1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines an instruction selector for the AArch64 target. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "AArch64MachineFunctionInfo.h" 14 #include "AArch64TargetMachine.h" 15 #include "MCTargetDesc/AArch64AddressingModes.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/CodeGen/ISDOpcodes.h" 18 #include "llvm/CodeGen/SelectionDAGISel.h" 19 #include "llvm/IR/Function.h" // To access function attributes. 20 #include "llvm/IR/GlobalValue.h" 21 #include "llvm/IR/Intrinsics.h" 22 #include "llvm/IR/IntrinsicsAArch64.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "aarch64-isel" 32 #define PASS_NAME "AArch64 Instruction Selection" 33 34 // https://github.com/llvm/llvm-project/issues/114425 35 #if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG) 36 #pragma inline_depth(0) 37 #endif 38 39 //===--------------------------------------------------------------------===// 40 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine 41 /// instructions for SelectionDAG operations. 42 /// 43 namespace { 44 45 class AArch64DAGToDAGISel : public SelectionDAGISel { 46 47 /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can 48 /// make the right decision when generating code for different targets. 49 const AArch64Subtarget *Subtarget; 50 51 public: 52 AArch64DAGToDAGISel() = delete; 53 54 explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm, 55 CodeGenOptLevel OptLevel) 56 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr) {} 57 58 bool runOnMachineFunction(MachineFunction &MF) override { 59 Subtarget = &MF.getSubtarget<AArch64Subtarget>(); 60 return SelectionDAGISel::runOnMachineFunction(MF); 61 } 62 63 void Select(SDNode *Node) override; 64 65 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 66 /// inline asm expressions. 67 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 68 InlineAsm::ConstraintCode ConstraintID, 69 std::vector<SDValue> &OutOps) override; 70 71 template <signed Low, signed High, signed Scale> 72 bool SelectRDVLImm(SDValue N, SDValue &Imm); 73 74 bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift); 75 bool SelectArithUXTXRegister(SDValue N, SDValue &Reg, SDValue &Shift); 76 bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift); 77 bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift); 78 bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) { 79 return SelectShiftedRegister(N, false, Reg, Shift); 80 } 81 bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) { 82 return SelectShiftedRegister(N, true, Reg, Shift); 83 } 84 bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) { 85 return SelectAddrModeIndexed7S(N, 1, Base, OffImm); 86 } 87 bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) { 88 return SelectAddrModeIndexed7S(N, 2, Base, OffImm); 89 } 90 bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) { 91 return SelectAddrModeIndexed7S(N, 4, Base, OffImm); 92 } 93 bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) { 94 return SelectAddrModeIndexed7S(N, 8, Base, OffImm); 95 } 96 bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) { 97 return SelectAddrModeIndexed7S(N, 16, Base, OffImm); 98 } 99 bool SelectAddrModeIndexedS9S128(SDValue N, SDValue &Base, SDValue &OffImm) { 100 return SelectAddrModeIndexedBitWidth(N, true, 9, 16, Base, OffImm); 101 } 102 bool SelectAddrModeIndexedU6S128(SDValue N, SDValue &Base, SDValue &OffImm) { 103 return SelectAddrModeIndexedBitWidth(N, false, 6, 16, Base, OffImm); 104 } 105 bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) { 106 return SelectAddrModeIndexed(N, 1, Base, OffImm); 107 } 108 bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) { 109 return SelectAddrModeIndexed(N, 2, Base, OffImm); 110 } 111 bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) { 112 return SelectAddrModeIndexed(N, 4, Base, OffImm); 113 } 114 bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) { 115 return SelectAddrModeIndexed(N, 8, Base, OffImm); 116 } 117 bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) { 118 return SelectAddrModeIndexed(N, 16, Base, OffImm); 119 } 120 bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) { 121 return SelectAddrModeUnscaled(N, 1, Base, OffImm); 122 } 123 bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) { 124 return SelectAddrModeUnscaled(N, 2, Base, OffImm); 125 } 126 bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) { 127 return SelectAddrModeUnscaled(N, 4, Base, OffImm); 128 } 129 bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) { 130 return SelectAddrModeUnscaled(N, 8, Base, OffImm); 131 } 132 bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) { 133 return SelectAddrModeUnscaled(N, 16, Base, OffImm); 134 } 135 template <unsigned Size, unsigned Max> 136 bool SelectAddrModeIndexedUImm(SDValue N, SDValue &Base, SDValue &OffImm) { 137 // Test if there is an appropriate addressing mode and check if the 138 // immediate fits. 139 bool Found = SelectAddrModeIndexed(N, Size, Base, OffImm); 140 if (Found) { 141 if (auto *CI = dyn_cast<ConstantSDNode>(OffImm)) { 142 int64_t C = CI->getSExtValue(); 143 if (C <= Max) 144 return true; 145 } 146 } 147 148 // Otherwise, base only, materialize address in register. 149 Base = N; 150 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64); 151 return true; 152 } 153 154 template<int Width> 155 bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset, 156 SDValue &SignExtend, SDValue &DoShift) { 157 return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift); 158 } 159 160 template<int Width> 161 bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset, 162 SDValue &SignExtend, SDValue &DoShift) { 163 return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift); 164 } 165 166 bool SelectExtractHigh(SDValue N, SDValue &Res) { 167 if (Subtarget->isLittleEndian() && N->getOpcode() == ISD::BITCAST) 168 N = N->getOperand(0); 169 if (N->getOpcode() != ISD::EXTRACT_SUBVECTOR || 170 !isa<ConstantSDNode>(N->getOperand(1))) 171 return false; 172 EVT VT = N->getValueType(0); 173 EVT LVT = N->getOperand(0).getValueType(); 174 unsigned Index = N->getConstantOperandVal(1); 175 if (!VT.is64BitVector() || !LVT.is128BitVector() || 176 Index != VT.getVectorNumElements()) 177 return false; 178 Res = N->getOperand(0); 179 return true; 180 } 181 182 bool SelectRoundingVLShr(SDValue N, SDValue &Res1, SDValue &Res2) { 183 if (N.getOpcode() != AArch64ISD::VLSHR) 184 return false; 185 SDValue Op = N->getOperand(0); 186 EVT VT = Op.getValueType(); 187 unsigned ShtAmt = N->getConstantOperandVal(1); 188 if (ShtAmt > VT.getScalarSizeInBits() / 2 || Op.getOpcode() != ISD::ADD) 189 return false; 190 191 APInt Imm; 192 if (Op.getOperand(1).getOpcode() == AArch64ISD::MOVIshift) 193 Imm = APInt(VT.getScalarSizeInBits(), 194 Op.getOperand(1).getConstantOperandVal(0) 195 << Op.getOperand(1).getConstantOperandVal(1)); 196 else if (Op.getOperand(1).getOpcode() == AArch64ISD::DUP && 197 isa<ConstantSDNode>(Op.getOperand(1).getOperand(0))) 198 Imm = APInt(VT.getScalarSizeInBits(), 199 Op.getOperand(1).getConstantOperandVal(0)); 200 else 201 return false; 202 203 if (Imm != 1ULL << (ShtAmt - 1)) 204 return false; 205 206 Res1 = Op.getOperand(0); 207 Res2 = CurDAG->getTargetConstant(ShtAmt, SDLoc(N), MVT::i32); 208 return true; 209 } 210 211 bool SelectDupZeroOrUndef(SDValue N) { 212 switch(N->getOpcode()) { 213 case ISD::UNDEF: 214 return true; 215 case AArch64ISD::DUP: 216 case ISD::SPLAT_VECTOR: { 217 auto Opnd0 = N->getOperand(0); 218 if (isNullConstant(Opnd0)) 219 return true; 220 if (isNullFPConstant(Opnd0)) 221 return true; 222 break; 223 } 224 default: 225 break; 226 } 227 228 return false; 229 } 230 231 bool SelectAny(SDValue) { return true; } 232 233 bool SelectDupZero(SDValue N) { 234 switch(N->getOpcode()) { 235 case AArch64ISD::DUP: 236 case ISD::SPLAT_VECTOR: { 237 auto Opnd0 = N->getOperand(0); 238 if (isNullConstant(Opnd0)) 239 return true; 240 if (isNullFPConstant(Opnd0)) 241 return true; 242 break; 243 } 244 } 245 246 return false; 247 } 248 249 template<MVT::SimpleValueType VT> 250 bool SelectSVEAddSubImm(SDValue N, SDValue &Imm, SDValue &Shift) { 251 return SelectSVEAddSubImm(N, VT, Imm, Shift); 252 } 253 254 template <MVT::SimpleValueType VT, bool Negate> 255 bool SelectSVEAddSubSSatImm(SDValue N, SDValue &Imm, SDValue &Shift) { 256 return SelectSVEAddSubSSatImm(N, VT, Imm, Shift, Negate); 257 } 258 259 template <MVT::SimpleValueType VT> 260 bool SelectSVECpyDupImm(SDValue N, SDValue &Imm, SDValue &Shift) { 261 return SelectSVECpyDupImm(N, VT, Imm, Shift); 262 } 263 264 template <MVT::SimpleValueType VT, bool Invert = false> 265 bool SelectSVELogicalImm(SDValue N, SDValue &Imm) { 266 return SelectSVELogicalImm(N, VT, Imm, Invert); 267 } 268 269 template <MVT::SimpleValueType VT> 270 bool SelectSVEArithImm(SDValue N, SDValue &Imm) { 271 return SelectSVEArithImm(N, VT, Imm); 272 } 273 274 template <unsigned Low, unsigned High, bool AllowSaturation = false> 275 bool SelectSVEShiftImm(SDValue N, SDValue &Imm) { 276 return SelectSVEShiftImm(N, Low, High, AllowSaturation, Imm); 277 } 278 279 bool SelectSVEShiftSplatImmR(SDValue N, SDValue &Imm) { 280 if (N->getOpcode() != ISD::SPLAT_VECTOR) 281 return false; 282 283 EVT EltVT = N->getValueType(0).getVectorElementType(); 284 return SelectSVEShiftImm(N->getOperand(0), /* Low */ 1, 285 /* High */ EltVT.getFixedSizeInBits(), 286 /* AllowSaturation */ true, Imm); 287 } 288 289 // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N. 290 template<signed Min, signed Max, signed Scale, bool Shift> 291 bool SelectCntImm(SDValue N, SDValue &Imm) { 292 if (!isa<ConstantSDNode>(N)) 293 return false; 294 295 int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue(); 296 if (Shift) 297 MulImm = 1LL << MulImm; 298 299 if ((MulImm % std::abs(Scale)) != 0) 300 return false; 301 302 MulImm /= Scale; 303 if ((MulImm >= Min) && (MulImm <= Max)) { 304 Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32); 305 return true; 306 } 307 308 return false; 309 } 310 311 template <signed Max, signed Scale> 312 bool SelectEXTImm(SDValue N, SDValue &Imm) { 313 if (!isa<ConstantSDNode>(N)) 314 return false; 315 316 int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue(); 317 318 if (MulImm >= 0 && MulImm <= Max) { 319 MulImm *= Scale; 320 Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32); 321 return true; 322 } 323 324 return false; 325 } 326 327 template <unsigned BaseReg, unsigned Max> 328 bool ImmToReg(SDValue N, SDValue &Imm) { 329 if (auto *CI = dyn_cast<ConstantSDNode>(N)) { 330 uint64_t C = CI->getZExtValue(); 331 332 if (C > Max) 333 return false; 334 335 Imm = CurDAG->getRegister(BaseReg + C, MVT::Other); 336 return true; 337 } 338 return false; 339 } 340 341 /// Form sequences of consecutive 64/128-bit registers for use in NEON 342 /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have 343 /// between 1 and 4 elements. If it contains a single element that is returned 344 /// unchanged; otherwise a REG_SEQUENCE value is returned. 345 SDValue createDTuple(ArrayRef<SDValue> Vecs); 346 SDValue createQTuple(ArrayRef<SDValue> Vecs); 347 // Form a sequence of SVE registers for instructions using list of vectors, 348 // e.g. structured loads and stores (ldN, stN). 349 SDValue createZTuple(ArrayRef<SDValue> Vecs); 350 351 // Similar to above, except the register must start at a multiple of the 352 // tuple, e.g. z2 for a 2-tuple, or z8 for a 4-tuple. 353 SDValue createZMulTuple(ArrayRef<SDValue> Regs); 354 355 /// Generic helper for the createDTuple/createQTuple 356 /// functions. Those should almost always be called instead. 357 SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[], 358 const unsigned SubRegs[]); 359 360 void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt); 361 362 bool tryIndexedLoad(SDNode *N); 363 364 void SelectPtrauthAuth(SDNode *N); 365 void SelectPtrauthResign(SDNode *N); 366 367 bool trySelectStackSlotTagP(SDNode *N); 368 void SelectTagP(SDNode *N); 369 370 void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc, 371 unsigned SubRegIdx); 372 void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc, 373 unsigned SubRegIdx); 374 void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc); 375 void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc); 376 void SelectPredicatedLoad(SDNode *N, unsigned NumVecs, unsigned Scale, 377 unsigned Opc_rr, unsigned Opc_ri, 378 bool IsIntr = false); 379 void SelectContiguousMultiVectorLoad(SDNode *N, unsigned NumVecs, 380 unsigned Scale, unsigned Opc_ri, 381 unsigned Opc_rr); 382 void SelectDestructiveMultiIntrinsic(SDNode *N, unsigned NumVecs, 383 bool IsZmMulti, unsigned Opcode, 384 bool HasPred = false); 385 void SelectPExtPair(SDNode *N, unsigned Opc); 386 void SelectWhilePair(SDNode *N, unsigned Opc); 387 void SelectCVTIntrinsic(SDNode *N, unsigned NumVecs, unsigned Opcode); 388 void SelectCVTIntrinsicFP8(SDNode *N, unsigned NumVecs, unsigned Opcode); 389 void SelectClamp(SDNode *N, unsigned NumVecs, unsigned Opcode); 390 void SelectUnaryMultiIntrinsic(SDNode *N, unsigned NumOutVecs, 391 bool IsTupleInput, unsigned Opc); 392 void SelectFrintFromVT(SDNode *N, unsigned NumVecs, unsigned Opcode); 393 394 template <unsigned MaxIdx, unsigned Scale> 395 void SelectMultiVectorMove(SDNode *N, unsigned NumVecs, unsigned BaseReg, 396 unsigned Op); 397 void SelectMultiVectorMoveZ(SDNode *N, unsigned NumVecs, 398 unsigned Op, unsigned MaxIdx, unsigned Scale, 399 unsigned BaseReg = 0); 400 bool SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base, SDValue &OffImm); 401 /// SVE Reg+Imm addressing mode. 402 template <int64_t Min, int64_t Max> 403 bool SelectAddrModeIndexedSVE(SDNode *Root, SDValue N, SDValue &Base, 404 SDValue &OffImm); 405 /// SVE Reg+Reg address mode. 406 template <unsigned Scale> 407 bool SelectSVERegRegAddrMode(SDValue N, SDValue &Base, SDValue &Offset) { 408 return SelectSVERegRegAddrMode(N, Scale, Base, Offset); 409 } 410 411 void SelectMultiVectorLutiLane(SDNode *Node, unsigned NumOutVecs, 412 unsigned Opc, uint32_t MaxImm); 413 414 void SelectMultiVectorLuti(SDNode *Node, unsigned NumOutVecs, unsigned Opc); 415 416 template <unsigned MaxIdx, unsigned Scale> 417 bool SelectSMETileSlice(SDValue N, SDValue &Vector, SDValue &Offset) { 418 return SelectSMETileSlice(N, MaxIdx, Vector, Offset, Scale); 419 } 420 421 void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc); 422 void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc); 423 void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc); 424 void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc); 425 void SelectPredicatedStore(SDNode *N, unsigned NumVecs, unsigned Scale, 426 unsigned Opc_rr, unsigned Opc_ri); 427 std::tuple<unsigned, SDValue, SDValue> 428 findAddrModeSVELoadStore(SDNode *N, unsigned Opc_rr, unsigned Opc_ri, 429 const SDValue &OldBase, const SDValue &OldOffset, 430 unsigned Scale); 431 432 bool tryBitfieldExtractOp(SDNode *N); 433 bool tryBitfieldExtractOpFromSExt(SDNode *N); 434 bool tryBitfieldInsertOp(SDNode *N); 435 bool tryBitfieldInsertInZeroOp(SDNode *N); 436 bool tryShiftAmountMod(SDNode *N); 437 438 bool tryReadRegister(SDNode *N); 439 bool tryWriteRegister(SDNode *N); 440 441 bool trySelectCastFixedLengthToScalableVector(SDNode *N); 442 bool trySelectCastScalableToFixedLengthVector(SDNode *N); 443 444 bool trySelectXAR(SDNode *N); 445 446 // Include the pieces autogenerated from the target description. 447 #include "AArch64GenDAGISel.inc" 448 449 private: 450 bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg, 451 SDValue &Shift); 452 bool SelectShiftedRegisterFromAnd(SDValue N, SDValue &Reg, SDValue &Shift); 453 bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base, 454 SDValue &OffImm) { 455 return SelectAddrModeIndexedBitWidth(N, true, 7, Size, Base, OffImm); 456 } 457 bool SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, unsigned BW, 458 unsigned Size, SDValue &Base, 459 SDValue &OffImm); 460 bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base, 461 SDValue &OffImm); 462 bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base, 463 SDValue &OffImm); 464 bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base, 465 SDValue &Offset, SDValue &SignExtend, 466 SDValue &DoShift); 467 bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base, 468 SDValue &Offset, SDValue &SignExtend, 469 SDValue &DoShift); 470 bool isWorthFoldingALU(SDValue V, bool LSL = false) const; 471 bool isWorthFoldingAddr(SDValue V, unsigned Size) const; 472 bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend, 473 SDValue &Offset, SDValue &SignExtend); 474 475 template<unsigned RegWidth> 476 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) { 477 return SelectCVTFixedPosOperand(N, FixedPos, RegWidth); 478 } 479 480 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width); 481 482 template<unsigned RegWidth> 483 bool SelectCVTFixedPosRecipOperand(SDValue N, SDValue &FixedPos) { 484 return SelectCVTFixedPosRecipOperand(N, FixedPos, RegWidth); 485 } 486 487 bool SelectCVTFixedPosRecipOperand(SDValue N, SDValue &FixedPos, 488 unsigned Width); 489 490 bool SelectCMP_SWAP(SDNode *N); 491 492 bool SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift); 493 bool SelectSVEAddSubSSatImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift, 494 bool Negate); 495 bool SelectSVECpyDupImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift); 496 bool SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm, bool Invert); 497 498 bool SelectSVESignedArithImm(SDValue N, SDValue &Imm); 499 bool SelectSVEShiftImm(SDValue N, uint64_t Low, uint64_t High, 500 bool AllowSaturation, SDValue &Imm); 501 502 bool SelectSVEArithImm(SDValue N, MVT VT, SDValue &Imm); 503 bool SelectSVERegRegAddrMode(SDValue N, unsigned Scale, SDValue &Base, 504 SDValue &Offset); 505 bool SelectSMETileSlice(SDValue N, unsigned MaxSize, SDValue &Vector, 506 SDValue &Offset, unsigned Scale = 1); 507 508 bool SelectAllActivePredicate(SDValue N); 509 bool SelectAnyPredicate(SDValue N); 510 }; 511 512 class AArch64DAGToDAGISelLegacy : public SelectionDAGISelLegacy { 513 public: 514 static char ID; 515 explicit AArch64DAGToDAGISelLegacy(AArch64TargetMachine &tm, 516 CodeGenOptLevel OptLevel) 517 : SelectionDAGISelLegacy( 518 ID, std::make_unique<AArch64DAGToDAGISel>(tm, OptLevel)) {} 519 }; 520 } // end anonymous namespace 521 522 char AArch64DAGToDAGISelLegacy::ID = 0; 523 524 INITIALIZE_PASS(AArch64DAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) 525 526 /// isIntImmediate - This method tests to see if the node is a constant 527 /// operand. If so Imm will receive the 32-bit value. 528 static bool isIntImmediate(const SDNode *N, uint64_t &Imm) { 529 if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) { 530 Imm = C->getZExtValue(); 531 return true; 532 } 533 return false; 534 } 535 536 // isIntImmediate - This method tests to see if a constant operand. 537 // If so Imm will receive the value. 538 static bool isIntImmediate(SDValue N, uint64_t &Imm) { 539 return isIntImmediate(N.getNode(), Imm); 540 } 541 542 // isOpcWithIntImmediate - This method tests to see if the node is a specific 543 // opcode and that it has a immediate integer right operand. 544 // If so Imm will receive the 32 bit value. 545 static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc, 546 uint64_t &Imm) { 547 return N->getOpcode() == Opc && 548 isIntImmediate(N->getOperand(1).getNode(), Imm); 549 } 550 551 // isIntImmediateEq - This method tests to see if N is a constant operand that 552 // is equivalent to 'ImmExpected'. 553 #ifndef NDEBUG 554 static bool isIntImmediateEq(SDValue N, const uint64_t ImmExpected) { 555 uint64_t Imm; 556 if (!isIntImmediate(N.getNode(), Imm)) 557 return false; 558 return Imm == ImmExpected; 559 } 560 #endif 561 562 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand( 563 const SDValue &Op, const InlineAsm::ConstraintCode ConstraintID, 564 std::vector<SDValue> &OutOps) { 565 switch(ConstraintID) { 566 default: 567 llvm_unreachable("Unexpected asm memory constraint"); 568 case InlineAsm::ConstraintCode::m: 569 case InlineAsm::ConstraintCode::o: 570 case InlineAsm::ConstraintCode::Q: 571 // We need to make sure that this one operand does not end up in XZR, thus 572 // require the address to be in a PointerRegClass register. 573 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 574 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF); 575 SDLoc dl(Op); 576 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64); 577 SDValue NewOp = 578 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 579 dl, Op.getValueType(), 580 Op, RC), 0); 581 OutOps.push_back(NewOp); 582 return false; 583 } 584 return true; 585 } 586 587 /// SelectArithImmed - Select an immediate value that can be represented as 588 /// a 12-bit value shifted left by either 0 or 12. If so, return true with 589 /// Val set to the 12-bit value and Shift set to the shifter operand. 590 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val, 591 SDValue &Shift) { 592 // This function is called from the addsub_shifted_imm ComplexPattern, 593 // which lists [imm] as the list of opcode it's interested in, however 594 // we still need to check whether the operand is actually an immediate 595 // here because the ComplexPattern opcode list is only used in 596 // root-level opcode matching. 597 if (!isa<ConstantSDNode>(N.getNode())) 598 return false; 599 600 uint64_t Immed = N.getNode()->getAsZExtVal(); 601 unsigned ShiftAmt; 602 603 if (Immed >> 12 == 0) { 604 ShiftAmt = 0; 605 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) { 606 ShiftAmt = 12; 607 Immed = Immed >> 12; 608 } else 609 return false; 610 611 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt); 612 SDLoc dl(N); 613 Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32); 614 Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32); 615 return true; 616 } 617 618 /// SelectNegArithImmed - As above, but negates the value before trying to 619 /// select it. 620 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val, 621 SDValue &Shift) { 622 // This function is called from the addsub_shifted_imm ComplexPattern, 623 // which lists [imm] as the list of opcode it's interested in, however 624 // we still need to check whether the operand is actually an immediate 625 // here because the ComplexPattern opcode list is only used in 626 // root-level opcode matching. 627 if (!isa<ConstantSDNode>(N.getNode())) 628 return false; 629 630 // The immediate operand must be a 24-bit zero-extended immediate. 631 uint64_t Immed = N.getNode()->getAsZExtVal(); 632 633 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0" 634 // have the opposite effect on the C flag, so this pattern mustn't match under 635 // those circumstances. 636 if (Immed == 0) 637 return false; 638 639 if (N.getValueType() == MVT::i32) 640 Immed = ~((uint32_t)Immed) + 1; 641 else 642 Immed = ~Immed + 1ULL; 643 if (Immed & 0xFFFFFFFFFF000000ULL) 644 return false; 645 646 Immed &= 0xFFFFFFULL; 647 return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val, 648 Shift); 649 } 650 651 /// getShiftTypeForNode - Translate a shift node to the corresponding 652 /// ShiftType value. 653 static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) { 654 switch (N.getOpcode()) { 655 default: 656 return AArch64_AM::InvalidShiftExtend; 657 case ISD::SHL: 658 return AArch64_AM::LSL; 659 case ISD::SRL: 660 return AArch64_AM::LSR; 661 case ISD::SRA: 662 return AArch64_AM::ASR; 663 case ISD::ROTR: 664 return AArch64_AM::ROR; 665 } 666 } 667 668 static bool isMemOpOrPrefetch(SDNode *N) { 669 return isa<MemSDNode>(*N) || N->getOpcode() == AArch64ISD::PREFETCH; 670 } 671 672 /// Determine whether it is worth it to fold SHL into the addressing 673 /// mode. 674 static bool isWorthFoldingSHL(SDValue V) { 675 assert(V.getOpcode() == ISD::SHL && "invalid opcode"); 676 // It is worth folding logical shift of up to three places. 677 auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1)); 678 if (!CSD) 679 return false; 680 unsigned ShiftVal = CSD->getZExtValue(); 681 if (ShiftVal > 3) 682 return false; 683 684 // Check if this particular node is reused in any non-memory related 685 // operation. If yes, do not try to fold this node into the address 686 // computation, since the computation will be kept. 687 const SDNode *Node = V.getNode(); 688 for (SDNode *UI : Node->users()) 689 if (!isMemOpOrPrefetch(UI)) 690 for (SDNode *UII : UI->users()) 691 if (!isMemOpOrPrefetch(UII)) 692 return false; 693 return true; 694 } 695 696 /// Determine whether it is worth to fold V into an extended register addressing 697 /// mode. 698 bool AArch64DAGToDAGISel::isWorthFoldingAddr(SDValue V, unsigned Size) const { 699 // Trivial if we are optimizing for code size or if there is only 700 // one use of the value. 701 if (CurDAG->shouldOptForSize() || V.hasOneUse()) 702 return true; 703 704 // If a subtarget has a slow shift, folding a shift into multiple loads 705 // costs additional micro-ops. 706 if (Subtarget->hasAddrLSLSlow14() && (Size == 2 || Size == 16)) 707 return false; 708 709 // Check whether we're going to emit the address arithmetic anyway because 710 // it's used by a non-address operation. 711 if (V.getOpcode() == ISD::SHL && isWorthFoldingSHL(V)) 712 return true; 713 if (V.getOpcode() == ISD::ADD) { 714 const SDValue LHS = V.getOperand(0); 715 const SDValue RHS = V.getOperand(1); 716 if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS)) 717 return true; 718 if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS)) 719 return true; 720 } 721 722 // It hurts otherwise, since the value will be reused. 723 return false; 724 } 725 726 /// and (shl/srl/sra, x, c), mask --> shl (srl/sra, x, c1), c2 727 /// to select more shifted register 728 bool AArch64DAGToDAGISel::SelectShiftedRegisterFromAnd(SDValue N, SDValue &Reg, 729 SDValue &Shift) { 730 EVT VT = N.getValueType(); 731 if (VT != MVT::i32 && VT != MVT::i64) 732 return false; 733 734 if (N->getOpcode() != ISD::AND || !N->hasOneUse()) 735 return false; 736 SDValue LHS = N.getOperand(0); 737 if (!LHS->hasOneUse()) 738 return false; 739 740 unsigned LHSOpcode = LHS->getOpcode(); 741 if (LHSOpcode != ISD::SHL && LHSOpcode != ISD::SRL && LHSOpcode != ISD::SRA) 742 return false; 743 744 ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 745 if (!ShiftAmtNode) 746 return false; 747 748 uint64_t ShiftAmtC = ShiftAmtNode->getZExtValue(); 749 ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N.getOperand(1)); 750 if (!RHSC) 751 return false; 752 753 APInt AndMask = RHSC->getAPIntValue(); 754 unsigned LowZBits, MaskLen; 755 if (!AndMask.isShiftedMask(LowZBits, MaskLen)) 756 return false; 757 758 unsigned BitWidth = N.getValueSizeInBits(); 759 SDLoc DL(LHS); 760 uint64_t NewShiftC; 761 unsigned NewShiftOp; 762 if (LHSOpcode == ISD::SHL) { 763 // LowZBits <= ShiftAmtC will fall into isBitfieldPositioningOp 764 // BitWidth != LowZBits + MaskLen doesn't match the pattern 765 if (LowZBits <= ShiftAmtC || (BitWidth != LowZBits + MaskLen)) 766 return false; 767 768 NewShiftC = LowZBits - ShiftAmtC; 769 NewShiftOp = VT == MVT::i64 ? AArch64::UBFMXri : AArch64::UBFMWri; 770 } else { 771 if (LowZBits == 0) 772 return false; 773 774 // NewShiftC >= BitWidth will fall into isBitfieldExtractOp 775 NewShiftC = LowZBits + ShiftAmtC; 776 if (NewShiftC >= BitWidth) 777 return false; 778 779 // SRA need all high bits 780 if (LHSOpcode == ISD::SRA && (BitWidth != (LowZBits + MaskLen))) 781 return false; 782 783 // SRL high bits can be 0 or 1 784 if (LHSOpcode == ISD::SRL && (BitWidth > (NewShiftC + MaskLen))) 785 return false; 786 787 if (LHSOpcode == ISD::SRL) 788 NewShiftOp = VT == MVT::i64 ? AArch64::UBFMXri : AArch64::UBFMWri; 789 else 790 NewShiftOp = VT == MVT::i64 ? AArch64::SBFMXri : AArch64::SBFMWri; 791 } 792 793 assert(NewShiftC < BitWidth && "Invalid shift amount"); 794 SDValue NewShiftAmt = CurDAG->getTargetConstant(NewShiftC, DL, VT); 795 SDValue BitWidthMinus1 = CurDAG->getTargetConstant(BitWidth - 1, DL, VT); 796 Reg = SDValue(CurDAG->getMachineNode(NewShiftOp, DL, VT, LHS->getOperand(0), 797 NewShiftAmt, BitWidthMinus1), 798 0); 799 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, LowZBits); 800 Shift = CurDAG->getTargetConstant(ShVal, DL, MVT::i32); 801 return true; 802 } 803 804 /// getExtendTypeForNode - Translate an extend node to the corresponding 805 /// ExtendType value. 806 static AArch64_AM::ShiftExtendType 807 getExtendTypeForNode(SDValue N, bool IsLoadStore = false) { 808 if (N.getOpcode() == ISD::SIGN_EXTEND || 809 N.getOpcode() == ISD::SIGN_EXTEND_INREG) { 810 EVT SrcVT; 811 if (N.getOpcode() == ISD::SIGN_EXTEND_INREG) 812 SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT(); 813 else 814 SrcVT = N.getOperand(0).getValueType(); 815 816 if (!IsLoadStore && SrcVT == MVT::i8) 817 return AArch64_AM::SXTB; 818 else if (!IsLoadStore && SrcVT == MVT::i16) 819 return AArch64_AM::SXTH; 820 else if (SrcVT == MVT::i32) 821 return AArch64_AM::SXTW; 822 assert(SrcVT != MVT::i64 && "extend from 64-bits?"); 823 824 return AArch64_AM::InvalidShiftExtend; 825 } else if (N.getOpcode() == ISD::ZERO_EXTEND || 826 N.getOpcode() == ISD::ANY_EXTEND) { 827 EVT SrcVT = N.getOperand(0).getValueType(); 828 if (!IsLoadStore && SrcVT == MVT::i8) 829 return AArch64_AM::UXTB; 830 else if (!IsLoadStore && SrcVT == MVT::i16) 831 return AArch64_AM::UXTH; 832 else if (SrcVT == MVT::i32) 833 return AArch64_AM::UXTW; 834 assert(SrcVT != MVT::i64 && "extend from 64-bits?"); 835 836 return AArch64_AM::InvalidShiftExtend; 837 } else if (N.getOpcode() == ISD::AND) { 838 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); 839 if (!CSD) 840 return AArch64_AM::InvalidShiftExtend; 841 uint64_t AndMask = CSD->getZExtValue(); 842 843 switch (AndMask) { 844 default: 845 return AArch64_AM::InvalidShiftExtend; 846 case 0xFF: 847 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend; 848 case 0xFFFF: 849 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend; 850 case 0xFFFFFFFF: 851 return AArch64_AM::UXTW; 852 } 853 } 854 855 return AArch64_AM::InvalidShiftExtend; 856 } 857 858 /// Determine whether it is worth to fold V into an extended register of an 859 /// Add/Sub. LSL means we are folding into an `add w0, w1, w2, lsl #N` 860 /// instruction, and the shift should be treated as worth folding even if has 861 /// multiple uses. 862 bool AArch64DAGToDAGISel::isWorthFoldingALU(SDValue V, bool LSL) const { 863 // Trivial if we are optimizing for code size or if there is only 864 // one use of the value. 865 if (CurDAG->shouldOptForSize() || V.hasOneUse()) 866 return true; 867 868 // If a subtarget has a fastpath LSL we can fold a logical shift into 869 // the add/sub and save a cycle. 870 if (LSL && Subtarget->hasALULSLFast() && V.getOpcode() == ISD::SHL && 871 V.getConstantOperandVal(1) <= 4 && 872 getExtendTypeForNode(V.getOperand(0)) == AArch64_AM::InvalidShiftExtend) 873 return true; 874 875 // It hurts otherwise, since the value will be reused. 876 return false; 877 } 878 879 /// SelectShiftedRegister - Select a "shifted register" operand. If the value 880 /// is not shifted, set the Shift operand to default of "LSL 0". The logical 881 /// instructions allow the shifted register to be rotated, but the arithmetic 882 /// instructions do not. The AllowROR parameter specifies whether ROR is 883 /// supported. 884 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR, 885 SDValue &Reg, SDValue &Shift) { 886 if (SelectShiftedRegisterFromAnd(N, Reg, Shift)) 887 return true; 888 889 AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N); 890 if (ShType == AArch64_AM::InvalidShiftExtend) 891 return false; 892 if (!AllowROR && ShType == AArch64_AM::ROR) 893 return false; 894 895 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 896 unsigned BitSize = N.getValueSizeInBits(); 897 unsigned Val = RHS->getZExtValue() & (BitSize - 1); 898 unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val); 899 900 Reg = N.getOperand(0); 901 Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32); 902 return isWorthFoldingALU(N, true); 903 } 904 905 return false; 906 } 907 908 /// Instructions that accept extend modifiers like UXTW expect the register 909 /// being extended to be a GPR32, but the incoming DAG might be acting on a 910 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if 911 /// this is the case. 912 static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) { 913 if (N.getValueType() == MVT::i32) 914 return N; 915 916 SDLoc dl(N); 917 return CurDAG->getTargetExtractSubreg(AArch64::sub_32, dl, MVT::i32, N); 918 } 919 920 // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N. 921 template<signed Low, signed High, signed Scale> 922 bool AArch64DAGToDAGISel::SelectRDVLImm(SDValue N, SDValue &Imm) { 923 if (!isa<ConstantSDNode>(N)) 924 return false; 925 926 int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue(); 927 if ((MulImm % std::abs(Scale)) == 0) { 928 int64_t RDVLImm = MulImm / Scale; 929 if ((RDVLImm >= Low) && (RDVLImm <= High)) { 930 Imm = CurDAG->getSignedTargetConstant(RDVLImm, SDLoc(N), MVT::i32); 931 return true; 932 } 933 } 934 935 return false; 936 } 937 938 /// SelectArithExtendedRegister - Select a "extended register" operand. This 939 /// operand folds in an extend followed by an optional left shift. 940 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg, 941 SDValue &Shift) { 942 unsigned ShiftVal = 0; 943 AArch64_AM::ShiftExtendType Ext; 944 945 if (N.getOpcode() == ISD::SHL) { 946 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); 947 if (!CSD) 948 return false; 949 ShiftVal = CSD->getZExtValue(); 950 if (ShiftVal > 4) 951 return false; 952 953 Ext = getExtendTypeForNode(N.getOperand(0)); 954 if (Ext == AArch64_AM::InvalidShiftExtend) 955 return false; 956 957 Reg = N.getOperand(0).getOperand(0); 958 } else { 959 Ext = getExtendTypeForNode(N); 960 if (Ext == AArch64_AM::InvalidShiftExtend) 961 return false; 962 963 Reg = N.getOperand(0); 964 965 // Don't match if free 32-bit -> 64-bit zext can be used instead. Use the 966 // isDef32 as a heuristic for when the operand is likely to be a 32bit def. 967 auto isDef32 = [](SDValue N) { 968 unsigned Opc = N.getOpcode(); 969 return Opc != ISD::TRUNCATE && Opc != TargetOpcode::EXTRACT_SUBREG && 970 Opc != ISD::CopyFromReg && Opc != ISD::AssertSext && 971 Opc != ISD::AssertZext && Opc != ISD::AssertAlign && 972 Opc != ISD::FREEZE; 973 }; 974 if (Ext == AArch64_AM::UXTW && Reg->getValueType(0).getSizeInBits() == 32 && 975 isDef32(Reg)) 976 return false; 977 } 978 979 // AArch64 mandates that the RHS of the operation must use the smallest 980 // register class that could contain the size being extended from. Thus, 981 // if we're folding a (sext i8), we need the RHS to be a GPR32, even though 982 // there might not be an actual 32-bit value in the program. We can 983 // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here. 984 assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX); 985 Reg = narrowIfNeeded(CurDAG, Reg); 986 Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N), 987 MVT::i32); 988 return isWorthFoldingALU(N); 989 } 990 991 /// SelectArithUXTXRegister - Select a "UXTX register" operand. This 992 /// operand is refered by the instructions have SP operand 993 bool AArch64DAGToDAGISel::SelectArithUXTXRegister(SDValue N, SDValue &Reg, 994 SDValue &Shift) { 995 unsigned ShiftVal = 0; 996 AArch64_AM::ShiftExtendType Ext; 997 998 if (N.getOpcode() != ISD::SHL) 999 return false; 1000 1001 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1002 if (!CSD) 1003 return false; 1004 ShiftVal = CSD->getZExtValue(); 1005 if (ShiftVal > 4) 1006 return false; 1007 1008 Ext = AArch64_AM::UXTX; 1009 Reg = N.getOperand(0); 1010 Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N), 1011 MVT::i32); 1012 return isWorthFoldingALU(N); 1013 } 1014 1015 /// If there's a use of this ADDlow that's not itself a load/store then we'll 1016 /// need to create a real ADD instruction from it anyway and there's no point in 1017 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's 1018 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding 1019 /// leads to duplicated ADRP instructions. 1020 static bool isWorthFoldingADDlow(SDValue N) { 1021 for (auto *User : N->users()) { 1022 if (User->getOpcode() != ISD::LOAD && User->getOpcode() != ISD::STORE && 1023 User->getOpcode() != ISD::ATOMIC_LOAD && 1024 User->getOpcode() != ISD::ATOMIC_STORE) 1025 return false; 1026 1027 // ldar and stlr have much more restrictive addressing modes (just a 1028 // register). 1029 if (isStrongerThanMonotonic(cast<MemSDNode>(User)->getSuccessOrdering())) 1030 return false; 1031 } 1032 1033 return true; 1034 } 1035 1036 /// Check if the immediate offset is valid as a scaled immediate. 1037 static bool isValidAsScaledImmediate(int64_t Offset, unsigned Range, 1038 unsigned Size) { 1039 if ((Offset & (Size - 1)) == 0 && Offset >= 0 && 1040 Offset < (Range << Log2_32(Size))) 1041 return true; 1042 return false; 1043 } 1044 1045 /// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit 1046 /// immediate" address. The "Size" argument is the size in bytes of the memory 1047 /// reference, which determines the scale. 1048 bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, 1049 unsigned BW, unsigned Size, 1050 SDValue &Base, 1051 SDValue &OffImm) { 1052 SDLoc dl(N); 1053 const DataLayout &DL = CurDAG->getDataLayout(); 1054 const TargetLowering *TLI = getTargetLowering(); 1055 if (N.getOpcode() == ISD::FrameIndex) { 1056 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 1057 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 1058 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); 1059 return true; 1060 } 1061 1062 // As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed 1063 // selected here doesn't support labels/immediates, only base+offset. 1064 if (CurDAG->isBaseWithConstantOffset(N)) { 1065 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 1066 if (IsSignedImm) { 1067 int64_t RHSC = RHS->getSExtValue(); 1068 unsigned Scale = Log2_32(Size); 1069 int64_t Range = 0x1LL << (BW - 1); 1070 1071 if ((RHSC & (Size - 1)) == 0 && RHSC >= -(Range << Scale) && 1072 RHSC < (Range << Scale)) { 1073 Base = N.getOperand(0); 1074 if (Base.getOpcode() == ISD::FrameIndex) { 1075 int FI = cast<FrameIndexSDNode>(Base)->getIndex(); 1076 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 1077 } 1078 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64); 1079 return true; 1080 } 1081 } else { 1082 // unsigned Immediate 1083 uint64_t RHSC = RHS->getZExtValue(); 1084 unsigned Scale = Log2_32(Size); 1085 uint64_t Range = 0x1ULL << BW; 1086 1087 if ((RHSC & (Size - 1)) == 0 && RHSC < (Range << Scale)) { 1088 Base = N.getOperand(0); 1089 if (Base.getOpcode() == ISD::FrameIndex) { 1090 int FI = cast<FrameIndexSDNode>(Base)->getIndex(); 1091 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 1092 } 1093 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64); 1094 return true; 1095 } 1096 } 1097 } 1098 } 1099 // Base only. The address will be materialized into a register before 1100 // the memory is accessed. 1101 // add x0, Xbase, #offset 1102 // stp x1, x2, [x0] 1103 Base = N; 1104 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); 1105 return true; 1106 } 1107 1108 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit 1109 /// immediate" address. The "Size" argument is the size in bytes of the memory 1110 /// reference, which determines the scale. 1111 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size, 1112 SDValue &Base, SDValue &OffImm) { 1113 SDLoc dl(N); 1114 const DataLayout &DL = CurDAG->getDataLayout(); 1115 const TargetLowering *TLI = getTargetLowering(); 1116 if (N.getOpcode() == ISD::FrameIndex) { 1117 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 1118 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 1119 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); 1120 return true; 1121 } 1122 1123 if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) { 1124 GlobalAddressSDNode *GAN = 1125 dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode()); 1126 Base = N.getOperand(0); 1127 OffImm = N.getOperand(1); 1128 if (!GAN) 1129 return true; 1130 1131 if (GAN->getOffset() % Size == 0 && 1132 GAN->getGlobal()->getPointerAlignment(DL) >= Size) 1133 return true; 1134 } 1135 1136 if (CurDAG->isBaseWithConstantOffset(N)) { 1137 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 1138 int64_t RHSC = (int64_t)RHS->getZExtValue(); 1139 unsigned Scale = Log2_32(Size); 1140 if (isValidAsScaledImmediate(RHSC, 0x1000, Size)) { 1141 Base = N.getOperand(0); 1142 if (Base.getOpcode() == ISD::FrameIndex) { 1143 int FI = cast<FrameIndexSDNode>(Base)->getIndex(); 1144 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 1145 } 1146 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64); 1147 return true; 1148 } 1149 } 1150 } 1151 1152 // Before falling back to our general case, check if the unscaled 1153 // instructions can handle this. If so, that's preferable. 1154 if (SelectAddrModeUnscaled(N, Size, Base, OffImm)) 1155 return false; 1156 1157 // Base only. The address will be materialized into a register before 1158 // the memory is accessed. 1159 // add x0, Xbase, #offset 1160 // ldr x0, [x0] 1161 Base = N; 1162 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); 1163 return true; 1164 } 1165 1166 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit 1167 /// immediate" address. This should only match when there is an offset that 1168 /// is not valid for a scaled immediate addressing mode. The "Size" argument 1169 /// is the size in bytes of the memory reference, which is needed here to know 1170 /// what is valid for a scaled immediate. 1171 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size, 1172 SDValue &Base, 1173 SDValue &OffImm) { 1174 if (!CurDAG->isBaseWithConstantOffset(N)) 1175 return false; 1176 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 1177 int64_t RHSC = RHS->getSExtValue(); 1178 if (RHSC >= -256 && RHSC < 256) { 1179 Base = N.getOperand(0); 1180 if (Base.getOpcode() == ISD::FrameIndex) { 1181 int FI = cast<FrameIndexSDNode>(Base)->getIndex(); 1182 const TargetLowering *TLI = getTargetLowering(); 1183 Base = CurDAG->getTargetFrameIndex( 1184 FI, TLI->getPointerTy(CurDAG->getDataLayout())); 1185 } 1186 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64); 1187 return true; 1188 } 1189 } 1190 return false; 1191 } 1192 1193 static SDValue Widen(SelectionDAG *CurDAG, SDValue N) { 1194 SDLoc dl(N); 1195 SDValue ImpDef = SDValue( 1196 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0); 1197 return CurDAG->getTargetInsertSubreg(AArch64::sub_32, dl, MVT::i64, ImpDef, 1198 N); 1199 } 1200 1201 /// Check if the given SHL node (\p N), can be used to form an 1202 /// extended register for an addressing mode. 1203 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size, 1204 bool WantExtend, SDValue &Offset, 1205 SDValue &SignExtend) { 1206 assert(N.getOpcode() == ISD::SHL && "Invalid opcode."); 1207 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1208 if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue()) 1209 return false; 1210 1211 SDLoc dl(N); 1212 if (WantExtend) { 1213 AArch64_AM::ShiftExtendType Ext = 1214 getExtendTypeForNode(N.getOperand(0), true); 1215 if (Ext == AArch64_AM::InvalidShiftExtend) 1216 return false; 1217 1218 Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0)); 1219 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl, 1220 MVT::i32); 1221 } else { 1222 Offset = N.getOperand(0); 1223 SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32); 1224 } 1225 1226 unsigned LegalShiftVal = Log2_32(Size); 1227 unsigned ShiftVal = CSD->getZExtValue(); 1228 1229 if (ShiftVal != 0 && ShiftVal != LegalShiftVal) 1230 return false; 1231 1232 return isWorthFoldingAddr(N, Size); 1233 } 1234 1235 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size, 1236 SDValue &Base, SDValue &Offset, 1237 SDValue &SignExtend, 1238 SDValue &DoShift) { 1239 if (N.getOpcode() != ISD::ADD) 1240 return false; 1241 SDValue LHS = N.getOperand(0); 1242 SDValue RHS = N.getOperand(1); 1243 SDLoc dl(N); 1244 1245 // We don't want to match immediate adds here, because they are better lowered 1246 // to the register-immediate addressing modes. 1247 if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS)) 1248 return false; 1249 1250 // Check if this particular node is reused in any non-memory related 1251 // operation. If yes, do not try to fold this node into the address 1252 // computation, since the computation will be kept. 1253 const SDNode *Node = N.getNode(); 1254 for (SDNode *UI : Node->users()) { 1255 if (!isMemOpOrPrefetch(UI)) 1256 return false; 1257 } 1258 1259 // Remember if it is worth folding N when it produces extended register. 1260 bool IsExtendedRegisterWorthFolding = isWorthFoldingAddr(N, Size); 1261 1262 // Try to match a shifted extend on the RHS. 1263 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL && 1264 SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) { 1265 Base = LHS; 1266 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32); 1267 return true; 1268 } 1269 1270 // Try to match a shifted extend on the LHS. 1271 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL && 1272 SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) { 1273 Base = RHS; 1274 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32); 1275 return true; 1276 } 1277 1278 // There was no shift, whatever else we find. 1279 DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32); 1280 1281 AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend; 1282 // Try to match an unshifted extend on the LHS. 1283 if (IsExtendedRegisterWorthFolding && 1284 (Ext = getExtendTypeForNode(LHS, true)) != 1285 AArch64_AM::InvalidShiftExtend) { 1286 Base = RHS; 1287 Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0)); 1288 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl, 1289 MVT::i32); 1290 if (isWorthFoldingAddr(LHS, Size)) 1291 return true; 1292 } 1293 1294 // Try to match an unshifted extend on the RHS. 1295 if (IsExtendedRegisterWorthFolding && 1296 (Ext = getExtendTypeForNode(RHS, true)) != 1297 AArch64_AM::InvalidShiftExtend) { 1298 Base = LHS; 1299 Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0)); 1300 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl, 1301 MVT::i32); 1302 if (isWorthFoldingAddr(RHS, Size)) 1303 return true; 1304 } 1305 1306 return false; 1307 } 1308 1309 // Check if the given immediate is preferred by ADD. If an immediate can be 1310 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be 1311 // encoded by one MOVZ, return true. 1312 static bool isPreferredADD(int64_t ImmOff) { 1313 // Constant in [0x0, 0xfff] can be encoded in ADD. 1314 if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL) 1315 return true; 1316 // Check if it can be encoded in an "ADD LSL #12". 1317 if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL) 1318 // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant. 1319 return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL && 1320 (ImmOff & 0xffffffffffff0fffLL) != 0x0LL; 1321 return false; 1322 } 1323 1324 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size, 1325 SDValue &Base, SDValue &Offset, 1326 SDValue &SignExtend, 1327 SDValue &DoShift) { 1328 if (N.getOpcode() != ISD::ADD) 1329 return false; 1330 SDValue LHS = N.getOperand(0); 1331 SDValue RHS = N.getOperand(1); 1332 SDLoc DL(N); 1333 1334 // Check if this particular node is reused in any non-memory related 1335 // operation. If yes, do not try to fold this node into the address 1336 // computation, since the computation will be kept. 1337 const SDNode *Node = N.getNode(); 1338 for (SDNode *UI : Node->users()) { 1339 if (!isMemOpOrPrefetch(UI)) 1340 return false; 1341 } 1342 1343 // Watch out if RHS is a wide immediate, it can not be selected into 1344 // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into 1345 // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate 1346 // instructions like: 1347 // MOV X0, WideImmediate 1348 // ADD X1, BaseReg, X0 1349 // LDR X2, [X1, 0] 1350 // For such situation, using [BaseReg, XReg] addressing mode can save one 1351 // ADD/SUB: 1352 // MOV X0, WideImmediate 1353 // LDR X2, [BaseReg, X0] 1354 if (isa<ConstantSDNode>(RHS)) { 1355 int64_t ImmOff = (int64_t)RHS->getAsZExtVal(); 1356 // Skip the immediate can be selected by load/store addressing mode. 1357 // Also skip the immediate can be encoded by a single ADD (SUB is also 1358 // checked by using -ImmOff). 1359 if (isValidAsScaledImmediate(ImmOff, 0x1000, Size) || 1360 isPreferredADD(ImmOff) || isPreferredADD(-ImmOff)) 1361 return false; 1362 1363 SDValue Ops[] = { RHS }; 1364 SDNode *MOVI = 1365 CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops); 1366 SDValue MOVIV = SDValue(MOVI, 0); 1367 // This ADD of two X register will be selected into [Reg+Reg] mode. 1368 N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV); 1369 } 1370 1371 // Remember if it is worth folding N when it produces extended register. 1372 bool IsExtendedRegisterWorthFolding = isWorthFoldingAddr(N, Size); 1373 1374 // Try to match a shifted extend on the RHS. 1375 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL && 1376 SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) { 1377 Base = LHS; 1378 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32); 1379 return true; 1380 } 1381 1382 // Try to match a shifted extend on the LHS. 1383 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL && 1384 SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) { 1385 Base = RHS; 1386 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32); 1387 return true; 1388 } 1389 1390 // Match any non-shifted, non-extend, non-immediate add expression. 1391 Base = LHS; 1392 Offset = RHS; 1393 SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32); 1394 DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32); 1395 // Reg1 + Reg2 is free: no check needed. 1396 return true; 1397 } 1398 1399 SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) { 1400 static const unsigned RegClassIDs[] = { 1401 AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID}; 1402 static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1, 1403 AArch64::dsub2, AArch64::dsub3}; 1404 1405 return createTuple(Regs, RegClassIDs, SubRegs); 1406 } 1407 1408 SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) { 1409 static const unsigned RegClassIDs[] = { 1410 AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID}; 1411 static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1, 1412 AArch64::qsub2, AArch64::qsub3}; 1413 1414 return createTuple(Regs, RegClassIDs, SubRegs); 1415 } 1416 1417 SDValue AArch64DAGToDAGISel::createZTuple(ArrayRef<SDValue> Regs) { 1418 static const unsigned RegClassIDs[] = {AArch64::ZPR2RegClassID, 1419 AArch64::ZPR3RegClassID, 1420 AArch64::ZPR4RegClassID}; 1421 static const unsigned SubRegs[] = {AArch64::zsub0, AArch64::zsub1, 1422 AArch64::zsub2, AArch64::zsub3}; 1423 1424 return createTuple(Regs, RegClassIDs, SubRegs); 1425 } 1426 1427 SDValue AArch64DAGToDAGISel::createZMulTuple(ArrayRef<SDValue> Regs) { 1428 assert(Regs.size() == 2 || Regs.size() == 4); 1429 1430 // The createTuple interface requires 3 RegClassIDs for each possible 1431 // tuple type even though we only have them for ZPR2 and ZPR4. 1432 static const unsigned RegClassIDs[] = {AArch64::ZPR2Mul2RegClassID, 0, 1433 AArch64::ZPR4Mul4RegClassID}; 1434 static const unsigned SubRegs[] = {AArch64::zsub0, AArch64::zsub1, 1435 AArch64::zsub2, AArch64::zsub3}; 1436 return createTuple(Regs, RegClassIDs, SubRegs); 1437 } 1438 1439 SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs, 1440 const unsigned RegClassIDs[], 1441 const unsigned SubRegs[]) { 1442 // There's no special register-class for a vector-list of 1 element: it's just 1443 // a vector. 1444 if (Regs.size() == 1) 1445 return Regs[0]; 1446 1447 assert(Regs.size() >= 2 && Regs.size() <= 4); 1448 1449 SDLoc DL(Regs[0]); 1450 1451 SmallVector<SDValue, 4> Ops; 1452 1453 // First operand of REG_SEQUENCE is the desired RegClass. 1454 Ops.push_back( 1455 CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32)); 1456 1457 // Then we get pairs of source & subregister-position for the components. 1458 for (unsigned i = 0; i < Regs.size(); ++i) { 1459 Ops.push_back(Regs[i]); 1460 Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32)); 1461 } 1462 1463 SDNode *N = 1464 CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops); 1465 return SDValue(N, 0); 1466 } 1467 1468 void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, 1469 bool isExt) { 1470 SDLoc dl(N); 1471 EVT VT = N->getValueType(0); 1472 1473 unsigned ExtOff = isExt; 1474 1475 // Form a REG_SEQUENCE to force register allocation. 1476 unsigned Vec0Off = ExtOff + 1; 1477 SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off, 1478 N->op_begin() + Vec0Off + NumVecs); 1479 SDValue RegSeq = createQTuple(Regs); 1480 1481 SmallVector<SDValue, 6> Ops; 1482 if (isExt) 1483 Ops.push_back(N->getOperand(1)); 1484 Ops.push_back(RegSeq); 1485 Ops.push_back(N->getOperand(NumVecs + ExtOff + 1)); 1486 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops)); 1487 } 1488 1489 static std::tuple<SDValue, SDValue> 1490 extractPtrauthBlendDiscriminators(SDValue Disc, SelectionDAG *DAG) { 1491 SDLoc DL(Disc); 1492 SDValue AddrDisc; 1493 SDValue ConstDisc; 1494 1495 // If this is a blend, remember the constant and address discriminators. 1496 // Otherwise, it's either a constant discriminator, or a non-blended 1497 // address discriminator. 1498 if (Disc->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 1499 Disc->getConstantOperandVal(0) == Intrinsic::ptrauth_blend) { 1500 AddrDisc = Disc->getOperand(1); 1501 ConstDisc = Disc->getOperand(2); 1502 } else { 1503 ConstDisc = Disc; 1504 } 1505 1506 // If the constant discriminator (either the blend RHS, or the entire 1507 // discriminator value) isn't a 16-bit constant, bail out, and let the 1508 // discriminator be computed separately. 1509 auto *ConstDiscN = dyn_cast<ConstantSDNode>(ConstDisc); 1510 if (!ConstDiscN || !isUInt<16>(ConstDiscN->getZExtValue())) 1511 return std::make_tuple(DAG->getTargetConstant(0, DL, MVT::i64), Disc); 1512 1513 // If there's no address discriminator, use XZR directly. 1514 if (!AddrDisc) 1515 AddrDisc = DAG->getRegister(AArch64::XZR, MVT::i64); 1516 1517 return std::make_tuple( 1518 DAG->getTargetConstant(ConstDiscN->getZExtValue(), DL, MVT::i64), 1519 AddrDisc); 1520 } 1521 1522 void AArch64DAGToDAGISel::SelectPtrauthAuth(SDNode *N) { 1523 SDLoc DL(N); 1524 // IntrinsicID is operand #0 1525 SDValue Val = N->getOperand(1); 1526 SDValue AUTKey = N->getOperand(2); 1527 SDValue AUTDisc = N->getOperand(3); 1528 1529 unsigned AUTKeyC = cast<ConstantSDNode>(AUTKey)->getZExtValue(); 1530 AUTKey = CurDAG->getTargetConstant(AUTKeyC, DL, MVT::i64); 1531 1532 SDValue AUTAddrDisc, AUTConstDisc; 1533 std::tie(AUTConstDisc, AUTAddrDisc) = 1534 extractPtrauthBlendDiscriminators(AUTDisc, CurDAG); 1535 1536 SDValue X16Copy = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, 1537 AArch64::X16, Val, SDValue()); 1538 SDValue Ops[] = {AUTKey, AUTConstDisc, AUTAddrDisc, X16Copy.getValue(1)}; 1539 1540 SDNode *AUT = CurDAG->getMachineNode(AArch64::AUT, DL, MVT::i64, Ops); 1541 ReplaceNode(N, AUT); 1542 } 1543 1544 void AArch64DAGToDAGISel::SelectPtrauthResign(SDNode *N) { 1545 SDLoc DL(N); 1546 // IntrinsicID is operand #0 1547 SDValue Val = N->getOperand(1); 1548 SDValue AUTKey = N->getOperand(2); 1549 SDValue AUTDisc = N->getOperand(3); 1550 SDValue PACKey = N->getOperand(4); 1551 SDValue PACDisc = N->getOperand(5); 1552 1553 unsigned AUTKeyC = cast<ConstantSDNode>(AUTKey)->getZExtValue(); 1554 unsigned PACKeyC = cast<ConstantSDNode>(PACKey)->getZExtValue(); 1555 1556 AUTKey = CurDAG->getTargetConstant(AUTKeyC, DL, MVT::i64); 1557 PACKey = CurDAG->getTargetConstant(PACKeyC, DL, MVT::i64); 1558 1559 SDValue AUTAddrDisc, AUTConstDisc; 1560 std::tie(AUTConstDisc, AUTAddrDisc) = 1561 extractPtrauthBlendDiscriminators(AUTDisc, CurDAG); 1562 1563 SDValue PACAddrDisc, PACConstDisc; 1564 std::tie(PACConstDisc, PACAddrDisc) = 1565 extractPtrauthBlendDiscriminators(PACDisc, CurDAG); 1566 1567 SDValue X16Copy = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, 1568 AArch64::X16, Val, SDValue()); 1569 1570 SDValue Ops[] = {AUTKey, AUTConstDisc, AUTAddrDisc, PACKey, 1571 PACConstDisc, PACAddrDisc, X16Copy.getValue(1)}; 1572 1573 SDNode *AUTPAC = CurDAG->getMachineNode(AArch64::AUTPAC, DL, MVT::i64, Ops); 1574 ReplaceNode(N, AUTPAC); 1575 } 1576 1577 bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) { 1578 LoadSDNode *LD = cast<LoadSDNode>(N); 1579 if (LD->isUnindexed()) 1580 return false; 1581 EVT VT = LD->getMemoryVT(); 1582 EVT DstVT = N->getValueType(0); 1583 ISD::MemIndexedMode AM = LD->getAddressingMode(); 1584 bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC; 1585 1586 // We're not doing validity checking here. That was done when checking 1587 // if we should mark the load as indexed or not. We're just selecting 1588 // the right instruction. 1589 unsigned Opcode = 0; 1590 1591 ISD::LoadExtType ExtType = LD->getExtensionType(); 1592 bool InsertTo64 = false; 1593 if (VT == MVT::i64) 1594 Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost; 1595 else if (VT == MVT::i32) { 1596 if (ExtType == ISD::NON_EXTLOAD) 1597 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost; 1598 else if (ExtType == ISD::SEXTLOAD) 1599 Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost; 1600 else { 1601 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost; 1602 InsertTo64 = true; 1603 // The result of the load is only i32. It's the subreg_to_reg that makes 1604 // it into an i64. 1605 DstVT = MVT::i32; 1606 } 1607 } else if (VT == MVT::i16) { 1608 if (ExtType == ISD::SEXTLOAD) { 1609 if (DstVT == MVT::i64) 1610 Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost; 1611 else 1612 Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost; 1613 } else { 1614 Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost; 1615 InsertTo64 = DstVT == MVT::i64; 1616 // The result of the load is only i32. It's the subreg_to_reg that makes 1617 // it into an i64. 1618 DstVT = MVT::i32; 1619 } 1620 } else if (VT == MVT::i8) { 1621 if (ExtType == ISD::SEXTLOAD) { 1622 if (DstVT == MVT::i64) 1623 Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost; 1624 else 1625 Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost; 1626 } else { 1627 Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost; 1628 InsertTo64 = DstVT == MVT::i64; 1629 // The result of the load is only i32. It's the subreg_to_reg that makes 1630 // it into an i64. 1631 DstVT = MVT::i32; 1632 } 1633 } else if (VT == MVT::f16) { 1634 Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost; 1635 } else if (VT == MVT::bf16) { 1636 Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost; 1637 } else if (VT == MVT::f32) { 1638 Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost; 1639 } else if (VT == MVT::f64 || VT.is64BitVector()) { 1640 Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost; 1641 } else if (VT.is128BitVector()) { 1642 Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost; 1643 } else 1644 return false; 1645 SDValue Chain = LD->getChain(); 1646 SDValue Base = LD->getBasePtr(); 1647 ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset()); 1648 int OffsetVal = (int)OffsetOp->getZExtValue(); 1649 SDLoc dl(N); 1650 SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64); 1651 SDValue Ops[] = { Base, Offset, Chain }; 1652 SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT, 1653 MVT::Other, Ops); 1654 1655 // Transfer memoperands. 1656 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 1657 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Res), {MemOp}); 1658 1659 // Either way, we're replacing the node, so tell the caller that. 1660 SDValue LoadedVal = SDValue(Res, 1); 1661 if (InsertTo64) { 1662 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32); 1663 LoadedVal = 1664 SDValue(CurDAG->getMachineNode( 1665 AArch64::SUBREG_TO_REG, dl, MVT::i64, 1666 CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal, 1667 SubReg), 1668 0); 1669 } 1670 1671 ReplaceUses(SDValue(N, 0), LoadedVal); 1672 ReplaceUses(SDValue(N, 1), SDValue(Res, 0)); 1673 ReplaceUses(SDValue(N, 2), SDValue(Res, 2)); 1674 CurDAG->RemoveDeadNode(N); 1675 return true; 1676 } 1677 1678 void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc, 1679 unsigned SubRegIdx) { 1680 SDLoc dl(N); 1681 EVT VT = N->getValueType(0); 1682 SDValue Chain = N->getOperand(0); 1683 1684 SDValue Ops[] = {N->getOperand(2), // Mem operand; 1685 Chain}; 1686 1687 const EVT ResTys[] = {MVT::Untyped, MVT::Other}; 1688 1689 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 1690 SDValue SuperReg = SDValue(Ld, 0); 1691 for (unsigned i = 0; i < NumVecs; ++i) 1692 ReplaceUses(SDValue(N, i), 1693 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg)); 1694 1695 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1)); 1696 1697 // Transfer memoperands. In the case of AArch64::LD64B, there won't be one, 1698 // because it's too simple to have needed special treatment during lowering. 1699 if (auto *MemIntr = dyn_cast<MemIntrinsicSDNode>(N)) { 1700 MachineMemOperand *MemOp = MemIntr->getMemOperand(); 1701 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp}); 1702 } 1703 1704 CurDAG->RemoveDeadNode(N); 1705 } 1706 1707 void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs, 1708 unsigned Opc, unsigned SubRegIdx) { 1709 SDLoc dl(N); 1710 EVT VT = N->getValueType(0); 1711 SDValue Chain = N->getOperand(0); 1712 1713 SDValue Ops[] = {N->getOperand(1), // Mem operand 1714 N->getOperand(2), // Incremental 1715 Chain}; 1716 1717 const EVT ResTys[] = {MVT::i64, // Type of the write back register 1718 MVT::Untyped, MVT::Other}; 1719 1720 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 1721 1722 // Update uses of write back register 1723 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0)); 1724 1725 // Update uses of vector list 1726 SDValue SuperReg = SDValue(Ld, 1); 1727 if (NumVecs == 1) 1728 ReplaceUses(SDValue(N, 0), SuperReg); 1729 else 1730 for (unsigned i = 0; i < NumVecs; ++i) 1731 ReplaceUses(SDValue(N, i), 1732 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg)); 1733 1734 // Update the chain 1735 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2)); 1736 CurDAG->RemoveDeadNode(N); 1737 } 1738 1739 /// Optimize \param OldBase and \param OldOffset selecting the best addressing 1740 /// mode. Returns a tuple consisting of an Opcode, an SDValue representing the 1741 /// new Base and an SDValue representing the new offset. 1742 std::tuple<unsigned, SDValue, SDValue> 1743 AArch64DAGToDAGISel::findAddrModeSVELoadStore(SDNode *N, unsigned Opc_rr, 1744 unsigned Opc_ri, 1745 const SDValue &OldBase, 1746 const SDValue &OldOffset, 1747 unsigned Scale) { 1748 SDValue NewBase = OldBase; 1749 SDValue NewOffset = OldOffset; 1750 // Detect a possible Reg+Imm addressing mode. 1751 const bool IsRegImm = SelectAddrModeIndexedSVE</*Min=*/-8, /*Max=*/7>( 1752 N, OldBase, NewBase, NewOffset); 1753 1754 // Detect a possible reg+reg addressing mode, but only if we haven't already 1755 // detected a Reg+Imm one. 1756 const bool IsRegReg = 1757 !IsRegImm && SelectSVERegRegAddrMode(OldBase, Scale, NewBase, NewOffset); 1758 1759 // Select the instruction. 1760 return std::make_tuple(IsRegReg ? Opc_rr : Opc_ri, NewBase, NewOffset); 1761 } 1762 1763 enum class SelectTypeKind { 1764 Int1 = 0, 1765 Int = 1, 1766 FP = 2, 1767 AnyType = 3, 1768 }; 1769 1770 /// This function selects an opcode from a list of opcodes, which is 1771 /// expected to be the opcode for { 8-bit, 16-bit, 32-bit, 64-bit } 1772 /// element types, in this order. 1773 template <SelectTypeKind Kind> 1774 static unsigned SelectOpcodeFromVT(EVT VT, ArrayRef<unsigned> Opcodes) { 1775 // Only match scalable vector VTs 1776 if (!VT.isScalableVector()) 1777 return 0; 1778 1779 EVT EltVT = VT.getVectorElementType(); 1780 unsigned Key = VT.getVectorMinNumElements(); 1781 switch (Kind) { 1782 case SelectTypeKind::AnyType: 1783 break; 1784 case SelectTypeKind::Int: 1785 if (EltVT != MVT::i8 && EltVT != MVT::i16 && EltVT != MVT::i32 && 1786 EltVT != MVT::i64) 1787 return 0; 1788 break; 1789 case SelectTypeKind::Int1: 1790 if (EltVT != MVT::i1) 1791 return 0; 1792 break; 1793 case SelectTypeKind::FP: 1794 if (EltVT == MVT::bf16) 1795 Key = 16; 1796 else if (EltVT != MVT::bf16 && EltVT != MVT::f16 && EltVT != MVT::f32 && 1797 EltVT != MVT::f64) 1798 return 0; 1799 break; 1800 } 1801 1802 unsigned Offset; 1803 switch (Key) { 1804 case 16: // 8-bit or bf16 1805 Offset = 0; 1806 break; 1807 case 8: // 16-bit 1808 Offset = 1; 1809 break; 1810 case 4: // 32-bit 1811 Offset = 2; 1812 break; 1813 case 2: // 64-bit 1814 Offset = 3; 1815 break; 1816 default: 1817 return 0; 1818 } 1819 1820 return (Opcodes.size() <= Offset) ? 0 : Opcodes[Offset]; 1821 } 1822 1823 // This function is almost identical to SelectWhilePair, but has an 1824 // extra check on the range of the immediate operand. 1825 // TODO: Merge these two functions together at some point? 1826 void AArch64DAGToDAGISel::SelectPExtPair(SDNode *N, unsigned Opc) { 1827 // Immediate can be either 0 or 1. 1828 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(N->getOperand(2))) 1829 if (Imm->getZExtValue() > 1) 1830 return; 1831 1832 SDLoc DL(N); 1833 EVT VT = N->getValueType(0); 1834 SDValue Ops[] = {N->getOperand(1), N->getOperand(2)}; 1835 SDNode *WhilePair = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops); 1836 SDValue SuperReg = SDValue(WhilePair, 0); 1837 1838 for (unsigned I = 0; I < 2; ++I) 1839 ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg( 1840 AArch64::psub0 + I, DL, VT, SuperReg)); 1841 1842 CurDAG->RemoveDeadNode(N); 1843 } 1844 1845 void AArch64DAGToDAGISel::SelectWhilePair(SDNode *N, unsigned Opc) { 1846 SDLoc DL(N); 1847 EVT VT = N->getValueType(0); 1848 1849 SDValue Ops[] = {N->getOperand(1), N->getOperand(2)}; 1850 1851 SDNode *WhilePair = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops); 1852 SDValue SuperReg = SDValue(WhilePair, 0); 1853 1854 for (unsigned I = 0; I < 2; ++I) 1855 ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg( 1856 AArch64::psub0 + I, DL, VT, SuperReg)); 1857 1858 CurDAG->RemoveDeadNode(N); 1859 } 1860 1861 void AArch64DAGToDAGISel::SelectCVTIntrinsic(SDNode *N, unsigned NumVecs, 1862 unsigned Opcode) { 1863 EVT VT = N->getValueType(0); 1864 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs); 1865 SDValue Ops = createZTuple(Regs); 1866 SDLoc DL(N); 1867 SDNode *Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped, Ops); 1868 SDValue SuperReg = SDValue(Intrinsic, 0); 1869 for (unsigned i = 0; i < NumVecs; ++i) 1870 ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg( 1871 AArch64::zsub0 + i, DL, VT, SuperReg)); 1872 1873 CurDAG->RemoveDeadNode(N); 1874 } 1875 1876 void AArch64DAGToDAGISel::SelectCVTIntrinsicFP8(SDNode *N, unsigned NumVecs, 1877 unsigned Opcode) { 1878 SDLoc DL(N); 1879 EVT VT = N->getValueType(0); 1880 SmallVector<SDValue, 4> Ops(N->op_begin() + 2, N->op_end()); 1881 Ops.push_back(/*Chain*/ N->getOperand(0)); 1882 1883 SDNode *Instruction = 1884 CurDAG->getMachineNode(Opcode, DL, {MVT::Untyped, MVT::Other}, Ops); 1885 SDValue SuperReg = SDValue(Instruction, 0); 1886 1887 for (unsigned i = 0; i < NumVecs; ++i) 1888 ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg( 1889 AArch64::zsub0 + i, DL, VT, SuperReg)); 1890 1891 // Copy chain 1892 unsigned ChainIdx = NumVecs; 1893 ReplaceUses(SDValue(N, ChainIdx), SDValue(Instruction, 1)); 1894 CurDAG->RemoveDeadNode(N); 1895 } 1896 1897 void AArch64DAGToDAGISel::SelectDestructiveMultiIntrinsic(SDNode *N, 1898 unsigned NumVecs, 1899 bool IsZmMulti, 1900 unsigned Opcode, 1901 bool HasPred) { 1902 assert(Opcode != 0 && "Unexpected opcode"); 1903 1904 SDLoc DL(N); 1905 EVT VT = N->getValueType(0); 1906 unsigned FirstVecIdx = HasPred ? 2 : 1; 1907 1908 auto GetMultiVecOperand = [=](unsigned StartIdx) { 1909 SmallVector<SDValue, 4> Regs(N->ops().slice(StartIdx, NumVecs)); 1910 return createZMulTuple(Regs); 1911 }; 1912 1913 SDValue Zdn = GetMultiVecOperand(FirstVecIdx); 1914 1915 SDValue Zm; 1916 if (IsZmMulti) 1917 Zm = GetMultiVecOperand(NumVecs + FirstVecIdx); 1918 else 1919 Zm = N->getOperand(NumVecs + FirstVecIdx); 1920 1921 SDNode *Intrinsic; 1922 if (HasPred) 1923 Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped, 1924 N->getOperand(1), Zdn, Zm); 1925 else 1926 Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped, Zdn, Zm); 1927 SDValue SuperReg = SDValue(Intrinsic, 0); 1928 for (unsigned i = 0; i < NumVecs; ++i) 1929 ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg( 1930 AArch64::zsub0 + i, DL, VT, SuperReg)); 1931 1932 CurDAG->RemoveDeadNode(N); 1933 } 1934 1935 void AArch64DAGToDAGISel::SelectPredicatedLoad(SDNode *N, unsigned NumVecs, 1936 unsigned Scale, unsigned Opc_ri, 1937 unsigned Opc_rr, bool IsIntr) { 1938 assert(Scale < 5 && "Invalid scaling value."); 1939 SDLoc DL(N); 1940 EVT VT = N->getValueType(0); 1941 SDValue Chain = N->getOperand(0); 1942 1943 // Optimize addressing mode. 1944 SDValue Base, Offset; 1945 unsigned Opc; 1946 std::tie(Opc, Base, Offset) = findAddrModeSVELoadStore( 1947 N, Opc_rr, Opc_ri, N->getOperand(IsIntr ? 3 : 2), 1948 CurDAG->getTargetConstant(0, DL, MVT::i64), Scale); 1949 1950 SDValue Ops[] = {N->getOperand(IsIntr ? 2 : 1), // Predicate 1951 Base, // Memory operand 1952 Offset, Chain}; 1953 1954 const EVT ResTys[] = {MVT::Untyped, MVT::Other}; 1955 1956 SDNode *Load = CurDAG->getMachineNode(Opc, DL, ResTys, Ops); 1957 SDValue SuperReg = SDValue(Load, 0); 1958 for (unsigned i = 0; i < NumVecs; ++i) 1959 ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg( 1960 AArch64::zsub0 + i, DL, VT, SuperReg)); 1961 1962 // Copy chain 1963 unsigned ChainIdx = NumVecs; 1964 ReplaceUses(SDValue(N, ChainIdx), SDValue(Load, 1)); 1965 CurDAG->RemoveDeadNode(N); 1966 } 1967 1968 void AArch64DAGToDAGISel::SelectContiguousMultiVectorLoad(SDNode *N, 1969 unsigned NumVecs, 1970 unsigned Scale, 1971 unsigned Opc_ri, 1972 unsigned Opc_rr) { 1973 assert(Scale < 4 && "Invalid scaling value."); 1974 SDLoc DL(N); 1975 EVT VT = N->getValueType(0); 1976 SDValue Chain = N->getOperand(0); 1977 1978 SDValue PNg = N->getOperand(2); 1979 SDValue Base = N->getOperand(3); 1980 SDValue Offset = CurDAG->getTargetConstant(0, DL, MVT::i64); 1981 unsigned Opc; 1982 std::tie(Opc, Base, Offset) = 1983 findAddrModeSVELoadStore(N, Opc_rr, Opc_ri, Base, Offset, Scale); 1984 1985 SDValue Ops[] = {PNg, // Predicate-as-counter 1986 Base, // Memory operand 1987 Offset, Chain}; 1988 1989 const EVT ResTys[] = {MVT::Untyped, MVT::Other}; 1990 1991 SDNode *Load = CurDAG->getMachineNode(Opc, DL, ResTys, Ops); 1992 SDValue SuperReg = SDValue(Load, 0); 1993 for (unsigned i = 0; i < NumVecs; ++i) 1994 ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg( 1995 AArch64::zsub0 + i, DL, VT, SuperReg)); 1996 1997 // Copy chain 1998 unsigned ChainIdx = NumVecs; 1999 ReplaceUses(SDValue(N, ChainIdx), SDValue(Load, 1)); 2000 CurDAG->RemoveDeadNode(N); 2001 } 2002 2003 void AArch64DAGToDAGISel::SelectFrintFromVT(SDNode *N, unsigned NumVecs, 2004 unsigned Opcode) { 2005 if (N->getValueType(0) != MVT::nxv4f32) 2006 return; 2007 SelectUnaryMultiIntrinsic(N, NumVecs, true, Opcode); 2008 } 2009 2010 void AArch64DAGToDAGISel::SelectMultiVectorLutiLane(SDNode *Node, 2011 unsigned NumOutVecs, 2012 unsigned Opc, 2013 uint32_t MaxImm) { 2014 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Node->getOperand(4))) 2015 if (Imm->getZExtValue() > MaxImm) 2016 return; 2017 2018 SDValue ZtValue; 2019 if (!ImmToReg<AArch64::ZT0, 0>(Node->getOperand(2), ZtValue)) 2020 return; 2021 2022 SDValue Ops[] = {ZtValue, Node->getOperand(3), Node->getOperand(4)}; 2023 SDLoc DL(Node); 2024 EVT VT = Node->getValueType(0); 2025 2026 SDNode *Instruction = 2027 CurDAG->getMachineNode(Opc, DL, {MVT::Untyped, MVT::Other}, Ops); 2028 SDValue SuperReg = SDValue(Instruction, 0); 2029 2030 for (unsigned I = 0; I < NumOutVecs; ++I) 2031 ReplaceUses(SDValue(Node, I), CurDAG->getTargetExtractSubreg( 2032 AArch64::zsub0 + I, DL, VT, SuperReg)); 2033 2034 // Copy chain 2035 unsigned ChainIdx = NumOutVecs; 2036 ReplaceUses(SDValue(Node, ChainIdx), SDValue(Instruction, 1)); 2037 CurDAG->RemoveDeadNode(Node); 2038 } 2039 2040 void AArch64DAGToDAGISel::SelectMultiVectorLuti(SDNode *Node, 2041 unsigned NumOutVecs, 2042 unsigned Opc) { 2043 2044 SDValue ZtValue; 2045 SmallVector<SDValue, 4> Ops; 2046 if (!ImmToReg<AArch64::ZT0, 0>(Node->getOperand(2), ZtValue)) 2047 return; 2048 2049 Ops.push_back(ZtValue); 2050 Ops.push_back(createZMulTuple({Node->getOperand(3), Node->getOperand(4)})); 2051 SDLoc DL(Node); 2052 EVT VT = Node->getValueType(0); 2053 2054 SDNode *Instruction = 2055 CurDAG->getMachineNode(Opc, DL, {MVT::Untyped, MVT::Other}, Ops); 2056 SDValue SuperReg = SDValue(Instruction, 0); 2057 2058 for (unsigned I = 0; I < NumOutVecs; ++I) 2059 ReplaceUses(SDValue(Node, I), CurDAG->getTargetExtractSubreg( 2060 AArch64::zsub0 + I, DL, VT, SuperReg)); 2061 2062 // Copy chain 2063 unsigned ChainIdx = NumOutVecs; 2064 ReplaceUses(SDValue(Node, ChainIdx), SDValue(Instruction, 1)); 2065 CurDAG->RemoveDeadNode(Node); 2066 } 2067 2068 void AArch64DAGToDAGISel::SelectClamp(SDNode *N, unsigned NumVecs, 2069 unsigned Op) { 2070 SDLoc DL(N); 2071 EVT VT = N->getValueType(0); 2072 2073 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs); 2074 SDValue Zd = createZMulTuple(Regs); 2075 SDValue Zn = N->getOperand(1 + NumVecs); 2076 SDValue Zm = N->getOperand(2 + NumVecs); 2077 2078 SDValue Ops[] = {Zd, Zn, Zm}; 2079 2080 SDNode *Intrinsic = CurDAG->getMachineNode(Op, DL, MVT::Untyped, Ops); 2081 SDValue SuperReg = SDValue(Intrinsic, 0); 2082 for (unsigned i = 0; i < NumVecs; ++i) 2083 ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg( 2084 AArch64::zsub0 + i, DL, VT, SuperReg)); 2085 2086 CurDAG->RemoveDeadNode(N); 2087 } 2088 2089 bool SelectSMETile(unsigned &BaseReg, unsigned TileNum) { 2090 switch (BaseReg) { 2091 default: 2092 return false; 2093 case AArch64::ZA: 2094 case AArch64::ZAB0: 2095 if (TileNum == 0) 2096 break; 2097 return false; 2098 case AArch64::ZAH0: 2099 if (TileNum <= 1) 2100 break; 2101 return false; 2102 case AArch64::ZAS0: 2103 if (TileNum <= 3) 2104 break; 2105 return false; 2106 case AArch64::ZAD0: 2107 if (TileNum <= 7) 2108 break; 2109 return false; 2110 } 2111 2112 BaseReg += TileNum; 2113 return true; 2114 } 2115 2116 template <unsigned MaxIdx, unsigned Scale> 2117 void AArch64DAGToDAGISel::SelectMultiVectorMove(SDNode *N, unsigned NumVecs, 2118 unsigned BaseReg, unsigned Op) { 2119 unsigned TileNum = 0; 2120 if (BaseReg != AArch64::ZA) 2121 TileNum = N->getConstantOperandVal(2); 2122 2123 if (!SelectSMETile(BaseReg, TileNum)) 2124 return; 2125 2126 SDValue SliceBase, Base, Offset; 2127 if (BaseReg == AArch64::ZA) 2128 SliceBase = N->getOperand(2); 2129 else 2130 SliceBase = N->getOperand(3); 2131 2132 if (!SelectSMETileSlice(SliceBase, MaxIdx, Base, Offset, Scale)) 2133 return; 2134 2135 SDLoc DL(N); 2136 SDValue SubReg = CurDAG->getRegister(BaseReg, MVT::Other); 2137 SDValue Ops[] = {SubReg, Base, Offset, /*Chain*/ N->getOperand(0)}; 2138 SDNode *Mov = CurDAG->getMachineNode(Op, DL, {MVT::Untyped, MVT::Other}, Ops); 2139 2140 EVT VT = N->getValueType(0); 2141 for (unsigned I = 0; I < NumVecs; ++I) 2142 ReplaceUses(SDValue(N, I), 2143 CurDAG->getTargetExtractSubreg(AArch64::zsub0 + I, DL, VT, 2144 SDValue(Mov, 0))); 2145 // Copy chain 2146 unsigned ChainIdx = NumVecs; 2147 ReplaceUses(SDValue(N, ChainIdx), SDValue(Mov, 1)); 2148 CurDAG->RemoveDeadNode(N); 2149 } 2150 2151 void AArch64DAGToDAGISel::SelectMultiVectorMoveZ(SDNode *N, unsigned NumVecs, 2152 unsigned Op, unsigned MaxIdx, 2153 unsigned Scale, unsigned BaseReg) { 2154 // Slice can be in different positions 2155 // The array to vector: llvm.aarch64.sme.readz.<h/v>.<sz>(slice) 2156 // The tile to vector: llvm.aarch64.sme.readz.<h/v>.<sz>(tile, slice) 2157 SDValue SliceBase = N->getOperand(2); 2158 if (BaseReg != AArch64::ZA) 2159 SliceBase = N->getOperand(3); 2160 2161 SDValue Base, Offset; 2162 if (!SelectSMETileSlice(SliceBase, MaxIdx, Base, Offset, Scale)) 2163 return; 2164 // The correct Za tile number is computed in Machine Instruction 2165 // See EmitZAInstr 2166 // DAG cannot select Za tile as an output register with ZReg 2167 SDLoc DL(N); 2168 SmallVector<SDValue, 6> Ops; 2169 if (BaseReg != AArch64::ZA ) 2170 Ops.push_back(N->getOperand(2)); 2171 Ops.push_back(Base); 2172 Ops.push_back(Offset); 2173 Ops.push_back(N->getOperand(0)); //Chain 2174 SDNode *Mov = CurDAG->getMachineNode(Op, DL, {MVT::Untyped, MVT::Other}, Ops); 2175 2176 EVT VT = N->getValueType(0); 2177 for (unsigned I = 0; I < NumVecs; ++I) 2178 ReplaceUses(SDValue(N, I), 2179 CurDAG->getTargetExtractSubreg(AArch64::zsub0 + I, DL, VT, 2180 SDValue(Mov, 0))); 2181 2182 // Copy chain 2183 unsigned ChainIdx = NumVecs; 2184 ReplaceUses(SDValue(N, ChainIdx), SDValue(Mov, 1)); 2185 CurDAG->RemoveDeadNode(N); 2186 } 2187 2188 void AArch64DAGToDAGISel::SelectUnaryMultiIntrinsic(SDNode *N, 2189 unsigned NumOutVecs, 2190 bool IsTupleInput, 2191 unsigned Opc) { 2192 SDLoc DL(N); 2193 EVT VT = N->getValueType(0); 2194 unsigned NumInVecs = N->getNumOperands() - 1; 2195 2196 SmallVector<SDValue, 6> Ops; 2197 if (IsTupleInput) { 2198 assert((NumInVecs == 2 || NumInVecs == 4) && 2199 "Don't know how to handle multi-register input!"); 2200 SmallVector<SDValue, 4> Regs(N->ops().slice(1, NumInVecs)); 2201 Ops.push_back(createZMulTuple(Regs)); 2202 } else { 2203 // All intrinsic nodes have the ID as the first operand, hence the "1 + I". 2204 for (unsigned I = 0; I < NumInVecs; I++) 2205 Ops.push_back(N->getOperand(1 + I)); 2206 } 2207 2208 SDNode *Res = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops); 2209 SDValue SuperReg = SDValue(Res, 0); 2210 2211 for (unsigned I = 0; I < NumOutVecs; I++) 2212 ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg( 2213 AArch64::zsub0 + I, DL, VT, SuperReg)); 2214 CurDAG->RemoveDeadNode(N); 2215 } 2216 2217 void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs, 2218 unsigned Opc) { 2219 SDLoc dl(N); 2220 EVT VT = N->getOperand(2)->getValueType(0); 2221 2222 // Form a REG_SEQUENCE to force register allocation. 2223 bool Is128Bit = VT.getSizeInBits() == 128; 2224 SmallVector<SDValue, 4> Regs(N->ops().slice(2, NumVecs)); 2225 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs); 2226 2227 SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)}; 2228 SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops); 2229 2230 // Transfer memoperands. 2231 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2232 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); 2233 2234 ReplaceNode(N, St); 2235 } 2236 2237 void AArch64DAGToDAGISel::SelectPredicatedStore(SDNode *N, unsigned NumVecs, 2238 unsigned Scale, unsigned Opc_rr, 2239 unsigned Opc_ri) { 2240 SDLoc dl(N); 2241 2242 // Form a REG_SEQUENCE to force register allocation. 2243 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs); 2244 SDValue RegSeq = createZTuple(Regs); 2245 2246 // Optimize addressing mode. 2247 unsigned Opc; 2248 SDValue Offset, Base; 2249 std::tie(Opc, Base, Offset) = findAddrModeSVELoadStore( 2250 N, Opc_rr, Opc_ri, N->getOperand(NumVecs + 3), 2251 CurDAG->getTargetConstant(0, dl, MVT::i64), Scale); 2252 2253 SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), // predicate 2254 Base, // address 2255 Offset, // offset 2256 N->getOperand(0)}; // chain 2257 SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops); 2258 2259 ReplaceNode(N, St); 2260 } 2261 2262 bool AArch64DAGToDAGISel::SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base, 2263 SDValue &OffImm) { 2264 SDLoc dl(N); 2265 const DataLayout &DL = CurDAG->getDataLayout(); 2266 const TargetLowering *TLI = getTargetLowering(); 2267 2268 // Try to match it for the frame address 2269 if (auto FINode = dyn_cast<FrameIndexSDNode>(N)) { 2270 int FI = FINode->getIndex(); 2271 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 2272 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); 2273 return true; 2274 } 2275 2276 return false; 2277 } 2278 2279 void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs, 2280 unsigned Opc) { 2281 SDLoc dl(N); 2282 EVT VT = N->getOperand(2)->getValueType(0); 2283 const EVT ResTys[] = {MVT::i64, // Type of the write back register 2284 MVT::Other}; // Type for the Chain 2285 2286 // Form a REG_SEQUENCE to force register allocation. 2287 bool Is128Bit = VT.getSizeInBits() == 128; 2288 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs); 2289 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs); 2290 2291 SDValue Ops[] = {RegSeq, 2292 N->getOperand(NumVecs + 1), // base register 2293 N->getOperand(NumVecs + 2), // Incremental 2294 N->getOperand(0)}; // Chain 2295 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 2296 2297 ReplaceNode(N, St); 2298 } 2299 2300 namespace { 2301 /// WidenVector - Given a value in the V64 register class, produce the 2302 /// equivalent value in the V128 register class. 2303 class WidenVector { 2304 SelectionDAG &DAG; 2305 2306 public: 2307 WidenVector(SelectionDAG &DAG) : DAG(DAG) {} 2308 2309 SDValue operator()(SDValue V64Reg) { 2310 EVT VT = V64Reg.getValueType(); 2311 unsigned NarrowSize = VT.getVectorNumElements(); 2312 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 2313 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); 2314 SDLoc DL(V64Reg); 2315 2316 SDValue Undef = 2317 SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0); 2318 return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg); 2319 } 2320 }; 2321 } // namespace 2322 2323 /// NarrowVector - Given a value in the V128 register class, produce the 2324 /// equivalent value in the V64 register class. 2325 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { 2326 EVT VT = V128Reg.getValueType(); 2327 unsigned WideSize = VT.getVectorNumElements(); 2328 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 2329 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); 2330 2331 return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy, 2332 V128Reg); 2333 } 2334 2335 void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs, 2336 unsigned Opc) { 2337 SDLoc dl(N); 2338 EVT VT = N->getValueType(0); 2339 bool Narrow = VT.getSizeInBits() == 64; 2340 2341 // Form a REG_SEQUENCE to force register allocation. 2342 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs); 2343 2344 if (Narrow) 2345 transform(Regs, Regs.begin(), 2346 WidenVector(*CurDAG)); 2347 2348 SDValue RegSeq = createQTuple(Regs); 2349 2350 const EVT ResTys[] = {MVT::Untyped, MVT::Other}; 2351 2352 unsigned LaneNo = N->getConstantOperandVal(NumVecs + 2); 2353 2354 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64), 2355 N->getOperand(NumVecs + 3), N->getOperand(0)}; 2356 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 2357 SDValue SuperReg = SDValue(Ld, 0); 2358 2359 EVT WideVT = RegSeq.getOperand(1)->getValueType(0); 2360 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, 2361 AArch64::qsub2, AArch64::qsub3 }; 2362 for (unsigned i = 0; i < NumVecs; ++i) { 2363 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg); 2364 if (Narrow) 2365 NV = NarrowVector(NV, *CurDAG); 2366 ReplaceUses(SDValue(N, i), NV); 2367 } 2368 2369 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1)); 2370 CurDAG->RemoveDeadNode(N); 2371 } 2372 2373 void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs, 2374 unsigned Opc) { 2375 SDLoc dl(N); 2376 EVT VT = N->getValueType(0); 2377 bool Narrow = VT.getSizeInBits() == 64; 2378 2379 // Form a REG_SEQUENCE to force register allocation. 2380 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs); 2381 2382 if (Narrow) 2383 transform(Regs, Regs.begin(), 2384 WidenVector(*CurDAG)); 2385 2386 SDValue RegSeq = createQTuple(Regs); 2387 2388 const EVT ResTys[] = {MVT::i64, // Type of the write back register 2389 RegSeq->getValueType(0), MVT::Other}; 2390 2391 unsigned LaneNo = N->getConstantOperandVal(NumVecs + 1); 2392 2393 SDValue Ops[] = {RegSeq, 2394 CurDAG->getTargetConstant(LaneNo, dl, 2395 MVT::i64), // Lane Number 2396 N->getOperand(NumVecs + 2), // Base register 2397 N->getOperand(NumVecs + 3), // Incremental 2398 N->getOperand(0)}; 2399 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 2400 2401 // Update uses of the write back register 2402 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0)); 2403 2404 // Update uses of the vector list 2405 SDValue SuperReg = SDValue(Ld, 1); 2406 if (NumVecs == 1) { 2407 ReplaceUses(SDValue(N, 0), 2408 Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg); 2409 } else { 2410 EVT WideVT = RegSeq.getOperand(1)->getValueType(0); 2411 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, 2412 AArch64::qsub2, AArch64::qsub3 }; 2413 for (unsigned i = 0; i < NumVecs; ++i) { 2414 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, 2415 SuperReg); 2416 if (Narrow) 2417 NV = NarrowVector(NV, *CurDAG); 2418 ReplaceUses(SDValue(N, i), NV); 2419 } 2420 } 2421 2422 // Update the Chain 2423 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2)); 2424 CurDAG->RemoveDeadNode(N); 2425 } 2426 2427 void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs, 2428 unsigned Opc) { 2429 SDLoc dl(N); 2430 EVT VT = N->getOperand(2)->getValueType(0); 2431 bool Narrow = VT.getSizeInBits() == 64; 2432 2433 // Form a REG_SEQUENCE to force register allocation. 2434 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs); 2435 2436 if (Narrow) 2437 transform(Regs, Regs.begin(), 2438 WidenVector(*CurDAG)); 2439 2440 SDValue RegSeq = createQTuple(Regs); 2441 2442 unsigned LaneNo = N->getConstantOperandVal(NumVecs + 2); 2443 2444 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64), 2445 N->getOperand(NumVecs + 3), N->getOperand(0)}; 2446 SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); 2447 2448 // Transfer memoperands. 2449 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2450 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); 2451 2452 ReplaceNode(N, St); 2453 } 2454 2455 void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs, 2456 unsigned Opc) { 2457 SDLoc dl(N); 2458 EVT VT = N->getOperand(2)->getValueType(0); 2459 bool Narrow = VT.getSizeInBits() == 64; 2460 2461 // Form a REG_SEQUENCE to force register allocation. 2462 SmallVector<SDValue, 4> Regs(N->ops().slice(1, NumVecs)); 2463 2464 if (Narrow) 2465 transform(Regs, Regs.begin(), 2466 WidenVector(*CurDAG)); 2467 2468 SDValue RegSeq = createQTuple(Regs); 2469 2470 const EVT ResTys[] = {MVT::i64, // Type of the write back register 2471 MVT::Other}; 2472 2473 unsigned LaneNo = N->getConstantOperandVal(NumVecs + 1); 2474 2475 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64), 2476 N->getOperand(NumVecs + 2), // Base Register 2477 N->getOperand(NumVecs + 3), // Incremental 2478 N->getOperand(0)}; 2479 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 2480 2481 // Transfer memoperands. 2482 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2483 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); 2484 2485 ReplaceNode(N, St); 2486 } 2487 2488 static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N, 2489 unsigned &Opc, SDValue &Opd0, 2490 unsigned &LSB, unsigned &MSB, 2491 unsigned NumberOfIgnoredLowBits, 2492 bool BiggerPattern) { 2493 assert(N->getOpcode() == ISD::AND && 2494 "N must be a AND operation to call this function"); 2495 2496 EVT VT = N->getValueType(0); 2497 2498 // Here we can test the type of VT and return false when the type does not 2499 // match, but since it is done prior to that call in the current context 2500 // we turned that into an assert to avoid redundant code. 2501 assert((VT == MVT::i32 || VT == MVT::i64) && 2502 "Type checking must have been done before calling this function"); 2503 2504 // FIXME: simplify-demanded-bits in DAGCombine will probably have 2505 // changed the AND node to a 32-bit mask operation. We'll have to 2506 // undo that as part of the transform here if we want to catch all 2507 // the opportunities. 2508 // Currently the NumberOfIgnoredLowBits argument helps to recover 2509 // from these situations when matching bigger pattern (bitfield insert). 2510 2511 // For unsigned extracts, check for a shift right and mask 2512 uint64_t AndImm = 0; 2513 if (!isOpcWithIntImmediate(N, ISD::AND, AndImm)) 2514 return false; 2515 2516 const SDNode *Op0 = N->getOperand(0).getNode(); 2517 2518 // Because of simplify-demanded-bits in DAGCombine, the mask may have been 2519 // simplified. Try to undo that 2520 AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits); 2521 2522 // The immediate is a mask of the low bits iff imm & (imm+1) == 0 2523 if (AndImm & (AndImm + 1)) 2524 return false; 2525 2526 bool ClampMSB = false; 2527 uint64_t SrlImm = 0; 2528 // Handle the SRL + ANY_EXTEND case. 2529 if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND && 2530 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) { 2531 // Extend the incoming operand of the SRL to 64-bit. 2532 Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0)); 2533 // Make sure to clamp the MSB so that we preserve the semantics of the 2534 // original operations. 2535 ClampMSB = true; 2536 } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE && 2537 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, 2538 SrlImm)) { 2539 // If the shift result was truncated, we can still combine them. 2540 Opd0 = Op0->getOperand(0).getOperand(0); 2541 2542 // Use the type of SRL node. 2543 VT = Opd0->getValueType(0); 2544 } else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) { 2545 Opd0 = Op0->getOperand(0); 2546 ClampMSB = (VT == MVT::i32); 2547 } else if (BiggerPattern) { 2548 // Let's pretend a 0 shift right has been performed. 2549 // The resulting code will be at least as good as the original one 2550 // plus it may expose more opportunities for bitfield insert pattern. 2551 // FIXME: Currently we limit this to the bigger pattern, because 2552 // some optimizations expect AND and not UBFM. 2553 Opd0 = N->getOperand(0); 2554 } else 2555 return false; 2556 2557 // Bail out on large immediates. This happens when no proper 2558 // combining/constant folding was performed. 2559 if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) { 2560 LLVM_DEBUG( 2561 (dbgs() << N 2562 << ": Found large shift immediate, this should not happen\n")); 2563 return false; 2564 } 2565 2566 LSB = SrlImm; 2567 MSB = SrlImm + 2568 (VT == MVT::i32 ? llvm::countr_one<uint32_t>(AndImm) 2569 : llvm::countr_one<uint64_t>(AndImm)) - 2570 1; 2571 if (ClampMSB) 2572 // Since we're moving the extend before the right shift operation, we need 2573 // to clamp the MSB to make sure we don't shift in undefined bits instead of 2574 // the zeros which would get shifted in with the original right shift 2575 // operation. 2576 MSB = MSB > 31 ? 31 : MSB; 2577 2578 Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri; 2579 return true; 2580 } 2581 2582 static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc, 2583 SDValue &Opd0, unsigned &Immr, 2584 unsigned &Imms) { 2585 assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG); 2586 2587 EVT VT = N->getValueType(0); 2588 unsigned BitWidth = VT.getSizeInBits(); 2589 assert((VT == MVT::i32 || VT == MVT::i64) && 2590 "Type checking must have been done before calling this function"); 2591 2592 SDValue Op = N->getOperand(0); 2593 if (Op->getOpcode() == ISD::TRUNCATE) { 2594 Op = Op->getOperand(0); 2595 VT = Op->getValueType(0); 2596 BitWidth = VT.getSizeInBits(); 2597 } 2598 2599 uint64_t ShiftImm; 2600 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) && 2601 !isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm)) 2602 return false; 2603 2604 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2605 if (ShiftImm + Width > BitWidth) 2606 return false; 2607 2608 Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri; 2609 Opd0 = Op.getOperand(0); 2610 Immr = ShiftImm; 2611 Imms = ShiftImm + Width - 1; 2612 return true; 2613 } 2614 2615 static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc, 2616 SDValue &Opd0, unsigned &LSB, 2617 unsigned &MSB) { 2618 // We are looking for the following pattern which basically extracts several 2619 // continuous bits from the source value and places it from the LSB of the 2620 // destination value, all other bits of the destination value or set to zero: 2621 // 2622 // Value2 = AND Value, MaskImm 2623 // SRL Value2, ShiftImm 2624 // 2625 // with MaskImm >> ShiftImm to search for the bit width. 2626 // 2627 // This gets selected into a single UBFM: 2628 // 2629 // UBFM Value, ShiftImm, Log2_64(MaskImm) 2630 // 2631 2632 if (N->getOpcode() != ISD::SRL) 2633 return false; 2634 2635 uint64_t AndMask = 0; 2636 if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask)) 2637 return false; 2638 2639 Opd0 = N->getOperand(0).getOperand(0); 2640 2641 uint64_t SrlImm = 0; 2642 if (!isIntImmediate(N->getOperand(1), SrlImm)) 2643 return false; 2644 2645 // Check whether we really have several bits extract here. 2646 if (!isMask_64(AndMask >> SrlImm)) 2647 return false; 2648 2649 Opc = N->getValueType(0) == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri; 2650 LSB = SrlImm; 2651 MSB = llvm::Log2_64(AndMask); 2652 return true; 2653 } 2654 2655 static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0, 2656 unsigned &Immr, unsigned &Imms, 2657 bool BiggerPattern) { 2658 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && 2659 "N must be a SHR/SRA operation to call this function"); 2660 2661 EVT VT = N->getValueType(0); 2662 2663 // Here we can test the type of VT and return false when the type does not 2664 // match, but since it is done prior to that call in the current context 2665 // we turned that into an assert to avoid redundant code. 2666 assert((VT == MVT::i32 || VT == MVT::i64) && 2667 "Type checking must have been done before calling this function"); 2668 2669 // Check for AND + SRL doing several bits extract. 2670 if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms)) 2671 return true; 2672 2673 // We're looking for a shift of a shift. 2674 uint64_t ShlImm = 0; 2675 uint64_t TruncBits = 0; 2676 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) { 2677 Opd0 = N->getOperand(0).getOperand(0); 2678 } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL && 2679 N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) { 2680 // We are looking for a shift of truncate. Truncate from i64 to i32 could 2681 // be considered as setting high 32 bits as zero. Our strategy here is to 2682 // always generate 64bit UBFM. This consistency will help the CSE pass 2683 // later find more redundancy. 2684 Opd0 = N->getOperand(0).getOperand(0); 2685 TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits(); 2686 VT = Opd0.getValueType(); 2687 assert(VT == MVT::i64 && "the promoted type should be i64"); 2688 } else if (BiggerPattern) { 2689 // Let's pretend a 0 shift left has been performed. 2690 // FIXME: Currently we limit this to the bigger pattern case, 2691 // because some optimizations expect AND and not UBFM 2692 Opd0 = N->getOperand(0); 2693 } else 2694 return false; 2695 2696 // Missing combines/constant folding may have left us with strange 2697 // constants. 2698 if (ShlImm >= VT.getSizeInBits()) { 2699 LLVM_DEBUG( 2700 (dbgs() << N 2701 << ": Found large shift immediate, this should not happen\n")); 2702 return false; 2703 } 2704 2705 uint64_t SrlImm = 0; 2706 if (!isIntImmediate(N->getOperand(1), SrlImm)) 2707 return false; 2708 2709 assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() && 2710 "bad amount in shift node!"); 2711 int immr = SrlImm - ShlImm; 2712 Immr = immr < 0 ? immr + VT.getSizeInBits() : immr; 2713 Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1; 2714 // SRA requires a signed extraction 2715 if (VT == MVT::i32) 2716 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri; 2717 else 2718 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri; 2719 return true; 2720 } 2721 2722 bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) { 2723 assert(N->getOpcode() == ISD::SIGN_EXTEND); 2724 2725 EVT VT = N->getValueType(0); 2726 EVT NarrowVT = N->getOperand(0)->getValueType(0); 2727 if (VT != MVT::i64 || NarrowVT != MVT::i32) 2728 return false; 2729 2730 uint64_t ShiftImm; 2731 SDValue Op = N->getOperand(0); 2732 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm)) 2733 return false; 2734 2735 SDLoc dl(N); 2736 // Extend the incoming operand of the shift to 64-bits. 2737 SDValue Opd0 = Widen(CurDAG, Op.getOperand(0)); 2738 unsigned Immr = ShiftImm; 2739 unsigned Imms = NarrowVT.getSizeInBits() - 1; 2740 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT), 2741 CurDAG->getTargetConstant(Imms, dl, VT)}; 2742 CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops); 2743 return true; 2744 } 2745 2746 static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc, 2747 SDValue &Opd0, unsigned &Immr, unsigned &Imms, 2748 unsigned NumberOfIgnoredLowBits = 0, 2749 bool BiggerPattern = false) { 2750 if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64) 2751 return false; 2752 2753 switch (N->getOpcode()) { 2754 default: 2755 if (!N->isMachineOpcode()) 2756 return false; 2757 break; 2758 case ISD::AND: 2759 return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms, 2760 NumberOfIgnoredLowBits, BiggerPattern); 2761 case ISD::SRL: 2762 case ISD::SRA: 2763 return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern); 2764 2765 case ISD::SIGN_EXTEND_INREG: 2766 return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms); 2767 } 2768 2769 unsigned NOpc = N->getMachineOpcode(); 2770 switch (NOpc) { 2771 default: 2772 return false; 2773 case AArch64::SBFMWri: 2774 case AArch64::UBFMWri: 2775 case AArch64::SBFMXri: 2776 case AArch64::UBFMXri: 2777 Opc = NOpc; 2778 Opd0 = N->getOperand(0); 2779 Immr = N->getConstantOperandVal(1); 2780 Imms = N->getConstantOperandVal(2); 2781 return true; 2782 } 2783 // Unreachable 2784 return false; 2785 } 2786 2787 bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) { 2788 unsigned Opc, Immr, Imms; 2789 SDValue Opd0; 2790 if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms)) 2791 return false; 2792 2793 EVT VT = N->getValueType(0); 2794 SDLoc dl(N); 2795 2796 // If the bit extract operation is 64bit but the original type is 32bit, we 2797 // need to add one EXTRACT_SUBREG. 2798 if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) { 2799 SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64), 2800 CurDAG->getTargetConstant(Imms, dl, MVT::i64)}; 2801 2802 SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64); 2803 SDValue Inner = CurDAG->getTargetExtractSubreg(AArch64::sub_32, dl, 2804 MVT::i32, SDValue(BFM, 0)); 2805 ReplaceNode(N, Inner.getNode()); 2806 return true; 2807 } 2808 2809 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT), 2810 CurDAG->getTargetConstant(Imms, dl, VT)}; 2811 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 2812 return true; 2813 } 2814 2815 /// Does DstMask form a complementary pair with the mask provided by 2816 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking, 2817 /// this asks whether DstMask zeroes precisely those bits that will be set by 2818 /// the other half. 2819 static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted, 2820 unsigned NumberOfIgnoredHighBits, EVT VT) { 2821 assert((VT == MVT::i32 || VT == MVT::i64) && 2822 "i32 or i64 mask type expected!"); 2823 unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits; 2824 2825 // Enable implicitTrunc as we're intentionally ignoring high bits. 2826 APInt SignificantDstMask = 2827 APInt(BitWidth, DstMask, /*isSigned=*/false, /*implicitTrunc=*/true); 2828 APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth); 2829 2830 return (SignificantDstMask & SignificantBitsToBeInserted) == 0 && 2831 (SignificantDstMask | SignificantBitsToBeInserted).isAllOnes(); 2832 } 2833 2834 // Look for bits that will be useful for later uses. 2835 // A bit is consider useless as soon as it is dropped and never used 2836 // before it as been dropped. 2837 // E.g., looking for useful bit of x 2838 // 1. y = x & 0x7 2839 // 2. z = y >> 2 2840 // After #1, x useful bits are 0x7, then the useful bits of x, live through 2841 // y. 2842 // After #2, the useful bits of x are 0x4. 2843 // However, if x is used on an unpredicatable instruction, then all its bits 2844 // are useful. 2845 // E.g. 2846 // 1. y = x & 0x7 2847 // 2. z = y >> 2 2848 // 3. str x, [@x] 2849 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0); 2850 2851 static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits, 2852 unsigned Depth) { 2853 uint64_t Imm = 2854 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue(); 2855 Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth()); 2856 UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm); 2857 getUsefulBits(Op, UsefulBits, Depth + 1); 2858 } 2859 2860 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits, 2861 uint64_t Imm, uint64_t MSB, 2862 unsigned Depth) { 2863 // inherit the bitwidth value 2864 APInt OpUsefulBits(UsefulBits); 2865 OpUsefulBits = 1; 2866 2867 if (MSB >= Imm) { 2868 OpUsefulBits <<= MSB - Imm + 1; 2869 --OpUsefulBits; 2870 // The interesting part will be in the lower part of the result 2871 getUsefulBits(Op, OpUsefulBits, Depth + 1); 2872 // The interesting part was starting at Imm in the argument 2873 OpUsefulBits <<= Imm; 2874 } else { 2875 OpUsefulBits <<= MSB + 1; 2876 --OpUsefulBits; 2877 // The interesting part will be shifted in the result 2878 OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm; 2879 getUsefulBits(Op, OpUsefulBits, Depth + 1); 2880 // The interesting part was at zero in the argument 2881 OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm); 2882 } 2883 2884 UsefulBits &= OpUsefulBits; 2885 } 2886 2887 static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits, 2888 unsigned Depth) { 2889 uint64_t Imm = 2890 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue(); 2891 uint64_t MSB = 2892 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 2893 2894 getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth); 2895 } 2896 2897 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits, 2898 unsigned Depth) { 2899 uint64_t ShiftTypeAndValue = 2900 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 2901 APInt Mask(UsefulBits); 2902 Mask.clearAllBits(); 2903 Mask.flipAllBits(); 2904 2905 if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) { 2906 // Shift Left 2907 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue); 2908 Mask <<= ShiftAmt; 2909 getUsefulBits(Op, Mask, Depth + 1); 2910 Mask.lshrInPlace(ShiftAmt); 2911 } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) { 2912 // Shift Right 2913 // We do not handle AArch64_AM::ASR, because the sign will change the 2914 // number of useful bits 2915 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue); 2916 Mask.lshrInPlace(ShiftAmt); 2917 getUsefulBits(Op, Mask, Depth + 1); 2918 Mask <<= ShiftAmt; 2919 } else 2920 return; 2921 2922 UsefulBits &= Mask; 2923 } 2924 2925 static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits, 2926 unsigned Depth) { 2927 uint64_t Imm = 2928 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 2929 uint64_t MSB = 2930 cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue(); 2931 2932 APInt OpUsefulBits(UsefulBits); 2933 OpUsefulBits = 1; 2934 2935 APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0); 2936 ResultUsefulBits.flipAllBits(); 2937 APInt Mask(UsefulBits.getBitWidth(), 0); 2938 2939 getUsefulBits(Op, ResultUsefulBits, Depth + 1); 2940 2941 if (MSB >= Imm) { 2942 // The instruction is a BFXIL. 2943 uint64_t Width = MSB - Imm + 1; 2944 uint64_t LSB = Imm; 2945 2946 OpUsefulBits <<= Width; 2947 --OpUsefulBits; 2948 2949 if (Op.getOperand(1) == Orig) { 2950 // Copy the low bits from the result to bits starting from LSB. 2951 Mask = ResultUsefulBits & OpUsefulBits; 2952 Mask <<= LSB; 2953 } 2954 2955 if (Op.getOperand(0) == Orig) 2956 // Bits starting from LSB in the input contribute to the result. 2957 Mask |= (ResultUsefulBits & ~OpUsefulBits); 2958 } else { 2959 // The instruction is a BFI. 2960 uint64_t Width = MSB + 1; 2961 uint64_t LSB = UsefulBits.getBitWidth() - Imm; 2962 2963 OpUsefulBits <<= Width; 2964 --OpUsefulBits; 2965 OpUsefulBits <<= LSB; 2966 2967 if (Op.getOperand(1) == Orig) { 2968 // Copy the bits from the result to the zero bits. 2969 Mask = ResultUsefulBits & OpUsefulBits; 2970 Mask.lshrInPlace(LSB); 2971 } 2972 2973 if (Op.getOperand(0) == Orig) 2974 Mask |= (ResultUsefulBits & ~OpUsefulBits); 2975 } 2976 2977 UsefulBits &= Mask; 2978 } 2979 2980 static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits, 2981 SDValue Orig, unsigned Depth) { 2982 2983 // Users of this node should have already been instruction selected 2984 // FIXME: Can we turn that into an assert? 2985 if (!UserNode->isMachineOpcode()) 2986 return; 2987 2988 switch (UserNode->getMachineOpcode()) { 2989 default: 2990 return; 2991 case AArch64::ANDSWri: 2992 case AArch64::ANDSXri: 2993 case AArch64::ANDWri: 2994 case AArch64::ANDXri: 2995 // We increment Depth only when we call the getUsefulBits 2996 return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits, 2997 Depth); 2998 case AArch64::UBFMWri: 2999 case AArch64::UBFMXri: 3000 return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth); 3001 3002 case AArch64::ORRWrs: 3003 case AArch64::ORRXrs: 3004 if (UserNode->getOperand(0) != Orig && UserNode->getOperand(1) == Orig) 3005 getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits, 3006 Depth); 3007 return; 3008 case AArch64::BFMWri: 3009 case AArch64::BFMXri: 3010 return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth); 3011 3012 case AArch64::STRBBui: 3013 case AArch64::STURBBi: 3014 if (UserNode->getOperand(0) != Orig) 3015 return; 3016 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff); 3017 return; 3018 3019 case AArch64::STRHHui: 3020 case AArch64::STURHHi: 3021 if (UserNode->getOperand(0) != Orig) 3022 return; 3023 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff); 3024 return; 3025 } 3026 } 3027 3028 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) { 3029 if (Depth >= SelectionDAG::MaxRecursionDepth) 3030 return; 3031 // Initialize UsefulBits 3032 if (!Depth) { 3033 unsigned Bitwidth = Op.getScalarValueSizeInBits(); 3034 // At the beginning, assume every produced bits is useful 3035 UsefulBits = APInt(Bitwidth, 0); 3036 UsefulBits.flipAllBits(); 3037 } 3038 APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0); 3039 3040 for (SDNode *Node : Op.getNode()->users()) { 3041 // A use cannot produce useful bits 3042 APInt UsefulBitsForUse = APInt(UsefulBits); 3043 getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth); 3044 UsersUsefulBits |= UsefulBitsForUse; 3045 } 3046 // UsefulBits contains the produced bits that are meaningful for the 3047 // current definition, thus a user cannot make a bit meaningful at 3048 // this point 3049 UsefulBits &= UsersUsefulBits; 3050 } 3051 3052 /// Create a machine node performing a notional SHL of Op by ShlAmount. If 3053 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is 3054 /// 0, return Op unchanged. 3055 static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) { 3056 if (ShlAmount == 0) 3057 return Op; 3058 3059 EVT VT = Op.getValueType(); 3060 SDLoc dl(Op); 3061 unsigned BitWidth = VT.getSizeInBits(); 3062 unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri; 3063 3064 SDNode *ShiftNode; 3065 if (ShlAmount > 0) { 3066 // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt 3067 ShiftNode = CurDAG->getMachineNode( 3068 UBFMOpc, dl, VT, Op, 3069 CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT), 3070 CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT)); 3071 } else { 3072 // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1 3073 assert(ShlAmount < 0 && "expected right shift"); 3074 int ShrAmount = -ShlAmount; 3075 ShiftNode = CurDAG->getMachineNode( 3076 UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT), 3077 CurDAG->getTargetConstant(BitWidth - 1, dl, VT)); 3078 } 3079 3080 return SDValue(ShiftNode, 0); 3081 } 3082 3083 // For bit-field-positioning pattern "(and (shl VAL, N), ShiftedMask)". 3084 static bool isBitfieldPositioningOpFromAnd(SelectionDAG *CurDAG, SDValue Op, 3085 bool BiggerPattern, 3086 const uint64_t NonZeroBits, 3087 SDValue &Src, int &DstLSB, 3088 int &Width); 3089 3090 // For bit-field-positioning pattern "shl VAL, N)". 3091 static bool isBitfieldPositioningOpFromShl(SelectionDAG *CurDAG, SDValue Op, 3092 bool BiggerPattern, 3093 const uint64_t NonZeroBits, 3094 SDValue &Src, int &DstLSB, 3095 int &Width); 3096 3097 /// Does this tree qualify as an attempt to move a bitfield into position, 3098 /// essentially "(and (shl VAL, N), Mask)" or (shl VAL, N). 3099 static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op, 3100 bool BiggerPattern, SDValue &Src, 3101 int &DstLSB, int &Width) { 3102 EVT VT = Op.getValueType(); 3103 unsigned BitWidth = VT.getSizeInBits(); 3104 (void)BitWidth; 3105 assert(BitWidth == 32 || BitWidth == 64); 3106 3107 KnownBits Known = CurDAG->computeKnownBits(Op); 3108 3109 // Non-zero in the sense that they're not provably zero, which is the key 3110 // point if we want to use this value 3111 const uint64_t NonZeroBits = (~Known.Zero).getZExtValue(); 3112 if (!isShiftedMask_64(NonZeroBits)) 3113 return false; 3114 3115 switch (Op.getOpcode()) { 3116 default: 3117 break; 3118 case ISD::AND: 3119 return isBitfieldPositioningOpFromAnd(CurDAG, Op, BiggerPattern, 3120 NonZeroBits, Src, DstLSB, Width); 3121 case ISD::SHL: 3122 return isBitfieldPositioningOpFromShl(CurDAG, Op, BiggerPattern, 3123 NonZeroBits, Src, DstLSB, Width); 3124 } 3125 3126 return false; 3127 } 3128 3129 static bool isBitfieldPositioningOpFromAnd(SelectionDAG *CurDAG, SDValue Op, 3130 bool BiggerPattern, 3131 const uint64_t NonZeroBits, 3132 SDValue &Src, int &DstLSB, 3133 int &Width) { 3134 assert(isShiftedMask_64(NonZeroBits) && "Caller guaranteed"); 3135 3136 EVT VT = Op.getValueType(); 3137 assert((VT == MVT::i32 || VT == MVT::i64) && 3138 "Caller guarantees VT is one of i32 or i64"); 3139 (void)VT; 3140 3141 uint64_t AndImm; 3142 if (!isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) 3143 return false; 3144 3145 // If (~AndImm & NonZeroBits) is not zero at POS, we know that 3146 // 1) (AndImm & (1 << POS) == 0) 3147 // 2) the result of AND is not zero at POS bit (according to NonZeroBits) 3148 // 3149 // 1) and 2) don't agree so something must be wrong (e.g., in 3150 // 'SelectionDAG::computeKnownBits') 3151 assert((~AndImm & NonZeroBits) == 0 && 3152 "Something must be wrong (e.g., in SelectionDAG::computeKnownBits)"); 3153 3154 SDValue AndOp0 = Op.getOperand(0); 3155 3156 uint64_t ShlImm; 3157 SDValue ShlOp0; 3158 if (isOpcWithIntImmediate(AndOp0.getNode(), ISD::SHL, ShlImm)) { 3159 // For pattern "and(shl(val, N), shifted-mask)", 'ShlOp0' is set to 'val'. 3160 ShlOp0 = AndOp0.getOperand(0); 3161 } else if (VT == MVT::i64 && AndOp0.getOpcode() == ISD::ANY_EXTEND && 3162 isOpcWithIntImmediate(AndOp0.getOperand(0).getNode(), ISD::SHL, 3163 ShlImm)) { 3164 // For pattern "and(any_extend(shl(val, N)), shifted-mask)" 3165 3166 // ShlVal == shl(val, N), which is a left shift on a smaller type. 3167 SDValue ShlVal = AndOp0.getOperand(0); 3168 3169 // Since this is after type legalization and ShlVal is extended to MVT::i64, 3170 // expect VT to be MVT::i32. 3171 assert((ShlVal.getValueType() == MVT::i32) && "Expect VT to be MVT::i32."); 3172 3173 // Widens 'val' to MVT::i64 as the source of bit field positioning. 3174 ShlOp0 = Widen(CurDAG, ShlVal.getOperand(0)); 3175 } else 3176 return false; 3177 3178 // For !BiggerPattern, bail out if the AndOp0 has more than one use, since 3179 // then we'll end up generating AndOp0+UBFIZ instead of just keeping 3180 // AndOp0+AND. 3181 if (!BiggerPattern && !AndOp0.hasOneUse()) 3182 return false; 3183 3184 DstLSB = llvm::countr_zero(NonZeroBits); 3185 Width = llvm::countr_one(NonZeroBits >> DstLSB); 3186 3187 // Bail out on large Width. This happens when no proper combining / constant 3188 // folding was performed. 3189 if (Width >= (int)VT.getSizeInBits()) { 3190 // If VT is i64, Width > 64 is insensible since NonZeroBits is uint64_t, and 3191 // Width == 64 indicates a missed dag-combine from "(and val, AllOnes)" to 3192 // "val". 3193 // If VT is i32, what Width >= 32 means: 3194 // - For "(and (any_extend(shl val, N)), shifted-mask)", the`and` Op 3195 // demands at least 'Width' bits (after dag-combiner). This together with 3196 // `any_extend` Op (undefined higher bits) indicates missed combination 3197 // when lowering the 'and' IR instruction to an machine IR instruction. 3198 LLVM_DEBUG( 3199 dbgs() 3200 << "Found large Width in bit-field-positioning -- this indicates no " 3201 "proper combining / constant folding was performed\n"); 3202 return false; 3203 } 3204 3205 // BFI encompasses sufficiently many nodes that it's worth inserting an extra 3206 // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL 3207 // amount. BiggerPattern is true when this pattern is being matched for BFI, 3208 // BiggerPattern is false when this pattern is being matched for UBFIZ, in 3209 // which case it is not profitable to insert an extra shift. 3210 if (ShlImm != uint64_t(DstLSB) && !BiggerPattern) 3211 return false; 3212 3213 Src = getLeftShift(CurDAG, ShlOp0, ShlImm - DstLSB); 3214 return true; 3215 } 3216 3217 // For node (shl (and val, mask), N)), returns true if the node is equivalent to 3218 // UBFIZ. 3219 static bool isSeveralBitsPositioningOpFromShl(const uint64_t ShlImm, SDValue Op, 3220 SDValue &Src, int &DstLSB, 3221 int &Width) { 3222 // Caller should have verified that N is a left shift with constant shift 3223 // amount; asserts that. 3224 assert(Op.getOpcode() == ISD::SHL && 3225 "Op.getNode() should be a SHL node to call this function"); 3226 assert(isIntImmediateEq(Op.getOperand(1), ShlImm) && 3227 "Op.getNode() should shift ShlImm to call this function"); 3228 3229 uint64_t AndImm = 0; 3230 SDValue Op0 = Op.getOperand(0); 3231 if (!isOpcWithIntImmediate(Op0.getNode(), ISD::AND, AndImm)) 3232 return false; 3233 3234 const uint64_t ShiftedAndImm = ((AndImm << ShlImm) >> ShlImm); 3235 if (isMask_64(ShiftedAndImm)) { 3236 // AndImm is a superset of (AllOnes >> ShlImm); in other words, AndImm 3237 // should end with Mask, and could be prefixed with random bits if those 3238 // bits are shifted out. 3239 // 3240 // For example, xyz11111 (with {x,y,z} being 0 or 1) is fine if ShlImm >= 3; 3241 // the AND result corresponding to those bits are shifted out, so it's fine 3242 // to not extract them. 3243 Width = llvm::countr_one(ShiftedAndImm); 3244 DstLSB = ShlImm; 3245 Src = Op0.getOperand(0); 3246 return true; 3247 } 3248 return false; 3249 } 3250 3251 static bool isBitfieldPositioningOpFromShl(SelectionDAG *CurDAG, SDValue Op, 3252 bool BiggerPattern, 3253 const uint64_t NonZeroBits, 3254 SDValue &Src, int &DstLSB, 3255 int &Width) { 3256 assert(isShiftedMask_64(NonZeroBits) && "Caller guaranteed"); 3257 3258 EVT VT = Op.getValueType(); 3259 assert((VT == MVT::i32 || VT == MVT::i64) && 3260 "Caller guarantees that type is i32 or i64"); 3261 (void)VT; 3262 3263 uint64_t ShlImm; 3264 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm)) 3265 return false; 3266 3267 if (!BiggerPattern && !Op.hasOneUse()) 3268 return false; 3269 3270 if (isSeveralBitsPositioningOpFromShl(ShlImm, Op, Src, DstLSB, Width)) 3271 return true; 3272 3273 DstLSB = llvm::countr_zero(NonZeroBits); 3274 Width = llvm::countr_one(NonZeroBits >> DstLSB); 3275 3276 if (ShlImm != uint64_t(DstLSB) && !BiggerPattern) 3277 return false; 3278 3279 Src = getLeftShift(CurDAG, Op.getOperand(0), ShlImm - DstLSB); 3280 return true; 3281 } 3282 3283 static bool isShiftedMask(uint64_t Mask, EVT VT) { 3284 assert(VT == MVT::i32 || VT == MVT::i64); 3285 if (VT == MVT::i32) 3286 return isShiftedMask_32(Mask); 3287 return isShiftedMask_64(Mask); 3288 } 3289 3290 // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being 3291 // inserted only sets known zero bits. 3292 static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) { 3293 assert(N->getOpcode() == ISD::OR && "Expect a OR operation"); 3294 3295 EVT VT = N->getValueType(0); 3296 if (VT != MVT::i32 && VT != MVT::i64) 3297 return false; 3298 3299 unsigned BitWidth = VT.getSizeInBits(); 3300 3301 uint64_t OrImm; 3302 if (!isOpcWithIntImmediate(N, ISD::OR, OrImm)) 3303 return false; 3304 3305 // Skip this transformation if the ORR immediate can be encoded in the ORR. 3306 // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely 3307 // performance neutral. 3308 if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth)) 3309 return false; 3310 3311 uint64_t MaskImm; 3312 SDValue And = N->getOperand(0); 3313 // Must be a single use AND with an immediate operand. 3314 if (!And.hasOneUse() || 3315 !isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm)) 3316 return false; 3317 3318 // Compute the Known Zero for the AND as this allows us to catch more general 3319 // cases than just looking for AND with imm. 3320 KnownBits Known = CurDAG->computeKnownBits(And); 3321 3322 // Non-zero in the sense that they're not provably zero, which is the key 3323 // point if we want to use this value. 3324 uint64_t NotKnownZero = (~Known.Zero).getZExtValue(); 3325 3326 // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00). 3327 if (!isShiftedMask(Known.Zero.getZExtValue(), VT)) 3328 return false; 3329 3330 // The bits being inserted must only set those bits that are known to be zero. 3331 if ((OrImm & NotKnownZero) != 0) { 3332 // FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't 3333 // currently handle this case. 3334 return false; 3335 } 3336 3337 // BFI/BFXIL dst, src, #lsb, #width. 3338 int LSB = llvm::countr_one(NotKnownZero); 3339 int Width = BitWidth - APInt(BitWidth, NotKnownZero).popcount(); 3340 3341 // BFI/BFXIL is an alias of BFM, so translate to BFM operands. 3342 unsigned ImmR = (BitWidth - LSB) % BitWidth; 3343 unsigned ImmS = Width - 1; 3344 3345 // If we're creating a BFI instruction avoid cases where we need more 3346 // instructions to materialize the BFI constant as compared to the original 3347 // ORR. A BFXIL will use the same constant as the original ORR, so the code 3348 // should be no worse in this case. 3349 bool IsBFI = LSB != 0; 3350 uint64_t BFIImm = OrImm >> LSB; 3351 if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) { 3352 // We have a BFI instruction and we know the constant can't be materialized 3353 // with a ORR-immediate with the zero register. 3354 unsigned OrChunks = 0, BFIChunks = 0; 3355 for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) { 3356 if (((OrImm >> Shift) & 0xFFFF) != 0) 3357 ++OrChunks; 3358 if (((BFIImm >> Shift) & 0xFFFF) != 0) 3359 ++BFIChunks; 3360 } 3361 if (BFIChunks > OrChunks) 3362 return false; 3363 } 3364 3365 // Materialize the constant to be inserted. 3366 SDLoc DL(N); 3367 unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm; 3368 SDNode *MOVI = CurDAG->getMachineNode( 3369 MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT)); 3370 3371 // Create the BFI/BFXIL instruction. 3372 SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0), 3373 CurDAG->getTargetConstant(ImmR, DL, VT), 3374 CurDAG->getTargetConstant(ImmS, DL, VT)}; 3375 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri; 3376 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 3377 return true; 3378 } 3379 3380 static bool isWorthFoldingIntoOrrWithShift(SDValue Dst, SelectionDAG *CurDAG, 3381 SDValue &ShiftedOperand, 3382 uint64_t &EncodedShiftImm) { 3383 // Avoid folding Dst into ORR-with-shift if Dst has other uses than ORR. 3384 if (!Dst.hasOneUse()) 3385 return false; 3386 3387 EVT VT = Dst.getValueType(); 3388 assert((VT == MVT::i32 || VT == MVT::i64) && 3389 "Caller should guarantee that VT is one of i32 or i64"); 3390 const unsigned SizeInBits = VT.getSizeInBits(); 3391 3392 SDLoc DL(Dst.getNode()); 3393 uint64_t AndImm, ShlImm; 3394 if (isOpcWithIntImmediate(Dst.getNode(), ISD::AND, AndImm) && 3395 isShiftedMask_64(AndImm)) { 3396 // Avoid transforming 'DstOp0' if it has other uses than the AND node. 3397 SDValue DstOp0 = Dst.getOperand(0); 3398 if (!DstOp0.hasOneUse()) 3399 return false; 3400 3401 // An example to illustrate the transformation 3402 // From: 3403 // lsr x8, x1, #1 3404 // and x8, x8, #0x3f80 3405 // bfxil x8, x1, #0, #7 3406 // To: 3407 // and x8, x23, #0x7f 3408 // ubfx x9, x23, #8, #7 3409 // orr x23, x8, x9, lsl #7 3410 // 3411 // The number of instructions remains the same, but ORR is faster than BFXIL 3412 // on many AArch64 processors (or as good as BFXIL if not faster). Besides, 3413 // the dependency chain is improved after the transformation. 3414 uint64_t SrlImm; 3415 if (isOpcWithIntImmediate(DstOp0.getNode(), ISD::SRL, SrlImm)) { 3416 uint64_t NumTrailingZeroInShiftedMask = llvm::countr_zero(AndImm); 3417 if ((SrlImm + NumTrailingZeroInShiftedMask) < SizeInBits) { 3418 unsigned MaskWidth = 3419 llvm::countr_one(AndImm >> NumTrailingZeroInShiftedMask); 3420 unsigned UBFMOpc = 3421 (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri; 3422 SDNode *UBFMNode = CurDAG->getMachineNode( 3423 UBFMOpc, DL, VT, DstOp0.getOperand(0), 3424 CurDAG->getTargetConstant(SrlImm + NumTrailingZeroInShiftedMask, DL, 3425 VT), 3426 CurDAG->getTargetConstant( 3427 SrlImm + NumTrailingZeroInShiftedMask + MaskWidth - 1, DL, VT)); 3428 ShiftedOperand = SDValue(UBFMNode, 0); 3429 EncodedShiftImm = AArch64_AM::getShifterImm( 3430 AArch64_AM::LSL, NumTrailingZeroInShiftedMask); 3431 return true; 3432 } 3433 } 3434 return false; 3435 } 3436 3437 if (isOpcWithIntImmediate(Dst.getNode(), ISD::SHL, ShlImm)) { 3438 ShiftedOperand = Dst.getOperand(0); 3439 EncodedShiftImm = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm); 3440 return true; 3441 } 3442 3443 uint64_t SrlImm; 3444 if (isOpcWithIntImmediate(Dst.getNode(), ISD::SRL, SrlImm)) { 3445 ShiftedOperand = Dst.getOperand(0); 3446 EncodedShiftImm = AArch64_AM::getShifterImm(AArch64_AM::LSR, SrlImm); 3447 return true; 3448 } 3449 return false; 3450 } 3451 3452 // Given an 'ISD::OR' node that is going to be selected as BFM, analyze 3453 // the operands and select it to AArch64::ORR with shifted registers if 3454 // that's more efficient. Returns true iff selection to AArch64::ORR happens. 3455 static bool tryOrrWithShift(SDNode *N, SDValue OrOpd0, SDValue OrOpd1, 3456 SDValue Src, SDValue Dst, SelectionDAG *CurDAG, 3457 const bool BiggerPattern) { 3458 EVT VT = N->getValueType(0); 3459 assert(N->getOpcode() == ISD::OR && "Expect N to be an OR node"); 3460 assert(((N->getOperand(0) == OrOpd0 && N->getOperand(1) == OrOpd1) || 3461 (N->getOperand(1) == OrOpd0 && N->getOperand(0) == OrOpd1)) && 3462 "Expect OrOpd0 and OrOpd1 to be operands of ISD::OR"); 3463 assert((VT == MVT::i32 || VT == MVT::i64) && 3464 "Expect result type to be i32 or i64 since N is combinable to BFM"); 3465 SDLoc DL(N); 3466 3467 // Bail out if BFM simplifies away one node in BFM Dst. 3468 if (OrOpd1 != Dst) 3469 return false; 3470 3471 const unsigned OrrOpc = (VT == MVT::i32) ? AArch64::ORRWrs : AArch64::ORRXrs; 3472 // For "BFM Rd, Rn, #immr, #imms", it's known that BFM simplifies away fewer 3473 // nodes from Rn (or inserts additional shift node) if BiggerPattern is true. 3474 if (BiggerPattern) { 3475 uint64_t SrcAndImm; 3476 if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::AND, SrcAndImm) && 3477 isMask_64(SrcAndImm) && OrOpd0.getOperand(0) == Src) { 3478 // OrOpd0 = AND Src, #Mask 3479 // So BFM simplifies away one AND node from Src and doesn't simplify away 3480 // nodes from Dst. If ORR with left-shifted operand also simplifies away 3481 // one node (from Rd), ORR is better since it has higher throughput and 3482 // smaller latency than BFM on many AArch64 processors (and for the rest 3483 // ORR is at least as good as BFM). 3484 SDValue ShiftedOperand; 3485 uint64_t EncodedShiftImm; 3486 if (isWorthFoldingIntoOrrWithShift(Dst, CurDAG, ShiftedOperand, 3487 EncodedShiftImm)) { 3488 SDValue Ops[] = {OrOpd0, ShiftedOperand, 3489 CurDAG->getTargetConstant(EncodedShiftImm, DL, VT)}; 3490 CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops); 3491 return true; 3492 } 3493 } 3494 return false; 3495 } 3496 3497 assert((!BiggerPattern) && "BiggerPattern should be handled above"); 3498 3499 uint64_t ShlImm; 3500 if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::SHL, ShlImm)) { 3501 if (OrOpd0.getOperand(0) == Src && OrOpd0.hasOneUse()) { 3502 SDValue Ops[] = { 3503 Dst, Src, 3504 CurDAG->getTargetConstant( 3505 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm), DL, VT)}; 3506 CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops); 3507 return true; 3508 } 3509 3510 // Select the following pattern to left-shifted operand rather than BFI. 3511 // %val1 = op .. 3512 // %val2 = shl %val1, #imm 3513 // %res = or %val1, %val2 3514 // 3515 // If N is selected to be BFI, we know that 3516 // 1) OrOpd0 would be the operand from which extract bits (i.e., folded into 3517 // BFI) 2) OrOpd1 would be the destination operand (i.e., preserved) 3518 // 3519 // Instead of selecting N to BFI, fold OrOpd0 as a left shift directly. 3520 if (OrOpd0.getOperand(0) == OrOpd1) { 3521 SDValue Ops[] = { 3522 OrOpd1, OrOpd1, 3523 CurDAG->getTargetConstant( 3524 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm), DL, VT)}; 3525 CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops); 3526 return true; 3527 } 3528 } 3529 3530 uint64_t SrlImm; 3531 if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::SRL, SrlImm)) { 3532 // Select the following pattern to right-shifted operand rather than BFXIL. 3533 // %val1 = op .. 3534 // %val2 = lshr %val1, #imm 3535 // %res = or %val1, %val2 3536 // 3537 // If N is selected to be BFXIL, we know that 3538 // 1) OrOpd0 would be the operand from which extract bits (i.e., folded into 3539 // BFXIL) 2) OrOpd1 would be the destination operand (i.e., preserved) 3540 // 3541 // Instead of selecting N to BFXIL, fold OrOpd0 as a right shift directly. 3542 if (OrOpd0.getOperand(0) == OrOpd1) { 3543 SDValue Ops[] = { 3544 OrOpd1, OrOpd1, 3545 CurDAG->getTargetConstant( 3546 AArch64_AM::getShifterImm(AArch64_AM::LSR, SrlImm), DL, VT)}; 3547 CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops); 3548 return true; 3549 } 3550 } 3551 3552 return false; 3553 } 3554 3555 static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits, 3556 SelectionDAG *CurDAG) { 3557 assert(N->getOpcode() == ISD::OR && "Expect a OR operation"); 3558 3559 EVT VT = N->getValueType(0); 3560 if (VT != MVT::i32 && VT != MVT::i64) 3561 return false; 3562 3563 unsigned BitWidth = VT.getSizeInBits(); 3564 3565 // Because of simplify-demanded-bits in DAGCombine, involved masks may not 3566 // have the expected shape. Try to undo that. 3567 3568 unsigned NumberOfIgnoredLowBits = UsefulBits.countr_zero(); 3569 unsigned NumberOfIgnoredHighBits = UsefulBits.countl_zero(); 3570 3571 // Given a OR operation, check if we have the following pattern 3572 // ubfm c, b, imm, imm2 (or something that does the same jobs, see 3573 // isBitfieldExtractOp) 3574 // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and 3575 // countTrailingZeros(mask2) == imm2 - imm + 1 3576 // f = d | c 3577 // if yes, replace the OR instruction with: 3578 // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2 3579 3580 // OR is commutative, check all combinations of operand order and values of 3581 // BiggerPattern, i.e. 3582 // Opd0, Opd1, BiggerPattern=false 3583 // Opd1, Opd0, BiggerPattern=false 3584 // Opd0, Opd1, BiggerPattern=true 3585 // Opd1, Opd0, BiggerPattern=true 3586 // Several of these combinations may match, so check with BiggerPattern=false 3587 // first since that will produce better results by matching more instructions 3588 // and/or inserting fewer extra instructions. 3589 for (int I = 0; I < 4; ++I) { 3590 3591 SDValue Dst, Src; 3592 unsigned ImmR, ImmS; 3593 bool BiggerPattern = I / 2; 3594 SDValue OrOpd0Val = N->getOperand(I % 2); 3595 SDNode *OrOpd0 = OrOpd0Val.getNode(); 3596 SDValue OrOpd1Val = N->getOperand((I + 1) % 2); 3597 SDNode *OrOpd1 = OrOpd1Val.getNode(); 3598 3599 unsigned BFXOpc; 3600 int DstLSB, Width; 3601 if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS, 3602 NumberOfIgnoredLowBits, BiggerPattern)) { 3603 // Check that the returned opcode is compatible with the pattern, 3604 // i.e., same type and zero extended (U and not S) 3605 if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) || 3606 (BFXOpc != AArch64::UBFMWri && VT == MVT::i32)) 3607 continue; 3608 3609 // Compute the width of the bitfield insertion 3610 DstLSB = 0; 3611 Width = ImmS - ImmR + 1; 3612 // FIXME: This constraint is to catch bitfield insertion we may 3613 // want to widen the pattern if we want to grab general bitfied 3614 // move case 3615 if (Width <= 0) 3616 continue; 3617 3618 // If the mask on the insertee is correct, we have a BFXIL operation. We 3619 // can share the ImmR and ImmS values from the already-computed UBFM. 3620 } else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val, 3621 BiggerPattern, 3622 Src, DstLSB, Width)) { 3623 ImmR = (BitWidth - DstLSB) % BitWidth; 3624 ImmS = Width - 1; 3625 } else 3626 continue; 3627 3628 // Check the second part of the pattern 3629 EVT VT = OrOpd1Val.getValueType(); 3630 assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand"); 3631 3632 // Compute the Known Zero for the candidate of the first operand. 3633 // This allows to catch more general case than just looking for 3634 // AND with imm. Indeed, simplify-demanded-bits may have removed 3635 // the AND instruction because it proves it was useless. 3636 KnownBits Known = CurDAG->computeKnownBits(OrOpd1Val); 3637 3638 // Check if there is enough room for the second operand to appear 3639 // in the first one 3640 APInt BitsToBeInserted = 3641 APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width); 3642 3643 if ((BitsToBeInserted & ~Known.Zero) != 0) 3644 continue; 3645 3646 // Set the first operand 3647 uint64_t Imm; 3648 if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) && 3649 isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT)) 3650 // In that case, we can eliminate the AND 3651 Dst = OrOpd1->getOperand(0); 3652 else 3653 // Maybe the AND has been removed by simplify-demanded-bits 3654 // or is useful because it discards more bits 3655 Dst = OrOpd1Val; 3656 3657 // Before selecting ISD::OR node to AArch64::BFM, see if an AArch64::ORR 3658 // with shifted operand is more efficient. 3659 if (tryOrrWithShift(N, OrOpd0Val, OrOpd1Val, Src, Dst, CurDAG, 3660 BiggerPattern)) 3661 return true; 3662 3663 // both parts match 3664 SDLoc DL(N); 3665 SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT), 3666 CurDAG->getTargetConstant(ImmS, DL, VT)}; 3667 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri; 3668 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 3669 return true; 3670 } 3671 3672 // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff 3673 // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted 3674 // mask (e.g., 0x000ffff0). 3675 uint64_t Mask0Imm, Mask1Imm; 3676 SDValue And0 = N->getOperand(0); 3677 SDValue And1 = N->getOperand(1); 3678 if (And0.hasOneUse() && And1.hasOneUse() && 3679 isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) && 3680 isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) && 3681 APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) && 3682 (isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) { 3683 3684 // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm), 3685 // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the 3686 // bits to be inserted. 3687 if (isShiftedMask(Mask0Imm, VT)) { 3688 std::swap(And0, And1); 3689 std::swap(Mask0Imm, Mask1Imm); 3690 } 3691 3692 SDValue Src = And1->getOperand(0); 3693 SDValue Dst = And0->getOperand(0); 3694 unsigned LSB = llvm::countr_zero(Mask1Imm); 3695 int Width = BitWidth - APInt(BitWidth, Mask0Imm).popcount(); 3696 3697 // The BFXIL inserts the low-order bits from a source register, so right 3698 // shift the needed bits into place. 3699 SDLoc DL(N); 3700 unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri; 3701 uint64_t LsrImm = LSB; 3702 if (Src->hasOneUse() && 3703 isOpcWithIntImmediate(Src.getNode(), ISD::SRL, LsrImm) && 3704 (LsrImm + LSB) < BitWidth) { 3705 Src = Src->getOperand(0); 3706 LsrImm += LSB; 3707 } 3708 3709 SDNode *LSR = CurDAG->getMachineNode( 3710 ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LsrImm, DL, VT), 3711 CurDAG->getTargetConstant(BitWidth - 1, DL, VT)); 3712 3713 // BFXIL is an alias of BFM, so translate to BFM operands. 3714 unsigned ImmR = (BitWidth - LSB) % BitWidth; 3715 unsigned ImmS = Width - 1; 3716 3717 // Create the BFXIL instruction. 3718 SDValue Ops[] = {Dst, SDValue(LSR, 0), 3719 CurDAG->getTargetConstant(ImmR, DL, VT), 3720 CurDAG->getTargetConstant(ImmS, DL, VT)}; 3721 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri; 3722 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 3723 return true; 3724 } 3725 3726 return false; 3727 } 3728 3729 bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) { 3730 if (N->getOpcode() != ISD::OR) 3731 return false; 3732 3733 APInt NUsefulBits; 3734 getUsefulBits(SDValue(N, 0), NUsefulBits); 3735 3736 // If all bits are not useful, just return UNDEF. 3737 if (!NUsefulBits) { 3738 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 3739 return true; 3740 } 3741 3742 if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG)) 3743 return true; 3744 3745 return tryBitfieldInsertOpFromOrAndImm(N, CurDAG); 3746 } 3747 3748 /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the 3749 /// equivalent of a left shift by a constant amount followed by an and masking 3750 /// out a contiguous set of bits. 3751 bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) { 3752 if (N->getOpcode() != ISD::AND) 3753 return false; 3754 3755 EVT VT = N->getValueType(0); 3756 if (VT != MVT::i32 && VT != MVT::i64) 3757 return false; 3758 3759 SDValue Op0; 3760 int DstLSB, Width; 3761 if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false, 3762 Op0, DstLSB, Width)) 3763 return false; 3764 3765 // ImmR is the rotate right amount. 3766 unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits(); 3767 // ImmS is the most significant bit of the source to be moved. 3768 unsigned ImmS = Width - 1; 3769 3770 SDLoc DL(N); 3771 SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT), 3772 CurDAG->getTargetConstant(ImmS, DL, VT)}; 3773 unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri; 3774 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 3775 return true; 3776 } 3777 3778 /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in 3779 /// variable shift/rotate instructions. 3780 bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) { 3781 EVT VT = N->getValueType(0); 3782 3783 unsigned Opc; 3784 switch (N->getOpcode()) { 3785 case ISD::ROTR: 3786 Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr; 3787 break; 3788 case ISD::SHL: 3789 Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr; 3790 break; 3791 case ISD::SRL: 3792 Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr; 3793 break; 3794 case ISD::SRA: 3795 Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr; 3796 break; 3797 default: 3798 return false; 3799 } 3800 3801 uint64_t Size; 3802 uint64_t Bits; 3803 if (VT == MVT::i32) { 3804 Bits = 5; 3805 Size = 32; 3806 } else if (VT == MVT::i64) { 3807 Bits = 6; 3808 Size = 64; 3809 } else 3810 return false; 3811 3812 SDValue ShiftAmt = N->getOperand(1); 3813 SDLoc DL(N); 3814 SDValue NewShiftAmt; 3815 3816 // Skip over an extend of the shift amount. 3817 if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND || 3818 ShiftAmt->getOpcode() == ISD::ANY_EXTEND) 3819 ShiftAmt = ShiftAmt->getOperand(0); 3820 3821 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) { 3822 SDValue Add0 = ShiftAmt->getOperand(0); 3823 SDValue Add1 = ShiftAmt->getOperand(1); 3824 uint64_t Add0Imm; 3825 uint64_t Add1Imm; 3826 if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0)) { 3827 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X 3828 // to avoid the ADD/SUB. 3829 NewShiftAmt = Add0; 3830 } else if (ShiftAmt->getOpcode() == ISD::SUB && 3831 isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 && 3832 (Add0Imm % Size == 0)) { 3833 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X 3834 // to generate a NEG instead of a SUB from a constant. 3835 unsigned NegOpc; 3836 unsigned ZeroReg; 3837 EVT SubVT = ShiftAmt->getValueType(0); 3838 if (SubVT == MVT::i32) { 3839 NegOpc = AArch64::SUBWrr; 3840 ZeroReg = AArch64::WZR; 3841 } else { 3842 assert(SubVT == MVT::i64); 3843 NegOpc = AArch64::SUBXrr; 3844 ZeroReg = AArch64::XZR; 3845 } 3846 SDValue Zero = 3847 CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT); 3848 MachineSDNode *Neg = 3849 CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1); 3850 NewShiftAmt = SDValue(Neg, 0); 3851 } else if (ShiftAmt->getOpcode() == ISD::SUB && 3852 isIntImmediate(Add0, Add0Imm) && (Add0Imm % Size == Size - 1)) { 3853 // If we are shifting by N-X where N == -1 mod Size, then just shift by ~X 3854 // to generate a NOT instead of a SUB from a constant. 3855 unsigned NotOpc; 3856 unsigned ZeroReg; 3857 EVT SubVT = ShiftAmt->getValueType(0); 3858 if (SubVT == MVT::i32) { 3859 NotOpc = AArch64::ORNWrr; 3860 ZeroReg = AArch64::WZR; 3861 } else { 3862 assert(SubVT == MVT::i64); 3863 NotOpc = AArch64::ORNXrr; 3864 ZeroReg = AArch64::XZR; 3865 } 3866 SDValue Zero = 3867 CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT); 3868 MachineSDNode *Not = 3869 CurDAG->getMachineNode(NotOpc, DL, SubVT, Zero, Add1); 3870 NewShiftAmt = SDValue(Not, 0); 3871 } else 3872 return false; 3873 } else { 3874 // If the shift amount is masked with an AND, check that the mask covers the 3875 // bits that are implicitly ANDed off by the above opcodes and if so, skip 3876 // the AND. 3877 uint64_t MaskImm; 3878 if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm) && 3879 !isOpcWithIntImmediate(ShiftAmt.getNode(), AArch64ISD::ANDS, MaskImm)) 3880 return false; 3881 3882 if ((unsigned)llvm::countr_one(MaskImm) < Bits) 3883 return false; 3884 3885 NewShiftAmt = ShiftAmt->getOperand(0); 3886 } 3887 3888 // Narrow/widen the shift amount to match the size of the shift operation. 3889 if (VT == MVT::i32) 3890 NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt); 3891 else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) { 3892 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32); 3893 MachineSDNode *Ext = CurDAG->getMachineNode( 3894 AArch64::SUBREG_TO_REG, DL, VT, 3895 CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg); 3896 NewShiftAmt = SDValue(Ext, 0); 3897 } 3898 3899 SDValue Ops[] = {N->getOperand(0), NewShiftAmt}; 3900 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 3901 return true; 3902 } 3903 3904 static bool checkCVTFixedPointOperandWithFBits(SelectionDAG *CurDAG, SDValue N, 3905 SDValue &FixedPos, 3906 unsigned RegWidth, 3907 bool isReciprocal) { 3908 APFloat FVal(0.0); 3909 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 3910 FVal = CN->getValueAPF(); 3911 else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) { 3912 // Some otherwise illegal constants are allowed in this case. 3913 if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow || 3914 !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1))) 3915 return false; 3916 3917 ConstantPoolSDNode *CN = 3918 dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)); 3919 FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF(); 3920 } else 3921 return false; 3922 3923 // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits 3924 // is between 1 and 32 for a destination w-register, or 1 and 64 for an 3925 // x-register. 3926 // 3927 // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we 3928 // want THIS_NODE to be 2^fbits. This is much easier to deal with using 3929 // integers. 3930 bool IsExact; 3931 3932 if (isReciprocal) 3933 if (!FVal.getExactInverse(&FVal)) 3934 return false; 3935 3936 // fbits is between 1 and 64 in the worst-case, which means the fmul 3937 // could have 2^64 as an actual operand. Need 65 bits of precision. 3938 APSInt IntVal(65, true); 3939 FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact); 3940 3941 // N.b. isPowerOf2 also checks for > 0. 3942 if (!IsExact || !IntVal.isPowerOf2()) 3943 return false; 3944 unsigned FBits = IntVal.logBase2(); 3945 3946 // Checks above should have guaranteed that we haven't lost information in 3947 // finding FBits, but it must still be in range. 3948 if (FBits == 0 || FBits > RegWidth) return false; 3949 3950 FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32); 3951 return true; 3952 } 3953 3954 bool AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, 3955 unsigned RegWidth) { 3956 return checkCVTFixedPointOperandWithFBits(CurDAG, N, FixedPos, RegWidth, 3957 false); 3958 } 3959 3960 bool AArch64DAGToDAGISel::SelectCVTFixedPosRecipOperand(SDValue N, 3961 SDValue &FixedPos, 3962 unsigned RegWidth) { 3963 return checkCVTFixedPointOperandWithFBits(CurDAG, N, FixedPos, RegWidth, 3964 true); 3965 } 3966 3967 // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields 3968 // of the string and obtains the integer values from them and combines these 3969 // into a single value to be used in the MRS/MSR instruction. 3970 static int getIntOperandFromRegisterString(StringRef RegString) { 3971 SmallVector<StringRef, 5> Fields; 3972 RegString.split(Fields, ':'); 3973 3974 if (Fields.size() == 1) 3975 return -1; 3976 3977 assert(Fields.size() == 5 3978 && "Invalid number of fields in read register string"); 3979 3980 SmallVector<int, 5> Ops; 3981 bool AllIntFields = true; 3982 3983 for (StringRef Field : Fields) { 3984 unsigned IntField; 3985 AllIntFields &= !Field.getAsInteger(10, IntField); 3986 Ops.push_back(IntField); 3987 } 3988 3989 assert(AllIntFields && 3990 "Unexpected non-integer value in special register string."); 3991 (void)AllIntFields; 3992 3993 // Need to combine the integer fields of the string into a single value 3994 // based on the bit encoding of MRS/MSR instruction. 3995 return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) | 3996 (Ops[3] << 3) | (Ops[4]); 3997 } 3998 3999 // Lower the read_register intrinsic to an MRS instruction node if the special 4000 // register string argument is either of the form detailed in the ALCE (the 4001 // form described in getIntOperandsFromRegsterString) or is a named register 4002 // known by the MRS SysReg mapper. 4003 bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) { 4004 const auto *MD = cast<MDNodeSDNode>(N->getOperand(1)); 4005 const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0)); 4006 SDLoc DL(N); 4007 4008 bool ReadIs128Bit = N->getOpcode() == AArch64ISD::MRRS; 4009 4010 unsigned Opcode64Bit = AArch64::MRS; 4011 int Imm = getIntOperandFromRegisterString(RegString->getString()); 4012 if (Imm == -1) { 4013 // No match, Use the sysreg mapper to map the remaining possible strings to 4014 // the value for the register to be used for the instruction operand. 4015 const auto *TheReg = 4016 AArch64SysReg::lookupSysRegByName(RegString->getString()); 4017 if (TheReg && TheReg->Readable && 4018 TheReg->haveFeatures(Subtarget->getFeatureBits())) 4019 Imm = TheReg->Encoding; 4020 else 4021 Imm = AArch64SysReg::parseGenericRegister(RegString->getString()); 4022 4023 if (Imm == -1) { 4024 // Still no match, see if this is "pc" or give up. 4025 if (!ReadIs128Bit && RegString->getString() == "pc") { 4026 Opcode64Bit = AArch64::ADR; 4027 Imm = 0; 4028 } else { 4029 return false; 4030 } 4031 } 4032 } 4033 4034 SDValue InChain = N->getOperand(0); 4035 SDValue SysRegImm = CurDAG->getTargetConstant(Imm, DL, MVT::i32); 4036 if (!ReadIs128Bit) { 4037 CurDAG->SelectNodeTo(N, Opcode64Bit, MVT::i64, MVT::Other /* Chain */, 4038 {SysRegImm, InChain}); 4039 } else { 4040 SDNode *MRRS = CurDAG->getMachineNode( 4041 AArch64::MRRS, DL, 4042 {MVT::Untyped /* XSeqPair */, MVT::Other /* Chain */}, 4043 {SysRegImm, InChain}); 4044 4045 // Sysregs are not endian. The even register always contains the low half 4046 // of the register. 4047 SDValue Lo = CurDAG->getTargetExtractSubreg(AArch64::sube64, DL, MVT::i64, 4048 SDValue(MRRS, 0)); 4049 SDValue Hi = CurDAG->getTargetExtractSubreg(AArch64::subo64, DL, MVT::i64, 4050 SDValue(MRRS, 0)); 4051 SDValue OutChain = SDValue(MRRS, 1); 4052 4053 ReplaceUses(SDValue(N, 0), Lo); 4054 ReplaceUses(SDValue(N, 1), Hi); 4055 ReplaceUses(SDValue(N, 2), OutChain); 4056 }; 4057 return true; 4058 } 4059 4060 // Lower the write_register intrinsic to an MSR instruction node if the special 4061 // register string argument is either of the form detailed in the ALCE (the 4062 // form described in getIntOperandsFromRegsterString) or is a named register 4063 // known by the MSR SysReg mapper. 4064 bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) { 4065 const auto *MD = cast<MDNodeSDNode>(N->getOperand(1)); 4066 const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0)); 4067 SDLoc DL(N); 4068 4069 bool WriteIs128Bit = N->getOpcode() == AArch64ISD::MSRR; 4070 4071 if (!WriteIs128Bit) { 4072 // Check if the register was one of those allowed as the pstatefield value 4073 // in the MSR (immediate) instruction. To accept the values allowed in the 4074 // pstatefield for the MSR (immediate) instruction, we also require that an 4075 // immediate value has been provided as an argument, we know that this is 4076 // the case as it has been ensured by semantic checking. 4077 auto trySelectPState = [&](auto PMapper, unsigned State) { 4078 if (PMapper) { 4079 assert(isa<ConstantSDNode>(N->getOperand(2)) && 4080 "Expected a constant integer expression."); 4081 unsigned Reg = PMapper->Encoding; 4082 uint64_t Immed = N->getConstantOperandVal(2); 4083 CurDAG->SelectNodeTo( 4084 N, State, MVT::Other, CurDAG->getTargetConstant(Reg, DL, MVT::i32), 4085 CurDAG->getTargetConstant(Immed, DL, MVT::i16), N->getOperand(0)); 4086 return true; 4087 } 4088 return false; 4089 }; 4090 4091 if (trySelectPState( 4092 AArch64PState::lookupPStateImm0_15ByName(RegString->getString()), 4093 AArch64::MSRpstateImm4)) 4094 return true; 4095 if (trySelectPState( 4096 AArch64PState::lookupPStateImm0_1ByName(RegString->getString()), 4097 AArch64::MSRpstateImm1)) 4098 return true; 4099 } 4100 4101 int Imm = getIntOperandFromRegisterString(RegString->getString()); 4102 if (Imm == -1) { 4103 // Use the sysreg mapper to attempt to map the remaining possible strings 4104 // to the value for the register to be used for the MSR (register) 4105 // instruction operand. 4106 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString()); 4107 if (TheReg && TheReg->Writeable && 4108 TheReg->haveFeatures(Subtarget->getFeatureBits())) 4109 Imm = TheReg->Encoding; 4110 else 4111 Imm = AArch64SysReg::parseGenericRegister(RegString->getString()); 4112 4113 if (Imm == -1) 4114 return false; 4115 } 4116 4117 SDValue InChain = N->getOperand(0); 4118 if (!WriteIs128Bit) { 4119 CurDAG->SelectNodeTo(N, AArch64::MSR, MVT::Other, 4120 CurDAG->getTargetConstant(Imm, DL, MVT::i32), 4121 N->getOperand(2), InChain); 4122 } else { 4123 // No endian swap. The lower half always goes into the even subreg, and the 4124 // higher half always into the odd supreg. 4125 SDNode *Pair = CurDAG->getMachineNode( 4126 TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped /* XSeqPair */, 4127 {CurDAG->getTargetConstant(AArch64::XSeqPairsClassRegClass.getID(), DL, 4128 MVT::i32), 4129 N->getOperand(2), 4130 CurDAG->getTargetConstant(AArch64::sube64, DL, MVT::i32), 4131 N->getOperand(3), 4132 CurDAG->getTargetConstant(AArch64::subo64, DL, MVT::i32)}); 4133 4134 CurDAG->SelectNodeTo(N, AArch64::MSRR, MVT::Other, 4135 CurDAG->getTargetConstant(Imm, DL, MVT::i32), 4136 SDValue(Pair, 0), InChain); 4137 } 4138 4139 return true; 4140 } 4141 4142 /// We've got special pseudo-instructions for these 4143 bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) { 4144 unsigned Opcode; 4145 EVT MemTy = cast<MemSDNode>(N)->getMemoryVT(); 4146 4147 // Leave IR for LSE if subtarget supports it. 4148 if (Subtarget->hasLSE()) return false; 4149 4150 if (MemTy == MVT::i8) 4151 Opcode = AArch64::CMP_SWAP_8; 4152 else if (MemTy == MVT::i16) 4153 Opcode = AArch64::CMP_SWAP_16; 4154 else if (MemTy == MVT::i32) 4155 Opcode = AArch64::CMP_SWAP_32; 4156 else if (MemTy == MVT::i64) 4157 Opcode = AArch64::CMP_SWAP_64; 4158 else 4159 llvm_unreachable("Unknown AtomicCmpSwap type"); 4160 4161 MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32; 4162 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3), 4163 N->getOperand(0)}; 4164 SDNode *CmpSwap = CurDAG->getMachineNode( 4165 Opcode, SDLoc(N), 4166 CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops); 4167 4168 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 4169 CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp}); 4170 4171 ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0)); 4172 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2)); 4173 CurDAG->RemoveDeadNode(N); 4174 4175 return true; 4176 } 4177 4178 bool AArch64DAGToDAGISel::SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, 4179 SDValue &Shift) { 4180 if (!isa<ConstantSDNode>(N)) 4181 return false; 4182 4183 SDLoc DL(N); 4184 uint64_t Val = cast<ConstantSDNode>(N) 4185 ->getAPIntValue() 4186 .trunc(VT.getFixedSizeInBits()) 4187 .getZExtValue(); 4188 4189 switch (VT.SimpleTy) { 4190 case MVT::i8: 4191 // All immediates are supported. 4192 Shift = CurDAG->getTargetConstant(0, DL, MVT::i32); 4193 Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32); 4194 return true; 4195 case MVT::i16: 4196 case MVT::i32: 4197 case MVT::i64: 4198 // Support 8bit unsigned immediates. 4199 if (Val <= 255) { 4200 Shift = CurDAG->getTargetConstant(0, DL, MVT::i32); 4201 Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32); 4202 return true; 4203 } 4204 // Support 16bit unsigned immediates that are a multiple of 256. 4205 if (Val <= 65280 && Val % 256 == 0) { 4206 Shift = CurDAG->getTargetConstant(8, DL, MVT::i32); 4207 Imm = CurDAG->getTargetConstant(Val >> 8, DL, MVT::i32); 4208 return true; 4209 } 4210 break; 4211 default: 4212 break; 4213 } 4214 4215 return false; 4216 } 4217 4218 bool AArch64DAGToDAGISel::SelectSVEAddSubSSatImm(SDValue N, MVT VT, 4219 SDValue &Imm, SDValue &Shift, 4220 bool Negate) { 4221 if (!isa<ConstantSDNode>(N)) 4222 return false; 4223 4224 SDLoc DL(N); 4225 int64_t Val = cast<ConstantSDNode>(N) 4226 ->getAPIntValue() 4227 .trunc(VT.getFixedSizeInBits()) 4228 .getSExtValue(); 4229 4230 if (Negate) 4231 Val = -Val; 4232 4233 // Signed saturating instructions treat their immediate operand as unsigned, 4234 // whereas the related intrinsics define their operands to be signed. This 4235 // means we can only use the immediate form when the operand is non-negative. 4236 if (Val < 0) 4237 return false; 4238 4239 switch (VT.SimpleTy) { 4240 case MVT::i8: 4241 // All positive immediates are supported. 4242 Shift = CurDAG->getTargetConstant(0, DL, MVT::i32); 4243 Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32); 4244 return true; 4245 case MVT::i16: 4246 case MVT::i32: 4247 case MVT::i64: 4248 // Support 8bit positive immediates. 4249 if (Val <= 255) { 4250 Shift = CurDAG->getTargetConstant(0, DL, MVT::i32); 4251 Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32); 4252 return true; 4253 } 4254 // Support 16bit positive immediates that are a multiple of 256. 4255 if (Val <= 65280 && Val % 256 == 0) { 4256 Shift = CurDAG->getTargetConstant(8, DL, MVT::i32); 4257 Imm = CurDAG->getTargetConstant(Val >> 8, DL, MVT::i32); 4258 return true; 4259 } 4260 break; 4261 default: 4262 break; 4263 } 4264 4265 return false; 4266 } 4267 4268 bool AArch64DAGToDAGISel::SelectSVECpyDupImm(SDValue N, MVT VT, SDValue &Imm, 4269 SDValue &Shift) { 4270 if (!isa<ConstantSDNode>(N)) 4271 return false; 4272 4273 SDLoc DL(N); 4274 int64_t Val = cast<ConstantSDNode>(N) 4275 ->getAPIntValue() 4276 .trunc(VT.getFixedSizeInBits()) 4277 .getSExtValue(); 4278 4279 switch (VT.SimpleTy) { 4280 case MVT::i8: 4281 // All immediates are supported. 4282 Shift = CurDAG->getTargetConstant(0, DL, MVT::i32); 4283 Imm = CurDAG->getTargetConstant(Val & 0xFF, DL, MVT::i32); 4284 return true; 4285 case MVT::i16: 4286 case MVT::i32: 4287 case MVT::i64: 4288 // Support 8bit signed immediates. 4289 if (Val >= -128 && Val <= 127) { 4290 Shift = CurDAG->getTargetConstant(0, DL, MVT::i32); 4291 Imm = CurDAG->getTargetConstant(Val & 0xFF, DL, MVT::i32); 4292 return true; 4293 } 4294 // Support 16bit signed immediates that are a multiple of 256. 4295 if (Val >= -32768 && Val <= 32512 && Val % 256 == 0) { 4296 Shift = CurDAG->getTargetConstant(8, DL, MVT::i32); 4297 Imm = CurDAG->getTargetConstant((Val >> 8) & 0xFF, DL, MVT::i32); 4298 return true; 4299 } 4300 break; 4301 default: 4302 break; 4303 } 4304 4305 return false; 4306 } 4307 4308 bool AArch64DAGToDAGISel::SelectSVESignedArithImm(SDValue N, SDValue &Imm) { 4309 if (auto CNode = dyn_cast<ConstantSDNode>(N)) { 4310 int64_t ImmVal = CNode->getSExtValue(); 4311 SDLoc DL(N); 4312 if (ImmVal >= -128 && ImmVal < 128) { 4313 Imm = CurDAG->getSignedTargetConstant(ImmVal, DL, MVT::i32); 4314 return true; 4315 } 4316 } 4317 return false; 4318 } 4319 4320 bool AArch64DAGToDAGISel::SelectSVEArithImm(SDValue N, MVT VT, SDValue &Imm) { 4321 if (auto CNode = dyn_cast<ConstantSDNode>(N)) { 4322 uint64_t ImmVal = CNode->getZExtValue(); 4323 4324 switch (VT.SimpleTy) { 4325 case MVT::i8: 4326 ImmVal &= 0xFF; 4327 break; 4328 case MVT::i16: 4329 ImmVal &= 0xFFFF; 4330 break; 4331 case MVT::i32: 4332 ImmVal &= 0xFFFFFFFF; 4333 break; 4334 case MVT::i64: 4335 break; 4336 default: 4337 llvm_unreachable("Unexpected type"); 4338 } 4339 4340 if (ImmVal < 256) { 4341 Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i32); 4342 return true; 4343 } 4344 } 4345 return false; 4346 } 4347 4348 bool AArch64DAGToDAGISel::SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm, 4349 bool Invert) { 4350 if (auto CNode = dyn_cast<ConstantSDNode>(N)) { 4351 uint64_t ImmVal = CNode->getZExtValue(); 4352 SDLoc DL(N); 4353 4354 if (Invert) 4355 ImmVal = ~ImmVal; 4356 4357 // Shift mask depending on type size. 4358 switch (VT.SimpleTy) { 4359 case MVT::i8: 4360 ImmVal &= 0xFF; 4361 ImmVal |= ImmVal << 8; 4362 ImmVal |= ImmVal << 16; 4363 ImmVal |= ImmVal << 32; 4364 break; 4365 case MVT::i16: 4366 ImmVal &= 0xFFFF; 4367 ImmVal |= ImmVal << 16; 4368 ImmVal |= ImmVal << 32; 4369 break; 4370 case MVT::i32: 4371 ImmVal &= 0xFFFFFFFF; 4372 ImmVal |= ImmVal << 32; 4373 break; 4374 case MVT::i64: 4375 break; 4376 default: 4377 llvm_unreachable("Unexpected type"); 4378 } 4379 4380 uint64_t encoding; 4381 if (AArch64_AM::processLogicalImmediate(ImmVal, 64, encoding)) { 4382 Imm = CurDAG->getTargetConstant(encoding, DL, MVT::i64); 4383 return true; 4384 } 4385 } 4386 return false; 4387 } 4388 4389 // SVE shift intrinsics allow shift amounts larger than the element's bitwidth. 4390 // Rather than attempt to normalise everything we can sometimes saturate the 4391 // shift amount during selection. This function also allows for consistent 4392 // isel patterns by ensuring the resulting "Imm" node is of the i32 type 4393 // required by the instructions. 4394 bool AArch64DAGToDAGISel::SelectSVEShiftImm(SDValue N, uint64_t Low, 4395 uint64_t High, bool AllowSaturation, 4396 SDValue &Imm) { 4397 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 4398 uint64_t ImmVal = CN->getZExtValue(); 4399 4400 // Reject shift amounts that are too small. 4401 if (ImmVal < Low) 4402 return false; 4403 4404 // Reject or saturate shift amounts that are too big. 4405 if (ImmVal > High) { 4406 if (!AllowSaturation) 4407 return false; 4408 ImmVal = High; 4409 } 4410 4411 Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i32); 4412 return true; 4413 } 4414 4415 return false; 4416 } 4417 4418 bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) { 4419 // tagp(FrameIndex, IRGstack, tag_offset): 4420 // since the offset between FrameIndex and IRGstack is a compile-time 4421 // constant, this can be lowered to a single ADDG instruction. 4422 if (!(isa<FrameIndexSDNode>(N->getOperand(1)))) { 4423 return false; 4424 } 4425 4426 SDValue IRG_SP = N->getOperand(2); 4427 if (IRG_SP->getOpcode() != ISD::INTRINSIC_W_CHAIN || 4428 IRG_SP->getConstantOperandVal(1) != Intrinsic::aarch64_irg_sp) { 4429 return false; 4430 } 4431 4432 const TargetLowering *TLI = getTargetLowering(); 4433 SDLoc DL(N); 4434 int FI = cast<FrameIndexSDNode>(N->getOperand(1))->getIndex(); 4435 SDValue FiOp = CurDAG->getTargetFrameIndex( 4436 FI, TLI->getPointerTy(CurDAG->getDataLayout())); 4437 int TagOffset = N->getConstantOperandVal(3); 4438 4439 SDNode *Out = CurDAG->getMachineNode( 4440 AArch64::TAGPstack, DL, MVT::i64, 4441 {FiOp, CurDAG->getTargetConstant(0, DL, MVT::i64), N->getOperand(2), 4442 CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)}); 4443 ReplaceNode(N, Out); 4444 return true; 4445 } 4446 4447 void AArch64DAGToDAGISel::SelectTagP(SDNode *N) { 4448 assert(isa<ConstantSDNode>(N->getOperand(3)) && 4449 "llvm.aarch64.tagp third argument must be an immediate"); 4450 if (trySelectStackSlotTagP(N)) 4451 return; 4452 // FIXME: above applies in any case when offset between Op1 and Op2 is a 4453 // compile-time constant, not just for stack allocations. 4454 4455 // General case for unrelated pointers in Op1 and Op2. 4456 SDLoc DL(N); 4457 int TagOffset = N->getConstantOperandVal(3); 4458 SDNode *N1 = CurDAG->getMachineNode(AArch64::SUBP, DL, MVT::i64, 4459 {N->getOperand(1), N->getOperand(2)}); 4460 SDNode *N2 = CurDAG->getMachineNode(AArch64::ADDXrr, DL, MVT::i64, 4461 {SDValue(N1, 0), N->getOperand(2)}); 4462 SDNode *N3 = CurDAG->getMachineNode( 4463 AArch64::ADDG, DL, MVT::i64, 4464 {SDValue(N2, 0), CurDAG->getTargetConstant(0, DL, MVT::i64), 4465 CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)}); 4466 ReplaceNode(N, N3); 4467 } 4468 4469 bool AArch64DAGToDAGISel::trySelectCastFixedLengthToScalableVector(SDNode *N) { 4470 assert(N->getOpcode() == ISD::INSERT_SUBVECTOR && "Invalid Node!"); 4471 4472 // Bail when not a "cast" like insert_subvector. 4473 if (N->getConstantOperandVal(2) != 0) 4474 return false; 4475 if (!N->getOperand(0).isUndef()) 4476 return false; 4477 4478 // Bail when normal isel should do the job. 4479 EVT VT = N->getValueType(0); 4480 EVT InVT = N->getOperand(1).getValueType(); 4481 if (VT.isFixedLengthVector() || InVT.isScalableVector()) 4482 return false; 4483 if (InVT.getSizeInBits() <= 128) 4484 return false; 4485 4486 // NOTE: We can only get here when doing fixed length SVE code generation. 4487 // We do manual selection because the types involved are not linked to real 4488 // registers (despite being legal) and must be coerced into SVE registers. 4489 4490 assert(VT.getSizeInBits().getKnownMinValue() == AArch64::SVEBitsPerBlock && 4491 "Expected to insert into a packed scalable vector!"); 4492 4493 SDLoc DL(N); 4494 auto RC = CurDAG->getTargetConstant(AArch64::ZPRRegClassID, DL, MVT::i64); 4495 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT, 4496 N->getOperand(1), RC)); 4497 return true; 4498 } 4499 4500 bool AArch64DAGToDAGISel::trySelectCastScalableToFixedLengthVector(SDNode *N) { 4501 assert(N->getOpcode() == ISD::EXTRACT_SUBVECTOR && "Invalid Node!"); 4502 4503 // Bail when not a "cast" like extract_subvector. 4504 if (N->getConstantOperandVal(1) != 0) 4505 return false; 4506 4507 // Bail when normal isel can do the job. 4508 EVT VT = N->getValueType(0); 4509 EVT InVT = N->getOperand(0).getValueType(); 4510 if (VT.isScalableVector() || InVT.isFixedLengthVector()) 4511 return false; 4512 if (VT.getSizeInBits() <= 128) 4513 return false; 4514 4515 // NOTE: We can only get here when doing fixed length SVE code generation. 4516 // We do manual selection because the types involved are not linked to real 4517 // registers (despite being legal) and must be coerced into SVE registers. 4518 4519 assert(InVT.getSizeInBits().getKnownMinValue() == AArch64::SVEBitsPerBlock && 4520 "Expected to extract from a packed scalable vector!"); 4521 4522 SDLoc DL(N); 4523 auto RC = CurDAG->getTargetConstant(AArch64::ZPRRegClassID, DL, MVT::i64); 4524 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT, 4525 N->getOperand(0), RC)); 4526 return true; 4527 } 4528 4529 bool AArch64DAGToDAGISel::trySelectXAR(SDNode *N) { 4530 assert(N->getOpcode() == ISD::OR && "Expected OR instruction"); 4531 4532 SDValue N0 = N->getOperand(0); 4533 SDValue N1 = N->getOperand(1); 4534 EVT VT = N->getValueType(0); 4535 4536 // Essentially: rotr (xor(x, y), imm) -> xar (x, y, imm) 4537 // Rotate by a constant is a funnel shift in IR which is exanded to 4538 // an OR with shifted operands. 4539 // We do the following transform: 4540 // OR N0, N1 -> xar (x, y, imm) 4541 // Where: 4542 // N1 = SRL_PRED true, V, splat(imm) --> rotr amount 4543 // N0 = SHL_PRED true, V, splat(bits-imm) 4544 // V = (xor x, y) 4545 if (VT.isScalableVector() && 4546 (Subtarget->hasSVE2() || 4547 (Subtarget->hasSME() && Subtarget->isStreaming()))) { 4548 if (N0.getOpcode() != AArch64ISD::SHL_PRED || 4549 N1.getOpcode() != AArch64ISD::SRL_PRED) 4550 std::swap(N0, N1); 4551 if (N0.getOpcode() != AArch64ISD::SHL_PRED || 4552 N1.getOpcode() != AArch64ISD::SRL_PRED) 4553 return false; 4554 4555 auto *TLI = static_cast<const AArch64TargetLowering *>(getTargetLowering()); 4556 if (!TLI->isAllActivePredicate(*CurDAG, N0.getOperand(0)) || 4557 !TLI->isAllActivePredicate(*CurDAG, N1.getOperand(0))) 4558 return false; 4559 4560 SDValue XOR = N0.getOperand(1); 4561 if (XOR.getOpcode() != ISD::XOR || XOR != N1.getOperand(1)) 4562 return false; 4563 4564 APInt ShlAmt, ShrAmt; 4565 if (!ISD::isConstantSplatVector(N0.getOperand(2).getNode(), ShlAmt) || 4566 !ISD::isConstantSplatVector(N1.getOperand(2).getNode(), ShrAmt)) 4567 return false; 4568 4569 if (ShlAmt + ShrAmt != VT.getScalarSizeInBits()) 4570 return false; 4571 4572 SDLoc DL(N); 4573 SDValue Imm = 4574 CurDAG->getTargetConstant(ShrAmt.getZExtValue(), DL, MVT::i32); 4575 4576 SDValue Ops[] = {XOR.getOperand(0), XOR.getOperand(1), Imm}; 4577 if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::Int>( 4578 VT, {AArch64::XAR_ZZZI_B, AArch64::XAR_ZZZI_H, AArch64::XAR_ZZZI_S, 4579 AArch64::XAR_ZZZI_D})) { 4580 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 4581 return true; 4582 } 4583 return false; 4584 } 4585 4586 if (!Subtarget->hasSHA3()) 4587 return false; 4588 4589 if (N0->getOpcode() != AArch64ISD::VSHL || 4590 N1->getOpcode() != AArch64ISD::VLSHR) 4591 return false; 4592 4593 if (N0->getOperand(0) != N1->getOperand(0) || 4594 N1->getOperand(0)->getOpcode() != ISD::XOR) 4595 return false; 4596 4597 SDValue XOR = N0.getOperand(0); 4598 SDValue R1 = XOR.getOperand(0); 4599 SDValue R2 = XOR.getOperand(1); 4600 4601 unsigned HsAmt = N0.getConstantOperandVal(1); 4602 unsigned ShAmt = N1.getConstantOperandVal(1); 4603 4604 SDLoc DL = SDLoc(N0.getOperand(1)); 4605 SDValue Imm = CurDAG->getTargetConstant( 4606 ShAmt, DL, N0.getOperand(1).getValueType(), false); 4607 4608 if (ShAmt + HsAmt != 64) 4609 return false; 4610 4611 SDValue Ops[] = {R1, R2, Imm}; 4612 CurDAG->SelectNodeTo(N, AArch64::XAR, N0.getValueType(), Ops); 4613 4614 return true; 4615 } 4616 4617 void AArch64DAGToDAGISel::Select(SDNode *Node) { 4618 // If we have a custom node, we already have selected! 4619 if (Node->isMachineOpcode()) { 4620 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); 4621 Node->setNodeId(-1); 4622 return; 4623 } 4624 4625 // Few custom selection stuff. 4626 EVT VT = Node->getValueType(0); 4627 4628 switch (Node->getOpcode()) { 4629 default: 4630 break; 4631 4632 case ISD::ATOMIC_CMP_SWAP: 4633 if (SelectCMP_SWAP(Node)) 4634 return; 4635 break; 4636 4637 case ISD::READ_REGISTER: 4638 case AArch64ISD::MRRS: 4639 if (tryReadRegister(Node)) 4640 return; 4641 break; 4642 4643 case ISD::WRITE_REGISTER: 4644 case AArch64ISD::MSRR: 4645 if (tryWriteRegister(Node)) 4646 return; 4647 break; 4648 4649 case ISD::LOAD: { 4650 // Try to select as an indexed load. Fall through to normal processing 4651 // if we can't. 4652 if (tryIndexedLoad(Node)) 4653 return; 4654 break; 4655 } 4656 4657 case ISD::SRL: 4658 case ISD::AND: 4659 case ISD::SRA: 4660 case ISD::SIGN_EXTEND_INREG: 4661 if (tryBitfieldExtractOp(Node)) 4662 return; 4663 if (tryBitfieldInsertInZeroOp(Node)) 4664 return; 4665 [[fallthrough]]; 4666 case ISD::ROTR: 4667 case ISD::SHL: 4668 if (tryShiftAmountMod(Node)) 4669 return; 4670 break; 4671 4672 case ISD::SIGN_EXTEND: 4673 if (tryBitfieldExtractOpFromSExt(Node)) 4674 return; 4675 break; 4676 4677 case ISD::OR: 4678 if (tryBitfieldInsertOp(Node)) 4679 return; 4680 if (trySelectXAR(Node)) 4681 return; 4682 break; 4683 4684 case ISD::EXTRACT_SUBVECTOR: { 4685 if (trySelectCastScalableToFixedLengthVector(Node)) 4686 return; 4687 break; 4688 } 4689 4690 case ISD::INSERT_SUBVECTOR: { 4691 if (trySelectCastFixedLengthToScalableVector(Node)) 4692 return; 4693 break; 4694 } 4695 4696 case ISD::Constant: { 4697 // Materialize zero constants as copies from WZR/XZR. This allows 4698 // the coalescer to propagate these into other instructions. 4699 ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node); 4700 if (ConstNode->isZero()) { 4701 if (VT == MVT::i32) { 4702 SDValue New = CurDAG->getCopyFromReg( 4703 CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32); 4704 ReplaceNode(Node, New.getNode()); 4705 return; 4706 } else if (VT == MVT::i64) { 4707 SDValue New = CurDAG->getCopyFromReg( 4708 CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64); 4709 ReplaceNode(Node, New.getNode()); 4710 return; 4711 } 4712 } 4713 break; 4714 } 4715 4716 case ISD::FrameIndex: { 4717 // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm. 4718 int FI = cast<FrameIndexSDNode>(Node)->getIndex(); 4719 unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0); 4720 const TargetLowering *TLI = getTargetLowering(); 4721 SDValue TFI = CurDAG->getTargetFrameIndex( 4722 FI, TLI->getPointerTy(CurDAG->getDataLayout())); 4723 SDLoc DL(Node); 4724 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32), 4725 CurDAG->getTargetConstant(Shifter, DL, MVT::i32) }; 4726 CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops); 4727 return; 4728 } 4729 case ISD::INTRINSIC_W_CHAIN: { 4730 unsigned IntNo = Node->getConstantOperandVal(1); 4731 switch (IntNo) { 4732 default: 4733 break; 4734 case Intrinsic::aarch64_gcsss: { 4735 SDLoc DL(Node); 4736 SDValue Chain = Node->getOperand(0); 4737 SDValue Val = Node->getOperand(2); 4738 SDValue Zero = CurDAG->getCopyFromReg(Chain, DL, AArch64::XZR, MVT::i64); 4739 SDNode *SS1 = 4740 CurDAG->getMachineNode(AArch64::GCSSS1, DL, MVT::Other, Val, Chain); 4741 SDNode *SS2 = CurDAG->getMachineNode(AArch64::GCSSS2, DL, MVT::i64, 4742 MVT::Other, Zero, SDValue(SS1, 0)); 4743 ReplaceNode(Node, SS2); 4744 return; 4745 } 4746 case Intrinsic::aarch64_ldaxp: 4747 case Intrinsic::aarch64_ldxp: { 4748 unsigned Op = 4749 IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX; 4750 SDValue MemAddr = Node->getOperand(2); 4751 SDLoc DL(Node); 4752 SDValue Chain = Node->getOperand(0); 4753 4754 SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64, 4755 MVT::Other, MemAddr, Chain); 4756 4757 // Transfer memoperands. 4758 MachineMemOperand *MemOp = 4759 cast<MemIntrinsicSDNode>(Node)->getMemOperand(); 4760 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp}); 4761 ReplaceNode(Node, Ld); 4762 return; 4763 } 4764 case Intrinsic::aarch64_stlxp: 4765 case Intrinsic::aarch64_stxp: { 4766 unsigned Op = 4767 IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX; 4768 SDLoc DL(Node); 4769 SDValue Chain = Node->getOperand(0); 4770 SDValue ValLo = Node->getOperand(2); 4771 SDValue ValHi = Node->getOperand(3); 4772 SDValue MemAddr = Node->getOperand(4); 4773 4774 // Place arguments in the right order. 4775 SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain}; 4776 4777 SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops); 4778 // Transfer memoperands. 4779 MachineMemOperand *MemOp = 4780 cast<MemIntrinsicSDNode>(Node)->getMemOperand(); 4781 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); 4782 4783 ReplaceNode(Node, St); 4784 return; 4785 } 4786 case Intrinsic::aarch64_neon_ld1x2: 4787 if (VT == MVT::v8i8) { 4788 SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0); 4789 return; 4790 } else if (VT == MVT::v16i8) { 4791 SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0); 4792 return; 4793 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 4794 SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0); 4795 return; 4796 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 4797 SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0); 4798 return; 4799 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4800 SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0); 4801 return; 4802 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4803 SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0); 4804 return; 4805 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4806 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0); 4807 return; 4808 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4809 SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0); 4810 return; 4811 } 4812 break; 4813 case Intrinsic::aarch64_neon_ld1x3: 4814 if (VT == MVT::v8i8) { 4815 SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0); 4816 return; 4817 } else if (VT == MVT::v16i8) { 4818 SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0); 4819 return; 4820 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 4821 SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0); 4822 return; 4823 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 4824 SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0); 4825 return; 4826 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4827 SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0); 4828 return; 4829 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4830 SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0); 4831 return; 4832 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4833 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0); 4834 return; 4835 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4836 SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0); 4837 return; 4838 } 4839 break; 4840 case Intrinsic::aarch64_neon_ld1x4: 4841 if (VT == MVT::v8i8) { 4842 SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0); 4843 return; 4844 } else if (VT == MVT::v16i8) { 4845 SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0); 4846 return; 4847 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 4848 SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0); 4849 return; 4850 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 4851 SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0); 4852 return; 4853 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4854 SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0); 4855 return; 4856 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4857 SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0); 4858 return; 4859 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4860 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0); 4861 return; 4862 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4863 SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0); 4864 return; 4865 } 4866 break; 4867 case Intrinsic::aarch64_neon_ld2: 4868 if (VT == MVT::v8i8) { 4869 SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0); 4870 return; 4871 } else if (VT == MVT::v16i8) { 4872 SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0); 4873 return; 4874 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 4875 SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0); 4876 return; 4877 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 4878 SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0); 4879 return; 4880 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4881 SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0); 4882 return; 4883 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4884 SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0); 4885 return; 4886 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4887 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0); 4888 return; 4889 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4890 SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0); 4891 return; 4892 } 4893 break; 4894 case Intrinsic::aarch64_neon_ld3: 4895 if (VT == MVT::v8i8) { 4896 SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0); 4897 return; 4898 } else if (VT == MVT::v16i8) { 4899 SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0); 4900 return; 4901 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 4902 SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0); 4903 return; 4904 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 4905 SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0); 4906 return; 4907 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4908 SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0); 4909 return; 4910 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4911 SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0); 4912 return; 4913 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4914 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0); 4915 return; 4916 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4917 SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0); 4918 return; 4919 } 4920 break; 4921 case Intrinsic::aarch64_neon_ld4: 4922 if (VT == MVT::v8i8) { 4923 SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0); 4924 return; 4925 } else if (VT == MVT::v16i8) { 4926 SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0); 4927 return; 4928 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 4929 SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0); 4930 return; 4931 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 4932 SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0); 4933 return; 4934 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4935 SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0); 4936 return; 4937 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4938 SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0); 4939 return; 4940 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4941 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0); 4942 return; 4943 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4944 SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0); 4945 return; 4946 } 4947 break; 4948 case Intrinsic::aarch64_neon_ld2r: 4949 if (VT == MVT::v8i8) { 4950 SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0); 4951 return; 4952 } else if (VT == MVT::v16i8) { 4953 SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0); 4954 return; 4955 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 4956 SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0); 4957 return; 4958 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 4959 SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0); 4960 return; 4961 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4962 SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0); 4963 return; 4964 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4965 SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0); 4966 return; 4967 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4968 SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0); 4969 return; 4970 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4971 SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0); 4972 return; 4973 } 4974 break; 4975 case Intrinsic::aarch64_neon_ld3r: 4976 if (VT == MVT::v8i8) { 4977 SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0); 4978 return; 4979 } else if (VT == MVT::v16i8) { 4980 SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0); 4981 return; 4982 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 4983 SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0); 4984 return; 4985 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 4986 SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0); 4987 return; 4988 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4989 SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0); 4990 return; 4991 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4992 SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0); 4993 return; 4994 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4995 SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0); 4996 return; 4997 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4998 SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0); 4999 return; 5000 } 5001 break; 5002 case Intrinsic::aarch64_neon_ld4r: 5003 if (VT == MVT::v8i8) { 5004 SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0); 5005 return; 5006 } else if (VT == MVT::v16i8) { 5007 SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0); 5008 return; 5009 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 5010 SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0); 5011 return; 5012 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 5013 SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0); 5014 return; 5015 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 5016 SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0); 5017 return; 5018 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 5019 SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0); 5020 return; 5021 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 5022 SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0); 5023 return; 5024 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 5025 SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0); 5026 return; 5027 } 5028 break; 5029 case Intrinsic::aarch64_neon_ld2lane: 5030 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 5031 SelectLoadLane(Node, 2, AArch64::LD2i8); 5032 return; 5033 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 5034 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 5035 SelectLoadLane(Node, 2, AArch64::LD2i16); 5036 return; 5037 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 5038 VT == MVT::v2f32) { 5039 SelectLoadLane(Node, 2, AArch64::LD2i32); 5040 return; 5041 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 5042 VT == MVT::v1f64) { 5043 SelectLoadLane(Node, 2, AArch64::LD2i64); 5044 return; 5045 } 5046 break; 5047 case Intrinsic::aarch64_neon_ld3lane: 5048 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 5049 SelectLoadLane(Node, 3, AArch64::LD3i8); 5050 return; 5051 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 5052 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 5053 SelectLoadLane(Node, 3, AArch64::LD3i16); 5054 return; 5055 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 5056 VT == MVT::v2f32) { 5057 SelectLoadLane(Node, 3, AArch64::LD3i32); 5058 return; 5059 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 5060 VT == MVT::v1f64) { 5061 SelectLoadLane(Node, 3, AArch64::LD3i64); 5062 return; 5063 } 5064 break; 5065 case Intrinsic::aarch64_neon_ld4lane: 5066 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 5067 SelectLoadLane(Node, 4, AArch64::LD4i8); 5068 return; 5069 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 5070 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 5071 SelectLoadLane(Node, 4, AArch64::LD4i16); 5072 return; 5073 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 5074 VT == MVT::v2f32) { 5075 SelectLoadLane(Node, 4, AArch64::LD4i32); 5076 return; 5077 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 5078 VT == MVT::v1f64) { 5079 SelectLoadLane(Node, 4, AArch64::LD4i64); 5080 return; 5081 } 5082 break; 5083 case Intrinsic::aarch64_ld64b: 5084 SelectLoad(Node, 8, AArch64::LD64B, AArch64::x8sub_0); 5085 return; 5086 case Intrinsic::aarch64_sve_ld2q_sret: { 5087 SelectPredicatedLoad(Node, 2, 4, AArch64::LD2Q_IMM, AArch64::LD2Q, true); 5088 return; 5089 } 5090 case Intrinsic::aarch64_sve_ld3q_sret: { 5091 SelectPredicatedLoad(Node, 3, 4, AArch64::LD3Q_IMM, AArch64::LD3Q, true); 5092 return; 5093 } 5094 case Intrinsic::aarch64_sve_ld4q_sret: { 5095 SelectPredicatedLoad(Node, 4, 4, AArch64::LD4Q_IMM, AArch64::LD4Q, true); 5096 return; 5097 } 5098 case Intrinsic::aarch64_sve_ld2_sret: { 5099 if (VT == MVT::nxv16i8) { 5100 SelectPredicatedLoad(Node, 2, 0, AArch64::LD2B_IMM, AArch64::LD2B, 5101 true); 5102 return; 5103 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5104 VT == MVT::nxv8bf16) { 5105 SelectPredicatedLoad(Node, 2, 1, AArch64::LD2H_IMM, AArch64::LD2H, 5106 true); 5107 return; 5108 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5109 SelectPredicatedLoad(Node, 2, 2, AArch64::LD2W_IMM, AArch64::LD2W, 5110 true); 5111 return; 5112 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5113 SelectPredicatedLoad(Node, 2, 3, AArch64::LD2D_IMM, AArch64::LD2D, 5114 true); 5115 return; 5116 } 5117 break; 5118 } 5119 case Intrinsic::aarch64_sve_ld1_pn_x2: { 5120 if (VT == MVT::nxv16i8) { 5121 if (Subtarget->hasSME2()) 5122 SelectContiguousMultiVectorLoad( 5123 Node, 2, 0, AArch64::LD1B_2Z_IMM_PSEUDO, AArch64::LD1B_2Z_PSEUDO); 5124 else if (Subtarget->hasSVE2p1()) 5125 SelectContiguousMultiVectorLoad(Node, 2, 0, AArch64::LD1B_2Z_IMM, 5126 AArch64::LD1B_2Z); 5127 else 5128 break; 5129 return; 5130 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5131 VT == MVT::nxv8bf16) { 5132 if (Subtarget->hasSME2()) 5133 SelectContiguousMultiVectorLoad( 5134 Node, 2, 1, AArch64::LD1H_2Z_IMM_PSEUDO, AArch64::LD1H_2Z_PSEUDO); 5135 else if (Subtarget->hasSVE2p1()) 5136 SelectContiguousMultiVectorLoad(Node, 2, 1, AArch64::LD1H_2Z_IMM, 5137 AArch64::LD1H_2Z); 5138 else 5139 break; 5140 return; 5141 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5142 if (Subtarget->hasSME2()) 5143 SelectContiguousMultiVectorLoad( 5144 Node, 2, 2, AArch64::LD1W_2Z_IMM_PSEUDO, AArch64::LD1W_2Z_PSEUDO); 5145 else if (Subtarget->hasSVE2p1()) 5146 SelectContiguousMultiVectorLoad(Node, 2, 2, AArch64::LD1W_2Z_IMM, 5147 AArch64::LD1W_2Z); 5148 else 5149 break; 5150 return; 5151 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5152 if (Subtarget->hasSME2()) 5153 SelectContiguousMultiVectorLoad( 5154 Node, 2, 3, AArch64::LD1D_2Z_IMM_PSEUDO, AArch64::LD1D_2Z_PSEUDO); 5155 else if (Subtarget->hasSVE2p1()) 5156 SelectContiguousMultiVectorLoad(Node, 2, 3, AArch64::LD1D_2Z_IMM, 5157 AArch64::LD1D_2Z); 5158 else 5159 break; 5160 return; 5161 } 5162 break; 5163 } 5164 case Intrinsic::aarch64_sve_ld1_pn_x4: { 5165 if (VT == MVT::nxv16i8) { 5166 if (Subtarget->hasSME2()) 5167 SelectContiguousMultiVectorLoad( 5168 Node, 4, 0, AArch64::LD1B_4Z_IMM_PSEUDO, AArch64::LD1B_4Z_PSEUDO); 5169 else if (Subtarget->hasSVE2p1()) 5170 SelectContiguousMultiVectorLoad(Node, 4, 0, AArch64::LD1B_4Z_IMM, 5171 AArch64::LD1B_4Z); 5172 else 5173 break; 5174 return; 5175 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5176 VT == MVT::nxv8bf16) { 5177 if (Subtarget->hasSME2()) 5178 SelectContiguousMultiVectorLoad( 5179 Node, 4, 1, AArch64::LD1H_4Z_IMM_PSEUDO, AArch64::LD1H_4Z_PSEUDO); 5180 else if (Subtarget->hasSVE2p1()) 5181 SelectContiguousMultiVectorLoad(Node, 4, 1, AArch64::LD1H_4Z_IMM, 5182 AArch64::LD1H_4Z); 5183 else 5184 break; 5185 return; 5186 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5187 if (Subtarget->hasSME2()) 5188 SelectContiguousMultiVectorLoad( 5189 Node, 4, 2, AArch64::LD1W_4Z_IMM_PSEUDO, AArch64::LD1W_4Z_PSEUDO); 5190 else if (Subtarget->hasSVE2p1()) 5191 SelectContiguousMultiVectorLoad(Node, 4, 2, AArch64::LD1W_4Z_IMM, 5192 AArch64::LD1W_4Z); 5193 else 5194 break; 5195 return; 5196 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5197 if (Subtarget->hasSME2()) 5198 SelectContiguousMultiVectorLoad( 5199 Node, 4, 3, AArch64::LD1D_4Z_IMM_PSEUDO, AArch64::LD1D_4Z_PSEUDO); 5200 else if (Subtarget->hasSVE2p1()) 5201 SelectContiguousMultiVectorLoad(Node, 4, 3, AArch64::LD1D_4Z_IMM, 5202 AArch64::LD1D_4Z); 5203 else 5204 break; 5205 return; 5206 } 5207 break; 5208 } 5209 case Intrinsic::aarch64_sve_ldnt1_pn_x2: { 5210 if (VT == MVT::nxv16i8) { 5211 if (Subtarget->hasSME2()) 5212 SelectContiguousMultiVectorLoad(Node, 2, 0, 5213 AArch64::LDNT1B_2Z_IMM_PSEUDO, 5214 AArch64::LDNT1B_2Z_PSEUDO); 5215 else if (Subtarget->hasSVE2p1()) 5216 SelectContiguousMultiVectorLoad(Node, 2, 0, AArch64::LDNT1B_2Z_IMM, 5217 AArch64::LDNT1B_2Z); 5218 else 5219 break; 5220 return; 5221 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5222 VT == MVT::nxv8bf16) { 5223 if (Subtarget->hasSME2()) 5224 SelectContiguousMultiVectorLoad(Node, 2, 1, 5225 AArch64::LDNT1H_2Z_IMM_PSEUDO, 5226 AArch64::LDNT1H_2Z_PSEUDO); 5227 else if (Subtarget->hasSVE2p1()) 5228 SelectContiguousMultiVectorLoad(Node, 2, 1, AArch64::LDNT1H_2Z_IMM, 5229 AArch64::LDNT1H_2Z); 5230 else 5231 break; 5232 return; 5233 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5234 if (Subtarget->hasSME2()) 5235 SelectContiguousMultiVectorLoad(Node, 2, 2, 5236 AArch64::LDNT1W_2Z_IMM_PSEUDO, 5237 AArch64::LDNT1W_2Z_PSEUDO); 5238 else if (Subtarget->hasSVE2p1()) 5239 SelectContiguousMultiVectorLoad(Node, 2, 2, AArch64::LDNT1W_2Z_IMM, 5240 AArch64::LDNT1W_2Z); 5241 else 5242 break; 5243 return; 5244 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5245 if (Subtarget->hasSME2()) 5246 SelectContiguousMultiVectorLoad(Node, 2, 3, 5247 AArch64::LDNT1D_2Z_IMM_PSEUDO, 5248 AArch64::LDNT1D_2Z_PSEUDO); 5249 else if (Subtarget->hasSVE2p1()) 5250 SelectContiguousMultiVectorLoad(Node, 2, 3, AArch64::LDNT1D_2Z_IMM, 5251 AArch64::LDNT1D_2Z); 5252 else 5253 break; 5254 return; 5255 } 5256 break; 5257 } 5258 case Intrinsic::aarch64_sve_ldnt1_pn_x4: { 5259 if (VT == MVT::nxv16i8) { 5260 if (Subtarget->hasSME2()) 5261 SelectContiguousMultiVectorLoad(Node, 4, 0, 5262 AArch64::LDNT1B_4Z_IMM_PSEUDO, 5263 AArch64::LDNT1B_4Z_PSEUDO); 5264 else if (Subtarget->hasSVE2p1()) 5265 SelectContiguousMultiVectorLoad(Node, 4, 0, AArch64::LDNT1B_4Z_IMM, 5266 AArch64::LDNT1B_4Z); 5267 else 5268 break; 5269 return; 5270 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5271 VT == MVT::nxv8bf16) { 5272 if (Subtarget->hasSME2()) 5273 SelectContiguousMultiVectorLoad(Node, 4, 1, 5274 AArch64::LDNT1H_4Z_IMM_PSEUDO, 5275 AArch64::LDNT1H_4Z_PSEUDO); 5276 else if (Subtarget->hasSVE2p1()) 5277 SelectContiguousMultiVectorLoad(Node, 4, 1, AArch64::LDNT1H_4Z_IMM, 5278 AArch64::LDNT1H_4Z); 5279 else 5280 break; 5281 return; 5282 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5283 if (Subtarget->hasSME2()) 5284 SelectContiguousMultiVectorLoad(Node, 4, 2, 5285 AArch64::LDNT1W_4Z_IMM_PSEUDO, 5286 AArch64::LDNT1W_4Z_PSEUDO); 5287 else if (Subtarget->hasSVE2p1()) 5288 SelectContiguousMultiVectorLoad(Node, 4, 2, AArch64::LDNT1W_4Z_IMM, 5289 AArch64::LDNT1W_4Z); 5290 else 5291 break; 5292 return; 5293 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5294 if (Subtarget->hasSME2()) 5295 SelectContiguousMultiVectorLoad(Node, 4, 3, 5296 AArch64::LDNT1D_4Z_IMM_PSEUDO, 5297 AArch64::LDNT1D_4Z_PSEUDO); 5298 else if (Subtarget->hasSVE2p1()) 5299 SelectContiguousMultiVectorLoad(Node, 4, 3, AArch64::LDNT1D_4Z_IMM, 5300 AArch64::LDNT1D_4Z); 5301 else 5302 break; 5303 return; 5304 } 5305 break; 5306 } 5307 case Intrinsic::aarch64_sve_ld3_sret: { 5308 if (VT == MVT::nxv16i8) { 5309 SelectPredicatedLoad(Node, 3, 0, AArch64::LD3B_IMM, AArch64::LD3B, 5310 true); 5311 return; 5312 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5313 VT == MVT::nxv8bf16) { 5314 SelectPredicatedLoad(Node, 3, 1, AArch64::LD3H_IMM, AArch64::LD3H, 5315 true); 5316 return; 5317 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5318 SelectPredicatedLoad(Node, 3, 2, AArch64::LD3W_IMM, AArch64::LD3W, 5319 true); 5320 return; 5321 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5322 SelectPredicatedLoad(Node, 3, 3, AArch64::LD3D_IMM, AArch64::LD3D, 5323 true); 5324 return; 5325 } 5326 break; 5327 } 5328 case Intrinsic::aarch64_sve_ld4_sret: { 5329 if (VT == MVT::nxv16i8) { 5330 SelectPredicatedLoad(Node, 4, 0, AArch64::LD4B_IMM, AArch64::LD4B, 5331 true); 5332 return; 5333 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5334 VT == MVT::nxv8bf16) { 5335 SelectPredicatedLoad(Node, 4, 1, AArch64::LD4H_IMM, AArch64::LD4H, 5336 true); 5337 return; 5338 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5339 SelectPredicatedLoad(Node, 4, 2, AArch64::LD4W_IMM, AArch64::LD4W, 5340 true); 5341 return; 5342 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5343 SelectPredicatedLoad(Node, 4, 3, AArch64::LD4D_IMM, AArch64::LD4D, 5344 true); 5345 return; 5346 } 5347 break; 5348 } 5349 case Intrinsic::aarch64_sme_read_hor_vg2: { 5350 if (VT == MVT::nxv16i8) { 5351 SelectMultiVectorMove<14, 2>(Node, 2, AArch64::ZAB0, 5352 AArch64::MOVA_2ZMXI_H_B); 5353 return; 5354 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5355 VT == MVT::nxv8bf16) { 5356 SelectMultiVectorMove<6, 2>(Node, 2, AArch64::ZAH0, 5357 AArch64::MOVA_2ZMXI_H_H); 5358 return; 5359 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5360 SelectMultiVectorMove<2, 2>(Node, 2, AArch64::ZAS0, 5361 AArch64::MOVA_2ZMXI_H_S); 5362 return; 5363 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5364 SelectMultiVectorMove<0, 2>(Node, 2, AArch64::ZAD0, 5365 AArch64::MOVA_2ZMXI_H_D); 5366 return; 5367 } 5368 break; 5369 } 5370 case Intrinsic::aarch64_sme_read_ver_vg2: { 5371 if (VT == MVT::nxv16i8) { 5372 SelectMultiVectorMove<14, 2>(Node, 2, AArch64::ZAB0, 5373 AArch64::MOVA_2ZMXI_V_B); 5374 return; 5375 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5376 VT == MVT::nxv8bf16) { 5377 SelectMultiVectorMove<6, 2>(Node, 2, AArch64::ZAH0, 5378 AArch64::MOVA_2ZMXI_V_H); 5379 return; 5380 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5381 SelectMultiVectorMove<2, 2>(Node, 2, AArch64::ZAS0, 5382 AArch64::MOVA_2ZMXI_V_S); 5383 return; 5384 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5385 SelectMultiVectorMove<0, 2>(Node, 2, AArch64::ZAD0, 5386 AArch64::MOVA_2ZMXI_V_D); 5387 return; 5388 } 5389 break; 5390 } 5391 case Intrinsic::aarch64_sme_read_hor_vg4: { 5392 if (VT == MVT::nxv16i8) { 5393 SelectMultiVectorMove<12, 4>(Node, 4, AArch64::ZAB0, 5394 AArch64::MOVA_4ZMXI_H_B); 5395 return; 5396 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5397 VT == MVT::nxv8bf16) { 5398 SelectMultiVectorMove<4, 4>(Node, 4, AArch64::ZAH0, 5399 AArch64::MOVA_4ZMXI_H_H); 5400 return; 5401 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5402 SelectMultiVectorMove<0, 2>(Node, 4, AArch64::ZAS0, 5403 AArch64::MOVA_4ZMXI_H_S); 5404 return; 5405 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5406 SelectMultiVectorMove<0, 2>(Node, 4, AArch64::ZAD0, 5407 AArch64::MOVA_4ZMXI_H_D); 5408 return; 5409 } 5410 break; 5411 } 5412 case Intrinsic::aarch64_sme_read_ver_vg4: { 5413 if (VT == MVT::nxv16i8) { 5414 SelectMultiVectorMove<12, 4>(Node, 4, AArch64::ZAB0, 5415 AArch64::MOVA_4ZMXI_V_B); 5416 return; 5417 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5418 VT == MVT::nxv8bf16) { 5419 SelectMultiVectorMove<4, 4>(Node, 4, AArch64::ZAH0, 5420 AArch64::MOVA_4ZMXI_V_H); 5421 return; 5422 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5423 SelectMultiVectorMove<0, 4>(Node, 4, AArch64::ZAS0, 5424 AArch64::MOVA_4ZMXI_V_S); 5425 return; 5426 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5427 SelectMultiVectorMove<0, 4>(Node, 4, AArch64::ZAD0, 5428 AArch64::MOVA_4ZMXI_V_D); 5429 return; 5430 } 5431 break; 5432 } 5433 case Intrinsic::aarch64_sme_read_vg1x2: { 5434 SelectMultiVectorMove<7, 1>(Node, 2, AArch64::ZA, 5435 AArch64::MOVA_VG2_2ZMXI); 5436 return; 5437 } 5438 case Intrinsic::aarch64_sme_read_vg1x4: { 5439 SelectMultiVectorMove<7, 1>(Node, 4, AArch64::ZA, 5440 AArch64::MOVA_VG4_4ZMXI); 5441 return; 5442 } 5443 case Intrinsic::aarch64_sme_readz_horiz_x2: { 5444 if (VT == MVT::nxv16i8) { 5445 SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_H_B_PSEUDO, 14, 2); 5446 return; 5447 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5448 VT == MVT::nxv8bf16) { 5449 SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_H_H_PSEUDO, 6, 2); 5450 return; 5451 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5452 SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_H_S_PSEUDO, 2, 2); 5453 return; 5454 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5455 SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_H_D_PSEUDO, 0, 2); 5456 return; 5457 } 5458 break; 5459 } 5460 case Intrinsic::aarch64_sme_readz_vert_x2: { 5461 if (VT == MVT::nxv16i8) { 5462 SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_V_B_PSEUDO, 14, 2); 5463 return; 5464 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5465 VT == MVT::nxv8bf16) { 5466 SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_V_H_PSEUDO, 6, 2); 5467 return; 5468 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5469 SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_V_S_PSEUDO, 2, 2); 5470 return; 5471 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5472 SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_V_D_PSEUDO, 0, 2); 5473 return; 5474 } 5475 break; 5476 } 5477 case Intrinsic::aarch64_sme_readz_horiz_x4: { 5478 if (VT == MVT::nxv16i8) { 5479 SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_H_B_PSEUDO, 12, 4); 5480 return; 5481 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5482 VT == MVT::nxv8bf16) { 5483 SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_H_H_PSEUDO, 4, 4); 5484 return; 5485 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5486 SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_H_S_PSEUDO, 0, 4); 5487 return; 5488 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5489 SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_H_D_PSEUDO, 0, 4); 5490 return; 5491 } 5492 break; 5493 } 5494 case Intrinsic::aarch64_sme_readz_vert_x4: { 5495 if (VT == MVT::nxv16i8) { 5496 SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_V_B_PSEUDO, 12, 4); 5497 return; 5498 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 5499 VT == MVT::nxv8bf16) { 5500 SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_V_H_PSEUDO, 4, 4); 5501 return; 5502 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 5503 SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_V_S_PSEUDO, 0, 4); 5504 return; 5505 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 5506 SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_V_D_PSEUDO, 0, 4); 5507 return; 5508 } 5509 break; 5510 } 5511 case Intrinsic::aarch64_sme_readz_x2: { 5512 SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_VG2_2ZMXI_PSEUDO, 7, 1, 5513 AArch64::ZA); 5514 return; 5515 } 5516 case Intrinsic::aarch64_sme_readz_x4: { 5517 SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_VG4_4ZMXI_PSEUDO, 7, 1, 5518 AArch64::ZA); 5519 return; 5520 } 5521 case Intrinsic::swift_async_context_addr: { 5522 SDLoc DL(Node); 5523 SDValue Chain = Node->getOperand(0); 5524 SDValue CopyFP = CurDAG->getCopyFromReg(Chain, DL, AArch64::FP, MVT::i64); 5525 SDValue Res = SDValue( 5526 CurDAG->getMachineNode(AArch64::SUBXri, DL, MVT::i64, CopyFP, 5527 CurDAG->getTargetConstant(8, DL, MVT::i32), 5528 CurDAG->getTargetConstant(0, DL, MVT::i32)), 5529 0); 5530 ReplaceUses(SDValue(Node, 0), Res); 5531 ReplaceUses(SDValue(Node, 1), CopyFP.getValue(1)); 5532 CurDAG->RemoveDeadNode(Node); 5533 5534 auto &MF = CurDAG->getMachineFunction(); 5535 MF.getFrameInfo().setFrameAddressIsTaken(true); 5536 MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true); 5537 return; 5538 } 5539 case Intrinsic::aarch64_sme_luti2_lane_zt_x4: { 5540 if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 5541 Node->getValueType(0), 5542 {AArch64::LUTI2_4ZTZI_B, AArch64::LUTI2_4ZTZI_H, 5543 AArch64::LUTI2_4ZTZI_S})) 5544 // Second Immediate must be <= 3: 5545 SelectMultiVectorLutiLane(Node, 4, Opc, 3); 5546 return; 5547 } 5548 case Intrinsic::aarch64_sme_luti4_lane_zt_x4: { 5549 if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 5550 Node->getValueType(0), 5551 {0, AArch64::LUTI4_4ZTZI_H, AArch64::LUTI4_4ZTZI_S})) 5552 // Second Immediate must be <= 1: 5553 SelectMultiVectorLutiLane(Node, 4, Opc, 1); 5554 return; 5555 } 5556 case Intrinsic::aarch64_sme_luti2_lane_zt_x2: { 5557 if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 5558 Node->getValueType(0), 5559 {AArch64::LUTI2_2ZTZI_B, AArch64::LUTI2_2ZTZI_H, 5560 AArch64::LUTI2_2ZTZI_S})) 5561 // Second Immediate must be <= 7: 5562 SelectMultiVectorLutiLane(Node, 2, Opc, 7); 5563 return; 5564 } 5565 case Intrinsic::aarch64_sme_luti4_lane_zt_x2: { 5566 if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 5567 Node->getValueType(0), 5568 {AArch64::LUTI4_2ZTZI_B, AArch64::LUTI4_2ZTZI_H, 5569 AArch64::LUTI4_2ZTZI_S})) 5570 // Second Immediate must be <= 3: 5571 SelectMultiVectorLutiLane(Node, 2, Opc, 3); 5572 return; 5573 } 5574 case Intrinsic::aarch64_sme_luti4_zt_x4: { 5575 SelectMultiVectorLuti(Node, 4, AArch64::LUTI4_4ZZT2Z); 5576 return; 5577 } 5578 case Intrinsic::aarch64_sve_fp8_cvtl1_x2: 5579 if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::FP>( 5580 Node->getValueType(0), 5581 {AArch64::BF1CVTL_2ZZ_BtoH, AArch64::F1CVTL_2ZZ_BtoH})) 5582 SelectCVTIntrinsicFP8(Node, 2, Opc); 5583 return; 5584 case Intrinsic::aarch64_sve_fp8_cvtl2_x2: 5585 if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::FP>( 5586 Node->getValueType(0), 5587 {AArch64::BF2CVTL_2ZZ_BtoH, AArch64::F2CVTL_2ZZ_BtoH})) 5588 SelectCVTIntrinsicFP8(Node, 2, Opc); 5589 return; 5590 case Intrinsic::aarch64_sve_fp8_cvt1_x2: 5591 if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::FP>( 5592 Node->getValueType(0), 5593 {AArch64::BF1CVT_2ZZ_BtoH, AArch64::F1CVT_2ZZ_BtoH})) 5594 SelectCVTIntrinsicFP8(Node, 2, Opc); 5595 return; 5596 case Intrinsic::aarch64_sve_fp8_cvt2_x2: 5597 if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::FP>( 5598 Node->getValueType(0), 5599 {AArch64::BF2CVT_2ZZ_BtoH, AArch64::F2CVT_2ZZ_BtoH})) 5600 SelectCVTIntrinsicFP8(Node, 2, Opc); 5601 return; 5602 } 5603 } break; 5604 case ISD::INTRINSIC_WO_CHAIN: { 5605 unsigned IntNo = Node->getConstantOperandVal(0); 5606 switch (IntNo) { 5607 default: 5608 break; 5609 case Intrinsic::aarch64_tagp: 5610 SelectTagP(Node); 5611 return; 5612 5613 case Intrinsic::ptrauth_auth: 5614 SelectPtrauthAuth(Node); 5615 return; 5616 5617 case Intrinsic::ptrauth_resign: 5618 SelectPtrauthResign(Node); 5619 return; 5620 5621 case Intrinsic::aarch64_neon_tbl2: 5622 SelectTable(Node, 2, 5623 VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two, 5624 false); 5625 return; 5626 case Intrinsic::aarch64_neon_tbl3: 5627 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three 5628 : AArch64::TBLv16i8Three, 5629 false); 5630 return; 5631 case Intrinsic::aarch64_neon_tbl4: 5632 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four 5633 : AArch64::TBLv16i8Four, 5634 false); 5635 return; 5636 case Intrinsic::aarch64_neon_tbx2: 5637 SelectTable(Node, 2, 5638 VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two, 5639 true); 5640 return; 5641 case Intrinsic::aarch64_neon_tbx3: 5642 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three 5643 : AArch64::TBXv16i8Three, 5644 true); 5645 return; 5646 case Intrinsic::aarch64_neon_tbx4: 5647 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four 5648 : AArch64::TBXv16i8Four, 5649 true); 5650 return; 5651 case Intrinsic::aarch64_sve_srshl_single_x2: 5652 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5653 Node->getValueType(0), 5654 {AArch64::SRSHL_VG2_2ZZ_B, AArch64::SRSHL_VG2_2ZZ_H, 5655 AArch64::SRSHL_VG2_2ZZ_S, AArch64::SRSHL_VG2_2ZZ_D})) 5656 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 5657 return; 5658 case Intrinsic::aarch64_sve_srshl_single_x4: 5659 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5660 Node->getValueType(0), 5661 {AArch64::SRSHL_VG4_4ZZ_B, AArch64::SRSHL_VG4_4ZZ_H, 5662 AArch64::SRSHL_VG4_4ZZ_S, AArch64::SRSHL_VG4_4ZZ_D})) 5663 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 5664 return; 5665 case Intrinsic::aarch64_sve_urshl_single_x2: 5666 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5667 Node->getValueType(0), 5668 {AArch64::URSHL_VG2_2ZZ_B, AArch64::URSHL_VG2_2ZZ_H, 5669 AArch64::URSHL_VG2_2ZZ_S, AArch64::URSHL_VG2_2ZZ_D})) 5670 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 5671 return; 5672 case Intrinsic::aarch64_sve_urshl_single_x4: 5673 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5674 Node->getValueType(0), 5675 {AArch64::URSHL_VG4_4ZZ_B, AArch64::URSHL_VG4_4ZZ_H, 5676 AArch64::URSHL_VG4_4ZZ_S, AArch64::URSHL_VG4_4ZZ_D})) 5677 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 5678 return; 5679 case Intrinsic::aarch64_sve_srshl_x2: 5680 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5681 Node->getValueType(0), 5682 {AArch64::SRSHL_VG2_2Z2Z_B, AArch64::SRSHL_VG2_2Z2Z_H, 5683 AArch64::SRSHL_VG2_2Z2Z_S, AArch64::SRSHL_VG2_2Z2Z_D})) 5684 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5685 return; 5686 case Intrinsic::aarch64_sve_srshl_x4: 5687 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5688 Node->getValueType(0), 5689 {AArch64::SRSHL_VG4_4Z4Z_B, AArch64::SRSHL_VG4_4Z4Z_H, 5690 AArch64::SRSHL_VG4_4Z4Z_S, AArch64::SRSHL_VG4_4Z4Z_D})) 5691 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 5692 return; 5693 case Intrinsic::aarch64_sve_urshl_x2: 5694 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5695 Node->getValueType(0), 5696 {AArch64::URSHL_VG2_2Z2Z_B, AArch64::URSHL_VG2_2Z2Z_H, 5697 AArch64::URSHL_VG2_2Z2Z_S, AArch64::URSHL_VG2_2Z2Z_D})) 5698 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5699 return; 5700 case Intrinsic::aarch64_sve_urshl_x4: 5701 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5702 Node->getValueType(0), 5703 {AArch64::URSHL_VG4_4Z4Z_B, AArch64::URSHL_VG4_4Z4Z_H, 5704 AArch64::URSHL_VG4_4Z4Z_S, AArch64::URSHL_VG4_4Z4Z_D})) 5705 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 5706 return; 5707 case Intrinsic::aarch64_sve_sqdmulh_single_vgx2: 5708 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5709 Node->getValueType(0), 5710 {AArch64::SQDMULH_VG2_2ZZ_B, AArch64::SQDMULH_VG2_2ZZ_H, 5711 AArch64::SQDMULH_VG2_2ZZ_S, AArch64::SQDMULH_VG2_2ZZ_D})) 5712 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 5713 return; 5714 case Intrinsic::aarch64_sve_sqdmulh_single_vgx4: 5715 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5716 Node->getValueType(0), 5717 {AArch64::SQDMULH_VG4_4ZZ_B, AArch64::SQDMULH_VG4_4ZZ_H, 5718 AArch64::SQDMULH_VG4_4ZZ_S, AArch64::SQDMULH_VG4_4ZZ_D})) 5719 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 5720 return; 5721 case Intrinsic::aarch64_sve_sqdmulh_vgx2: 5722 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5723 Node->getValueType(0), 5724 {AArch64::SQDMULH_VG2_2Z2Z_B, AArch64::SQDMULH_VG2_2Z2Z_H, 5725 AArch64::SQDMULH_VG2_2Z2Z_S, AArch64::SQDMULH_VG2_2Z2Z_D})) 5726 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5727 return; 5728 case Intrinsic::aarch64_sve_sqdmulh_vgx4: 5729 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5730 Node->getValueType(0), 5731 {AArch64::SQDMULH_VG4_4Z4Z_B, AArch64::SQDMULH_VG4_4Z4Z_H, 5732 AArch64::SQDMULH_VG4_4Z4Z_S, AArch64::SQDMULH_VG4_4Z4Z_D})) 5733 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 5734 return; 5735 case Intrinsic::aarch64_sme_fp8_scale_single_x2: 5736 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5737 Node->getValueType(0), 5738 {0, AArch64::FSCALE_2ZZ_H, AArch64::FSCALE_2ZZ_S, 5739 AArch64::FSCALE_2ZZ_D})) 5740 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 5741 return; 5742 case Intrinsic::aarch64_sme_fp8_scale_single_x4: 5743 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5744 Node->getValueType(0), 5745 {0, AArch64::FSCALE_4ZZ_H, AArch64::FSCALE_4ZZ_S, 5746 AArch64::FSCALE_4ZZ_D})) 5747 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 5748 return; 5749 case Intrinsic::aarch64_sme_fp8_scale_x2: 5750 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5751 Node->getValueType(0), 5752 {0, AArch64::FSCALE_2Z2Z_H, AArch64::FSCALE_2Z2Z_S, 5753 AArch64::FSCALE_2Z2Z_D})) 5754 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5755 return; 5756 case Intrinsic::aarch64_sme_fp8_scale_x4: 5757 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5758 Node->getValueType(0), 5759 {0, AArch64::FSCALE_4Z4Z_H, AArch64::FSCALE_4Z4Z_S, 5760 AArch64::FSCALE_4Z4Z_D})) 5761 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 5762 return; 5763 case Intrinsic::aarch64_sve_whilege_x2: 5764 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>( 5765 Node->getValueType(0), 5766 {AArch64::WHILEGE_2PXX_B, AArch64::WHILEGE_2PXX_H, 5767 AArch64::WHILEGE_2PXX_S, AArch64::WHILEGE_2PXX_D})) 5768 SelectWhilePair(Node, Op); 5769 return; 5770 case Intrinsic::aarch64_sve_whilegt_x2: 5771 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>( 5772 Node->getValueType(0), 5773 {AArch64::WHILEGT_2PXX_B, AArch64::WHILEGT_2PXX_H, 5774 AArch64::WHILEGT_2PXX_S, AArch64::WHILEGT_2PXX_D})) 5775 SelectWhilePair(Node, Op); 5776 return; 5777 case Intrinsic::aarch64_sve_whilehi_x2: 5778 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>( 5779 Node->getValueType(0), 5780 {AArch64::WHILEHI_2PXX_B, AArch64::WHILEHI_2PXX_H, 5781 AArch64::WHILEHI_2PXX_S, AArch64::WHILEHI_2PXX_D})) 5782 SelectWhilePair(Node, Op); 5783 return; 5784 case Intrinsic::aarch64_sve_whilehs_x2: 5785 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>( 5786 Node->getValueType(0), 5787 {AArch64::WHILEHS_2PXX_B, AArch64::WHILEHS_2PXX_H, 5788 AArch64::WHILEHS_2PXX_S, AArch64::WHILEHS_2PXX_D})) 5789 SelectWhilePair(Node, Op); 5790 return; 5791 case Intrinsic::aarch64_sve_whilele_x2: 5792 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>( 5793 Node->getValueType(0), 5794 {AArch64::WHILELE_2PXX_B, AArch64::WHILELE_2PXX_H, 5795 AArch64::WHILELE_2PXX_S, AArch64::WHILELE_2PXX_D})) 5796 SelectWhilePair(Node, Op); 5797 return; 5798 case Intrinsic::aarch64_sve_whilelo_x2: 5799 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>( 5800 Node->getValueType(0), 5801 {AArch64::WHILELO_2PXX_B, AArch64::WHILELO_2PXX_H, 5802 AArch64::WHILELO_2PXX_S, AArch64::WHILELO_2PXX_D})) 5803 SelectWhilePair(Node, Op); 5804 return; 5805 case Intrinsic::aarch64_sve_whilels_x2: 5806 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>( 5807 Node->getValueType(0), 5808 {AArch64::WHILELS_2PXX_B, AArch64::WHILELS_2PXX_H, 5809 AArch64::WHILELS_2PXX_S, AArch64::WHILELS_2PXX_D})) 5810 SelectWhilePair(Node, Op); 5811 return; 5812 case Intrinsic::aarch64_sve_whilelt_x2: 5813 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>( 5814 Node->getValueType(0), 5815 {AArch64::WHILELT_2PXX_B, AArch64::WHILELT_2PXX_H, 5816 AArch64::WHILELT_2PXX_S, AArch64::WHILELT_2PXX_D})) 5817 SelectWhilePair(Node, Op); 5818 return; 5819 case Intrinsic::aarch64_sve_smax_single_x2: 5820 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5821 Node->getValueType(0), 5822 {AArch64::SMAX_VG2_2ZZ_B, AArch64::SMAX_VG2_2ZZ_H, 5823 AArch64::SMAX_VG2_2ZZ_S, AArch64::SMAX_VG2_2ZZ_D})) 5824 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 5825 return; 5826 case Intrinsic::aarch64_sve_umax_single_x2: 5827 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5828 Node->getValueType(0), 5829 {AArch64::UMAX_VG2_2ZZ_B, AArch64::UMAX_VG2_2ZZ_H, 5830 AArch64::UMAX_VG2_2ZZ_S, AArch64::UMAX_VG2_2ZZ_D})) 5831 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 5832 return; 5833 case Intrinsic::aarch64_sve_fmax_single_x2: 5834 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5835 Node->getValueType(0), 5836 {AArch64::BFMAX_VG2_2ZZ_H, AArch64::FMAX_VG2_2ZZ_H, 5837 AArch64::FMAX_VG2_2ZZ_S, AArch64::FMAX_VG2_2ZZ_D})) 5838 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 5839 return; 5840 case Intrinsic::aarch64_sve_smax_single_x4: 5841 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5842 Node->getValueType(0), 5843 {AArch64::SMAX_VG4_4ZZ_B, AArch64::SMAX_VG4_4ZZ_H, 5844 AArch64::SMAX_VG4_4ZZ_S, AArch64::SMAX_VG4_4ZZ_D})) 5845 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 5846 return; 5847 case Intrinsic::aarch64_sve_umax_single_x4: 5848 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5849 Node->getValueType(0), 5850 {AArch64::UMAX_VG4_4ZZ_B, AArch64::UMAX_VG4_4ZZ_H, 5851 AArch64::UMAX_VG4_4ZZ_S, AArch64::UMAX_VG4_4ZZ_D})) 5852 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 5853 return; 5854 case Intrinsic::aarch64_sve_fmax_single_x4: 5855 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5856 Node->getValueType(0), 5857 {AArch64::BFMAX_VG4_4ZZ_H, AArch64::FMAX_VG4_4ZZ_H, 5858 AArch64::FMAX_VG4_4ZZ_S, AArch64::FMAX_VG4_4ZZ_D})) 5859 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 5860 return; 5861 case Intrinsic::aarch64_sve_smin_single_x2: 5862 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5863 Node->getValueType(0), 5864 {AArch64::SMIN_VG2_2ZZ_B, AArch64::SMIN_VG2_2ZZ_H, 5865 AArch64::SMIN_VG2_2ZZ_S, AArch64::SMIN_VG2_2ZZ_D})) 5866 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 5867 return; 5868 case Intrinsic::aarch64_sve_umin_single_x2: 5869 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5870 Node->getValueType(0), 5871 {AArch64::UMIN_VG2_2ZZ_B, AArch64::UMIN_VG2_2ZZ_H, 5872 AArch64::UMIN_VG2_2ZZ_S, AArch64::UMIN_VG2_2ZZ_D})) 5873 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 5874 return; 5875 case Intrinsic::aarch64_sve_fmin_single_x2: 5876 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5877 Node->getValueType(0), 5878 {AArch64::BFMIN_VG2_2ZZ_H, AArch64::FMIN_VG2_2ZZ_H, 5879 AArch64::FMIN_VG2_2ZZ_S, AArch64::FMIN_VG2_2ZZ_D})) 5880 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 5881 return; 5882 case Intrinsic::aarch64_sve_smin_single_x4: 5883 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5884 Node->getValueType(0), 5885 {AArch64::SMIN_VG4_4ZZ_B, AArch64::SMIN_VG4_4ZZ_H, 5886 AArch64::SMIN_VG4_4ZZ_S, AArch64::SMIN_VG4_4ZZ_D})) 5887 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 5888 return; 5889 case Intrinsic::aarch64_sve_umin_single_x4: 5890 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5891 Node->getValueType(0), 5892 {AArch64::UMIN_VG4_4ZZ_B, AArch64::UMIN_VG4_4ZZ_H, 5893 AArch64::UMIN_VG4_4ZZ_S, AArch64::UMIN_VG4_4ZZ_D})) 5894 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 5895 return; 5896 case Intrinsic::aarch64_sve_fmin_single_x4: 5897 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5898 Node->getValueType(0), 5899 {AArch64::BFMIN_VG4_4ZZ_H, AArch64::FMIN_VG4_4ZZ_H, 5900 AArch64::FMIN_VG4_4ZZ_S, AArch64::FMIN_VG4_4ZZ_D})) 5901 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 5902 return; 5903 case Intrinsic::aarch64_sve_smax_x2: 5904 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5905 Node->getValueType(0), 5906 {AArch64::SMAX_VG2_2Z2Z_B, AArch64::SMAX_VG2_2Z2Z_H, 5907 AArch64::SMAX_VG2_2Z2Z_S, AArch64::SMAX_VG2_2Z2Z_D})) 5908 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5909 return; 5910 case Intrinsic::aarch64_sve_umax_x2: 5911 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5912 Node->getValueType(0), 5913 {AArch64::UMAX_VG2_2Z2Z_B, AArch64::UMAX_VG2_2Z2Z_H, 5914 AArch64::UMAX_VG2_2Z2Z_S, AArch64::UMAX_VG2_2Z2Z_D})) 5915 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5916 return; 5917 case Intrinsic::aarch64_sve_fmax_x2: 5918 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5919 Node->getValueType(0), 5920 {AArch64::BFMAX_VG2_2Z2Z_H, AArch64::FMAX_VG2_2Z2Z_H, 5921 AArch64::FMAX_VG2_2Z2Z_S, AArch64::FMAX_VG2_2Z2Z_D})) 5922 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5923 return; 5924 case Intrinsic::aarch64_sve_smax_x4: 5925 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5926 Node->getValueType(0), 5927 {AArch64::SMAX_VG4_4Z4Z_B, AArch64::SMAX_VG4_4Z4Z_H, 5928 AArch64::SMAX_VG4_4Z4Z_S, AArch64::SMAX_VG4_4Z4Z_D})) 5929 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 5930 return; 5931 case Intrinsic::aarch64_sve_umax_x4: 5932 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5933 Node->getValueType(0), 5934 {AArch64::UMAX_VG4_4Z4Z_B, AArch64::UMAX_VG4_4Z4Z_H, 5935 AArch64::UMAX_VG4_4Z4Z_S, AArch64::UMAX_VG4_4Z4Z_D})) 5936 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 5937 return; 5938 case Intrinsic::aarch64_sve_fmax_x4: 5939 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5940 Node->getValueType(0), 5941 {AArch64::BFMAX_VG4_4Z2Z_H, AArch64::FMAX_VG4_4Z4Z_H, 5942 AArch64::FMAX_VG4_4Z4Z_S, AArch64::FMAX_VG4_4Z4Z_D})) 5943 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 5944 return; 5945 case Intrinsic::aarch64_sme_famax_x2: 5946 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5947 Node->getValueType(0), 5948 {0, AArch64::FAMAX_2Z2Z_H, AArch64::FAMAX_2Z2Z_S, 5949 AArch64::FAMAX_2Z2Z_D})) 5950 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5951 return; 5952 case Intrinsic::aarch64_sme_famax_x4: 5953 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5954 Node->getValueType(0), 5955 {0, AArch64::FAMAX_4Z4Z_H, AArch64::FAMAX_4Z4Z_S, 5956 AArch64::FAMAX_4Z4Z_D})) 5957 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 5958 return; 5959 case Intrinsic::aarch64_sme_famin_x2: 5960 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5961 Node->getValueType(0), 5962 {0, AArch64::FAMIN_2Z2Z_H, AArch64::FAMIN_2Z2Z_S, 5963 AArch64::FAMIN_2Z2Z_D})) 5964 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5965 return; 5966 case Intrinsic::aarch64_sme_famin_x4: 5967 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5968 Node->getValueType(0), 5969 {0, AArch64::FAMIN_4Z4Z_H, AArch64::FAMIN_4Z4Z_S, 5970 AArch64::FAMIN_4Z4Z_D})) 5971 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 5972 return; 5973 case Intrinsic::aarch64_sve_smin_x2: 5974 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5975 Node->getValueType(0), 5976 {AArch64::SMIN_VG2_2Z2Z_B, AArch64::SMIN_VG2_2Z2Z_H, 5977 AArch64::SMIN_VG2_2Z2Z_S, AArch64::SMIN_VG2_2Z2Z_D})) 5978 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5979 return; 5980 case Intrinsic::aarch64_sve_umin_x2: 5981 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5982 Node->getValueType(0), 5983 {AArch64::UMIN_VG2_2Z2Z_B, AArch64::UMIN_VG2_2Z2Z_H, 5984 AArch64::UMIN_VG2_2Z2Z_S, AArch64::UMIN_VG2_2Z2Z_D})) 5985 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5986 return; 5987 case Intrinsic::aarch64_sve_fmin_x2: 5988 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 5989 Node->getValueType(0), 5990 {AArch64::BFMIN_VG2_2Z2Z_H, AArch64::FMIN_VG2_2Z2Z_H, 5991 AArch64::FMIN_VG2_2Z2Z_S, AArch64::FMIN_VG2_2Z2Z_D})) 5992 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 5993 return; 5994 case Intrinsic::aarch64_sve_smin_x4: 5995 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 5996 Node->getValueType(0), 5997 {AArch64::SMIN_VG4_4Z4Z_B, AArch64::SMIN_VG4_4Z4Z_H, 5998 AArch64::SMIN_VG4_4Z4Z_S, AArch64::SMIN_VG4_4Z4Z_D})) 5999 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 6000 return; 6001 case Intrinsic::aarch64_sve_umin_x4: 6002 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6003 Node->getValueType(0), 6004 {AArch64::UMIN_VG4_4Z4Z_B, AArch64::UMIN_VG4_4Z4Z_H, 6005 AArch64::UMIN_VG4_4Z4Z_S, AArch64::UMIN_VG4_4Z4Z_D})) 6006 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 6007 return; 6008 case Intrinsic::aarch64_sve_fmin_x4: 6009 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6010 Node->getValueType(0), 6011 {AArch64::BFMIN_VG4_4Z2Z_H, AArch64::FMIN_VG4_4Z4Z_H, 6012 AArch64::FMIN_VG4_4Z4Z_S, AArch64::FMIN_VG4_4Z4Z_D})) 6013 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 6014 return; 6015 case Intrinsic::aarch64_sve_fmaxnm_single_x2 : 6016 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6017 Node->getValueType(0), 6018 {AArch64::BFMAXNM_VG2_2ZZ_H, AArch64::FMAXNM_VG2_2ZZ_H, 6019 AArch64::FMAXNM_VG2_2ZZ_S, AArch64::FMAXNM_VG2_2ZZ_D})) 6020 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 6021 return; 6022 case Intrinsic::aarch64_sve_fmaxnm_single_x4 : 6023 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6024 Node->getValueType(0), 6025 {AArch64::BFMAXNM_VG4_4ZZ_H, AArch64::FMAXNM_VG4_4ZZ_H, 6026 AArch64::FMAXNM_VG4_4ZZ_S, AArch64::FMAXNM_VG4_4ZZ_D})) 6027 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 6028 return; 6029 case Intrinsic::aarch64_sve_fminnm_single_x2: 6030 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6031 Node->getValueType(0), 6032 {AArch64::BFMINNM_VG2_2ZZ_H, AArch64::FMINNM_VG2_2ZZ_H, 6033 AArch64::FMINNM_VG2_2ZZ_S, AArch64::FMINNM_VG2_2ZZ_D})) 6034 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 6035 return; 6036 case Intrinsic::aarch64_sve_fminnm_single_x4: 6037 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6038 Node->getValueType(0), 6039 {AArch64::BFMINNM_VG4_4ZZ_H, AArch64::FMINNM_VG4_4ZZ_H, 6040 AArch64::FMINNM_VG4_4ZZ_S, AArch64::FMINNM_VG4_4ZZ_D})) 6041 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 6042 return; 6043 case Intrinsic::aarch64_sve_fmaxnm_x2: 6044 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6045 Node->getValueType(0), 6046 {AArch64::BFMAXNM_VG2_2Z2Z_H, AArch64::FMAXNM_VG2_2Z2Z_H, 6047 AArch64::FMAXNM_VG2_2Z2Z_S, AArch64::FMAXNM_VG2_2Z2Z_D})) 6048 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 6049 return; 6050 case Intrinsic::aarch64_sve_fmaxnm_x4: 6051 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6052 Node->getValueType(0), 6053 {AArch64::BFMAXNM_VG4_4Z2Z_H, AArch64::FMAXNM_VG4_4Z4Z_H, 6054 AArch64::FMAXNM_VG4_4Z4Z_S, AArch64::FMAXNM_VG4_4Z4Z_D})) 6055 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 6056 return; 6057 case Intrinsic::aarch64_sve_fminnm_x2: 6058 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6059 Node->getValueType(0), 6060 {AArch64::BFMINNM_VG2_2Z2Z_H, AArch64::FMINNM_VG2_2Z2Z_H, 6061 AArch64::FMINNM_VG2_2Z2Z_S, AArch64::FMINNM_VG2_2Z2Z_D})) 6062 SelectDestructiveMultiIntrinsic(Node, 2, true, Op); 6063 return; 6064 case Intrinsic::aarch64_sve_fminnm_x4: 6065 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6066 Node->getValueType(0), 6067 {AArch64::BFMINNM_VG4_4Z2Z_H, AArch64::FMINNM_VG4_4Z4Z_H, 6068 AArch64::FMINNM_VG4_4Z4Z_S, AArch64::FMINNM_VG4_4Z4Z_D})) 6069 SelectDestructiveMultiIntrinsic(Node, 4, true, Op); 6070 return; 6071 case Intrinsic::aarch64_sve_fcvtzs_x2: 6072 SelectCVTIntrinsic(Node, 2, AArch64::FCVTZS_2Z2Z_StoS); 6073 return; 6074 case Intrinsic::aarch64_sve_scvtf_x2: 6075 SelectCVTIntrinsic(Node, 2, AArch64::SCVTF_2Z2Z_StoS); 6076 return; 6077 case Intrinsic::aarch64_sve_fcvtzu_x2: 6078 SelectCVTIntrinsic(Node, 2, AArch64::FCVTZU_2Z2Z_StoS); 6079 return; 6080 case Intrinsic::aarch64_sve_ucvtf_x2: 6081 SelectCVTIntrinsic(Node, 2, AArch64::UCVTF_2Z2Z_StoS); 6082 return; 6083 case Intrinsic::aarch64_sve_fcvtzs_x4: 6084 SelectCVTIntrinsic(Node, 4, AArch64::FCVTZS_4Z4Z_StoS); 6085 return; 6086 case Intrinsic::aarch64_sve_scvtf_x4: 6087 SelectCVTIntrinsic(Node, 4, AArch64::SCVTF_4Z4Z_StoS); 6088 return; 6089 case Intrinsic::aarch64_sve_fcvtzu_x4: 6090 SelectCVTIntrinsic(Node, 4, AArch64::FCVTZU_4Z4Z_StoS); 6091 return; 6092 case Intrinsic::aarch64_sve_ucvtf_x4: 6093 SelectCVTIntrinsic(Node, 4, AArch64::UCVTF_4Z4Z_StoS); 6094 return; 6095 case Intrinsic::aarch64_sve_fcvt_widen_x2: 6096 SelectUnaryMultiIntrinsic(Node, 2, false, AArch64::FCVT_2ZZ_H_S); 6097 return; 6098 case Intrinsic::aarch64_sve_fcvtl_widen_x2: 6099 SelectUnaryMultiIntrinsic(Node, 2, false, AArch64::FCVTL_2ZZ_H_S); 6100 return; 6101 case Intrinsic::aarch64_sve_sclamp_single_x2: 6102 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6103 Node->getValueType(0), 6104 {AArch64::SCLAMP_VG2_2Z2Z_B, AArch64::SCLAMP_VG2_2Z2Z_H, 6105 AArch64::SCLAMP_VG2_2Z2Z_S, AArch64::SCLAMP_VG2_2Z2Z_D})) 6106 SelectClamp(Node, 2, Op); 6107 return; 6108 case Intrinsic::aarch64_sve_uclamp_single_x2: 6109 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6110 Node->getValueType(0), 6111 {AArch64::UCLAMP_VG2_2Z2Z_B, AArch64::UCLAMP_VG2_2Z2Z_H, 6112 AArch64::UCLAMP_VG2_2Z2Z_S, AArch64::UCLAMP_VG2_2Z2Z_D})) 6113 SelectClamp(Node, 2, Op); 6114 return; 6115 case Intrinsic::aarch64_sve_fclamp_single_x2: 6116 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6117 Node->getValueType(0), 6118 {0, AArch64::FCLAMP_VG2_2Z2Z_H, AArch64::FCLAMP_VG2_2Z2Z_S, 6119 AArch64::FCLAMP_VG2_2Z2Z_D})) 6120 SelectClamp(Node, 2, Op); 6121 return; 6122 case Intrinsic::aarch64_sve_bfclamp_single_x2: 6123 SelectClamp(Node, 2, AArch64::BFCLAMP_VG2_2ZZZ_H); 6124 return; 6125 case Intrinsic::aarch64_sve_sclamp_single_x4: 6126 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6127 Node->getValueType(0), 6128 {AArch64::SCLAMP_VG4_4Z4Z_B, AArch64::SCLAMP_VG4_4Z4Z_H, 6129 AArch64::SCLAMP_VG4_4Z4Z_S, AArch64::SCLAMP_VG4_4Z4Z_D})) 6130 SelectClamp(Node, 4, Op); 6131 return; 6132 case Intrinsic::aarch64_sve_uclamp_single_x4: 6133 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6134 Node->getValueType(0), 6135 {AArch64::UCLAMP_VG4_4Z4Z_B, AArch64::UCLAMP_VG4_4Z4Z_H, 6136 AArch64::UCLAMP_VG4_4Z4Z_S, AArch64::UCLAMP_VG4_4Z4Z_D})) 6137 SelectClamp(Node, 4, Op); 6138 return; 6139 case Intrinsic::aarch64_sve_fclamp_single_x4: 6140 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>( 6141 Node->getValueType(0), 6142 {0, AArch64::FCLAMP_VG4_4Z4Z_H, AArch64::FCLAMP_VG4_4Z4Z_S, 6143 AArch64::FCLAMP_VG4_4Z4Z_D})) 6144 SelectClamp(Node, 4, Op); 6145 return; 6146 case Intrinsic::aarch64_sve_bfclamp_single_x4: 6147 SelectClamp(Node, 4, AArch64::BFCLAMP_VG4_4ZZZ_H); 6148 return; 6149 case Intrinsic::aarch64_sve_add_single_x2: 6150 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6151 Node->getValueType(0), 6152 {AArch64::ADD_VG2_2ZZ_B, AArch64::ADD_VG2_2ZZ_H, 6153 AArch64::ADD_VG2_2ZZ_S, AArch64::ADD_VG2_2ZZ_D})) 6154 SelectDestructiveMultiIntrinsic(Node, 2, false, Op); 6155 return; 6156 case Intrinsic::aarch64_sve_add_single_x4: 6157 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6158 Node->getValueType(0), 6159 {AArch64::ADD_VG4_4ZZ_B, AArch64::ADD_VG4_4ZZ_H, 6160 AArch64::ADD_VG4_4ZZ_S, AArch64::ADD_VG4_4ZZ_D})) 6161 SelectDestructiveMultiIntrinsic(Node, 4, false, Op); 6162 return; 6163 case Intrinsic::aarch64_sve_zip_x2: 6164 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 6165 Node->getValueType(0), 6166 {AArch64::ZIP_VG2_2ZZZ_B, AArch64::ZIP_VG2_2ZZZ_H, 6167 AArch64::ZIP_VG2_2ZZZ_S, AArch64::ZIP_VG2_2ZZZ_D})) 6168 SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op); 6169 return; 6170 case Intrinsic::aarch64_sve_zipq_x2: 6171 SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, 6172 AArch64::ZIP_VG2_2ZZZ_Q); 6173 return; 6174 case Intrinsic::aarch64_sve_zip_x4: 6175 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 6176 Node->getValueType(0), 6177 {AArch64::ZIP_VG4_4Z4Z_B, AArch64::ZIP_VG4_4Z4Z_H, 6178 AArch64::ZIP_VG4_4Z4Z_S, AArch64::ZIP_VG4_4Z4Z_D})) 6179 SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op); 6180 return; 6181 case Intrinsic::aarch64_sve_zipq_x4: 6182 SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, 6183 AArch64::ZIP_VG4_4Z4Z_Q); 6184 return; 6185 case Intrinsic::aarch64_sve_uzp_x2: 6186 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 6187 Node->getValueType(0), 6188 {AArch64::UZP_VG2_2ZZZ_B, AArch64::UZP_VG2_2ZZZ_H, 6189 AArch64::UZP_VG2_2ZZZ_S, AArch64::UZP_VG2_2ZZZ_D})) 6190 SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op); 6191 return; 6192 case Intrinsic::aarch64_sve_uzpq_x2: 6193 SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, 6194 AArch64::UZP_VG2_2ZZZ_Q); 6195 return; 6196 case Intrinsic::aarch64_sve_uzp_x4: 6197 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 6198 Node->getValueType(0), 6199 {AArch64::UZP_VG4_4Z4Z_B, AArch64::UZP_VG4_4Z4Z_H, 6200 AArch64::UZP_VG4_4Z4Z_S, AArch64::UZP_VG4_4Z4Z_D})) 6201 SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op); 6202 return; 6203 case Intrinsic::aarch64_sve_uzpq_x4: 6204 SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, 6205 AArch64::UZP_VG4_4Z4Z_Q); 6206 return; 6207 case Intrinsic::aarch64_sve_sel_x2: 6208 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 6209 Node->getValueType(0), 6210 {AArch64::SEL_VG2_2ZC2Z2Z_B, AArch64::SEL_VG2_2ZC2Z2Z_H, 6211 AArch64::SEL_VG2_2ZC2Z2Z_S, AArch64::SEL_VG2_2ZC2Z2Z_D})) 6212 SelectDestructiveMultiIntrinsic(Node, 2, true, Op, /*HasPred=*/true); 6213 return; 6214 case Intrinsic::aarch64_sve_sel_x4: 6215 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 6216 Node->getValueType(0), 6217 {AArch64::SEL_VG4_4ZC4Z4Z_B, AArch64::SEL_VG4_4ZC4Z4Z_H, 6218 AArch64::SEL_VG4_4ZC4Z4Z_S, AArch64::SEL_VG4_4ZC4Z4Z_D})) 6219 SelectDestructiveMultiIntrinsic(Node, 4, true, Op, /*HasPred=*/true); 6220 return; 6221 case Intrinsic::aarch64_sve_frinta_x2: 6222 SelectFrintFromVT(Node, 2, AArch64::FRINTA_2Z2Z_S); 6223 return; 6224 case Intrinsic::aarch64_sve_frinta_x4: 6225 SelectFrintFromVT(Node, 4, AArch64::FRINTA_4Z4Z_S); 6226 return; 6227 case Intrinsic::aarch64_sve_frintm_x2: 6228 SelectFrintFromVT(Node, 2, AArch64::FRINTM_2Z2Z_S); 6229 return; 6230 case Intrinsic::aarch64_sve_frintm_x4: 6231 SelectFrintFromVT(Node, 4, AArch64::FRINTM_4Z4Z_S); 6232 return; 6233 case Intrinsic::aarch64_sve_frintn_x2: 6234 SelectFrintFromVT(Node, 2, AArch64::FRINTN_2Z2Z_S); 6235 return; 6236 case Intrinsic::aarch64_sve_frintn_x4: 6237 SelectFrintFromVT(Node, 4, AArch64::FRINTN_4Z4Z_S); 6238 return; 6239 case Intrinsic::aarch64_sve_frintp_x2: 6240 SelectFrintFromVT(Node, 2, AArch64::FRINTP_2Z2Z_S); 6241 return; 6242 case Intrinsic::aarch64_sve_frintp_x4: 6243 SelectFrintFromVT(Node, 4, AArch64::FRINTP_4Z4Z_S); 6244 return; 6245 case Intrinsic::aarch64_sve_sunpk_x2: 6246 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6247 Node->getValueType(0), 6248 {0, AArch64::SUNPK_VG2_2ZZ_H, AArch64::SUNPK_VG2_2ZZ_S, 6249 AArch64::SUNPK_VG2_2ZZ_D})) 6250 SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op); 6251 return; 6252 case Intrinsic::aarch64_sve_uunpk_x2: 6253 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6254 Node->getValueType(0), 6255 {0, AArch64::UUNPK_VG2_2ZZ_H, AArch64::UUNPK_VG2_2ZZ_S, 6256 AArch64::UUNPK_VG2_2ZZ_D})) 6257 SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op); 6258 return; 6259 case Intrinsic::aarch64_sve_sunpk_x4: 6260 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6261 Node->getValueType(0), 6262 {0, AArch64::SUNPK_VG4_4Z2Z_H, AArch64::SUNPK_VG4_4Z2Z_S, 6263 AArch64::SUNPK_VG4_4Z2Z_D})) 6264 SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op); 6265 return; 6266 case Intrinsic::aarch64_sve_uunpk_x4: 6267 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>( 6268 Node->getValueType(0), 6269 {0, AArch64::UUNPK_VG4_4Z2Z_H, AArch64::UUNPK_VG4_4Z2Z_S, 6270 AArch64::UUNPK_VG4_4Z2Z_D})) 6271 SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op); 6272 return; 6273 case Intrinsic::aarch64_sve_pext_x2: { 6274 if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>( 6275 Node->getValueType(0), 6276 {AArch64::PEXT_2PCI_B, AArch64::PEXT_2PCI_H, AArch64::PEXT_2PCI_S, 6277 AArch64::PEXT_2PCI_D})) 6278 SelectPExtPair(Node, Op); 6279 return; 6280 } 6281 } 6282 break; 6283 } 6284 case ISD::INTRINSIC_VOID: { 6285 unsigned IntNo = Node->getConstantOperandVal(1); 6286 if (Node->getNumOperands() >= 3) 6287 VT = Node->getOperand(2)->getValueType(0); 6288 switch (IntNo) { 6289 default: 6290 break; 6291 case Intrinsic::aarch64_neon_st1x2: { 6292 if (VT == MVT::v8i8) { 6293 SelectStore(Node, 2, AArch64::ST1Twov8b); 6294 return; 6295 } else if (VT == MVT::v16i8) { 6296 SelectStore(Node, 2, AArch64::ST1Twov16b); 6297 return; 6298 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || 6299 VT == MVT::v4bf16) { 6300 SelectStore(Node, 2, AArch64::ST1Twov4h); 6301 return; 6302 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || 6303 VT == MVT::v8bf16) { 6304 SelectStore(Node, 2, AArch64::ST1Twov8h); 6305 return; 6306 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6307 SelectStore(Node, 2, AArch64::ST1Twov2s); 6308 return; 6309 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6310 SelectStore(Node, 2, AArch64::ST1Twov4s); 6311 return; 6312 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6313 SelectStore(Node, 2, AArch64::ST1Twov2d); 6314 return; 6315 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6316 SelectStore(Node, 2, AArch64::ST1Twov1d); 6317 return; 6318 } 6319 break; 6320 } 6321 case Intrinsic::aarch64_neon_st1x3: { 6322 if (VT == MVT::v8i8) { 6323 SelectStore(Node, 3, AArch64::ST1Threev8b); 6324 return; 6325 } else if (VT == MVT::v16i8) { 6326 SelectStore(Node, 3, AArch64::ST1Threev16b); 6327 return; 6328 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || 6329 VT == MVT::v4bf16) { 6330 SelectStore(Node, 3, AArch64::ST1Threev4h); 6331 return; 6332 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || 6333 VT == MVT::v8bf16) { 6334 SelectStore(Node, 3, AArch64::ST1Threev8h); 6335 return; 6336 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6337 SelectStore(Node, 3, AArch64::ST1Threev2s); 6338 return; 6339 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6340 SelectStore(Node, 3, AArch64::ST1Threev4s); 6341 return; 6342 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6343 SelectStore(Node, 3, AArch64::ST1Threev2d); 6344 return; 6345 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6346 SelectStore(Node, 3, AArch64::ST1Threev1d); 6347 return; 6348 } 6349 break; 6350 } 6351 case Intrinsic::aarch64_neon_st1x4: { 6352 if (VT == MVT::v8i8) { 6353 SelectStore(Node, 4, AArch64::ST1Fourv8b); 6354 return; 6355 } else if (VT == MVT::v16i8) { 6356 SelectStore(Node, 4, AArch64::ST1Fourv16b); 6357 return; 6358 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || 6359 VT == MVT::v4bf16) { 6360 SelectStore(Node, 4, AArch64::ST1Fourv4h); 6361 return; 6362 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || 6363 VT == MVT::v8bf16) { 6364 SelectStore(Node, 4, AArch64::ST1Fourv8h); 6365 return; 6366 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6367 SelectStore(Node, 4, AArch64::ST1Fourv2s); 6368 return; 6369 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6370 SelectStore(Node, 4, AArch64::ST1Fourv4s); 6371 return; 6372 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6373 SelectStore(Node, 4, AArch64::ST1Fourv2d); 6374 return; 6375 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6376 SelectStore(Node, 4, AArch64::ST1Fourv1d); 6377 return; 6378 } 6379 break; 6380 } 6381 case Intrinsic::aarch64_neon_st2: { 6382 if (VT == MVT::v8i8) { 6383 SelectStore(Node, 2, AArch64::ST2Twov8b); 6384 return; 6385 } else if (VT == MVT::v16i8) { 6386 SelectStore(Node, 2, AArch64::ST2Twov16b); 6387 return; 6388 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || 6389 VT == MVT::v4bf16) { 6390 SelectStore(Node, 2, AArch64::ST2Twov4h); 6391 return; 6392 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || 6393 VT == MVT::v8bf16) { 6394 SelectStore(Node, 2, AArch64::ST2Twov8h); 6395 return; 6396 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6397 SelectStore(Node, 2, AArch64::ST2Twov2s); 6398 return; 6399 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6400 SelectStore(Node, 2, AArch64::ST2Twov4s); 6401 return; 6402 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6403 SelectStore(Node, 2, AArch64::ST2Twov2d); 6404 return; 6405 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6406 SelectStore(Node, 2, AArch64::ST1Twov1d); 6407 return; 6408 } 6409 break; 6410 } 6411 case Intrinsic::aarch64_neon_st3: { 6412 if (VT == MVT::v8i8) { 6413 SelectStore(Node, 3, AArch64::ST3Threev8b); 6414 return; 6415 } else if (VT == MVT::v16i8) { 6416 SelectStore(Node, 3, AArch64::ST3Threev16b); 6417 return; 6418 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || 6419 VT == MVT::v4bf16) { 6420 SelectStore(Node, 3, AArch64::ST3Threev4h); 6421 return; 6422 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || 6423 VT == MVT::v8bf16) { 6424 SelectStore(Node, 3, AArch64::ST3Threev8h); 6425 return; 6426 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6427 SelectStore(Node, 3, AArch64::ST3Threev2s); 6428 return; 6429 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6430 SelectStore(Node, 3, AArch64::ST3Threev4s); 6431 return; 6432 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6433 SelectStore(Node, 3, AArch64::ST3Threev2d); 6434 return; 6435 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6436 SelectStore(Node, 3, AArch64::ST1Threev1d); 6437 return; 6438 } 6439 break; 6440 } 6441 case Intrinsic::aarch64_neon_st4: { 6442 if (VT == MVT::v8i8) { 6443 SelectStore(Node, 4, AArch64::ST4Fourv8b); 6444 return; 6445 } else if (VT == MVT::v16i8) { 6446 SelectStore(Node, 4, AArch64::ST4Fourv16b); 6447 return; 6448 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || 6449 VT == MVT::v4bf16) { 6450 SelectStore(Node, 4, AArch64::ST4Fourv4h); 6451 return; 6452 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || 6453 VT == MVT::v8bf16) { 6454 SelectStore(Node, 4, AArch64::ST4Fourv8h); 6455 return; 6456 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6457 SelectStore(Node, 4, AArch64::ST4Fourv2s); 6458 return; 6459 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6460 SelectStore(Node, 4, AArch64::ST4Fourv4s); 6461 return; 6462 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6463 SelectStore(Node, 4, AArch64::ST4Fourv2d); 6464 return; 6465 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6466 SelectStore(Node, 4, AArch64::ST1Fourv1d); 6467 return; 6468 } 6469 break; 6470 } 6471 case Intrinsic::aarch64_neon_st2lane: { 6472 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 6473 SelectStoreLane(Node, 2, AArch64::ST2i8); 6474 return; 6475 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 6476 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 6477 SelectStoreLane(Node, 2, AArch64::ST2i16); 6478 return; 6479 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 6480 VT == MVT::v2f32) { 6481 SelectStoreLane(Node, 2, AArch64::ST2i32); 6482 return; 6483 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 6484 VT == MVT::v1f64) { 6485 SelectStoreLane(Node, 2, AArch64::ST2i64); 6486 return; 6487 } 6488 break; 6489 } 6490 case Intrinsic::aarch64_neon_st3lane: { 6491 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 6492 SelectStoreLane(Node, 3, AArch64::ST3i8); 6493 return; 6494 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 6495 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 6496 SelectStoreLane(Node, 3, AArch64::ST3i16); 6497 return; 6498 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 6499 VT == MVT::v2f32) { 6500 SelectStoreLane(Node, 3, AArch64::ST3i32); 6501 return; 6502 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 6503 VT == MVT::v1f64) { 6504 SelectStoreLane(Node, 3, AArch64::ST3i64); 6505 return; 6506 } 6507 break; 6508 } 6509 case Intrinsic::aarch64_neon_st4lane: { 6510 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 6511 SelectStoreLane(Node, 4, AArch64::ST4i8); 6512 return; 6513 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 6514 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 6515 SelectStoreLane(Node, 4, AArch64::ST4i16); 6516 return; 6517 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 6518 VT == MVT::v2f32) { 6519 SelectStoreLane(Node, 4, AArch64::ST4i32); 6520 return; 6521 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 6522 VT == MVT::v1f64) { 6523 SelectStoreLane(Node, 4, AArch64::ST4i64); 6524 return; 6525 } 6526 break; 6527 } 6528 case Intrinsic::aarch64_sve_st2q: { 6529 SelectPredicatedStore(Node, 2, 4, AArch64::ST2Q, AArch64::ST2Q_IMM); 6530 return; 6531 } 6532 case Intrinsic::aarch64_sve_st3q: { 6533 SelectPredicatedStore(Node, 3, 4, AArch64::ST3Q, AArch64::ST3Q_IMM); 6534 return; 6535 } 6536 case Intrinsic::aarch64_sve_st4q: { 6537 SelectPredicatedStore(Node, 4, 4, AArch64::ST4Q, AArch64::ST4Q_IMM); 6538 return; 6539 } 6540 case Intrinsic::aarch64_sve_st2: { 6541 if (VT == MVT::nxv16i8) { 6542 SelectPredicatedStore(Node, 2, 0, AArch64::ST2B, AArch64::ST2B_IMM); 6543 return; 6544 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 6545 VT == MVT::nxv8bf16) { 6546 SelectPredicatedStore(Node, 2, 1, AArch64::ST2H, AArch64::ST2H_IMM); 6547 return; 6548 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 6549 SelectPredicatedStore(Node, 2, 2, AArch64::ST2W, AArch64::ST2W_IMM); 6550 return; 6551 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 6552 SelectPredicatedStore(Node, 2, 3, AArch64::ST2D, AArch64::ST2D_IMM); 6553 return; 6554 } 6555 break; 6556 } 6557 case Intrinsic::aarch64_sve_st3: { 6558 if (VT == MVT::nxv16i8) { 6559 SelectPredicatedStore(Node, 3, 0, AArch64::ST3B, AArch64::ST3B_IMM); 6560 return; 6561 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 6562 VT == MVT::nxv8bf16) { 6563 SelectPredicatedStore(Node, 3, 1, AArch64::ST3H, AArch64::ST3H_IMM); 6564 return; 6565 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 6566 SelectPredicatedStore(Node, 3, 2, AArch64::ST3W, AArch64::ST3W_IMM); 6567 return; 6568 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 6569 SelectPredicatedStore(Node, 3, 3, AArch64::ST3D, AArch64::ST3D_IMM); 6570 return; 6571 } 6572 break; 6573 } 6574 case Intrinsic::aarch64_sve_st4: { 6575 if (VT == MVT::nxv16i8) { 6576 SelectPredicatedStore(Node, 4, 0, AArch64::ST4B, AArch64::ST4B_IMM); 6577 return; 6578 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 6579 VT == MVT::nxv8bf16) { 6580 SelectPredicatedStore(Node, 4, 1, AArch64::ST4H, AArch64::ST4H_IMM); 6581 return; 6582 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 6583 SelectPredicatedStore(Node, 4, 2, AArch64::ST4W, AArch64::ST4W_IMM); 6584 return; 6585 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 6586 SelectPredicatedStore(Node, 4, 3, AArch64::ST4D, AArch64::ST4D_IMM); 6587 return; 6588 } 6589 break; 6590 } 6591 } 6592 break; 6593 } 6594 case AArch64ISD::LD2post: { 6595 if (VT == MVT::v8i8) { 6596 SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0); 6597 return; 6598 } else if (VT == MVT::v16i8) { 6599 SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0); 6600 return; 6601 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6602 SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0); 6603 return; 6604 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6605 SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0); 6606 return; 6607 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6608 SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0); 6609 return; 6610 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6611 SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0); 6612 return; 6613 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6614 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0); 6615 return; 6616 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6617 SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0); 6618 return; 6619 } 6620 break; 6621 } 6622 case AArch64ISD::LD3post: { 6623 if (VT == MVT::v8i8) { 6624 SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0); 6625 return; 6626 } else if (VT == MVT::v16i8) { 6627 SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0); 6628 return; 6629 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6630 SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0); 6631 return; 6632 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6633 SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0); 6634 return; 6635 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6636 SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0); 6637 return; 6638 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6639 SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0); 6640 return; 6641 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6642 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0); 6643 return; 6644 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6645 SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0); 6646 return; 6647 } 6648 break; 6649 } 6650 case AArch64ISD::LD4post: { 6651 if (VT == MVT::v8i8) { 6652 SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0); 6653 return; 6654 } else if (VT == MVT::v16i8) { 6655 SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0); 6656 return; 6657 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6658 SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0); 6659 return; 6660 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6661 SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0); 6662 return; 6663 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6664 SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0); 6665 return; 6666 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6667 SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0); 6668 return; 6669 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6670 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0); 6671 return; 6672 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6673 SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0); 6674 return; 6675 } 6676 break; 6677 } 6678 case AArch64ISD::LD1x2post: { 6679 if (VT == MVT::v8i8) { 6680 SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0); 6681 return; 6682 } else if (VT == MVT::v16i8) { 6683 SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0); 6684 return; 6685 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6686 SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0); 6687 return; 6688 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6689 SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0); 6690 return; 6691 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6692 SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0); 6693 return; 6694 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6695 SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0); 6696 return; 6697 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6698 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0); 6699 return; 6700 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6701 SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0); 6702 return; 6703 } 6704 break; 6705 } 6706 case AArch64ISD::LD1x3post: { 6707 if (VT == MVT::v8i8) { 6708 SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0); 6709 return; 6710 } else if (VT == MVT::v16i8) { 6711 SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0); 6712 return; 6713 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6714 SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0); 6715 return; 6716 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6717 SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0); 6718 return; 6719 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6720 SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0); 6721 return; 6722 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6723 SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0); 6724 return; 6725 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6726 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0); 6727 return; 6728 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6729 SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0); 6730 return; 6731 } 6732 break; 6733 } 6734 case AArch64ISD::LD1x4post: { 6735 if (VT == MVT::v8i8) { 6736 SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0); 6737 return; 6738 } else if (VT == MVT::v16i8) { 6739 SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0); 6740 return; 6741 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6742 SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0); 6743 return; 6744 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6745 SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0); 6746 return; 6747 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6748 SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0); 6749 return; 6750 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6751 SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0); 6752 return; 6753 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6754 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0); 6755 return; 6756 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6757 SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0); 6758 return; 6759 } 6760 break; 6761 } 6762 case AArch64ISD::LD1DUPpost: { 6763 if (VT == MVT::v8i8) { 6764 SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0); 6765 return; 6766 } else if (VT == MVT::v16i8) { 6767 SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0); 6768 return; 6769 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6770 SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0); 6771 return; 6772 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6773 SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0); 6774 return; 6775 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6776 SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0); 6777 return; 6778 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6779 SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0); 6780 return; 6781 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6782 SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0); 6783 return; 6784 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6785 SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0); 6786 return; 6787 } 6788 break; 6789 } 6790 case AArch64ISD::LD2DUPpost: { 6791 if (VT == MVT::v8i8) { 6792 SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0); 6793 return; 6794 } else if (VT == MVT::v16i8) { 6795 SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0); 6796 return; 6797 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6798 SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0); 6799 return; 6800 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6801 SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0); 6802 return; 6803 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6804 SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0); 6805 return; 6806 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6807 SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0); 6808 return; 6809 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6810 SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0); 6811 return; 6812 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6813 SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0); 6814 return; 6815 } 6816 break; 6817 } 6818 case AArch64ISD::LD3DUPpost: { 6819 if (VT == MVT::v8i8) { 6820 SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0); 6821 return; 6822 } else if (VT == MVT::v16i8) { 6823 SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0); 6824 return; 6825 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6826 SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0); 6827 return; 6828 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6829 SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0); 6830 return; 6831 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6832 SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0); 6833 return; 6834 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6835 SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0); 6836 return; 6837 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6838 SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0); 6839 return; 6840 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6841 SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0); 6842 return; 6843 } 6844 break; 6845 } 6846 case AArch64ISD::LD4DUPpost: { 6847 if (VT == MVT::v8i8) { 6848 SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0); 6849 return; 6850 } else if (VT == MVT::v16i8) { 6851 SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0); 6852 return; 6853 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6854 SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0); 6855 return; 6856 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6857 SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0); 6858 return; 6859 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6860 SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0); 6861 return; 6862 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6863 SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0); 6864 return; 6865 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6866 SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0); 6867 return; 6868 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6869 SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0); 6870 return; 6871 } 6872 break; 6873 } 6874 case AArch64ISD::LD1LANEpost: { 6875 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 6876 SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST); 6877 return; 6878 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 6879 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 6880 SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST); 6881 return; 6882 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 6883 VT == MVT::v2f32) { 6884 SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST); 6885 return; 6886 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 6887 VT == MVT::v1f64) { 6888 SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST); 6889 return; 6890 } 6891 break; 6892 } 6893 case AArch64ISD::LD2LANEpost: { 6894 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 6895 SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST); 6896 return; 6897 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 6898 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 6899 SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST); 6900 return; 6901 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 6902 VT == MVT::v2f32) { 6903 SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST); 6904 return; 6905 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 6906 VT == MVT::v1f64) { 6907 SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST); 6908 return; 6909 } 6910 break; 6911 } 6912 case AArch64ISD::LD3LANEpost: { 6913 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 6914 SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST); 6915 return; 6916 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 6917 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 6918 SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST); 6919 return; 6920 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 6921 VT == MVT::v2f32) { 6922 SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST); 6923 return; 6924 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 6925 VT == MVT::v1f64) { 6926 SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST); 6927 return; 6928 } 6929 break; 6930 } 6931 case AArch64ISD::LD4LANEpost: { 6932 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 6933 SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST); 6934 return; 6935 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 6936 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 6937 SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST); 6938 return; 6939 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 6940 VT == MVT::v2f32) { 6941 SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST); 6942 return; 6943 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 6944 VT == MVT::v1f64) { 6945 SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST); 6946 return; 6947 } 6948 break; 6949 } 6950 case AArch64ISD::ST2post: { 6951 VT = Node->getOperand(1).getValueType(); 6952 if (VT == MVT::v8i8) { 6953 SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST); 6954 return; 6955 } else if (VT == MVT::v16i8) { 6956 SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST); 6957 return; 6958 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6959 SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST); 6960 return; 6961 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6962 SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST); 6963 return; 6964 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6965 SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST); 6966 return; 6967 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6968 SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST); 6969 return; 6970 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 6971 SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST); 6972 return; 6973 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 6974 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST); 6975 return; 6976 } 6977 break; 6978 } 6979 case AArch64ISD::ST3post: { 6980 VT = Node->getOperand(1).getValueType(); 6981 if (VT == MVT::v8i8) { 6982 SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST); 6983 return; 6984 } else if (VT == MVT::v16i8) { 6985 SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST); 6986 return; 6987 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 6988 SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST); 6989 return; 6990 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 6991 SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST); 6992 return; 6993 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 6994 SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST); 6995 return; 6996 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 6997 SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST); 6998 return; 6999 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 7000 SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST); 7001 return; 7002 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 7003 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST); 7004 return; 7005 } 7006 break; 7007 } 7008 case AArch64ISD::ST4post: { 7009 VT = Node->getOperand(1).getValueType(); 7010 if (VT == MVT::v8i8) { 7011 SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST); 7012 return; 7013 } else if (VT == MVT::v16i8) { 7014 SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST); 7015 return; 7016 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 7017 SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST); 7018 return; 7019 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 7020 SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST); 7021 return; 7022 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 7023 SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST); 7024 return; 7025 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 7026 SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST); 7027 return; 7028 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 7029 SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST); 7030 return; 7031 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 7032 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST); 7033 return; 7034 } 7035 break; 7036 } 7037 case AArch64ISD::ST1x2post: { 7038 VT = Node->getOperand(1).getValueType(); 7039 if (VT == MVT::v8i8) { 7040 SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST); 7041 return; 7042 } else if (VT == MVT::v16i8) { 7043 SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST); 7044 return; 7045 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 7046 SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST); 7047 return; 7048 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 7049 SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST); 7050 return; 7051 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 7052 SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST); 7053 return; 7054 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 7055 SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST); 7056 return; 7057 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 7058 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST); 7059 return; 7060 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 7061 SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST); 7062 return; 7063 } 7064 break; 7065 } 7066 case AArch64ISD::ST1x3post: { 7067 VT = Node->getOperand(1).getValueType(); 7068 if (VT == MVT::v8i8) { 7069 SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST); 7070 return; 7071 } else if (VT == MVT::v16i8) { 7072 SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST); 7073 return; 7074 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 7075 SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST); 7076 return; 7077 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16 ) { 7078 SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST); 7079 return; 7080 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 7081 SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST); 7082 return; 7083 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 7084 SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST); 7085 return; 7086 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 7087 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST); 7088 return; 7089 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 7090 SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST); 7091 return; 7092 } 7093 break; 7094 } 7095 case AArch64ISD::ST1x4post: { 7096 VT = Node->getOperand(1).getValueType(); 7097 if (VT == MVT::v8i8) { 7098 SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST); 7099 return; 7100 } else if (VT == MVT::v16i8) { 7101 SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST); 7102 return; 7103 } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) { 7104 SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST); 7105 return; 7106 } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) { 7107 SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST); 7108 return; 7109 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 7110 SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST); 7111 return; 7112 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 7113 SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST); 7114 return; 7115 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 7116 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST); 7117 return; 7118 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 7119 SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST); 7120 return; 7121 } 7122 break; 7123 } 7124 case AArch64ISD::ST2LANEpost: { 7125 VT = Node->getOperand(1).getValueType(); 7126 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 7127 SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST); 7128 return; 7129 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 7130 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 7131 SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST); 7132 return; 7133 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 7134 VT == MVT::v2f32) { 7135 SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST); 7136 return; 7137 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 7138 VT == MVT::v1f64) { 7139 SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST); 7140 return; 7141 } 7142 break; 7143 } 7144 case AArch64ISD::ST3LANEpost: { 7145 VT = Node->getOperand(1).getValueType(); 7146 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 7147 SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST); 7148 return; 7149 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 7150 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 7151 SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST); 7152 return; 7153 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 7154 VT == MVT::v2f32) { 7155 SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST); 7156 return; 7157 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 7158 VT == MVT::v1f64) { 7159 SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST); 7160 return; 7161 } 7162 break; 7163 } 7164 case AArch64ISD::ST4LANEpost: { 7165 VT = Node->getOperand(1).getValueType(); 7166 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 7167 SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST); 7168 return; 7169 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 7170 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 7171 SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST); 7172 return; 7173 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 7174 VT == MVT::v2f32) { 7175 SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST); 7176 return; 7177 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 7178 VT == MVT::v1f64) { 7179 SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST); 7180 return; 7181 } 7182 break; 7183 } 7184 case AArch64ISD::SVE_LD2_MERGE_ZERO: { 7185 if (VT == MVT::nxv16i8) { 7186 SelectPredicatedLoad(Node, 2, 0, AArch64::LD2B_IMM, AArch64::LD2B); 7187 return; 7188 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 7189 VT == MVT::nxv8bf16) { 7190 SelectPredicatedLoad(Node, 2, 1, AArch64::LD2H_IMM, AArch64::LD2H); 7191 return; 7192 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 7193 SelectPredicatedLoad(Node, 2, 2, AArch64::LD2W_IMM, AArch64::LD2W); 7194 return; 7195 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 7196 SelectPredicatedLoad(Node, 2, 3, AArch64::LD2D_IMM, AArch64::LD2D); 7197 return; 7198 } 7199 break; 7200 } 7201 case AArch64ISD::SVE_LD3_MERGE_ZERO: { 7202 if (VT == MVT::nxv16i8) { 7203 SelectPredicatedLoad(Node, 3, 0, AArch64::LD3B_IMM, AArch64::LD3B); 7204 return; 7205 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 7206 VT == MVT::nxv8bf16) { 7207 SelectPredicatedLoad(Node, 3, 1, AArch64::LD3H_IMM, AArch64::LD3H); 7208 return; 7209 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 7210 SelectPredicatedLoad(Node, 3, 2, AArch64::LD3W_IMM, AArch64::LD3W); 7211 return; 7212 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 7213 SelectPredicatedLoad(Node, 3, 3, AArch64::LD3D_IMM, AArch64::LD3D); 7214 return; 7215 } 7216 break; 7217 } 7218 case AArch64ISD::SVE_LD4_MERGE_ZERO: { 7219 if (VT == MVT::nxv16i8) { 7220 SelectPredicatedLoad(Node, 4, 0, AArch64::LD4B_IMM, AArch64::LD4B); 7221 return; 7222 } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 || 7223 VT == MVT::nxv8bf16) { 7224 SelectPredicatedLoad(Node, 4, 1, AArch64::LD4H_IMM, AArch64::LD4H); 7225 return; 7226 } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) { 7227 SelectPredicatedLoad(Node, 4, 2, AArch64::LD4W_IMM, AArch64::LD4W); 7228 return; 7229 } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) { 7230 SelectPredicatedLoad(Node, 4, 3, AArch64::LD4D_IMM, AArch64::LD4D); 7231 return; 7232 } 7233 break; 7234 } 7235 } 7236 7237 // Select the default instruction 7238 SelectCode(Node); 7239 } 7240 7241 /// createAArch64ISelDag - This pass converts a legalized DAG into a 7242 /// AArch64-specific DAG, ready for instruction scheduling. 7243 FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM, 7244 CodeGenOptLevel OptLevel) { 7245 return new AArch64DAGToDAGISelLegacy(TM, OptLevel); 7246 } 7247 7248 /// When \p PredVT is a scalable vector predicate in the form 7249 /// MVT::nx<M>xi1, it builds the correspondent scalable vector of 7250 /// integers MVT::nx<M>xi<bits> s.t. M x bits = 128. When targeting 7251 /// structured vectors (NumVec >1), the output data type is 7252 /// MVT::nx<M*NumVec>xi<bits> s.t. M x bits = 128. If the input 7253 /// PredVT is not in the form MVT::nx<M>xi1, it returns an invalid 7254 /// EVT. 7255 static EVT getPackedVectorTypeFromPredicateType(LLVMContext &Ctx, EVT PredVT, 7256 unsigned NumVec) { 7257 assert(NumVec > 0 && NumVec < 5 && "Invalid number of vectors."); 7258 if (!PredVT.isScalableVector() || PredVT.getVectorElementType() != MVT::i1) 7259 return EVT(); 7260 7261 if (PredVT != MVT::nxv16i1 && PredVT != MVT::nxv8i1 && 7262 PredVT != MVT::nxv4i1 && PredVT != MVT::nxv2i1) 7263 return EVT(); 7264 7265 ElementCount EC = PredVT.getVectorElementCount(); 7266 EVT ScalarVT = 7267 EVT::getIntegerVT(Ctx, AArch64::SVEBitsPerBlock / EC.getKnownMinValue()); 7268 EVT MemVT = EVT::getVectorVT(Ctx, ScalarVT, EC * NumVec); 7269 7270 return MemVT; 7271 } 7272 7273 /// Return the EVT of the data associated to a memory operation in \p 7274 /// Root. If such EVT cannot be retrived, it returns an invalid EVT. 7275 static EVT getMemVTFromNode(LLVMContext &Ctx, SDNode *Root) { 7276 if (isa<MemSDNode>(Root)) 7277 return cast<MemSDNode>(Root)->getMemoryVT(); 7278 7279 if (isa<MemIntrinsicSDNode>(Root)) 7280 return cast<MemIntrinsicSDNode>(Root)->getMemoryVT(); 7281 7282 const unsigned Opcode = Root->getOpcode(); 7283 // For custom ISD nodes, we have to look at them individually to extract the 7284 // type of the data moved to/from memory. 7285 switch (Opcode) { 7286 case AArch64ISD::LD1_MERGE_ZERO: 7287 case AArch64ISD::LD1S_MERGE_ZERO: 7288 case AArch64ISD::LDNF1_MERGE_ZERO: 7289 case AArch64ISD::LDNF1S_MERGE_ZERO: 7290 return cast<VTSDNode>(Root->getOperand(3))->getVT(); 7291 case AArch64ISD::ST1_PRED: 7292 return cast<VTSDNode>(Root->getOperand(4))->getVT(); 7293 case AArch64ISD::SVE_LD2_MERGE_ZERO: 7294 return getPackedVectorTypeFromPredicateType( 7295 Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/2); 7296 case AArch64ISD::SVE_LD3_MERGE_ZERO: 7297 return getPackedVectorTypeFromPredicateType( 7298 Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/3); 7299 case AArch64ISD::SVE_LD4_MERGE_ZERO: 7300 return getPackedVectorTypeFromPredicateType( 7301 Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/4); 7302 default: 7303 break; 7304 } 7305 7306 if (Opcode != ISD::INTRINSIC_VOID && Opcode != ISD::INTRINSIC_W_CHAIN) 7307 return EVT(); 7308 7309 switch (Root->getConstantOperandVal(1)) { 7310 default: 7311 return EVT(); 7312 case Intrinsic::aarch64_sme_ldr: 7313 case Intrinsic::aarch64_sme_str: 7314 return MVT::nxv16i8; 7315 case Intrinsic::aarch64_sve_prf: 7316 // We are using an SVE prefetch intrinsic. Type must be inferred from the 7317 // width of the predicate. 7318 return getPackedVectorTypeFromPredicateType( 7319 Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/1); 7320 case Intrinsic::aarch64_sve_ld2_sret: 7321 case Intrinsic::aarch64_sve_ld2q_sret: 7322 return getPackedVectorTypeFromPredicateType( 7323 Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/2); 7324 case Intrinsic::aarch64_sve_st2q: 7325 return getPackedVectorTypeFromPredicateType( 7326 Ctx, Root->getOperand(4)->getValueType(0), /*NumVec=*/2); 7327 case Intrinsic::aarch64_sve_ld3_sret: 7328 case Intrinsic::aarch64_sve_ld3q_sret: 7329 return getPackedVectorTypeFromPredicateType( 7330 Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/3); 7331 case Intrinsic::aarch64_sve_st3q: 7332 return getPackedVectorTypeFromPredicateType( 7333 Ctx, Root->getOperand(5)->getValueType(0), /*NumVec=*/3); 7334 case Intrinsic::aarch64_sve_ld4_sret: 7335 case Intrinsic::aarch64_sve_ld4q_sret: 7336 return getPackedVectorTypeFromPredicateType( 7337 Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/4); 7338 case Intrinsic::aarch64_sve_st4q: 7339 return getPackedVectorTypeFromPredicateType( 7340 Ctx, Root->getOperand(6)->getValueType(0), /*NumVec=*/4); 7341 case Intrinsic::aarch64_sve_ld1udq: 7342 case Intrinsic::aarch64_sve_st1dq: 7343 return EVT(MVT::nxv1i64); 7344 case Intrinsic::aarch64_sve_ld1uwq: 7345 case Intrinsic::aarch64_sve_st1wq: 7346 return EVT(MVT::nxv1i32); 7347 } 7348 } 7349 7350 /// SelectAddrModeIndexedSVE - Attempt selection of the addressing mode: 7351 /// Base + OffImm * sizeof(MemVT) for Min >= OffImm <= Max 7352 /// where Root is the memory access using N for its address. 7353 template <int64_t Min, int64_t Max> 7354 bool AArch64DAGToDAGISel::SelectAddrModeIndexedSVE(SDNode *Root, SDValue N, 7355 SDValue &Base, 7356 SDValue &OffImm) { 7357 const EVT MemVT = getMemVTFromNode(*(CurDAG->getContext()), Root); 7358 const DataLayout &DL = CurDAG->getDataLayout(); 7359 const MachineFrameInfo &MFI = MF->getFrameInfo(); 7360 7361 if (N.getOpcode() == ISD::FrameIndex) { 7362 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 7363 // We can only encode VL scaled offsets, so only fold in frame indexes 7364 // referencing SVE objects. 7365 if (MFI.getStackID(FI) == TargetStackID::ScalableVector) { 7366 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 7367 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64); 7368 return true; 7369 } 7370 7371 return false; 7372 } 7373 7374 if (MemVT == EVT()) 7375 return false; 7376 7377 if (N.getOpcode() != ISD::ADD) 7378 return false; 7379 7380 SDValue VScale = N.getOperand(1); 7381 if (VScale.getOpcode() != ISD::VSCALE) 7382 return false; 7383 7384 TypeSize TS = MemVT.getSizeInBits(); 7385 int64_t MemWidthBytes = static_cast<int64_t>(TS.getKnownMinValue()) / 8; 7386 int64_t MulImm = cast<ConstantSDNode>(VScale.getOperand(0))->getSExtValue(); 7387 7388 if ((MulImm % MemWidthBytes) != 0) 7389 return false; 7390 7391 int64_t Offset = MulImm / MemWidthBytes; 7392 if (Offset < Min || Offset > Max) 7393 return false; 7394 7395 Base = N.getOperand(0); 7396 if (Base.getOpcode() == ISD::FrameIndex) { 7397 int FI = cast<FrameIndexSDNode>(Base)->getIndex(); 7398 // We can only encode VL scaled offsets, so only fold in frame indexes 7399 // referencing SVE objects. 7400 if (MFI.getStackID(FI) == TargetStackID::ScalableVector) 7401 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 7402 } 7403 7404 OffImm = CurDAG->getTargetConstant(Offset, SDLoc(N), MVT::i64); 7405 return true; 7406 } 7407 7408 /// Select register plus register addressing mode for SVE, with scaled 7409 /// offset. 7410 bool AArch64DAGToDAGISel::SelectSVERegRegAddrMode(SDValue N, unsigned Scale, 7411 SDValue &Base, 7412 SDValue &Offset) { 7413 if (N.getOpcode() != ISD::ADD) 7414 return false; 7415 7416 // Process an ADD node. 7417 const SDValue LHS = N.getOperand(0); 7418 const SDValue RHS = N.getOperand(1); 7419 7420 // 8 bit data does not come with the SHL node, so it is treated 7421 // separately. 7422 if (Scale == 0) { 7423 Base = LHS; 7424 Offset = RHS; 7425 return true; 7426 } 7427 7428 if (auto C = dyn_cast<ConstantSDNode>(RHS)) { 7429 int64_t ImmOff = C->getSExtValue(); 7430 unsigned Size = 1 << Scale; 7431 7432 // To use the reg+reg addressing mode, the immediate must be a multiple of 7433 // the vector element's byte size. 7434 if (ImmOff % Size) 7435 return false; 7436 7437 SDLoc DL(N); 7438 Base = LHS; 7439 Offset = CurDAG->getTargetConstant(ImmOff >> Scale, DL, MVT::i64); 7440 SDValue Ops[] = {Offset}; 7441 SDNode *MI = CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops); 7442 Offset = SDValue(MI, 0); 7443 return true; 7444 } 7445 7446 // Check if the RHS is a shift node with a constant. 7447 if (RHS.getOpcode() != ISD::SHL) 7448 return false; 7449 7450 const SDValue ShiftRHS = RHS.getOperand(1); 7451 if (auto *C = dyn_cast<ConstantSDNode>(ShiftRHS)) 7452 if (C->getZExtValue() == Scale) { 7453 Base = LHS; 7454 Offset = RHS.getOperand(0); 7455 return true; 7456 } 7457 7458 return false; 7459 } 7460 7461 bool AArch64DAGToDAGISel::SelectAllActivePredicate(SDValue N) { 7462 const AArch64TargetLowering *TLI = 7463 static_cast<const AArch64TargetLowering *>(getTargetLowering()); 7464 7465 return TLI->isAllActivePredicate(*CurDAG, N); 7466 } 7467 7468 bool AArch64DAGToDAGISel::SelectAnyPredicate(SDValue N) { 7469 EVT VT = N.getValueType(); 7470 return VT.isScalableVector() && VT.getVectorElementType() == MVT::i1; 7471 } 7472 7473 bool AArch64DAGToDAGISel::SelectSMETileSlice(SDValue N, unsigned MaxSize, 7474 SDValue &Base, SDValue &Offset, 7475 unsigned Scale) { 7476 // Try to untangle an ADD node into a 'reg + offset' 7477 if (CurDAG->isBaseWithConstantOffset(N)) 7478 if (auto C = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 7479 int64_t ImmOff = C->getSExtValue(); 7480 if ((ImmOff > 0 && ImmOff <= MaxSize && (ImmOff % Scale == 0))) { 7481 Base = N.getOperand(0); 7482 Offset = CurDAG->getTargetConstant(ImmOff / Scale, SDLoc(N), MVT::i64); 7483 return true; 7484 } 7485 } 7486 7487 // By default, just match reg + 0. 7488 Base = N; 7489 Offset = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64); 7490 return true; 7491 } 7492