xref: /llvm-project/llvm/include/llvm/ADT/APFloat.h (revision ad56f6267f6b208c46074d9f58464f171418d619)
1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file declares a class to represent arbitrary precision floating point
11 /// values and provide a variety of arithmetic operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APFLOAT_H
16 #define LLVM_ADT_APFLOAT_H
17 
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/float128.h"
23 #include <memory>
24 
25 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
26   do {                                                                         \
27     if (usesLayout<IEEEFloat>(getSemantics()))                                 \
28       return U.IEEE.METHOD_CALL;                                               \
29     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
30       return U.Double.METHOD_CALL;                                             \
31     llvm_unreachable("Unexpected semantics");                                  \
32   } while (false)
33 
34 namespace llvm {
35 
36 struct fltSemantics;
37 class APSInt;
38 class StringRef;
39 class APFloat;
40 class raw_ostream;
41 
42 template <typename T> class Expected;
43 template <typename T> class SmallVectorImpl;
44 
45 /// Enum that represents what fraction of the LSB truncated bits of an fp number
46 /// represent.
47 ///
48 /// This essentially combines the roles of guard and sticky bits.
49 enum lostFraction { // Example of truncated bits:
50   lfExactlyZero,    // 000000
51   lfLessThanHalf,   // 0xxxxx  x's not all zero
52   lfExactlyHalf,    // 100000
53   lfMoreThanHalf    // 1xxxxx  x's not all zero
54 };
55 
56 /// A self-contained host- and target-independent arbitrary-precision
57 /// floating-point software implementation.
58 ///
59 /// APFloat uses bignum integer arithmetic as provided by static functions in
60 /// the APInt class.  The library will work with bignum integers whose parts are
61 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
62 ///
63 /// Written for clarity rather than speed, in particular with a view to use in
64 /// the front-end of a cross compiler so that target arithmetic can be correctly
65 /// performed on the host.  Performance should nonetheless be reasonable,
66 /// particularly for its intended use.  It may be useful as a base
67 /// implementation for a run-time library during development of a faster
68 /// target-specific one.
69 ///
70 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
71 /// implemented operations.  Currently implemented operations are add, subtract,
72 /// multiply, divide, fused-multiply-add, conversion-to-float,
73 /// conversion-to-integer and conversion-from-integer.  New rounding modes
74 /// (e.g. away from zero) can be added with three or four lines of code.
75 ///
76 /// Four formats are built-in: IEEE single precision, double precision,
77 /// quadruple precision, and x87 80-bit extended double (when operating with
78 /// full extended precision).  Adding a new format that obeys IEEE semantics
79 /// only requires adding two lines of code: a declaration and definition of the
80 /// format.
81 ///
82 /// All operations return the status of that operation as an exception bit-mask,
83 /// so multiple operations can be done consecutively with their results or-ed
84 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
85 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
86 /// and compiler optimizers can determine what exceptions would be raised by
87 /// folding operations and optimize, or perhaps not optimize, accordingly.
88 ///
89 /// At present, underflow tininess is detected after rounding; it should be
90 /// straight forward to add support for the before-rounding case too.
91 ///
92 /// The library reads hexadecimal floating point numbers as per C99, and
93 /// correctly rounds if necessary according to the specified rounding mode.
94 /// Syntax is required to have been validated by the caller.  It also converts
95 /// floating point numbers to hexadecimal text as per the C99 %a and %A
96 /// conversions.  The output precision (or alternatively the natural minimal
97 /// precision) can be specified; if the requested precision is less than the
98 /// natural precision the output is correctly rounded for the specified rounding
99 /// mode.
100 ///
101 /// It also reads decimal floating point numbers and correctly rounds according
102 /// to the specified rounding mode.
103 ///
104 /// Conversion to decimal text is not currently implemented.
105 ///
106 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
107 /// signed exponent, and the significand as an array of integer parts.  After
108 /// normalization of a number of precision P the exponent is within the range of
109 /// the format, and if the number is not denormal the P-th bit of the
110 /// significand is set as an explicit integer bit.  For denormals the most
111 /// significant bit is shifted right so that the exponent is maintained at the
112 /// format's minimum, so that the smallest denormal has just the least
113 /// significant bit of the significand set.  The sign of zeroes and infinities
114 /// is significant; the exponent and significand of such numbers is not stored,
115 /// but has a known implicit (deterministic) value: 0 for the significands, 0
116 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
117 /// significand are deterministic, although not really meaningful, and preserved
118 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
119 ///
120 /// APFloat does not provide any exception handling beyond default exception
121 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
122 /// by encoding Signaling NaNs with the first bit of its trailing significand as
123 /// 0.
124 ///
125 /// TODO
126 /// ====
127 ///
128 /// Some features that may or may not be worth adding:
129 ///
130 /// Binary to decimal conversion (hard).
131 ///
132 /// Optional ability to detect underflow tininess before rounding.
133 ///
134 /// New formats: x87 in single and double precision mode (IEEE apart from
135 /// extended exponent range) (hard).
136 ///
137 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
138 ///
139 
140 // This is the common type definitions shared by APFloat and its internal
141 // implementation classes. This struct should not define any non-static data
142 // members.
143 struct APFloatBase {
144   typedef APInt::WordType integerPart;
145   static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
146 
147   /// A signed type to represent a floating point numbers unbiased exponent.
148   typedef int32_t ExponentType;
149 
150   /// \name Floating Point Semantics.
151   /// @{
152   enum Semantics {
153     S_IEEEhalf,
154     S_BFloat,
155     S_IEEEsingle,
156     S_IEEEdouble,
157     S_IEEEquad,
158     // The IBM double-double semantics. Such a number consists of a pair of
159     // IEEE 64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal,
160     // (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo.
161     // Therefore it has two 53-bit mantissa parts that aren't necessarily
162     // adjacent to each other, and two 11-bit exponents.
163     //
164     // Note: we need to make the value different from semBogus as otherwise
165     // an unsafe optimization may collapse both values to a single address,
166     // and we heavily rely on them having distinct addresses.
167     S_PPCDoubleDouble,
168     // These are legacy semantics for the fallback, inaccurate implementation
169     // of IBM double-double, if the accurate semPPCDoubleDouble doesn't handle
170     // the operation. It's equivalent to having an IEEE number with consecutive
171     // 106 bits of mantissa and 11 bits of exponent.
172     //
173     // It's not equivalent to IBM double-double. For example, a legit IBM
174     // double-double, 1 + epsilon:
175     //
176     // 1 + epsilon = 1 + (1 >> 1076)
177     //
178     // is not representable by a consecutive 106 bits of mantissa.
179     //
180     // Currently, these semantics are used in the following way:
181     //
182     //   semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) ->
183     //   (64-bit APInt, 64-bit APInt) -> (128-bit APInt) ->
184     //   semPPCDoubleDoubleLegacy -> IEEE operations
185     //
186     // We use bitcastToAPInt() to get the bit representation (in APInt) of the
187     // underlying IEEEdouble, then use the APInt constructor to construct the
188     // legacy IEEE float.
189     //
190     // TODO: Implement all operations in semPPCDoubleDouble, and delete these
191     // semantics.
192     S_PPCDoubleDoubleLegacy,
193     // 8-bit floating point number following IEEE-754 conventions with bit
194     // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433.
195     S_Float8E5M2,
196     // 8-bit floating point number mostly following IEEE-754 conventions
197     // and bit layout S1E5M2 described in https://arxiv.org/abs/2206.02915,
198     // with expanded range and with no infinity or signed zero.
199     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
200     // This format's exponent bias is 16, instead of the 15 (2 ** (5 - 1) - 1)
201     // that IEEE precedent would imply.
202     S_Float8E5M2FNUZ,
203     // 8-bit floating point number following IEEE-754 conventions with bit
204     // layout S1E4M3.
205     S_Float8E4M3,
206     // 8-bit floating point number mostly following IEEE-754 conventions with
207     // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433.
208     // Unlike IEEE-754 types, there are no infinity values, and NaN is
209     // represented with the exponent and mantissa bits set to all 1s.
210     S_Float8E4M3FN,
211     // 8-bit floating point number mostly following IEEE-754 conventions
212     // and bit layout S1E4M3 described in https://arxiv.org/abs/2206.02915,
213     // with expanded range and with no infinity or signed zero.
214     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
215     // This format's exponent bias is 8, instead of the 7 (2 ** (4 - 1) - 1)
216     // that IEEE precedent would imply.
217     S_Float8E4M3FNUZ,
218     // 8-bit floating point number mostly following IEEE-754 conventions
219     // and bit layout S1E4M3 with expanded range and with no infinity or signed
220     // zero.
221     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
222     // This format's exponent bias is 11, instead of the 7 (2 ** (4 - 1) - 1)
223     // that IEEE precedent would imply.
224     S_Float8E4M3B11FNUZ,
225     // 8-bit floating point number following IEEE-754 conventions with bit
226     // layout S1E3M4.
227     S_Float8E3M4,
228     // Floating point number that occupies 32 bits or less of storage, providing
229     // improved range compared to half (16-bit) formats, at (potentially)
230     // greater throughput than single precision (32-bit) formats.
231     S_FloatTF32,
232     // 8-bit floating point number with (all the) 8 bits for the exponent
233     // like in FP32. There are no zeroes, no infinities, and no denormal values.
234     // This format has unsigned representation only. (U -> Unsigned only).
235     // NaN is represented with all bits set to 1. Bias is 127.
236     // This format represents the scale data type in the MX specification from:
237     // https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
238     S_Float8E8M0FNU,
239     // 6-bit floating point number with bit layout S1E3M2. Unlike IEEE-754
240     // types, there are no infinity or NaN values. The format is detailed in
241     // https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
242     S_Float6E3M2FN,
243     // 6-bit floating point number with bit layout S1E2M3. Unlike IEEE-754
244     // types, there are no infinity or NaN values. The format is detailed in
245     // https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
246     S_Float6E2M3FN,
247     // 4-bit floating point number with bit layout S1E2M1. Unlike IEEE-754
248     // types, there are no infinity or NaN values. The format is detailed in
249     // https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
250     S_Float4E2M1FN,
251     // TODO: Documentation is missing.
252     S_x87DoubleExtended,
253     S_MaxSemantics = S_x87DoubleExtended,
254   };
255 
256   static const llvm::fltSemantics &EnumToSemantics(Semantics S);
257   static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
258 
259   static const fltSemantics &IEEEhalf() LLVM_READNONE;
260   static const fltSemantics &BFloat() LLVM_READNONE;
261   static const fltSemantics &IEEEsingle() LLVM_READNONE;
262   static const fltSemantics &IEEEdouble() LLVM_READNONE;
263   static const fltSemantics &IEEEquad() LLVM_READNONE;
264   static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
265   static const fltSemantics &PPCDoubleDoubleLegacy() LLVM_READNONE;
266   static const fltSemantics &Float8E5M2() LLVM_READNONE;
267   static const fltSemantics &Float8E5M2FNUZ() LLVM_READNONE;
268   static const fltSemantics &Float8E4M3() LLVM_READNONE;
269   static const fltSemantics &Float8E4M3FN() LLVM_READNONE;
270   static const fltSemantics &Float8E4M3FNUZ() LLVM_READNONE;
271   static const fltSemantics &Float8E4M3B11FNUZ() LLVM_READNONE;
272   static const fltSemantics &Float8E3M4() LLVM_READNONE;
273   static const fltSemantics &FloatTF32() LLVM_READNONE;
274   static const fltSemantics &Float8E8M0FNU() LLVM_READNONE;
275   static const fltSemantics &Float6E3M2FN() LLVM_READNONE;
276   static const fltSemantics &Float6E2M3FN() LLVM_READNONE;
277   static const fltSemantics &Float4E2M1FN() LLVM_READNONE;
278   static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
279 
280   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
281   /// anything real.
282   static const fltSemantics &Bogus() LLVM_READNONE;
283 
284   // Returns true if any number described by this semantics can be precisely
285   // represented by the specified semantics. Does not take into account
286   // the value of fltNonfiniteBehavior, hasZero, hasSignedRepr.
287   static bool isRepresentableBy(const fltSemantics &A, const fltSemantics &B);
288 
289   /// @}
290 
291   /// IEEE-754R 5.11: Floating Point Comparison Relations.
292   enum cmpResult {
293     cmpLessThan,
294     cmpEqual,
295     cmpGreaterThan,
296     cmpUnordered
297   };
298 
299   /// IEEE-754R 4.3: Rounding-direction attributes.
300   using roundingMode = llvm::RoundingMode;
301 
302   static constexpr roundingMode rmNearestTiesToEven =
303                                                 RoundingMode::NearestTiesToEven;
304   static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
305   static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
306   static constexpr roundingMode rmTowardZero     = RoundingMode::TowardZero;
307   static constexpr roundingMode rmNearestTiesToAway =
308                                                 RoundingMode::NearestTiesToAway;
309 
310   /// IEEE-754R 7: Default exception handling.
311   ///
312   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
313   ///
314   /// APFloat models this behavior specified by IEEE-754:
315   ///   "For operations producing results in floating-point format, the default
316   ///    result of an operation that signals the invalid operation exception
317   ///    shall be a quiet NaN."
318   enum opStatus {
319     opOK = 0x00,
320     opInvalidOp = 0x01,
321     opDivByZero = 0x02,
322     opOverflow = 0x04,
323     opUnderflow = 0x08,
324     opInexact = 0x10
325   };
326 
327   /// Category of internally-represented number.
328   enum fltCategory {
329     fcInfinity,
330     fcNaN,
331     fcNormal,
332     fcZero
333   };
334 
335   /// Convenience enum used to construct an uninitialized APFloat.
336   enum uninitializedTag {
337     uninitialized
338   };
339 
340   /// Enumeration of \c ilogb error results.
341   enum IlogbErrorKinds {
342     IEK_Zero = INT_MIN + 1,
343     IEK_NaN = INT_MIN,
344     IEK_Inf = INT_MAX
345   };
346 
347   static unsigned int semanticsPrecision(const fltSemantics &);
348   static ExponentType semanticsMinExponent(const fltSemantics &);
349   static ExponentType semanticsMaxExponent(const fltSemantics &);
350   static unsigned int semanticsSizeInBits(const fltSemantics &);
351   static unsigned int semanticsIntSizeInBits(const fltSemantics&, bool);
352   static bool semanticsHasZero(const fltSemantics &);
353   static bool semanticsHasSignedRepr(const fltSemantics &);
354   static bool semanticsHasInf(const fltSemantics &);
355   static bool semanticsHasNaN(const fltSemantics &);
356 
357   // Returns true if any number described by \p Src can be precisely represented
358   // by a normal (not subnormal) value in \p Dst.
359   static bool isRepresentableAsNormalIn(const fltSemantics &Src,
360                                         const fltSemantics &Dst);
361 
362   /// Returns the size of the floating point number (in bits) in the given
363   /// semantics.
364   static unsigned getSizeInBits(const fltSemantics &Sem);
365 };
366 
367 namespace detail {
368 
369 using integerPart = APFloatBase::integerPart;
370 using uninitializedTag = APFloatBase::uninitializedTag;
371 using roundingMode = APFloatBase::roundingMode;
372 using opStatus = APFloatBase::opStatus;
373 using cmpResult = APFloatBase::cmpResult;
374 using fltCategory = APFloatBase::fltCategory;
375 using ExponentType = APFloatBase::ExponentType;
376 static constexpr uninitializedTag uninitialized = APFloatBase::uninitialized;
377 static constexpr roundingMode rmNearestTiesToEven =
378     APFloatBase::rmNearestTiesToEven;
379 static constexpr roundingMode rmNearestTiesToAway =
380     APFloatBase::rmNearestTiesToAway;
381 static constexpr roundingMode rmTowardNegative = APFloatBase::rmTowardNegative;
382 static constexpr roundingMode rmTowardPositive = APFloatBase::rmTowardPositive;
383 static constexpr roundingMode rmTowardZero = APFloatBase::rmTowardZero;
384 static constexpr unsigned integerPartWidth = APFloatBase::integerPartWidth;
385 static constexpr cmpResult cmpEqual = APFloatBase::cmpEqual;
386 static constexpr cmpResult cmpLessThan = APFloatBase::cmpLessThan;
387 static constexpr cmpResult cmpGreaterThan = APFloatBase::cmpGreaterThan;
388 static constexpr cmpResult cmpUnordered = APFloatBase::cmpUnordered;
389 static constexpr opStatus opOK = APFloatBase::opOK;
390 static constexpr opStatus opInvalidOp = APFloatBase::opInvalidOp;
391 static constexpr opStatus opDivByZero = APFloatBase::opDivByZero;
392 static constexpr opStatus opOverflow = APFloatBase::opOverflow;
393 static constexpr opStatus opUnderflow = APFloatBase::opUnderflow;
394 static constexpr opStatus opInexact = APFloatBase::opInexact;
395 static constexpr fltCategory fcInfinity = APFloatBase::fcInfinity;
396 static constexpr fltCategory fcNaN = APFloatBase::fcNaN;
397 static constexpr fltCategory fcNormal = APFloatBase::fcNormal;
398 static constexpr fltCategory fcZero = APFloatBase::fcZero;
399 
400 class IEEEFloat final {
401 public:
402   /// \name Constructors
403   /// @{
404 
405   IEEEFloat(const fltSemantics &); // Default construct to +0.0
406   IEEEFloat(const fltSemantics &, integerPart);
407   IEEEFloat(const fltSemantics &, uninitializedTag);
408   IEEEFloat(const fltSemantics &, const APInt &);
409   explicit IEEEFloat(double d);
410   explicit IEEEFloat(float f);
411   IEEEFloat(const IEEEFloat &);
412   IEEEFloat(IEEEFloat &&);
413   ~IEEEFloat();
414 
415   /// @}
416 
417   /// Returns whether this instance allocated memory.
418   bool needsCleanup() const { return partCount() > 1; }
419 
420   /// \name Convenience "constructors"
421   /// @{
422 
423   /// @}
424 
425   /// \name Arithmetic
426   /// @{
427 
428   opStatus add(const IEEEFloat &, roundingMode);
429   opStatus subtract(const IEEEFloat &, roundingMode);
430   opStatus multiply(const IEEEFloat &, roundingMode);
431   opStatus divide(const IEEEFloat &, roundingMode);
432   /// IEEE remainder.
433   opStatus remainder(const IEEEFloat &);
434   /// C fmod, or llvm frem.
435   opStatus mod(const IEEEFloat &);
436   opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
437   opStatus roundToIntegral(roundingMode);
438   /// IEEE-754R 5.3.1: nextUp/nextDown.
439   opStatus next(bool nextDown);
440 
441   /// @}
442 
443   /// \name Sign operations.
444   /// @{
445 
446   void changeSign();
447 
448   /// @}
449 
450   /// \name Conversions
451   /// @{
452 
453   opStatus convert(const fltSemantics &, roundingMode, bool *);
454   opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
455                             roundingMode, bool *) const;
456   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
457   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
458                                           bool, roundingMode);
459   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
460                                           bool, roundingMode);
461   Expected<opStatus> convertFromString(StringRef, roundingMode);
462   APInt bitcastToAPInt() const;
463   double convertToDouble() const;
464 #ifdef HAS_IEE754_FLOAT128
465   float128 convertToQuad() const;
466 #endif
467   float convertToFloat() const;
468 
469   /// @}
470 
471   /// The definition of equality is not straightforward for floating point, so
472   /// we won't use operator==.  Use one of the following, or write whatever it
473   /// is you really mean.
474   bool operator==(const IEEEFloat &) const = delete;
475 
476   /// IEEE comparison with another floating point number (NaNs compare
477   /// unordered, 0==-0).
478   cmpResult compare(const IEEEFloat &) const;
479 
480   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
481   bool bitwiseIsEqual(const IEEEFloat &) const;
482 
483   /// Write out a hexadecimal representation of the floating point value to DST,
484   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
485   /// Return the number of characters written, excluding the terminating NUL.
486   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
487                                   bool upperCase, roundingMode) const;
488 
489   /// \name IEEE-754R 5.7.2 General operations.
490   /// @{
491 
492   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
493   /// negative.
494   ///
495   /// This applies to zeros and NaNs as well.
496   bool isNegative() const { return sign; }
497 
498   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
499   ///
500   /// This implies that the current value of the float is not zero, subnormal,
501   /// infinite, or NaN following the definition of normality from IEEE-754R.
502   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
503 
504   /// Returns true if and only if the current value is zero, subnormal, or
505   /// normal.
506   ///
507   /// This means that the value is not infinite or NaN.
508   bool isFinite() const { return !isNaN() && !isInfinity(); }
509 
510   /// Returns true if and only if the float is plus or minus zero.
511   bool isZero() const { return category == fltCategory::fcZero; }
512 
513   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
514   /// denormal.
515   bool isDenormal() const;
516 
517   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
518   bool isInfinity() const { return category == fcInfinity; }
519 
520   /// Returns true if and only if the float is a quiet or signaling NaN.
521   bool isNaN() const { return category == fcNaN; }
522 
523   /// Returns true if and only if the float is a signaling NaN.
524   bool isSignaling() const;
525 
526   /// @}
527 
528   /// \name Simple Queries
529   /// @{
530 
531   fltCategory getCategory() const { return category; }
532   const fltSemantics &getSemantics() const { return *semantics; }
533   bool isNonZero() const { return category != fltCategory::fcZero; }
534   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
535   bool isPosZero() const { return isZero() && !isNegative(); }
536   bool isNegZero() const { return isZero() && isNegative(); }
537 
538   /// Returns true if and only if the number has the smallest possible non-zero
539   /// magnitude in the current semantics.
540   bool isSmallest() const;
541 
542   /// Returns true if this is the smallest (by magnitude) normalized finite
543   /// number in the given semantics.
544   bool isSmallestNormalized() const;
545 
546   /// Returns true if and only if the number has the largest possible finite
547   /// magnitude in the current semantics.
548   bool isLargest() const;
549 
550   /// Returns true if and only if the number is an exact integer.
551   bool isInteger() const;
552 
553   /// @}
554 
555   IEEEFloat &operator=(const IEEEFloat &);
556   IEEEFloat &operator=(IEEEFloat &&);
557 
558   /// Overload to compute a hash code for an APFloat value.
559   ///
560   /// Note that the use of hash codes for floating point values is in general
561   /// frought with peril. Equality is hard to define for these values. For
562   /// example, should negative and positive zero hash to different codes? Are
563   /// they equal or not? This hash value implementation specifically
564   /// emphasizes producing different codes for different inputs in order to
565   /// be used in canonicalization and memoization. As such, equality is
566   /// bitwiseIsEqual, and 0 != -0.
567   friend hash_code hash_value(const IEEEFloat &Arg);
568 
569   /// Converts this value into a decimal string.
570   ///
571   /// \param FormatPrecision The maximum number of digits of
572   ///   precision to output.  If there are fewer digits available,
573   ///   zero padding will not be used unless the value is
574   ///   integral and small enough to be expressed in
575   ///   FormatPrecision digits.  0 means to use the natural
576   ///   precision of the number.
577   /// \param FormatMaxPadding The maximum number of zeros to
578   ///   consider inserting before falling back to scientific
579   ///   notation.  0 means to always use scientific notation.
580   ///
581   /// \param TruncateZero Indicate whether to remove the trailing zero in
582   ///   fraction part or not. Also setting this parameter to false forcing
583   ///   producing of output more similar to default printf behavior.
584   ///   Specifically the lower e is used as exponent delimiter and exponent
585   ///   always contains no less than two digits.
586   ///
587   /// Number       Precision    MaxPadding      Result
588   /// ------       ---------    ----------      ------
589   /// 1.01E+4              5             2       10100
590   /// 1.01E+4              4             2       1.01E+4
591   /// 1.01E+4              5             1       1.01E+4
592   /// 1.01E-2              5             2       0.0101
593   /// 1.01E-2              4             2       0.0101
594   /// 1.01E-2              4             1       1.01E-2
595   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
596                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
597 
598   /// If this value has an exact multiplicative inverse, store it in inv and
599   /// return true.
600   bool getExactInverse(APFloat *inv) const;
601 
602   // If this is an exact power of two, return the exponent while ignoring the
603   // sign bit. If it's not an exact power of 2, return INT_MIN
604   LLVM_READONLY
605   int getExactLog2Abs() const;
606 
607   // If this is an exact power of two, return the exponent. If it's not an exact
608   // power of 2, return INT_MIN
609   LLVM_READONLY
610   int getExactLog2() const {
611     return isNegative() ? INT_MIN : getExactLog2Abs();
612   }
613 
614   /// Returns the exponent of the internal representation of the APFloat.
615   ///
616   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
617   /// For special APFloat values, this returns special error codes:
618   ///
619   ///   NaN -> \c IEK_NaN
620   ///   0   -> \c IEK_Zero
621   ///   Inf -> \c IEK_Inf
622   ///
623   friend int ilogb(const IEEEFloat &Arg);
624 
625   /// Returns: X * 2^Exp for integral exponents.
626   friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
627 
628   friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
629 
630   /// \name Special value setters.
631   /// @{
632 
633   void makeLargest(bool Neg = false);
634   void makeSmallest(bool Neg = false);
635   void makeNaN(bool SNaN = false, bool Neg = false,
636                const APInt *fill = nullptr);
637   void makeInf(bool Neg = false);
638   void makeZero(bool Neg = false);
639   void makeQuiet();
640 
641   /// Returns the smallest (by magnitude) normalized finite number in the given
642   /// semantics.
643   ///
644   /// \param Negative - True iff the number should be negative
645   void makeSmallestNormalized(bool Negative = false);
646 
647   /// @}
648 
649   cmpResult compareAbsoluteValue(const IEEEFloat &) const;
650 
651 private:
652   /// \name Simple Queries
653   /// @{
654 
655   integerPart *significandParts();
656   const integerPart *significandParts() const;
657   unsigned int partCount() const;
658 
659   /// @}
660 
661   /// \name Significand operations.
662   /// @{
663 
664   integerPart addSignificand(const IEEEFloat &);
665   integerPart subtractSignificand(const IEEEFloat &, integerPart);
666   lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
667   lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat,
668                                    bool ignoreAddend = false);
669   lostFraction multiplySignificand(const IEEEFloat&);
670   lostFraction divideSignificand(const IEEEFloat &);
671   void incrementSignificand();
672   void initialize(const fltSemantics *);
673   void shiftSignificandLeft(unsigned int);
674   lostFraction shiftSignificandRight(unsigned int);
675   unsigned int significandLSB() const;
676   unsigned int significandMSB() const;
677   void zeroSignificand();
678   unsigned int getNumHighBits() const;
679   /// Return true if the significand excluding the integral bit is all ones.
680   bool isSignificandAllOnes() const;
681   bool isSignificandAllOnesExceptLSB() const;
682   /// Return true if the significand excluding the integral bit is all zeros.
683   bool isSignificandAllZeros() const;
684   bool isSignificandAllZerosExceptMSB() const;
685 
686   /// @}
687 
688   /// \name Arithmetic on special values.
689   /// @{
690 
691   opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
692   opStatus divideSpecials(const IEEEFloat &);
693   opStatus multiplySpecials(const IEEEFloat &);
694   opStatus modSpecials(const IEEEFloat &);
695   opStatus remainderSpecials(const IEEEFloat&);
696 
697   /// @}
698 
699   /// \name Miscellany
700   /// @{
701 
702   bool convertFromStringSpecials(StringRef str);
703   opStatus normalize(roundingMode, lostFraction);
704   opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
705   opStatus handleOverflow(roundingMode);
706   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
707   opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
708                                         unsigned int, bool, roundingMode,
709                                         bool *) const;
710   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
711                                     roundingMode);
712   Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
713   Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
714   char *convertNormalToHexString(char *, unsigned int, bool,
715                                  roundingMode) const;
716   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
717                                         roundingMode);
718   ExponentType exponentNaN() const;
719   ExponentType exponentInf() const;
720   ExponentType exponentZero() const;
721 
722   /// @}
723 
724   template <const fltSemantics &S> APInt convertIEEEFloatToAPInt() const;
725   APInt convertHalfAPFloatToAPInt() const;
726   APInt convertBFloatAPFloatToAPInt() const;
727   APInt convertFloatAPFloatToAPInt() const;
728   APInt convertDoubleAPFloatToAPInt() const;
729   APInt convertQuadrupleAPFloatToAPInt() const;
730   APInt convertF80LongDoubleAPFloatToAPInt() const;
731   APInt convertPPCDoubleDoubleLegacyAPFloatToAPInt() const;
732   APInt convertFloat8E5M2APFloatToAPInt() const;
733   APInt convertFloat8E5M2FNUZAPFloatToAPInt() const;
734   APInt convertFloat8E4M3APFloatToAPInt() const;
735   APInt convertFloat8E4M3FNAPFloatToAPInt() const;
736   APInt convertFloat8E4M3FNUZAPFloatToAPInt() const;
737   APInt convertFloat8E4M3B11FNUZAPFloatToAPInt() const;
738   APInt convertFloat8E3M4APFloatToAPInt() const;
739   APInt convertFloatTF32APFloatToAPInt() const;
740   APInt convertFloat8E8M0FNUAPFloatToAPInt() const;
741   APInt convertFloat6E3M2FNAPFloatToAPInt() const;
742   APInt convertFloat6E2M3FNAPFloatToAPInt() const;
743   APInt convertFloat4E2M1FNAPFloatToAPInt() const;
744   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
745   template <const fltSemantics &S> void initFromIEEEAPInt(const APInt &api);
746   void initFromHalfAPInt(const APInt &api);
747   void initFromBFloatAPInt(const APInt &api);
748   void initFromFloatAPInt(const APInt &api);
749   void initFromDoubleAPInt(const APInt &api);
750   void initFromQuadrupleAPInt(const APInt &api);
751   void initFromF80LongDoubleAPInt(const APInt &api);
752   void initFromPPCDoubleDoubleLegacyAPInt(const APInt &api);
753   void initFromFloat8E5M2APInt(const APInt &api);
754   void initFromFloat8E5M2FNUZAPInt(const APInt &api);
755   void initFromFloat8E4M3APInt(const APInt &api);
756   void initFromFloat8E4M3FNAPInt(const APInt &api);
757   void initFromFloat8E4M3FNUZAPInt(const APInt &api);
758   void initFromFloat8E4M3B11FNUZAPInt(const APInt &api);
759   void initFromFloat8E3M4APInt(const APInt &api);
760   void initFromFloatTF32APInt(const APInt &api);
761   void initFromFloat8E8M0FNUAPInt(const APInt &api);
762   void initFromFloat6E3M2FNAPInt(const APInt &api);
763   void initFromFloat6E2M3FNAPInt(const APInt &api);
764   void initFromFloat4E2M1FNAPInt(const APInt &api);
765 
766   void assign(const IEEEFloat &);
767   void copySignificand(const IEEEFloat &);
768   void freeSignificand();
769 
770   /// Note: this must be the first data member.
771   /// The semantics that this value obeys.
772   const fltSemantics *semantics;
773 
774   /// A binary fraction with an explicit integer bit.
775   ///
776   /// The significand must be at least one bit wider than the target precision.
777   union Significand {
778     integerPart part;
779     integerPart *parts;
780   } significand;
781 
782   /// The signed unbiased exponent of the value.
783   ExponentType exponent;
784 
785   /// What kind of floating point number this is.
786   ///
787   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
788   /// Using the extra bit keeps it from failing under VisualStudio.
789   fltCategory category : 3;
790 
791   /// Sign bit of the number.
792   unsigned int sign : 1;
793 };
794 
795 hash_code hash_value(const IEEEFloat &Arg);
796 int ilogb(const IEEEFloat &Arg);
797 IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
798 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, roundingMode RM);
799 
800 // This mode implements more precise float in terms of two APFloats.
801 // The interface and layout is designed for arbitrary underlying semantics,
802 // though currently only PPCDoubleDouble semantics are supported, whose
803 // corresponding underlying semantics are IEEEdouble.
804 class DoubleAPFloat final {
805   // Note: this must be the first data member.
806   const fltSemantics *Semantics;
807   std::unique_ptr<APFloat[]> Floats;
808 
809   opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
810                    const APFloat &cc, roundingMode RM);
811 
812   opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
813                           DoubleAPFloat &Out, roundingMode RM);
814 
815 public:
816   DoubleAPFloat(const fltSemantics &S);
817   DoubleAPFloat(const fltSemantics &S, uninitializedTag);
818   DoubleAPFloat(const fltSemantics &S, integerPart);
819   DoubleAPFloat(const fltSemantics &S, const APInt &I);
820   DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
821   DoubleAPFloat(const DoubleAPFloat &RHS);
822   DoubleAPFloat(DoubleAPFloat &&RHS);
823 
824   DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
825   inline DoubleAPFloat &operator=(DoubleAPFloat &&RHS);
826 
827   bool needsCleanup() const { return Floats != nullptr; }
828 
829   inline APFloat &getFirst();
830   inline const APFloat &getFirst() const;
831   inline APFloat &getSecond();
832   inline const APFloat &getSecond() const;
833 
834   opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
835   opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
836   opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
837   opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
838   opStatus remainder(const DoubleAPFloat &RHS);
839   opStatus mod(const DoubleAPFloat &RHS);
840   opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
841                             const DoubleAPFloat &Addend, roundingMode RM);
842   opStatus roundToIntegral(roundingMode RM);
843   void changeSign();
844   cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
845 
846   fltCategory getCategory() const;
847   bool isNegative() const;
848 
849   void makeInf(bool Neg);
850   void makeZero(bool Neg);
851   void makeLargest(bool Neg);
852   void makeSmallest(bool Neg);
853   void makeSmallestNormalized(bool Neg);
854   void makeNaN(bool SNaN, bool Neg, const APInt *fill);
855 
856   cmpResult compare(const DoubleAPFloat &RHS) const;
857   bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
858   APInt bitcastToAPInt() const;
859   Expected<opStatus> convertFromString(StringRef, roundingMode);
860   opStatus next(bool nextDown);
861 
862   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
863                             unsigned int Width, bool IsSigned, roundingMode RM,
864                             bool *IsExact) const;
865   opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
866   opStatus convertFromSignExtendedInteger(const integerPart *Input,
867                                           unsigned int InputSize, bool IsSigned,
868                                           roundingMode RM);
869   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
870                                           unsigned int InputSize, bool IsSigned,
871                                           roundingMode RM);
872   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
873                                   bool UpperCase, roundingMode RM) const;
874 
875   bool isDenormal() const;
876   bool isSmallest() const;
877   bool isSmallestNormalized() const;
878   bool isLargest() const;
879   bool isInteger() const;
880 
881   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
882                 unsigned FormatMaxPadding, bool TruncateZero = true) const;
883 
884   bool getExactInverse(APFloat *inv) const;
885 
886   LLVM_READONLY
887   int getExactLog2() const;
888   LLVM_READONLY
889   int getExactLog2Abs() const;
890 
891   friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode);
892   friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
893   friend hash_code hash_value(const DoubleAPFloat &Arg);
894 };
895 
896 hash_code hash_value(const DoubleAPFloat &Arg);
897 DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp, roundingMode RM);
898 DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
899 
900 } // End detail namespace
901 
902 // This is a interface class that is currently forwarding functionalities from
903 // detail::IEEEFloat.
904 class APFloat : public APFloatBase {
905   typedef detail::IEEEFloat IEEEFloat;
906   typedef detail::DoubleAPFloat DoubleAPFloat;
907 
908   static_assert(std::is_standard_layout<IEEEFloat>::value);
909 
910   union Storage {
911     const fltSemantics *semantics;
912     IEEEFloat IEEE;
913     DoubleAPFloat Double;
914 
915     explicit Storage(IEEEFloat F, const fltSemantics &S);
916     explicit Storage(DoubleAPFloat F, const fltSemantics &S)
917         : Double(std::move(F)) {
918       assert(&S == &PPCDoubleDouble());
919     }
920 
921     template <typename... ArgTypes>
922     Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
923       if (usesLayout<IEEEFloat>(Semantics)) {
924         new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
925         return;
926       }
927       if (usesLayout<DoubleAPFloat>(Semantics)) {
928         new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
929         return;
930       }
931       llvm_unreachable("Unexpected semantics");
932     }
933 
934     ~Storage() {
935       if (usesLayout<IEEEFloat>(*semantics)) {
936         IEEE.~IEEEFloat();
937         return;
938       }
939       if (usesLayout<DoubleAPFloat>(*semantics)) {
940         Double.~DoubleAPFloat();
941         return;
942       }
943       llvm_unreachable("Unexpected semantics");
944     }
945 
946     Storage(const Storage &RHS) {
947       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
948         new (this) IEEEFloat(RHS.IEEE);
949         return;
950       }
951       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
952         new (this) DoubleAPFloat(RHS.Double);
953         return;
954       }
955       llvm_unreachable("Unexpected semantics");
956     }
957 
958     Storage(Storage &&RHS) {
959       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
960         new (this) IEEEFloat(std::move(RHS.IEEE));
961         return;
962       }
963       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
964         new (this) DoubleAPFloat(std::move(RHS.Double));
965         return;
966       }
967       llvm_unreachable("Unexpected semantics");
968     }
969 
970     Storage &operator=(const Storage &RHS) {
971       if (usesLayout<IEEEFloat>(*semantics) &&
972           usesLayout<IEEEFloat>(*RHS.semantics)) {
973         IEEE = RHS.IEEE;
974       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
975                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
976         Double = RHS.Double;
977       } else if (this != &RHS) {
978         this->~Storage();
979         new (this) Storage(RHS);
980       }
981       return *this;
982     }
983 
984     Storage &operator=(Storage &&RHS) {
985       if (usesLayout<IEEEFloat>(*semantics) &&
986           usesLayout<IEEEFloat>(*RHS.semantics)) {
987         IEEE = std::move(RHS.IEEE);
988       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
989                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
990         Double = std::move(RHS.Double);
991       } else if (this != &RHS) {
992         this->~Storage();
993         new (this) Storage(std::move(RHS));
994       }
995       return *this;
996     }
997   } U;
998 
999   template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
1000     static_assert(std::is_same<T, IEEEFloat>::value ||
1001                   std::is_same<T, DoubleAPFloat>::value);
1002     if (std::is_same<T, DoubleAPFloat>::value) {
1003       return &Semantics == &PPCDoubleDouble();
1004     }
1005     return &Semantics != &PPCDoubleDouble();
1006   }
1007 
1008   IEEEFloat &getIEEE() {
1009     if (usesLayout<IEEEFloat>(*U.semantics))
1010       return U.IEEE;
1011     if (usesLayout<DoubleAPFloat>(*U.semantics))
1012       return U.Double.getFirst().U.IEEE;
1013     llvm_unreachable("Unexpected semantics");
1014   }
1015 
1016   const IEEEFloat &getIEEE() const {
1017     if (usesLayout<IEEEFloat>(*U.semantics))
1018       return U.IEEE;
1019     if (usesLayout<DoubleAPFloat>(*U.semantics))
1020       return U.Double.getFirst().U.IEEE;
1021     llvm_unreachable("Unexpected semantics");
1022   }
1023 
1024   void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
1025 
1026   void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
1027 
1028   void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
1029     APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
1030   }
1031 
1032   void makeLargest(bool Neg) {
1033     APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
1034   }
1035 
1036   void makeSmallest(bool Neg) {
1037     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
1038   }
1039 
1040   void makeSmallestNormalized(bool Neg) {
1041     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
1042   }
1043 
1044   explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
1045   explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
1046       : U(std::move(F), S) {}
1047 
1048   cmpResult compareAbsoluteValue(const APFloat &RHS) const {
1049     assert(&getSemantics() == &RHS.getSemantics() &&
1050            "Should only compare APFloats with the same semantics");
1051     if (usesLayout<IEEEFloat>(getSemantics()))
1052       return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
1053     if (usesLayout<DoubleAPFloat>(getSemantics()))
1054       return U.Double.compareAbsoluteValue(RHS.U.Double);
1055     llvm_unreachable("Unexpected semantics");
1056   }
1057 
1058 public:
1059   APFloat(const fltSemantics &Semantics) : U(Semantics) {}
1060   APFloat(const fltSemantics &Semantics, StringRef S);
1061   APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
1062   template <typename T,
1063             typename = std::enable_if_t<std::is_floating_point<T>::value>>
1064   APFloat(const fltSemantics &Semantics, T V) = delete;
1065   // TODO: Remove this constructor. This isn't faster than the first one.
1066   APFloat(const fltSemantics &Semantics, uninitializedTag)
1067       : U(Semantics, uninitialized) {}
1068   APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
1069   explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
1070   explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
1071   APFloat(const APFloat &RHS) = default;
1072   APFloat(APFloat &&RHS) = default;
1073 
1074   ~APFloat() = default;
1075 
1076   bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
1077 
1078   /// Factory for Positive and Negative Zero.
1079   ///
1080   /// \param Negative True iff the number should be negative.
1081   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
1082     APFloat Val(Sem, uninitialized);
1083     Val.makeZero(Negative);
1084     return Val;
1085   }
1086 
1087   /// Factory for Positive and Negative One.
1088   ///
1089   /// \param Negative True iff the number should be negative.
1090   static APFloat getOne(const fltSemantics &Sem, bool Negative = false) {
1091     APFloat Val(Sem, 1U);
1092     if (Negative)
1093       Val.changeSign();
1094     return Val;
1095   }
1096 
1097   /// Factory for Positive and Negative Infinity.
1098   ///
1099   /// \param Negative True iff the number should be negative.
1100   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
1101     APFloat Val(Sem, uninitialized);
1102     Val.makeInf(Negative);
1103     return Val;
1104   }
1105 
1106   /// Factory for NaN values.
1107   ///
1108   /// \param Negative - True iff the NaN generated should be negative.
1109   /// \param payload - The unspecified fill bits for creating the NaN, 0 by
1110   /// default.  The value is truncated as necessary.
1111   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
1112                         uint64_t payload = 0) {
1113     if (payload) {
1114       APInt intPayload(64, payload);
1115       return getQNaN(Sem, Negative, &intPayload);
1116     } else {
1117       return getQNaN(Sem, Negative, nullptr);
1118     }
1119   }
1120 
1121   /// Factory for QNaN values.
1122   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
1123                          const APInt *payload = nullptr) {
1124     APFloat Val(Sem, uninitialized);
1125     Val.makeNaN(false, Negative, payload);
1126     return Val;
1127   }
1128 
1129   /// Factory for SNaN values.
1130   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
1131                          const APInt *payload = nullptr) {
1132     APFloat Val(Sem, uninitialized);
1133     Val.makeNaN(true, Negative, payload);
1134     return Val;
1135   }
1136 
1137   /// Returns the largest finite number in the given semantics.
1138   ///
1139   /// \param Negative - True iff the number should be negative
1140   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
1141     APFloat Val(Sem, uninitialized);
1142     Val.makeLargest(Negative);
1143     return Val;
1144   }
1145 
1146   /// Returns the smallest (by magnitude) finite number in the given semantics.
1147   /// Might be denormalized, which implies a relative loss of precision.
1148   ///
1149   /// \param Negative - True iff the number should be negative
1150   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
1151     APFloat Val(Sem, uninitialized);
1152     Val.makeSmallest(Negative);
1153     return Val;
1154   }
1155 
1156   /// Returns the smallest (by magnitude) normalized finite number in the given
1157   /// semantics.
1158   ///
1159   /// \param Negative - True iff the number should be negative
1160   static APFloat getSmallestNormalized(const fltSemantics &Sem,
1161                                        bool Negative = false) {
1162     APFloat Val(Sem, uninitialized);
1163     Val.makeSmallestNormalized(Negative);
1164     return Val;
1165   }
1166 
1167   /// Returns a float which is bitcasted from an all one value int.
1168   ///
1169   /// \param Semantics - type float semantics
1170   static APFloat getAllOnesValue(const fltSemantics &Semantics);
1171 
1172   /// Returns true if the given semantics has actual significand.
1173   ///
1174   /// \param Sem - type float semantics
1175   static bool hasSignificand(const fltSemantics &Sem) {
1176     return &Sem != &Float8E8M0FNU();
1177   }
1178 
1179   /// Used to insert APFloat objects, or objects that contain APFloat objects,
1180   /// into FoldingSets.
1181   void Profile(FoldingSetNodeID &NID) const;
1182 
1183   opStatus add(const APFloat &RHS, roundingMode RM) {
1184     assert(&getSemantics() == &RHS.getSemantics() &&
1185            "Should only call on two APFloats with the same semantics");
1186     if (usesLayout<IEEEFloat>(getSemantics()))
1187       return U.IEEE.add(RHS.U.IEEE, RM);
1188     if (usesLayout<DoubleAPFloat>(getSemantics()))
1189       return U.Double.add(RHS.U.Double, RM);
1190     llvm_unreachable("Unexpected semantics");
1191   }
1192   opStatus subtract(const APFloat &RHS, roundingMode RM) {
1193     assert(&getSemantics() == &RHS.getSemantics() &&
1194            "Should only call on two APFloats with the same semantics");
1195     if (usesLayout<IEEEFloat>(getSemantics()))
1196       return U.IEEE.subtract(RHS.U.IEEE, RM);
1197     if (usesLayout<DoubleAPFloat>(getSemantics()))
1198       return U.Double.subtract(RHS.U.Double, RM);
1199     llvm_unreachable("Unexpected semantics");
1200   }
1201   opStatus multiply(const APFloat &RHS, roundingMode RM) {
1202     assert(&getSemantics() == &RHS.getSemantics() &&
1203            "Should only call on two APFloats with the same semantics");
1204     if (usesLayout<IEEEFloat>(getSemantics()))
1205       return U.IEEE.multiply(RHS.U.IEEE, RM);
1206     if (usesLayout<DoubleAPFloat>(getSemantics()))
1207       return U.Double.multiply(RHS.U.Double, RM);
1208     llvm_unreachable("Unexpected semantics");
1209   }
1210   opStatus divide(const APFloat &RHS, roundingMode RM) {
1211     assert(&getSemantics() == &RHS.getSemantics() &&
1212            "Should only call on two APFloats with the same semantics");
1213     if (usesLayout<IEEEFloat>(getSemantics()))
1214       return U.IEEE.divide(RHS.U.IEEE, RM);
1215     if (usesLayout<DoubleAPFloat>(getSemantics()))
1216       return U.Double.divide(RHS.U.Double, RM);
1217     llvm_unreachable("Unexpected semantics");
1218   }
1219   opStatus remainder(const APFloat &RHS) {
1220     assert(&getSemantics() == &RHS.getSemantics() &&
1221            "Should only call on two APFloats with the same semantics");
1222     if (usesLayout<IEEEFloat>(getSemantics()))
1223       return U.IEEE.remainder(RHS.U.IEEE);
1224     if (usesLayout<DoubleAPFloat>(getSemantics()))
1225       return U.Double.remainder(RHS.U.Double);
1226     llvm_unreachable("Unexpected semantics");
1227   }
1228   opStatus mod(const APFloat &RHS) {
1229     assert(&getSemantics() == &RHS.getSemantics() &&
1230            "Should only call on two APFloats with the same semantics");
1231     if (usesLayout<IEEEFloat>(getSemantics()))
1232       return U.IEEE.mod(RHS.U.IEEE);
1233     if (usesLayout<DoubleAPFloat>(getSemantics()))
1234       return U.Double.mod(RHS.U.Double);
1235     llvm_unreachable("Unexpected semantics");
1236   }
1237   opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
1238                             roundingMode RM) {
1239     assert(&getSemantics() == &Multiplicand.getSemantics() &&
1240            "Should only call on APFloats with the same semantics");
1241     assert(&getSemantics() == &Addend.getSemantics() &&
1242            "Should only call on APFloats with the same semantics");
1243     if (usesLayout<IEEEFloat>(getSemantics()))
1244       return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
1245     if (usesLayout<DoubleAPFloat>(getSemantics()))
1246       return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
1247                                        RM);
1248     llvm_unreachable("Unexpected semantics");
1249   }
1250   opStatus roundToIntegral(roundingMode RM) {
1251     APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
1252   }
1253 
1254   // TODO: bool parameters are not readable and a source of bugs.
1255   // Do something.
1256   opStatus next(bool nextDown) {
1257     APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
1258   }
1259 
1260   /// Negate an APFloat.
1261   APFloat operator-() const {
1262     APFloat Result(*this);
1263     Result.changeSign();
1264     return Result;
1265   }
1266 
1267   /// Add two APFloats, rounding ties to the nearest even.
1268   /// No error checking.
1269   APFloat operator+(const APFloat &RHS) const {
1270     APFloat Result(*this);
1271     (void)Result.add(RHS, rmNearestTiesToEven);
1272     return Result;
1273   }
1274 
1275   /// Subtract two APFloats, rounding ties to the nearest even.
1276   /// No error checking.
1277   APFloat operator-(const APFloat &RHS) const {
1278     APFloat Result(*this);
1279     (void)Result.subtract(RHS, rmNearestTiesToEven);
1280     return Result;
1281   }
1282 
1283   /// Multiply two APFloats, rounding ties to the nearest even.
1284   /// No error checking.
1285   APFloat operator*(const APFloat &RHS) const {
1286     APFloat Result(*this);
1287     (void)Result.multiply(RHS, rmNearestTiesToEven);
1288     return Result;
1289   }
1290 
1291   /// Divide the first APFloat by the second, rounding ties to the nearest even.
1292   /// No error checking.
1293   APFloat operator/(const APFloat &RHS) const {
1294     APFloat Result(*this);
1295     (void)Result.divide(RHS, rmNearestTiesToEven);
1296     return Result;
1297   }
1298 
1299   void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
1300   void clearSign() {
1301     if (isNegative())
1302       changeSign();
1303   }
1304   void copySign(const APFloat &RHS) {
1305     if (isNegative() != RHS.isNegative())
1306       changeSign();
1307   }
1308 
1309   /// A static helper to produce a copy of an APFloat value with its sign
1310   /// copied from some other APFloat.
1311   static APFloat copySign(APFloat Value, const APFloat &Sign) {
1312     Value.copySign(Sign);
1313     return Value;
1314   }
1315 
1316   /// Assuming this is an IEEE-754 NaN value, quiet its signaling bit.
1317   /// This preserves the sign and payload bits.
1318   APFloat makeQuiet() const {
1319     APFloat Result(*this);
1320     Result.getIEEE().makeQuiet();
1321     return Result;
1322   }
1323 
1324   opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
1325                    bool *losesInfo);
1326   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
1327                             unsigned int Width, bool IsSigned, roundingMode RM,
1328                             bool *IsExact) const {
1329     APFLOAT_DISPATCH_ON_SEMANTICS(
1330         convertToInteger(Input, Width, IsSigned, RM, IsExact));
1331   }
1332   opStatus convertToInteger(APSInt &Result, roundingMode RM,
1333                             bool *IsExact) const;
1334   opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
1335                             roundingMode RM) {
1336     APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
1337   }
1338   opStatus convertFromSignExtendedInteger(const integerPart *Input,
1339                                           unsigned int InputSize, bool IsSigned,
1340                                           roundingMode RM) {
1341     APFLOAT_DISPATCH_ON_SEMANTICS(
1342         convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
1343   }
1344   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
1345                                           unsigned int InputSize, bool IsSigned,
1346                                           roundingMode RM) {
1347     APFLOAT_DISPATCH_ON_SEMANTICS(
1348         convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
1349   }
1350   Expected<opStatus> convertFromString(StringRef, roundingMode);
1351   APInt bitcastToAPInt() const {
1352     APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
1353   }
1354 
1355   /// Converts this APFloat to host double value.
1356   ///
1357   /// \pre The APFloat must be built using semantics, that can be represented by
1358   /// the host double type without loss of precision. It can be IEEEdouble and
1359   /// shorter semantics, like IEEEsingle and others.
1360   double convertToDouble() const;
1361 
1362   /// Converts this APFloat to host float value.
1363   ///
1364   /// \pre The APFloat must be built using semantics, that can be represented by
1365   /// the host float type without loss of precision. It can be IEEEquad and
1366   /// shorter semantics, like IEEEdouble and others.
1367 #ifdef HAS_IEE754_FLOAT128
1368   float128 convertToQuad() const;
1369 #endif
1370 
1371   /// Converts this APFloat to host float value.
1372   ///
1373   /// \pre The APFloat must be built using semantics, that can be represented by
1374   /// the host float type without loss of precision. It can be IEEEsingle and
1375   /// shorter semantics, like IEEEhalf.
1376   float convertToFloat() const;
1377 
1378   bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }
1379 
1380   bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }
1381 
1382   bool operator<(const APFloat &RHS) const {
1383     return compare(RHS) == cmpLessThan;
1384   }
1385 
1386   bool operator>(const APFloat &RHS) const {
1387     return compare(RHS) == cmpGreaterThan;
1388   }
1389 
1390   bool operator<=(const APFloat &RHS) const {
1391     cmpResult Res = compare(RHS);
1392     return Res == cmpLessThan || Res == cmpEqual;
1393   }
1394 
1395   bool operator>=(const APFloat &RHS) const {
1396     cmpResult Res = compare(RHS);
1397     return Res == cmpGreaterThan || Res == cmpEqual;
1398   }
1399 
1400   cmpResult compare(const APFloat &RHS) const {
1401     assert(&getSemantics() == &RHS.getSemantics() &&
1402            "Should only compare APFloats with the same semantics");
1403     if (usesLayout<IEEEFloat>(getSemantics()))
1404       return U.IEEE.compare(RHS.U.IEEE);
1405     if (usesLayout<DoubleAPFloat>(getSemantics()))
1406       return U.Double.compare(RHS.U.Double);
1407     llvm_unreachable("Unexpected semantics");
1408   }
1409 
1410   bool bitwiseIsEqual(const APFloat &RHS) const {
1411     if (&getSemantics() != &RHS.getSemantics())
1412       return false;
1413     if (usesLayout<IEEEFloat>(getSemantics()))
1414       return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
1415     if (usesLayout<DoubleAPFloat>(getSemantics()))
1416       return U.Double.bitwiseIsEqual(RHS.U.Double);
1417     llvm_unreachable("Unexpected semantics");
1418   }
1419 
1420   /// We don't rely on operator== working on double values, as
1421   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1422   /// As such, this method can be used to do an exact bit-for-bit comparison of
1423   /// two floating point values.
1424   ///
1425   /// We leave the version with the double argument here because it's just so
1426   /// convenient to write "2.0" and the like.  Without this function we'd
1427   /// have to duplicate its logic everywhere it's called.
1428   bool isExactlyValue(double V) const {
1429     bool ignored;
1430     APFloat Tmp(V);
1431     Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
1432     return bitwiseIsEqual(Tmp);
1433   }
1434 
1435   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
1436                                   bool UpperCase, roundingMode RM) const {
1437     APFLOAT_DISPATCH_ON_SEMANTICS(
1438         convertToHexString(DST, HexDigits, UpperCase, RM));
1439   }
1440 
1441   bool isZero() const { return getCategory() == fcZero; }
1442   bool isInfinity() const { return getCategory() == fcInfinity; }
1443   bool isNaN() const { return getCategory() == fcNaN; }
1444 
1445   bool isNegative() const { return getIEEE().isNegative(); }
1446   bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
1447   bool isSignaling() const { return getIEEE().isSignaling(); }
1448 
1449   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
1450   bool isFinite() const { return !isNaN() && !isInfinity(); }
1451 
1452   fltCategory getCategory() const { return getIEEE().getCategory(); }
1453   const fltSemantics &getSemantics() const { return *U.semantics; }
1454   bool isNonZero() const { return !isZero(); }
1455   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
1456   bool isPosZero() const { return isZero() && !isNegative(); }
1457   bool isNegZero() const { return isZero() && isNegative(); }
1458   bool isPosInfinity() const { return isInfinity() && !isNegative(); }
1459   bool isNegInfinity() const { return isInfinity() && isNegative(); }
1460   bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
1461   bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
1462   bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
1463   bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); }
1464 
1465   bool isSmallestNormalized() const {
1466     APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized());
1467   }
1468 
1469   /// Return the FPClassTest which will return true for the value.
1470   FPClassTest classify() const;
1471 
1472   APFloat &operator=(const APFloat &RHS) = default;
1473   APFloat &operator=(APFloat &&RHS) = default;
1474 
1475   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
1476                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
1477     APFLOAT_DISPATCH_ON_SEMANTICS(
1478         toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
1479   }
1480 
1481   void print(raw_ostream &) const;
1482   void dump() const;
1483 
1484   bool getExactInverse(APFloat *inv) const {
1485     APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
1486   }
1487 
1488   LLVM_READONLY
1489   int getExactLog2Abs() const {
1490     APFLOAT_DISPATCH_ON_SEMANTICS(getExactLog2Abs());
1491   }
1492 
1493   LLVM_READONLY
1494   int getExactLog2() const {
1495     APFLOAT_DISPATCH_ON_SEMANTICS(getExactLog2());
1496   }
1497 
1498   friend hash_code hash_value(const APFloat &Arg);
1499   friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
1500   friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
1501   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
1502   friend IEEEFloat;
1503   friend DoubleAPFloat;
1504 };
1505 
1506 static_assert(sizeof(APFloat) == sizeof(detail::IEEEFloat),
1507               "Empty base class optimization is not performed.");
1508 
1509 /// See friend declarations above.
1510 ///
1511 /// These additional declarations are required in order to compile LLVM with IBM
1512 /// xlC compiler.
1513 hash_code hash_value(const APFloat &Arg);
1514 inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
1515   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1516     return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
1517   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1518     return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
1519   llvm_unreachable("Unexpected semantics");
1520 }
1521 
1522 /// Equivalent of C standard library function.
1523 ///
1524 /// While the C standard says Exp is an unspecified value for infinity and nan,
1525 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
1526 inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
1527   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1528     return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
1529   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1530     return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
1531   llvm_unreachable("Unexpected semantics");
1532 }
1533 /// Returns the absolute value of the argument.
1534 inline APFloat abs(APFloat X) {
1535   X.clearSign();
1536   return X;
1537 }
1538 
1539 /// Returns the negated value of the argument.
1540 inline APFloat neg(APFloat X) {
1541   X.changeSign();
1542   return X;
1543 }
1544 
1545 /// Implements IEEE-754 2019 minimumNumber semantics. Returns the smaller of the
1546 /// 2 arguments if both are not NaN. If either argument is a NaN, returns the
1547 /// other argument. -0 is treated as ordered less than +0.
1548 LLVM_READONLY
1549 inline APFloat minnum(const APFloat &A, const APFloat &B) {
1550   if (A.isNaN())
1551     return B;
1552   if (B.isNaN())
1553     return A;
1554   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1555     return A.isNegative() ? A : B;
1556   return B < A ? B : A;
1557 }
1558 
1559 /// Implements IEEE-754 2019 maximumNumber semantics. Returns the larger of the
1560 /// 2 arguments if both are not NaN. If either argument is a NaN, returns the
1561 /// other argument. +0 is treated as ordered greater than -0.
1562 LLVM_READONLY
1563 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
1564   if (A.isNaN())
1565     return B;
1566   if (B.isNaN())
1567     return A;
1568   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1569     return A.isNegative() ? B : A;
1570   return A < B ? B : A;
1571 }
1572 
1573 /// Implements IEEE 754-2019 minimum semantics. Returns the smaller of 2
1574 /// arguments, returning a quiet NaN if an argument is a NaN and treating -0
1575 /// as less than +0.
1576 LLVM_READONLY
1577 inline APFloat minimum(const APFloat &A, const APFloat &B) {
1578   if (A.isNaN())
1579     return A.makeQuiet();
1580   if (B.isNaN())
1581     return B.makeQuiet();
1582   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1583     return A.isNegative() ? A : B;
1584   return B < A ? B : A;
1585 }
1586 
1587 /// Implements IEEE 754-2019 minimumNumber semantics. Returns the smaller
1588 /// of 2 arguments, not propagating NaNs and treating -0 as less than +0.
1589 LLVM_READONLY
1590 inline APFloat minimumnum(const APFloat &A, const APFloat &B) {
1591   if (A.isNaN())
1592     return B.isNaN() ? B.makeQuiet() : B;
1593   if (B.isNaN())
1594     return A;
1595   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1596     return A.isNegative() ? A : B;
1597   return B < A ? B : A;
1598 }
1599 
1600 /// Implements IEEE 754-2019 maximum semantics. Returns the larger of 2
1601 /// arguments, returning a quiet NaN if an argument is a NaN and treating -0
1602 /// as less than +0.
1603 LLVM_READONLY
1604 inline APFloat maximum(const APFloat &A, const APFloat &B) {
1605   if (A.isNaN())
1606     return A.makeQuiet();
1607   if (B.isNaN())
1608     return B.makeQuiet();
1609   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1610     return A.isNegative() ? B : A;
1611   return A < B ? B : A;
1612 }
1613 
1614 /// Implements IEEE 754-2019 maximumNumber semantics. Returns the larger
1615 /// of 2 arguments, not propagating NaNs and treating -0 as less than +0.
1616 LLVM_READONLY
1617 inline APFloat maximumnum(const APFloat &A, const APFloat &B) {
1618   if (A.isNaN())
1619     return B.isNaN() ? B.makeQuiet() : B;
1620   if (B.isNaN())
1621     return A;
1622   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1623     return A.isNegative() ? B : A;
1624   return A < B ? B : A;
1625 }
1626 
1627 inline raw_ostream &operator<<(raw_ostream &OS, const APFloat &V) {
1628   V.print(OS);
1629   return OS;
1630 }
1631 
1632 // We want the following functions to be available in the header for inlining.
1633 // We cannot define them inline in the class definition of `DoubleAPFloat`
1634 // because doing so would instantiate `std::unique_ptr<APFloat[]>` before
1635 // `APFloat` is defined, and that would be undefined behavior.
1636 namespace detail {
1637 
1638 DoubleAPFloat &DoubleAPFloat::operator=(DoubleAPFloat &&RHS) {
1639   if (this != &RHS) {
1640     this->~DoubleAPFloat();
1641     new (this) DoubleAPFloat(std::move(RHS));
1642   }
1643   return *this;
1644 }
1645 
1646 APFloat &DoubleAPFloat::getFirst() { return Floats[0]; }
1647 const APFloat &DoubleAPFloat::getFirst() const { return Floats[0]; }
1648 APFloat &DoubleAPFloat::getSecond() { return Floats[1]; }
1649 const APFloat &DoubleAPFloat::getSecond() const { return Floats[1]; }
1650 
1651 } // namespace detail
1652 
1653 } // namespace llvm
1654 
1655 #undef APFLOAT_DISPATCH_ON_SEMANTICS
1656 #endif // LLVM_ADT_APFLOAT_H
1657