1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CodeGenOptions.h" 42 #include "clang/Basic/Diagnostic.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/BinaryFormat/ELF.h" 55 #include "llvm/IR/AttributeMask.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/xxhash.h" 71 #include "llvm/TargetParser/RISCVISAInfo.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include "llvm/TargetParser/X86TargetParser.h" 74 #include "llvm/Transforms/Utils/BuildLibCalls.h" 75 #include <optional> 76 #include <set> 77 78 using namespace clang; 79 using namespace CodeGen; 80 81 static llvm::cl::opt<bool> LimitedCoverage( 82 "limited-coverage-experimental", llvm::cl::Hidden, 83 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 84 85 static const char AnnotationSection[] = "llvm.metadata"; 86 87 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 88 switch (CGM.getContext().getCXXABIKind()) { 89 case TargetCXXABI::AppleARM64: 90 case TargetCXXABI::Fuchsia: 91 case TargetCXXABI::GenericAArch64: 92 case TargetCXXABI::GenericARM: 93 case TargetCXXABI::iOS: 94 case TargetCXXABI::WatchOS: 95 case TargetCXXABI::GenericMIPS: 96 case TargetCXXABI::GenericItanium: 97 case TargetCXXABI::WebAssembly: 98 case TargetCXXABI::XL: 99 return CreateItaniumCXXABI(CGM); 100 case TargetCXXABI::Microsoft: 101 return CreateMicrosoftCXXABI(CGM); 102 } 103 104 llvm_unreachable("invalid C++ ABI kind"); 105 } 106 107 static std::unique_ptr<TargetCodeGenInfo> 108 createTargetCodeGenInfo(CodeGenModule &CGM) { 109 const TargetInfo &Target = CGM.getTarget(); 110 const llvm::Triple &Triple = Target.getTriple(); 111 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 112 113 switch (Triple.getArch()) { 114 default: 115 return createDefaultTargetCodeGenInfo(CGM); 116 117 case llvm::Triple::m68k: 118 return createM68kTargetCodeGenInfo(CGM); 119 case llvm::Triple::mips: 120 case llvm::Triple::mipsel: 121 if (Triple.getOS() == llvm::Triple::NaCl) 122 return createPNaClTargetCodeGenInfo(CGM); 123 else if (Triple.getOS() == llvm::Triple::Win32) 124 return createWindowsMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 126 127 case llvm::Triple::mips64: 128 case llvm::Triple::mips64el: 129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 130 131 case llvm::Triple::avr: { 132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 133 // on avrtiny. For passing return value, R18~R25 are used on avr, and 134 // R22~R25 are used on avrtiny. 135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 138 } 139 140 case llvm::Triple::aarch64: 141 case llvm::Triple::aarch64_32: 142 case llvm::Triple::aarch64_be: { 143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 144 if (Target.getABI() == "darwinpcs") 145 Kind = AArch64ABIKind::DarwinPCS; 146 else if (Triple.isOSWindows()) 147 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 148 else if (Target.getABI() == "aapcs-soft") 149 Kind = AArch64ABIKind::AAPCSSoft; 150 else if (Target.getABI() == "pauthtest") 151 Kind = AArch64ABIKind::PAuthTest; 152 153 return createAArch64TargetCodeGenInfo(CGM, Kind); 154 } 155 156 case llvm::Triple::wasm32: 157 case llvm::Triple::wasm64: { 158 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 159 if (Target.getABI() == "experimental-mv") 160 Kind = WebAssemblyABIKind::ExperimentalMV; 161 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 162 } 163 164 case llvm::Triple::arm: 165 case llvm::Triple::armeb: 166 case llvm::Triple::thumb: 167 case llvm::Triple::thumbeb: { 168 if (Triple.getOS() == llvm::Triple::Win32) 169 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 170 171 ARMABIKind Kind = ARMABIKind::AAPCS; 172 StringRef ABIStr = Target.getABI(); 173 if (ABIStr == "apcs-gnu") 174 Kind = ARMABIKind::APCS; 175 else if (ABIStr == "aapcs16") 176 Kind = ARMABIKind::AAPCS16_VFP; 177 else if (CodeGenOpts.FloatABI == "hard" || 178 (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI())) 179 Kind = ARMABIKind::AAPCS_VFP; 180 181 return createARMTargetCodeGenInfo(CGM, Kind); 182 } 183 184 case llvm::Triple::ppc: { 185 if (Triple.isOSAIX()) 186 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 187 188 bool IsSoftFloat = 189 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 190 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 191 } 192 case llvm::Triple::ppcle: { 193 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 194 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 195 } 196 case llvm::Triple::ppc64: 197 if (Triple.isOSAIX()) 198 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 199 200 if (Triple.isOSBinFormatELF()) { 201 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 202 if (Target.getABI() == "elfv2") 203 Kind = PPC64_SVR4_ABIKind::ELFv2; 204 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 205 206 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 207 } 208 return createPPC64TargetCodeGenInfo(CGM); 209 case llvm::Triple::ppc64le: { 210 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 211 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 212 if (Target.getABI() == "elfv1") 213 Kind = PPC64_SVR4_ABIKind::ELFv1; 214 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 215 216 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 217 } 218 219 case llvm::Triple::nvptx: 220 case llvm::Triple::nvptx64: 221 return createNVPTXTargetCodeGenInfo(CGM); 222 223 case llvm::Triple::msp430: 224 return createMSP430TargetCodeGenInfo(CGM); 225 226 case llvm::Triple::riscv32: 227 case llvm::Triple::riscv64: { 228 StringRef ABIStr = Target.getABI(); 229 unsigned XLen = Target.getPointerWidth(LangAS::Default); 230 unsigned ABIFLen = 0; 231 if (ABIStr.ends_with("f")) 232 ABIFLen = 32; 233 else if (ABIStr.ends_with("d")) 234 ABIFLen = 64; 235 bool EABI = ABIStr.ends_with("e"); 236 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 237 } 238 239 case llvm::Triple::systemz: { 240 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 241 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 242 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 243 } 244 245 case llvm::Triple::tce: 246 case llvm::Triple::tcele: 247 return createTCETargetCodeGenInfo(CGM); 248 249 case llvm::Triple::x86: { 250 bool IsDarwinVectorABI = Triple.isOSDarwin(); 251 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 252 253 if (Triple.getOS() == llvm::Triple::Win32) { 254 return createWinX86_32TargetCodeGenInfo( 255 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 256 CodeGenOpts.NumRegisterParameters); 257 } 258 return createX86_32TargetCodeGenInfo( 259 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 260 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 261 } 262 263 case llvm::Triple::x86_64: { 264 StringRef ABI = Target.getABI(); 265 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 266 : ABI == "avx" ? X86AVXABILevel::AVX 267 : X86AVXABILevel::None); 268 269 switch (Triple.getOS()) { 270 case llvm::Triple::Win32: 271 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 272 default: 273 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 274 } 275 } 276 case llvm::Triple::hexagon: 277 return createHexagonTargetCodeGenInfo(CGM); 278 case llvm::Triple::lanai: 279 return createLanaiTargetCodeGenInfo(CGM); 280 case llvm::Triple::r600: 281 return createAMDGPUTargetCodeGenInfo(CGM); 282 case llvm::Triple::amdgcn: 283 return createAMDGPUTargetCodeGenInfo(CGM); 284 case llvm::Triple::sparc: 285 return createSparcV8TargetCodeGenInfo(CGM); 286 case llvm::Triple::sparcv9: 287 return createSparcV9TargetCodeGenInfo(CGM); 288 case llvm::Triple::xcore: 289 return createXCoreTargetCodeGenInfo(CGM); 290 case llvm::Triple::arc: 291 return createARCTargetCodeGenInfo(CGM); 292 case llvm::Triple::spir: 293 case llvm::Triple::spir64: 294 return createCommonSPIRTargetCodeGenInfo(CGM); 295 case llvm::Triple::spirv32: 296 case llvm::Triple::spirv64: 297 case llvm::Triple::spirv: 298 return createSPIRVTargetCodeGenInfo(CGM); 299 case llvm::Triple::dxil: 300 return createDirectXTargetCodeGenInfo(CGM); 301 case llvm::Triple::ve: 302 return createVETargetCodeGenInfo(CGM); 303 case llvm::Triple::csky: { 304 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 305 bool hasFP64 = 306 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 307 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 308 : hasFP64 ? 64 309 : 32); 310 } 311 case llvm::Triple::bpfeb: 312 case llvm::Triple::bpfel: 313 return createBPFTargetCodeGenInfo(CGM); 314 case llvm::Triple::loongarch32: 315 case llvm::Triple::loongarch64: { 316 StringRef ABIStr = Target.getABI(); 317 unsigned ABIFRLen = 0; 318 if (ABIStr.ends_with("f")) 319 ABIFRLen = 32; 320 else if (ABIStr.ends_with("d")) 321 ABIFRLen = 64; 322 return createLoongArchTargetCodeGenInfo( 323 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 324 } 325 } 326 } 327 328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 329 if (!TheTargetCodeGenInfo) 330 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 331 return *TheTargetCodeGenInfo; 332 } 333 334 CodeGenModule::CodeGenModule(ASTContext &C, 335 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 336 const HeaderSearchOptions &HSO, 337 const PreprocessorOptions &PPO, 338 const CodeGenOptions &CGO, llvm::Module &M, 339 DiagnosticsEngine &diags, 340 CoverageSourceInfo *CoverageInfo) 341 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 342 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 343 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 344 VMContext(M.getContext()), VTables(*this), StackHandler(diags), 345 SanitizerMD(new SanitizerMetadata(*this)) { 346 347 // Initialize the type cache. 348 Types.reset(new CodeGenTypes(*this)); 349 llvm::LLVMContext &LLVMContext = M.getContext(); 350 VoidTy = llvm::Type::getVoidTy(LLVMContext); 351 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 352 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 353 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 354 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 355 HalfTy = llvm::Type::getHalfTy(LLVMContext); 356 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 357 FloatTy = llvm::Type::getFloatTy(LLVMContext); 358 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 359 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 360 PointerAlignInBytes = 361 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 362 .getQuantity(); 363 SizeSizeInBytes = 364 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 365 IntAlignInBytes = 366 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 367 CharTy = 368 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 369 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 370 IntPtrTy = llvm::IntegerType::get(LLVMContext, 371 C.getTargetInfo().getMaxPointerWidth()); 372 Int8PtrTy = llvm::PointerType::get(LLVMContext, 373 C.getTargetAddressSpace(LangAS::Default)); 374 const llvm::DataLayout &DL = M.getDataLayout(); 375 AllocaInt8PtrTy = 376 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 377 GlobalsInt8PtrTy = 378 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 379 ConstGlobalsPtrTy = llvm::PointerType::get( 380 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 381 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 382 383 // Build C++20 Module initializers. 384 // TODO: Add Microsoft here once we know the mangling required for the 385 // initializers. 386 CXX20ModuleInits = 387 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 388 ItaniumMangleContext::MK_Itanium; 389 390 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 391 392 if (LangOpts.ObjC) 393 createObjCRuntime(); 394 if (LangOpts.OpenCL) 395 createOpenCLRuntime(); 396 if (LangOpts.OpenMP) 397 createOpenMPRuntime(); 398 if (LangOpts.CUDA) 399 createCUDARuntime(); 400 if (LangOpts.HLSL) 401 createHLSLRuntime(); 402 403 // Enable TBAA unless it's suppressed. TSan and TySan need TBAA even at O0. 404 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Thread | SanitizerKind::Type) || 405 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 406 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 407 getLangOpts())); 408 409 // If debug info or coverage generation is enabled, create the CGDebugInfo 410 // object. 411 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 412 CodeGenOpts.CoverageNotesFile.size() || 413 CodeGenOpts.CoverageDataFile.size()) 414 DebugInfo.reset(new CGDebugInfo(*this)); 415 416 Block.GlobalUniqueCount = 0; 417 418 if (C.getLangOpts().ObjC) 419 ObjCData.reset(new ObjCEntrypoints()); 420 421 if (CodeGenOpts.hasProfileClangUse()) { 422 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 423 CodeGenOpts.ProfileInstrumentUsePath, *FS, 424 CodeGenOpts.ProfileRemappingFile); 425 // We're checking for profile read errors in CompilerInvocation, so if 426 // there was an error it should've already been caught. If it hasn't been 427 // somehow, trip an assertion. 428 assert(ReaderOrErr); 429 PGOReader = std::move(ReaderOrErr.get()); 430 } 431 432 // If coverage mapping generation is enabled, create the 433 // CoverageMappingModuleGen object. 434 if (CodeGenOpts.CoverageMapping) 435 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 436 437 // Generate the module name hash here if needed. 438 if (CodeGenOpts.UniqueInternalLinkageNames && 439 !getModule().getSourceFileName().empty()) { 440 std::string Path = getModule().getSourceFileName(); 441 // Check if a path substitution is needed from the MacroPrefixMap. 442 for (const auto &Entry : LangOpts.MacroPrefixMap) 443 if (Path.rfind(Entry.first, 0) != std::string::npos) { 444 Path = Entry.second + Path.substr(Entry.first.size()); 445 break; 446 } 447 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 448 } 449 450 // Record mregparm value now so it is visible through all of codegen. 451 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 452 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 453 CodeGenOpts.NumRegisterParameters); 454 } 455 456 CodeGenModule::~CodeGenModule() {} 457 458 void CodeGenModule::createObjCRuntime() { 459 // This is just isGNUFamily(), but we want to force implementors of 460 // new ABIs to decide how best to do this. 461 switch (LangOpts.ObjCRuntime.getKind()) { 462 case ObjCRuntime::GNUstep: 463 case ObjCRuntime::GCC: 464 case ObjCRuntime::ObjFW: 465 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 466 return; 467 468 case ObjCRuntime::FragileMacOSX: 469 case ObjCRuntime::MacOSX: 470 case ObjCRuntime::iOS: 471 case ObjCRuntime::WatchOS: 472 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 473 return; 474 } 475 llvm_unreachable("bad runtime kind"); 476 } 477 478 void CodeGenModule::createOpenCLRuntime() { 479 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 480 } 481 482 void CodeGenModule::createOpenMPRuntime() { 483 // Select a specialized code generation class based on the target, if any. 484 // If it does not exist use the default implementation. 485 switch (getTriple().getArch()) { 486 case llvm::Triple::nvptx: 487 case llvm::Triple::nvptx64: 488 case llvm::Triple::amdgcn: 489 assert(getLangOpts().OpenMPIsTargetDevice && 490 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 491 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 492 break; 493 default: 494 if (LangOpts.OpenMPSimd) 495 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 496 else 497 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 498 break; 499 } 500 } 501 502 void CodeGenModule::createCUDARuntime() { 503 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 504 } 505 506 void CodeGenModule::createHLSLRuntime() { 507 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 508 } 509 510 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 511 Replacements[Name] = C; 512 } 513 514 void CodeGenModule::applyReplacements() { 515 for (auto &I : Replacements) { 516 StringRef MangledName = I.first; 517 llvm::Constant *Replacement = I.second; 518 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 519 if (!Entry) 520 continue; 521 auto *OldF = cast<llvm::Function>(Entry); 522 auto *NewF = dyn_cast<llvm::Function>(Replacement); 523 if (!NewF) { 524 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 525 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 526 } else { 527 auto *CE = cast<llvm::ConstantExpr>(Replacement); 528 assert(CE->getOpcode() == llvm::Instruction::BitCast || 529 CE->getOpcode() == llvm::Instruction::GetElementPtr); 530 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 531 } 532 } 533 534 // Replace old with new, but keep the old order. 535 OldF->replaceAllUsesWith(Replacement); 536 if (NewF) { 537 NewF->removeFromParent(); 538 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 539 NewF); 540 } 541 OldF->eraseFromParent(); 542 } 543 } 544 545 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 546 GlobalValReplacements.push_back(std::make_pair(GV, C)); 547 } 548 549 void CodeGenModule::applyGlobalValReplacements() { 550 for (auto &I : GlobalValReplacements) { 551 llvm::GlobalValue *GV = I.first; 552 llvm::Constant *C = I.second; 553 554 GV->replaceAllUsesWith(C); 555 GV->eraseFromParent(); 556 } 557 } 558 559 // This is only used in aliases that we created and we know they have a 560 // linear structure. 561 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 562 const llvm::Constant *C; 563 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 564 C = GA->getAliasee(); 565 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 566 C = GI->getResolver(); 567 else 568 return GV; 569 570 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 571 if (!AliaseeGV) 572 return nullptr; 573 574 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 575 if (FinalGV == GV) 576 return nullptr; 577 578 return FinalGV; 579 } 580 581 static bool checkAliasedGlobal( 582 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 583 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 584 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 585 SourceRange AliasRange) { 586 GV = getAliasedGlobal(Alias); 587 if (!GV) { 588 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 589 return false; 590 } 591 592 if (GV->hasCommonLinkage()) { 593 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 594 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 595 Diags.Report(Location, diag::err_alias_to_common); 596 return false; 597 } 598 } 599 600 if (GV->isDeclaration()) { 601 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 602 Diags.Report(Location, diag::note_alias_requires_mangled_name) 603 << IsIFunc << IsIFunc; 604 // Provide a note if the given function is not found and exists as a 605 // mangled name. 606 for (const auto &[Decl, Name] : MangledDeclNames) { 607 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 608 IdentifierInfo *II = ND->getIdentifier(); 609 if (II && II->getName() == GV->getName()) { 610 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 611 << Name 612 << FixItHint::CreateReplacement( 613 AliasRange, 614 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 615 .str()); 616 } 617 } 618 } 619 return false; 620 } 621 622 if (IsIFunc) { 623 // Check resolver function type. 624 const auto *F = dyn_cast<llvm::Function>(GV); 625 if (!F) { 626 Diags.Report(Location, diag::err_alias_to_undefined) 627 << IsIFunc << IsIFunc; 628 return false; 629 } 630 631 llvm::FunctionType *FTy = F->getFunctionType(); 632 if (!FTy->getReturnType()->isPointerTy()) { 633 Diags.Report(Location, diag::err_ifunc_resolver_return); 634 return false; 635 } 636 } 637 638 return true; 639 } 640 641 // Emit a warning if toc-data attribute is requested for global variables that 642 // have aliases and remove the toc-data attribute. 643 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 644 const CodeGenOptions &CodeGenOpts, 645 DiagnosticsEngine &Diags, 646 SourceLocation Location) { 647 if (GVar->hasAttribute("toc-data")) { 648 auto GVId = GVar->getName(); 649 // Is this a global variable specified by the user as local? 650 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 651 Diags.Report(Location, diag::warn_toc_unsupported_type) 652 << GVId << "the variable has an alias"; 653 } 654 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 655 llvm::AttributeSet NewAttributes = 656 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 657 GVar->setAttributes(NewAttributes); 658 } 659 } 660 661 void CodeGenModule::checkAliases() { 662 // Check if the constructed aliases are well formed. It is really unfortunate 663 // that we have to do this in CodeGen, but we only construct mangled names 664 // and aliases during codegen. 665 bool Error = false; 666 DiagnosticsEngine &Diags = getDiags(); 667 for (const GlobalDecl &GD : Aliases) { 668 const auto *D = cast<ValueDecl>(GD.getDecl()); 669 SourceLocation Location; 670 SourceRange Range; 671 bool IsIFunc = D->hasAttr<IFuncAttr>(); 672 if (const Attr *A = D->getDefiningAttr()) { 673 Location = A->getLocation(); 674 Range = A->getRange(); 675 } else 676 llvm_unreachable("Not an alias or ifunc?"); 677 678 StringRef MangledName = getMangledName(GD); 679 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 680 const llvm::GlobalValue *GV = nullptr; 681 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 682 MangledDeclNames, Range)) { 683 Error = true; 684 continue; 685 } 686 687 if (getContext().getTargetInfo().getTriple().isOSAIX()) 688 if (const llvm::GlobalVariable *GVar = 689 dyn_cast<const llvm::GlobalVariable>(GV)) 690 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 691 getCodeGenOpts(), Diags, Location); 692 693 llvm::Constant *Aliasee = 694 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 695 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 696 697 llvm::GlobalValue *AliaseeGV; 698 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 699 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 700 else 701 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 702 703 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 704 StringRef AliasSection = SA->getName(); 705 if (AliasSection != AliaseeGV->getSection()) 706 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 707 << AliasSection << IsIFunc << IsIFunc; 708 } 709 710 // We have to handle alias to weak aliases in here. LLVM itself disallows 711 // this since the object semantics would not match the IL one. For 712 // compatibility with gcc we implement it by just pointing the alias 713 // to its aliasee's aliasee. We also warn, since the user is probably 714 // expecting the link to be weak. 715 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 716 if (GA->isInterposable()) { 717 Diags.Report(Location, diag::warn_alias_to_weak_alias) 718 << GV->getName() << GA->getName() << IsIFunc; 719 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 720 GA->getAliasee(), Alias->getType()); 721 722 if (IsIFunc) 723 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 724 else 725 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 726 } 727 } 728 // ifunc resolvers are usually implemented to run before sanitizer 729 // initialization. Disable instrumentation to prevent the ordering issue. 730 if (IsIFunc) 731 cast<llvm::Function>(Aliasee)->addFnAttr( 732 llvm::Attribute::DisableSanitizerInstrumentation); 733 } 734 if (!Error) 735 return; 736 737 for (const GlobalDecl &GD : Aliases) { 738 StringRef MangledName = getMangledName(GD); 739 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 740 Alias->replaceAllUsesWith(llvm::PoisonValue::get(Alias->getType())); 741 Alias->eraseFromParent(); 742 } 743 } 744 745 void CodeGenModule::clear() { 746 DeferredDeclsToEmit.clear(); 747 EmittedDeferredDecls.clear(); 748 DeferredAnnotations.clear(); 749 if (OpenMPRuntime) 750 OpenMPRuntime->clear(); 751 } 752 753 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 754 StringRef MainFile) { 755 if (!hasDiagnostics()) 756 return; 757 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 758 if (MainFile.empty()) 759 MainFile = "<stdin>"; 760 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 761 } else { 762 if (Mismatched > 0) 763 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 764 765 if (Missing > 0) 766 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 767 } 768 } 769 770 static std::optional<llvm::GlobalValue::VisibilityTypes> 771 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 772 // Map to LLVM visibility. 773 switch (K) { 774 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 775 return std::nullopt; 776 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 777 return llvm::GlobalValue::DefaultVisibility; 778 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 779 return llvm::GlobalValue::HiddenVisibility; 780 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 781 return llvm::GlobalValue::ProtectedVisibility; 782 } 783 llvm_unreachable("unknown option value!"); 784 } 785 786 static void 787 setLLVMVisibility(llvm::GlobalValue &GV, 788 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 789 if (!V) 790 return; 791 792 // Reset DSO locality before setting the visibility. This removes 793 // any effects that visibility options and annotations may have 794 // had on the DSO locality. Setting the visibility will implicitly set 795 // appropriate globals to DSO Local; however, this will be pessimistic 796 // w.r.t. to the normal compiler IRGen. 797 GV.setDSOLocal(false); 798 GV.setVisibility(*V); 799 } 800 801 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 802 llvm::Module &M) { 803 if (!LO.VisibilityFromDLLStorageClass) 804 return; 805 806 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 807 getLLVMVisibility(LO.getDLLExportVisibility()); 808 809 std::optional<llvm::GlobalValue::VisibilityTypes> 810 NoDLLStorageClassVisibility = 811 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 812 813 std::optional<llvm::GlobalValue::VisibilityTypes> 814 ExternDeclDLLImportVisibility = 815 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 816 817 std::optional<llvm::GlobalValue::VisibilityTypes> 818 ExternDeclNoDLLStorageClassVisibility = 819 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 820 821 for (llvm::GlobalValue &GV : M.global_values()) { 822 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 823 continue; 824 825 if (GV.isDeclarationForLinker()) 826 setLLVMVisibility(GV, GV.getDLLStorageClass() == 827 llvm::GlobalValue::DLLImportStorageClass 828 ? ExternDeclDLLImportVisibility 829 : ExternDeclNoDLLStorageClassVisibility); 830 else 831 setLLVMVisibility(GV, GV.getDLLStorageClass() == 832 llvm::GlobalValue::DLLExportStorageClass 833 ? DLLExportVisibility 834 : NoDLLStorageClassVisibility); 835 836 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 837 } 838 } 839 840 static bool isStackProtectorOn(const LangOptions &LangOpts, 841 const llvm::Triple &Triple, 842 clang::LangOptions::StackProtectorMode Mode) { 843 if (Triple.isAMDGPU() || Triple.isNVPTX()) 844 return false; 845 return LangOpts.getStackProtector() == Mode; 846 } 847 848 void CodeGenModule::Release() { 849 Module *Primary = getContext().getCurrentNamedModule(); 850 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 851 EmitModuleInitializers(Primary); 852 EmitDeferred(); 853 DeferredDecls.insert(EmittedDeferredDecls.begin(), 854 EmittedDeferredDecls.end()); 855 EmittedDeferredDecls.clear(); 856 EmitVTablesOpportunistically(); 857 applyGlobalValReplacements(); 858 applyReplacements(); 859 emitMultiVersionFunctions(); 860 861 if (Context.getLangOpts().IncrementalExtensions && 862 GlobalTopLevelStmtBlockInFlight.first) { 863 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 864 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 865 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 866 } 867 868 // Module implementations are initialized the same way as a regular TU that 869 // imports one or more modules. 870 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 871 EmitCXXModuleInitFunc(Primary); 872 else 873 EmitCXXGlobalInitFunc(); 874 EmitCXXGlobalCleanUpFunc(); 875 registerGlobalDtorsWithAtExit(); 876 EmitCXXThreadLocalInitFunc(); 877 if (ObjCRuntime) 878 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 879 AddGlobalCtor(ObjCInitFunction); 880 if (Context.getLangOpts().CUDA && CUDARuntime) { 881 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 882 AddGlobalCtor(CudaCtorFunction); 883 } 884 if (OpenMPRuntime) { 885 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 886 OpenMPRuntime->clear(); 887 } 888 if (PGOReader) { 889 getModule().setProfileSummary( 890 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 891 llvm::ProfileSummary::PSK_Instr); 892 if (PGOStats.hasDiagnostics()) 893 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 894 } 895 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 896 return L.LexOrder < R.LexOrder; 897 }); 898 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 899 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 900 EmitGlobalAnnotations(); 901 EmitStaticExternCAliases(); 902 checkAliases(); 903 EmitDeferredUnusedCoverageMappings(); 904 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 905 CodeGenPGO(*this).setProfileVersion(getModule()); 906 if (CoverageMapping) 907 CoverageMapping->emit(); 908 if (CodeGenOpts.SanitizeCfiCrossDso) { 909 CodeGenFunction(*this).EmitCfiCheckFail(); 910 CodeGenFunction(*this).EmitCfiCheckStub(); 911 } 912 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 913 finalizeKCFITypes(); 914 emitAtAvailableLinkGuard(); 915 if (Context.getTargetInfo().getTriple().isWasm()) 916 EmitMainVoidAlias(); 917 918 if (getTriple().isAMDGPU() || 919 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 920 // Emit amdhsa_code_object_version module flag, which is code object version 921 // times 100. 922 if (getTarget().getTargetOpts().CodeObjectVersion != 923 llvm::CodeObjectVersionKind::COV_None) { 924 getModule().addModuleFlag(llvm::Module::Error, 925 "amdhsa_code_object_version", 926 getTarget().getTargetOpts().CodeObjectVersion); 927 } 928 929 // Currently, "-mprintf-kind" option is only supported for HIP 930 if (LangOpts.HIP) { 931 auto *MDStr = llvm::MDString::get( 932 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 933 TargetOptions::AMDGPUPrintfKind::Hostcall) 934 ? "hostcall" 935 : "buffered"); 936 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 937 MDStr); 938 } 939 } 940 941 // Emit a global array containing all external kernels or device variables 942 // used by host functions and mark it as used for CUDA/HIP. This is necessary 943 // to get kernels or device variables in archives linked in even if these 944 // kernels or device variables are only used in host functions. 945 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 946 SmallVector<llvm::Constant *, 8> UsedArray; 947 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 948 GlobalDecl GD; 949 if (auto *FD = dyn_cast<FunctionDecl>(D)) 950 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 951 else 952 GD = GlobalDecl(D); 953 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 954 GetAddrOfGlobal(GD), Int8PtrTy)); 955 } 956 957 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 958 959 auto *GV = new llvm::GlobalVariable( 960 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 961 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 962 addCompilerUsedGlobal(GV); 963 } 964 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 965 // Emit a unique ID so that host and device binaries from the same 966 // compilation unit can be associated. 967 auto *GV = new llvm::GlobalVariable( 968 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 969 llvm::Constant::getNullValue(Int8Ty), 970 "__hip_cuid_" + getContext().getCUIDHash()); 971 addCompilerUsedGlobal(GV); 972 } 973 emitLLVMUsed(); 974 if (SanStats) 975 SanStats->finish(); 976 977 if (CodeGenOpts.Autolink && 978 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 979 EmitModuleLinkOptions(); 980 } 981 982 // On ELF we pass the dependent library specifiers directly to the linker 983 // without manipulating them. This is in contrast to other platforms where 984 // they are mapped to a specific linker option by the compiler. This 985 // difference is a result of the greater variety of ELF linkers and the fact 986 // that ELF linkers tend to handle libraries in a more complicated fashion 987 // than on other platforms. This forces us to defer handling the dependent 988 // libs to the linker. 989 // 990 // CUDA/HIP device and host libraries are different. Currently there is no 991 // way to differentiate dependent libraries for host or device. Existing 992 // usage of #pragma comment(lib, *) is intended for host libraries on 993 // Windows. Therefore emit llvm.dependent-libraries only for host. 994 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 995 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 996 for (auto *MD : ELFDependentLibraries) 997 NMD->addOperand(MD); 998 } 999 1000 if (CodeGenOpts.DwarfVersion) { 1001 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 1002 CodeGenOpts.DwarfVersion); 1003 } 1004 1005 if (CodeGenOpts.Dwarf64) 1006 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 1007 1008 if (Context.getLangOpts().SemanticInterposition) 1009 // Require various optimization to respect semantic interposition. 1010 getModule().setSemanticInterposition(true); 1011 1012 if (CodeGenOpts.EmitCodeView) { 1013 // Indicate that we want CodeView in the metadata. 1014 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1015 } 1016 if (CodeGenOpts.CodeViewGHash) { 1017 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1018 } 1019 if (CodeGenOpts.ControlFlowGuard) { 1020 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1021 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1022 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1023 // Function ID tables for Control Flow Guard (cfguard=1). 1024 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1025 } 1026 if (CodeGenOpts.EHContGuard) { 1027 // Function ID tables for EH Continuation Guard. 1028 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1029 } 1030 if (Context.getLangOpts().Kernel) { 1031 // Note if we are compiling with /kernel. 1032 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1033 } 1034 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1035 // We don't support LTO with 2 with different StrictVTablePointers 1036 // FIXME: we could support it by stripping all the information introduced 1037 // by StrictVTablePointers. 1038 1039 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1040 1041 llvm::Metadata *Ops[2] = { 1042 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1043 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1044 llvm::Type::getInt32Ty(VMContext), 1))}; 1045 1046 getModule().addModuleFlag(llvm::Module::Require, 1047 "StrictVTablePointersRequirement", 1048 llvm::MDNode::get(VMContext, Ops)); 1049 } 1050 if (getModuleDebugInfo()) 1051 // We support a single version in the linked module. The LLVM 1052 // parser will drop debug info with a different version number 1053 // (and warn about it, too). 1054 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1055 llvm::DEBUG_METADATA_VERSION); 1056 1057 // We need to record the widths of enums and wchar_t, so that we can generate 1058 // the correct build attributes in the ARM backend. wchar_size is also used by 1059 // TargetLibraryInfo. 1060 uint64_t WCharWidth = 1061 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1062 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1063 1064 if (getTriple().isOSzOS()) { 1065 getModule().addModuleFlag(llvm::Module::Warning, 1066 "zos_product_major_version", 1067 uint32_t(CLANG_VERSION_MAJOR)); 1068 getModule().addModuleFlag(llvm::Module::Warning, 1069 "zos_product_minor_version", 1070 uint32_t(CLANG_VERSION_MINOR)); 1071 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1072 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1073 std::string ProductId = getClangVendor() + "clang"; 1074 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1075 llvm::MDString::get(VMContext, ProductId)); 1076 1077 // Record the language because we need it for the PPA2. 1078 StringRef lang_str = languageToString( 1079 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1080 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1081 llvm::MDString::get(VMContext, lang_str)); 1082 1083 time_t TT = PreprocessorOpts.SourceDateEpoch 1084 ? *PreprocessorOpts.SourceDateEpoch 1085 : std::time(nullptr); 1086 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1087 static_cast<uint64_t>(TT)); 1088 1089 // Multiple modes will be supported here. 1090 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1091 llvm::MDString::get(VMContext, "ascii")); 1092 } 1093 1094 llvm::Triple T = Context.getTargetInfo().getTriple(); 1095 if (T.isARM() || T.isThumb()) { 1096 // The minimum width of an enum in bytes 1097 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1098 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1099 } 1100 1101 if (T.isRISCV()) { 1102 StringRef ABIStr = Target.getABI(); 1103 llvm::LLVMContext &Ctx = TheModule.getContext(); 1104 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1105 llvm::MDString::get(Ctx, ABIStr)); 1106 1107 // Add the canonical ISA string as metadata so the backend can set the ELF 1108 // attributes correctly. We use AppendUnique so LTO will keep all of the 1109 // unique ISA strings that were linked together. 1110 const std::vector<std::string> &Features = 1111 getTarget().getTargetOpts().Features; 1112 auto ParseResult = 1113 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1114 if (!errorToBool(ParseResult.takeError())) 1115 getModule().addModuleFlag( 1116 llvm::Module::AppendUnique, "riscv-isa", 1117 llvm::MDNode::get( 1118 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1119 } 1120 1121 if (CodeGenOpts.SanitizeCfiCrossDso) { 1122 // Indicate that we want cross-DSO control flow integrity checks. 1123 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1124 } 1125 1126 if (CodeGenOpts.WholeProgramVTables) { 1127 // Indicate whether VFE was enabled for this module, so that the 1128 // vcall_visibility metadata added under whole program vtables is handled 1129 // appropriately in the optimizer. 1130 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1131 CodeGenOpts.VirtualFunctionElimination); 1132 } 1133 1134 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1135 getModule().addModuleFlag(llvm::Module::Override, 1136 "CFI Canonical Jump Tables", 1137 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1138 } 1139 1140 if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) { 1141 getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers", 1142 1); 1143 } 1144 1145 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1146 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1147 // KCFI assumes patchable-function-prefix is the same for all indirectly 1148 // called functions. Store the expected offset for code generation. 1149 if (CodeGenOpts.PatchableFunctionEntryOffset) 1150 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1151 CodeGenOpts.PatchableFunctionEntryOffset); 1152 } 1153 1154 if (CodeGenOpts.CFProtectionReturn && 1155 Target.checkCFProtectionReturnSupported(getDiags())) { 1156 // Indicate that we want to instrument return control flow protection. 1157 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1158 1); 1159 } 1160 1161 if (CodeGenOpts.CFProtectionBranch && 1162 Target.checkCFProtectionBranchSupported(getDiags())) { 1163 // Indicate that we want to instrument branch control flow protection. 1164 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1165 1); 1166 1167 auto Scheme = CodeGenOpts.getCFBranchLabelScheme(); 1168 if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) { 1169 if (Scheme == CFBranchLabelSchemeKind::Default) 1170 Scheme = Target.getDefaultCFBranchLabelScheme(); 1171 getModule().addModuleFlag( 1172 llvm::Module::Error, "cf-branch-label-scheme", 1173 llvm::MDString::get(getLLVMContext(), 1174 getCFBranchLabelSchemeFlagVal(Scheme))); 1175 } 1176 } 1177 1178 if (CodeGenOpts.FunctionReturnThunks) 1179 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1180 1181 if (CodeGenOpts.IndirectBranchCSPrefix) 1182 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1183 1184 // Add module metadata for return address signing (ignoring 1185 // non-leaf/all) and stack tagging. These are actually turned on by function 1186 // attributes, but we use module metadata to emit build attributes. This is 1187 // needed for LTO, where the function attributes are inside bitcode 1188 // serialised into a global variable by the time build attributes are 1189 // emitted, so we can't access them. LTO objects could be compiled with 1190 // different flags therefore module flags are set to "Min" behavior to achieve 1191 // the same end result of the normal build where e.g BTI is off if any object 1192 // doesn't support it. 1193 if (Context.getTargetInfo().hasFeature("ptrauth") && 1194 LangOpts.getSignReturnAddressScope() != 1195 LangOptions::SignReturnAddressScopeKind::None) 1196 getModule().addModuleFlag(llvm::Module::Override, 1197 "sign-return-address-buildattr", 1); 1198 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1199 getModule().addModuleFlag(llvm::Module::Override, 1200 "tag-stack-memory-buildattr", 1); 1201 1202 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1203 if (LangOpts.BranchTargetEnforcement) 1204 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1205 1); 1206 if (LangOpts.BranchProtectionPAuthLR) 1207 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1208 1); 1209 if (LangOpts.GuardedControlStack) 1210 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1211 if (LangOpts.hasSignReturnAddress()) 1212 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1213 if (LangOpts.isSignReturnAddressScopeAll()) 1214 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1215 1); 1216 if (!LangOpts.isSignReturnAddressWithAKey()) 1217 getModule().addModuleFlag(llvm::Module::Min, 1218 "sign-return-address-with-bkey", 1); 1219 1220 if (LangOpts.PointerAuthELFGOT) 1221 getModule().addModuleFlag(llvm::Module::Min, "ptrauth-elf-got", 1); 1222 1223 if (getTriple().isOSLinux()) { 1224 if (LangOpts.PointerAuthCalls) 1225 getModule().addModuleFlag(llvm::Module::Min, "ptrauth-sign-personality", 1226 1); 1227 assert(getTriple().isOSBinFormatELF()); 1228 using namespace llvm::ELF; 1229 uint64_t PAuthABIVersion = 1230 (LangOpts.PointerAuthIntrinsics 1231 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1232 (LangOpts.PointerAuthCalls 1233 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1234 (LangOpts.PointerAuthReturns 1235 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1236 (LangOpts.PointerAuthAuthTraps 1237 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1238 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1239 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1240 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1241 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1242 (LangOpts.PointerAuthInitFini 1243 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) | 1244 (LangOpts.PointerAuthInitFiniAddressDiscrimination 1245 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) | 1246 (LangOpts.PointerAuthELFGOT 1247 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) | 1248 (LangOpts.PointerAuthIndirectGotos 1249 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) | 1250 (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination 1251 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) | 1252 (LangOpts.PointerAuthFunctionTypeDiscrimination 1253 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR); 1254 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR == 1255 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1256 "Update when new enum items are defined"); 1257 if (PAuthABIVersion != 0) { 1258 getModule().addModuleFlag(llvm::Module::Error, 1259 "aarch64-elf-pauthabi-platform", 1260 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1261 getModule().addModuleFlag(llvm::Module::Error, 1262 "aarch64-elf-pauthabi-version", 1263 PAuthABIVersion); 1264 } 1265 } 1266 } 1267 1268 if (CodeGenOpts.StackClashProtector) 1269 getModule().addModuleFlag( 1270 llvm::Module::Override, "probe-stack", 1271 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1272 1273 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1274 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1275 CodeGenOpts.StackProbeSize); 1276 1277 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1278 llvm::LLVMContext &Ctx = TheModule.getContext(); 1279 getModule().addModuleFlag( 1280 llvm::Module::Error, "MemProfProfileFilename", 1281 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1282 } 1283 1284 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1285 // Indicate whether __nvvm_reflect should be configured to flush denormal 1286 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1287 // property.) 1288 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1289 CodeGenOpts.FP32DenormalMode.Output != 1290 llvm::DenormalMode::IEEE); 1291 } 1292 1293 if (LangOpts.EHAsynch) 1294 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1295 1296 // Indicate whether this Module was compiled with -fopenmp 1297 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1298 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1299 if (getLangOpts().OpenMPIsTargetDevice) 1300 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1301 LangOpts.OpenMP); 1302 1303 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1304 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1305 EmitOpenCLMetadata(); 1306 // Emit SPIR version. 1307 if (getTriple().isSPIR()) { 1308 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1309 // opencl.spir.version named metadata. 1310 // C++ for OpenCL has a distinct mapping for version compatibility with 1311 // OpenCL. 1312 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1313 llvm::Metadata *SPIRVerElts[] = { 1314 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1315 Int32Ty, Version / 100)), 1316 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1317 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1318 llvm::NamedMDNode *SPIRVerMD = 1319 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1320 llvm::LLVMContext &Ctx = TheModule.getContext(); 1321 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1322 } 1323 } 1324 1325 // HLSL related end of code gen work items. 1326 if (LangOpts.HLSL) 1327 getHLSLRuntime().finishCodeGen(); 1328 1329 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1330 assert(PLevel < 3 && "Invalid PIC Level"); 1331 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1332 if (Context.getLangOpts().PIE) 1333 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1334 } 1335 1336 if (getCodeGenOpts().CodeModel.size() > 0) { 1337 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1338 .Case("tiny", llvm::CodeModel::Tiny) 1339 .Case("small", llvm::CodeModel::Small) 1340 .Case("kernel", llvm::CodeModel::Kernel) 1341 .Case("medium", llvm::CodeModel::Medium) 1342 .Case("large", llvm::CodeModel::Large) 1343 .Default(~0u); 1344 if (CM != ~0u) { 1345 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1346 getModule().setCodeModel(codeModel); 1347 1348 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1349 Context.getTargetInfo().getTriple().getArch() == 1350 llvm::Triple::x86_64) { 1351 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1352 } 1353 } 1354 } 1355 1356 if (CodeGenOpts.NoPLT) 1357 getModule().setRtLibUseGOT(); 1358 if (getTriple().isOSBinFormatELF() && 1359 CodeGenOpts.DirectAccessExternalData != 1360 getModule().getDirectAccessExternalData()) { 1361 getModule().setDirectAccessExternalData( 1362 CodeGenOpts.DirectAccessExternalData); 1363 } 1364 if (CodeGenOpts.UnwindTables) 1365 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1366 1367 switch (CodeGenOpts.getFramePointer()) { 1368 case CodeGenOptions::FramePointerKind::None: 1369 // 0 ("none") is the default. 1370 break; 1371 case CodeGenOptions::FramePointerKind::Reserved: 1372 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1373 break; 1374 case CodeGenOptions::FramePointerKind::NonLeaf: 1375 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1376 break; 1377 case CodeGenOptions::FramePointerKind::All: 1378 getModule().setFramePointer(llvm::FramePointerKind::All); 1379 break; 1380 } 1381 1382 SimplifyPersonality(); 1383 1384 if (getCodeGenOpts().EmitDeclMetadata) 1385 EmitDeclMetadata(); 1386 1387 if (getCodeGenOpts().CoverageNotesFile.size() || 1388 getCodeGenOpts().CoverageDataFile.size()) 1389 EmitCoverageFile(); 1390 1391 if (CGDebugInfo *DI = getModuleDebugInfo()) 1392 DI->finalize(); 1393 1394 if (getCodeGenOpts().EmitVersionIdentMetadata) 1395 EmitVersionIdentMetadata(); 1396 1397 if (!getCodeGenOpts().RecordCommandLine.empty()) 1398 EmitCommandLineMetadata(); 1399 1400 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1401 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1402 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1403 getModule().setStackProtectorGuardReg( 1404 getCodeGenOpts().StackProtectorGuardReg); 1405 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1406 getModule().setStackProtectorGuardSymbol( 1407 getCodeGenOpts().StackProtectorGuardSymbol); 1408 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1409 getModule().setStackProtectorGuardOffset( 1410 getCodeGenOpts().StackProtectorGuardOffset); 1411 if (getCodeGenOpts().StackAlignment) 1412 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1413 if (getCodeGenOpts().SkipRaxSetup) 1414 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1415 if (getLangOpts().RegCall4) 1416 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1417 1418 if (getContext().getTargetInfo().getMaxTLSAlign()) 1419 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1420 getContext().getTargetInfo().getMaxTLSAlign()); 1421 1422 getTargetCodeGenInfo().emitTargetGlobals(*this); 1423 1424 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1425 1426 EmitBackendOptionsMetadata(getCodeGenOpts()); 1427 1428 // If there is device offloading code embed it in the host now. 1429 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1430 1431 // Set visibility from DLL storage class 1432 // We do this at the end of LLVM IR generation; after any operation 1433 // that might affect the DLL storage class or the visibility, and 1434 // before anything that might act on these. 1435 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1436 1437 // Check the tail call symbols are truly undefined. 1438 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1439 for (auto &I : MustTailCallUndefinedGlobals) { 1440 if (!I.first->isDefined()) 1441 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1442 else { 1443 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1444 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1445 if (!Entry || Entry->isWeakForLinker() || 1446 Entry->isDeclarationForLinker()) 1447 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1448 } 1449 } 1450 } 1451 } 1452 1453 void CodeGenModule::EmitOpenCLMetadata() { 1454 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1455 // opencl.ocl.version named metadata node. 1456 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1457 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1458 1459 auto EmitVersion = [this](StringRef MDName, int Version) { 1460 llvm::Metadata *OCLVerElts[] = { 1461 llvm::ConstantAsMetadata::get( 1462 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1463 llvm::ConstantAsMetadata::get( 1464 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1465 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1466 llvm::LLVMContext &Ctx = TheModule.getContext(); 1467 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1468 }; 1469 1470 EmitVersion("opencl.ocl.version", CLVersion); 1471 if (LangOpts.OpenCLCPlusPlus) { 1472 // In addition to the OpenCL compatible version, emit the C++ version. 1473 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1474 } 1475 } 1476 1477 void CodeGenModule::EmitBackendOptionsMetadata( 1478 const CodeGenOptions &CodeGenOpts) { 1479 if (getTriple().isRISCV()) { 1480 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1481 CodeGenOpts.SmallDataLimit); 1482 } 1483 } 1484 1485 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1486 // Make sure that this type is translated. 1487 getTypes().UpdateCompletedType(TD); 1488 } 1489 1490 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1491 // Make sure that this type is translated. 1492 getTypes().RefreshTypeCacheForClass(RD); 1493 } 1494 1495 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1496 if (!TBAA) 1497 return nullptr; 1498 return TBAA->getTypeInfo(QTy); 1499 } 1500 1501 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1502 if (!TBAA) 1503 return TBAAAccessInfo(); 1504 if (getLangOpts().CUDAIsDevice) { 1505 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1506 // access info. 1507 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1508 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1509 nullptr) 1510 return TBAAAccessInfo(); 1511 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1512 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1513 nullptr) 1514 return TBAAAccessInfo(); 1515 } 1516 } 1517 return TBAA->getAccessInfo(AccessType); 1518 } 1519 1520 TBAAAccessInfo 1521 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1522 if (!TBAA) 1523 return TBAAAccessInfo(); 1524 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1525 } 1526 1527 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1528 if (!TBAA) 1529 return nullptr; 1530 return TBAA->getTBAAStructInfo(QTy); 1531 } 1532 1533 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1534 if (!TBAA) 1535 return nullptr; 1536 return TBAA->getBaseTypeInfo(QTy); 1537 } 1538 1539 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1540 if (!TBAA) 1541 return nullptr; 1542 return TBAA->getAccessTagInfo(Info); 1543 } 1544 1545 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1546 TBAAAccessInfo TargetInfo) { 1547 if (!TBAA) 1548 return TBAAAccessInfo(); 1549 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1550 } 1551 1552 TBAAAccessInfo 1553 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1554 TBAAAccessInfo InfoB) { 1555 if (!TBAA) 1556 return TBAAAccessInfo(); 1557 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1558 } 1559 1560 TBAAAccessInfo 1561 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1562 TBAAAccessInfo SrcInfo) { 1563 if (!TBAA) 1564 return TBAAAccessInfo(); 1565 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1566 } 1567 1568 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1569 TBAAAccessInfo TBAAInfo) { 1570 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1571 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1572 } 1573 1574 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1575 llvm::Instruction *I, const CXXRecordDecl *RD) { 1576 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1577 llvm::MDNode::get(getLLVMContext(), {})); 1578 } 1579 1580 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1581 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1582 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1583 } 1584 1585 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1586 /// specified stmt yet. 1587 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1588 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1589 "cannot compile this %0 yet"); 1590 std::string Msg = Type; 1591 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1592 << Msg << S->getSourceRange(); 1593 } 1594 1595 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1596 /// specified decl yet. 1597 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1598 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1599 "cannot compile this %0 yet"); 1600 std::string Msg = Type; 1601 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1602 } 1603 1604 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc, 1605 llvm::function_ref<void()> Fn) { 1606 StackHandler.runWithSufficientStackSpace(Loc, Fn); 1607 } 1608 1609 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1610 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1611 } 1612 1613 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1614 const NamedDecl *D) const { 1615 // Internal definitions always have default visibility. 1616 if (GV->hasLocalLinkage()) { 1617 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1618 return; 1619 } 1620 if (!D) 1621 return; 1622 1623 // Set visibility for definitions, and for declarations if requested globally 1624 // or set explicitly. 1625 LinkageInfo LV = D->getLinkageAndVisibility(); 1626 1627 // OpenMP declare target variables must be visible to the host so they can 1628 // be registered. We require protected visibility unless the variable has 1629 // the DT_nohost modifier and does not need to be registered. 1630 if (Context.getLangOpts().OpenMP && 1631 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1632 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1633 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1634 OMPDeclareTargetDeclAttr::DT_NoHost && 1635 LV.getVisibility() == HiddenVisibility) { 1636 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1637 return; 1638 } 1639 1640 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1641 // Reject incompatible dlllstorage and visibility annotations. 1642 if (!LV.isVisibilityExplicit()) 1643 return; 1644 if (GV->hasDLLExportStorageClass()) { 1645 if (LV.getVisibility() == HiddenVisibility) 1646 getDiags().Report(D->getLocation(), 1647 diag::err_hidden_visibility_dllexport); 1648 } else if (LV.getVisibility() != DefaultVisibility) { 1649 getDiags().Report(D->getLocation(), 1650 diag::err_non_default_visibility_dllimport); 1651 } 1652 return; 1653 } 1654 1655 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1656 !GV->isDeclarationForLinker()) 1657 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1658 } 1659 1660 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1661 llvm::GlobalValue *GV) { 1662 if (GV->hasLocalLinkage()) 1663 return true; 1664 1665 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1666 return true; 1667 1668 // DLLImport explicitly marks the GV as external. 1669 if (GV->hasDLLImportStorageClass()) 1670 return false; 1671 1672 const llvm::Triple &TT = CGM.getTriple(); 1673 const auto &CGOpts = CGM.getCodeGenOpts(); 1674 if (TT.isWindowsGNUEnvironment()) { 1675 // In MinGW, variables without DLLImport can still be automatically 1676 // imported from a DLL by the linker; don't mark variables that 1677 // potentially could come from another DLL as DSO local. 1678 1679 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1680 // (and this actually happens in the public interface of libstdc++), so 1681 // such variables can't be marked as DSO local. (Native TLS variables 1682 // can't be dllimported at all, though.) 1683 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1684 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1685 CGOpts.AutoImport) 1686 return false; 1687 } 1688 1689 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1690 // remain unresolved in the link, they can be resolved to zero, which is 1691 // outside the current DSO. 1692 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1693 return false; 1694 1695 // Every other GV is local on COFF. 1696 // Make an exception for windows OS in the triple: Some firmware builds use 1697 // *-win32-macho triples. This (accidentally?) produced windows relocations 1698 // without GOT tables in older clang versions; Keep this behaviour. 1699 // FIXME: even thread local variables? 1700 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1701 return true; 1702 1703 // Only handle COFF and ELF for now. 1704 if (!TT.isOSBinFormatELF()) 1705 return false; 1706 1707 // If this is not an executable, don't assume anything is local. 1708 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1709 const auto &LOpts = CGM.getLangOpts(); 1710 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1711 // On ELF, if -fno-semantic-interposition is specified and the target 1712 // supports local aliases, there will be neither CC1 1713 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1714 // dso_local on the function if using a local alias is preferable (can avoid 1715 // PLT indirection). 1716 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1717 return false; 1718 return !(CGM.getLangOpts().SemanticInterposition || 1719 CGM.getLangOpts().HalfNoSemanticInterposition); 1720 } 1721 1722 // A definition cannot be preempted from an executable. 1723 if (!GV->isDeclarationForLinker()) 1724 return true; 1725 1726 // Most PIC code sequences that assume that a symbol is local cannot produce a 1727 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1728 // depended, it seems worth it to handle it here. 1729 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1730 return false; 1731 1732 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1733 if (TT.isPPC64()) 1734 return false; 1735 1736 if (CGOpts.DirectAccessExternalData) { 1737 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1738 // for non-thread-local variables. If the symbol is not defined in the 1739 // executable, a copy relocation will be needed at link time. dso_local is 1740 // excluded for thread-local variables because they generally don't support 1741 // copy relocations. 1742 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1743 if (!Var->isThreadLocal()) 1744 return true; 1745 1746 // -fno-pic sets dso_local on a function declaration to allow direct 1747 // accesses when taking its address (similar to a data symbol). If the 1748 // function is not defined in the executable, a canonical PLT entry will be 1749 // needed at link time. -fno-direct-access-external-data can avoid the 1750 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1751 // it could just cause trouble without providing perceptible benefits. 1752 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1753 return true; 1754 } 1755 1756 // If we can use copy relocations we can assume it is local. 1757 1758 // Otherwise don't assume it is local. 1759 return false; 1760 } 1761 1762 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1763 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1764 } 1765 1766 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1767 GlobalDecl GD) const { 1768 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1769 // C++ destructors have a few C++ ABI specific special cases. 1770 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1771 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1772 return; 1773 } 1774 setDLLImportDLLExport(GV, D); 1775 } 1776 1777 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1778 const NamedDecl *D) const { 1779 if (D && D->isExternallyVisible()) { 1780 if (D->hasAttr<DLLImportAttr>()) 1781 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1782 else if ((D->hasAttr<DLLExportAttr>() || 1783 shouldMapVisibilityToDLLExport(D)) && 1784 !GV->isDeclarationForLinker()) 1785 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1786 } 1787 } 1788 1789 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1790 GlobalDecl GD) const { 1791 setDLLImportDLLExport(GV, GD); 1792 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1793 } 1794 1795 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1796 const NamedDecl *D) const { 1797 setDLLImportDLLExport(GV, D); 1798 setGVPropertiesAux(GV, D); 1799 } 1800 1801 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1802 const NamedDecl *D) const { 1803 setGlobalVisibility(GV, D); 1804 setDSOLocal(GV); 1805 GV->setPartition(CodeGenOpts.SymbolPartition); 1806 } 1807 1808 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1809 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1810 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1811 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1812 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1813 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1814 } 1815 1816 llvm::GlobalVariable::ThreadLocalMode 1817 CodeGenModule::GetDefaultLLVMTLSModel() const { 1818 switch (CodeGenOpts.getDefaultTLSModel()) { 1819 case CodeGenOptions::GeneralDynamicTLSModel: 1820 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1821 case CodeGenOptions::LocalDynamicTLSModel: 1822 return llvm::GlobalVariable::LocalDynamicTLSModel; 1823 case CodeGenOptions::InitialExecTLSModel: 1824 return llvm::GlobalVariable::InitialExecTLSModel; 1825 case CodeGenOptions::LocalExecTLSModel: 1826 return llvm::GlobalVariable::LocalExecTLSModel; 1827 } 1828 llvm_unreachable("Invalid TLS model!"); 1829 } 1830 1831 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1832 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1833 1834 llvm::GlobalValue::ThreadLocalMode TLM; 1835 TLM = GetDefaultLLVMTLSModel(); 1836 1837 // Override the TLS model if it is explicitly specified. 1838 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1839 TLM = GetLLVMTLSModel(Attr->getModel()); 1840 } 1841 1842 GV->setThreadLocalMode(TLM); 1843 } 1844 1845 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1846 StringRef Name) { 1847 const TargetInfo &Target = CGM.getTarget(); 1848 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1849 } 1850 1851 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1852 const CPUSpecificAttr *Attr, 1853 unsigned CPUIndex, 1854 raw_ostream &Out) { 1855 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1856 // supported. 1857 if (Attr) 1858 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1859 else if (CGM.getTarget().supportsIFunc()) 1860 Out << ".resolver"; 1861 } 1862 1863 // Returns true if GD is a function decl with internal linkage and 1864 // needs a unique suffix after the mangled name. 1865 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1866 CodeGenModule &CGM) { 1867 const Decl *D = GD.getDecl(); 1868 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1869 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1870 } 1871 1872 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1873 const NamedDecl *ND, 1874 bool OmitMultiVersionMangling = false) { 1875 SmallString<256> Buffer; 1876 llvm::raw_svector_ostream Out(Buffer); 1877 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1878 if (!CGM.getModuleNameHash().empty()) 1879 MC.needsUniqueInternalLinkageNames(); 1880 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1881 if (ShouldMangle) 1882 MC.mangleName(GD.getWithDecl(ND), Out); 1883 else { 1884 IdentifierInfo *II = ND->getIdentifier(); 1885 assert(II && "Attempt to mangle unnamed decl."); 1886 const auto *FD = dyn_cast<FunctionDecl>(ND); 1887 1888 if (FD && 1889 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1890 if (CGM.getLangOpts().RegCall4) 1891 Out << "__regcall4__" << II->getName(); 1892 else 1893 Out << "__regcall3__" << II->getName(); 1894 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1895 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1896 Out << "__device_stub__" << II->getName(); 1897 } else { 1898 Out << II->getName(); 1899 } 1900 } 1901 1902 // Check if the module name hash should be appended for internal linkage 1903 // symbols. This should come before multi-version target suffixes are 1904 // appended. This is to keep the name and module hash suffix of the 1905 // internal linkage function together. The unique suffix should only be 1906 // added when name mangling is done to make sure that the final name can 1907 // be properly demangled. For example, for C functions without prototypes, 1908 // name mangling is not done and the unique suffix should not be appeneded 1909 // then. 1910 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1911 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1912 "Hash computed when not explicitly requested"); 1913 Out << CGM.getModuleNameHash(); 1914 } 1915 1916 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1917 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1918 switch (FD->getMultiVersionKind()) { 1919 case MultiVersionKind::CPUDispatch: 1920 case MultiVersionKind::CPUSpecific: 1921 AppendCPUSpecificCPUDispatchMangling(CGM, 1922 FD->getAttr<CPUSpecificAttr>(), 1923 GD.getMultiVersionIndex(), Out); 1924 break; 1925 case MultiVersionKind::Target: { 1926 auto *Attr = FD->getAttr<TargetAttr>(); 1927 assert(Attr && "Expected TargetAttr to be present " 1928 "for attribute mangling"); 1929 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1930 Info.appendAttributeMangling(Attr, Out); 1931 break; 1932 } 1933 case MultiVersionKind::TargetVersion: { 1934 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1935 assert(Attr && "Expected TargetVersionAttr to be present " 1936 "for attribute mangling"); 1937 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1938 Info.appendAttributeMangling(Attr, Out); 1939 break; 1940 } 1941 case MultiVersionKind::TargetClones: { 1942 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1943 assert(Attr && "Expected TargetClonesAttr to be present " 1944 "for attribute mangling"); 1945 unsigned Index = GD.getMultiVersionIndex(); 1946 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1947 Info.appendAttributeMangling(Attr, Index, Out); 1948 break; 1949 } 1950 case MultiVersionKind::None: 1951 llvm_unreachable("None multiversion type isn't valid here"); 1952 } 1953 } 1954 1955 // Make unique name for device side static file-scope variable for HIP. 1956 if (CGM.getContext().shouldExternalize(ND) && 1957 CGM.getLangOpts().GPURelocatableDeviceCode && 1958 CGM.getLangOpts().CUDAIsDevice) 1959 CGM.printPostfixForExternalizedDecl(Out, ND); 1960 1961 return std::string(Out.str()); 1962 } 1963 1964 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1965 const FunctionDecl *FD, 1966 StringRef &CurName) { 1967 if (!FD->isMultiVersion()) 1968 return; 1969 1970 // Get the name of what this would be without the 'target' attribute. This 1971 // allows us to lookup the version that was emitted when this wasn't a 1972 // multiversion function. 1973 std::string NonTargetName = 1974 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1975 GlobalDecl OtherGD; 1976 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1977 assert(OtherGD.getCanonicalDecl() 1978 .getDecl() 1979 ->getAsFunction() 1980 ->isMultiVersion() && 1981 "Other GD should now be a multiversioned function"); 1982 // OtherFD is the version of this function that was mangled BEFORE 1983 // becoming a MultiVersion function. It potentially needs to be updated. 1984 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1985 .getDecl() 1986 ->getAsFunction() 1987 ->getMostRecentDecl(); 1988 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1989 // This is so that if the initial version was already the 'default' 1990 // version, we don't try to update it. 1991 if (OtherName != NonTargetName) { 1992 // Remove instead of erase, since others may have stored the StringRef 1993 // to this. 1994 const auto ExistingRecord = Manglings.find(NonTargetName); 1995 if (ExistingRecord != std::end(Manglings)) 1996 Manglings.remove(&(*ExistingRecord)); 1997 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1998 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1999 Result.first->first(); 2000 // If this is the current decl is being created, make sure we update the name. 2001 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 2002 CurName = OtherNameRef; 2003 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 2004 Entry->setName(OtherName); 2005 } 2006 } 2007 } 2008 2009 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 2010 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 2011 2012 // Some ABIs don't have constructor variants. Make sure that base and 2013 // complete constructors get mangled the same. 2014 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 2015 if (!getTarget().getCXXABI().hasConstructorVariants()) { 2016 CXXCtorType OrigCtorType = GD.getCtorType(); 2017 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 2018 if (OrigCtorType == Ctor_Base) 2019 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 2020 } 2021 } 2022 2023 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 2024 // static device variable depends on whether the variable is referenced by 2025 // a host or device host function. Therefore the mangled name cannot be 2026 // cached. 2027 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 2028 auto FoundName = MangledDeclNames.find(CanonicalGD); 2029 if (FoundName != MangledDeclNames.end()) 2030 return FoundName->second; 2031 } 2032 2033 // Keep the first result in the case of a mangling collision. 2034 const auto *ND = cast<NamedDecl>(GD.getDecl()); 2035 std::string MangledName = getMangledNameImpl(*this, GD, ND); 2036 2037 // Ensure either we have different ABIs between host and device compilations, 2038 // says host compilation following MSVC ABI but device compilation follows 2039 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 2040 // mangling should be the same after name stubbing. The later checking is 2041 // very important as the device kernel name being mangled in host-compilation 2042 // is used to resolve the device binaries to be executed. Inconsistent naming 2043 // result in undefined behavior. Even though we cannot check that naming 2044 // directly between host- and device-compilations, the host- and 2045 // device-mangling in host compilation could help catching certain ones. 2046 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2047 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2048 (getContext().getAuxTargetInfo() && 2049 (getContext().getAuxTargetInfo()->getCXXABI() != 2050 getContext().getTargetInfo().getCXXABI())) || 2051 getCUDARuntime().getDeviceSideName(ND) == 2052 getMangledNameImpl( 2053 *this, 2054 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2055 ND)); 2056 2057 // This invariant should hold true in the future. 2058 // Prior work: 2059 // https://discourse.llvm.org/t/rfc-clang-diagnostic-for-demangling-failures/82835/8 2060 // https://github.com/llvm/llvm-project/issues/111345 2061 // assert((MangledName.startswith("_Z") || MangledName.startswith("?")) && 2062 // !GD->hasAttr<AsmLabelAttr>() && 2063 // llvm::demangle(MangledName) != MangledName && 2064 // "LLVM demangler must demangle clang-generated names"); 2065 2066 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2067 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2068 } 2069 2070 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2071 const BlockDecl *BD) { 2072 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2073 const Decl *D = GD.getDecl(); 2074 2075 SmallString<256> Buffer; 2076 llvm::raw_svector_ostream Out(Buffer); 2077 if (!D) 2078 MangleCtx.mangleGlobalBlock(BD, 2079 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2080 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2081 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2082 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2083 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2084 else 2085 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2086 2087 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2088 return Result.first->first(); 2089 } 2090 2091 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2092 auto it = MangledDeclNames.begin(); 2093 while (it != MangledDeclNames.end()) { 2094 if (it->second == Name) 2095 return it->first; 2096 it++; 2097 } 2098 return GlobalDecl(); 2099 } 2100 2101 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2102 return getModule().getNamedValue(Name); 2103 } 2104 2105 /// AddGlobalCtor - Add a function to the list that will be called before 2106 /// main() runs. 2107 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2108 unsigned LexOrder, 2109 llvm::Constant *AssociatedData) { 2110 // FIXME: Type coercion of void()* types. 2111 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2112 } 2113 2114 /// AddGlobalDtor - Add a function to the list that will be called 2115 /// when the module is unloaded. 2116 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2117 bool IsDtorAttrFunc) { 2118 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2119 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2120 DtorsUsingAtExit[Priority].push_back(Dtor); 2121 return; 2122 } 2123 2124 // FIXME: Type coercion of void()* types. 2125 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2126 } 2127 2128 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2129 if (Fns.empty()) return; 2130 2131 const PointerAuthSchema &InitFiniAuthSchema = 2132 getCodeGenOpts().PointerAuth.InitFiniPointers; 2133 2134 // Ctor function type is ptr. 2135 llvm::PointerType *PtrTy = llvm::PointerType::get( 2136 getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace()); 2137 2138 // Get the type of a ctor entry, { i32, ptr, ptr }. 2139 llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy); 2140 2141 // Construct the constructor and destructor arrays. 2142 ConstantInitBuilder Builder(*this); 2143 auto Ctors = Builder.beginArray(CtorStructTy); 2144 for (const auto &I : Fns) { 2145 auto Ctor = Ctors.beginStruct(CtorStructTy); 2146 Ctor.addInt(Int32Ty, I.Priority); 2147 if (InitFiniAuthSchema) { 2148 llvm::Constant *StorageAddress = 2149 (InitFiniAuthSchema.isAddressDiscriminated() 2150 ? llvm::ConstantExpr::getIntToPtr( 2151 llvm::ConstantInt::get( 2152 IntPtrTy, 2153 llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors), 2154 PtrTy) 2155 : nullptr); 2156 llvm::Constant *SignedCtorPtr = getConstantSignedPointer( 2157 I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress, 2158 llvm::ConstantInt::get( 2159 SizeTy, InitFiniAuthSchema.getConstantDiscrimination())); 2160 Ctor.add(SignedCtorPtr); 2161 } else { 2162 Ctor.add(I.Initializer); 2163 } 2164 if (I.AssociatedData) 2165 Ctor.add(I.AssociatedData); 2166 else 2167 Ctor.addNullPointer(PtrTy); 2168 Ctor.finishAndAddTo(Ctors); 2169 } 2170 2171 auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2172 /*constant*/ false, 2173 llvm::GlobalValue::AppendingLinkage); 2174 2175 // The LTO linker doesn't seem to like it when we set an alignment 2176 // on appending variables. Take it off as a workaround. 2177 List->setAlignment(std::nullopt); 2178 2179 Fns.clear(); 2180 } 2181 2182 llvm::GlobalValue::LinkageTypes 2183 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2184 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2185 2186 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2187 2188 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2189 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2190 2191 return getLLVMLinkageForDeclarator(D, Linkage); 2192 } 2193 2194 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2195 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2196 if (!MDS) return nullptr; 2197 2198 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2199 } 2200 2201 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2202 if (auto *FnType = T->getAs<FunctionProtoType>()) 2203 T = getContext().getFunctionType( 2204 FnType->getReturnType(), FnType->getParamTypes(), 2205 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2206 2207 std::string OutName; 2208 llvm::raw_string_ostream Out(OutName); 2209 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2210 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2211 2212 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2213 Out << ".normalized"; 2214 2215 return llvm::ConstantInt::get(Int32Ty, 2216 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2217 } 2218 2219 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2220 const CGFunctionInfo &Info, 2221 llvm::Function *F, bool IsThunk) { 2222 unsigned CallingConv; 2223 llvm::AttributeList PAL; 2224 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2225 /*AttrOnCallSite=*/false, IsThunk); 2226 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2227 getTarget().getTriple().isWindowsArm64EC()) { 2228 SourceLocation Loc; 2229 if (const Decl *D = GD.getDecl()) 2230 Loc = D->getLocation(); 2231 2232 Error(Loc, "__vectorcall calling convention is not currently supported"); 2233 } 2234 F->setAttributes(PAL); 2235 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2236 } 2237 2238 static void removeImageAccessQualifier(std::string& TyName) { 2239 std::string ReadOnlyQual("__read_only"); 2240 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2241 if (ReadOnlyPos != std::string::npos) 2242 // "+ 1" for the space after access qualifier. 2243 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2244 else { 2245 std::string WriteOnlyQual("__write_only"); 2246 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2247 if (WriteOnlyPos != std::string::npos) 2248 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2249 else { 2250 std::string ReadWriteQual("__read_write"); 2251 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2252 if (ReadWritePos != std::string::npos) 2253 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2254 } 2255 } 2256 } 2257 2258 // Returns the address space id that should be produced to the 2259 // kernel_arg_addr_space metadata. This is always fixed to the ids 2260 // as specified in the SPIR 2.0 specification in order to differentiate 2261 // for example in clGetKernelArgInfo() implementation between the address 2262 // spaces with targets without unique mapping to the OpenCL address spaces 2263 // (basically all single AS CPUs). 2264 static unsigned ArgInfoAddressSpace(LangAS AS) { 2265 switch (AS) { 2266 case LangAS::opencl_global: 2267 return 1; 2268 case LangAS::opencl_constant: 2269 return 2; 2270 case LangAS::opencl_local: 2271 return 3; 2272 case LangAS::opencl_generic: 2273 return 4; // Not in SPIR 2.0 specs. 2274 case LangAS::opencl_global_device: 2275 return 5; 2276 case LangAS::opencl_global_host: 2277 return 6; 2278 default: 2279 return 0; // Assume private. 2280 } 2281 } 2282 2283 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2284 const FunctionDecl *FD, 2285 CodeGenFunction *CGF) { 2286 assert(((FD && CGF) || (!FD && !CGF)) && 2287 "Incorrect use - FD and CGF should either be both null or not!"); 2288 // Create MDNodes that represent the kernel arg metadata. 2289 // Each MDNode is a list in the form of "key", N number of values which is 2290 // the same number of values as their are kernel arguments. 2291 2292 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2293 2294 // MDNode for the kernel argument address space qualifiers. 2295 SmallVector<llvm::Metadata *, 8> addressQuals; 2296 2297 // MDNode for the kernel argument access qualifiers (images only). 2298 SmallVector<llvm::Metadata *, 8> accessQuals; 2299 2300 // MDNode for the kernel argument type names. 2301 SmallVector<llvm::Metadata *, 8> argTypeNames; 2302 2303 // MDNode for the kernel argument base type names. 2304 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2305 2306 // MDNode for the kernel argument type qualifiers. 2307 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2308 2309 // MDNode for the kernel argument names. 2310 SmallVector<llvm::Metadata *, 8> argNames; 2311 2312 if (FD && CGF) 2313 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2314 const ParmVarDecl *parm = FD->getParamDecl(i); 2315 // Get argument name. 2316 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2317 2318 if (!getLangOpts().OpenCL) 2319 continue; 2320 QualType ty = parm->getType(); 2321 std::string typeQuals; 2322 2323 // Get image and pipe access qualifier: 2324 if (ty->isImageType() || ty->isPipeType()) { 2325 const Decl *PDecl = parm; 2326 if (const auto *TD = ty->getAs<TypedefType>()) 2327 PDecl = TD->getDecl(); 2328 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2329 if (A && A->isWriteOnly()) 2330 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2331 else if (A && A->isReadWrite()) 2332 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2333 else 2334 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2335 } else 2336 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2337 2338 auto getTypeSpelling = [&](QualType Ty) { 2339 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2340 2341 if (Ty.isCanonical()) { 2342 StringRef typeNameRef = typeName; 2343 // Turn "unsigned type" to "utype" 2344 if (typeNameRef.consume_front("unsigned ")) 2345 return std::string("u") + typeNameRef.str(); 2346 if (typeNameRef.consume_front("signed ")) 2347 return typeNameRef.str(); 2348 } 2349 2350 return typeName; 2351 }; 2352 2353 if (ty->isPointerType()) { 2354 QualType pointeeTy = ty->getPointeeType(); 2355 2356 // Get address qualifier. 2357 addressQuals.push_back( 2358 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2359 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2360 2361 // Get argument type name. 2362 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2363 std::string baseTypeName = 2364 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2365 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2366 argBaseTypeNames.push_back( 2367 llvm::MDString::get(VMContext, baseTypeName)); 2368 2369 // Get argument type qualifiers: 2370 if (ty.isRestrictQualified()) 2371 typeQuals = "restrict"; 2372 if (pointeeTy.isConstQualified() || 2373 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2374 typeQuals += typeQuals.empty() ? "const" : " const"; 2375 if (pointeeTy.isVolatileQualified()) 2376 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2377 } else { 2378 uint32_t AddrSpc = 0; 2379 bool isPipe = ty->isPipeType(); 2380 if (ty->isImageType() || isPipe) 2381 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2382 2383 addressQuals.push_back( 2384 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2385 2386 // Get argument type name. 2387 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2388 std::string typeName = getTypeSpelling(ty); 2389 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2390 2391 // Remove access qualifiers on images 2392 // (as they are inseparable from type in clang implementation, 2393 // but OpenCL spec provides a special query to get access qualifier 2394 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2395 if (ty->isImageType()) { 2396 removeImageAccessQualifier(typeName); 2397 removeImageAccessQualifier(baseTypeName); 2398 } 2399 2400 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2401 argBaseTypeNames.push_back( 2402 llvm::MDString::get(VMContext, baseTypeName)); 2403 2404 if (isPipe) 2405 typeQuals = "pipe"; 2406 } 2407 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2408 } 2409 2410 if (getLangOpts().OpenCL) { 2411 Fn->setMetadata("kernel_arg_addr_space", 2412 llvm::MDNode::get(VMContext, addressQuals)); 2413 Fn->setMetadata("kernel_arg_access_qual", 2414 llvm::MDNode::get(VMContext, accessQuals)); 2415 Fn->setMetadata("kernel_arg_type", 2416 llvm::MDNode::get(VMContext, argTypeNames)); 2417 Fn->setMetadata("kernel_arg_base_type", 2418 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2419 Fn->setMetadata("kernel_arg_type_qual", 2420 llvm::MDNode::get(VMContext, argTypeQuals)); 2421 } 2422 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2423 getCodeGenOpts().HIPSaveKernelArgName) 2424 Fn->setMetadata("kernel_arg_name", 2425 llvm::MDNode::get(VMContext, argNames)); 2426 } 2427 2428 /// Determines whether the language options require us to model 2429 /// unwind exceptions. We treat -fexceptions as mandating this 2430 /// except under the fragile ObjC ABI with only ObjC exceptions 2431 /// enabled. This means, for example, that C with -fexceptions 2432 /// enables this. 2433 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2434 // If exceptions are completely disabled, obviously this is false. 2435 if (!LangOpts.Exceptions) return false; 2436 2437 // If C++ exceptions are enabled, this is true. 2438 if (LangOpts.CXXExceptions) return true; 2439 2440 // If ObjC exceptions are enabled, this depends on the ABI. 2441 if (LangOpts.ObjCExceptions) { 2442 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2443 } 2444 2445 return true; 2446 } 2447 2448 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2449 const CXXMethodDecl *MD) { 2450 // Check that the type metadata can ever actually be used by a call. 2451 if (!CGM.getCodeGenOpts().LTOUnit || 2452 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2453 return false; 2454 2455 // Only functions whose address can be taken with a member function pointer 2456 // need this sort of type metadata. 2457 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2458 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2459 } 2460 2461 SmallVector<const CXXRecordDecl *, 0> 2462 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2463 llvm::SetVector<const CXXRecordDecl *> MostBases; 2464 2465 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2466 CollectMostBases = [&](const CXXRecordDecl *RD) { 2467 if (RD->getNumBases() == 0) 2468 MostBases.insert(RD); 2469 for (const CXXBaseSpecifier &B : RD->bases()) 2470 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2471 }; 2472 CollectMostBases(RD); 2473 return MostBases.takeVector(); 2474 } 2475 2476 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2477 llvm::Function *F) { 2478 llvm::AttrBuilder B(F->getContext()); 2479 2480 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2481 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2482 2483 if (CodeGenOpts.StackClashProtector) 2484 B.addAttribute("probe-stack", "inline-asm"); 2485 2486 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2487 B.addAttribute("stack-probe-size", 2488 std::to_string(CodeGenOpts.StackProbeSize)); 2489 2490 if (!hasUnwindExceptions(LangOpts)) 2491 B.addAttribute(llvm::Attribute::NoUnwind); 2492 2493 if (D && D->hasAttr<NoStackProtectorAttr>()) 2494 ; // Do nothing. 2495 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2496 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2497 B.addAttribute(llvm::Attribute::StackProtectStrong); 2498 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2499 B.addAttribute(llvm::Attribute::StackProtect); 2500 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2501 B.addAttribute(llvm::Attribute::StackProtectStrong); 2502 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2503 B.addAttribute(llvm::Attribute::StackProtectReq); 2504 2505 if (!D) { 2506 // Non-entry HLSL functions must always be inlined. 2507 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline)) 2508 B.addAttribute(llvm::Attribute::AlwaysInline); 2509 // If we don't have a declaration to control inlining, the function isn't 2510 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2511 // disabled, mark the function as noinline. 2512 else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2513 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2514 B.addAttribute(llvm::Attribute::NoInline); 2515 2516 F->addFnAttrs(B); 2517 return; 2518 } 2519 2520 // Handle SME attributes that apply to function definitions, 2521 // rather than to function prototypes. 2522 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2523 B.addAttribute("aarch64_pstate_sm_body"); 2524 2525 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2526 if (Attr->isNewZA()) 2527 B.addAttribute("aarch64_new_za"); 2528 if (Attr->isNewZT0()) 2529 B.addAttribute("aarch64_new_zt0"); 2530 } 2531 2532 // Track whether we need to add the optnone LLVM attribute, 2533 // starting with the default for this optimization level. 2534 bool ShouldAddOptNone = 2535 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2536 // We can't add optnone in the following cases, it won't pass the verifier. 2537 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2538 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2539 2540 // Non-entry HLSL functions must always be inlined. 2541 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) && 2542 !D->hasAttr<NoInlineAttr>()) { 2543 B.addAttribute(llvm::Attribute::AlwaysInline); 2544 } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2545 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2546 // Add optnone, but do so only if the function isn't always_inline. 2547 B.addAttribute(llvm::Attribute::OptimizeNone); 2548 2549 // OptimizeNone implies noinline; we should not be inlining such functions. 2550 B.addAttribute(llvm::Attribute::NoInline); 2551 2552 // We still need to handle naked functions even though optnone subsumes 2553 // much of their semantics. 2554 if (D->hasAttr<NakedAttr>()) 2555 B.addAttribute(llvm::Attribute::Naked); 2556 2557 // OptimizeNone wins over OptimizeForSize and MinSize. 2558 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2559 F->removeFnAttr(llvm::Attribute::MinSize); 2560 } else if (D->hasAttr<NakedAttr>()) { 2561 // Naked implies noinline: we should not be inlining such functions. 2562 B.addAttribute(llvm::Attribute::Naked); 2563 B.addAttribute(llvm::Attribute::NoInline); 2564 } else if (D->hasAttr<NoDuplicateAttr>()) { 2565 B.addAttribute(llvm::Attribute::NoDuplicate); 2566 } else if (D->hasAttr<NoInlineAttr>() && 2567 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2568 // Add noinline if the function isn't always_inline. 2569 B.addAttribute(llvm::Attribute::NoInline); 2570 } else if (D->hasAttr<AlwaysInlineAttr>() && 2571 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2572 // (noinline wins over always_inline, and we can't specify both in IR) 2573 B.addAttribute(llvm::Attribute::AlwaysInline); 2574 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2575 // If we're not inlining, then force everything that isn't always_inline to 2576 // carry an explicit noinline attribute. 2577 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2578 B.addAttribute(llvm::Attribute::NoInline); 2579 } else { 2580 // Otherwise, propagate the inline hint attribute and potentially use its 2581 // absence to mark things as noinline. 2582 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2583 // Search function and template pattern redeclarations for inline. 2584 auto CheckForInline = [](const FunctionDecl *FD) { 2585 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2586 return Redecl->isInlineSpecified(); 2587 }; 2588 if (any_of(FD->redecls(), CheckRedeclForInline)) 2589 return true; 2590 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2591 if (!Pattern) 2592 return false; 2593 return any_of(Pattern->redecls(), CheckRedeclForInline); 2594 }; 2595 if (CheckForInline(FD)) { 2596 B.addAttribute(llvm::Attribute::InlineHint); 2597 } else if (CodeGenOpts.getInlining() == 2598 CodeGenOptions::OnlyHintInlining && 2599 !FD->isInlined() && 2600 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2601 B.addAttribute(llvm::Attribute::NoInline); 2602 } 2603 } 2604 } 2605 2606 // Add other optimization related attributes if we are optimizing this 2607 // function. 2608 if (!D->hasAttr<OptimizeNoneAttr>()) { 2609 if (D->hasAttr<ColdAttr>()) { 2610 if (!ShouldAddOptNone) 2611 B.addAttribute(llvm::Attribute::OptimizeForSize); 2612 B.addAttribute(llvm::Attribute::Cold); 2613 } 2614 if (D->hasAttr<HotAttr>()) 2615 B.addAttribute(llvm::Attribute::Hot); 2616 if (D->hasAttr<MinSizeAttr>()) 2617 B.addAttribute(llvm::Attribute::MinSize); 2618 } 2619 2620 F->addFnAttrs(B); 2621 2622 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2623 if (alignment) 2624 F->setAlignment(llvm::Align(alignment)); 2625 2626 if (!D->hasAttr<AlignedAttr>()) 2627 if (LangOpts.FunctionAlignment) 2628 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2629 2630 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2631 // reserve a bit for differentiating between virtual and non-virtual member 2632 // functions. If the current target's C++ ABI requires this and this is a 2633 // member function, set its alignment accordingly. 2634 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2635 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2636 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2637 } 2638 2639 // In the cross-dso CFI mode with canonical jump tables, we want !type 2640 // attributes on definitions only. 2641 if (CodeGenOpts.SanitizeCfiCrossDso && 2642 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2643 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2644 // Skip available_externally functions. They won't be codegen'ed in the 2645 // current module anyway. 2646 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2647 CreateFunctionTypeMetadataForIcall(FD, F); 2648 } 2649 } 2650 2651 // Emit type metadata on member functions for member function pointer checks. 2652 // These are only ever necessary on definitions; we're guaranteed that the 2653 // definition will be present in the LTO unit as a result of LTO visibility. 2654 auto *MD = dyn_cast<CXXMethodDecl>(D); 2655 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2656 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2657 llvm::Metadata *Id = 2658 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2659 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2660 F->addTypeMetadata(0, Id); 2661 } 2662 } 2663 } 2664 2665 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2666 const Decl *D = GD.getDecl(); 2667 if (isa_and_nonnull<NamedDecl>(D)) 2668 setGVProperties(GV, GD); 2669 else 2670 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2671 2672 if (D && D->hasAttr<UsedAttr>()) 2673 addUsedOrCompilerUsedGlobal(GV); 2674 2675 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2676 VD && 2677 ((CodeGenOpts.KeepPersistentStorageVariables && 2678 (VD->getStorageDuration() == SD_Static || 2679 VD->getStorageDuration() == SD_Thread)) || 2680 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2681 VD->getType().isConstQualified()))) 2682 addUsedOrCompilerUsedGlobal(GV); 2683 } 2684 2685 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2686 llvm::AttrBuilder &Attrs, 2687 bool SetTargetFeatures) { 2688 // Add target-cpu and target-features attributes to functions. If 2689 // we have a decl for the function and it has a target attribute then 2690 // parse that and add it to the feature set. 2691 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2692 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2693 std::vector<std::string> Features; 2694 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2695 FD = FD ? FD->getMostRecentDecl() : FD; 2696 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2697 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2698 assert((!TD || !TV) && "both target_version and target specified"); 2699 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2700 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2701 bool AddedAttr = false; 2702 if (TD || TV || SD || TC) { 2703 llvm::StringMap<bool> FeatureMap; 2704 getContext().getFunctionFeatureMap(FeatureMap, GD); 2705 2706 // Produce the canonical string for this set of features. 2707 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2708 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2709 2710 // Now add the target-cpu and target-features to the function. 2711 // While we populated the feature map above, we still need to 2712 // get and parse the target attribute so we can get the cpu for 2713 // the function. 2714 if (TD) { 2715 ParsedTargetAttr ParsedAttr = 2716 Target.parseTargetAttr(TD->getFeaturesStr()); 2717 if (!ParsedAttr.CPU.empty() && 2718 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2719 TargetCPU = ParsedAttr.CPU; 2720 TuneCPU = ""; // Clear the tune CPU. 2721 } 2722 if (!ParsedAttr.Tune.empty() && 2723 getTarget().isValidCPUName(ParsedAttr.Tune)) 2724 TuneCPU = ParsedAttr.Tune; 2725 } 2726 2727 if (SD) { 2728 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2729 // favor this processor. 2730 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2731 } 2732 } else { 2733 // Otherwise just add the existing target cpu and target features to the 2734 // function. 2735 Features = getTarget().getTargetOpts().Features; 2736 } 2737 2738 if (!TargetCPU.empty()) { 2739 Attrs.addAttribute("target-cpu", TargetCPU); 2740 AddedAttr = true; 2741 } 2742 if (!TuneCPU.empty()) { 2743 Attrs.addAttribute("tune-cpu", TuneCPU); 2744 AddedAttr = true; 2745 } 2746 if (!Features.empty() && SetTargetFeatures) { 2747 llvm::erase_if(Features, [&](const std::string& F) { 2748 return getTarget().isReadOnlyFeature(F.substr(1)); 2749 }); 2750 llvm::sort(Features); 2751 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2752 AddedAttr = true; 2753 } 2754 // Add metadata for AArch64 Function Multi Versioning. 2755 if (getTarget().getTriple().isAArch64()) { 2756 llvm::SmallVector<StringRef, 8> Feats; 2757 bool IsDefault = false; 2758 if (TV) { 2759 IsDefault = TV->isDefaultVersion(); 2760 TV->getFeatures(Feats); 2761 } else if (TC) { 2762 IsDefault = TC->isDefaultVersion(GD.getMultiVersionIndex()); 2763 TC->getFeatures(Feats, GD.getMultiVersionIndex()); 2764 } 2765 if (IsDefault) { 2766 Attrs.addAttribute("fmv-features"); 2767 AddedAttr = true; 2768 } else if (!Feats.empty()) { 2769 // Sort features and remove duplicates. 2770 std::set<StringRef> OrderedFeats(Feats.begin(), Feats.end()); 2771 std::string FMVFeatures; 2772 for (StringRef F : OrderedFeats) 2773 FMVFeatures.append("," + F.str()); 2774 Attrs.addAttribute("fmv-features", FMVFeatures.substr(1)); 2775 AddedAttr = true; 2776 } 2777 } 2778 return AddedAttr; 2779 } 2780 2781 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2782 llvm::GlobalObject *GO) { 2783 const Decl *D = GD.getDecl(); 2784 SetCommonAttributes(GD, GO); 2785 2786 if (D) { 2787 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2788 if (D->hasAttr<RetainAttr>()) 2789 addUsedGlobal(GV); 2790 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2791 GV->addAttribute("bss-section", SA->getName()); 2792 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2793 GV->addAttribute("data-section", SA->getName()); 2794 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2795 GV->addAttribute("rodata-section", SA->getName()); 2796 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2797 GV->addAttribute("relro-section", SA->getName()); 2798 } 2799 2800 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2801 if (D->hasAttr<RetainAttr>()) 2802 addUsedGlobal(F); 2803 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2804 if (!D->getAttr<SectionAttr>()) 2805 F->setSection(SA->getName()); 2806 2807 llvm::AttrBuilder Attrs(F->getContext()); 2808 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2809 // We know that GetCPUAndFeaturesAttributes will always have the 2810 // newest set, since it has the newest possible FunctionDecl, so the 2811 // new ones should replace the old. 2812 llvm::AttributeMask RemoveAttrs; 2813 RemoveAttrs.addAttribute("target-cpu"); 2814 RemoveAttrs.addAttribute("target-features"); 2815 RemoveAttrs.addAttribute("fmv-features"); 2816 RemoveAttrs.addAttribute("tune-cpu"); 2817 F->removeFnAttrs(RemoveAttrs); 2818 F->addFnAttrs(Attrs); 2819 } 2820 } 2821 2822 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2823 GO->setSection(CSA->getName()); 2824 else if (const auto *SA = D->getAttr<SectionAttr>()) 2825 GO->setSection(SA->getName()); 2826 } 2827 2828 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2829 } 2830 2831 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2832 llvm::Function *F, 2833 const CGFunctionInfo &FI) { 2834 const Decl *D = GD.getDecl(); 2835 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2836 SetLLVMFunctionAttributesForDefinition(D, F); 2837 2838 F->setLinkage(llvm::Function::InternalLinkage); 2839 2840 setNonAliasAttributes(GD, F); 2841 } 2842 2843 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2844 // Set linkage and visibility in case we never see a definition. 2845 LinkageInfo LV = ND->getLinkageAndVisibility(); 2846 // Don't set internal linkage on declarations. 2847 // "extern_weak" is overloaded in LLVM; we probably should have 2848 // separate linkage types for this. 2849 if (isExternallyVisible(LV.getLinkage()) && 2850 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2851 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2852 } 2853 2854 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2855 llvm::Function *F) { 2856 // Only if we are checking indirect calls. 2857 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2858 return; 2859 2860 // Non-static class methods are handled via vtable or member function pointer 2861 // checks elsewhere. 2862 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2863 return; 2864 2865 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2866 F->addTypeMetadata(0, MD); 2867 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2868 2869 // Emit a hash-based bit set entry for cross-DSO calls. 2870 if (CodeGenOpts.SanitizeCfiCrossDso) 2871 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2872 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2873 } 2874 2875 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2876 llvm::LLVMContext &Ctx = F->getContext(); 2877 llvm::MDBuilder MDB(Ctx); 2878 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2879 llvm::MDNode::get( 2880 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2881 } 2882 2883 static bool allowKCFIIdentifier(StringRef Name) { 2884 // KCFI type identifier constants are only necessary for external assembly 2885 // functions, which means it's safe to skip unusual names. Subset of 2886 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2887 return llvm::all_of(Name, [](const char &C) { 2888 return llvm::isAlnum(C) || C == '_' || C == '.'; 2889 }); 2890 } 2891 2892 void CodeGenModule::finalizeKCFITypes() { 2893 llvm::Module &M = getModule(); 2894 for (auto &F : M.functions()) { 2895 // Remove KCFI type metadata from non-address-taken local functions. 2896 bool AddressTaken = F.hasAddressTaken(); 2897 if (!AddressTaken && F.hasLocalLinkage()) 2898 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2899 2900 // Generate a constant with the expected KCFI type identifier for all 2901 // address-taken function declarations to support annotating indirectly 2902 // called assembly functions. 2903 if (!AddressTaken || !F.isDeclaration()) 2904 continue; 2905 2906 const llvm::ConstantInt *Type; 2907 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2908 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2909 else 2910 continue; 2911 2912 StringRef Name = F.getName(); 2913 if (!allowKCFIIdentifier(Name)) 2914 continue; 2915 2916 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2917 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2918 .str(); 2919 M.appendModuleInlineAsm(Asm); 2920 } 2921 } 2922 2923 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2924 bool IsIncompleteFunction, 2925 bool IsThunk) { 2926 2927 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2928 // If this is an intrinsic function, set the function's attributes 2929 // to the intrinsic's attributes. 2930 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2931 return; 2932 } 2933 2934 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2935 2936 if (!IsIncompleteFunction) 2937 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2938 IsThunk); 2939 2940 // Add the Returned attribute for "this", except for iOS 5 and earlier 2941 // where substantial code, including the libstdc++ dylib, was compiled with 2942 // GCC and does not actually return "this". 2943 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2944 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2945 assert(!F->arg_empty() && 2946 F->arg_begin()->getType() 2947 ->canLosslesslyBitCastTo(F->getReturnType()) && 2948 "unexpected this return"); 2949 F->addParamAttr(0, llvm::Attribute::Returned); 2950 } 2951 2952 // Only a few attributes are set on declarations; these may later be 2953 // overridden by a definition. 2954 2955 setLinkageForGV(F, FD); 2956 setGVProperties(F, FD); 2957 2958 // Setup target-specific attributes. 2959 if (!IsIncompleteFunction && F->isDeclaration()) 2960 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2961 2962 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2963 F->setSection(CSA->getName()); 2964 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2965 F->setSection(SA->getName()); 2966 2967 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2968 if (EA->isError()) 2969 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2970 else if (EA->isWarning()) 2971 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2972 } 2973 2974 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2975 if (FD->isInlineBuiltinDeclaration()) { 2976 const FunctionDecl *FDBody; 2977 bool HasBody = FD->hasBody(FDBody); 2978 (void)HasBody; 2979 assert(HasBody && "Inline builtin declarations should always have an " 2980 "available body!"); 2981 if (shouldEmitFunction(FDBody)) 2982 F->addFnAttr(llvm::Attribute::NoBuiltin); 2983 } 2984 2985 if (FD->isReplaceableGlobalAllocationFunction()) { 2986 // A replaceable global allocation function does not act like a builtin by 2987 // default, only if it is invoked by a new-expression or delete-expression. 2988 F->addFnAttr(llvm::Attribute::NoBuiltin); 2989 } 2990 2991 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2992 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2993 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2994 if (MD->isVirtual()) 2995 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2996 2997 // Don't emit entries for function declarations in the cross-DSO mode. This 2998 // is handled with better precision by the receiving DSO. But if jump tables 2999 // are non-canonical then we need type metadata in order to produce the local 3000 // jump table. 3001 if (!CodeGenOpts.SanitizeCfiCrossDso || 3002 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 3003 CreateFunctionTypeMetadataForIcall(FD, F); 3004 3005 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 3006 setKCFIType(FD, F); 3007 3008 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 3009 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 3010 3011 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 3012 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 3013 3014 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 3015 // Annotate the callback behavior as metadata: 3016 // - The callback callee (as argument number). 3017 // - The callback payloads (as argument numbers). 3018 llvm::LLVMContext &Ctx = F->getContext(); 3019 llvm::MDBuilder MDB(Ctx); 3020 3021 // The payload indices are all but the first one in the encoding. The first 3022 // identifies the callback callee. 3023 int CalleeIdx = *CB->encoding_begin(); 3024 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 3025 F->addMetadata(llvm::LLVMContext::MD_callback, 3026 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 3027 CalleeIdx, PayloadIndices, 3028 /* VarArgsArePassed */ false)})); 3029 } 3030 } 3031 3032 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 3033 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 3034 "Only globals with definition can force usage."); 3035 LLVMUsed.emplace_back(GV); 3036 } 3037 3038 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 3039 assert(!GV->isDeclaration() && 3040 "Only globals with definition can force usage."); 3041 LLVMCompilerUsed.emplace_back(GV); 3042 } 3043 3044 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 3045 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 3046 "Only globals with definition can force usage."); 3047 if (getTriple().isOSBinFormatELF()) 3048 LLVMCompilerUsed.emplace_back(GV); 3049 else 3050 LLVMUsed.emplace_back(GV); 3051 } 3052 3053 static void emitUsed(CodeGenModule &CGM, StringRef Name, 3054 std::vector<llvm::WeakTrackingVH> &List) { 3055 // Don't create llvm.used if there is no need. 3056 if (List.empty()) 3057 return; 3058 3059 // Convert List to what ConstantArray needs. 3060 SmallVector<llvm::Constant*, 8> UsedArray; 3061 UsedArray.resize(List.size()); 3062 for (unsigned i = 0, e = List.size(); i != e; ++i) { 3063 UsedArray[i] = 3064 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 3065 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 3066 } 3067 3068 if (UsedArray.empty()) 3069 return; 3070 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 3071 3072 auto *GV = new llvm::GlobalVariable( 3073 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 3074 llvm::ConstantArray::get(ATy, UsedArray), Name); 3075 3076 GV->setSection("llvm.metadata"); 3077 } 3078 3079 void CodeGenModule::emitLLVMUsed() { 3080 emitUsed(*this, "llvm.used", LLVMUsed); 3081 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 3082 } 3083 3084 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 3085 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 3086 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3087 } 3088 3089 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 3090 llvm::SmallString<32> Opt; 3091 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 3092 if (Opt.empty()) 3093 return; 3094 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3095 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3096 } 3097 3098 void CodeGenModule::AddDependentLib(StringRef Lib) { 3099 auto &C = getLLVMContext(); 3100 if (getTarget().getTriple().isOSBinFormatELF()) { 3101 ELFDependentLibraries.push_back( 3102 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3103 return; 3104 } 3105 3106 llvm::SmallString<24> Opt; 3107 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3108 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3109 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3110 } 3111 3112 /// Add link options implied by the given module, including modules 3113 /// it depends on, using a postorder walk. 3114 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3115 SmallVectorImpl<llvm::MDNode *> &Metadata, 3116 llvm::SmallPtrSet<Module *, 16> &Visited) { 3117 // Import this module's parent. 3118 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3119 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3120 } 3121 3122 // Import this module's dependencies. 3123 for (Module *Import : llvm::reverse(Mod->Imports)) { 3124 if (Visited.insert(Import).second) 3125 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3126 } 3127 3128 // Add linker options to link against the libraries/frameworks 3129 // described by this module. 3130 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3131 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3132 3133 // For modules that use export_as for linking, use that module 3134 // name instead. 3135 if (Mod->UseExportAsModuleLinkName) 3136 return; 3137 3138 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3139 // Link against a framework. Frameworks are currently Darwin only, so we 3140 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3141 if (LL.IsFramework) { 3142 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3143 llvm::MDString::get(Context, LL.Library)}; 3144 3145 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3146 continue; 3147 } 3148 3149 // Link against a library. 3150 if (IsELF) { 3151 llvm::Metadata *Args[2] = { 3152 llvm::MDString::get(Context, "lib"), 3153 llvm::MDString::get(Context, LL.Library), 3154 }; 3155 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3156 } else { 3157 llvm::SmallString<24> Opt; 3158 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3159 auto *OptString = llvm::MDString::get(Context, Opt); 3160 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3161 } 3162 } 3163 } 3164 3165 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3166 assert(Primary->isNamedModuleUnit() && 3167 "We should only emit module initializers for named modules."); 3168 3169 // Emit the initializers in the order that sub-modules appear in the 3170 // source, first Global Module Fragments, if present. 3171 if (auto GMF = Primary->getGlobalModuleFragment()) { 3172 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3173 if (isa<ImportDecl>(D)) 3174 continue; 3175 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3176 EmitTopLevelDecl(D); 3177 } 3178 } 3179 // Second any associated with the module, itself. 3180 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3181 // Skip import decls, the inits for those are called explicitly. 3182 if (isa<ImportDecl>(D)) 3183 continue; 3184 EmitTopLevelDecl(D); 3185 } 3186 // Third any associated with the Privat eMOdule Fragment, if present. 3187 if (auto PMF = Primary->getPrivateModuleFragment()) { 3188 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3189 // Skip import decls, the inits for those are called explicitly. 3190 if (isa<ImportDecl>(D)) 3191 continue; 3192 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3193 EmitTopLevelDecl(D); 3194 } 3195 } 3196 } 3197 3198 void CodeGenModule::EmitModuleLinkOptions() { 3199 // Collect the set of all of the modules we want to visit to emit link 3200 // options, which is essentially the imported modules and all of their 3201 // non-explicit child modules. 3202 llvm::SetVector<clang::Module *> LinkModules; 3203 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3204 SmallVector<clang::Module *, 16> Stack; 3205 3206 // Seed the stack with imported modules. 3207 for (Module *M : ImportedModules) { 3208 // Do not add any link flags when an implementation TU of a module imports 3209 // a header of that same module. 3210 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3211 !getLangOpts().isCompilingModule()) 3212 continue; 3213 if (Visited.insert(M).second) 3214 Stack.push_back(M); 3215 } 3216 3217 // Find all of the modules to import, making a little effort to prune 3218 // non-leaf modules. 3219 while (!Stack.empty()) { 3220 clang::Module *Mod = Stack.pop_back_val(); 3221 3222 bool AnyChildren = false; 3223 3224 // Visit the submodules of this module. 3225 for (const auto &SM : Mod->submodules()) { 3226 // Skip explicit children; they need to be explicitly imported to be 3227 // linked against. 3228 if (SM->IsExplicit) 3229 continue; 3230 3231 if (Visited.insert(SM).second) { 3232 Stack.push_back(SM); 3233 AnyChildren = true; 3234 } 3235 } 3236 3237 // We didn't find any children, so add this module to the list of 3238 // modules to link against. 3239 if (!AnyChildren) { 3240 LinkModules.insert(Mod); 3241 } 3242 } 3243 3244 // Add link options for all of the imported modules in reverse topological 3245 // order. We don't do anything to try to order import link flags with respect 3246 // to linker options inserted by things like #pragma comment(). 3247 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3248 Visited.clear(); 3249 for (Module *M : LinkModules) 3250 if (Visited.insert(M).second) 3251 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3252 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3253 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3254 3255 // Add the linker options metadata flag. 3256 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3257 for (auto *MD : LinkerOptionsMetadata) 3258 NMD->addOperand(MD); 3259 } 3260 3261 void CodeGenModule::EmitDeferred() { 3262 // Emit deferred declare target declarations. 3263 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3264 getOpenMPRuntime().emitDeferredTargetDecls(); 3265 3266 // Emit code for any potentially referenced deferred decls. Since a 3267 // previously unused static decl may become used during the generation of code 3268 // for a static function, iterate until no changes are made. 3269 3270 if (!DeferredVTables.empty()) { 3271 EmitDeferredVTables(); 3272 3273 // Emitting a vtable doesn't directly cause more vtables to 3274 // become deferred, although it can cause functions to be 3275 // emitted that then need those vtables. 3276 assert(DeferredVTables.empty()); 3277 } 3278 3279 // Emit CUDA/HIP static device variables referenced by host code only. 3280 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3281 // needed for further handling. 3282 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3283 llvm::append_range(DeferredDeclsToEmit, 3284 getContext().CUDADeviceVarODRUsedByHost); 3285 3286 // Stop if we're out of both deferred vtables and deferred declarations. 3287 if (DeferredDeclsToEmit.empty()) 3288 return; 3289 3290 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3291 // work, it will not interfere with this. 3292 std::vector<GlobalDecl> CurDeclsToEmit; 3293 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3294 3295 for (GlobalDecl &D : CurDeclsToEmit) { 3296 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3297 // to get GlobalValue with exactly the type we need, not something that 3298 // might had been created for another decl with the same mangled name but 3299 // different type. 3300 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3301 GetAddrOfGlobal(D, ForDefinition)); 3302 3303 // In case of different address spaces, we may still get a cast, even with 3304 // IsForDefinition equal to true. Query mangled names table to get 3305 // GlobalValue. 3306 if (!GV) 3307 GV = GetGlobalValue(getMangledName(D)); 3308 3309 // Make sure GetGlobalValue returned non-null. 3310 assert(GV); 3311 3312 // Check to see if we've already emitted this. This is necessary 3313 // for a couple of reasons: first, decls can end up in the 3314 // deferred-decls queue multiple times, and second, decls can end 3315 // up with definitions in unusual ways (e.g. by an extern inline 3316 // function acquiring a strong function redefinition). Just 3317 // ignore these cases. 3318 if (!GV->isDeclaration()) 3319 continue; 3320 3321 // If this is OpenMP, check if it is legal to emit this global normally. 3322 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3323 continue; 3324 3325 // Otherwise, emit the definition and move on to the next one. 3326 EmitGlobalDefinition(D, GV); 3327 3328 // If we found out that we need to emit more decls, do that recursively. 3329 // This has the advantage that the decls are emitted in a DFS and related 3330 // ones are close together, which is convenient for testing. 3331 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3332 EmitDeferred(); 3333 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3334 } 3335 } 3336 } 3337 3338 void CodeGenModule::EmitVTablesOpportunistically() { 3339 // Try to emit external vtables as available_externally if they have emitted 3340 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3341 // is not allowed to create new references to things that need to be emitted 3342 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3343 3344 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3345 && "Only emit opportunistic vtables with optimizations"); 3346 3347 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3348 assert(getVTables().isVTableExternal(RD) && 3349 "This queue should only contain external vtables"); 3350 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3351 VTables.GenerateClassData(RD); 3352 } 3353 OpportunisticVTables.clear(); 3354 } 3355 3356 void CodeGenModule::EmitGlobalAnnotations() { 3357 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3358 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3359 if (GV) 3360 AddGlobalAnnotations(VD, GV); 3361 } 3362 DeferredAnnotations.clear(); 3363 3364 if (Annotations.empty()) 3365 return; 3366 3367 // Create a new global variable for the ConstantStruct in the Module. 3368 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3369 Annotations[0]->getType(), Annotations.size()), Annotations); 3370 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3371 llvm::GlobalValue::AppendingLinkage, 3372 Array, "llvm.global.annotations"); 3373 gv->setSection(AnnotationSection); 3374 } 3375 3376 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3377 llvm::Constant *&AStr = AnnotationStrings[Str]; 3378 if (AStr) 3379 return AStr; 3380 3381 // Not found yet, create a new global. 3382 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3383 auto *gv = new llvm::GlobalVariable( 3384 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3385 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3386 ConstGlobalsPtrTy->getAddressSpace()); 3387 gv->setSection(AnnotationSection); 3388 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3389 AStr = gv; 3390 return gv; 3391 } 3392 3393 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3394 SourceManager &SM = getContext().getSourceManager(); 3395 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3396 if (PLoc.isValid()) 3397 return EmitAnnotationString(PLoc.getFilename()); 3398 return EmitAnnotationString(SM.getBufferName(Loc)); 3399 } 3400 3401 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3402 SourceManager &SM = getContext().getSourceManager(); 3403 PresumedLoc PLoc = SM.getPresumedLoc(L); 3404 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3405 SM.getExpansionLineNumber(L); 3406 return llvm::ConstantInt::get(Int32Ty, LineNo); 3407 } 3408 3409 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3410 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3411 if (Exprs.empty()) 3412 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3413 3414 llvm::FoldingSetNodeID ID; 3415 for (Expr *E : Exprs) { 3416 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3417 } 3418 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3419 if (Lookup) 3420 return Lookup; 3421 3422 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3423 LLVMArgs.reserve(Exprs.size()); 3424 ConstantEmitter ConstEmiter(*this); 3425 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3426 const auto *CE = cast<clang::ConstantExpr>(E); 3427 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3428 CE->getType()); 3429 }); 3430 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3431 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3432 llvm::GlobalValue::PrivateLinkage, Struct, 3433 ".args"); 3434 GV->setSection(AnnotationSection); 3435 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3436 3437 Lookup = GV; 3438 return GV; 3439 } 3440 3441 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3442 const AnnotateAttr *AA, 3443 SourceLocation L) { 3444 // Get the globals for file name, annotation, and the line number. 3445 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3446 *UnitGV = EmitAnnotationUnit(L), 3447 *LineNoCst = EmitAnnotationLineNo(L), 3448 *Args = EmitAnnotationArgs(AA); 3449 3450 llvm::Constant *GVInGlobalsAS = GV; 3451 if (GV->getAddressSpace() != 3452 getDataLayout().getDefaultGlobalsAddressSpace()) { 3453 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3454 GV, 3455 llvm::PointerType::get( 3456 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3457 } 3458 3459 // Create the ConstantStruct for the global annotation. 3460 llvm::Constant *Fields[] = { 3461 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3462 }; 3463 return llvm::ConstantStruct::getAnon(Fields); 3464 } 3465 3466 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3467 llvm::GlobalValue *GV) { 3468 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3469 // Get the struct elements for these annotations. 3470 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3471 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3472 } 3473 3474 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3475 SourceLocation Loc) const { 3476 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3477 // NoSanitize by function name. 3478 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3479 return true; 3480 // NoSanitize by location. Check "mainfile" prefix. 3481 auto &SM = Context.getSourceManager(); 3482 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3483 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3484 return true; 3485 3486 // Check "src" prefix. 3487 if (Loc.isValid()) 3488 return NoSanitizeL.containsLocation(Kind, Loc); 3489 // If location is unknown, this may be a compiler-generated function. Assume 3490 // it's located in the main file. 3491 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3492 } 3493 3494 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3495 llvm::GlobalVariable *GV, 3496 SourceLocation Loc, QualType Ty, 3497 StringRef Category) const { 3498 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3499 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3500 return true; 3501 auto &SM = Context.getSourceManager(); 3502 if (NoSanitizeL.containsMainFile( 3503 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3504 Category)) 3505 return true; 3506 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3507 return true; 3508 3509 // Check global type. 3510 if (!Ty.isNull()) { 3511 // Drill down the array types: if global variable of a fixed type is 3512 // not sanitized, we also don't instrument arrays of them. 3513 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3514 Ty = AT->getElementType(); 3515 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3516 // Only record types (classes, structs etc.) are ignored. 3517 if (Ty->isRecordType()) { 3518 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3519 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3520 return true; 3521 } 3522 } 3523 return false; 3524 } 3525 3526 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3527 StringRef Category) const { 3528 const auto &XRayFilter = getContext().getXRayFilter(); 3529 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3530 auto Attr = ImbueAttr::NONE; 3531 if (Loc.isValid()) 3532 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3533 if (Attr == ImbueAttr::NONE) 3534 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3535 switch (Attr) { 3536 case ImbueAttr::NONE: 3537 return false; 3538 case ImbueAttr::ALWAYS: 3539 Fn->addFnAttr("function-instrument", "xray-always"); 3540 break; 3541 case ImbueAttr::ALWAYS_ARG1: 3542 Fn->addFnAttr("function-instrument", "xray-always"); 3543 Fn->addFnAttr("xray-log-args", "1"); 3544 break; 3545 case ImbueAttr::NEVER: 3546 Fn->addFnAttr("function-instrument", "xray-never"); 3547 break; 3548 } 3549 return true; 3550 } 3551 3552 ProfileList::ExclusionType 3553 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3554 SourceLocation Loc) const { 3555 const auto &ProfileList = getContext().getProfileList(); 3556 // If the profile list is empty, then instrument everything. 3557 if (ProfileList.isEmpty()) 3558 return ProfileList::Allow; 3559 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3560 // First, check the function name. 3561 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3562 return *V; 3563 // Next, check the source location. 3564 if (Loc.isValid()) 3565 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3566 return *V; 3567 // If location is unknown, this may be a compiler-generated function. Assume 3568 // it's located in the main file. 3569 auto &SM = Context.getSourceManager(); 3570 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3571 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3572 return *V; 3573 return ProfileList.getDefault(Kind); 3574 } 3575 3576 ProfileList::ExclusionType 3577 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3578 SourceLocation Loc) const { 3579 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3580 if (V != ProfileList::Allow) 3581 return V; 3582 3583 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3584 if (NumGroups > 1) { 3585 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3586 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3587 return ProfileList::Skip; 3588 } 3589 return ProfileList::Allow; 3590 } 3591 3592 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3593 // Never defer when EmitAllDecls is specified. 3594 if (LangOpts.EmitAllDecls) 3595 return true; 3596 3597 const auto *VD = dyn_cast<VarDecl>(Global); 3598 if (VD && 3599 ((CodeGenOpts.KeepPersistentStorageVariables && 3600 (VD->getStorageDuration() == SD_Static || 3601 VD->getStorageDuration() == SD_Thread)) || 3602 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3603 VD->getType().isConstQualified()))) 3604 return true; 3605 3606 return getContext().DeclMustBeEmitted(Global); 3607 } 3608 3609 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3610 // In OpenMP 5.0 variables and function may be marked as 3611 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3612 // that they must be emitted on the host/device. To be sure we need to have 3613 // seen a declare target with an explicit mentioning of the function, we know 3614 // we have if the level of the declare target attribute is -1. Note that we 3615 // check somewhere else if we should emit this at all. 3616 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3617 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3618 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3619 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3620 return false; 3621 } 3622 3623 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3624 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3625 // Implicit template instantiations may change linkage if they are later 3626 // explicitly instantiated, so they should not be emitted eagerly. 3627 return false; 3628 // Defer until all versions have been semantically checked. 3629 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3630 return false; 3631 } 3632 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3633 if (Context.getInlineVariableDefinitionKind(VD) == 3634 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3635 // A definition of an inline constexpr static data member may change 3636 // linkage later if it's redeclared outside the class. 3637 return false; 3638 if (CXX20ModuleInits && VD->getOwningModule() && 3639 !VD->getOwningModule()->isModuleMapModule()) { 3640 // For CXX20, module-owned initializers need to be deferred, since it is 3641 // not known at this point if they will be run for the current module or 3642 // as part of the initializer for an imported one. 3643 return false; 3644 } 3645 } 3646 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3647 // codegen for global variables, because they may be marked as threadprivate. 3648 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3649 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3650 !Global->getType().isConstantStorage(getContext(), false, false) && 3651 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3652 return false; 3653 3654 return true; 3655 } 3656 3657 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3658 StringRef Name = getMangledName(GD); 3659 3660 // The UUID descriptor should be pointer aligned. 3661 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3662 3663 // Look for an existing global. 3664 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3665 return ConstantAddress(GV, GV->getValueType(), Alignment); 3666 3667 ConstantEmitter Emitter(*this); 3668 llvm::Constant *Init; 3669 3670 APValue &V = GD->getAsAPValue(); 3671 if (!V.isAbsent()) { 3672 // If possible, emit the APValue version of the initializer. In particular, 3673 // this gets the type of the constant right. 3674 Init = Emitter.emitForInitializer( 3675 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3676 } else { 3677 // As a fallback, directly construct the constant. 3678 // FIXME: This may get padding wrong under esoteric struct layout rules. 3679 // MSVC appears to create a complete type 'struct __s_GUID' that it 3680 // presumably uses to represent these constants. 3681 MSGuidDecl::Parts Parts = GD->getParts(); 3682 llvm::Constant *Fields[4] = { 3683 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3684 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3685 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3686 llvm::ConstantDataArray::getRaw( 3687 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3688 Int8Ty)}; 3689 Init = llvm::ConstantStruct::getAnon(Fields); 3690 } 3691 3692 auto *GV = new llvm::GlobalVariable( 3693 getModule(), Init->getType(), 3694 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3695 if (supportsCOMDAT()) 3696 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3697 setDSOLocal(GV); 3698 3699 if (!V.isAbsent()) { 3700 Emitter.finalize(GV); 3701 return ConstantAddress(GV, GV->getValueType(), Alignment); 3702 } 3703 3704 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3705 return ConstantAddress(GV, Ty, Alignment); 3706 } 3707 3708 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3709 const UnnamedGlobalConstantDecl *GCD) { 3710 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3711 3712 llvm::GlobalVariable **Entry = nullptr; 3713 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3714 if (*Entry) 3715 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3716 3717 ConstantEmitter Emitter(*this); 3718 llvm::Constant *Init; 3719 3720 const APValue &V = GCD->getValue(); 3721 3722 assert(!V.isAbsent()); 3723 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3724 GCD->getType()); 3725 3726 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3727 /*isConstant=*/true, 3728 llvm::GlobalValue::PrivateLinkage, Init, 3729 ".constant"); 3730 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3731 GV->setAlignment(Alignment.getAsAlign()); 3732 3733 Emitter.finalize(GV); 3734 3735 *Entry = GV; 3736 return ConstantAddress(GV, GV->getValueType(), Alignment); 3737 } 3738 3739 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3740 const TemplateParamObjectDecl *TPO) { 3741 StringRef Name = getMangledName(TPO); 3742 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3743 3744 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3745 return ConstantAddress(GV, GV->getValueType(), Alignment); 3746 3747 ConstantEmitter Emitter(*this); 3748 llvm::Constant *Init = Emitter.emitForInitializer( 3749 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3750 3751 if (!Init) { 3752 ErrorUnsupported(TPO, "template parameter object"); 3753 return ConstantAddress::invalid(); 3754 } 3755 3756 llvm::GlobalValue::LinkageTypes Linkage = 3757 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3758 ? llvm::GlobalValue::LinkOnceODRLinkage 3759 : llvm::GlobalValue::InternalLinkage; 3760 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3761 /*isConstant=*/true, Linkage, Init, Name); 3762 setGVProperties(GV, TPO); 3763 if (supportsCOMDAT()) 3764 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3765 Emitter.finalize(GV); 3766 3767 return ConstantAddress(GV, GV->getValueType(), Alignment); 3768 } 3769 3770 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3771 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3772 assert(AA && "No alias?"); 3773 3774 CharUnits Alignment = getContext().getDeclAlign(VD); 3775 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3776 3777 // See if there is already something with the target's name in the module. 3778 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3779 if (Entry) 3780 return ConstantAddress(Entry, DeclTy, Alignment); 3781 3782 llvm::Constant *Aliasee; 3783 if (isa<llvm::FunctionType>(DeclTy)) 3784 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3785 GlobalDecl(cast<FunctionDecl>(VD)), 3786 /*ForVTable=*/false); 3787 else 3788 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3789 nullptr); 3790 3791 auto *F = cast<llvm::GlobalValue>(Aliasee); 3792 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3793 WeakRefReferences.insert(F); 3794 3795 return ConstantAddress(Aliasee, DeclTy, Alignment); 3796 } 3797 3798 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3799 if (!D) 3800 return false; 3801 if (auto *A = D->getAttr<AttrT>()) 3802 return A->isImplicit(); 3803 return D->isImplicit(); 3804 } 3805 3806 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3807 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3808 // We need to emit host-side 'shadows' for all global 3809 // device-side variables because the CUDA runtime needs their 3810 // size and host-side address in order to provide access to 3811 // their device-side incarnations. 3812 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3813 Global->hasAttr<CUDAConstantAttr>() || 3814 Global->hasAttr<CUDASharedAttr>() || 3815 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3816 Global->getType()->isCUDADeviceBuiltinTextureType(); 3817 } 3818 3819 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3820 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3821 3822 // Weak references don't produce any output by themselves. 3823 if (Global->hasAttr<WeakRefAttr>()) 3824 return; 3825 3826 // If this is an alias definition (which otherwise looks like a declaration) 3827 // emit it now. 3828 if (Global->hasAttr<AliasAttr>()) 3829 return EmitAliasDefinition(GD); 3830 3831 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3832 if (Global->hasAttr<IFuncAttr>()) 3833 return emitIFuncDefinition(GD); 3834 3835 // If this is a cpu_dispatch multiversion function, emit the resolver. 3836 if (Global->hasAttr<CPUDispatchAttr>()) 3837 return emitCPUDispatchDefinition(GD); 3838 3839 // If this is CUDA, be selective about which declarations we emit. 3840 // Non-constexpr non-lambda implicit host device functions are not emitted 3841 // unless they are used on device side. 3842 if (LangOpts.CUDA) { 3843 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3844 "Expected Variable or Function"); 3845 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3846 if (!shouldEmitCUDAGlobalVar(VD)) 3847 return; 3848 } else if (LangOpts.CUDAIsDevice) { 3849 const auto *FD = dyn_cast<FunctionDecl>(Global); 3850 if ((!Global->hasAttr<CUDADeviceAttr>() || 3851 (LangOpts.OffloadImplicitHostDeviceTemplates && 3852 hasImplicitAttr<CUDAHostAttr>(FD) && 3853 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3854 !isLambdaCallOperator(FD) && 3855 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3856 !Global->hasAttr<CUDAGlobalAttr>() && 3857 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3858 !Global->hasAttr<CUDAHostAttr>())) 3859 return; 3860 // Device-only functions are the only things we skip. 3861 } else if (!Global->hasAttr<CUDAHostAttr>() && 3862 Global->hasAttr<CUDADeviceAttr>()) 3863 return; 3864 } 3865 3866 if (LangOpts.OpenMP) { 3867 // If this is OpenMP, check if it is legal to emit this global normally. 3868 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3869 return; 3870 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3871 if (MustBeEmitted(Global)) 3872 EmitOMPDeclareReduction(DRD); 3873 return; 3874 } 3875 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3876 if (MustBeEmitted(Global)) 3877 EmitOMPDeclareMapper(DMD); 3878 return; 3879 } 3880 } 3881 3882 // Ignore declarations, they will be emitted on their first use. 3883 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3884 // Update deferred annotations with the latest declaration if the function 3885 // function was already used or defined. 3886 if (FD->hasAttr<AnnotateAttr>()) { 3887 StringRef MangledName = getMangledName(GD); 3888 if (GetGlobalValue(MangledName)) 3889 DeferredAnnotations[MangledName] = FD; 3890 } 3891 3892 // Forward declarations are emitted lazily on first use. 3893 if (!FD->doesThisDeclarationHaveABody()) { 3894 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3895 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64())) 3896 return; 3897 3898 StringRef MangledName = getMangledName(GD); 3899 3900 // Compute the function info and LLVM type. 3901 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3902 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3903 3904 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3905 /*DontDefer=*/false); 3906 return; 3907 } 3908 } else { 3909 const auto *VD = cast<VarDecl>(Global); 3910 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3911 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3912 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3913 if (LangOpts.OpenMP) { 3914 // Emit declaration of the must-be-emitted declare target variable. 3915 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3916 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3917 3918 // If this variable has external storage and doesn't require special 3919 // link handling we defer to its canonical definition. 3920 if (VD->hasExternalStorage() && 3921 Res != OMPDeclareTargetDeclAttr::MT_Link) 3922 return; 3923 3924 bool UnifiedMemoryEnabled = 3925 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3926 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3927 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3928 !UnifiedMemoryEnabled) { 3929 (void)GetAddrOfGlobalVar(VD); 3930 } else { 3931 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3932 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3933 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3934 UnifiedMemoryEnabled)) && 3935 "Link clause or to clause with unified memory expected."); 3936 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3937 } 3938 3939 return; 3940 } 3941 } 3942 // If this declaration may have caused an inline variable definition to 3943 // change linkage, make sure that it's emitted. 3944 if (Context.getInlineVariableDefinitionKind(VD) == 3945 ASTContext::InlineVariableDefinitionKind::Strong) 3946 GetAddrOfGlobalVar(VD); 3947 return; 3948 } 3949 } 3950 3951 // Defer code generation to first use when possible, e.g. if this is an inline 3952 // function. If the global must always be emitted, do it eagerly if possible 3953 // to benefit from cache locality. 3954 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3955 // Emit the definition if it can't be deferred. 3956 EmitGlobalDefinition(GD); 3957 addEmittedDeferredDecl(GD); 3958 return; 3959 } 3960 3961 // If we're deferring emission of a C++ variable with an 3962 // initializer, remember the order in which it appeared in the file. 3963 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3964 cast<VarDecl>(Global)->hasInit()) { 3965 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3966 CXXGlobalInits.push_back(nullptr); 3967 } 3968 3969 StringRef MangledName = getMangledName(GD); 3970 if (GetGlobalValue(MangledName) != nullptr) { 3971 // The value has already been used and should therefore be emitted. 3972 addDeferredDeclToEmit(GD); 3973 } else if (MustBeEmitted(Global)) { 3974 // The value must be emitted, but cannot be emitted eagerly. 3975 assert(!MayBeEmittedEagerly(Global)); 3976 addDeferredDeclToEmit(GD); 3977 } else { 3978 // Otherwise, remember that we saw a deferred decl with this name. The 3979 // first use of the mangled name will cause it to move into 3980 // DeferredDeclsToEmit. 3981 DeferredDecls[MangledName] = GD; 3982 } 3983 } 3984 3985 // Check if T is a class type with a destructor that's not dllimport. 3986 static bool HasNonDllImportDtor(QualType T) { 3987 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3988 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3989 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3990 return true; 3991 3992 return false; 3993 } 3994 3995 namespace { 3996 struct FunctionIsDirectlyRecursive 3997 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3998 const StringRef Name; 3999 const Builtin::Context &BI; 4000 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 4001 : Name(N), BI(C) {} 4002 4003 bool VisitCallExpr(const CallExpr *E) { 4004 const FunctionDecl *FD = E->getDirectCallee(); 4005 if (!FD) 4006 return false; 4007 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4008 if (Attr && Name == Attr->getLabel()) 4009 return true; 4010 unsigned BuiltinID = FD->getBuiltinID(); 4011 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 4012 return false; 4013 StringRef BuiltinName = BI.getName(BuiltinID); 4014 if (BuiltinName.starts_with("__builtin_") && 4015 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 4016 return true; 4017 } 4018 return false; 4019 } 4020 4021 bool VisitStmt(const Stmt *S) { 4022 for (const Stmt *Child : S->children()) 4023 if (Child && this->Visit(Child)) 4024 return true; 4025 return false; 4026 } 4027 }; 4028 4029 // Make sure we're not referencing non-imported vars or functions. 4030 struct DLLImportFunctionVisitor 4031 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 4032 bool SafeToInline = true; 4033 4034 bool shouldVisitImplicitCode() const { return true; } 4035 4036 bool VisitVarDecl(VarDecl *VD) { 4037 if (VD->getTLSKind()) { 4038 // A thread-local variable cannot be imported. 4039 SafeToInline = false; 4040 return SafeToInline; 4041 } 4042 4043 // A variable definition might imply a destructor call. 4044 if (VD->isThisDeclarationADefinition()) 4045 SafeToInline = !HasNonDllImportDtor(VD->getType()); 4046 4047 return SafeToInline; 4048 } 4049 4050 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 4051 if (const auto *D = E->getTemporary()->getDestructor()) 4052 SafeToInline = D->hasAttr<DLLImportAttr>(); 4053 return SafeToInline; 4054 } 4055 4056 bool VisitDeclRefExpr(DeclRefExpr *E) { 4057 ValueDecl *VD = E->getDecl(); 4058 if (isa<FunctionDecl>(VD)) 4059 SafeToInline = VD->hasAttr<DLLImportAttr>(); 4060 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 4061 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 4062 return SafeToInline; 4063 } 4064 4065 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 4066 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 4067 return SafeToInline; 4068 } 4069 4070 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 4071 CXXMethodDecl *M = E->getMethodDecl(); 4072 if (!M) { 4073 // Call through a pointer to member function. This is safe to inline. 4074 SafeToInline = true; 4075 } else { 4076 SafeToInline = M->hasAttr<DLLImportAttr>(); 4077 } 4078 return SafeToInline; 4079 } 4080 4081 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 4082 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 4083 return SafeToInline; 4084 } 4085 4086 bool VisitCXXNewExpr(CXXNewExpr *E) { 4087 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 4088 return SafeToInline; 4089 } 4090 }; 4091 } 4092 4093 // isTriviallyRecursive - Check if this function calls another 4094 // decl that, because of the asm attribute or the other decl being a builtin, 4095 // ends up pointing to itself. 4096 bool 4097 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 4098 StringRef Name; 4099 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 4100 // asm labels are a special kind of mangling we have to support. 4101 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4102 if (!Attr) 4103 return false; 4104 Name = Attr->getLabel(); 4105 } else { 4106 Name = FD->getName(); 4107 } 4108 4109 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4110 const Stmt *Body = FD->getBody(); 4111 return Body ? Walker.Visit(Body) : false; 4112 } 4113 4114 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4115 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4116 return true; 4117 4118 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4119 // Inline builtins declaration must be emitted. They often are fortified 4120 // functions. 4121 if (F->isInlineBuiltinDeclaration()) 4122 return true; 4123 4124 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4125 return false; 4126 4127 // We don't import function bodies from other named module units since that 4128 // behavior may break ABI compatibility of the current unit. 4129 if (const Module *M = F->getOwningModule(); 4130 M && M->getTopLevelModule()->isNamedModule() && 4131 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4132 // There are practices to mark template member function as always-inline 4133 // and mark the template as extern explicit instantiation but not give 4134 // the definition for member function. So we have to emit the function 4135 // from explicitly instantiation with always-inline. 4136 // 4137 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4138 // 4139 // TODO: Maybe it is better to give it a warning if we call a non-inline 4140 // function from other module units which is marked as always-inline. 4141 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4142 return false; 4143 } 4144 } 4145 4146 if (F->hasAttr<NoInlineAttr>()) 4147 return false; 4148 4149 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4150 // Check whether it would be safe to inline this dllimport function. 4151 DLLImportFunctionVisitor Visitor; 4152 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4153 if (!Visitor.SafeToInline) 4154 return false; 4155 4156 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4157 // Implicit destructor invocations aren't captured in the AST, so the 4158 // check above can't see them. Check for them manually here. 4159 for (const Decl *Member : Dtor->getParent()->decls()) 4160 if (isa<FieldDecl>(Member)) 4161 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4162 return false; 4163 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4164 if (HasNonDllImportDtor(B.getType())) 4165 return false; 4166 } 4167 } 4168 4169 // PR9614. Avoid cases where the source code is lying to us. An available 4170 // externally function should have an equivalent function somewhere else, 4171 // but a function that calls itself through asm label/`__builtin_` trickery is 4172 // clearly not equivalent to the real implementation. 4173 // This happens in glibc's btowc and in some configure checks. 4174 return !isTriviallyRecursive(F); 4175 } 4176 4177 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4178 return CodeGenOpts.OptimizationLevel > 0; 4179 } 4180 4181 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4182 llvm::GlobalValue *GV) { 4183 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4184 4185 if (FD->isCPUSpecificMultiVersion()) { 4186 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4187 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4188 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4189 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4190 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4191 // AArch64 favors the default target version over the clone if any. 4192 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4193 TC->isFirstOfVersion(I)) 4194 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4195 // Ensure that the resolver function is also emitted. 4196 GetOrCreateMultiVersionResolver(GD); 4197 } else 4198 EmitGlobalFunctionDefinition(GD, GV); 4199 4200 // Defer the resolver emission until we can reason whether the TU 4201 // contains a default target version implementation. 4202 if (FD->isTargetVersionMultiVersion()) 4203 AddDeferredMultiVersionResolverToEmit(GD); 4204 } 4205 4206 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4207 const auto *D = cast<ValueDecl>(GD.getDecl()); 4208 4209 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4210 Context.getSourceManager(), 4211 "Generating code for declaration"); 4212 4213 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4214 // At -O0, don't generate IR for functions with available_externally 4215 // linkage. 4216 if (!shouldEmitFunction(GD)) 4217 return; 4218 4219 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4220 std::string Name; 4221 llvm::raw_string_ostream OS(Name); 4222 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4223 /*Qualified=*/true); 4224 return Name; 4225 }); 4226 4227 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4228 // Make sure to emit the definition(s) before we emit the thunks. 4229 // This is necessary for the generation of certain thunks. 4230 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4231 ABI->emitCXXStructor(GD); 4232 else if (FD->isMultiVersion()) 4233 EmitMultiVersionFunctionDefinition(GD, GV); 4234 else 4235 EmitGlobalFunctionDefinition(GD, GV); 4236 4237 if (Method->isVirtual()) 4238 getVTables().EmitThunks(GD); 4239 4240 return; 4241 } 4242 4243 if (FD->isMultiVersion()) 4244 return EmitMultiVersionFunctionDefinition(GD, GV); 4245 return EmitGlobalFunctionDefinition(GD, GV); 4246 } 4247 4248 if (const auto *VD = dyn_cast<VarDecl>(D)) 4249 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4250 4251 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4252 } 4253 4254 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4255 llvm::Function *NewFn); 4256 4257 static uint64_t getFMVPriority(const TargetInfo &TI, 4258 const CodeGenFunction::FMVResolverOption &RO) { 4259 llvm::SmallVector<StringRef, 8> Features{RO.Features}; 4260 if (RO.Architecture) 4261 Features.push_back(*RO.Architecture); 4262 return TI.getFMVPriority(Features); 4263 } 4264 4265 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4266 // TU can forward declare the function without causing problems. Particularly 4267 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4268 // work with internal linkage functions, so that the same function name can be 4269 // used with internal linkage in multiple TUs. 4270 static llvm::GlobalValue::LinkageTypes 4271 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) { 4272 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4273 if (FD->getFormalLinkage() == Linkage::Internal) 4274 return llvm::GlobalValue::InternalLinkage; 4275 return llvm::GlobalValue::WeakODRLinkage; 4276 } 4277 4278 void CodeGenModule::emitMultiVersionFunctions() { 4279 std::vector<GlobalDecl> MVFuncsToEmit; 4280 MultiVersionFuncs.swap(MVFuncsToEmit); 4281 for (GlobalDecl GD : MVFuncsToEmit) { 4282 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4283 assert(FD && "Expected a FunctionDecl"); 4284 4285 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4286 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4287 StringRef MangledName = getMangledName(CurGD); 4288 llvm::Constant *Func = GetGlobalValue(MangledName); 4289 if (!Func) { 4290 if (Decl->isDefined()) { 4291 EmitGlobalFunctionDefinition(CurGD, nullptr); 4292 Func = GetGlobalValue(MangledName); 4293 } else { 4294 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4295 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4296 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4297 /*DontDefer=*/false, ForDefinition); 4298 } 4299 assert(Func && "This should have just been created"); 4300 } 4301 return cast<llvm::Function>(Func); 4302 }; 4303 4304 // For AArch64, a resolver is only emitted if a function marked with 4305 // target_version("default")) or target_clones() is present and defined 4306 // in this TU. For other architectures it is always emitted. 4307 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64(); 4308 SmallVector<CodeGenFunction::FMVResolverOption, 10> Options; 4309 4310 getContext().forEachMultiversionedFunctionVersion( 4311 FD, [&](const FunctionDecl *CurFD) { 4312 llvm::SmallVector<StringRef, 8> Feats; 4313 bool IsDefined = CurFD->getDefinition() != nullptr; 4314 4315 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4316 assert(getTarget().getTriple().isX86() && "Unsupported target"); 4317 TA->getX86AddedFeatures(Feats); 4318 llvm::Function *Func = createFunction(CurFD); 4319 Options.emplace_back(Func, Feats, TA->getX86Architecture()); 4320 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4321 if (TVA->isDefaultVersion() && IsDefined) 4322 ShouldEmitResolver = true; 4323 llvm::Function *Func = createFunction(CurFD); 4324 char Delim = getTarget().getTriple().isAArch64() ? '+' : ','; 4325 TVA->getFeatures(Feats, Delim); 4326 Options.emplace_back(Func, Feats); 4327 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4328 if (IsDefined) 4329 ShouldEmitResolver = true; 4330 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4331 if (!TC->isFirstOfVersion(I)) 4332 continue; 4333 4334 llvm::Function *Func = createFunction(CurFD, I); 4335 Feats.clear(); 4336 if (getTarget().getTriple().isX86()) { 4337 TC->getX86Feature(Feats, I); 4338 Options.emplace_back(Func, Feats, TC->getX86Architecture(I)); 4339 } else { 4340 char Delim = getTarget().getTriple().isAArch64() ? '+' : ','; 4341 TC->getFeatures(Feats, I, Delim); 4342 Options.emplace_back(Func, Feats); 4343 } 4344 } 4345 } else 4346 llvm_unreachable("unexpected MultiVersionKind"); 4347 }); 4348 4349 if (!ShouldEmitResolver) 4350 continue; 4351 4352 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4353 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4354 ResolverConstant = IFunc->getResolver(); 4355 if (FD->isTargetClonesMultiVersion() && 4356 !getTarget().getTriple().isAArch64()) { 4357 std::string MangledName = getMangledNameImpl( 4358 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4359 if (!GetGlobalValue(MangledName + ".ifunc")) { 4360 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4361 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4362 // In prior versions of Clang, the mangling for ifuncs incorrectly 4363 // included an .ifunc suffix. This alias is generated for backward 4364 // compatibility. It is deprecated, and may be removed in the future. 4365 auto *Alias = llvm::GlobalAlias::create( 4366 DeclTy, 0, getMultiversionLinkage(*this, GD), 4367 MangledName + ".ifunc", IFunc, &getModule()); 4368 SetCommonAttributes(FD, Alias); 4369 } 4370 } 4371 } 4372 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4373 4374 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4375 4376 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4377 ResolverFunc->setComdat( 4378 getModule().getOrInsertComdat(ResolverFunc->getName())); 4379 4380 const TargetInfo &TI = getTarget(); 4381 llvm::stable_sort( 4382 Options, [&TI](const CodeGenFunction::FMVResolverOption &LHS, 4383 const CodeGenFunction::FMVResolverOption &RHS) { 4384 return getFMVPriority(TI, LHS) > getFMVPriority(TI, RHS); 4385 }); 4386 CodeGenFunction CGF(*this); 4387 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4388 } 4389 4390 // Ensure that any additions to the deferred decls list caused by emitting a 4391 // variant are emitted. This can happen when the variant itself is inline and 4392 // calls a function without linkage. 4393 if (!MVFuncsToEmit.empty()) 4394 EmitDeferred(); 4395 4396 // Ensure that any additions to the multiversion funcs list from either the 4397 // deferred decls or the multiversion functions themselves are emitted. 4398 if (!MultiVersionFuncs.empty()) 4399 emitMultiVersionFunctions(); 4400 } 4401 4402 static void replaceDeclarationWith(llvm::GlobalValue *Old, 4403 llvm::Constant *New) { 4404 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration"); 4405 New->takeName(Old); 4406 Old->replaceAllUsesWith(New); 4407 Old->eraseFromParent(); 4408 } 4409 4410 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4411 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4412 assert(FD && "Not a FunctionDecl?"); 4413 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4414 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4415 assert(DD && "Not a cpu_dispatch Function?"); 4416 4417 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4418 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4419 4420 StringRef ResolverName = getMangledName(GD); 4421 UpdateMultiVersionNames(GD, FD, ResolverName); 4422 4423 llvm::Type *ResolverType; 4424 GlobalDecl ResolverGD; 4425 if (getTarget().supportsIFunc()) { 4426 ResolverType = llvm::FunctionType::get( 4427 llvm::PointerType::get(DeclTy, 4428 getTypes().getTargetAddressSpace(FD->getType())), 4429 false); 4430 } 4431 else { 4432 ResolverType = DeclTy; 4433 ResolverGD = GD; 4434 } 4435 4436 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4437 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4438 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4439 if (supportsCOMDAT()) 4440 ResolverFunc->setComdat( 4441 getModule().getOrInsertComdat(ResolverFunc->getName())); 4442 4443 SmallVector<CodeGenFunction::FMVResolverOption, 10> Options; 4444 const TargetInfo &Target = getTarget(); 4445 unsigned Index = 0; 4446 for (const IdentifierInfo *II : DD->cpus()) { 4447 // Get the name of the target function so we can look it up/create it. 4448 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4449 getCPUSpecificMangling(*this, II->getName()); 4450 4451 llvm::Constant *Func = GetGlobalValue(MangledName); 4452 4453 if (!Func) { 4454 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4455 if (ExistingDecl.getDecl() && 4456 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4457 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4458 Func = GetGlobalValue(MangledName); 4459 } else { 4460 if (!ExistingDecl.getDecl()) 4461 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4462 4463 Func = GetOrCreateLLVMFunction( 4464 MangledName, DeclTy, ExistingDecl, 4465 /*ForVTable=*/false, /*DontDefer=*/true, 4466 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4467 } 4468 } 4469 4470 llvm::SmallVector<StringRef, 32> Features; 4471 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4472 llvm::transform(Features, Features.begin(), 4473 [](StringRef Str) { return Str.substr(1); }); 4474 llvm::erase_if(Features, [&Target](StringRef Feat) { 4475 return !Target.validateCpuSupports(Feat); 4476 }); 4477 Options.emplace_back(cast<llvm::Function>(Func), Features); 4478 ++Index; 4479 } 4480 4481 llvm::stable_sort(Options, [](const CodeGenFunction::FMVResolverOption &LHS, 4482 const CodeGenFunction::FMVResolverOption &RHS) { 4483 return llvm::X86::getCpuSupportsMask(LHS.Features) > 4484 llvm::X86::getCpuSupportsMask(RHS.Features); 4485 }); 4486 4487 // If the list contains multiple 'default' versions, such as when it contains 4488 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4489 // always run on at least a 'pentium'). We do this by deleting the 'least 4490 // advanced' (read, lowest mangling letter). 4491 while (Options.size() > 1 && llvm::all_of(llvm::X86::getCpuSupportsMask( 4492 (Options.end() - 2)->Features), 4493 [](auto X) { return X == 0; })) { 4494 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4495 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4496 if (LHSName.compare(RHSName) < 0) 4497 Options.erase(Options.end() - 2); 4498 else 4499 Options.erase(Options.end() - 1); 4500 } 4501 4502 CodeGenFunction CGF(*this); 4503 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4504 4505 if (getTarget().supportsIFunc()) { 4506 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4507 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4508 unsigned AS = IFunc->getType()->getPointerAddressSpace(); 4509 4510 // Fix up function declarations that were created for cpu_specific before 4511 // cpu_dispatch was known 4512 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4513 auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "", 4514 ResolverFunc, &getModule()); 4515 replaceDeclarationWith(IFunc, GI); 4516 IFunc = GI; 4517 } 4518 4519 std::string AliasName = getMangledNameImpl( 4520 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4521 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4522 if (!AliasFunc) { 4523 auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName, 4524 IFunc, &getModule()); 4525 SetCommonAttributes(GD, GA); 4526 } 4527 } 4528 } 4529 4530 /// Adds a declaration to the list of multi version functions if not present. 4531 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4532 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4533 assert(FD && "Not a FunctionDecl?"); 4534 4535 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4536 std::string MangledName = 4537 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4538 if (!DeferredResolversToEmit.insert(MangledName).second) 4539 return; 4540 } 4541 MultiVersionFuncs.push_back(GD); 4542 } 4543 4544 /// If a dispatcher for the specified mangled name is not in the module, create 4545 /// and return it. The dispatcher is either an llvm Function with the specified 4546 /// type, or a global ifunc. 4547 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4548 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4549 assert(FD && "Not a FunctionDecl?"); 4550 4551 std::string MangledName = 4552 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4553 4554 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4555 // a separate resolver). 4556 std::string ResolverName = MangledName; 4557 if (getTarget().supportsIFunc()) { 4558 switch (FD->getMultiVersionKind()) { 4559 case MultiVersionKind::None: 4560 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4561 case MultiVersionKind::Target: 4562 case MultiVersionKind::CPUSpecific: 4563 case MultiVersionKind::CPUDispatch: 4564 ResolverName += ".ifunc"; 4565 break; 4566 case MultiVersionKind::TargetClones: 4567 case MultiVersionKind::TargetVersion: 4568 break; 4569 } 4570 } else if (FD->isTargetMultiVersion()) { 4571 ResolverName += ".resolver"; 4572 } 4573 4574 bool ShouldReturnIFunc = 4575 getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion(); 4576 4577 // If the resolver has already been created, just return it. This lookup may 4578 // yield a function declaration instead of a resolver on AArch64. That is 4579 // because we didn't know whether a resolver will be generated when we first 4580 // encountered a use of the symbol named after this resolver. Therefore, 4581 // targets which support ifuncs should not return here unless we actually 4582 // found an ifunc. 4583 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName); 4584 if (ResolverGV && (isa<llvm::GlobalIFunc>(ResolverGV) || !ShouldReturnIFunc)) 4585 return ResolverGV; 4586 4587 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4588 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4589 4590 // The resolver needs to be created. For target and target_clones, defer 4591 // creation until the end of the TU. 4592 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4593 AddDeferredMultiVersionResolverToEmit(GD); 4594 4595 // For cpu_specific, don't create an ifunc yet because we don't know if the 4596 // cpu_dispatch will be emitted in this translation unit. 4597 if (ShouldReturnIFunc) { 4598 unsigned AS = getTypes().getTargetAddressSpace(FD->getType()); 4599 llvm::Type *ResolverType = 4600 llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false); 4601 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4602 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4603 /*ForVTable=*/false); 4604 llvm::GlobalIFunc *GIF = 4605 llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD), 4606 "", Resolver, &getModule()); 4607 GIF->setName(ResolverName); 4608 SetCommonAttributes(FD, GIF); 4609 if (ResolverGV) 4610 replaceDeclarationWith(ResolverGV, GIF); 4611 return GIF; 4612 } 4613 4614 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4615 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4616 assert(isa<llvm::GlobalValue>(Resolver) && !ResolverGV && 4617 "Resolver should be created for the first time"); 4618 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4619 return Resolver; 4620 } 4621 4622 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4623 const llvm::GlobalValue *GV) const { 4624 auto SC = GV->getDLLStorageClass(); 4625 if (SC == llvm::GlobalValue::DefaultStorageClass) 4626 return false; 4627 const Decl *MRD = D->getMostRecentDecl(); 4628 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4629 !MRD->hasAttr<DLLImportAttr>()) || 4630 (SC == llvm::GlobalValue::DLLExportStorageClass && 4631 !MRD->hasAttr<DLLExportAttr>())) && 4632 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4633 } 4634 4635 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4636 /// module, create and return an llvm Function with the specified type. If there 4637 /// is something in the module with the specified name, return it potentially 4638 /// bitcasted to the right type. 4639 /// 4640 /// If D is non-null, it specifies a decl that correspond to this. This is used 4641 /// to set the attributes on the function when it is first created. 4642 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4643 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4644 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4645 ForDefinition_t IsForDefinition) { 4646 const Decl *D = GD.getDecl(); 4647 4648 std::string NameWithoutMultiVersionMangling; 4649 // Any attempts to use a MultiVersion function should result in retrieving 4650 // the iFunc instead. Name Mangling will handle the rest of the changes. 4651 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4652 // For the device mark the function as one that should be emitted. 4653 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4654 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4655 !DontDefer && !IsForDefinition) { 4656 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4657 GlobalDecl GDDef; 4658 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4659 GDDef = GlobalDecl(CD, GD.getCtorType()); 4660 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4661 GDDef = GlobalDecl(DD, GD.getDtorType()); 4662 else 4663 GDDef = GlobalDecl(FDDef); 4664 EmitGlobal(GDDef); 4665 } 4666 } 4667 4668 if (FD->isMultiVersion()) { 4669 UpdateMultiVersionNames(GD, FD, MangledName); 4670 if (!IsForDefinition) { 4671 // On AArch64 we do not immediatelly emit an ifunc resolver when a 4672 // function is used. Instead we defer the emission until we see a 4673 // default definition. In the meantime we just reference the symbol 4674 // without FMV mangling (it may or may not be replaced later). 4675 if (getTarget().getTriple().isAArch64()) { 4676 AddDeferredMultiVersionResolverToEmit(GD); 4677 NameWithoutMultiVersionMangling = getMangledNameImpl( 4678 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4679 } else 4680 return GetOrCreateMultiVersionResolver(GD); 4681 } 4682 } 4683 } 4684 4685 if (!NameWithoutMultiVersionMangling.empty()) 4686 MangledName = NameWithoutMultiVersionMangling; 4687 4688 // Lookup the entry, lazily creating it if necessary. 4689 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4690 if (Entry) { 4691 if (WeakRefReferences.erase(Entry)) { 4692 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4693 if (FD && !FD->hasAttr<WeakAttr>()) 4694 Entry->setLinkage(llvm::Function::ExternalLinkage); 4695 } 4696 4697 // Handle dropped DLL attributes. 4698 if (D && shouldDropDLLAttribute(D, Entry)) { 4699 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4700 setDSOLocal(Entry); 4701 } 4702 4703 // If there are two attempts to define the same mangled name, issue an 4704 // error. 4705 if (IsForDefinition && !Entry->isDeclaration()) { 4706 GlobalDecl OtherGD; 4707 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4708 // to make sure that we issue an error only once. 4709 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4710 (GD.getCanonicalDecl().getDecl() != 4711 OtherGD.getCanonicalDecl().getDecl()) && 4712 DiagnosedConflictingDefinitions.insert(GD).second) { 4713 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4714 << MangledName; 4715 getDiags().Report(OtherGD.getDecl()->getLocation(), 4716 diag::note_previous_definition); 4717 } 4718 } 4719 4720 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4721 (Entry->getValueType() == Ty)) { 4722 return Entry; 4723 } 4724 4725 // Make sure the result is of the correct type. 4726 // (If function is requested for a definition, we always need to create a new 4727 // function, not just return a bitcast.) 4728 if (!IsForDefinition) 4729 return Entry; 4730 } 4731 4732 // This function doesn't have a complete type (for example, the return 4733 // type is an incomplete struct). Use a fake type instead, and make 4734 // sure not to try to set attributes. 4735 bool IsIncompleteFunction = false; 4736 4737 llvm::FunctionType *FTy; 4738 if (isa<llvm::FunctionType>(Ty)) { 4739 FTy = cast<llvm::FunctionType>(Ty); 4740 } else { 4741 FTy = llvm::FunctionType::get(VoidTy, false); 4742 IsIncompleteFunction = true; 4743 } 4744 4745 llvm::Function *F = 4746 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4747 Entry ? StringRef() : MangledName, &getModule()); 4748 4749 // Store the declaration associated with this function so it is potentially 4750 // updated by further declarations or definitions and emitted at the end. 4751 if (D && D->hasAttr<AnnotateAttr>()) 4752 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4753 4754 // If we already created a function with the same mangled name (but different 4755 // type) before, take its name and add it to the list of functions to be 4756 // replaced with F at the end of CodeGen. 4757 // 4758 // This happens if there is a prototype for a function (e.g. "int f()") and 4759 // then a definition of a different type (e.g. "int f(int x)"). 4760 if (Entry) { 4761 F->takeName(Entry); 4762 4763 // This might be an implementation of a function without a prototype, in 4764 // which case, try to do special replacement of calls which match the new 4765 // prototype. The really key thing here is that we also potentially drop 4766 // arguments from the call site so as to make a direct call, which makes the 4767 // inliner happier and suppresses a number of optimizer warnings (!) about 4768 // dropping arguments. 4769 if (!Entry->use_empty()) { 4770 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4771 Entry->removeDeadConstantUsers(); 4772 } 4773 4774 addGlobalValReplacement(Entry, F); 4775 } 4776 4777 assert(F->getName() == MangledName && "name was uniqued!"); 4778 if (D) 4779 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4780 if (ExtraAttrs.hasFnAttrs()) { 4781 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4782 F->addFnAttrs(B); 4783 } 4784 4785 if (!DontDefer) { 4786 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4787 // each other bottoming out with the base dtor. Therefore we emit non-base 4788 // dtors on usage, even if there is no dtor definition in the TU. 4789 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4790 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4791 GD.getDtorType())) 4792 addDeferredDeclToEmit(GD); 4793 4794 // This is the first use or definition of a mangled name. If there is a 4795 // deferred decl with this name, remember that we need to emit it at the end 4796 // of the file. 4797 auto DDI = DeferredDecls.find(MangledName); 4798 if (DDI != DeferredDecls.end()) { 4799 // Move the potentially referenced deferred decl to the 4800 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4801 // don't need it anymore). 4802 addDeferredDeclToEmit(DDI->second); 4803 DeferredDecls.erase(DDI); 4804 4805 // Otherwise, there are cases we have to worry about where we're 4806 // using a declaration for which we must emit a definition but where 4807 // we might not find a top-level definition: 4808 // - member functions defined inline in their classes 4809 // - friend functions defined inline in some class 4810 // - special member functions with implicit definitions 4811 // If we ever change our AST traversal to walk into class methods, 4812 // this will be unnecessary. 4813 // 4814 // We also don't emit a definition for a function if it's going to be an 4815 // entry in a vtable, unless it's already marked as used. 4816 } else if (getLangOpts().CPlusPlus && D) { 4817 // Look for a declaration that's lexically in a record. 4818 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4819 FD = FD->getPreviousDecl()) { 4820 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4821 if (FD->doesThisDeclarationHaveABody()) { 4822 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4823 break; 4824 } 4825 } 4826 } 4827 } 4828 } 4829 4830 // Make sure the result is of the requested type. 4831 if (!IsIncompleteFunction) { 4832 assert(F->getFunctionType() == Ty); 4833 return F; 4834 } 4835 4836 return F; 4837 } 4838 4839 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4840 /// non-null, then this function will use the specified type if it has to 4841 /// create it (this occurs when we see a definition of the function). 4842 llvm::Constant * 4843 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4844 bool DontDefer, 4845 ForDefinition_t IsForDefinition) { 4846 // If there was no specific requested type, just convert it now. 4847 if (!Ty) { 4848 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4849 Ty = getTypes().ConvertType(FD->getType()); 4850 } 4851 4852 // Devirtualized destructor calls may come through here instead of via 4853 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4854 // of the complete destructor when necessary. 4855 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4856 if (getTarget().getCXXABI().isMicrosoft() && 4857 GD.getDtorType() == Dtor_Complete && 4858 DD->getParent()->getNumVBases() == 0) 4859 GD = GlobalDecl(DD, Dtor_Base); 4860 } 4861 4862 StringRef MangledName = getMangledName(GD); 4863 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4864 /*IsThunk=*/false, llvm::AttributeList(), 4865 IsForDefinition); 4866 // Returns kernel handle for HIP kernel stub function. 4867 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4868 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4869 auto *Handle = getCUDARuntime().getKernelHandle( 4870 cast<llvm::Function>(F->stripPointerCasts()), GD); 4871 if (IsForDefinition) 4872 return F; 4873 return Handle; 4874 } 4875 return F; 4876 } 4877 4878 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4879 llvm::GlobalValue *F = 4880 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4881 4882 return llvm::NoCFIValue::get(F); 4883 } 4884 4885 static const FunctionDecl * 4886 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4887 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4888 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4889 4890 IdentifierInfo &CII = C.Idents.get(Name); 4891 for (const auto *Result : DC->lookup(&CII)) 4892 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4893 return FD; 4894 4895 if (!C.getLangOpts().CPlusPlus) 4896 return nullptr; 4897 4898 // Demangle the premangled name from getTerminateFn() 4899 IdentifierInfo &CXXII = 4900 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4901 ? C.Idents.get("terminate") 4902 : C.Idents.get(Name); 4903 4904 for (const auto &N : {"__cxxabiv1", "std"}) { 4905 IdentifierInfo &NS = C.Idents.get(N); 4906 for (const auto *Result : DC->lookup(&NS)) { 4907 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4908 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4909 for (const auto *Result : LSD->lookup(&NS)) 4910 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4911 break; 4912 4913 if (ND) 4914 for (const auto *Result : ND->lookup(&CXXII)) 4915 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4916 return FD; 4917 } 4918 } 4919 4920 return nullptr; 4921 } 4922 4923 static void setWindowsItaniumDLLImport(CodeGenModule &CGM, bool Local, 4924 llvm::Function *F, StringRef Name) { 4925 // In Windows Itanium environments, try to mark runtime functions 4926 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4927 // will link their standard library statically or dynamically. Marking 4928 // functions imported when they are not imported can cause linker errors 4929 // and warnings. 4930 if (!Local && CGM.getTriple().isWindowsItaniumEnvironment() && 4931 !CGM.getCodeGenOpts().LTOVisibilityPublicStd) { 4932 const FunctionDecl *FD = GetRuntimeFunctionDecl(CGM.getContext(), Name); 4933 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4934 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4935 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4936 } 4937 } 4938 } 4939 4940 llvm::FunctionCallee CodeGenModule::CreateRuntimeFunction( 4941 QualType ReturnTy, ArrayRef<QualType> ArgTys, StringRef Name, 4942 llvm::AttributeList ExtraAttrs, bool Local, bool AssumeConvergent) { 4943 if (AssumeConvergent) { 4944 ExtraAttrs = 4945 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4946 } 4947 4948 QualType FTy = Context.getFunctionType(ReturnTy, ArgTys, 4949 FunctionProtoType::ExtProtoInfo()); 4950 const CGFunctionInfo &Info = getTypes().arrangeFreeFunctionType( 4951 Context.getCanonicalType(FTy).castAs<FunctionProtoType>()); 4952 auto *ConvTy = getTypes().GetFunctionType(Info); 4953 llvm::Constant *C = GetOrCreateLLVMFunction( 4954 Name, ConvTy, GlobalDecl(), /*ForVTable=*/false, 4955 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 4956 4957 if (auto *F = dyn_cast<llvm::Function>(C)) { 4958 if (F->empty()) { 4959 SetLLVMFunctionAttributes(GlobalDecl(), Info, F, /*IsThunk*/ false); 4960 // FIXME: Set calling-conv properly in ExtProtoInfo 4961 F->setCallingConv(getRuntimeCC()); 4962 setWindowsItaniumDLLImport(*this, Local, F, Name); 4963 setDSOLocal(F); 4964 } 4965 } 4966 return {ConvTy, C}; 4967 } 4968 4969 /// CreateRuntimeFunction - Create a new runtime function with the specified 4970 /// type and name. 4971 llvm::FunctionCallee 4972 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4973 llvm::AttributeList ExtraAttrs, bool Local, 4974 bool AssumeConvergent) { 4975 if (AssumeConvergent) { 4976 ExtraAttrs = 4977 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4978 } 4979 4980 llvm::Constant *C = 4981 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4982 /*DontDefer=*/false, /*IsThunk=*/false, 4983 ExtraAttrs); 4984 4985 if (auto *F = dyn_cast<llvm::Function>(C)) { 4986 if (F->empty()) { 4987 F->setCallingConv(getRuntimeCC()); 4988 setWindowsItaniumDLLImport(*this, Local, F, Name); 4989 setDSOLocal(F); 4990 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4991 // of trying to approximate the attributes using the LLVM function 4992 // signature. The other overload of CreateRuntimeFunction does this; it 4993 // should be used for new code. 4994 markRegisterParameterAttributes(F); 4995 } 4996 } 4997 4998 return {FTy, C}; 4999 } 5000 5001 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 5002 /// create and return an llvm GlobalVariable with the specified type and address 5003 /// space. If there is something in the module with the specified name, return 5004 /// it potentially bitcasted to the right type. 5005 /// 5006 /// If D is non-null, it specifies a decl that correspond to this. This is used 5007 /// to set the attributes on the global when it is first created. 5008 /// 5009 /// If IsForDefinition is true, it is guaranteed that an actual global with 5010 /// type Ty will be returned, not conversion of a variable with the same 5011 /// mangled name but some other type. 5012 llvm::Constant * 5013 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 5014 LangAS AddrSpace, const VarDecl *D, 5015 ForDefinition_t IsForDefinition) { 5016 // Lookup the entry, lazily creating it if necessary. 5017 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5018 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5019 if (Entry) { 5020 if (WeakRefReferences.erase(Entry)) { 5021 if (D && !D->hasAttr<WeakAttr>()) 5022 Entry->setLinkage(llvm::Function::ExternalLinkage); 5023 } 5024 5025 // Handle dropped DLL attributes. 5026 if (D && shouldDropDLLAttribute(D, Entry)) 5027 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 5028 5029 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 5030 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 5031 5032 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 5033 return Entry; 5034 5035 // If there are two attempts to define the same mangled name, issue an 5036 // error. 5037 if (IsForDefinition && !Entry->isDeclaration()) { 5038 GlobalDecl OtherGD; 5039 const VarDecl *OtherD; 5040 5041 // Check that D is not yet in DiagnosedConflictingDefinitions is required 5042 // to make sure that we issue an error only once. 5043 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 5044 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 5045 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 5046 OtherD->hasInit() && 5047 DiagnosedConflictingDefinitions.insert(D).second) { 5048 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 5049 << MangledName; 5050 getDiags().Report(OtherGD.getDecl()->getLocation(), 5051 diag::note_previous_definition); 5052 } 5053 } 5054 5055 // Make sure the result is of the correct type. 5056 if (Entry->getType()->getAddressSpace() != TargetAS) 5057 return llvm::ConstantExpr::getAddrSpaceCast( 5058 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 5059 5060 // (If global is requested for a definition, we always need to create a new 5061 // global, not just return a bitcast.) 5062 if (!IsForDefinition) 5063 return Entry; 5064 } 5065 5066 auto DAddrSpace = GetGlobalVarAddressSpace(D); 5067 5068 auto *GV = new llvm::GlobalVariable( 5069 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 5070 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 5071 getContext().getTargetAddressSpace(DAddrSpace)); 5072 5073 // If we already created a global with the same mangled name (but different 5074 // type) before, take its name and remove it from its parent. 5075 if (Entry) { 5076 GV->takeName(Entry); 5077 5078 if (!Entry->use_empty()) { 5079 Entry->replaceAllUsesWith(GV); 5080 } 5081 5082 Entry->eraseFromParent(); 5083 } 5084 5085 // This is the first use or definition of a mangled name. If there is a 5086 // deferred decl with this name, remember that we need to emit it at the end 5087 // of the file. 5088 auto DDI = DeferredDecls.find(MangledName); 5089 if (DDI != DeferredDecls.end()) { 5090 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 5091 // list, and remove it from DeferredDecls (since we don't need it anymore). 5092 addDeferredDeclToEmit(DDI->second); 5093 DeferredDecls.erase(DDI); 5094 } 5095 5096 // Handle things which are present even on external declarations. 5097 if (D) { 5098 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 5099 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 5100 5101 // FIXME: This code is overly simple and should be merged with other global 5102 // handling. 5103 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 5104 5105 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 5106 5107 setLinkageForGV(GV, D); 5108 5109 if (D->getTLSKind()) { 5110 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5111 CXXThreadLocals.push_back(D); 5112 setTLSMode(GV, *D); 5113 } 5114 5115 setGVProperties(GV, D); 5116 5117 // If required by the ABI, treat declarations of static data members with 5118 // inline initializers as definitions. 5119 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 5120 EmitGlobalVarDefinition(D); 5121 } 5122 5123 // Emit section information for extern variables. 5124 if (D->hasExternalStorage()) { 5125 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5126 GV->setSection(SA->getName()); 5127 } 5128 5129 // Handle XCore specific ABI requirements. 5130 if (getTriple().getArch() == llvm::Triple::xcore && 5131 D->getLanguageLinkage() == CLanguageLinkage && 5132 D->getType().isConstant(Context) && 5133 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5134 GV->setSection(".cp.rodata"); 5135 5136 // Handle code model attribute 5137 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5138 GV->setCodeModel(CMA->getModel()); 5139 5140 // Check if we a have a const declaration with an initializer, we may be 5141 // able to emit it as available_externally to expose it's value to the 5142 // optimizer. 5143 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5144 D->getType().isConstQualified() && !GV->hasInitializer() && 5145 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5146 const auto *Record = 5147 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5148 bool HasMutableFields = Record && Record->hasMutableFields(); 5149 if (!HasMutableFields) { 5150 const VarDecl *InitDecl; 5151 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5152 if (InitExpr) { 5153 ConstantEmitter emitter(*this); 5154 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5155 if (Init) { 5156 auto *InitType = Init->getType(); 5157 if (GV->getValueType() != InitType) { 5158 // The type of the initializer does not match the definition. 5159 // This happens when an initializer has a different type from 5160 // the type of the global (because of padding at the end of a 5161 // structure for instance). 5162 GV->setName(StringRef()); 5163 // Make a new global with the correct type, this is now guaranteed 5164 // to work. 5165 auto *NewGV = cast<llvm::GlobalVariable>( 5166 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5167 ->stripPointerCasts()); 5168 5169 // Erase the old global, since it is no longer used. 5170 GV->eraseFromParent(); 5171 GV = NewGV; 5172 } else { 5173 GV->setInitializer(Init); 5174 GV->setConstant(true); 5175 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5176 } 5177 emitter.finalize(GV); 5178 } 5179 } 5180 } 5181 } 5182 } 5183 5184 if (D && 5185 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5186 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5187 // External HIP managed variables needed to be recorded for transformation 5188 // in both device and host compilations. 5189 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5190 D->hasExternalStorage()) 5191 getCUDARuntime().handleVarRegistration(D, *GV); 5192 } 5193 5194 if (D) 5195 SanitizerMD->reportGlobal(GV, *D); 5196 5197 LangAS ExpectedAS = 5198 D ? D->getType().getAddressSpace() 5199 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5200 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5201 if (DAddrSpace != ExpectedAS) { 5202 return getTargetCodeGenInfo().performAddrSpaceCast( 5203 *this, GV, DAddrSpace, ExpectedAS, 5204 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5205 } 5206 5207 return GV; 5208 } 5209 5210 llvm::Constant * 5211 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5212 const Decl *D = GD.getDecl(); 5213 5214 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5215 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5216 /*DontDefer=*/false, IsForDefinition); 5217 5218 if (isa<CXXMethodDecl>(D)) { 5219 auto FInfo = 5220 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5221 auto Ty = getTypes().GetFunctionType(*FInfo); 5222 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5223 IsForDefinition); 5224 } 5225 5226 if (isa<FunctionDecl>(D)) { 5227 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5228 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5229 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5230 IsForDefinition); 5231 } 5232 5233 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5234 } 5235 5236 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5237 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5238 llvm::Align Alignment) { 5239 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5240 llvm::GlobalVariable *OldGV = nullptr; 5241 5242 if (GV) { 5243 // Check if the variable has the right type. 5244 if (GV->getValueType() == Ty) 5245 return GV; 5246 5247 // Because C++ name mangling, the only way we can end up with an already 5248 // existing global with the same name is if it has been declared extern "C". 5249 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5250 OldGV = GV; 5251 } 5252 5253 // Create a new variable. 5254 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5255 Linkage, nullptr, Name); 5256 5257 if (OldGV) { 5258 // Replace occurrences of the old variable if needed. 5259 GV->takeName(OldGV); 5260 5261 if (!OldGV->use_empty()) { 5262 OldGV->replaceAllUsesWith(GV); 5263 } 5264 5265 OldGV->eraseFromParent(); 5266 } 5267 5268 if (supportsCOMDAT() && GV->isWeakForLinker() && 5269 !GV->hasAvailableExternallyLinkage()) 5270 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5271 5272 GV->setAlignment(Alignment); 5273 5274 return GV; 5275 } 5276 5277 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5278 /// given global variable. If Ty is non-null and if the global doesn't exist, 5279 /// then it will be created with the specified type instead of whatever the 5280 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5281 /// that an actual global with type Ty will be returned, not conversion of a 5282 /// variable with the same mangled name but some other type. 5283 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5284 llvm::Type *Ty, 5285 ForDefinition_t IsForDefinition) { 5286 assert(D->hasGlobalStorage() && "Not a global variable"); 5287 QualType ASTTy = D->getType(); 5288 if (!Ty) 5289 Ty = getTypes().ConvertTypeForMem(ASTTy); 5290 5291 StringRef MangledName = getMangledName(D); 5292 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5293 IsForDefinition); 5294 } 5295 5296 /// CreateRuntimeVariable - Create a new runtime global variable with the 5297 /// specified type and name. 5298 llvm::Constant * 5299 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5300 StringRef Name) { 5301 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5302 : LangAS::Default; 5303 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5304 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5305 return Ret; 5306 } 5307 5308 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5309 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5310 5311 StringRef MangledName = getMangledName(D); 5312 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5313 5314 // We already have a definition, not declaration, with the same mangled name. 5315 // Emitting of declaration is not required (and actually overwrites emitted 5316 // definition). 5317 if (GV && !GV->isDeclaration()) 5318 return; 5319 5320 // If we have not seen a reference to this variable yet, place it into the 5321 // deferred declarations table to be emitted if needed later. 5322 if (!MustBeEmitted(D) && !GV) { 5323 DeferredDecls[MangledName] = D; 5324 return; 5325 } 5326 5327 // The tentative definition is the only definition. 5328 EmitGlobalVarDefinition(D); 5329 } 5330 5331 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5332 if (auto const *V = dyn_cast<const VarDecl>(D)) 5333 EmitExternalVarDeclaration(V); 5334 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5335 EmitExternalFunctionDeclaration(FD); 5336 } 5337 5338 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5339 return Context.toCharUnitsFromBits( 5340 getDataLayout().getTypeStoreSizeInBits(Ty)); 5341 } 5342 5343 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5344 if (LangOpts.OpenCL) { 5345 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5346 assert(AS == LangAS::opencl_global || 5347 AS == LangAS::opencl_global_device || 5348 AS == LangAS::opencl_global_host || 5349 AS == LangAS::opencl_constant || 5350 AS == LangAS::opencl_local || 5351 AS >= LangAS::FirstTargetAddressSpace); 5352 return AS; 5353 } 5354 5355 if (LangOpts.SYCLIsDevice && 5356 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5357 return LangAS::sycl_global; 5358 5359 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5360 if (D) { 5361 if (D->hasAttr<CUDAConstantAttr>()) 5362 return LangAS::cuda_constant; 5363 if (D->hasAttr<CUDASharedAttr>()) 5364 return LangAS::cuda_shared; 5365 if (D->hasAttr<CUDADeviceAttr>()) 5366 return LangAS::cuda_device; 5367 if (D->getType().isConstQualified()) 5368 return LangAS::cuda_constant; 5369 } 5370 return LangAS::cuda_device; 5371 } 5372 5373 if (LangOpts.OpenMP) { 5374 LangAS AS; 5375 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5376 return AS; 5377 } 5378 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5379 } 5380 5381 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5382 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5383 if (LangOpts.OpenCL) 5384 return LangAS::opencl_constant; 5385 if (LangOpts.SYCLIsDevice) 5386 return LangAS::sycl_global; 5387 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5388 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5389 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5390 // with OpVariable instructions with Generic storage class which is not 5391 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5392 // UniformConstant storage class is not viable as pointers to it may not be 5393 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5394 return LangAS::cuda_device; 5395 if (auto AS = getTarget().getConstantAddressSpace()) 5396 return *AS; 5397 return LangAS::Default; 5398 } 5399 5400 // In address space agnostic languages, string literals are in default address 5401 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5402 // emitted in constant address space in LLVM IR. To be consistent with other 5403 // parts of AST, string literal global variables in constant address space 5404 // need to be casted to default address space before being put into address 5405 // map and referenced by other part of CodeGen. 5406 // In OpenCL, string literals are in constant address space in AST, therefore 5407 // they should not be casted to default address space. 5408 static llvm::Constant * 5409 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5410 llvm::GlobalVariable *GV) { 5411 llvm::Constant *Cast = GV; 5412 if (!CGM.getLangOpts().OpenCL) { 5413 auto AS = CGM.GetGlobalConstantAddressSpace(); 5414 if (AS != LangAS::Default) 5415 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5416 CGM, GV, AS, LangAS::Default, 5417 llvm::PointerType::get( 5418 CGM.getLLVMContext(), 5419 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5420 } 5421 return Cast; 5422 } 5423 5424 template<typename SomeDecl> 5425 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5426 llvm::GlobalValue *GV) { 5427 if (!getLangOpts().CPlusPlus) 5428 return; 5429 5430 // Must have 'used' attribute, or else inline assembly can't rely on 5431 // the name existing. 5432 if (!D->template hasAttr<UsedAttr>()) 5433 return; 5434 5435 // Must have internal linkage and an ordinary name. 5436 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5437 return; 5438 5439 // Must be in an extern "C" context. Entities declared directly within 5440 // a record are not extern "C" even if the record is in such a context. 5441 const SomeDecl *First = D->getFirstDecl(); 5442 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5443 return; 5444 5445 // OK, this is an internal linkage entity inside an extern "C" linkage 5446 // specification. Make a note of that so we can give it the "expected" 5447 // mangled name if nothing else is using that name. 5448 std::pair<StaticExternCMap::iterator, bool> R = 5449 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5450 5451 // If we have multiple internal linkage entities with the same name 5452 // in extern "C" regions, none of them gets that name. 5453 if (!R.second) 5454 R.first->second = nullptr; 5455 } 5456 5457 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5458 if (!CGM.supportsCOMDAT()) 5459 return false; 5460 5461 if (D.hasAttr<SelectAnyAttr>()) 5462 return true; 5463 5464 GVALinkage Linkage; 5465 if (auto *VD = dyn_cast<VarDecl>(&D)) 5466 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5467 else 5468 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5469 5470 switch (Linkage) { 5471 case GVA_Internal: 5472 case GVA_AvailableExternally: 5473 case GVA_StrongExternal: 5474 return false; 5475 case GVA_DiscardableODR: 5476 case GVA_StrongODR: 5477 return true; 5478 } 5479 llvm_unreachable("No such linkage"); 5480 } 5481 5482 bool CodeGenModule::supportsCOMDAT() const { 5483 return getTriple().supportsCOMDAT(); 5484 } 5485 5486 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5487 llvm::GlobalObject &GO) { 5488 if (!shouldBeInCOMDAT(*this, D)) 5489 return; 5490 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5491 } 5492 5493 const ABIInfo &CodeGenModule::getABIInfo() { 5494 return getTargetCodeGenInfo().getABIInfo(); 5495 } 5496 5497 /// Pass IsTentative as true if you want to create a tentative definition. 5498 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5499 bool IsTentative) { 5500 // OpenCL global variables of sampler type are translated to function calls, 5501 // therefore no need to be translated. 5502 QualType ASTTy = D->getType(); 5503 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5504 return; 5505 5506 // If this is OpenMP device, check if it is legal to emit this global 5507 // normally. 5508 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5509 OpenMPRuntime->emitTargetGlobalVariable(D)) 5510 return; 5511 5512 llvm::TrackingVH<llvm::Constant> Init; 5513 bool NeedsGlobalCtor = false; 5514 // Whether the definition of the variable is available externally. 5515 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5516 // since this is the job for its original source. 5517 bool IsDefinitionAvailableExternally = 5518 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5519 bool NeedsGlobalDtor = 5520 !IsDefinitionAvailableExternally && 5521 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5522 5523 // It is helpless to emit the definition for an available_externally variable 5524 // which can't be marked as const. 5525 // We don't need to check if it needs global ctor or dtor. See the above 5526 // comment for ideas. 5527 if (IsDefinitionAvailableExternally && 5528 (!D->hasConstantInitialization() || 5529 // TODO: Update this when we have interface to check constexpr 5530 // destructor. 5531 D->needsDestruction(getContext()) || 5532 !D->getType().isConstantStorage(getContext(), true, true))) 5533 return; 5534 5535 const VarDecl *InitDecl; 5536 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5537 5538 std::optional<ConstantEmitter> emitter; 5539 5540 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5541 // as part of their declaration." Sema has already checked for 5542 // error cases, so we just need to set Init to UndefValue. 5543 bool IsCUDASharedVar = 5544 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5545 // Shadows of initialized device-side global variables are also left 5546 // undefined. 5547 // Managed Variables should be initialized on both host side and device side. 5548 bool IsCUDAShadowVar = 5549 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5550 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5551 D->hasAttr<CUDASharedAttr>()); 5552 bool IsCUDADeviceShadowVar = 5553 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5554 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5555 D->getType()->isCUDADeviceBuiltinTextureType()); 5556 if (getLangOpts().CUDA && 5557 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5558 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5559 else if (D->hasAttr<LoaderUninitializedAttr>()) 5560 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5561 else if (!InitExpr) { 5562 // This is a tentative definition; tentative definitions are 5563 // implicitly initialized with { 0 }. 5564 // 5565 // Note that tentative definitions are only emitted at the end of 5566 // a translation unit, so they should never have incomplete 5567 // type. In addition, EmitTentativeDefinition makes sure that we 5568 // never attempt to emit a tentative definition if a real one 5569 // exists. A use may still exists, however, so we still may need 5570 // to do a RAUW. 5571 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5572 Init = EmitNullConstant(D->getType()); 5573 } else { 5574 initializedGlobalDecl = GlobalDecl(D); 5575 emitter.emplace(*this); 5576 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5577 if (!Initializer) { 5578 QualType T = InitExpr->getType(); 5579 if (D->getType()->isReferenceType()) 5580 T = D->getType(); 5581 5582 if (getLangOpts().CPlusPlus) { 5583 Init = EmitNullConstant(T); 5584 if (!IsDefinitionAvailableExternally) 5585 NeedsGlobalCtor = true; 5586 if (InitDecl->hasFlexibleArrayInit(getContext())) { 5587 ErrorUnsupported(D, "flexible array initializer"); 5588 // We cannot create ctor for flexible array initializer 5589 NeedsGlobalCtor = false; 5590 } 5591 } else { 5592 ErrorUnsupported(D, "static initializer"); 5593 Init = llvm::PoisonValue::get(getTypes().ConvertType(T)); 5594 } 5595 } else { 5596 Init = Initializer; 5597 // We don't need an initializer, so remove the entry for the delayed 5598 // initializer position (just in case this entry was delayed) if we 5599 // also don't need to register a destructor. 5600 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5601 DelayedCXXInitPosition.erase(D); 5602 5603 #ifndef NDEBUG 5604 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5605 InitDecl->getFlexibleArrayInitChars(getContext()); 5606 CharUnits CstSize = CharUnits::fromQuantity( 5607 getDataLayout().getTypeAllocSize(Init->getType())); 5608 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5609 #endif 5610 } 5611 } 5612 5613 llvm::Type* InitType = Init->getType(); 5614 llvm::Constant *Entry = 5615 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5616 5617 // Strip off pointer casts if we got them. 5618 Entry = Entry->stripPointerCasts(); 5619 5620 // Entry is now either a Function or GlobalVariable. 5621 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5622 5623 // We have a definition after a declaration with the wrong type. 5624 // We must make a new GlobalVariable* and update everything that used OldGV 5625 // (a declaration or tentative definition) with the new GlobalVariable* 5626 // (which will be a definition). 5627 // 5628 // This happens if there is a prototype for a global (e.g. 5629 // "extern int x[];") and then a definition of a different type (e.g. 5630 // "int x[10];"). This also happens when an initializer has a different type 5631 // from the type of the global (this happens with unions). 5632 if (!GV || GV->getValueType() != InitType || 5633 GV->getType()->getAddressSpace() != 5634 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5635 5636 // Move the old entry aside so that we'll create a new one. 5637 Entry->setName(StringRef()); 5638 5639 // Make a new global with the correct type, this is now guaranteed to work. 5640 GV = cast<llvm::GlobalVariable>( 5641 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5642 ->stripPointerCasts()); 5643 5644 // Replace all uses of the old global with the new global 5645 llvm::Constant *NewPtrForOldDecl = 5646 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5647 Entry->getType()); 5648 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5649 5650 // Erase the old global, since it is no longer used. 5651 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5652 } 5653 5654 MaybeHandleStaticInExternC(D, GV); 5655 5656 if (D->hasAttr<AnnotateAttr>()) 5657 AddGlobalAnnotations(D, GV); 5658 5659 // Set the llvm linkage type as appropriate. 5660 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5661 5662 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5663 // the device. [...]" 5664 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5665 // __device__, declares a variable that: [...] 5666 // Is accessible from all the threads within the grid and from the host 5667 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5668 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5669 if (LangOpts.CUDA) { 5670 if (LangOpts.CUDAIsDevice) { 5671 if (Linkage != llvm::GlobalValue::InternalLinkage && 5672 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5673 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5674 D->getType()->isCUDADeviceBuiltinTextureType())) 5675 GV->setExternallyInitialized(true); 5676 } else { 5677 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5678 } 5679 getCUDARuntime().handleVarRegistration(D, *GV); 5680 } 5681 5682 if (LangOpts.HLSL) 5683 getHLSLRuntime().handleGlobalVarDefinition(D, GV); 5684 5685 GV->setInitializer(Init); 5686 if (emitter) 5687 emitter->finalize(GV); 5688 5689 // If it is safe to mark the global 'constant', do so now. 5690 GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) || 5691 (!NeedsGlobalCtor && !NeedsGlobalDtor && 5692 D->getType().isConstantStorage(getContext(), true, true))); 5693 5694 // If it is in a read-only section, mark it 'constant'. 5695 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5696 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5697 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5698 GV->setConstant(true); 5699 } 5700 5701 CharUnits AlignVal = getContext().getDeclAlign(D); 5702 // Check for alignment specifed in an 'omp allocate' directive. 5703 if (std::optional<CharUnits> AlignValFromAllocate = 5704 getOMPAllocateAlignment(D)) 5705 AlignVal = *AlignValFromAllocate; 5706 GV->setAlignment(AlignVal.getAsAlign()); 5707 5708 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5709 // function is only defined alongside the variable, not also alongside 5710 // callers. Normally, all accesses to a thread_local go through the 5711 // thread-wrapper in order to ensure initialization has occurred, underlying 5712 // variable will never be used other than the thread-wrapper, so it can be 5713 // converted to internal linkage. 5714 // 5715 // However, if the variable has the 'constinit' attribute, it _can_ be 5716 // referenced directly, without calling the thread-wrapper, so the linkage 5717 // must not be changed. 5718 // 5719 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5720 // weak or linkonce, the de-duplication semantics are important to preserve, 5721 // so we don't change the linkage. 5722 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5723 Linkage == llvm::GlobalValue::ExternalLinkage && 5724 Context.getTargetInfo().getTriple().isOSDarwin() && 5725 !D->hasAttr<ConstInitAttr>()) 5726 Linkage = llvm::GlobalValue::InternalLinkage; 5727 5728 GV->setLinkage(Linkage); 5729 if (D->hasAttr<DLLImportAttr>()) 5730 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5731 else if (D->hasAttr<DLLExportAttr>()) 5732 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5733 else 5734 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5735 5736 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5737 // common vars aren't constant even if declared const. 5738 GV->setConstant(false); 5739 // Tentative definition of global variables may be initialized with 5740 // non-zero null pointers. In this case they should have weak linkage 5741 // since common linkage must have zero initializer and must not have 5742 // explicit section therefore cannot have non-zero initial value. 5743 if (!GV->getInitializer()->isNullValue()) 5744 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5745 } 5746 5747 setNonAliasAttributes(D, GV); 5748 5749 if (D->getTLSKind() && !GV->isThreadLocal()) { 5750 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5751 CXXThreadLocals.push_back(D); 5752 setTLSMode(GV, *D); 5753 } 5754 5755 maybeSetTrivialComdat(*D, *GV); 5756 5757 // Emit the initializer function if necessary. 5758 if (NeedsGlobalCtor || NeedsGlobalDtor) 5759 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5760 5761 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5762 5763 // Emit global variable debug information. 5764 if (CGDebugInfo *DI = getModuleDebugInfo()) 5765 if (getCodeGenOpts().hasReducedDebugInfo()) 5766 DI->EmitGlobalVariable(GV, D); 5767 } 5768 5769 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5770 if (CGDebugInfo *DI = getModuleDebugInfo()) 5771 if (getCodeGenOpts().hasReducedDebugInfo()) { 5772 QualType ASTTy = D->getType(); 5773 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5774 llvm::Constant *GV = 5775 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5776 DI->EmitExternalVariable( 5777 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5778 } 5779 } 5780 5781 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5782 if (CGDebugInfo *DI = getModuleDebugInfo()) 5783 if (getCodeGenOpts().hasReducedDebugInfo()) { 5784 auto *Ty = getTypes().ConvertType(FD->getType()); 5785 StringRef MangledName = getMangledName(FD); 5786 auto *Fn = cast<llvm::Function>( 5787 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5788 if (!Fn->getSubprogram()) 5789 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5790 } 5791 } 5792 5793 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5794 CodeGenModule &CGM, const VarDecl *D, 5795 bool NoCommon) { 5796 // Don't give variables common linkage if -fno-common was specified unless it 5797 // was overridden by a NoCommon attribute. 5798 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5799 return true; 5800 5801 // C11 6.9.2/2: 5802 // A declaration of an identifier for an object that has file scope without 5803 // an initializer, and without a storage-class specifier or with the 5804 // storage-class specifier static, constitutes a tentative definition. 5805 if (D->getInit() || D->hasExternalStorage()) 5806 return true; 5807 5808 // A variable cannot be both common and exist in a section. 5809 if (D->hasAttr<SectionAttr>()) 5810 return true; 5811 5812 // A variable cannot be both common and exist in a section. 5813 // We don't try to determine which is the right section in the front-end. 5814 // If no specialized section name is applicable, it will resort to default. 5815 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5816 D->hasAttr<PragmaClangDataSectionAttr>() || 5817 D->hasAttr<PragmaClangRelroSectionAttr>() || 5818 D->hasAttr<PragmaClangRodataSectionAttr>()) 5819 return true; 5820 5821 // Thread local vars aren't considered common linkage. 5822 if (D->getTLSKind()) 5823 return true; 5824 5825 // Tentative definitions marked with WeakImportAttr are true definitions. 5826 if (D->hasAttr<WeakImportAttr>()) 5827 return true; 5828 5829 // A variable cannot be both common and exist in a comdat. 5830 if (shouldBeInCOMDAT(CGM, *D)) 5831 return true; 5832 5833 // Declarations with a required alignment do not have common linkage in MSVC 5834 // mode. 5835 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5836 if (D->hasAttr<AlignedAttr>()) 5837 return true; 5838 QualType VarType = D->getType(); 5839 if (Context.isAlignmentRequired(VarType)) 5840 return true; 5841 5842 if (const auto *RT = VarType->getAs<RecordType>()) { 5843 const RecordDecl *RD = RT->getDecl(); 5844 for (const FieldDecl *FD : RD->fields()) { 5845 if (FD->isBitField()) 5846 continue; 5847 if (FD->hasAttr<AlignedAttr>()) 5848 return true; 5849 if (Context.isAlignmentRequired(FD->getType())) 5850 return true; 5851 } 5852 } 5853 } 5854 5855 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5856 // common symbols, so symbols with greater alignment requirements cannot be 5857 // common. 5858 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5859 // alignments for common symbols via the aligncomm directive, so this 5860 // restriction only applies to MSVC environments. 5861 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5862 Context.getTypeAlignIfKnown(D->getType()) > 5863 Context.toBits(CharUnits::fromQuantity(32))) 5864 return true; 5865 5866 return false; 5867 } 5868 5869 llvm::GlobalValue::LinkageTypes 5870 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5871 GVALinkage Linkage) { 5872 if (Linkage == GVA_Internal) 5873 return llvm::Function::InternalLinkage; 5874 5875 if (D->hasAttr<WeakAttr>()) 5876 return llvm::GlobalVariable::WeakAnyLinkage; 5877 5878 if (const auto *FD = D->getAsFunction()) 5879 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5880 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5881 5882 // We are guaranteed to have a strong definition somewhere else, 5883 // so we can use available_externally linkage. 5884 if (Linkage == GVA_AvailableExternally) 5885 return llvm::GlobalValue::AvailableExternallyLinkage; 5886 5887 // Note that Apple's kernel linker doesn't support symbol 5888 // coalescing, so we need to avoid linkonce and weak linkages there. 5889 // Normally, this means we just map to internal, but for explicit 5890 // instantiations we'll map to external. 5891 5892 // In C++, the compiler has to emit a definition in every translation unit 5893 // that references the function. We should use linkonce_odr because 5894 // a) if all references in this translation unit are optimized away, we 5895 // don't need to codegen it. b) if the function persists, it needs to be 5896 // merged with other definitions. c) C++ has the ODR, so we know the 5897 // definition is dependable. 5898 if (Linkage == GVA_DiscardableODR) 5899 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5900 : llvm::Function::InternalLinkage; 5901 5902 // An explicit instantiation of a template has weak linkage, since 5903 // explicit instantiations can occur in multiple translation units 5904 // and must all be equivalent. However, we are not allowed to 5905 // throw away these explicit instantiations. 5906 // 5907 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5908 // so say that CUDA templates are either external (for kernels) or internal. 5909 // This lets llvm perform aggressive inter-procedural optimizations. For 5910 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5911 // therefore we need to follow the normal linkage paradigm. 5912 if (Linkage == GVA_StrongODR) { 5913 if (getLangOpts().AppleKext) 5914 return llvm::Function::ExternalLinkage; 5915 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5916 !getLangOpts().GPURelocatableDeviceCode) 5917 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5918 : llvm::Function::InternalLinkage; 5919 return llvm::Function::WeakODRLinkage; 5920 } 5921 5922 // C++ doesn't have tentative definitions and thus cannot have common 5923 // linkage. 5924 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5925 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5926 CodeGenOpts.NoCommon)) 5927 return llvm::GlobalVariable::CommonLinkage; 5928 5929 // selectany symbols are externally visible, so use weak instead of 5930 // linkonce. MSVC optimizes away references to const selectany globals, so 5931 // all definitions should be the same and ODR linkage should be used. 5932 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5933 if (D->hasAttr<SelectAnyAttr>()) 5934 return llvm::GlobalVariable::WeakODRLinkage; 5935 5936 // Otherwise, we have strong external linkage. 5937 assert(Linkage == GVA_StrongExternal); 5938 return llvm::GlobalVariable::ExternalLinkage; 5939 } 5940 5941 llvm::GlobalValue::LinkageTypes 5942 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5943 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5944 return getLLVMLinkageForDeclarator(VD, Linkage); 5945 } 5946 5947 /// Replace the uses of a function that was declared with a non-proto type. 5948 /// We want to silently drop extra arguments from call sites 5949 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5950 llvm::Function *newFn) { 5951 // Fast path. 5952 if (old->use_empty()) 5953 return; 5954 5955 llvm::Type *newRetTy = newFn->getReturnType(); 5956 SmallVector<llvm::Value *, 4> newArgs; 5957 5958 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5959 5960 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5961 ui != ue; ui++) { 5962 llvm::User *user = ui->getUser(); 5963 5964 // Recognize and replace uses of bitcasts. Most calls to 5965 // unprototyped functions will use bitcasts. 5966 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5967 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5968 replaceUsesOfNonProtoConstant(bitcast, newFn); 5969 continue; 5970 } 5971 5972 // Recognize calls to the function. 5973 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5974 if (!callSite) 5975 continue; 5976 if (!callSite->isCallee(&*ui)) 5977 continue; 5978 5979 // If the return types don't match exactly, then we can't 5980 // transform this call unless it's dead. 5981 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5982 continue; 5983 5984 // Get the call site's attribute list. 5985 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5986 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5987 5988 // If the function was passed too few arguments, don't transform. 5989 unsigned newNumArgs = newFn->arg_size(); 5990 if (callSite->arg_size() < newNumArgs) 5991 continue; 5992 5993 // If extra arguments were passed, we silently drop them. 5994 // If any of the types mismatch, we don't transform. 5995 unsigned argNo = 0; 5996 bool dontTransform = false; 5997 for (llvm::Argument &A : newFn->args()) { 5998 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5999 dontTransform = true; 6000 break; 6001 } 6002 6003 // Add any parameter attributes. 6004 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 6005 argNo++; 6006 } 6007 if (dontTransform) 6008 continue; 6009 6010 // Okay, we can transform this. Create the new call instruction and copy 6011 // over the required information. 6012 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 6013 6014 // Copy over any operand bundles. 6015 SmallVector<llvm::OperandBundleDef, 1> newBundles; 6016 callSite->getOperandBundlesAsDefs(newBundles); 6017 6018 llvm::CallBase *newCall; 6019 if (isa<llvm::CallInst>(callSite)) { 6020 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 6021 callSite->getIterator()); 6022 } else { 6023 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 6024 newCall = llvm::InvokeInst::Create( 6025 newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(), 6026 newArgs, newBundles, "", callSite->getIterator()); 6027 } 6028 newArgs.clear(); // for the next iteration 6029 6030 if (!newCall->getType()->isVoidTy()) 6031 newCall->takeName(callSite); 6032 newCall->setAttributes( 6033 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 6034 oldAttrs.getRetAttrs(), newArgAttrs)); 6035 newCall->setCallingConv(callSite->getCallingConv()); 6036 6037 // Finally, remove the old call, replacing any uses with the new one. 6038 if (!callSite->use_empty()) 6039 callSite->replaceAllUsesWith(newCall); 6040 6041 // Copy debug location attached to CI. 6042 if (callSite->getDebugLoc()) 6043 newCall->setDebugLoc(callSite->getDebugLoc()); 6044 6045 callSitesToBeRemovedFromParent.push_back(callSite); 6046 } 6047 6048 for (auto *callSite : callSitesToBeRemovedFromParent) { 6049 callSite->eraseFromParent(); 6050 } 6051 } 6052 6053 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 6054 /// implement a function with no prototype, e.g. "int foo() {}". If there are 6055 /// existing call uses of the old function in the module, this adjusts them to 6056 /// call the new function directly. 6057 /// 6058 /// This is not just a cleanup: the always_inline pass requires direct calls to 6059 /// functions to be able to inline them. If there is a bitcast in the way, it 6060 /// won't inline them. Instcombine normally deletes these calls, but it isn't 6061 /// run at -O0. 6062 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 6063 llvm::Function *NewFn) { 6064 // If we're redefining a global as a function, don't transform it. 6065 if (!isa<llvm::Function>(Old)) return; 6066 6067 replaceUsesOfNonProtoConstant(Old, NewFn); 6068 } 6069 6070 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 6071 auto DK = VD->isThisDeclarationADefinition(); 6072 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) || 6073 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD))) 6074 return; 6075 6076 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 6077 // If we have a definition, this might be a deferred decl. If the 6078 // instantiation is explicit, make sure we emit it at the end. 6079 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 6080 GetAddrOfGlobalVar(VD); 6081 6082 EmitTopLevelDecl(VD); 6083 } 6084 6085 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 6086 llvm::GlobalValue *GV) { 6087 const auto *D = cast<FunctionDecl>(GD.getDecl()); 6088 6089 // Compute the function info and LLVM type. 6090 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 6091 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 6092 6093 // Get or create the prototype for the function. 6094 if (!GV || (GV->getValueType() != Ty)) 6095 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 6096 /*DontDefer=*/true, 6097 ForDefinition)); 6098 6099 // Already emitted. 6100 if (!GV->isDeclaration()) 6101 return; 6102 6103 // We need to set linkage and visibility on the function before 6104 // generating code for it because various parts of IR generation 6105 // want to propagate this information down (e.g. to local static 6106 // declarations). 6107 auto *Fn = cast<llvm::Function>(GV); 6108 setFunctionLinkage(GD, Fn); 6109 6110 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 6111 setGVProperties(Fn, GD); 6112 6113 MaybeHandleStaticInExternC(D, Fn); 6114 6115 maybeSetTrivialComdat(*D, *Fn); 6116 6117 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 6118 6119 setNonAliasAttributes(GD, Fn); 6120 SetLLVMFunctionAttributesForDefinition(D, Fn); 6121 6122 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 6123 AddGlobalCtor(Fn, CA->getPriority()); 6124 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 6125 AddGlobalDtor(Fn, DA->getPriority(), true); 6126 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 6127 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 6128 } 6129 6130 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 6131 const auto *D = cast<ValueDecl>(GD.getDecl()); 6132 const AliasAttr *AA = D->getAttr<AliasAttr>(); 6133 assert(AA && "Not an alias?"); 6134 6135 StringRef MangledName = getMangledName(GD); 6136 6137 if (AA->getAliasee() == MangledName) { 6138 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6139 return; 6140 } 6141 6142 // If there is a definition in the module, then it wins over the alias. 6143 // This is dubious, but allow it to be safe. Just ignore the alias. 6144 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6145 if (Entry && !Entry->isDeclaration()) 6146 return; 6147 6148 Aliases.push_back(GD); 6149 6150 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6151 6152 // Create a reference to the named value. This ensures that it is emitted 6153 // if a deferred decl. 6154 llvm::Constant *Aliasee; 6155 llvm::GlobalValue::LinkageTypes LT; 6156 if (isa<llvm::FunctionType>(DeclTy)) { 6157 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6158 /*ForVTable=*/false); 6159 LT = getFunctionLinkage(GD); 6160 } else { 6161 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6162 /*D=*/nullptr); 6163 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6164 LT = getLLVMLinkageVarDefinition(VD); 6165 else 6166 LT = getFunctionLinkage(GD); 6167 } 6168 6169 // Create the new alias itself, but don't set a name yet. 6170 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6171 auto *GA = 6172 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6173 6174 if (Entry) { 6175 if (GA->getAliasee() == Entry) { 6176 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6177 return; 6178 } 6179 6180 assert(Entry->isDeclaration()); 6181 6182 // If there is a declaration in the module, then we had an extern followed 6183 // by the alias, as in: 6184 // extern int test6(); 6185 // ... 6186 // int test6() __attribute__((alias("test7"))); 6187 // 6188 // Remove it and replace uses of it with the alias. 6189 GA->takeName(Entry); 6190 6191 Entry->replaceAllUsesWith(GA); 6192 Entry->eraseFromParent(); 6193 } else { 6194 GA->setName(MangledName); 6195 } 6196 6197 // Set attributes which are particular to an alias; this is a 6198 // specialization of the attributes which may be set on a global 6199 // variable/function. 6200 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6201 D->isWeakImported()) { 6202 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6203 } 6204 6205 if (const auto *VD = dyn_cast<VarDecl>(D)) 6206 if (VD->getTLSKind()) 6207 setTLSMode(GA, *VD); 6208 6209 SetCommonAttributes(GD, GA); 6210 6211 // Emit global alias debug information. 6212 if (isa<VarDecl>(D)) 6213 if (CGDebugInfo *DI = getModuleDebugInfo()) 6214 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6215 } 6216 6217 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6218 const auto *D = cast<ValueDecl>(GD.getDecl()); 6219 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6220 assert(IFA && "Not an ifunc?"); 6221 6222 StringRef MangledName = getMangledName(GD); 6223 6224 if (IFA->getResolver() == MangledName) { 6225 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6226 return; 6227 } 6228 6229 // Report an error if some definition overrides ifunc. 6230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6231 if (Entry && !Entry->isDeclaration()) { 6232 GlobalDecl OtherGD; 6233 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6234 DiagnosedConflictingDefinitions.insert(GD).second) { 6235 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6236 << MangledName; 6237 Diags.Report(OtherGD.getDecl()->getLocation(), 6238 diag::note_previous_definition); 6239 } 6240 return; 6241 } 6242 6243 Aliases.push_back(GD); 6244 6245 // The resolver might not be visited yet. Specify a dummy non-function type to 6246 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver 6247 // was emitted) or the whole function will be replaced (if the resolver has 6248 // not been emitted). 6249 llvm::Constant *Resolver = 6250 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {}, 6251 /*ForVTable=*/false); 6252 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6253 unsigned AS = getTypes().getTargetAddressSpace(D->getType()); 6254 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 6255 DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 6256 if (Entry) { 6257 if (GIF->getResolver() == Entry) { 6258 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6259 return; 6260 } 6261 assert(Entry->isDeclaration()); 6262 6263 // If there is a declaration in the module, then we had an extern followed 6264 // by the ifunc, as in: 6265 // extern int test(); 6266 // ... 6267 // int test() __attribute__((ifunc("resolver"))); 6268 // 6269 // Remove it and replace uses of it with the ifunc. 6270 GIF->takeName(Entry); 6271 6272 Entry->replaceAllUsesWith(GIF); 6273 Entry->eraseFromParent(); 6274 } else 6275 GIF->setName(MangledName); 6276 SetCommonAttributes(GD, GIF); 6277 } 6278 6279 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6280 ArrayRef<llvm::Type*> Tys) { 6281 return llvm::Intrinsic::getOrInsertDeclaration(&getModule(), 6282 (llvm::Intrinsic::ID)IID, Tys); 6283 } 6284 6285 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6286 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6287 const StringLiteral *Literal, bool TargetIsLSB, 6288 bool &IsUTF16, unsigned &StringLength) { 6289 StringRef String = Literal->getString(); 6290 unsigned NumBytes = String.size(); 6291 6292 // Check for simple case. 6293 if (!Literal->containsNonAsciiOrNull()) { 6294 StringLength = NumBytes; 6295 return *Map.insert(std::make_pair(String, nullptr)).first; 6296 } 6297 6298 // Otherwise, convert the UTF8 literals into a string of shorts. 6299 IsUTF16 = true; 6300 6301 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6302 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6303 llvm::UTF16 *ToPtr = &ToBuf[0]; 6304 6305 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6306 ToPtr + NumBytes, llvm::strictConversion); 6307 6308 // ConvertUTF8toUTF16 returns the length in ToPtr. 6309 StringLength = ToPtr - &ToBuf[0]; 6310 6311 // Add an explicit null. 6312 *ToPtr = 0; 6313 return *Map.insert(std::make_pair( 6314 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6315 (StringLength + 1) * 2), 6316 nullptr)).first; 6317 } 6318 6319 ConstantAddress 6320 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6321 unsigned StringLength = 0; 6322 bool isUTF16 = false; 6323 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6324 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6325 getDataLayout().isLittleEndian(), isUTF16, 6326 StringLength); 6327 6328 if (auto *C = Entry.second) 6329 return ConstantAddress( 6330 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6331 6332 const ASTContext &Context = getContext(); 6333 const llvm::Triple &Triple = getTriple(); 6334 6335 const auto CFRuntime = getLangOpts().CFRuntime; 6336 const bool IsSwiftABI = 6337 static_cast<unsigned>(CFRuntime) >= 6338 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6339 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6340 6341 // If we don't already have it, get __CFConstantStringClassReference. 6342 if (!CFConstantStringClassRef) { 6343 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6344 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6345 Ty = llvm::ArrayType::get(Ty, 0); 6346 6347 switch (CFRuntime) { 6348 default: break; 6349 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6350 case LangOptions::CoreFoundationABI::Swift5_0: 6351 CFConstantStringClassName = 6352 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6353 : "$s10Foundation19_NSCFConstantStringCN"; 6354 Ty = IntPtrTy; 6355 break; 6356 case LangOptions::CoreFoundationABI::Swift4_2: 6357 CFConstantStringClassName = 6358 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6359 : "$S10Foundation19_NSCFConstantStringCN"; 6360 Ty = IntPtrTy; 6361 break; 6362 case LangOptions::CoreFoundationABI::Swift4_1: 6363 CFConstantStringClassName = 6364 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6365 : "__T010Foundation19_NSCFConstantStringCN"; 6366 Ty = IntPtrTy; 6367 break; 6368 } 6369 6370 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6371 6372 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6373 llvm::GlobalValue *GV = nullptr; 6374 6375 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6376 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6377 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6378 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6379 6380 const VarDecl *VD = nullptr; 6381 for (const auto *Result : DC->lookup(&II)) 6382 if ((VD = dyn_cast<VarDecl>(Result))) 6383 break; 6384 6385 if (Triple.isOSBinFormatELF()) { 6386 if (!VD) 6387 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6388 } else { 6389 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6390 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6391 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6392 else 6393 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6394 } 6395 6396 setDSOLocal(GV); 6397 } 6398 } 6399 6400 // Decay array -> ptr 6401 CFConstantStringClassRef = 6402 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6403 } 6404 6405 QualType CFTy = Context.getCFConstantStringType(); 6406 6407 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6408 6409 ConstantInitBuilder Builder(*this); 6410 auto Fields = Builder.beginStruct(STy); 6411 6412 // Class pointer. 6413 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6414 6415 // Flags. 6416 if (IsSwiftABI) { 6417 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6418 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6419 } else { 6420 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6421 } 6422 6423 // String pointer. 6424 llvm::Constant *C = nullptr; 6425 if (isUTF16) { 6426 auto Arr = llvm::ArrayRef( 6427 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6428 Entry.first().size() / 2); 6429 C = llvm::ConstantDataArray::get(VMContext, Arr); 6430 } else { 6431 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6432 } 6433 6434 // Note: -fwritable-strings doesn't make the backing store strings of 6435 // CFStrings writable. 6436 auto *GV = 6437 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6438 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6439 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6440 // Don't enforce the target's minimum global alignment, since the only use 6441 // of the string is via this class initializer. 6442 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6443 : Context.getTypeAlignInChars(Context.CharTy); 6444 GV->setAlignment(Align.getAsAlign()); 6445 6446 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6447 // Without it LLVM can merge the string with a non unnamed_addr one during 6448 // LTO. Doing that changes the section it ends in, which surprises ld64. 6449 if (Triple.isOSBinFormatMachO()) 6450 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6451 : "__TEXT,__cstring,cstring_literals"); 6452 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6453 // the static linker to adjust permissions to read-only later on. 6454 else if (Triple.isOSBinFormatELF()) 6455 GV->setSection(".rodata"); 6456 6457 // String. 6458 Fields.add(GV); 6459 6460 // String length. 6461 llvm::IntegerType *LengthTy = 6462 llvm::IntegerType::get(getModule().getContext(), 6463 Context.getTargetInfo().getLongWidth()); 6464 if (IsSwiftABI) { 6465 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6466 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6467 LengthTy = Int32Ty; 6468 else 6469 LengthTy = IntPtrTy; 6470 } 6471 Fields.addInt(LengthTy, StringLength); 6472 6473 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6474 // properly aligned on 32-bit platforms. 6475 CharUnits Alignment = 6476 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6477 6478 // The struct. 6479 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6480 /*isConstant=*/false, 6481 llvm::GlobalVariable::PrivateLinkage); 6482 GV->addAttribute("objc_arc_inert"); 6483 switch (Triple.getObjectFormat()) { 6484 case llvm::Triple::UnknownObjectFormat: 6485 llvm_unreachable("unknown file format"); 6486 case llvm::Triple::DXContainer: 6487 case llvm::Triple::GOFF: 6488 case llvm::Triple::SPIRV: 6489 case llvm::Triple::XCOFF: 6490 llvm_unreachable("unimplemented"); 6491 case llvm::Triple::COFF: 6492 case llvm::Triple::ELF: 6493 case llvm::Triple::Wasm: 6494 GV->setSection("cfstring"); 6495 break; 6496 case llvm::Triple::MachO: 6497 GV->setSection("__DATA,__cfstring"); 6498 break; 6499 } 6500 Entry.second = GV; 6501 6502 return ConstantAddress(GV, GV->getValueType(), Alignment); 6503 } 6504 6505 bool CodeGenModule::getExpressionLocationsEnabled() const { 6506 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6507 } 6508 6509 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6510 if (ObjCFastEnumerationStateType.isNull()) { 6511 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6512 D->startDefinition(); 6513 6514 QualType FieldTypes[] = { 6515 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6516 Context.getPointerType(Context.UnsignedLongTy), 6517 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6518 nullptr, ArraySizeModifier::Normal, 0)}; 6519 6520 for (size_t i = 0; i < 4; ++i) { 6521 FieldDecl *Field = FieldDecl::Create(Context, 6522 D, 6523 SourceLocation(), 6524 SourceLocation(), nullptr, 6525 FieldTypes[i], /*TInfo=*/nullptr, 6526 /*BitWidth=*/nullptr, 6527 /*Mutable=*/false, 6528 ICIS_NoInit); 6529 Field->setAccess(AS_public); 6530 D->addDecl(Field); 6531 } 6532 6533 D->completeDefinition(); 6534 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6535 } 6536 6537 return ObjCFastEnumerationStateType; 6538 } 6539 6540 llvm::Constant * 6541 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6542 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6543 6544 // Don't emit it as the address of the string, emit the string data itself 6545 // as an inline array. 6546 if (E->getCharByteWidth() == 1) { 6547 SmallString<64> Str(E->getString()); 6548 6549 // Resize the string to the right size, which is indicated by its type. 6550 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6551 assert(CAT && "String literal not of constant array type!"); 6552 Str.resize(CAT->getZExtSize()); 6553 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6554 } 6555 6556 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6557 llvm::Type *ElemTy = AType->getElementType(); 6558 unsigned NumElements = AType->getNumElements(); 6559 6560 // Wide strings have either 2-byte or 4-byte elements. 6561 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6562 SmallVector<uint16_t, 32> Elements; 6563 Elements.reserve(NumElements); 6564 6565 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6566 Elements.push_back(E->getCodeUnit(i)); 6567 Elements.resize(NumElements); 6568 return llvm::ConstantDataArray::get(VMContext, Elements); 6569 } 6570 6571 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6572 SmallVector<uint32_t, 32> Elements; 6573 Elements.reserve(NumElements); 6574 6575 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6576 Elements.push_back(E->getCodeUnit(i)); 6577 Elements.resize(NumElements); 6578 return llvm::ConstantDataArray::get(VMContext, Elements); 6579 } 6580 6581 static llvm::GlobalVariable * 6582 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6583 CodeGenModule &CGM, StringRef GlobalName, 6584 CharUnits Alignment) { 6585 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6586 CGM.GetGlobalConstantAddressSpace()); 6587 6588 llvm::Module &M = CGM.getModule(); 6589 // Create a global variable for this string 6590 auto *GV = new llvm::GlobalVariable( 6591 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6592 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6593 GV->setAlignment(Alignment.getAsAlign()); 6594 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6595 if (GV->isWeakForLinker()) { 6596 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6597 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6598 } 6599 CGM.setDSOLocal(GV); 6600 6601 return GV; 6602 } 6603 6604 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6605 /// constant array for the given string literal. 6606 ConstantAddress 6607 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6608 StringRef Name) { 6609 CharUnits Alignment = 6610 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6611 6612 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6613 llvm::GlobalVariable **Entry = nullptr; 6614 if (!LangOpts.WritableStrings) { 6615 Entry = &ConstantStringMap[C]; 6616 if (auto GV = *Entry) { 6617 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6618 GV->setAlignment(Alignment.getAsAlign()); 6619 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6620 GV->getValueType(), Alignment); 6621 } 6622 } 6623 6624 SmallString<256> MangledNameBuffer; 6625 StringRef GlobalVariableName; 6626 llvm::GlobalValue::LinkageTypes LT; 6627 6628 // Mangle the string literal if that's how the ABI merges duplicate strings. 6629 // Don't do it if they are writable, since we don't want writes in one TU to 6630 // affect strings in another. 6631 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6632 !LangOpts.WritableStrings) { 6633 llvm::raw_svector_ostream Out(MangledNameBuffer); 6634 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6635 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6636 GlobalVariableName = MangledNameBuffer; 6637 } else { 6638 LT = llvm::GlobalValue::PrivateLinkage; 6639 GlobalVariableName = Name; 6640 } 6641 6642 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6643 6644 CGDebugInfo *DI = getModuleDebugInfo(); 6645 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6646 DI->AddStringLiteralDebugInfo(GV, S); 6647 6648 if (Entry) 6649 *Entry = GV; 6650 6651 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6652 6653 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6654 GV->getValueType(), Alignment); 6655 } 6656 6657 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6658 /// array for the given ObjCEncodeExpr node. 6659 ConstantAddress 6660 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6661 std::string Str; 6662 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6663 6664 return GetAddrOfConstantCString(Str); 6665 } 6666 6667 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6668 /// the literal and a terminating '\0' character. 6669 /// The result has pointer to array type. 6670 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6671 const std::string &Str, const char *GlobalName) { 6672 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6673 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6674 getContext().CharTy, /*VD=*/nullptr); 6675 6676 llvm::Constant *C = 6677 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6678 6679 // Don't share any string literals if strings aren't constant. 6680 llvm::GlobalVariable **Entry = nullptr; 6681 if (!LangOpts.WritableStrings) { 6682 Entry = &ConstantStringMap[C]; 6683 if (auto GV = *Entry) { 6684 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6685 GV->setAlignment(Alignment.getAsAlign()); 6686 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6687 GV->getValueType(), Alignment); 6688 } 6689 } 6690 6691 // Get the default prefix if a name wasn't specified. 6692 if (!GlobalName) 6693 GlobalName = ".str"; 6694 // Create a global variable for this. 6695 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6696 GlobalName, Alignment); 6697 if (Entry) 6698 *Entry = GV; 6699 6700 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6701 GV->getValueType(), Alignment); 6702 } 6703 6704 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6705 const MaterializeTemporaryExpr *E, const Expr *Init) { 6706 assert((E->getStorageDuration() == SD_Static || 6707 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6708 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6709 6710 // If we're not materializing a subobject of the temporary, keep the 6711 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6712 QualType MaterializedType = Init->getType(); 6713 if (Init == E->getSubExpr()) 6714 MaterializedType = E->getType(); 6715 6716 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6717 6718 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6719 if (!InsertResult.second) { 6720 // We've seen this before: either we already created it or we're in the 6721 // process of doing so. 6722 if (!InsertResult.first->second) { 6723 // We recursively re-entered this function, probably during emission of 6724 // the initializer. Create a placeholder. We'll clean this up in the 6725 // outer call, at the end of this function. 6726 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6727 InsertResult.first->second = new llvm::GlobalVariable( 6728 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6729 nullptr); 6730 } 6731 return ConstantAddress(InsertResult.first->second, 6732 llvm::cast<llvm::GlobalVariable>( 6733 InsertResult.first->second->stripPointerCasts()) 6734 ->getValueType(), 6735 Align); 6736 } 6737 6738 // FIXME: If an externally-visible declaration extends multiple temporaries, 6739 // we need to give each temporary the same name in every translation unit (and 6740 // we also need to make the temporaries externally-visible). 6741 SmallString<256> Name; 6742 llvm::raw_svector_ostream Out(Name); 6743 getCXXABI().getMangleContext().mangleReferenceTemporary( 6744 VD, E->getManglingNumber(), Out); 6745 6746 APValue *Value = nullptr; 6747 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6748 // If the initializer of the extending declaration is a constant 6749 // initializer, we should have a cached constant initializer for this 6750 // temporary. Note that this might have a different value from the value 6751 // computed by evaluating the initializer if the surrounding constant 6752 // expression modifies the temporary. 6753 Value = E->getOrCreateValue(false); 6754 } 6755 6756 // Try evaluating it now, it might have a constant initializer. 6757 Expr::EvalResult EvalResult; 6758 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6759 !EvalResult.hasSideEffects()) 6760 Value = &EvalResult.Val; 6761 6762 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6763 6764 std::optional<ConstantEmitter> emitter; 6765 llvm::Constant *InitialValue = nullptr; 6766 bool Constant = false; 6767 llvm::Type *Type; 6768 if (Value) { 6769 // The temporary has a constant initializer, use it. 6770 emitter.emplace(*this); 6771 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6772 MaterializedType); 6773 Constant = 6774 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6775 /*ExcludeDtor*/ false); 6776 Type = InitialValue->getType(); 6777 } else { 6778 // No initializer, the initialization will be provided when we 6779 // initialize the declaration which performed lifetime extension. 6780 Type = getTypes().ConvertTypeForMem(MaterializedType); 6781 } 6782 6783 // Create a global variable for this lifetime-extended temporary. 6784 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6785 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6786 const VarDecl *InitVD; 6787 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6788 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6789 // Temporaries defined inside a class get linkonce_odr linkage because the 6790 // class can be defined in multiple translation units. 6791 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6792 } else { 6793 // There is no need for this temporary to have external linkage if the 6794 // VarDecl has external linkage. 6795 Linkage = llvm::GlobalVariable::InternalLinkage; 6796 } 6797 } 6798 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6799 auto *GV = new llvm::GlobalVariable( 6800 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6801 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6802 if (emitter) emitter->finalize(GV); 6803 // Don't assign dllimport or dllexport to local linkage globals. 6804 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6805 setGVProperties(GV, VD); 6806 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6807 // The reference temporary should never be dllexport. 6808 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6809 } 6810 GV->setAlignment(Align.getAsAlign()); 6811 if (supportsCOMDAT() && GV->isWeakForLinker()) 6812 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6813 if (VD->getTLSKind()) 6814 setTLSMode(GV, *VD); 6815 llvm::Constant *CV = GV; 6816 if (AddrSpace != LangAS::Default) 6817 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6818 *this, GV, AddrSpace, LangAS::Default, 6819 llvm::PointerType::get( 6820 getLLVMContext(), 6821 getContext().getTargetAddressSpace(LangAS::Default))); 6822 6823 // Update the map with the new temporary. If we created a placeholder above, 6824 // replace it with the new global now. 6825 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6826 if (Entry) { 6827 Entry->replaceAllUsesWith(CV); 6828 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6829 } 6830 Entry = CV; 6831 6832 return ConstantAddress(CV, Type, Align); 6833 } 6834 6835 /// EmitObjCPropertyImplementations - Emit information for synthesized 6836 /// properties for an implementation. 6837 void CodeGenModule::EmitObjCPropertyImplementations(const 6838 ObjCImplementationDecl *D) { 6839 for (const auto *PID : D->property_impls()) { 6840 // Dynamic is just for type-checking. 6841 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6842 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6843 6844 // Determine which methods need to be implemented, some may have 6845 // been overridden. Note that ::isPropertyAccessor is not the method 6846 // we want, that just indicates if the decl came from a 6847 // property. What we want to know is if the method is defined in 6848 // this implementation. 6849 auto *Getter = PID->getGetterMethodDecl(); 6850 if (!Getter || Getter->isSynthesizedAccessorStub()) 6851 CodeGenFunction(*this).GenerateObjCGetter( 6852 const_cast<ObjCImplementationDecl *>(D), PID); 6853 auto *Setter = PID->getSetterMethodDecl(); 6854 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6855 CodeGenFunction(*this).GenerateObjCSetter( 6856 const_cast<ObjCImplementationDecl *>(D), PID); 6857 } 6858 } 6859 } 6860 6861 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6862 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6863 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6864 ivar; ivar = ivar->getNextIvar()) 6865 if (ivar->getType().isDestructedType()) 6866 return true; 6867 6868 return false; 6869 } 6870 6871 static bool AllTrivialInitializers(CodeGenModule &CGM, 6872 ObjCImplementationDecl *D) { 6873 CodeGenFunction CGF(CGM); 6874 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6875 E = D->init_end(); B != E; ++B) { 6876 CXXCtorInitializer *CtorInitExp = *B; 6877 Expr *Init = CtorInitExp->getInit(); 6878 if (!CGF.isTrivialInitializer(Init)) 6879 return false; 6880 } 6881 return true; 6882 } 6883 6884 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6885 /// for an implementation. 6886 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6887 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6888 if (needsDestructMethod(D)) { 6889 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6890 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6891 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6892 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6893 getContext().VoidTy, nullptr, D, 6894 /*isInstance=*/true, /*isVariadic=*/false, 6895 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6896 /*isImplicitlyDeclared=*/true, 6897 /*isDefined=*/false, ObjCImplementationControl::Required); 6898 D->addInstanceMethod(DTORMethod); 6899 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6900 D->setHasDestructors(true); 6901 } 6902 6903 // If the implementation doesn't have any ivar initializers, we don't need 6904 // a .cxx_construct. 6905 if (D->getNumIvarInitializers() == 0 || 6906 AllTrivialInitializers(*this, D)) 6907 return; 6908 6909 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6910 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6911 // The constructor returns 'self'. 6912 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6913 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6914 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6915 /*isVariadic=*/false, 6916 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6917 /*isImplicitlyDeclared=*/true, 6918 /*isDefined=*/false, ObjCImplementationControl::Required); 6919 D->addInstanceMethod(CTORMethod); 6920 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6921 D->setHasNonZeroConstructors(true); 6922 } 6923 6924 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6925 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6926 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6927 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6928 ErrorUnsupported(LSD, "linkage spec"); 6929 return; 6930 } 6931 6932 EmitDeclContext(LSD); 6933 } 6934 6935 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6936 // Device code should not be at top level. 6937 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6938 return; 6939 6940 std::unique_ptr<CodeGenFunction> &CurCGF = 6941 GlobalTopLevelStmtBlockInFlight.first; 6942 6943 // We emitted a top-level stmt but after it there is initialization. 6944 // Stop squashing the top-level stmts into a single function. 6945 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6946 CurCGF->FinishFunction(D->getEndLoc()); 6947 CurCGF = nullptr; 6948 } 6949 6950 if (!CurCGF) { 6951 // void __stmts__N(void) 6952 // FIXME: Ask the ABI name mangler to pick a name. 6953 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6954 FunctionArgList Args; 6955 QualType RetTy = getContext().VoidTy; 6956 const CGFunctionInfo &FnInfo = 6957 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6958 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6959 llvm::Function *Fn = llvm::Function::Create( 6960 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6961 6962 CurCGF.reset(new CodeGenFunction(*this)); 6963 GlobalTopLevelStmtBlockInFlight.second = D; 6964 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6965 D->getBeginLoc(), D->getBeginLoc()); 6966 CXXGlobalInits.push_back(Fn); 6967 } 6968 6969 CurCGF->EmitStmt(D->getStmt()); 6970 } 6971 6972 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6973 for (auto *I : DC->decls()) { 6974 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6975 // are themselves considered "top-level", so EmitTopLevelDecl on an 6976 // ObjCImplDecl does not recursively visit them. We need to do that in 6977 // case they're nested inside another construct (LinkageSpecDecl / 6978 // ExportDecl) that does stop them from being considered "top-level". 6979 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6980 for (auto *M : OID->methods()) 6981 EmitTopLevelDecl(M); 6982 } 6983 6984 EmitTopLevelDecl(I); 6985 } 6986 } 6987 6988 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6989 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6990 // Ignore dependent declarations. 6991 if (D->isTemplated()) 6992 return; 6993 6994 // Consteval function shouldn't be emitted. 6995 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6996 return; 6997 6998 switch (D->getKind()) { 6999 case Decl::CXXConversion: 7000 case Decl::CXXMethod: 7001 case Decl::Function: 7002 EmitGlobal(cast<FunctionDecl>(D)); 7003 // Always provide some coverage mapping 7004 // even for the functions that aren't emitted. 7005 AddDeferredUnusedCoverageMapping(D); 7006 break; 7007 7008 case Decl::CXXDeductionGuide: 7009 // Function-like, but does not result in code emission. 7010 break; 7011 7012 case Decl::Var: 7013 case Decl::Decomposition: 7014 case Decl::VarTemplateSpecialization: 7015 EmitGlobal(cast<VarDecl>(D)); 7016 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 7017 for (auto *B : DD->flat_bindings()) 7018 if (auto *HD = B->getHoldingVar()) 7019 EmitGlobal(HD); 7020 7021 break; 7022 7023 // Indirect fields from global anonymous structs and unions can be 7024 // ignored; only the actual variable requires IR gen support. 7025 case Decl::IndirectField: 7026 break; 7027 7028 // C++ Decls 7029 case Decl::Namespace: 7030 EmitDeclContext(cast<NamespaceDecl>(D)); 7031 break; 7032 case Decl::ClassTemplateSpecialization: { 7033 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 7034 if (CGDebugInfo *DI = getModuleDebugInfo()) 7035 if (Spec->getSpecializationKind() == 7036 TSK_ExplicitInstantiationDefinition && 7037 Spec->hasDefinition()) 7038 DI->completeTemplateDefinition(*Spec); 7039 } [[fallthrough]]; 7040 case Decl::CXXRecord: { 7041 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 7042 if (CGDebugInfo *DI = getModuleDebugInfo()) { 7043 if (CRD->hasDefinition()) 7044 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7045 if (auto *ES = D->getASTContext().getExternalSource()) 7046 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 7047 DI->completeUnusedClass(*CRD); 7048 } 7049 // Emit any static data members, they may be definitions. 7050 for (auto *I : CRD->decls()) 7051 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 7052 EmitTopLevelDecl(I); 7053 break; 7054 } 7055 // No code generation needed. 7056 case Decl::UsingShadow: 7057 case Decl::ClassTemplate: 7058 case Decl::VarTemplate: 7059 case Decl::Concept: 7060 case Decl::VarTemplatePartialSpecialization: 7061 case Decl::FunctionTemplate: 7062 case Decl::TypeAliasTemplate: 7063 case Decl::Block: 7064 case Decl::Empty: 7065 case Decl::Binding: 7066 break; 7067 case Decl::Using: // using X; [C++] 7068 if (CGDebugInfo *DI = getModuleDebugInfo()) 7069 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 7070 break; 7071 case Decl::UsingEnum: // using enum X; [C++] 7072 if (CGDebugInfo *DI = getModuleDebugInfo()) 7073 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 7074 break; 7075 case Decl::NamespaceAlias: 7076 if (CGDebugInfo *DI = getModuleDebugInfo()) 7077 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 7078 break; 7079 case Decl::UsingDirective: // using namespace X; [C++] 7080 if (CGDebugInfo *DI = getModuleDebugInfo()) 7081 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 7082 break; 7083 case Decl::CXXConstructor: 7084 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 7085 break; 7086 case Decl::CXXDestructor: 7087 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 7088 break; 7089 7090 case Decl::StaticAssert: 7091 // Nothing to do. 7092 break; 7093 7094 // Objective-C Decls 7095 7096 // Forward declarations, no (immediate) code generation. 7097 case Decl::ObjCInterface: 7098 case Decl::ObjCCategory: 7099 break; 7100 7101 case Decl::ObjCProtocol: { 7102 auto *Proto = cast<ObjCProtocolDecl>(D); 7103 if (Proto->isThisDeclarationADefinition()) 7104 ObjCRuntime->GenerateProtocol(Proto); 7105 break; 7106 } 7107 7108 case Decl::ObjCCategoryImpl: 7109 // Categories have properties but don't support synthesize so we 7110 // can ignore them here. 7111 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 7112 break; 7113 7114 case Decl::ObjCImplementation: { 7115 auto *OMD = cast<ObjCImplementationDecl>(D); 7116 EmitObjCPropertyImplementations(OMD); 7117 EmitObjCIvarInitializations(OMD); 7118 ObjCRuntime->GenerateClass(OMD); 7119 // Emit global variable debug information. 7120 if (CGDebugInfo *DI = getModuleDebugInfo()) 7121 if (getCodeGenOpts().hasReducedDebugInfo()) 7122 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 7123 OMD->getClassInterface()), OMD->getLocation()); 7124 break; 7125 } 7126 case Decl::ObjCMethod: { 7127 auto *OMD = cast<ObjCMethodDecl>(D); 7128 // If this is not a prototype, emit the body. 7129 if (OMD->getBody()) 7130 CodeGenFunction(*this).GenerateObjCMethod(OMD); 7131 break; 7132 } 7133 case Decl::ObjCCompatibleAlias: 7134 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 7135 break; 7136 7137 case Decl::PragmaComment: { 7138 const auto *PCD = cast<PragmaCommentDecl>(D); 7139 switch (PCD->getCommentKind()) { 7140 case PCK_Unknown: 7141 llvm_unreachable("unexpected pragma comment kind"); 7142 case PCK_Linker: 7143 AppendLinkerOptions(PCD->getArg()); 7144 break; 7145 case PCK_Lib: 7146 AddDependentLib(PCD->getArg()); 7147 break; 7148 case PCK_Compiler: 7149 case PCK_ExeStr: 7150 case PCK_User: 7151 break; // We ignore all of these. 7152 } 7153 break; 7154 } 7155 7156 case Decl::PragmaDetectMismatch: { 7157 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7158 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7159 break; 7160 } 7161 7162 case Decl::LinkageSpec: 7163 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7164 break; 7165 7166 case Decl::FileScopeAsm: { 7167 // File-scope asm is ignored during device-side CUDA compilation. 7168 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7169 break; 7170 // File-scope asm is ignored during device-side OpenMP compilation. 7171 if (LangOpts.OpenMPIsTargetDevice) 7172 break; 7173 // File-scope asm is ignored during device-side SYCL compilation. 7174 if (LangOpts.SYCLIsDevice) 7175 break; 7176 auto *AD = cast<FileScopeAsmDecl>(D); 7177 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7178 break; 7179 } 7180 7181 case Decl::TopLevelStmt: 7182 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7183 break; 7184 7185 case Decl::Import: { 7186 auto *Import = cast<ImportDecl>(D); 7187 7188 // If we've already imported this module, we're done. 7189 if (!ImportedModules.insert(Import->getImportedModule())) 7190 break; 7191 7192 // Emit debug information for direct imports. 7193 if (!Import->getImportedOwningModule()) { 7194 if (CGDebugInfo *DI = getModuleDebugInfo()) 7195 DI->EmitImportDecl(*Import); 7196 } 7197 7198 // For C++ standard modules we are done - we will call the module 7199 // initializer for imported modules, and that will likewise call those for 7200 // any imports it has. 7201 if (CXX20ModuleInits && Import->getImportedModule() && 7202 Import->getImportedModule()->isNamedModule()) 7203 break; 7204 7205 // For clang C++ module map modules the initializers for sub-modules are 7206 // emitted here. 7207 7208 // Find all of the submodules and emit the module initializers. 7209 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7210 SmallVector<clang::Module *, 16> Stack; 7211 Visited.insert(Import->getImportedModule()); 7212 Stack.push_back(Import->getImportedModule()); 7213 7214 while (!Stack.empty()) { 7215 clang::Module *Mod = Stack.pop_back_val(); 7216 if (!EmittedModuleInitializers.insert(Mod).second) 7217 continue; 7218 7219 for (auto *D : Context.getModuleInitializers(Mod)) 7220 EmitTopLevelDecl(D); 7221 7222 // Visit the submodules of this module. 7223 for (auto *Submodule : Mod->submodules()) { 7224 // Skip explicit children; they need to be explicitly imported to emit 7225 // the initializers. 7226 if (Submodule->IsExplicit) 7227 continue; 7228 7229 if (Visited.insert(Submodule).second) 7230 Stack.push_back(Submodule); 7231 } 7232 } 7233 break; 7234 } 7235 7236 case Decl::Export: 7237 EmitDeclContext(cast<ExportDecl>(D)); 7238 break; 7239 7240 case Decl::OMPThreadPrivate: 7241 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7242 break; 7243 7244 case Decl::OMPAllocate: 7245 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7246 break; 7247 7248 case Decl::OMPDeclareReduction: 7249 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7250 break; 7251 7252 case Decl::OMPDeclareMapper: 7253 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7254 break; 7255 7256 case Decl::OMPRequires: 7257 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7258 break; 7259 7260 case Decl::Typedef: 7261 case Decl::TypeAlias: // using foo = bar; [C++11] 7262 if (CGDebugInfo *DI = getModuleDebugInfo()) 7263 DI->EmitAndRetainType( 7264 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7265 break; 7266 7267 case Decl::Record: 7268 if (CGDebugInfo *DI = getModuleDebugInfo()) 7269 if (cast<RecordDecl>(D)->getDefinition()) 7270 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7271 break; 7272 7273 case Decl::Enum: 7274 if (CGDebugInfo *DI = getModuleDebugInfo()) 7275 if (cast<EnumDecl>(D)->getDefinition()) 7276 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7277 break; 7278 7279 case Decl::HLSLBuffer: 7280 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7281 break; 7282 7283 default: 7284 // Make sure we handled everything we should, every other kind is a 7285 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7286 // function. Need to recode Decl::Kind to do that easily. 7287 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7288 break; 7289 } 7290 } 7291 7292 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7293 // Do we need to generate coverage mapping? 7294 if (!CodeGenOpts.CoverageMapping) 7295 return; 7296 switch (D->getKind()) { 7297 case Decl::CXXConversion: 7298 case Decl::CXXMethod: 7299 case Decl::Function: 7300 case Decl::ObjCMethod: 7301 case Decl::CXXConstructor: 7302 case Decl::CXXDestructor: { 7303 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7304 break; 7305 SourceManager &SM = getContext().getSourceManager(); 7306 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7307 break; 7308 if (!llvm::coverage::SystemHeadersCoverage && 7309 SM.isInSystemHeader(D->getBeginLoc())) 7310 break; 7311 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7312 break; 7313 } 7314 default: 7315 break; 7316 }; 7317 } 7318 7319 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7320 // Do we need to generate coverage mapping? 7321 if (!CodeGenOpts.CoverageMapping) 7322 return; 7323 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7324 if (Fn->isTemplateInstantiation()) 7325 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7326 } 7327 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7328 } 7329 7330 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7331 // We call takeVector() here to avoid use-after-free. 7332 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7333 // we deserialize function bodies to emit coverage info for them, and that 7334 // deserializes more declarations. How should we handle that case? 7335 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7336 if (!Entry.second) 7337 continue; 7338 const Decl *D = Entry.first; 7339 switch (D->getKind()) { 7340 case Decl::CXXConversion: 7341 case Decl::CXXMethod: 7342 case Decl::Function: 7343 case Decl::ObjCMethod: { 7344 CodeGenPGO PGO(*this); 7345 GlobalDecl GD(cast<FunctionDecl>(D)); 7346 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7347 getFunctionLinkage(GD)); 7348 break; 7349 } 7350 case Decl::CXXConstructor: { 7351 CodeGenPGO PGO(*this); 7352 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7353 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7354 getFunctionLinkage(GD)); 7355 break; 7356 } 7357 case Decl::CXXDestructor: { 7358 CodeGenPGO PGO(*this); 7359 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7360 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7361 getFunctionLinkage(GD)); 7362 break; 7363 } 7364 default: 7365 break; 7366 }; 7367 } 7368 } 7369 7370 void CodeGenModule::EmitMainVoidAlias() { 7371 // In order to transition away from "__original_main" gracefully, emit an 7372 // alias for "main" in the no-argument case so that libc can detect when 7373 // new-style no-argument main is in used. 7374 if (llvm::Function *F = getModule().getFunction("main")) { 7375 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7376 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7377 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7378 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7379 } 7380 } 7381 } 7382 7383 /// Turns the given pointer into a constant. 7384 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7385 const void *Ptr) { 7386 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7387 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7388 return llvm::ConstantInt::get(i64, PtrInt); 7389 } 7390 7391 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7392 llvm::NamedMDNode *&GlobalMetadata, 7393 GlobalDecl D, 7394 llvm::GlobalValue *Addr) { 7395 if (!GlobalMetadata) 7396 GlobalMetadata = 7397 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7398 7399 // TODO: should we report variant information for ctors/dtors? 7400 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7401 llvm::ConstantAsMetadata::get(GetPointerConstant( 7402 CGM.getLLVMContext(), D.getDecl()))}; 7403 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7404 } 7405 7406 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7407 llvm::GlobalValue *CppFunc) { 7408 // Store the list of ifuncs we need to replace uses in. 7409 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7410 // List of ConstantExprs that we should be able to delete when we're done 7411 // here. 7412 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7413 7414 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7415 if (Elem == CppFunc) 7416 return false; 7417 7418 // First make sure that all users of this are ifuncs (or ifuncs via a 7419 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7420 // later. 7421 for (llvm::User *User : Elem->users()) { 7422 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7423 // ifunc directly. In any other case, just give up, as we don't know what we 7424 // could break by changing those. 7425 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7426 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7427 return false; 7428 7429 for (llvm::User *CEUser : ConstExpr->users()) { 7430 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7431 IFuncs.push_back(IFunc); 7432 } else { 7433 return false; 7434 } 7435 } 7436 CEs.push_back(ConstExpr); 7437 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7438 IFuncs.push_back(IFunc); 7439 } else { 7440 // This user is one we don't know how to handle, so fail redirection. This 7441 // will result in an ifunc retaining a resolver name that will ultimately 7442 // fail to be resolved to a defined function. 7443 return false; 7444 } 7445 } 7446 7447 // Now we know this is a valid case where we can do this alias replacement, we 7448 // need to remove all of the references to Elem (and the bitcasts!) so we can 7449 // delete it. 7450 for (llvm::GlobalIFunc *IFunc : IFuncs) 7451 IFunc->setResolver(nullptr); 7452 for (llvm::ConstantExpr *ConstExpr : CEs) 7453 ConstExpr->destroyConstant(); 7454 7455 // We should now be out of uses for the 'old' version of this function, so we 7456 // can erase it as well. 7457 Elem->eraseFromParent(); 7458 7459 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7460 // The type of the resolver is always just a function-type that returns the 7461 // type of the IFunc, so create that here. If the type of the actual 7462 // resolver doesn't match, it just gets bitcast to the right thing. 7463 auto *ResolverTy = 7464 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7465 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7466 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7467 IFunc->setResolver(Resolver); 7468 } 7469 return true; 7470 } 7471 7472 /// For each function which is declared within an extern "C" region and marked 7473 /// as 'used', but has internal linkage, create an alias from the unmangled 7474 /// name to the mangled name if possible. People expect to be able to refer 7475 /// to such functions with an unmangled name from inline assembly within the 7476 /// same translation unit. 7477 void CodeGenModule::EmitStaticExternCAliases() { 7478 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7479 return; 7480 for (auto &I : StaticExternCValues) { 7481 const IdentifierInfo *Name = I.first; 7482 llvm::GlobalValue *Val = I.second; 7483 7484 // If Val is null, that implies there were multiple declarations that each 7485 // had a claim to the unmangled name. In this case, generation of the alias 7486 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7487 if (!Val) 7488 break; 7489 7490 llvm::GlobalValue *ExistingElem = 7491 getModule().getNamedValue(Name->getName()); 7492 7493 // If there is either not something already by this name, or we were able to 7494 // replace all uses from IFuncs, create the alias. 7495 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7496 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7497 } 7498 } 7499 7500 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7501 GlobalDecl &Result) const { 7502 auto Res = Manglings.find(MangledName); 7503 if (Res == Manglings.end()) 7504 return false; 7505 Result = Res->getValue(); 7506 return true; 7507 } 7508 7509 /// Emits metadata nodes associating all the global values in the 7510 /// current module with the Decls they came from. This is useful for 7511 /// projects using IR gen as a subroutine. 7512 /// 7513 /// Since there's currently no way to associate an MDNode directly 7514 /// with an llvm::GlobalValue, we create a global named metadata 7515 /// with the name 'clang.global.decl.ptrs'. 7516 void CodeGenModule::EmitDeclMetadata() { 7517 llvm::NamedMDNode *GlobalMetadata = nullptr; 7518 7519 for (auto &I : MangledDeclNames) { 7520 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7521 // Some mangled names don't necessarily have an associated GlobalValue 7522 // in this module, e.g. if we mangled it for DebugInfo. 7523 if (Addr) 7524 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7525 } 7526 } 7527 7528 /// Emits metadata nodes for all the local variables in the current 7529 /// function. 7530 void CodeGenFunction::EmitDeclMetadata() { 7531 if (LocalDeclMap.empty()) return; 7532 7533 llvm::LLVMContext &Context = getLLVMContext(); 7534 7535 // Find the unique metadata ID for this name. 7536 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7537 7538 llvm::NamedMDNode *GlobalMetadata = nullptr; 7539 7540 for (auto &I : LocalDeclMap) { 7541 const Decl *D = I.first; 7542 llvm::Value *Addr = I.second.emitRawPointer(*this); 7543 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7544 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7545 Alloca->setMetadata( 7546 DeclPtrKind, llvm::MDNode::get( 7547 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7548 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7549 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7550 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7551 } 7552 } 7553 } 7554 7555 void CodeGenModule::EmitVersionIdentMetadata() { 7556 llvm::NamedMDNode *IdentMetadata = 7557 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7558 std::string Version = getClangFullVersion(); 7559 llvm::LLVMContext &Ctx = TheModule.getContext(); 7560 7561 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7562 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7563 } 7564 7565 void CodeGenModule::EmitCommandLineMetadata() { 7566 llvm::NamedMDNode *CommandLineMetadata = 7567 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7568 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7569 llvm::LLVMContext &Ctx = TheModule.getContext(); 7570 7571 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7572 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7573 } 7574 7575 void CodeGenModule::EmitCoverageFile() { 7576 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7577 if (!CUNode) 7578 return; 7579 7580 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7581 llvm::LLVMContext &Ctx = TheModule.getContext(); 7582 auto *CoverageDataFile = 7583 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7584 auto *CoverageNotesFile = 7585 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7586 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7587 llvm::MDNode *CU = CUNode->getOperand(i); 7588 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7589 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7590 } 7591 } 7592 7593 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7594 bool ForEH) { 7595 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7596 // FIXME: should we even be calling this method if RTTI is disabled 7597 // and it's not for EH? 7598 if (!shouldEmitRTTI(ForEH)) 7599 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7600 7601 if (ForEH && Ty->isObjCObjectPointerType() && 7602 LangOpts.ObjCRuntime.isGNUFamily()) 7603 return ObjCRuntime->GetEHType(Ty); 7604 7605 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7606 } 7607 7608 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7609 // Do not emit threadprivates in simd-only mode. 7610 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7611 return; 7612 for (auto RefExpr : D->varlist()) { 7613 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7614 bool PerformInit = 7615 VD->getAnyInitializer() && 7616 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7617 /*ForRef=*/false); 7618 7619 Address Addr(GetAddrOfGlobalVar(VD), 7620 getTypes().ConvertTypeForMem(VD->getType()), 7621 getContext().getDeclAlign(VD)); 7622 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7623 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7624 CXXGlobalInits.push_back(InitFunction); 7625 } 7626 } 7627 7628 llvm::Metadata * 7629 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7630 StringRef Suffix) { 7631 if (auto *FnType = T->getAs<FunctionProtoType>()) 7632 T = getContext().getFunctionType( 7633 FnType->getReturnType(), FnType->getParamTypes(), 7634 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7635 7636 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7637 if (InternalId) 7638 return InternalId; 7639 7640 if (isExternallyVisible(T->getLinkage())) { 7641 std::string OutName; 7642 llvm::raw_string_ostream Out(OutName); 7643 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7644 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7645 7646 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7647 Out << ".normalized"; 7648 7649 Out << Suffix; 7650 7651 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7652 } else { 7653 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7654 llvm::ArrayRef<llvm::Metadata *>()); 7655 } 7656 7657 return InternalId; 7658 } 7659 7660 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7661 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7662 } 7663 7664 llvm::Metadata * 7665 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7666 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7667 } 7668 7669 // Generalize pointer types to a void pointer with the qualifiers of the 7670 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7671 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7672 // 'void *'. 7673 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7674 if (!Ty->isPointerType()) 7675 return Ty; 7676 7677 return Ctx.getPointerType( 7678 QualType(Ctx.VoidTy).withCVRQualifiers( 7679 Ty->getPointeeType().getCVRQualifiers())); 7680 } 7681 7682 // Apply type generalization to a FunctionType's return and argument types 7683 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7684 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7685 SmallVector<QualType, 8> GeneralizedParams; 7686 for (auto &Param : FnType->param_types()) 7687 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7688 7689 return Ctx.getFunctionType( 7690 GeneralizeType(Ctx, FnType->getReturnType()), 7691 GeneralizedParams, FnType->getExtProtoInfo()); 7692 } 7693 7694 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7695 return Ctx.getFunctionNoProtoType( 7696 GeneralizeType(Ctx, FnType->getReturnType())); 7697 7698 llvm_unreachable("Encountered unknown FunctionType"); 7699 } 7700 7701 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7702 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7703 GeneralizedMetadataIdMap, ".generalized"); 7704 } 7705 7706 /// Returns whether this module needs the "all-vtables" type identifier. 7707 bool CodeGenModule::NeedAllVtablesTypeId() const { 7708 // Returns true if at least one of vtable-based CFI checkers is enabled and 7709 // is not in the trapping mode. 7710 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7711 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7712 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7713 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7714 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7715 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7716 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7717 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7718 } 7719 7720 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7721 CharUnits Offset, 7722 const CXXRecordDecl *RD) { 7723 llvm::Metadata *MD = 7724 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7725 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7726 7727 if (CodeGenOpts.SanitizeCfiCrossDso) 7728 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7729 VTable->addTypeMetadata(Offset.getQuantity(), 7730 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7731 7732 if (NeedAllVtablesTypeId()) { 7733 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7734 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7735 } 7736 } 7737 7738 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7739 if (!SanStats) 7740 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7741 7742 return *SanStats; 7743 } 7744 7745 llvm::Value * 7746 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7747 CodeGenFunction &CGF) { 7748 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7749 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7750 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7751 auto *Call = CGF.EmitRuntimeCall( 7752 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7753 return Call; 7754 } 7755 7756 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7757 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7758 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7759 /* forPointeeType= */ true); 7760 } 7761 7762 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7763 LValueBaseInfo *BaseInfo, 7764 TBAAAccessInfo *TBAAInfo, 7765 bool forPointeeType) { 7766 if (TBAAInfo) 7767 *TBAAInfo = getTBAAAccessInfo(T); 7768 7769 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7770 // that doesn't return the information we need to compute BaseInfo. 7771 7772 // Honor alignment typedef attributes even on incomplete types. 7773 // We also honor them straight for C++ class types, even as pointees; 7774 // there's an expressivity gap here. 7775 if (auto TT = T->getAs<TypedefType>()) { 7776 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7777 if (BaseInfo) 7778 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7779 return getContext().toCharUnitsFromBits(Align); 7780 } 7781 } 7782 7783 bool AlignForArray = T->isArrayType(); 7784 7785 // Analyze the base element type, so we don't get confused by incomplete 7786 // array types. 7787 T = getContext().getBaseElementType(T); 7788 7789 if (T->isIncompleteType()) { 7790 // We could try to replicate the logic from 7791 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7792 // type is incomplete, so it's impossible to test. We could try to reuse 7793 // getTypeAlignIfKnown, but that doesn't return the information we need 7794 // to set BaseInfo. So just ignore the possibility that the alignment is 7795 // greater than one. 7796 if (BaseInfo) 7797 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7798 return CharUnits::One(); 7799 } 7800 7801 if (BaseInfo) 7802 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7803 7804 CharUnits Alignment; 7805 const CXXRecordDecl *RD; 7806 if (T.getQualifiers().hasUnaligned()) { 7807 Alignment = CharUnits::One(); 7808 } else if (forPointeeType && !AlignForArray && 7809 (RD = T->getAsCXXRecordDecl())) { 7810 // For C++ class pointees, we don't know whether we're pointing at a 7811 // base or a complete object, so we generally need to use the 7812 // non-virtual alignment. 7813 Alignment = getClassPointerAlignment(RD); 7814 } else { 7815 Alignment = getContext().getTypeAlignInChars(T); 7816 } 7817 7818 // Cap to the global maximum type alignment unless the alignment 7819 // was somehow explicit on the type. 7820 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7821 if (Alignment.getQuantity() > MaxAlign && 7822 !getContext().isAlignmentRequired(T)) 7823 Alignment = CharUnits::fromQuantity(MaxAlign); 7824 } 7825 return Alignment; 7826 } 7827 7828 bool CodeGenModule::stopAutoInit() { 7829 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7830 if (StopAfter) { 7831 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7832 // used 7833 if (NumAutoVarInit >= StopAfter) { 7834 return true; 7835 } 7836 if (!NumAutoVarInit) { 7837 unsigned DiagID = getDiags().getCustomDiagID( 7838 DiagnosticsEngine::Warning, 7839 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7840 "number of times ftrivial-auto-var-init=%1 gets applied."); 7841 getDiags().Report(DiagID) 7842 << StopAfter 7843 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7844 LangOptions::TrivialAutoVarInitKind::Zero 7845 ? "zero" 7846 : "pattern"); 7847 } 7848 ++NumAutoVarInit; 7849 } 7850 return false; 7851 } 7852 7853 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7854 const Decl *D) const { 7855 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7856 // postfix beginning with '.' since the symbol name can be demangled. 7857 if (LangOpts.HIP) 7858 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7859 else 7860 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7861 7862 // If the CUID is not specified we try to generate a unique postfix. 7863 if (getLangOpts().CUID.empty()) { 7864 SourceManager &SM = getContext().getSourceManager(); 7865 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7866 assert(PLoc.isValid() && "Source location is expected to be valid."); 7867 7868 // Get the hash of the user defined macros. 7869 llvm::MD5 Hash; 7870 llvm::MD5::MD5Result Result; 7871 for (const auto &Arg : PreprocessorOpts.Macros) 7872 Hash.update(Arg.first); 7873 Hash.final(Result); 7874 7875 // Get the UniqueID for the file containing the decl. 7876 llvm::sys::fs::UniqueID ID; 7877 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7878 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7879 assert(PLoc.isValid() && "Source location is expected to be valid."); 7880 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7881 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7882 << PLoc.getFilename() << EC.message(); 7883 } 7884 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7885 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7886 } else { 7887 OS << getContext().getCUIDHash(); 7888 } 7889 } 7890 7891 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7892 assert(DeferredDeclsToEmit.empty() && 7893 "Should have emitted all decls deferred to emit."); 7894 assert(NewBuilder->DeferredDecls.empty() && 7895 "Newly created module should not have deferred decls"); 7896 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7897 assert(EmittedDeferredDecls.empty() && 7898 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7899 7900 assert(NewBuilder->DeferredVTables.empty() && 7901 "Newly created module should not have deferred vtables"); 7902 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7903 7904 assert(NewBuilder->MangledDeclNames.empty() && 7905 "Newly created module should not have mangled decl names"); 7906 assert(NewBuilder->Manglings.empty() && 7907 "Newly created module should not have manglings"); 7908 NewBuilder->Manglings = std::move(Manglings); 7909 7910 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7911 7912 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7913 } 7914