 239 bool isIntraBlocks(LiveInterval &LI); 240 bool coalesceRegisters(RegisterRef R1, RegisterRef R2); 241 bool coalesceSegments(const SmallVectorImpl<MachineInstr *> &Condsets, 242 std::set<Register> &UpdRegs); 243 }; 244 245 } // end anonymous namespace 246 247 char HexagonExpandCondsets::ID = 0; 248 249 namespace llvm { 250 251 char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID; 252 253 } // end namespace llvm 254 255 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets", 256 "Hexagon Expand Condsets", false, false) 257 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 258 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 259 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 260 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets", 261 "Hexagon Expand Condsets", false, false) 262 263 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) { 264 switch (Sub) { 265 case Hexagon::isub_lo: 266 case Hexagon::vsub_lo: 267 return Sub_Low; 268 case Hexagon::isub_hi: 269 case Hexagon::vsub_hi: 270 return Sub_High; 271 case Hexagon::NoSubRegister: 272 return Sub_None; 273 } 274 llvm_unreachable("Invalid subregister"); 275 } 276 277 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) { 278 unsigned Opc = MI.getOpcode(); 279 switch (Opc) { 280 case Hexagon::C2_mux: 281 case Hexagon::C2_muxii: 282 case Hexagon::C2_muxir: 283 case Hexagon::C2_muxri: 284 case Hexagon::PS_pselect: 285 return true; 286 break; 287 } 288 return false; 289 } 290 291 LaneBitmask HexagonExpandCondsets::getLaneMask(Register Reg, unsigned Sub) { 292 assert(Reg.isVirtual()); 293 return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 294 : MRI->getMaxLaneMaskForVReg(Reg); 295 } 296 297 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map, 298 unsigned Exec) { 299 unsigned Mask = getMaskForSub(RR.Sub) | Exec; 300 Map[RR.Reg] |= Mask; 301 } 302 303 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map, 304 unsigned Exec) { 305 ReferenceMap::iterator F = Map.find(RR.Reg); 306 if (F == Map.end()) 307 return false; 308 unsigned Mask = getMaskForSub(RR.Sub) | Exec; 309 if (Mask & F->second) 310 return true; 311 return false; 312 } 313 314 void HexagonExpandCondsets::updateKillFlags(Register Reg) { 315 auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void { 316 // Set the <kill> flag on a use of Reg whose lane mask is contained in LM. 317 MachineInstr *MI = LIS->getInstructionFromIndex(K); 318 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 319 MachineOperand &Op = MI->getOperand(i); 320 if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg || 321 MI->isRegTiedToDefOperand(i)) 322 continue; 323 LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg()); 324 if ((SLM & LM) == SLM) { 325 // Only set the kill flag on the first encountered use of Reg in this 326 // instruction. 327 Op.setIsKill(true); 328 break; 329 } 330 } 331 }; 332 333 LiveInterval &LI = LIS->getInterval(Reg); 334 for (auto I = LI.begin(), E = LI.end(); I != E; ++I) { 335 if (!I->end.isRegister()) 336 continue; 337 // Do not mark the end of the segment as <kill>, if the next segment 338 // starts with a predicated instruction. 339 auto NextI = std::next(I); 340 if (NextI != E && NextI->start.isRegister()) { 341 MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start); 342 if (HII->isPredicated(*DefI)) 343 continue; 344 } 345 bool WholeReg = true; 346 if (LI.hasSubRanges()) { 347 auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool { 348 LiveRange::iterator F = S.find(I->end); 349 return F != S.end() && I->end == F->end; 350 }; 351 // Check if all subranges end at I->end. If so, make sure to kill 352 // the whole register. 353 for (LiveInterval::SubRange &S : LI.subranges()) { 354 if (EndsAtI(S)) 355 KillAt(I->end, S.LaneMask); 356 else 357 WholeReg = false; 358 } 359 } 360 if (WholeReg) 361 KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg)); 362 } 363 } 364 365 void HexagonExpandCondsets::updateDeadsInRange(Register Reg, LaneBitmask LM, 366 LiveRange &Range) { 367 assert(Reg.isVirtual()); 368 if (Range.empty()) 369 return; 370 371 // Return two booleans: { def-modifes-reg, def-covers-reg }. 372 auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> { 373 if (!Op.isReg() || !Op.isDef()) 374 return { false, false }; 375 Register DR = Op.getReg(), DSR = Op.getSubReg(); 376 if (!DR.isVirtual() || DR != Reg) 377 return { false, false }; 378 LaneBitmask SLM = getLaneMask(DR, DSR); 379 LaneBitmask A = SLM & LM; 380 return { A.any(), A == SLM }; 381 }; 382 383 // The splitting step will create pairs of predicated definitions without 384 // any implicit uses (since implicit uses would interfere with predication). 385 // This can cause the reaching defs to become dead after live range 386 // recomputation, even though they are not really dead. 387 // We need to identify predicated defs that need implicit uses, and 388 // dead defs that are not really dead, and correct both problems. 389 390 auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs, 391 MachineBasicBlock *Dest) -> bool { 392 for (MachineBasicBlock *D : Defs) { 393 if (D != Dest && MDT->dominates(D, Dest)) 394 return true; 395 } 396 MachineBasicBlock *Entry = &Dest->getParent()->front(); 397 SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end()); 398 for (unsigned i = 0; i < Work.size(); ++i) { 399 MachineBasicBlock *B = Work[i]; 400 if (Defs.count(B)) 401 continue; 402 if (B == Entry) 403 return false; 404 for (auto *P : B->predecessors()) 405 Work.insert(P); 406 } 407 return true; 408 }; 409 410 // First, try to extend live range within individual basic blocks. This 411 // will leave us only with dead defs that do not reach any predicated 412 // defs in the same block. 413 SetVector<MachineBasicBlock*> Defs; 414 SmallVector<SlotIndex,4> PredDefs; 415 for (auto &Seg : Range) { 416 if (!Seg.start.isRegister()) 417 continue; 418 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); 419 Defs.insert(DefI->getParent()); 420 if (HII->isPredicated(*DefI)) 421 PredDefs.push_back(Seg.start); 422 } 423 424 SmallVector<SlotIndex,8> Undefs; 425 LiveInterval &LI = LIS->getInterval(Reg); 426 LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes()); 427 428 for (auto &SI : PredDefs) { 429 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); 430 auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI); 431 if (P.first != nullptr || P.second) 432 SI = SlotIndex(); 433 } 434 435 // Calculate reachability for those predicated defs that were not handled 436 // by the in-block extension. 437 SmallVector<SlotIndex,4> ExtTo; 438 for (auto &SI : PredDefs) { 439 if (!SI.isValid()) 440 continue; 441 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); 442 if (BB->pred_empty()) 443 continue; 444 // If the defs from this range reach SI via all predecessors, it is live. 445 // It can happen that SI is reached by the defs through some paths, but 446 // not all. In the IR coming into this optimization, SI would not be 447 // considered live, since the defs would then not jointly dominate SI. 448 // That means that SI is an overwriting def, and no implicit use is 449 // needed at this point. Do not add SI to the extension points, since 450 // extendToIndices will abort if there is no joint dominance. 451 // If the abort was avoided by adding extra undefs added to Undefs, 452 // extendToIndices could actually indicate that SI is live, contrary 453 // to the original IR. 454 if (Dominate(Defs, BB)) 455 ExtTo.push_back(SI); 456 } 457 458 if (!ExtTo.empty()) 459 LIS->extendToIndices(Range, ExtTo, Undefs); 460 461 // Remove <dead> flags from all defs that are not dead after live range 462 // extension, and collect all def operands. They will be used to generate 463 // the necessary implicit uses. 464 // At the same time, add <dead> flag to all defs that are actually dead. 465 // This can happen, for example, when a mux with identical inputs is 466 // replaced with a COPY: the use of the predicate register disappears and 467 // the dead can become dead. 468 std::set<RegisterRef> DefRegs; 469 for (auto &Seg : Range) { 470 if (!Seg.start.isRegister()) 471 continue; 472 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); 473 for (auto &Op : DefI->operands()) { 474 auto P = IsRegDef(Op); 475 if (P.second && Seg.end.isDead()) { 476 Op.setIsDead(true); 477 } else if (P.first) { 478 DefRegs.insert(Op); 479 Op.setIsDead(false); 480 } 481 } 482 } 483 484 // Now, add implicit uses to each predicated def that is reached 485 // by other defs. 486 for (auto &Seg : Range) { 487 if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot())) 488 continue; 489 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); 490 if (!HII->isPredicated(*DefI)) 491 continue; 492 // Construct the set of all necessary implicit uses, based on the def 493 // operands in the instruction. We need to tie the implicit uses to 494 // the corresponding defs. 495 std::map<RegisterRef,unsigned> ImpUses; 496 for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) { 497 MachineOperand &Op = DefI->getOperand(i); 498 if (!Op.isReg() || !DefRegs.count(Op)) 499 continue; 500 if (Op.isDef()) { 501 // Tied defs will always have corresponding uses, so no extra 502 // implicit uses are needed. 503 if (!Op.isTied()) 504 ImpUses.insert({Op, i}); 505 } else { 506 // This function can be called for the same register with different 507 // lane masks. If the def in this instruction was for the whole 508 // register, we can get here more than once. Avoid adding multiple 509 // implicit uses (or adding an implicit use when an explicit one is 510 // present). 511 if (Op.isTied()) 512 ImpUses.erase(Op); 513 } 514 } 515 if (ImpUses.empty()) 516 continue; 517 MachineFunction &MF = *DefI->getParent()->getParent(); 518 for (auto [R, DefIdx] : ImpUses) { 519 MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub); 520 DefI->tieOperands(DefIdx, DefI->getNumOperands()-1); 521 } 522 } 523 } 524 525 void HexagonExpandCondsets::updateDeadFlags(Register Reg) { 526 LiveInterval &LI = LIS->getInterval(Reg); 527 if (LI.hasSubRanges()) { 528 for (LiveInterval::SubRange &S : LI.subranges()) { 529 updateDeadsInRange(Reg, S.LaneMask, S); 530 LIS->shrinkToUses(S, Reg); 531 } 532 LI.clear(); 533 LIS->constructMainRangeFromSubranges(LI); 534 } else { 535 updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI); 536 } 537 } 538 539 void HexagonExpandCondsets::recalculateLiveInterval(Register Reg) { 540 LIS->removeInterval(Reg); 541 LIS->createAndComputeVirtRegInterval(Reg); 542 } 543 544 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) { 545 LIS->RemoveMachineInstrFromMaps(MI); 546 MI.eraseFromParent(); 547 } 548 549 void HexagonExpandCondsets::updateLiveness(const std::set<Register> &RegSet, 550 bool Recalc, bool UpdateKills, 551 bool UpdateDeads) { 552 UpdateKills |= UpdateDeads; 553 for (Register R : RegSet) { 554 if (!R.isVirtual()) { 555 assert(R.isPhysical()); 556 // There shouldn't be any physical registers as operands, except 557 // possibly reserved registers. 558 assert(MRI->isReserved(R)); 559 continue; 560 } 561 if (Recalc) 562 recalculateLiveInterval(R); 563 if (UpdateKills) 564 MRI->clearKillFlags(R); 565 if (UpdateDeads) 566 updateDeadFlags(R); 567 // Fixing <dead> flags may extend live ranges, so reset <kill> flags 568 // after that. 569 if (UpdateKills) 570 updateKillFlags(R); 571 assert(LIS->getInterval(R).verify()); 572 } 573 } 574 575 void HexagonExpandCondsets::distributeLiveIntervals( 576 const std::set<Register> &Regs) { 577 ConnectedVNInfoEqClasses EQC(*LIS); 578 for (Register R : Regs) { 579 if (!R.isVirtual()) 580 continue; 581 LiveInterval &LI = LIS->getInterval(R); 582 unsigned NumComp = EQC.Classify(LI); 583 if (NumComp == 1) 584 continue; 585 586 SmallVector<LiveInterval*> NewLIs; 587 const TargetRegisterClass *RC = MRI->getRegClass(LI.reg()); 588 for (unsigned I = 1; I < NumComp; ++I) { 589 Register NewR = MRI->createVirtualRegister(RC); 590 NewLIs.push_back(&LIS->createEmptyInterval(NewR)); 591 } 592 EQC.Distribute(LI, NewLIs.begin(), *MRI); 593 } 594 } 595 596 /// Get the opcode for a conditional transfer of the value in SO (source 597 /// operand). The condition (true/false) is given in Cond. 598 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO, 599 bool IfTrue) { 600 if (SO.isReg()) { 601 MCRegister PhysR; 602 RegisterRef RS = SO; 603 if (RS.Reg.isVirtual()) { 604 const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg); 605 assert(VC->begin() != VC->end() && "Empty register class"); 606 PhysR = *VC->begin(); 607 } else { 608 PhysR = RS.Reg; 609 } 610 MCRegister PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub); 611 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS); 612 switch (TRI->getRegSizeInBits(*RC)) { 613 case 32: 614 return IfTrue ? Hexagon::A2_tfrt : Hexagon::A2_tfrf; 615 case 64: 616 return IfTrue ? Hexagon::A2_tfrpt : Hexagon::A2_tfrpf; 617 } 618 llvm_unreachable("Invalid register operand"); 619 } 620 switch (SO.getType()) { 621 case MachineOperand::MO_Immediate: 622 case MachineOperand::MO_FPImmediate: 623 case MachineOperand::MO_ConstantPoolIndex: 624 case MachineOperand::MO_TargetIndex: 625 case MachineOperand::MO_JumpTableIndex: 626 case MachineOperand::MO_ExternalSymbol: 627 case MachineOperand::MO_GlobalAddress: 628 case MachineOperand::MO_BlockAddress: 629 return IfTrue ? Hexagon::C2_cmoveit : Hexagon::C2_cmoveif; 630 default: 631 break; 632 } 633 llvm_unreachable("Unexpected source operand"); 634 } 635 636 /// Generate a conditional transfer, copying the value SrcOp to the 637 /// destination register DstR:DstSR, and using the predicate register from 638 /// PredOp. The Cond argument specifies whether the predicate is to be 639 /// if(PredOp), or if(!PredOp). 640 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp, 641 MachineBasicBlock::iterator At, 642 unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, 643 bool PredSense, bool ReadUndef, bool ImpUse) { 644 MachineInstr *MI = SrcOp.getParent(); 645 MachineBasicBlock &B = *At->getParent(); 646 const DebugLoc &DL = MI->getDebugLoc(); 647 648 // Don't avoid identity copies here (i.e. if the source and the destination 649 // are the same registers). It is actually better to generate them here, 650 // since this would cause the copy to potentially be predicated in the next 651 // step. The predication will remove such a copy if it is unable to 652 /// predicate. 653 654 unsigned Opc = getCondTfrOpcode(SrcOp, PredSense); 655 unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0); 656 unsigned PredState = getRegState(PredOp) & ~RegState::Kill; 657 MachineInstrBuilder MIB; 658 659 if (SrcOp.isReg()) { 660 unsigned SrcState = getRegState(SrcOp); 661 if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR)) 662 SrcState &= ~RegState::Kill; 663 MIB = BuildMI(B, At, DL, HII->get(Opc)) 664 .addReg(DstR, DstState, DstSR) 665 .addReg(PredOp.getReg(), PredState, PredOp.getSubReg()) 666 .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg()); 667 } else { 668 MIB = BuildMI(B, At, DL, HII->get(Opc)) 669 .addReg(DstR, DstState, DstSR) 670 .addReg(PredOp.getReg(), PredState, PredOp.getSubReg()) 671 .add(SrcOp); 672 } 673 674 LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB); 675 return &*MIB; 676 } 677 678 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function 679 /// performs all necessary changes to complete the replacement. 680 bool HexagonExpandCondsets::split(MachineInstr &MI, 681 std::set<Register> &UpdRegs) { 682 if (TfrLimitActive) { 683 if (TfrCounter >= TfrLimit) 684 return false; 685 TfrCounter++; 686 } 687 LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent()) 688 << ": " << MI); 689 MachineOperand &MD = MI.getOperand(0); // Definition 690 MachineOperand &MP = MI.getOperand(1); // Predicate register 691 assert(MD.isDef()); 692 Register DR = MD.getReg(), DSR = MD.getSubReg(); 693 bool ReadUndef = MD.isUndef(); 694 MachineBasicBlock::iterator At = MI; 695 696 auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void { 697 for (auto &Op : MI.operands()) { 698 if (Op.isReg()) 699 UpdRegs.insert(Op.getReg()); 700 } 701 }; 702 703 // If this is a mux of the same register, just replace it with COPY. 704 // Ideally, this would happen earlier, so that register coalescing would 705 // see it. 706 MachineOperand &ST = MI.getOperand(2); 707 MachineOperand &SF = MI.getOperand(3); 708 if (ST.isReg() && SF.isReg()) { 709 RegisterRef RT(ST); 710 if (RT == RegisterRef(SF)) { 711 // Copy regs to update first. 712 updateRegs(MI); 713 MI.setDesc(HII->get(TargetOpcode::COPY)); 714 unsigned S = getRegState(ST); 715 while (MI.getNumOperands() > 1) 716 MI.removeOperand(MI.getNumOperands()-1); 717 MachineFunction &MF = *MI.getParent()->getParent(); 718 MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub); 719 return true; 720 } 721 } 722 723 // First, create the two invididual conditional transfers, and add each 724 // of them to the live intervals information. Do that first and then remove 725 // the old instruction from live intervals. 726 MachineInstr *TfrT = 727 genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false); 728 MachineInstr *TfrF = 729 genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true); 730 LIS->InsertMachineInstrInMaps(*TfrT); 731 LIS->InsertMachineInstrInMaps(*TfrF); 732 733 // Will need to recalculate live intervals for all registers in MI. 734 updateRegs(MI); 735 736 removeInstr(MI); 737 return true; 738 } 739 740 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) { 741 if (HII->isPredicated(*MI) || !HII->isPredicable(*MI)) 742 return false; 743 if (MI->hasUnmodeledSideEffects() || MI->mayStore()) 744 return false; 745 // Reject instructions with multiple defs (e.g. post-increment loads). 746 bool HasDef = false; 747 for (auto &Op : MI->operands()) { 748 if (!Op.isReg() || !Op.isDef()) 749 continue; 750 if (HasDef) 751 return false; 752 HasDef = true; 753 } 754 for (auto &Mo : MI->memoperands()) { 755 if (Mo->isVolatile() || Mo->isAtomic()) 756 return false; 757 } 758 return true; 759 } 760 761 /// Find the reaching definition for a predicated use of RD. The RD is used 762 /// under the conditions given by PredR and Cond, and this function will ignore 763 /// definitions that set RD under the opposite conditions. 764 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD, 765 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) { 766 MachineBasicBlock &B = *UseIt->getParent(); 767 MachineBasicBlock::iterator I = UseIt, S = B.begin(); 768 if (I == S) 769 return nullptr; 770 771 bool PredValid = true; 772 do { 773 --I; 774 MachineInstr *MI = &*I; 775 // Check if this instruction can be ignored, i.e. if it is predicated 776 // on the complementary condition. 777 if (PredValid && HII->isPredicated(*MI)) { 778 if (MI->readsRegister(PredR, /*TRI=*/nullptr) && 779 (Cond != HII->isPredicatedTrue(*MI))) 780 continue; 781 } 782 783 // Check the defs. If the PredR is defined, invalidate it. If RD is 784 // defined, return the instruction or 0, depending on the circumstances. 785 for (auto &Op : MI->operands()) { 786 if (!Op.isReg() || !Op.isDef()) 787 continue; 788 RegisterRef RR = Op; 789 if (RR.Reg == PredR) { 790 PredValid = false; 791 continue; 792 } 793 if (RR.Reg != RD.Reg) 794 continue; 795 // If the "Reg" part agrees, there is still the subregister to check. 796 // If we are looking for %1:loreg, we can skip %1:hireg, but 797 // not %1 (w/o subregisters). 798 if (RR.Sub == RD.Sub) 799 return MI; 800 if (RR.Sub == 0 || RD.Sub == 0) 801 return nullptr; 802 // We have different subregisters, so we can continue looking. 803 } 804 } while (I != S); 805 806 return nullptr; 807 } 808 809 /// Check if the instruction MI can be safely moved over a set of instructions 810 /// whose side-effects (in terms of register defs and uses) are expressed in 811 /// the maps Defs and Uses. These maps reflect the conditional defs and uses 812 /// that depend on the same predicate register to allow moving instructions 813 /// over instructions predicated on the opposite condition. 814 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs, 815 ReferenceMap &Uses) { 816 // In order to be able to safely move MI over instructions that define 817 // "Defs" and use "Uses", no def operand from MI can be defined or used 818 // and no use operand can be defined. 819 for (auto &Op : MI.operands()) { 820 if (!Op.isReg()) 821 continue; 822 RegisterRef RR = Op; 823 // For physical register we would need to check register aliases, etc. 824 // and we don't want to bother with that. It would be of little value 825 // before the actual register rewriting (from virtual to physical). 826 if (!RR.Reg.isVirtual()) 827 return false; 828 // No redefs for any operand. 829 if (isRefInMap(RR, Defs, Exec_Then)) 830 return false; 831 // For defs, there cannot be uses. 832 if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then)) 833 return false; 834 } 835 return true; 836 } 837 838 /// Check if the instruction accessing memory (TheI) can be moved to the 839 /// location ToI. 840 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI, 841 bool IsDown) { 842 bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore(); 843 if (!IsLoad && !IsStore) 844 return true; 845 if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI)) 846 return true; 847 if (TheI.hasUnmodeledSideEffects()) 848 return false; 849 850 MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI; 851 MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI; 852 bool Ordered = TheI.hasOrderedMemoryRef(); 853 854 // Search for aliased memory reference in (StartI, EndI). 855 for (MachineInstr &MI : llvm::make_range(std::next(StartI), EndI)) { 856 if (MI.hasUnmodeledSideEffects()) 857 return false; 858 bool L = MI.mayLoad(), S = MI.mayStore(); 859 if (!L && !S) 860 continue; 861 if (Ordered && MI.hasOrderedMemoryRef()) 862 return false; 863 864 bool Conflict = (L && IsStore) || S; 865 if (Conflict) 866 return false; 867 } 868 return true; 869 } 870 871 /// Generate a predicated version of MI (where the condition is given via 872 /// PredR and Cond) at the point indicated by Where. 873 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp, 874 MachineInstr &MI, 875 MachineBasicBlock::iterator Where, 876 const MachineOperand &PredOp, bool Cond, 877 std::set<Register> &UpdRegs) { 878 // The problem with updating live intervals is that we can move one def 879 // past another def. In particular, this can happen when moving an A2_tfrt 880 // over an A2_tfrf defining the same register. From the point of view of 881 // live intervals, these two instructions are two separate definitions, 882 // and each one starts another live segment. LiveIntervals's "handleMove" 883 // does not allow such moves, so we need to handle it ourselves. To avoid 884 // invalidating liveness data while we are using it, the move will be 885 // implemented in 4 steps: (1) add a clone of the instruction MI at the 886 // target location, (2) update liveness, (3) delete the old instruction, 887 // and (4) update liveness again. 888 889 MachineBasicBlock &B = *MI.getParent(); 890 DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction. 891 unsigned Opc = MI.getOpcode(); 892 unsigned PredOpc = HII->getCondOpcode(Opc, !Cond); 893 MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc)); 894 unsigned Ox = 0, NP = MI.getNumOperands(); 895 // Skip all defs from MI first. 896 while (Ox < NP) { 897 MachineOperand &MO = MI.getOperand(Ox); 898 if (!MO.isReg() || !MO.isDef()) 899 break; 900 Ox++; 901 } 902 // Add the new def, then the predicate register, then the rest of the 903 // operands. 904 MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg()); 905 MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0, 906 PredOp.getSubReg()); 907 while (Ox < NP) { 908 MachineOperand &MO = MI.getOperand(Ox); 909 if (!MO.isReg() || !MO.isImplicit()) 910 MB.add(MO); 911 Ox++; 912 } 913 MB.cloneMemRefs(MI); 914 915 MachineInstr *NewI = MB; 916 NewI->clearKillInfo(); 917 LIS->InsertMachineInstrInMaps(*NewI); 918 919 for (auto &Op : NewI->operands()) { 920 if (Op.isReg()) 921 UpdRegs.insert(Op.getReg()); 922 } 923 } 924 925 /// In the range [First, Last], rename all references to the "old" register RO 926 /// to the "new" register RN, but only in instructions predicated on the given 927 /// condition. 928 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN, 929 unsigned PredR, bool Cond, MachineBasicBlock::iterator First, 930 MachineBasicBlock::iterator Last) { 931 MachineBasicBlock::iterator End = std::next(Last); 932 for (MachineInstr &MI : llvm::make_range(First, End)) { 933 // Do not touch instructions that are not predicated, or are predicated 934 // on the opposite condition. 935 if (!HII->isPredicated(MI)) 936 continue; 937 if (!MI.readsRegister(PredR, /*TRI=*/nullptr) || 938 (Cond != HII->isPredicatedTrue(MI))) 939 continue; 940 941 for (auto &Op : MI.operands()) { 942 if (!Op.isReg() || RO != RegisterRef(Op)) 943 continue; 944 Op.setReg(RN.Reg); 945 Op.setSubReg(RN.Sub); 946 // In practice, this isn't supposed to see any defs. 947 assert(!Op.isDef() && "Not expecting a def"); 948 } 949 } 950 } 951 952 /// For a given conditional copy, predicate the definition of the source of 953 /// the copy under the given condition (using the same predicate register as 954 /// the copy). 955 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond, 956 std::set<Register> &UpdRegs) { 957 // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi). 958 unsigned Opc = TfrI.getOpcode(); 959 (void)Opc; 960 assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf); 961 LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false") 962 << ": " << TfrI); 963 964 MachineOperand &MD = TfrI.getOperand(0); 965 MachineOperand &MP = TfrI.getOperand(1); 966 MachineOperand &MS = TfrI.getOperand(2); 967 // The source operand should be a <kill>. This is not strictly necessary, 968 // but it makes things a lot simpler. Otherwise, we would need to rename 969 // some registers, which would complicate the transformation considerably. 970 if (!MS.isKill()) 971 return false; 972 // Avoid predicating instructions that define a subregister if subregister 973 // liveness tracking is not enabled. 974 if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg())) 975 return false; 976 977 RegisterRef RT(MS); 978 Register PredR = MP.getReg(); 979 MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond); 980 if (!DefI || !isPredicable(DefI)) 981 return false; 982 983 LLVM_DEBUG(dbgs() << "Source def: " << *DefI); 984 985 // Collect the information about registers defined and used between the 986 // DefI and the TfrI. 987 // Map: reg -> bitmask of subregs 988 ReferenceMap Uses, Defs; 989 MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI; 990 991 // Check if the predicate register is valid between DefI and TfrI. 992 // If it is, we can then ignore instructions predicated on the negated 993 // conditions when collecting def and use information. 994 bool PredValid = true; 995 for (MachineInstr &MI : llvm::make_range(std::next(DefIt), TfrIt)) { 996 if (!MI.modifiesRegister(PredR, nullptr)) 997 continue; 998 PredValid = false; 999 break; 1000 } 1001 1002 for (MachineInstr &MI : llvm::make_range(std::next(DefIt), TfrIt)) { 1003 // If this instruction is predicated on the same register, it could 1004 // potentially be ignored. 1005 // By default assume that the instruction executes on the same condition 1006 // as TfrI (Exec_Then), and also on the opposite one (Exec_Else). 1007 unsigned Exec = Exec_Then | Exec_Else; 1008 if (PredValid && HII->isPredicated(MI) && 1009 MI.readsRegister(PredR, /*TRI=*/nullptr)) 1010 Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else; 1011 1012 for (auto &Op : MI.operands()) { 1013 if (!Op.isReg()) 1014 continue; 1015 // We don't want to deal with physical registers. The reason is that 1016 // they can be aliased with other physical registers. Aliased virtual 1017 // registers must share the same register number, and can only differ 1018 // in the subregisters, which we are keeping track of. Physical 1019 // registers ters no longer have subregisters---their super- and 1020 // subregisters are other physical registers, and we are not checking 1021 // that. 1022 RegisterRef RR = Op; 1023 if (!RR.Reg.isVirtual()) 1024 return false; 1025 1026 ReferenceMap &Map = Op.isDef() ? Defs : Uses; 1027 if (Op.isDef() && Op.isUndef()) { 1028 assert(RR.Sub && "Expecting a subregister on <def,read-undef>"); 1029 // If this is a <def,read-undef>, then it invalidates the non-written 1030 // part of the register. For the purpose of checking the validity of 1031 // the move, assume that it modifies the whole register. 1032 RR.Sub = 0; 1033 } 1034 addRefToMap(RR, Map, Exec); 1035 } 1036 } 1037 1038 // The situation: 1039 // RT = DefI 1040 // ... 1041 // RD = TfrI ..., RT 1042 1043 // If the register-in-the-middle (RT) is used or redefined between 1044 // DefI and TfrI, we may not be able proceed with this transformation. 1045 // We can ignore a def that will not execute together with TfrI, and a 1046 // use that will. If there is such a use (that does execute together with 1047 // TfrI), we will not be able to move DefI down. If there is a use that 1048 // executed if TfrI's condition is false, then RT must be available 1049 // unconditionally (cannot be predicated). 1050 // Essentially, we need to be able to rename RT to RD in this segment. 1051 if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else)) 1052 return false; 1053 RegisterRef RD = MD; 1054 // If the predicate register is defined between DefI and TfrI, the only 1055 // potential thing to do would be to move the DefI down to TfrI, and then 1056 // predicate. The reaching def (DefI) must be movable down to the location 1057 // of the TfrI. 1058 // If the target register of the TfrI (RD) is not used or defined between 1059 // DefI and TfrI, consider moving TfrI up to DefI. 1060 bool CanUp = canMoveOver(TfrI, Defs, Uses); 1061 bool CanDown = canMoveOver(*DefI, Defs, Uses); 1062 // The TfrI does not access memory, but DefI could. Check if it's safe 1063 // to move DefI down to TfrI. 1064 if (DefI->mayLoadOrStore()) { 1065 if (!canMoveMemTo(*DefI, TfrI, true)) 1066 CanDown = false; 1067 } 1068 1069 LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no") 1070 << ", can move down: " << (CanDown ? "yes\n" : "no\n")); 1071 MachineBasicBlock::iterator PastDefIt = std::next(DefIt); 1072 if (CanUp) 1073 predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs); 1074 else if (CanDown) 1075 predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs); 1076 else 1077 return false; 1078 1079 if (RT != RD) { 1080 renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt); 1081 UpdRegs.insert(RT.Reg); 1082 } 1083 1084 removeInstr(TfrI); 1085 removeInstr(*DefI); 1086 return true; 1087 } 1088 1089 /// Predicate all cases of conditional copies in the specified block. 1090 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B, 1091 std::set<Register> &UpdRegs) { 1092 bool Changed = false; 1093 for (MachineInstr &MI : llvm::make_early_inc_range(B)) { 1094 unsigned Opc = MI.getOpcode(); 1095 if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) { 1096 bool Done = predicate(MI, (Opc == Hexagon::A2_tfrt), UpdRegs); 1097 if (!Done) { 1098 // If we didn't predicate I, we may need to remove it in case it is 1099 // an "identity" copy, e.g. %1 = A2_tfrt %2, %1. 1100 if (RegisterRef(MI.getOperand(0)) == RegisterRef(MI.getOperand(2))) { 1101 for (auto &Op : MI.operands()) { 1102 if (Op.isReg()) 1103 UpdRegs.insert(Op.getReg()); 1104 } 1105 removeInstr(MI); 1106 } 1107 } 1108 Changed |= Done; 1109 } 1110 } 1111 return Changed; 1112 } 1113 1114 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) { 1115 if (!RR.Reg.isVirtual()) 1116 return false; 1117 const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg); 1118 if (RC == &Hexagon::IntRegsRegClass) { 1119 BW = 32; 1120 return true; 1121 } 1122 if (RC == &Hexagon::DoubleRegsRegClass) { 1123 BW = (RR.Sub != 0) ? 32 : 64; 1124 return true; 1125 } 1126 return false; 1127 } 1128 1129 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) { 1130 for (LiveRange::Segment &LR : LI) { 1131 // Range must start at a register... 1132 if (!LR.start.isRegister()) 1133 return false; 1134 // ...and end in a register or in a dead slot. 1135 if (!LR.end.isRegister() && !LR.end.isDead()) 1136 return false; 1137 } 1138 return true; 1139 } 1140 1141 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) { 1142 if (CoaLimitActive) { 1143 if (CoaCounter >= CoaLimit) 1144 return false; 1145 CoaCounter++; 1146 } 1147 unsigned BW1, BW2; 1148 if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2) 1149 return false; 1150 if (MRI->isLiveIn(R1.Reg)) 1151 return false; 1152 if (MRI->isLiveIn(R2.Reg)) 1153 return false; 1154 1155 LiveInterval &L1 = LIS->getInterval(R1.Reg); 1156 LiveInterval &L2 = LIS->getInterval(R2.Reg); 1157 if (L2.empty()) 1158 return false; 1159 if (L1.hasSubRanges() || L2.hasSubRanges()) 1160 return false; 1161 bool Overlap = L1.overlaps(L2); 1162 1163 LLVM_DEBUG(dbgs() << "compatible registers: (" 1164 << (Overlap ? "overlap" : "disjoint") << ")\n " 1165 << printReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n " 1166 << printReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n"); 1167 if (R1.Sub || R2.Sub) 1168 return false; 1169 if (Overlap) 1170 return false; 1171 1172 // Coalescing could have a negative impact on scheduling, so try to limit 1173 // to some reasonable extent. Only consider coalescing segments, when one 1174 // of them does not cross basic block boundaries. 1175 if (!isIntraBlocks(L1) && !isIntraBlocks(L2)) 1176 return false; 1177 1178 MRI->replaceRegWith(R2.Reg, R1.Reg); 1179 1180 // Move all live segments from L2 to L1. 1181 using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>; 1182 ValueInfoMap VM; 1183 for (LiveRange::Segment &I : L2) { 1184 VNInfo *NewVN, *OldVN = I.valno; 1185 ValueInfoMap::iterator F = VM.find(OldVN); 1186 if (F == VM.end()) { 1187 NewVN = L1.getNextValue(I.valno->def, LIS->getVNInfoAllocator()); 1188 VM.insert(std::make_pair(OldVN, NewVN)); 1189 } else { 1190 NewVN = F->second; 1191 } 1192 L1.addSegment(LiveRange::Segment(I.start, I.end, NewVN)); 1193 } 1194 while (!L2.empty()) 1195 L2.removeSegment(*L2.begin()); 1196 LIS->removeInterval(R2.Reg); 1197 1198 updateKillFlags(R1.Reg); 1199 LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n"); 1200 assert(L1.verify()); 1201 1202 return true; 1203 } 1204 1205 /// Attempt to coalesce one of the source registers to a MUX instruction with 1206 /// the destination register. This could lead to having only one predicated 1207 /// instruction in the end instead of two. 1208 bool HexagonExpandCondsets::coalesceSegments( 1209 const SmallVectorImpl<MachineInstr *> &Condsets, 1210 std::set<Register> &UpdRegs) { 1211 SmallVector<MachineInstr*,16> TwoRegs; 1212 for (MachineInstr *MI : Condsets) { 1213 MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3); 1214 if (!S1.isReg() && !S2.isReg()) 1215 continue; 1216 TwoRegs.push_back(MI); 1217 } 1218 1219 bool Changed = false; 1220 for (MachineInstr *CI : TwoRegs) { 1221 RegisterRef RD = CI->getOperand(0); 1222 RegisterRef RP = CI->getOperand(1); 1223 MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3); 1224 bool Done = false; 1225 // Consider this case: 1226 // %1 = instr1 ... 1227 // %2 = instr2 ... 1228 // %0 = C2_mux ..., %1, %2 1229 // If %0 was coalesced with %1, we could end up with the following 1230 // code: 1231 // %0 = instr1 ... 1232 // %2 = instr2 ... 1233 // %0 = A2_tfrf ..., %2 1234 // which will later become: 1235 // %0 = instr1 ... 1236 // %0 = instr2_cNotPt ... 1237 // i.e. there will be an unconditional definition (instr1) of %0 1238 // followed by a conditional one. The output dependency was there before 1239 // and it unavoidable, but if instr1 is predicable, we will no longer be 1240 // able to predicate it here. 1241 // To avoid this scenario, don't coalesce the destination register with 1242 // a source register that is defined by a predicable instruction. 1243 if (S1.isReg()) { 1244 RegisterRef RS = S1; 1245 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true); 1246 if (!RDef || !HII->isPredicable(*RDef)) { 1247 Done = coalesceRegisters(RD, RegisterRef(S1)); 1248 if (Done) { 1249 UpdRegs.insert(RD.Reg); 1250 UpdRegs.insert(S1.getReg()); 1251 } 1252 } 1253 } 1254 if (!Done && S2.isReg()) { 1255 RegisterRef RS = S2; 1256 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false); 1257 if (!RDef || !HII->isPredicable(*RDef)) { 1258 Done = coalesceRegisters(RD, RegisterRef(S2)); 1259 if (Done) { 1260 UpdRegs.insert(RD.Reg); 1261 UpdRegs.insert(S2.getReg()); 1262 } 1263 } 1264 } 1265 Changed |= Done; 1266 } 1267 return Changed; 1268 } 1269 1270 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) { 1271 if (skipFunction(MF.getFunction())) 1272 return false; 1273 1274 HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo()); 1275 TRI = MF.getSubtarget().getRegisterInfo(); 1276 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 1277 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 1278 MRI = &MF.getRegInfo(); 1279 1280 LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n")); 1281 1282 bool Changed = false; 1283 std::set<Register> CoalUpd, PredUpd; 1284 1285 SmallVector<MachineInstr*,16> Condsets; 1286 for (auto &B : MF) { 1287 for (auto &I : B) { 1288 if (isCondset(I)) 1289 Condsets.push_back(&I); 1290 } 1291 } 1292 1293 // Try to coalesce the target of a mux with one of its sources. 1294 // This could eliminate a register copy in some circumstances. 1295 Changed |= coalesceSegments(Condsets, CoalUpd); 1296 1297 // Update kill flags on all source operands. This is done here because 1298 // at this moment (when expand-condsets runs), there are no kill flags 1299 // in the IR (they have been removed by live range analysis). 1300 // Updating them right before we split is the easiest, because splitting 1301 // adds definitions which would interfere with updating kills afterwards. 1302 std::set<Register> KillUpd; 1303 for (MachineInstr *MI : Condsets) { 1304 for (MachineOperand &Op : MI->operands()) { 1305 if (Op.isReg() && Op.isUse()) { 1306 if (!CoalUpd.count(Op.getReg())) 1307 KillUpd.insert(Op.getReg()); 1308 } 1309 } 1310 } 1311 updateLiveness(KillUpd, false, true, false); 1312 LLVM_DEBUG(LIS->print(dbgs() << "After coalescing\n")); 1313 1314 // First, simply split all muxes into a pair of conditional transfers 1315 // and update the live intervals to reflect the new arrangement. The 1316 // goal is to update the kill flags, since predication will rely on 1317 // them. 1318 for (MachineInstr *MI : Condsets) 1319 Changed |= split(*MI, PredUpd); 1320 Condsets.clear(); // The contents of Condsets are invalid here anyway. 1321 1322 // Do not update live ranges after splitting. Recalculation of live 1323 // intervals removes kill flags, which were preserved by splitting on 1324 // the source operands of condsets. These kill flags are needed by 1325 // predication, and after splitting they are difficult to recalculate 1326 // (because of predicated defs), so make sure they are left untouched. 1327 // Predication does not use live intervals. 1328 LLVM_DEBUG(LIS->print(dbgs() << "After splitting\n")); 1329 1330 // Traverse all blocks and collapse predicable instructions feeding 1331 // conditional transfers into predicated instructions. 1332 // Walk over all the instructions again, so we may catch pre-existing 1333 // cases that were not created in the previous step. 1334 for (auto &B : MF) 1335 Changed |= predicateInBlock(B, PredUpd); 1336 LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n")); 1337 1338 PredUpd.insert(CoalUpd.begin(), CoalUpd.end()); 1339 updateLiveness(PredUpd, true, true, true); 1340 1341 if (Changed) 1342 distributeLiveIntervals(PredUpd); 1343 1344 LLVM_DEBUG({ 1345 if (Changed) 1346 LIS->print(dbgs() << "After expand-condsets\n"); 1347 }); 1348 1349 return Changed; 1350 } 1351 1352 //===----------------------------------------------------------------------===// 1353 // Public Constructor Functions 1354 //===----------------------------------------------------------------------===// 1355 FunctionPass *llvm::createHexagonExpandCondsets() { 1356 return new HexagonExpandCondsets(); 1357 } 1358