xref: /openbsd-src/gnu/usr.bin/gcc/gcc/config/ip2k/ip2k.h (revision c87b03e512fc05ed6e0222f6fb0ae86264b1d05b)
1 /* Definitions of target machine for GNU compiler,
2    For Ubicom IP2022 Communications Controller
3 
4    Copyright (C) 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5    Contributed by Red Hat, Inc and Ubicom, Inc.
6 
7 This file is part of GNU CC.
8 
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13 
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING.  If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA.  */
23 
24 
25 /* Set up System V.4 (aka ELF) defaults.  */
26 
27 #include "elfos.h"
28 #undef ASM_SPEC			/* But we have a GAS assembler.  */
29 
30 #define CPP_PREDEFINES \
31   "-DIP2K -D_DOUBLE_IS_32BITS -D__BUFSIZ__=512 -D__FILENAME_MAX__=128"
32 /* Define this to be a string constant containing `-D' options to
33    define the predefined macros that identify this machine and system.
34    These macros will be predefined unless the `-ansi' option is
35    specified.
36 
37    In addition, a parallel set of macros are predefined, whose names
38    are made by appending `__' at the beginning and at the end.  These
39    `__' macros are permitted by the ANSI standard, so they are
40    predefined regardless of whether `-ansi' is specified.
41 
42    For example, on the Sun, one can use the following value:
43 
44    "-Dmc68000 -Dsun -Dunix"
45 
46    The result is to define the macros `__mc68000__', `__sun__' and
47    `__unix__' unconditionally, and the macros `mc68000', `sun' and
48    `unix' provided `-ansi' is not specified.  */
49 
50 
51 /* This declaration should be present.  */
52 extern int target_flags;
53 
54 /* `TARGET_...'
55    This series of macros is to allow compiler command arguments to
56    enable or disable the use of optional features of the target
57    machine.  For example, one machine description serves both the
58    68000 and the 68020; a command argument tells the compiler whether
59    it should use 68020-only instructions or not.  This command
60    argument works by means of a macro `TARGET_68020' that tests a bit
61    in `target_flags'.
62 
63    Define a macro `TARGET_FEATURENAME' for each such option.  Its
64    definition should test a bit in `target_flags'; for example:
65 
66    #define TARGET_68020 (target_flags & 1)
67 
68    One place where these macros are used is in the
69    condition-expressions of instruction patterns.  Note how
70    `TARGET_68020' appears frequently in the 68000 machine description
71    file, `m68k.md'.  Another place they are used is in the
72    definitions of the other macros in the `MACHINE.h' file.  */
73 
74 
75 
76 #define TARGET_SWITCHES {{"",0, NULL}}
77 /* This macro defines names of command options to set and clear bits
78    in `target_flags'.  Its definition is an initializer with a
79    subgrouping for each command option.
80 
81    Each subgrouping contains a string constant, that defines the
82    option name, and a number, which contains the bits to set in
83    `target_flags'.  A negative number says to clear bits instead; the
84    negative of the number is which bits to clear.  The actual option
85    name is made by appending `-m' to the specified name.
86 
87    One of the subgroupings should have a null string.  The number in
88    this grouping is the default value for `target_flags'.  Any target
89    options act starting with that value.
90 
91    Here is an example which defines `-m68000' and `-m68020' with
92    opposite meanings, and picks the latter as the default:
93 
94    #define TARGET_SWITCHES \
95    { { "68020", 1},      \
96    { "68000", -1},     \
97    { "", 1}}  */
98 
99 
100 /* This macro is similar to `TARGET_SWITCHES' but defines names of
101    command options that have values.  Its definition is an
102    initializer with a subgrouping for each command option.
103 
104    Each subgrouping contains a string constant, that defines the
105    fixed part of the option name, and the address of a variable.  The
106    variable, type `char *', is set to the variable part of the given
107    option if the fixed part matches.  The actual option name is made
108    by appending `-m' to the specified name.
109 
110    Here is an example which defines `-mshort-data-NUMBER'.  If the
111    given option is `-mshort-data-512', the variable `m88k_short_data'
112    will be set to the string `"512"'.
113 
114    extern char *m88k_short_data;
115    #define TARGET_OPTIONS \
116    { { "short-data-", &m88k_short_data } }  */
117 
118 #define TARGET_VERSION fprintf (stderr, " (ip2k, GNU assembler syntax)")
119 /* This macro is a C statement to print on `stderr' a string
120    describing the particular machine description choice.  Every
121    machine description should define `TARGET_VERSION'. For example:
122 
123    #ifdef MOTOROLA
124    #define TARGET_VERSION \
125    fprintf (stderr, " (68k, Motorola syntax)")
126    #else
127    #define TARGET_VERSION \
128    fprintf (stderr, " (68k, MIT syntax)")
129    #endif  */
130 
131 /* Caller-saves is not a win for the IP2K.  Pretty much anywhere that
132    a register is permitted allows SP-relative addresses too.
133 
134    This machine doesn't have PIC addressing modes, so disable that also.  */
135 
136 #define OVERRIDE_OPTIONS	\
137     do {			\
138 	flag_caller_saves = 0;	\
139 	flag_pic = 0;		\
140     } while (0)
141 
142 /* `OVERRIDE_OPTIONS'
143    Sometimes certain combinations of command options do not make
144    sense on a particular target machine.  You can define a macro
145    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
146    defined, is executed once just after all the command options have
147    been parsed.
148 
149    Don't use this macro to turn on various extra optimizations for
150    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
151 
152 /* Put each function in its own section so that PAGE-instruction
153    relaxation can do its best.  */
154 #define OPTIMIZATION_OPTIONS(LEVEL, SIZEFLAG)	\
155     do {					\
156 	if ((LEVEL) || (SIZEFLAG))		\
157 	    flag_function_sections = 1;	\
158     } while (0)
159 
160 /* Define this if most significant byte of a word is the lowest numbered.  */
161 #define BITS_BIG_ENDIAN 0
162 
163 /* Define this if most significant byte of a word is the lowest numbered.  */
164 #define BYTES_BIG_ENDIAN 1
165 
166 /* Define this if most significant word of a multiword number is the lowest
167    numbered.  */
168 #define WORDS_BIG_ENDIAN 1
169 
170 /* Number of bits in an addressable storage unit.  */
171 #define BITS_PER_UNIT 8
172 
173 /* Width in bits of a "word", which is the contents of a machine register.
174    Note that this is not necessarily the width of data type `int';  */
175 #define BITS_PER_WORD 8
176 
177 /* Width of a word, in units (bytes).  */
178 #define UNITS_PER_WORD (BITS_PER_WORD / BITS_PER_UNIT)
179 
180 /* Width in bits of a pointer.
181    See also the macro `Pmode' defined below.  */
182 #define POINTER_SIZE 16
183 
184 /* Maximum sized of reasonable data type DImode or Dfmode ...  */
185 #define MAX_FIXED_MODE_SIZE 64
186 
187 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
188 #define PARM_BOUNDARY 8
189 
190 /* Allocation boundary (in *bits*) for the code of a function.  */
191 #define FUNCTION_BOUNDARY 16
192 
193 /* Alignment of field after `int : 0' in a structure.  */
194 #define EMPTY_FIELD_BOUNDARY 8
195 
196 /* No data type wants to be aligned rounder than this.  */
197 
198 #define BIGGEST_ALIGNMENT 8
199 
200 #define STRICT_ALIGNMENT 0
201 
202 #define PCC_BITFIELD_TYPE_MATTERS 1
203 
204 /* A C expression for the size in bits of the type `int' on the
205      target machine.  If you don't define this, the default is one word.  */
206 #undef INT_TYPE_SIZE
207 #define INT_TYPE_SIZE 16
208 
209 
210 /* A C expression for the size in bits of the type `short' on the
211    target machine.  If you don't define this, the default is half a
212    word.  (If this would be less than one storage unit, it is rounded
213    up to one unit.)  */
214 #undef SHORT_TYPE_SIZE
215 #define SHORT_TYPE_SIZE 16
216 
217 /* A C expression for the size in bits of the type `long' on the
218    target machine.  If you don't define this, the default is one word.  */
219 #undef LONG_TYPE_SIZE
220 #define LONG_TYPE_SIZE 32
221 
222 
223 /* Maximum number for the size in bits of the type `long' on the
224    target machine.  If this is undefined, the default is
225    `LONG_TYPE_SIZE'.  Otherwise, it is the constant value that is the
226    largest value that `LONG_TYPE_SIZE' can have at run-time.  This is
227    used in `cpp'.  */
228 #define MAX_LONG_TYPE_SIZE 32
229 
230 /* A C expression for the size in bits of the type `long long' on the
231    target machine.  If you don't define this, the default is two
232    words.  If you want to support GNU Ada on your machine, the value
233    of macro must be at least 64.  */
234 #undef LONG_LONG_TYPE_SIZE
235 #define LONG_LONG_TYPE_SIZE	64
236 
237 #undef CHAR_TYPE_SIZE
238 #define  CHAR_TYPE_SIZE 8
239 /* A C expression for the size in bits of the type `char' on the
240    target machine.  If you don't define this, the default is one
241    quarter of a word.  (If this would be less than one storage unit,
242    it is rounded up to one unit.)  */
243 
244 #undef FLOAT_TYPE_SIZE
245 #define FLOAT_TYPE_SIZE 32
246 /* A C expression for the size in bits of the type `float' on the
247    target machine.  If you don't define this, the default is one word.  */
248 
249 #undef DOUBLE_TYPE_SIZE
250 #define DOUBLE_TYPE_SIZE 32
251 /* A C expression for the size in bits of the type `double' on the
252    target machine.  If you don't define this, the default is two
253    words.  */
254 
255 
256 /* A C expression for the size in bits of the type `long double' on
257    the target machine.  If you don't define this, the default is two
258    words.  */
259 #undef LONG_DOUBLE_TYPE_SIZE
260 #define LONG_DOUBLE_TYPE_SIZE	32
261 
262 #define DEFAULT_SIGNED_CHAR 1
263 /* An expression whose value is 1 or 0, according to whether the type
264    `char' should be signed or unsigned by default.  The user can
265    always override this default with the options `-fsigned-char' and
266    `-funsigned-char'.  */
267 
268 /* #define DEFAULT_SHORT_ENUMS	1
269    This was the default for the IP2k but gcc has a bug (as of 17th May
270    2001) in the way that library calls to the memory checker functions
271    are issues that screws things up if an enum is not equivalent to
272    an int.  */
273 /* `DEFAULT_SHORT_ENUMS'
274    A C expression to determine whether to give an `enum' type only as
275    many bytes as it takes to represent the range of possible values
276    of that type.  A nonzero value means to do that; a zero value
277    means all `enum' types should be allocated like `int'.
278 
279    If you don't define the macro, the default is 0.  */
280 
281 #define SIZE_TYPE "unsigned int"
282 /* A C expression for a string describing the name of the data type
283    to use for size values.  The typedef name `size_t' is defined
284    using the contents of the string.
285 
286    The string can contain more than one keyword.  If so, separate
287    them with spaces, and write first any length keyword, then
288    `unsigned' if appropriate, and finally `int'.  The string must
289    exactly match one of the data type names defined in the function
290    `init_decl_processing' in the file `c-decl.c'.  You may not omit
291    `int' or change the order--that would cause the compiler to crash
292    on startup.
293 
294    If you don't define this macro, the default is `"long unsigned
295    int"'.  */
296 
297 #define PTRDIFF_TYPE "int"
298 /* A C expression for a string describing the name of the data type
299    to use for the result of subtracting two pointers.  The typedef
300    name `ptrdiff_t' is defined using the contents of the string.  See
301    `SIZE_TYPE' above for more information.
302 
303    If you don't define this macro, the default is `"long int"'.  */
304 
305 #undef WCHAR_TYPE
306 #define WCHAR_TYPE "int"
307 #undef WCHAR_TYPE_SIZE
308 #define WCHAR_TYPE_SIZE	16
309 /* A C expression for the size in bits of the data type for wide
310    characters.  This is used in `cpp', which cannot make use of
311    `WCHAR_TYPE'.  */
312 
313 #define HARD_REG_SIZE           (UNITS_PER_WORD)
314 /* Standard register usage.
315 
316    for the IP2K, we are going to have a LOT of registers, but only some of them
317    are named.  */
318 
319 #define FIRST_PSEUDO_REGISTER (0x104) /* Skip over physical regs, VFP, AP.  */
320 
321 /* Number of hardware registers known to the compiler.  They receive
322    numbers 0 through `FIRST_PSEUDO_REGISTER-1'; thus, the first
323    pseudo register's number really is assigned the number
324    `FIRST_PSEUDO_REGISTER'.  */
325 
326 #define REG_IP		0x4
327 #define REG_IPH		REG_IP
328 #define REG_IPL		0x5
329 
330 #define REG_SP		0x6
331 #define REG_SPH		REG_SP
332 #define REG_SPL		0x7
333 
334 #define REG_PCH		0x8
335 #define REG_PCL		0x9
336 
337 #define REG_W		0xa
338 #define REG_STATUS	0xb
339 
340 #define REG_DP		0xc
341 #define REG_DPH		REG_DP
342 #define REG_DPL		0xd
343 
344 #define REG_MULH	0xf
345 
346 #define REG_CALLH	0x7e		/* Call-stack readout.  */
347 #define REG_CALLL	0x7f
348 
349 
350 #define REG_RESULT	0x80	/* Result register (upto 8 bytes).  */
351 #define REG_FP		0xfd	/* 2 bytes for FRAME chain  */
352 
353 #define REG_ZERO	0xff	/* Initialized to zero by runtime.  */
354 
355 #define REG_VFP		0x100	/* Virtual frame pointer.  */
356 #define REG_AP		0x102	/* Virtual arg pointer.  */
357 
358 /* Status register bits.  */
359 #define Z_FLAG	0x2
360 #define DC_FLAG	0x1
361 #define C_FLAG	0x0
362 
363 #define FIXED_REGISTERS {\
364 1,1,1,1,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/*  r0.. r31*/\
365 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/* r32.. r63*/\
366 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/* r64.. r95*/\
367 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/* r96..r127*/\
368 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,/*r128..r159*/\
369 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/*r160..r191*/\
370 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/*r192..r223*/\
371 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/*r224..r255*/\
372 1,1,1,1}
373 
374 /* An initializer that says which registers are used for fixed
375    purposes all throughout the compiled code and are therefore not
376    available for general allocation.  These would include the stack
377    pointer, the frame pointer (except on machines where that can be
378    used as a general register when no frame pointer is needed), the
379    program counter on machines where that is considered one of the
380    addressable registers, and any other numbered register with a
381    standard use.
382 
383    This information is expressed as a sequence of numbers, separated
384    by commas and surrounded by braces.  The Nth number is 1 if
385    register N is fixed, 0 otherwise.
386 
387    The table initialized from this macro, and the table initialized by
388    the following one, may be overridden at run time either
389    automatically, by the actions of the macro
390    `CONDITIONAL_REGISTER_USAGE', or by the user with the command
391    options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
392 
393 #define CALL_USED_REGISTERS {			\
394 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/*  r0.. r31*/\
395 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/* r32.. r63*/\
396 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/* r64.. r95*/\
397 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/* r96..r127*/\
398 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/*r128..r159*/\
399 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/*r160..r191*/\
400 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/*r192..r223*/\
401 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,/*r224..r255*/\
402 1,1,1,1}
403 
404 /* Like `FIXED_REGISTERS' but has 1 for each register that is
405    clobbered (in general) by function calls as well as for fixed
406    registers.  This macro therefore identifies the registers that are
407    not available for general allocation of values that must live
408    across function calls.
409 
410    If a register has 0 in `CALL_USED_REGISTERS', the compiler
411    automatically saves it on function entry and restores it on
412    function exit, if the register is used within the function.  */
413 
414 #define NON_SAVING_SETJMP 0
415 /* If this macro is defined and has a nonzero value, it means that
416    `setjmp' and related functions fail to save the registers, or that
417    `longjmp' fails to restore them.  To compensate, the compiler
418    avoids putting variables in registers in functions that use
419    `setjmp'.  */
420 
421 #define REG_ALLOC_ORDER {			\
422     0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f,	\
423     0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,	\
424     0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f,	\
425     0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,	\
426     0xa0,0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,	\
427     0xa8,0xa9,0xaa,0xab,0xac,0xad,0xae,0xaf,	\
428     0xb0,0xb1,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,	\
429     0xb8,0xb9,0xba,0xbb,0xbc,0xbd,0xbe,0xbf,	\
430     0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,	\
431     0xc8,0xc9,0xca,0xcb,0xcc,0xcd,0xce,0xcf,	\
432     0xd0,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,	\
433     0xd8,0xd9,0xda,0xdb,0xdc,0xdd,0xde,0xdf,	\
434     0xe0,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,	\
435     0xe8,0xe9,0xea,0xeb,0xec,0xed,0xee,0xef,	\
436     0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,	\
437     0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff,	\
438     0x00,0x01,0x02,0x03,0x0c,0x0d,0x06,0x07,	\
439     0x08,0x09,0x0a,0x0b,0x04,0x05,0x0e,0x0f,	\
440     0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,	\
441     0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,	\
442     0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,	\
443     0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,	\
444     0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,	\
445     0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f,	\
446     0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47,	\
447     0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,	\
448     0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,	\
449     0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5f,	\
450     0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,	\
451     0x68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f,	\
452     0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,	\
453     0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f,	\
454     0x100,0x101,0x102,0x103}
455 
456 /* If defined, an initializer for a vector of integers, containing the
457    numbers of hard registers in the order in which GNU CC should
458    prefer to use them (from most preferred to least).
459 
460    If this macro is not defined, registers are used lowest numbered
461    first (all else being equal).
462 
463    One use of this macro is on machines where the highest numbered
464    registers must always be saved and the save-multiple-registers
465    instruction supports only sequences of consecutive registers.  On
466    such machines, define `REG_ALLOC_ORDER' to be an initializer that
467    lists the highest numbered allocatable register first.  */
468 
469 #define ORDER_REGS_FOR_LOCAL_ALLOC ip2k_init_local_alloc (reg_alloc_order)
470 /* A C statement (sans semicolon) to choose the order in which to
471    allocate hard registers for pseudo-registers local to a basic
472    block.
473 
474    Store the desired register order in the array `reg_alloc_order'.
475    Element 0 should be the register to allocate first; element 1, the
476    next register; and so on.
477 
478    The macro body should not assume anything about the contents of
479    `reg_alloc_order' before execution of the macro.
480 
481    On most machines, it is not necessary to define this macro.  */
482 
483 /* Are we allowed to rename registers?  For some reason, regrename was
484    changing DP to IP (when it appeared in addresses like (plus:HI
485    (reg: DP) (const_int 37)) - and that's bad because IP doesn't
486    permit offsets!  */
487 
488 #define HARD_REGNO_RENAME_OK(REG, NREG)				\
489   (((REG) == REG_DPH) ? 0					\
490     : ((REG) == REG_IPH) ? ((NREG) == REG_DPH)			\
491     : (((NREG) == REG_IPL) || ((NREG) == REG_DPL)) ? 0 : 1)
492 
493 #define HARD_REGNO_NREGS(REGNO, MODE) \
494   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
495 
496 /* A C expression for the number of consecutive hard registers,
497    starting at register number REGNO, required to hold a value of mode
498    MODE.
499 
500    On a machine where all registers are exactly one word, a suitable
501    definition of this macro is
502 
503    #define HARD_REGNO_NREGS(REGNO, MODE)            \
504    ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1)  \
505    / UNITS_PER_WORD))  */
506 
507 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
508 /* A C expression that is nonzero if it is permissible to store a
509    value of mode MODE in hard register number REGNO (or in several
510    registers starting with that one).  For a machine where all
511    registers are equivalent, a suitable definition is
512 
513    #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
514 
515    It is not necessary for this macro to check for the numbers of
516    fixed registers, because the allocation mechanism considers them
517    to be always occupied.
518 
519    On some machines, double-precision values must be kept in even/odd
520    register pairs.  The way to implement that is to define this macro
521    to reject odd register numbers for such modes.
522 
523    The minimum requirement for a mode to be OK in a register is that
524    the `movMODE' instruction pattern support moves between the
525    register and any other hard register for which the mode is OK; and
526    that moving a value into the register and back out not alter it.
527 
528    Since the same instruction used to move `SImode' will work for all
529    narrower integer modes, it is not necessary on any machine for
530    `HARD_REGNO_MODE_OK' to distinguish between these modes, provided
531    you define patterns `movhi', etc., to take advantage of this.  This
532    is useful because of the interaction between `HARD_REGNO_MODE_OK'
533    and `MODES_TIEABLE_P'; it is very desirable for all integer modes
534    to be tieable.
535 
536    Many machines have special registers for floating point arithmetic.
537    Often people assume that floating point machine modes are allowed
538    only in floating point registers.  This is not true.  Any
539    registers that can hold integers can safely *hold* a floating
540    point machine mode, whether or not floating arithmetic can be done
541    on it in those registers.  Integer move instructions can be used
542    to move the values.
543 
544    On some machines, though, the converse is true: fixed-point machine
545    modes may not go in floating registers.  This is true if the
546    floating registers normalize any value stored in them, because
547    storing a non-floating value there would garble it.  In this case,
548    `HARD_REGNO_MODE_OK' should reject fixed-point machine modes in
549    floating registers.  But if the floating registers do not
550    automatically normalize, if you can store any bit pattern in one
551    and retrieve it unchanged without a trap, then any machine mode
552    may go in a floating register, so you can define this macro to say
553    so.
554 
555    The primary significance of special floating registers is rather
556    that they are the registers acceptable in floating point arithmetic
557    instructions.  However, this is of no concern to
558    `HARD_REGNO_MODE_OK'.  You handle it by writing the proper
559    constraints for those instructions.
560 
561    On some machines, the floating registers are especially slow to
562    access, so that it is better to store a value in a stack frame
563    than in such a register if floating point arithmetic is not being
564    done.  As long as the floating registers are not in class
565    `GENERAL_REGS', they will not be used unless some pattern's
566    constraint asks for one.  */
567 
568 #define MODES_TIEABLE_P(MODE1, MODE2)		\
569    (((MODE1) == QImode && (MODE2) == HImode)	\
570     || ((MODE2) == QImode && (MODE1) == HImode))
571 /* We originally had this as follows - this isn't a win on the IP2k
572    though as registers just get in our way!
573 
574    #define MODES_TIEABLE_P(MODE1, MODE2) \
575     (((MODE1) > HImode && (MODE2) == HImode)
576      || ((MODE1) == HImode && (MODE2) > HImode))  */
577 
578 /* A C expression that is nonzero if it is desirable to choose
579    register allocation so as to avoid move instructions between a
580    value of mode MODE1 and a value of mode MODE2.
581 
582    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
583    MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
584    MODE2)' must be zero.  */
585 
586 enum reg_class {
587   NO_REGS,
588   DPH_REGS,
589   DPL_REGS,
590   DP_REGS,
591   SP_REGS,
592   IPH_REGS,
593   IPL_REGS,
594   IP_REGS,
595   DP_SP_REGS,
596   PTR_REGS,
597   NONPTR_REGS,
598   NONSP_REGS,
599   GENERAL_REGS,
600   ALL_REGS = GENERAL_REGS,
601   LIM_REG_CLASSES
602 };
603 
604 /* An enumeral type that must be defined with all the register class
605    names as enumeral values.  `NO_REGS' must be first.  `ALL_REGS'
606    must be the last register class, followed by one more enumeral
607    value, `LIM_REG_CLASSES', which is not a register class but rather
608    tells how many classes there are.
609 
610    Each register class has a number, which is the value of casting
611    the class name to type `int'.  The number serves as an index in
612    many of the tables described below.  */
613 
614 
615 #define N_REG_CLASSES (int)LIM_REG_CLASSES
616 /* The number of distinct register classes, defined as follows:
617 
618    #define N_REG_CLASSES (int) LIM_REG_CLASSES  */
619 
620 #define REG_CLASS_NAMES {			\
621 		"NO_REGS",			\
622 		"DPH_REGS",			\
623 		"DPL_REGS",			\
624 		"DP_REGS",			\
625 		"SP_REGS",			\
626 		"IPH_REGS",			\
627 		"IPL_REGS",			\
628 		"IP_REGS",			\
629 		"DP_SP_REGS",			\
630 		"PTR_REGS",			\
631 	        "NONPTR_REGS",			\
632 		"NONSP_REGS",			\
633 		"GENERAL_REGS"			\
634 		}
635 /* An initializer containing the names of the register classes as C
636    string constants.  These names are used in writing some of the
637    debugging dumps.  */
638 
639 
640 #define REG_CLASS_CONTENTS {			 	\
641 {0x00000000, 0, 0, 0, 0, 0, 0, 0, 0}, /* NO_REGS */	\
642 {0x00001000, 0, 0, 0, 0, 0, 0, 0, 0}, /* DPH_REGS */	\
643 {0x00002000, 0, 0, 0, 0, 0, 0, 0, 0}, /* DPL_REGS */	\
644 {0x00003000, 0, 0, 0, 0, 0, 0, 0, 0}, /* DP_REGS */	\
645 {0x000000c0, 0, 0, 0, 0, 0, 0, 0, 0}, /* SP_REGS */	\
646 {0x00000010, 0, 0, 0, 0, 0, 0, 0, 0}, /* IPH_REGS */	\
647 {0x00000020, 0, 0, 0, 0, 0, 0, 0, 0}, /* IPL_REGS */	\
648 {0x00000030, 0, 0, 0, 0, 0, 0, 0, 0}, /* IP_REGS */	\
649 {0x000030c0, 0, 0, 0, 0, 0, 0, 0, 0}, /* DP_SP_REGS */	\
650 {0x000030f0, 0, 0, 0, 0, 0, 0, 0, 0}, /* PTR_REGS */	\
651 {0xffffcf0f,-1,-1,-1,-1,-1,-1,-1, 0}, /* NONPTR_REGS */	\
652 {0xffffff3f,-1,-1,-1,-1,-1,-1,-1, 0}, /* NONSP_REGS */	\
653 {0xffffffff,-1,-1,-1,-1,-1,-1,-1,15}  /* GENERAL_REGS */ \
654 }
655 
656 /* An initializer containing the contents of the register classes, as
657    integers which are bit masks.  The Nth integer specifies the
658    contents of class N.  The way the integer MASK is interpreted is
659    that register R is in the class if `MASK & (1 << R)' is 1.
660 
661    When the machine has more than 32 registers, an integer does not
662    suffice.  Then the integers are replaced by sub-initializers,
663    braced groupings containing several integers.  Each
664    sub-initializer must be suitable as an initializer for the type
665    `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
666 
667 #define REGNO_REG_CLASS(R)	\
668   ( (R) == REG_IPH ? IPH_REGS	\
669   : (R) == REG_IPL ? IPL_REGS	\
670   : (R) == REG_DPH ? DPH_REGS	\
671   : (R) == REG_DPL ? DPL_REGS	\
672   : (R) == REG_SPH ? SP_REGS	\
673   : (R) == REG_SPL ? SP_REGS	\
674   : NONPTR_REGS)
675 
676 /* A C expression whose value is a register class containing hard
677    register REGNO.  In general there is more than one such class;
678    choose a class which is "minimal", meaning that no smaller class
679    also contains the register.  */
680 
681 #define MODE_BASE_REG_CLASS(MODE) ((MODE) == QImode ? PTR_REGS : DP_SP_REGS)
682 /* This is a variation of the BASE_REG_CLASS macro which allows
683    the selection of a base register in a mode depenedent manner.
684    If MODE is VOIDmode then it should return the same value as
685    BASE_REG_CLASS.  */
686 
687 #define BASE_REG_CLASS PTR_REGS
688 /* A macro whose definition is the name of the class to which a valid
689    base register must belong.  A base register is one used in an
690    address which is the register value plus a displacement.  */
691 
692 #define INDEX_REG_CLASS NO_REGS
693 /* A macro whose definition is the name of the class to which a valid
694    index register must belong.  An index register is one used in an
695    address where its value is either multiplied by a scale factor or
696    added to another register (as well as added to a displacement).  */
697 
698 
699 #define REG_CLASS_FROM_LETTER(C)	\
700   ( (C) == 'j' ? IPH_REGS		\
701   : (C) == 'k' ? IPL_REGS		\
702   : (C) == 'f' ? IP_REGS		\
703   : (C) == 'y' ? DPH_REGS		\
704   : (C) == 'z' ? DPL_REGS		\
705   : (C) == 'b' ? DP_REGS		\
706   : (C) == 'u' ? NONSP_REGS		\
707   : (C) == 'q' ? SP_REGS		\
708   : (C) == 'c' ? DP_SP_REGS		\
709   : (C) == 'a' ? PTR_REGS		\
710   : (C) == 'd' ? NONPTR_REGS 		\
711   : NO_REGS)
712 
713 /* A C expression which defines the machine-dependent operand
714    constraint letters for register classes.  If CHAR is such a
715    letter, the value should be the register class corresponding to
716    it.  Otherwise, the value should be `NO_REGS'.  The register
717    letter `r', corresponding to class `GENERAL_REGS', will not be
718    passed to this macro; you do not need to handle it.  */
719 
720 
721 #define REGNO_OK_FOR_BASE_P(R) \
722   ((R) == REG_DP || (R) == REG_IP || (R) == REG_SP)
723 /* A C expression which is nonzero if register number R is suitable
724    for use as a base register in operand addresses.  It may be either
725    a suitable hard register or a pseudo register that has been
726    allocated such a hard register.  */
727 
728 #define REGNO_MODE_OK_FOR_BASE_P(R,M) 		\
729   ((R) == REG_DP || (R) == REG_SP		\
730    || ((R) == REG_IP && GET_MODE_SIZE (M) <= 1))
731 /* A C expression that is just like `REGNO_OK_FOR_BASE_P', except that
732    that expression may examine the mode of the memory reference in
733    MODE.  You should define this macro if the mode of the memory
734    reference affects whether a register may be used as a base
735    register.  If you define this macro, the compiler will use it
736    instead of `REGNO_OK_FOR_BASE_P'.  */
737 
738 #define REGNO_OK_FOR_INDEX_P(NUM) 0
739 /* A C expression which is nonzero if register number NUM is suitable
740    for use as an index register in operand addresses.  It may be
741    either a suitable hard register or a pseudo register that has been
742    allocated such a hard register.
743 
744    The difference between an index register and a base register is
745    that the index register may be scaled.  If an address involves the
746    sum of two registers, neither one of them scaled, then either one
747    may be labeled the "base" and the other the "index"; but whichever
748    labeling is used must fit the machine's constraints of which
749    registers may serve in each capacity.  The compiler will try both
750    labelings, looking for one that is valid, and will reload one or
751    both registers only if neither labeling works.  */
752 
753 #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
754 /* A C expression that places additional restrictions on the register
755    class to use when it is necessary to copy value X into a register
756    in class CLASS.  The value is a register class; perhaps CLASS, or
757    perhaps another, smaller class.  On many machines, the following
758    definition is safe:
759 
760    #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
761 
762    Sometimes returning a more restrictive class makes better code.
763    For example, on the 68000, when X is an integer constant that is
764    in range for a `moveq' instruction, the value of this macro is
765    always `DATA_REGS' as long as CLASS includes the data registers.
766    Requiring a data register guarantees that a `moveq' will be used.
767 
768    If X is a `const_double', by returning `NO_REGS' you can force X
769    into a memory constant.  This is useful on certain machines where
770    immediate floating values cannot be loaded into certain kinds of
771    registers.  */
772 
773 /* `PREFERRED_OUTPUT_RELOAD_CLASS (X, CLASS)'
774    Like `PREFERRED_RELOAD_CLASS', but for output reloads instead of
775    input reloads.  If you don't define this macro, the default is to
776    use CLASS, unchanged.  */
777 
778 /* `LIMIT_RELOAD_CLASS (MODE, CLASS)'
779    A C expression that places additional restrictions on the register
780    class to use when it is necessary to be able to hold a value of
781    mode MODE in a reload register for which class CLASS would
782    ordinarily be used.
783 
784    Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when
785    there are certain modes that simply can't go in certain reload
786    classes.
787 
788    The value is a register class; perhaps CLASS, or perhaps another,
789    smaller class.
790 
791    Don't define this macro unless the target machine has limitations
792    which require the macro to do something nontrivial.  */
793 
794 /* SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)
795    `SECONDARY_RELOAD_CLASS (CLASS, MODE, X)'
796    `SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X)'
797    Many machines have some registers that cannot be copied directly
798    to or from memory or even from other types of registers.  An
799    example is the `MQ' register, which on most machines, can only be
800    copied to or from general registers, but not memory.  Some
801    machines allow copying all registers to and from memory, but
802    require a scratch register for stores to some memory locations
803    (e.g., those with symbolic address on the RT, and those with
804    certain symbolic address on the SPARC when compiling PIC).  In
805    some cases, both an intermediate and a scratch register are
806    required.
807 
808    You should define these macros to indicate to the reload phase
809    that it may need to allocate at least one register for a reload in
810    addition to the register to contain the data.  Specifically, if
811    copying X to a register CLASS in MODE requires an intermediate
812    register, you should define `SECONDARY_INPUT_RELOAD_CLASS' to
813    return the largest register class all of whose registers can be
814    used as intermediate registers or scratch registers.
815 
816    If copying a register CLASS in MODE to X requires an intermediate
817    or scratch register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be
818    defined to return the largest register class required.  If the
819    requirements for input and output reloads are the same, the macro
820    `SECONDARY_RELOAD_CLASS' should be used instead of defining both
821    macros identically.
822 
823    The values returned by these macros are often `GENERAL_REGS'.
824    Return `NO_REGS' if no spare register is needed; i.e., if X can be
825    directly copied to or from a register of CLASS in MODE without
826    requiring a scratch register.  Do not define this macro if it
827    would always return `NO_REGS'.
828 
829    If a scratch register is required (either with or without an
830    intermediate register), you should define patterns for
831    `reload_inM' or `reload_outM', as required (*note Standard
832    Names::..  These patterns, which will normally be implemented with
833    a `define_expand', should be similar to the `movM' patterns,
834    except that operand 2 is the scratch register.
835 
836    Define constraints for the reload register and scratch register
837    that contain a single register class.  If the original reload
838    register (whose class is CLASS) can meet the constraint given in
839    the pattern, the value returned by these macros is used for the
840    class of the scratch register.  Otherwise, two additional reload
841    registers are required.  Their classes are obtained from the
842    constraints in the insn pattern.
843 
844    X might be a pseudo-register or a `subreg' of a pseudo-register,
845    which could either be in a hard register or in memory.  Use
846    `true_regnum' to find out; it will return -1 if the pseudo is in
847    memory and the hard register number if it is in a register.
848 
849    These macros should not be used in the case where a particular
850    class of registers can only be copied to memory and not to another
851    class of registers.  In that case, secondary reload registers are
852    not needed and would not be helpful.  Instead, a stack location
853    must be used to perform the copy and the `movM' pattern should use
854    memory as an intermediate storage.  This case often occurs between
855    floating-point and general registers.  */
856 
857 /* `SECONDARY_MEMORY_NEEDED (CLASS1, CLASS2, M)'
858    Certain machines have the property that some registers cannot be
859    copied to some other registers without using memory.  Define this
860    macro on those machines to be a C expression that is nonzero if
861    objects of mode M in registers of CLASS1 can only be copied to
862    registers of class CLASS2 by storing a register of CLASS1 into
863    memory and loading that memory location into a register of CLASS2.
864 
865    Do not define this macro if its value would always be zero.
866 
867    `SECONDARY_MEMORY_NEEDED_RTX (MODE)'
868    Normally when `SECONDARY_MEMORY_NEEDED' is defined, the compiler
869    allocates a stack slot for a memory location needed for register
870    copies.  If this macro is defined, the compiler instead uses the
871    memory location defined by this macro.
872 
873    Do not define this macro if you do not define
874    `SECONDARY_MEMORY_NEEDED'.  */
875 
876 #define SMALL_REGISTER_CLASSES 1
877 /* Normally the compiler avoids choosing registers that have been
878    explicitly mentioned in the rtl as spill registers (these
879    registers are normally those used to pass parameters and return
880    values).  However, some machines have so few registers of certain
881    classes that there would not be enough registers to use as spill
882    registers if this were done.
883 
884    Define `SMALL_REGISTER_CLASSES' to be an expression with a nonzero
885    value on these machines.  When this macro has a nonzero value, the
886    compiler allows registers explicitly used in the rtl to be used as
887    spill registers but avoids extending the lifetime of these
888    registers.
889 
890    It is always safe to define this macro with a nonzero value, but
891    if you unnecessarily define it, you will reduce the amount of
892    optimizations that can be performed in some cases.  If you do not
893    define this macro with a nonzero value when it is required, the
894    compiler will run out of spill registers and print a fatal error
895    message.  For most machines, you should not define this macro at
896    all.  */
897 
898 #define CLASS_LIKELY_SPILLED_P(CLASS)  class_likely_spilled_p(CLASS)
899 /* A C expression whose value is nonzero if pseudos that have been
900    assigned to registers of class CLASS would likely be spilled
901    because registers of CLASS are needed for spill registers.
902 
903    The default value of this macro returns 1 if CLASS has exactly one
904    register and zero otherwise.  On most machines, this default
905    should be used.  Only define this macro to some other expression
906    if pseudo allocated by `local-alloc.c' end up in memory because
907    their hard registers were needed for spill registers.  If this
908    macro returns nonzero for those classes, those pseudos will only
909    be allocated by `global.c', which knows how to reallocate the
910    pseudo to another register.  If there would not be another
911    register available for reallocation, you should not change the
912    definition of this macro since the only effect of such a
913    definition would be to slow down register allocation.  */
914 
915 #define CLASS_MAX_NREGS(CLASS, MODE)   GET_MODE_SIZE (MODE)
916 /* A C expression for the maximum number of consecutive registers of
917    class CLASS needed to hold a value of mode MODE.
918 
919    This is closely related to the macro `HARD_REGNO_NREGS'.  In fact,
920    the value of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be
921    the maximum value of `HARD_REGNO_NREGS (REGNO, MODE)' for all
922    REGNO values in the class CLASS.
923 
924    This macro helps control the handling of multiple-word values in
925    the reload pass.  */
926 
927 #define CONST_OK_FOR_LETTER_P(VALUE, C)				\
928   ((C) == 'I' ? (VALUE) >= -255 && (VALUE) <= -1 :		\
929    (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 7 :			\
930    (C) == 'K' ? (VALUE) >= 0 && (VALUE) <= 127 :		\
931    (C) == 'L' ? (VALUE) > 0 && (VALUE) < 128:			\
932    (C) == 'M' ? (VALUE) == -1:					\
933    (C) == 'N' ? (VALUE) == 1:					\
934    (C) == 'O' ? (VALUE) == 0:					\
935    (C) == 'P' ? (VALUE) >= 0 && (VALUE) <= 255:			\
936    0)
937 
938 /* A C expression that defines the machine-dependent operand
939    constraint letters (`I', `J', `K', ... `P') that specify
940    particular ranges of integer values.  If C is one of those
941    letters, the expression should check that VALUE, an integer, is in
942    the appropriate range and return 1 if so, 0 otherwise.  If C is
943    not one of those letters, the value should be 0 regardless of
944    VALUE.  */
945 
946 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
947 
948 /* `CONST_DOUBLE_OK_FOR_LETTER_P (VALUE, C)'
949    A C expression that defines the machine-dependent operand
950    constraint letters that specify particular ranges of
951    `const_double' values (`G' or `H').
952 
953    If C is one of those letters, the expression should check that
954    VALUE, an RTX of code `const_double', is in the appropriate range
955    and return 1 if so, 0 otherwise.  If C is not one of those
956    letters, the value should be 0 regardless of VALUE.
957 
958    `const_double' is used for all floating-point constants and for
959    `DImode' fixed-point constants.  A given letter can accept either
960    or both kinds of values.  It can use `GET_MODE' to distinguish
961    between these kinds.  */
962 
963 #define EXTRA_CONSTRAINT(X, C) ip2k_extra_constraint (X, C)
964 
965 /* A C expression that defines the optional machine-dependent
966    constraint letters (``Q', `R', `S', `T', `U') that can'
967    be used to segregate specific types of operands, usually memory
968    references, for the target machine.  Normally this macro will not
969    be defined.  If it is required for a particular target machine, it
970    should return 1 if VALUE corresponds to the operand type
971    represented by the constraint letter C.  If C is not defined as an
972    extra constraint, the value returned should be 0 regardless of
973    VALUE.
974 
975    For example, on the ROMP, load instructions cannot have their
976    output in r0 if the memory reference contains a symbolic address.
977    Constraint letter `Q' is defined as representing a memory address
978    that does *not* contain a symbolic address.  An alternative is
979    specified with a `Q' constraint on the input and `r' on the
980    output.  The next alternative specifies `m' on the input and a
981    register class that does not include r0 on the output.  */
982 
983 /* This is an undocumented variable which describes
984    how GCC will pop a data.  */
985 #define STACK_POP_CODE PRE_INC
986 
987 #define STACK_PUSH_CODE POST_DEC
988 /* This macro defines the operation used when something is pushed on
989    the stack.  In RTL, a push operation will be `(set (mem
990    (STACK_PUSH_CODE (reg sp))) ...)'
991 
992    The choices are `PRE_DEC', `POST_DEC', `PRE_INC', and `POST_INC'.
993    Which of these is correct depends on the stack direction and on
994    whether the stack pointer points to the last item on the stack or
995    whether it points to the space for the next item on the stack.
996 
997    The default is `PRE_DEC' when `STACK_GROWS_DOWNWARD' is defined,
998    which is almost always right, and `PRE_INC' otherwise, which is
999    often wrong.  */
1000 
1001 
1002 #define STACK_CHECK_BUILTIN	1
1003 /* Prologue code will do stack checking as necessary.  */
1004 
1005 #define STARTING_FRAME_OFFSET (0)
1006 /* Offset from the frame pointer to the first local variable slot to
1007    be allocated.
1008 
1009    If `FRAME_GROWS_DOWNWARD', find the next slot's offset by
1010    subtracting the first slot's length from `STARTING_FRAME_OFFSET'.
1011    Otherwise, it is found by adding the length of the first slot to
1012    the value `STARTING_FRAME_OFFSET'.  */
1013 
1014 #define FRAME_GROWS_DOWNWARD	1
1015 #define STACK_GROWS_DOWNWARD	1
1016 
1017 /* On IP2K arg pointer is virtual and resolves to either SP or FP
1018    after we've resolved what registers are saved (fp chain, return
1019    pc, etc.  */
1020 
1021 #define FIRST_PARM_OFFSET(FUNDECL) 0
1022 /* Offset from the argument pointer register to the first argument's
1023    address.  On some machines it may depend on the data type of the
1024    function.
1025 
1026    If `ARGS_GROW_DOWNWARD', this is the offset to the location above
1027    the first argument's address.  */
1028 
1029 /* `STACK_DYNAMIC_OFFSET (FUNDECL)'
1030    Offset from the stack pointer register to an item dynamically
1031    allocated on the stack, e.g., by `alloca'.
1032 
1033    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1034    length of the outgoing arguments.  The default is correct for most
1035    machines.  See `function.c' for details.  */
1036 
1037 #define STACK_POINTER_OFFSET 1
1038 /* IP2K stack is post-decremented, so 0(sp) is address of open space
1039    and 1(sp) is offset to the location avobe the forst location at which
1040    outgoing arguments are placed.  */
1041 
1042 #define STACK_BOUNDARY 8
1043 /* Define this macro if there is a guaranteed alignment for the stack
1044    pointer on this machine.  The definition is a C expression for the
1045    desired alignment (measured in bits).  This value is used as a
1046    default if PREFERRED_STACK_BOUNDARY is not defined.  */
1047 
1048 #define STACK_POINTER_REGNUM REG_SP
1049 /* The register number of the stack pointer register, which must also
1050    be a fixed register according to `FIXED_REGISTERS'.  On most
1051    machines, the hardware determines which register this is.  */
1052 
1053 #define FRAME_POINTER_REGNUM REG_VFP
1054 /* The register number of the frame pointer register, which is used to
1055    access automatic variables in the stack frame.  On some machines,
1056    the hardware determines which register this is.  On other
1057    machines, you can choose any register you wish for this purpose.  */
1058 
1059 #define HARD_FRAME_POINTER_REGNUM REG_FP
1060 
1061 #define ARG_POINTER_REGNUM  REG_AP
1062 /* The register number of the arg pointer register, which is used to
1063    access the function's argument list.  On some machines, this is
1064    the same as the frame pointer register.  On some machines, the
1065    hardware determines which register this is.  On other machines,
1066    you can choose any register you wish for this purpose.  If this is
1067    not the same register as the frame pointer register, then you must
1068    mark it as a fixed register according to `FIXED_REGISTERS', or
1069    arrange to be able to eliminate it (*note Elimination::.).  */
1070 
1071 /* We don't really want to support nested functions.  But we'll crash
1072    in various testsuite tests if we don't at least define the register
1073    to contain the static chain. The return value register is about as
1074    bad a place as any for this.  */
1075 
1076 #define STATIC_CHAIN_REGNUM	REG_RESULT
1077 /* Register numbers used for passing a function's static chain
1078    pointer.  If register windows are used, the register number as
1079    seen by the called function is `STATIC_CHAIN_INCOMING_REGNUM',
1080    while the register number as seen by the calling function is
1081    `STATIC_CHAIN_REGNUM'.  If these registers are the same,
1082    `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1083 
1084    The static chain register need not be a fixed register.
1085 
1086    If the static chain is passed in memory, these macros should not be
1087    defined; instead, the next two macros should be defined.  */
1088 
1089 #define FRAME_POINTER_REQUIRED (!flag_omit_frame_pointer)
1090 /* A C expression which is nonzero if a function must have and use a
1091    frame pointer.  This expression is evaluated  in the reload pass.
1092    If its value is nonzero the function will have a frame pointer.
1093 
1094    The expression can in principle examine the current function and
1095    decide according to the facts, but on most machines the constant 0
1096    or the constant 1 suffices.  Use 0 when the machine allows code to
1097    be generated with no frame pointer, and doing so saves some time
1098    or space.  Use 1 when there is no possible advantage to avoiding a
1099    frame pointer.
1100 
1101    In certain cases, the compiler does not know how to produce valid
1102    code without a frame pointer.  The compiler recognizes those cases
1103    and automatically gives the function a frame pointer regardless of
1104    what `FRAME_POINTER_REQUIRED' says.  You don't need to worry about
1105    them.
1106 
1107    In a function that does not require a frame pointer, the frame
1108    pointer register can be allocated for ordinary usage, unless you
1109    mark it as a fixed register.  See `FIXED_REGISTERS' for more
1110    information.  */
1111 
1112 #define ELIMINABLE_REGS	{ 					\
1113         {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1114 	{ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1115 	{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1116 	{FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1117 	{HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1118 }
1119 /* If defined, this macro specifies a table of register pairs used to
1120    eliminate unneeded registers that point into the stack frame.  If
1121    it is not defined, the only elimination attempted by the compiler
1122    is to replace references to the frame pointer with references to
1123    the stack pointer.
1124 
1125    The definition of this macro is a list of structure
1126    initializations, each of which specifies an original and
1127    replacement register.
1128 
1129    On some machines, the position of the argument pointer is not
1130    known until the compilation is completed.  In such a case, a
1131    separate hard register must be used for the argument pointer.
1132    This register can be eliminated by replacing it with either the
1133    frame pointer or the argument pointer, depending on whether or not
1134    the frame pointer has been eliminated.
1135 
1136    In this case, you might specify:
1137    #define ELIMINABLE_REGS  \
1138    {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1139    {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1140    {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1141 
1142    Note that the elimination of the argument pointer with the stack
1143    pointer is specified first since that is the preferred elimination.  */
1144 
1145 
1146 #define CAN_ELIMINATE(FROM, TO) 				\
1147   ((FROM) == HARD_FRAME_POINTER_REGNUM				\
1148    ? (flag_omit_frame_pointer && !frame_pointer_needed) : 1)
1149 /* Don't eliminate FP unless we EXPLICITLY_ASKED  */
1150 
1151 /* A C expression that returns nonzero if the compiler is allowed to
1152    try to replace register number FROM-REG with register number
1153    TO-REG.  This macro need only be defined if `ELIMINABLE_REGS' is
1154    defined, and will usually be the constant 1, since most of the
1155    cases preventing register elimination are things that the compiler
1156    already knows about.  */
1157 
1158 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1159   ((OFFSET) = ip2k_init_elim_offset ((FROM), (TO)))
1160 
1161 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
1162    specifies the initial difference between the specified pair of
1163    registers.  This macro must be defined if `ELIMINABLE_REGS' is
1164    defined.  */
1165 
1166 #define RETURN_ADDR_RTX(COUNT, X) \
1167   (((COUNT) == 0) ? gen_rtx_REG (HImode, REG_CALLH) : NULL_RTX)
1168 /*   A C expression whose value is RTL representing the value of the
1169      return address for the frame COUNT steps up from the current
1170      frame, after the prologue.  FRAMEADDR is the frame pointer of the
1171      COUNT frame, or the frame pointer of the COUNT - 1 frame if
1172      `RETURN_ADDR_IN_PREVIOUS_FRAME' is defined.
1173 
1174      The value of the expression must always be the correct address when
1175      COUNT is zero, but may be `NULL_RTX' if there is not way to
1176      determine the return address of other frames.  */
1177 
1178 #define PUSH_ROUNDING(NPUSHED) (NPUSHED)
1179 /* A C expression that is the number of bytes actually pushed onto the
1180    stack when an instruction attempts to push NPUSHED bytes.
1181 
1182    If the target machine does not have a push instruction, do not
1183    define this macro.  That directs GNU CC to use an alternate
1184    strategy: to allocate the entire argument block and then store the
1185    arguments into it.
1186 
1187    On some machines, the definition
1188 
1189    #define PUSH_ROUNDING(BYTES) (BYTES)
1190 
1191    will suffice.  But on other machines, instructions that appear to
1192    push one byte actually push two bytes in an attempt to maintain
1193    alignment.  Then the definition should be
1194 
1195    #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)  */
1196 
1197 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
1198   ip2k_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1199 /* A C expression that should indicate the number of bytes of its own
1200    arguments that a function pops on returning, or 0 if the function
1201    pops no arguments and the caller must therefore pop them all after
1202    the function returns.
1203 
1204    FUNDECL is a C variable whose value is a tree node that describes
1205    the function in question.  Normally it is a node of type
1206    `FUNCTION_DECL' that describes the declaration of the function.
1207    From this you can obtain the DECL_MACHINE_ATTRIBUTES of the
1208    function.
1209 
1210    FUNTYPE is a C variable whose value is a tree node that describes
1211    the function in question.  Normally it is a node of type
1212    `FUNCTION_TYPE' that describes the data type of the function.
1213    From this it is possible to obtain the data types of the value and
1214    arguments (if known).
1215 
1216    When a call to a library function is being considered, FUNDECL
1217    will contain an identifier node for the library function.  Thus, if
1218    you need to distinguish among various library functions, you can
1219    do so by their names.  Note that "library function" in this
1220    context means a function used to perform arithmetic, whose name is
1221    known specially in the compiler and was not mentioned in the C
1222    code being compiled.
1223 
1224    STACK-SIZE is the number of bytes of arguments passed on the
1225    stack.  If a variable number of bytes is passed, it is zero, and
1226    argument popping will always be the responsibility of the calling
1227    function.
1228 
1229    On the VAX, all functions always pop their arguments, so the
1230    definition of this macro is STACK-SIZE.  On the 68000, using the
1231    standard calling convention, no functions pop their arguments, so
1232    the value of the macro is always 0 in this case.  But an
1233    alternative calling convention is available in which functions
1234    that take a fixed number of arguments pop them but other functions
1235    (such as `printf') pop nothing (the caller pops all).  When this
1236    convention is in use, FUNTYPE is examined to determine whether a
1237    function takes a fixed number of arguments.  */
1238 
1239 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
1240 /* A C expression that controls whether a function argument is passed
1241    in a register, and which register.
1242 
1243    The arguments are CUM, which summarizes all the previous
1244    arguments; MODE, the machine mode of the argument; TYPE, the data
1245    type of the argument as a tree node or 0 if that is not known
1246    (which happens for C support library functions); and NAMED, which
1247    is 1 for an ordinary argument and 0 for nameless arguments that
1248    correspond to `...' in the called function's prototype.
1249 
1250    The value of the expression is usually either a `reg' RTX for the
1251    hard register in which to pass the argument, or zero to pass the
1252    argument on the stack.
1253 
1254    For machines like the VAX and 68000, where normally all arguments
1255    are pushed, zero suffices as a definition.
1256 
1257    The value of the expression can also be a `parallel' RTX.  This is
1258    used when an argument is passed in multiple locations.  The mode
1259    of the of the `parallel' should be the mode of the entire
1260    argument.  The `parallel' holds any number of `expr_list' pairs;
1261    each one describes where part of the argument is passed.  In each
1262    `expr_list', the first operand can be either a `reg' RTX for the
1263    hard register in which to pass this part of the argument, or zero
1264    to pass the argument on the stack.  If this operand is a `reg',
1265    then the mode indicates how large this part of the argument is.
1266    The second operand of the `expr_list' is a `const_int' which gives
1267    the offset in bytes into the entire argument where this part
1268    starts.
1269 
1270    The usual way to make the ANSI library `stdarg.h' work on a machine
1271    where some arguments are usually passed in registers, is to 	cause
1272    nameless arguments to be passed on the stack instead.  This is done
1273    by making `FUNCTION_ARG' return 0 whenever NAMED is 0.
1274 
1275    You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the
1276    definition of this macro to determine if this argument is of a
1277    type that must be passed in the stack.  If `REG_PARM_STACK_SPACE'
1278    is not defined and `FUNCTION_ARG' returns nonzero for such an
1279    argument, the compiler will abort.  If `REG_PARM_STACK_SPACE' is
1280    defined, the argument will be computed in the stack and then
1281    loaded into a register.  */
1282 
1283 #define CUMULATIVE_ARGS	int
1284 
1285 /* A C type for declaring a variable that is used as the first
1286    argument of `FUNCTION_ARG' and other related values.  For some
1287    target machines, the type `int' suffices and can hold the number
1288    of bytes of argument so far.
1289 
1290    There is no need to record in `CUMULATIVE_ARGS' anything about the
1291    arguments that have been passed on the stack.  The compiler has
1292    other variables to keep track of that.  For target machines on
1293    which all arguments are passed on the stack, there is no need to
1294    store anything in `CUMULATIVE_ARGS'; however, the data structure
1295    must exist and should not be empty, so use `int'.  */
1296 
1297 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1298   ((CUM) = 0)
1299 
1300 /* A C statement (sans semicolon) for initializing the variable CUM
1301    for the state at the beginning of the argument list.  The variable
1302    has type `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node
1303    for the data type of the function which will receive the args, or 0
1304    if the args are to a compiler support library function.  The value
1305    of INDIRECT is nonzero when processing an indirect call, for
1306    example a call through a function pointer.  The value of INDIRECT
1307    is zero for a call to an explicitly named function, a library
1308    function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1309    arguments for the function being compiled.
1310 
1311    When processing a call to a compiler support library function,
1312    LIBNAME identifies which one.  It is a `symbol_ref' rtx which
1313    contains the name of the function, as a string.  LIBNAME is 0 when
1314    an ordinary C function call is being processed.  Thus, each time
1315    this macro is called, either LIBNAME or FNTYPE is nonzero, but
1316    never both of them at once.  */
1317 
1318 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)
1319 
1320 /* All arguments are passed on stack - do nothing here.  */
1321 
1322 /* A C statement (sans semicolon) to update the summarizer variable
1323    CUM to advance past an argument in the argument list.  The values
1324    MODE, TYPE and NAMED describe that argument.  Once this is done,
1325    the variable CUM is suitable for analyzing the *following*
1326    argument with `FUNCTION_ARG', etc.
1327 
1328    This macro need not do anything if the argument in question was
1329    passed on the stack.  The compiler knows how to track the amount
1330    of stack space used for arguments without any special help.  */
1331 
1332 #define FUNCTION_ARG_REGNO_P(R) 0
1333 /* A C expression that is nonzero if REGNO is the number of a hard
1334    register in which function arguments are sometimes passed.  This
1335    does *not* include implicit arguments such as the static chain and
1336    the structure-value address.  On many machines, no registers can be
1337    used for this purpose since all function arguments are pushed on
1338    the stack.  */
1339 
1340 #define FUNCTION_VALUE(VALTYPE, FUNC) 				\
1341    ((TYPE_MODE (VALTYPE) == QImode)				\
1342     ? gen_rtx_REG (TYPE_MODE (VALTYPE), REG_RESULT + 1)	\
1343     : gen_rtx_REG (TYPE_MODE (VALTYPE), REG_RESULT))
1344 
1345 /* Because functions returning 'char' actually widen to 'int', we have to
1346    use $81 as the return location if we think we only have a 'char'.  */
1347 
1348 /* A C expression to create an RTX representing the place where a
1349    function returns a value of data type VALTYPE.  VALTYPE is a tree
1350    node representing a data type.  Write `TYPE_MODE (VALTYPE)' to get
1351    the machine mode used to represent that type.  On many machines,
1352    only the mode is relevant.  (Actually, on most machines, scalar
1353    values are returned in the same place regardless of mode).
1354 
1355    The value of the expression is usually a `reg' RTX for the hard
1356    register where the return value is stored.  The value can also be a
1357    `parallel' RTX, if the return value is in multiple places.  See
1358    `FUNCTION_ARG' for an explanation of the `parallel' form.
1359 
1360    If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same
1361    promotion rules specified in `PROMOTE_MODE' if VALTYPE is a scalar
1362    type.
1363 
1364    If the precise function being called is known, FUNC is a tree node
1365    (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer.  This
1366    makes it possible to use a different value-returning convention
1367    for specific functions when all their calls are known.
1368 
1369    `FUNCTION_VALUE' is not used for return vales with aggregate data
1370    types, because these are returned in another way.  See
1371    `STRUCT_VALUE_REGNUM' and related macros, below.  */
1372 
1373 #define LIBCALL_VALUE(MODE)  gen_rtx_REG ((MODE), REG_RESULT)
1374 /* A C expression to create an RTX representing the place where a
1375    library function returns a value of mode MODE.  If the precise
1376    function being called is known, FUNC is a tree node
1377    (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer.  This
1378    makes it possible to use a different value-returning convention
1379    for specific functions when all their calls are known.
1380 
1381    Note that "library function" in this context means a compiler
1382    support routine, used to perform arithmetic, whose name is known
1383    specially by the compiler and was not mentioned in the C code being
1384    compiled.
1385 
1386    The definition of `LIBRARY_VALUE' need not be concerned aggregate
1387    data types, because none of the library functions returns such
1388    types.  */
1389 
1390 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_RESULT)
1391 /* A C expression that is nonzero if REGNO is the number of a hard
1392    register in which the values of called function may come back.
1393 
1394    A register whose use for returning values is limited to serving as
1395    the second of a pair (for a value of type `double', say) need not
1396    be recognized by this macro.  So for most machines, this definition
1397    suffices:
1398 
1399    #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
1400 
1401    If the machine has register windows, so that the caller and the
1402    called function use different registers for the return value, this
1403    macro should recognize only the caller's register numbers.  */
1404 
1405 #define RETURN_IN_MEMORY(TYPE) \
1406   ((TYPE_MODE (TYPE) == BLKmode) ? int_size_in_bytes (TYPE) > 8 : 0)
1407 /* A C expression which can inhibit the returning of certain function
1408    values in registers, based on the type of value.  A nonzero value
1409    says to return the function value in memory, just as large
1410    structures are always returned.  Here TYPE will be a C expression
1411    of type `tree', representing the data type of the value.
1412 
1413    Note that values of mode `BLKmode' must be explicitly handled by
1414    this macro.  Also, the option `-fpcc-struct-return' takes effect
1415    regardless of this macro.  On most systems, it is possible to
1416    leave the macro undefined; this causes a default definition to be
1417    used, whose value is the constant 1 for `BLKmode' values, and 0
1418    otherwise.
1419 
1420    Do not use this macro to indicate that structures and unions
1421    should always be returned in memory.  You should instead use
1422    `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1423 
1424 /* Indicate that large structures are passed by reference.  */
1425 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM,MODE,TYPE,NAMED)	0
1426 
1427 
1428 #define DEFAULT_PCC_STRUCT_RETURN 0
1429 /* Define this macro to be 1 if all structure and union return values
1430    must be in memory.  Since this results in slower code, this should
1431    be defined only if needed for compatibility with other compilers
1432    or with an ABI.  If you define this macro to be 0, then the
1433    conventions used for structure and union return values are decided
1434    by the `RETURN_IN_MEMORY' macro.
1435 
1436    If not defined, this defaults to the value 1.  */
1437 
1438 #define STRUCT_VALUE 0
1439 /* If the structure value address is not passed in a register, define
1440    `STRUCT_VALUE' as an expression returning an RTX for the place
1441    where the address is passed.  If it returns 0, the address is
1442    passed as an "invisible" first argument.  */
1443 
1444 #define STRUCT_VALUE_INCOMING 0
1445 /* If the incoming location is not a register, then you should define
1446    `STRUCT_VALUE_INCOMING' as an expression for an RTX for where the
1447    called function should find the value.  If it should find the
1448    value on the stack, define this to create a `mem' which refers to
1449    the frame pointer.  A definition of 0 means that the address is
1450    passed as an "invisible" first argument.  */
1451 
1452 #define EPILOGUE_USES(REGNO) 0
1453 /* Define this macro as a C expression that is nonzero for registers
1454    are used by the epilogue or the `return' pattern.  The stack and
1455    frame pointer registers are already be assumed to be used as
1456    needed.  */
1457 
1458 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR,MODE,TYPE,		\
1459 			       PRETEND_ARGS_SIZE,SECOND_TIME)	\
1460   ((PRETEND_ARGS_SIZE) = (0))
1461 
1462 
1463 /*  Hmmm.  We don't actually like constants as addresses - they always need
1464     to be loaded to a register, except for function calls which take an
1465     address by immediate value.  But changing this to zero had negative
1466     effects, causing the compiler to get very confused....  */
1467 
1468 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
1469 
1470 /* A C expression that is 1 if the RTX X is a constant which is a
1471    valid address.  On most machines, this can be defined as
1472    `CONSTANT_P (X)', but a few machines are more restrictive in which
1473    constant addresses are supported.
1474 
1475    `CONSTANT_P' accepts integer-values expressions whose values are
1476    not explicitly known, such as `symbol_ref', `label_ref', and
1477    `high' expressions and `const' arithmetic expressions, in addition
1478    to `const_int' and `const_double' expressions.  */
1479 
1480 #define MAX_REGS_PER_ADDRESS 1
1481 /* A number, the maximum number of registers that can appear in a
1482    valid memory address.  Note that it is up to you to specify a
1483    value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
1484    would ever accept.  */
1485 
1486 #ifdef REG_OK_STRICT
1487 #  define GO_IF_LEGITIMATE_ADDRESS(MODE, OPERAND, ADDR)	\
1488 {							\
1489   if (legitimate_address_p ((MODE), (OPERAND), 1))	\
1490     goto ADDR;						\
1491 }
1492 #else
1493 #  define GO_IF_LEGITIMATE_ADDRESS(MODE, OPERAND, ADDR)	\
1494 {							\
1495   if (legitimate_address_p ((MODE), (OPERAND), 0))	\
1496     goto ADDR;						\
1497 }
1498 #endif
1499 /* A C compound statement with a conditional `goto LABEL;' executed
1500    if X (an RTX) is a legitimate memory address on the target machine
1501    for a memory operand of mode MODE.
1502 
1503    It usually pays to define several simpler macros to serve as
1504    subroutines for this one.  Otherwise it may be too complicated to
1505    understand.
1506 
1507    This macro must exist in two variants: a strict variant and a
1508    non-strict one.  The strict variant is used in the reload pass.  It
1509    must be defined so that any pseudo-register that has not been
1510    allocated a hard register is considered a memory reference.  In
1511    contexts where some kind of register is required, a pseudo-register
1512    with no hard register must be rejected.
1513 
1514    The non-strict variant is used in other passes.  It must be
1515    defined to accept all pseudo-registers in every context where some
1516    kind of register is required.
1517 
1518    Compiler source files that want to use the strict variant of this
1519    macro define the macro `REG_OK_STRICT'.  You should use an `#ifdef
1520    REG_OK_STRICT' conditional to define the strict variant in that
1521    case and the non-strict variant otherwise.
1522 
1523    Subroutines to check for acceptable registers for various purposes
1524    (one for base registers, one for index registers, and so on) are
1525    typically among the subroutines used to define
1526    `GO_IF_LEGITIMATE_ADDRESS'.  Then only these subroutine macros
1527    need have two variants; the higher levels of macros may be the
1528    same whether strict or not.
1529 
1530    Normally, constant addresses which are the sum of a `symbol_ref'
1531    and an integer are stored inside a `const' RTX to mark them as
1532    constant.  Therefore, there is no need to recognize such sums
1533    specifically as legitimate addresses.  Normally you would simply
1534    recognize any `const' as legitimate.
1535 
1536    Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant
1537    sums that are not marked with  `const'.  It assumes that a naked
1538    `plus' indicates indexing.  If so, then you *must* reject such
1539    naked constant sums as illegitimate addresses, so that none of
1540    them will be given to `PRINT_OPERAND_ADDRESS'.
1541 
1542    On some machines, whether a symbolic address is legitimate depends
1543    on the section that the address refers to.  On these machines,
1544    define the macro `ENCODE_SECTION_INFO' to store the information
1545    into the `symbol_ref', and then check for it here.  When you see a
1546    `const', you will have to look inside it to find the `symbol_ref'
1547    in order to determine the section.  *Note Assembler Format::.
1548 
1549    The best way to modify the name string is by adding text to the
1550    beginning, with suitable punctuation to prevent any ambiguity.
1551    Allocate the new name in `saveable_obstack'.  You will have to
1552    modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
1553    and output the name accordingly, and define `STRIP_NAME_ENCODING'
1554    to access the original name string.
1555 
1556    You can check the information stored here into the `symbol_ref' in
1557    the definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
1558    `PRINT_OPERAND_ADDRESS'.  */
1559 
1560 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is
1561    valid for use as a base register.  For hard registers, it should
1562    always accept those which the hardware permits and reject the
1563    others.  Whether the macro accepts or rejects pseudo registers
1564    must be controlled by `REG_OK_STRICT' as described above.  This
1565    usually requires two variant definitions, of which `REG_OK_STRICT'
1566    controls the one actually used.  */
1567 
1568 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1569 
1570 #define REG_OK_FOR_BASE_NOSTRICT_P(X) 	\
1571   (REGNO (X) >= FIRST_PSEUDO_REGISTER 	\
1572    || (REGNO (X) == REG_FP)		\
1573    || (REGNO (X) == REG_VFP)		\
1574    || (REGNO (X) == REG_AP)		\
1575    || REG_OK_FOR_BASE_STRICT_P(X))
1576 
1577 #ifdef REG_OK_STRICT
1578 #  define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1579 #else
1580 #  define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NOSTRICT_P (X)
1581 #endif
1582 
1583 #define REG_OK_FOR_INDEX_P(X) 0
1584 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is
1585    valid for use as an index register.
1586 
1587    The difference between an index register and a base register is
1588    that the index register may be scaled.  If an address involves the
1589    sum of two registers, neither one of them scaled, then either one
1590    may be labeled the "base" and the other the "index"; but whichever
1591    labeling is used must fit the machine's constraints of which
1592    registers may serve in each capacity.  The compiler will try both
1593    labelings, looking for one that is valid, and will reload one or
1594    both registers only if neither labeling works.  */
1595 
1596 
1597 /* A C compound statement that attempts to replace X with a valid
1598    memory address for an operand of mode MODE.  WIN will be a C
1599    statement label elsewhere in the code; the macro definition may use
1600 
1601    GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
1602 
1603    to avoid further processing if the address has become legitimate.
1604 
1605    X will always be the result of a call to `break_out_memory_refs',
1606    and OLDX will be the operand that was given to that function to
1607    produce X.
1608 
1609    The code generated by this macro should not alter the substructure
1610    of X.  If it transforms X into a more legitimate form, it should
1611    assign X (which will always be a C variable) a new value.
1612 
1613    It is not necessary for this macro to come up with a legitimate
1614    address.  The compiler has standard ways of doing so in all cases.
1615    In fact, it is safe for this macro to do nothing.  But often a
1616    machine-dependent strategy can generate better code.  */
1617 
1618 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)		\
1619 do { rtx orig_x = (X);					\
1620   (X) = legitimize_address ((X), (OLDX), (MODE), 0);	\
1621   if ((X) != orig_x && memory_address_p ((MODE), (X)))	\
1622     goto WIN;						\
1623 } while (0)
1624 
1625 /* Is X a legitimate register to reload, or is it a pseudo stack-temp
1626    that is problematic for push_reload() ?  */
1627 
1628 #define LRA_REG(X)						\
1629   (! (reg_equiv_memory_loc[REGNO (X)]				\
1630       && (reg_equiv_address[REGNO (X)]				\
1631 	  || num_not_at_initial_offset)))
1632 
1633 /* Given a register X that failed the LRA_REG test, replace X
1634    by its memory equivalent, find the reloads needed for THAT memory
1635    location and substitute that back for the higher-level reload
1636    that we're conducting...  */
1637 
1638 /* WARNING: we reference 'ind_levels' and 'insn' which are local variables
1639    in find_reloads_address (), where the LEGITIMIZE_RELOAD_ADDRESS macro
1640    expands.  */
1641 
1642 #define FRA_REG(X,MODE,OPNUM,TYPE)					\
1643 do {									\
1644   rtx tem = make_memloc ((X), REGNO (X));				\
1645 									\
1646   if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))	\
1647     {									\
1648       /* Note that we're doing address in address - cf. ADDR_TYPE  */	\
1649       find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),	\
1650  			    &XEXP (tem, 0), (OPNUM),			\
1651 			    ADDR_TYPE (TYPE), ind_levels, insn);	\
1652     }									\
1653   (X) = tem;								\
1654 } while (0)
1655 
1656 
1657 /* For the IP2K, we want to be clever about picking IP vs DP for a
1658    base pointer since IP only directly supports a zero displacement.
1659    (Note that we have modified all the HI patterns to correctly handle
1660    IP references by manipulating iph:ipl as we fetch the pieces).  */
1661 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND,WIN)		     \
1662 {									     \
1663   if (GET_CODE (X) == PLUS						     \
1664       && REG_P (XEXP (X, 0))						     \
1665       && GET_CODE (XEXP (X, 1)) == CONST_INT)				     \
1666     {									     \
1667       int disp = INTVAL (XEXP (X, 1));					     \
1668       int fit = (disp >= 0 && disp <= (127 - 2 * GET_MODE_SIZE (MODE)));     \
1669       rtx reg = XEXP (X, 0);						     \
1670       if (!fit)								     \
1671 	{								     \
1672           push_reload ((X), NULL_RTX, &(X),				     \
1673 		       NULL, MODE_BASE_REG_CLASS (MODE), GET_MODE (X),	     \
1674 		       VOIDmode, 0, 0, OPNUM, TYPE);			     \
1675 	  goto WIN;							     \
1676 	}								     \
1677       if (reg_equiv_memory_loc[REGNO (reg)]				     \
1678           && (reg_equiv_address[REGNO (reg)] || num_not_at_initial_offset))  \
1679         {								     \
1680 	  rtx mem = make_memloc (reg, REGNO (reg));			     \
1681 	  if (! strict_memory_address_p (GET_MODE (mem), XEXP (mem, 0)))     \
1682 	    {								     \
1683 	      /* Note that we're doing address in address - cf. ADDR_TYPE  */\
1684                find_reloads_address (GET_MODE (mem), &mem, XEXP (mem, 0),    \
1685  			            &XEXP (mem, 0), (OPNUM),		     \
1686 			            ADDR_TYPE (TYPE), (IND), insn);	     \
1687 	    }								     \
1688           push_reload (mem, NULL, &XEXP (X, 0), NULL,			     \
1689 		       GENERAL_REGS, Pmode, VOIDmode, 0, 0,		     \
1690 		       OPNUM, TYPE);					     \
1691           push_reload (X, NULL, &X, NULL,				     \
1692 		       MODE_BASE_REG_CLASS (MODE), GET_MODE (X), VOIDmode,   \
1693 		       0, 0, OPNUM, TYPE);				     \
1694 	  goto WIN;							     \
1695 	}								     \
1696    }									     \
1697 }
1698 /* A C compound statement that attempts to replace X, which is an
1699    address that needs reloading, with a valid memory address for an
1700    operand of mode MODE.  WIN will be a C statement label elsewhere
1701    in the code.  It is not necessary to define this macro, but it
1702    might be useful for performance reasons.
1703 
1704    For example, on the i386, it is sometimes possible to use a single
1705    reload register instead of two by reloading a sum of two pseudo
1706    registers into a register.  On the other hand, for number of RISC
1707    processors offsets are limited so that often an intermediate
1708    address needs to be generated in order to address a stack slot.
1709    By defining LEGITIMIZE_RELOAD_ADDRESS appropriately, the
1710    intermediate addresses generated for adjacent some stack slots can
1711    be made identical, and thus be shared.
1712 
1713    *Note*: This macro should be used with caution.  It is necessary
1714    to know something of how reload works in order to effectively use
1715    this, and it is quite easy to produce macros that build in too
1716    much knowledge of reload internals.
1717 
1718    *Note*: This macro must be able to reload an address created by a
1719    previous invocation of this macro.  If it fails to handle such
1720    addresses then the compiler may generate incorrect code or abort.
1721 
1722    The macro definition should use `push_reload' to indicate parts
1723    that need reloading; OPNUM, TYPE and IND_LEVELS are usually
1724    suitable to be passed unaltered to `push_reload'.
1725 
1726    The code generated by this macro must not alter the substructure of
1727    X.  If it transforms X into a more legitimate form, it should
1728    assign X (which will always be a C variable) a new value.  This
1729    also applies to parts that you change indirectly by calling
1730    `push_reload'.
1731 
1732    The macro definition may use `strict_memory_address_p' to test if
1733    the address has become legitimate.
1734 
1735    If you want to change only a part of X, one standard way of doing
1736    this is to use `copy_rtx'.  Note, however, that is unshares only a
1737    single level of rtl.  Thus, if the part to be changed is not at the
1738    top level, you'll need to replace first the top leve It is not
1739    necessary for this macro to come up with a legitimate address;
1740    but often a machine-dependent strategy can generate better code.  */
1741 
1742 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)		\
1743     do {							\
1744 	if (ip2k_mode_dependent_address (ADDR)) goto LABEL;	\
1745     } while (0)
1746 
1747 /* A C statement or compound statement with a conditional `goto
1748    LABEL;' executed if memory address X (an RTX) can have different
1749    meanings depending on the machine mode of the memory reference it
1750    is used for or if the address is valid for some modes but not
1751    others.
1752 
1753    Autoincrement and autodecrement addresses typically have
1754    mode-dependent effects because the amount of the increment or
1755    decrement is the size of the operand being addressed.  Some
1756    machines have other mode-dependent addresses.  Many RISC machines
1757    have no mode-dependent addresses.
1758 
1759    You may assume that ADDR is a valid address for the machine.  */
1760 
1761 #define LEGITIMATE_CONSTANT_P(X) 1
1762 /* A C expression that is nonzero if X is a legitimate constant for
1763    an immediate operand on the target machine.  You can assume that X
1764    satisfies `CONSTANT_P', so you need not check this.  In fact, `1'
1765    is a suitable definition for this macro on machines where anything
1766    `CONSTANT_P' is valid.  */
1767 
1768 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1769   case CONST_INT:			 \
1770     return 0;				 \
1771   case CONST:				 \
1772     return 8;                            \
1773   case LABEL_REF:			 \
1774     return 0;				 \
1775   case SYMBOL_REF:			 \
1776     return 8;				 \
1777   case CONST_DOUBLE:			 \
1778     return 0;
1779 
1780 /* A part of a C `switch' statement that describes the relative costs
1781    of constant RTL expressions.  It must contain `case' labels for
1782    expression codes `const_int', `const', `symbol_ref', `label_ref'
1783    and `const_double'.  Each case must ultimately reach a `return'
1784    statement to return the relative cost of the use of that kind of
1785    constant value in an expression.  The cost may depend on the
1786    precise value of the constant, which is available for examination
1787    in X, and the rtx code of the expression in which it is contained,
1788    found in OUTER_CODE.
1789 
1790    CODE is the expression code--redundant, since it can be obtained
1791    with `GET_CODE (X)'.  */
1792 
1793 #define DEFAULT_RTX_COSTS(X, CODE, OUTER_CODE)			\
1794   return default_rtx_costs ((X), (CODE), (OUTER_CODE))
1795 
1796 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1797    This can be used, for example, to indicate how costly a multiply
1798    instruction is.  In writing this macro, you can use the construct
1799    `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1800    instructions.  OUTER_CODE is the code of the expression in which X
1801    is contained.
1802 
1803    This macro is optional; do not define it if the default cost
1804    assumptions are adequate for the target machine.  */
1805 
1806 #define ADDRESS_COST(ADDRESS) ip2k_address_cost (ADDRESS)
1807 
1808 /* An expression giving the cost of an addressing mode that contains
1809    ADDRESS.  If not defined, the cost is computed from the ADDRESS
1810    expression and the `CONST_COSTS' values.
1811 
1812    For most CISC machines, the default cost is a good approximation
1813    of the true cost of the addressing mode.  However, on RISC
1814    machines, all instructions normally have the same length and
1815    execution time.  Hence all addresses will have equal costs.
1816 
1817    In cases where more than one form of an address is known, the form
1818    with the lowest cost will be used.  If multiple forms have the
1819    same, lowest, cost, the one that is the most complex will be used.
1820 
1821    For example, suppose an address that is equal to the sum of a
1822    register and a constant is used twice in the same basic block.
1823    When this macro is not defined, the address will be computed in a
1824    register and memory references will be indirect through that
1825    register.  On machines where the cost of the addressing mode
1826    containing the sum is no higher than that of a simple indirect
1827    reference, this will produce an additional instruction and
1828    possibly require an additional register.  Proper specification of
1829    this macro eliminates this overhead for such machines.
1830 
1831    Similar use of this macro is made in strength reduction of loops.
1832 
1833    ADDRESS need not be valid as an address.  In such a case, the cost
1834    is not relevant and can be any value; invalid addresses need not be
1835    assigned a different cost.
1836 
1837    On machines where an address involving more than one register is as
1838    cheap as an address computation involving only one register,
1839    defining `ADDRESS_COST' to reflect this can cause two registers to
1840    be live over a region of code where only one would have been if
1841    `ADDRESS_COST' were not defined in that manner.  This effect should
1842    be considered in the definition of this macro.  Equivalent costs
1843    should probably only be given to addresses with different numbers
1844    of registers on machines with lots of registers.
1845 
1846    This macro will normally either not be defined or be defined as a
1847    constant.  */
1848 
1849 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) 7
1850 /* A C expression for the cost of moving data from a register in class
1851    FROM to one in class TO.  The classes are expressed using the
1852    enumeration values such as `GENERAL_REGS'.  A value of 2 is the
1853    default; other values are interpreted relative to that.
1854 
1855    It is not required that the cost always equal 2 when FROM is the
1856    same as TO; on some machines it is expensive to move between
1857    registers if they are not general registers.
1858 
1859    If reload sees an insn consisting of a single `set' between two
1860    hard registers, and if `REGISTER_MOVE_COST' applied to their
1861    classes returns a value of 2, reload does not check to ensure that
1862    the constraints of the insn are met.  Setting a cost of other than
1863    2 will allow reload to verify that the constraints are met.  You
1864    should do this if the `movM' pattern's constraints do not allow
1865    such copying.  */
1866 
1867 #define MEMORY_MOVE_COST(MODE,CLASS,IN) 6
1868 /* A C expression for the cost of moving data of mode M between a
1869    register and memory.  A value of 4 is the default; this cost is
1870    relative to those in `REGISTER_MOVE_COST'.
1871 
1872    If moving between registers and memory is more expensive than
1873    between two registers, you should define this macro to express the
1874    relative cost.  */
1875 
1876 #define SLOW_BYTE_ACCESS 0
1877 /* Define this macro as a C expression which is nonzero if accessing
1878    less than a word of memory (i.e. a `char' or a `short') is no
1879    faster than accessing a word of memory, i.e., if such access
1880    require more than one instruction or if there is no difference in
1881    cost between byte and (aligned) word loads.
1882 
1883    When this macro is not defined, the compiler will access a field by
1884    finding the smallest containing object; when it is defined, a
1885    fullword load will be used if alignment permits.  Unless bytes
1886    accesses are faster than word accesses, using word accesses is
1887    preferable since it may eliminate subsequent memory access if
1888    subsequent accesses occur to other fields in the same word of the
1889    structure, but to different bytes.
1890 
1891    `SLOW_ZERO_EXTEND'
1892    Define this macro if zero-extension (of a `char' or `short' to an
1893    `int') can be done faster if the destination is a register that is
1894    known to be zero.
1895 
1896    If you define this macro, you must have instruction patterns that
1897    recognize RTL structures like this:
1898 
1899    (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
1900 
1901    and likewise for `HImode'.
1902 
1903    `SLOW_UNALIGNED_ACCESS'
1904    Define this macro to be the value 1 if unaligned accesses have a
1905    cost many times greater than aligned accesses, for example if they
1906    are emulated in a trap handler.
1907 
1908    When this macro is nonzero, the compiler will act as if
1909    `STRICT_ALIGNMENT' were nonzero when generating code for block
1910    moves.  This can cause significantly more instructions to be
1911    produced.  Therefore, do not set this macro nonzero if unaligned
1912    accesses only add a cycle or two to the time for a memory access.
1913 
1914    If the value of this macro is always zero, it need not be defined.
1915 
1916    `DONT_REDUCE_ADDR'
1917    Define this macro to inhibit strength reduction of memory
1918    addresses.  (On some machines, such strength reduction seems to do
1919    harm rather than good.)
1920 
1921    `MOVE_RATIO'
1922    The number of scalar move insns which should be generated instead
1923    of a string move insn or a library call.  Increasing the value
1924    will always make code faster, but eventually incurs high cost in
1925    increased code size.
1926 
1927    If you don't define this, a reasonable default is used.  */
1928 
1929 #define NO_FUNCTION_CSE
1930 /* Define this macro if it is as good or better to call a constant
1931    function address than to call an address kept in a register.  */
1932 
1933 #define NO_RECURSIVE_FUNCTION_CSE
1934 /* Define this macro if it is as good or better for a function to call
1935    itself with an explicit address than to call an address kept in a
1936    register.
1937 
1938    `ADJUST_COST (INSN, LINK, DEP_INSN, COST)'
1939    A C statement (sans semicolon) to update the integer variable COST
1940    based on the relationship between INSN that is dependent on
1941    DEP_INSN through the dependence LINK.  The default is to make no
1942    adjustment to COST.  This can be used for example to specify to
1943    the scheduler that an output- or anti-dependence does not incur
1944    the same cost as a data-dependence.
1945 
1946    `ADJUST_PRIORITY (INSN)'
1947    A C statement (sans semicolon) to update the integer scheduling
1948    priority `INSN_PRIORITY(INSN)'.  Reduce the priority to execute
1949    the INSN earlier, increase the priority to execute INSN later.
1950    Do not define this macro if you do not need to adjust the
1951    scheduling priorities of insns.  */
1952 
1953 #define TEXT_SECTION_ASM_OP ".text"
1954 /* A C expression whose value is a string containing the assembler
1955    operation that should precede instructions and read-only data.
1956    Normally `".text"' is right.  */
1957 
1958 #define DATA_SECTION_ASM_OP ".data"
1959 /* A C expression whose value is a string containing the assembler
1960    operation to identify the following data as writable initialized
1961    data.  Normally `".data"' is right.  */
1962 
1963 #define JUMP_TABLES_IN_TEXT_SECTION 1
1964 /* Define this macro if jump tables (for `tablejump' insns) should be
1965    output in the text section, along with the assembler instructions.
1966    Otherwise, the readonly data section is used.
1967 
1968    This macro is irrelevant if there is no separate readonly data
1969    section.  */
1970 
1971 #define ASM_COMMENT_START " ; "
1972 /* A C string constant describing how to begin a comment in the target
1973    assembler language.  The compiler assumes that the comment will
1974    end at the end of the line.  */
1975 
1976 #define ASM_APP_ON "/* #APP */\n"
1977 /* A C string constant for text to be output before each `asm'
1978    statement or group of consecutive ones.  Normally this is
1979    `"#APP"', which is a comment that has no effect on most assemblers
1980    but tells the GNU assembler that it must check the lines that
1981    follow for all valid assembler constructs.  */
1982 
1983 #define ASM_APP_OFF "/* #NOAPP */\n"
1984 /* A C string constant for text to be output after each `asm'
1985    statement or group of consecutive ones.  Normally this is
1986    `"#NO_APP"', which tells the GNU assembler to resume making the
1987    time-saving assumptions that are valid for ordinary compiler
1988    output.  */
1989 
1990 
1991 #define OBJC_PROLOGUE {}
1992 /* A C statement to output any assembler statements which are
1993    required to precede any Objective-C object definitions or message
1994    sending.  The statement is executed only when compiling an
1995    Objective-C program.  */
1996 
1997 #define ASM_OUTPUT_DOUBLE(STREAM, VALUE) \
1998   fprintf ((STREAM), ".double %.20e\n", (VALUE))
1999 #define ASM_OUTPUT_FLOAT(STREAM, VALUE) \
2000   asm_output_float ((STREAM), (VALUE))
2001 
2002 /* `ASM_OUTPUT_LONG_DOUBLE (STREAM, VALUE)'
2003    `ASM_OUTPUT_THREE_QUARTER_FLOAT (STREAM, VALUE)'
2004    `ASM_OUTPUT_SHORT_FLOAT (STREAM, VALUE)'
2005    `ASM_OUTPUT_BYTE_FLOAT (STREAM, VALUE)'
2006    A C statement to output to the stdio stream STREAM an assembler
2007    instruction to assemble a floating-point constant of `TFmode',
2008    `DFmode', `SFmode', `TQFmode', `HFmode', or `QFmode',
2009    respectively, whose value is VALUE.  VALUE will be a C expression
2010    of type `REAL_VALUE_TYPE'.  Macros such as
2011    `REAL_VALUE_TO_TARGET_DOUBLE' are useful for writing these
2012    definitions.  */
2013 
2014 #define ASM_OUTPUT_INT(FILE, VALUE)			\
2015  ( fprintf ((FILE), "\t.long "),			\
2016    output_addr_const ((FILE), (VALUE)),			\
2017    fputs ("\n", (FILE)))
2018 
2019  /* Likewise for `short' and `char' constants.  */
2020 
2021 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2022   asm_output_short ((FILE), (VALUE))
2023 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2024   asm_output_char ((FILE), (VALUE))
2025 
2026 /* `ASM_OUTPUT_QUADRUPLE_INT (STREAM, EXP)'
2027    A C statement to output to the stdio stream STREAM an assembler
2028    instruction to assemble an integer of 16, 8, 4, 2 or 1 bytes,
2029    respectively, whose value is VALUE.  The argument EXP will be an
2030    RTL expression which represents a constant value.  Use
2031    `output_addr_const (STREAM, EXP)' to output this value as an
2032    assembler expression.
2033 
2034    For sizes larger than `UNITS_PER_WORD', if the action of a macro
2035    would be identical to repeatedly calling the macro corresponding to
2036    a size of `UNITS_PER_WORD', once for each word, you need not define
2037    the macro.  */
2038 
2039 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2040   asm_output_byte ((FILE), (VALUE))
2041 /* A C statement to output to the stdio stream STREAM an assembler
2042    instruction to assemble a single byte containing the number VALUE.  */
2043 
2044 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) \
2045   ((C) == '\n' || ((C) == '$'))
2046 /* Define this macro as a C expression which is nonzero if C is used
2047    as a logical line separator by the assembler.
2048 
2049    If you do not define this macro, the default is that only the
2050    character `;' is treated as a logical line separator.  */
2051 
2052 #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED)	\
2053 do {							\
2054      fputs ("\t.comm ", (STREAM));			\
2055      assemble_name ((STREAM), (NAME));			\
2056      fprintf ((STREAM), ",%d\n", (SIZE));		\
2057 } while (0)
2058 /* A C statement (sans semicolon) to output to the stdio stream
2059    STREAM the assembler definition of a common-label named NAME whose
2060    size is SIZE bytes.  The variable ROUNDED is the size rounded up
2061    to whatever alignment the caller wants.
2062 
2063    Use the expression `assemble_name (STREAM, NAME)' to output the
2064    name itself; before and after that, output the additional
2065    assembler syntax for defining the name, and a newline.
2066 
2067    This macro controls how the assembler definitions of uninitialized
2068    common global variables are output.  */
2069 
2070 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED)	\
2071 do {							\
2072      fputs ("\t.lcomm ", (STREAM));			\
2073      assemble_name ((STREAM), (NAME));			\
2074      fprintf ((STREAM), ",%d\n", (SIZE));		\
2075 } while (0)
2076 /* A C statement (sans semicolon) to output to the stdio stream
2077    STREAM the assembler definition of a local-common-label named NAME
2078    whose size is SIZE bytes.  The variable ROUNDED is the size
2079    rounded up to whatever alignment the caller wants.
2080 
2081    Use the expression `assemble_name (STREAM, NAME)' to output the
2082    name itself; before and after that, output the additional
2083    assembler syntax for defining the name, and a newline.
2084 
2085    This macro controls how the assembler definitions of uninitialized
2086    static variables are output.  */
2087 
2088 #undef WEAK_ASM_OP
2089 #define WEAK_ASM_OP	".weak"
2090 
2091 #undef ASM_DECLARE_FUNCTION_SIZE
2092 #define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL)		\
2093   do {								\
2094     if (!flag_inhibit_size_directive)				\
2095       ASM_OUTPUT_MEASURED_SIZE (FILE, FNAME);			\
2096   } while (0)
2097 /* A C statement (sans semicolon) to output to the stdio stream
2098    STREAM any text necessary for declaring the size of a function
2099    which is being defined.  The argument NAME is the name of the
2100    function.  The argument DECL is the `FUNCTION_DECL' tree node
2101    representing the function.
2102 
2103    If this macro is not defined, then the function size is not
2104    defined.  */
2105 
2106 #define ESCAPES \
2107 "\1\1\1\1\1\1\1\1btn\1fr\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
2108 \0\0\"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
2109 \0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\\\0\0\0\
2110 \0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\
2111 \1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
2112 \1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
2113 \1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
2114 \1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1"
2115 /* A table of bytes codes used by the ASM_OUTPUT_ASCII and
2116    ASM_OUTPUT_LIMITED_STRING macros.  Each byte in the table
2117    corresponds to a particular byte value [0..255].  For any
2118    given byte value, if the value in the corresponding table
2119    position is zero, the given character can be output directly.
2120    If the table value is 1, the byte must be output as a \ooo
2121    octal escape.  If the tables value is anything else, then the
2122    byte value should be output as a \ followed by the value
2123    in the table.  Note that we can use standard UN*X escape
2124    sequences for many control characters, but we don't use
2125    \a to represent BEL because some svr4 assemblers (e.g. on
2126    the i386) don't know about that.  Also, we don't use \v
2127    since some versions of gas, such as 2.2 did not accept it.  */
2128 
2129 /* Globalizing directive for a label.  */
2130 #define GLOBAL_ASM_OP ".global\t"
2131 
2132 #undef ASM_FORMAT_PRIVATE_NAME
2133 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
2134 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
2135   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2136 
2137 /* A C expression to assign to OUTVAR (which is a variable of type
2138    `char *') a newly allocated string made from the string NAME and
2139    the number NUMBER, with some suitable punctuation added.  Use
2140    `alloca' to get space for the string.
2141 
2142    The string will be used as an argument to `ASM_OUTPUT_LABELREF' to
2143    produce an assembler label for an internal static variable whose
2144    name is NAME.  Therefore, the string must be such as to result in
2145    valid assembler code.  The argument NUMBER is different each time
2146    this macro is executed; it prevents conflicts between
2147    similarly-named internal static variables in different scopes.
2148 
2149    Ideally this string should not be a valid C identifier, to prevent
2150    any conflict with the user's own symbols.  Most assemblers allow
2151    periods or percent signs in assembler symbols; putting at least
2152    one of these between the name and the number will suffice.  */
2153 
2154 #define REGISTER_NAMES	{					\
2155   "$00","$01","$02","$03","iph","ipl","sph","spl",		\
2156   "pch","pcl","wreg","status","dph","dpl","$0e","mulh",		\
2157   "$10","$11","$12","$13","$14","$15","$16","$17",		\
2158   "$18","$19","$1a","$1b","$1c","$1d","$1e","$1f",		\
2159   "$20","$21","$22","$23","$24","$25","$26","$27",		\
2160   "$28","$29","$2a","$2b","$2c","$2d","$2e","$2f",		\
2161   "$30","$31","$32","$33","$34","$35","$36","$37",		\
2162   "$38","$39","$3a","$3b","$3c","$3d","$3e","$3f",		\
2163   "$40","$41","$42","$43","$44","$45","$46","$47",		\
2164   "$48","$49","$4a","$4b","$4c","$4d","$4e","$4f",		\
2165   "$50","$51","$52","$53","$54","$55","$56","$57",		\
2166   "$58","$59","$5a","$5b","$5c","$5d","$5e","$5f",		\
2167   "$60","$61","$62","$63","$64","$65","$66","$67",		\
2168   "$68","$69","$6a","$6b","$6c","$6d","$6e","$6f",		\
2169   "$70","$71","$72","$73","$74","$75","$76","$77",		\
2170   "$78","$79","$7a","$7b","$7c","$7d","callh","calll",		\
2171   "$80","$81","$82","$83","$84","$85","$86","$87",		\
2172   "$88","$89","$8a","$8b","$8c","$8d","$8e","$8f",		\
2173   "$90","$91","$92","$93","$94","$95","$96","$97",		\
2174   "$98","$99","$9a","$9b","$9c","$9d","$9e","$9f",		\
2175   "$a0","$a1","$a2","$a3","$a4","$a5","$a6","$a7",		\
2176   "$a8","$a9","$aa","$ab","$ac","$ad","$ae","$af",		\
2177   "$b0","$b1","$b2","$b3","$b4","$b5","$b6","$b7",		\
2178   "$b8","$b9","$ba","$bb","$bc","$bd","$be","$bf",		\
2179   "$c0","$c1","$c2","$c3","$c4","$c5","$c6","$c7",		\
2180   "$c8","$c9","$ca","$cb","$cc","$cd","$ce","$cf",		\
2181   "$d0","$d1","$d2","$d3","$d4","$d5","$d6","$d7",		\
2182   "$d8","$d9","$da","$db","$dc","$dd","$de","$df",		\
2183   "$e0","$e1","$e2","$e3","$e4","$e5","$e6","$e7",		\
2184   "$e8","$e9","$ea","$eb","$ec","$ed","$ee","$ef",		\
2185   "$f0","$f1","$f2","$f3","$f4","$f5","$f6","$f7",		\
2186   "$f8","$f9","$fa","$fb","$fc","$fd","$fe","$ff",		\
2187   "vfph","vfpl","vaph","vapl"}
2188 
2189 /* A C initializer containing the assembler's names for the machine
2190    registers, each one as a C string constant.  This is what
2191    translates register numbers in the compiler into assembler
2192    language.  */
2193 
2194 #define PRINT_OPERAND(STREAM, X, CODE) \
2195   print_operand ((STREAM), (X), (CODE))
2196 /* A C compound statement to output to stdio stream STREAM the
2197    assembler syntax for an instruction operand X.  X is an RTL
2198    expression.
2199 
2200    CODE is a value that can be used to specify one of several ways of
2201    printing the operand.  It is used when identical operands must be
2202    printed differently depending on the context.  CODE comes from the
2203    `%' specification that was used to request printing of the
2204    operand.  If the specification was just `%DIGIT' then CODE is 0;
2205    if the specification was `%LTR DIGIT' then CODE is the ASCII code
2206    for LTR.
2207 
2208    If X is a register, this macro should print the register's name.
2209    The names can be found in an array `reg_names' whose type is `char
2210    *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
2211 
2212    When the machine description has a specification `%PUNCT' (a `%'
2213    followed by a punctuation character), this macro is called with a
2214    null pointer for X and the punctuation character for CODE.  */
2215 
2216 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2217   ((CODE) == '<' || (CODE) == '>')
2218 
2219 /* A C expression which evaluates to true if CODE is a valid
2220    punctuation character for use in the `PRINT_OPERAND' macro.  If
2221    `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2222    punctuation characters (except for the standard one, `%') are used
2223    in this way.  */
2224 
2225 #define PRINT_OPERAND_ADDRESS(STREAM, X) print_operand_address(STREAM, X)
2226 /* A C compound statement to output to stdio stream STREAM the
2227    assembler syntax for an instruction operand that is a memory
2228    reference whose address is X.  X is an RTL expression.
2229 
2230    On some machines, the syntax for a symbolic address depends on the
2231    section that the address refers to.  On these machines, define the
2232    macro `ENCODE_SECTION_INFO' to store the information into the
2233    `symbol_ref', and then check for it here.  *Note Assembler
2234    Format::.  */
2235 
2236 /* Since register names don't have a prefix, we must preface all
2237    user identifiers with the '_' to prevent confusion.  */
2238 
2239 #undef USER_LABEL_PREFIX
2240 #define USER_LABEL_PREFIX "_"
2241 #define LOCAL_LABEL_PREFIX ".L"
2242 /* `LOCAL_LABEL_PREFIX'
2243    `REGISTER_PREFIX'
2244    `IMMEDIATE_PREFIX'
2245    If defined, C string expressions to be used for the `%R', `%L',
2246    `%U', and `%I' options of `asm_fprintf' (see `final.c').  These
2247    are useful when a single `md' file must support multiple assembler
2248    formats.  In that case, the various `tm.h' files can define these
2249    macros differently.  */
2250 
2251 
2252 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
2253   asm_fprintf ((STREAM), "\tpage\t%L%d\n\tjmp\t%L%d\n", (VALUE), (VALUE))
2254 
2255 /* elfos.h presumes that we will want switch/case dispatch tables aligned.
2256    This is not so for the ip2k.  */
2257 #undef ASM_OUTPUT_CASE_LABEL
2258 
2259 #undef ASM_OUTPUT_ADDR_VEC_ELT
2260 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
2261   asm_fprintf ((STREAM), "\tpage\t%L%d\n\tjmp\t%L%d\n", (VALUE), (VALUE))
2262 
2263 /* This macro should be provided on machines where the addresses in a
2264    dispatch table are absolute.
2265 
2266    The definition should be a C statement to output to the stdio
2267    stream STREAM an assembler pseudo-instruction to generate a
2268    reference to a label.  VALUE is the number of an internal label
2269    whose definition is output using `ASM_OUTPUT_INTERNAL_LABEL'.  For
2270    example,
2271 
2272    fprintf ((STREAM), "\t.word L%d\n", (VALUE))  */
2273 
2274 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2275   fprintf ((STREAM), "\t.align %d\n", (POWER))
2276 /* A C statement to output to the stdio stream STREAM an assembler
2277    command to advance the location counter to a multiple of 2 to the
2278    POWER bytes.  POWER will be a C expression of type `int'.  */
2279 
2280 /* Since instructions are 16 bit word addresses, we should lie and claim that
2281    the dispatch vectors are in QImode.  Otherwise the offset into the jump
2282    table will be scaled by the MODE_SIZE.  */
2283 
2284 #define CASE_VECTOR_MODE QImode
2285 /* An alias for a machine mode name.  This is the machine mode that
2286    elements of a jump-table should have.  */
2287 
2288 
2289 /* `CASE_VALUES_THRESHOLD'
2290    Define this to be the smallest number of different values for
2291    which it is best to use a jump-table instead of a tree of
2292    conditional branches.  The default is four for machines with a
2293    `casesi' instruction and five otherwise.  This is best for most
2294    machines.  */
2295 
2296 #undef WORD_REGISTER_OPERATIONS
2297 /* Define this macro if operations between registers with integral
2298    mode smaller than a word are always performed on the entire
2299    register.  Most RISC machines have this property and most CISC
2300    machines do not.  */
2301 
2302 #define MOVE_MAX 1
2303 /* The maximum number of bytes that a single instruction can move
2304    quickly between memory and registers or between two memory
2305    locations.  */
2306 
2307 #define MOVE_RATIO		3
2308 /* MOVE_RATIO is the number of move instructions that is better than a
2309    block move.  Make this small on the IP2k, since the code size grows very
2310    large with each move.  */
2311 
2312 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2313 /* A C expression which is nonzero if on this machine it is safe to
2314    "convert" an integer of INPREC bits to one of OUTPREC bits (where
2315    OUTPREC is smaller than INPREC) by merely operating on it as if it
2316    had only OUTPREC bits.
2317 
2318    On many machines, this expression can be 1.
2319 
2320    When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for
2321    modes for which `MODES_TIEABLE_P' is 0, suboptimal code can result.
2322    If this is the case, making `TRULY_NOOP_TRUNCATION' return 0 in
2323    such cases may improve things.  */
2324 
2325 #define Pmode HImode
2326 /* An alias for the machine mode for pointers.  On most machines,
2327    define this to be the integer mode corresponding to the width of a
2328    hardware pointer; `SImode' on 32-bit machine or `DImode' on 64-bit
2329    machines.  On some machines you must define this to be one of the
2330    partial integer modes, such as `PSImode'.
2331 
2332    The width of `Pmode' must be at least as large as the value of
2333    `POINTER_SIZE'.  If it is not equal, you must define the macro
2334    `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to
2335    `Pmode'.  */
2336 
2337 #define FUNCTION_MODE HImode
2338 /* An alias for the machine mode used for memory references to
2339    functions being called, in `call' RTL expressions.  On most
2340    machines this should be `QImode'.  */
2341 
2342 #define INTEGRATE_THRESHOLD(DECL) \
2343   (1 + (3 * list_length (DECL_ARGUMENTS (DECL)) / 2))
2344 /* A C expression for the maximum number of instructions above which
2345    the function DECL should not be inlined.  DECL is a
2346    `FUNCTION_DECL' node.
2347 
2348    The default definition of this macro is 64 plus 8 times the number
2349    of arguments that the function accepts.  Some people think a larger
2350    threshold should be used on RISC machines.  */
2351 
2352 #define DOLLARS_IN_IDENTIFIERS 0
2353 /* Define this macro to control use of the character `$' in identifier
2354    names.  0 means `$' is not allowed by default; 1 means it is
2355    allowed.  1 is the default; there is no need to define this macro
2356    in that case.  This macro controls the compiler proper; it does
2357    not affect the preprocessor.  */
2358 
2359 #define MACHINE_DEPENDENT_REORG(INSN) machine_dependent_reorg (INSN)
2360 /* In rare cases, correct code generation requires extra machine
2361    dependent processing between the second jump optimization pass and
2362    delayed branch scheduling.  On those machines, define this macro
2363    as a C statement to act on the code starting at INSN.  */
2364 
2365 extern int ip2k_reorg_in_progress;
2366 /* Flag if we're in the middle of IP2k-specific reorganization.  */
2367 
2368 extern int ip2k_reorg_completed;
2369 /* Flag if we've completed our IP2k-specific reorganization.  If we have
2370    then we allow quite a few more tricks than before.  */
2371 
2372 extern int ip2k_reorg_split_dimode;
2373 extern int ip2k_reorg_split_simode;
2374 extern int ip2k_reorg_split_qimode;
2375 extern int ip2k_reorg_split_himode;
2376 /* Flags for various split operations that we run in sequence.  */
2377 
2378 extern int ip2k_reorg_merge_qimode;
2379 /* Flag to indicate that it's safe to merge QImode operands.  */
2380 
2381 #define GIV_SORT_CRITERION(X, Y)			\
2382   do {							\
2383     if (GET_CODE ((X)->add_val) == CONST_INT		\
2384         && GET_CODE ((Y)->add_val) == CONST_INT)	\
2385       return INTVAL ((X)->add_val) - INTVAL ((Y)->add_val); \
2386   } while (0)
2387 
2388 /* In some cases, the strength reduction optimization pass can
2389    produce better code if this is defined.  This macro controls the
2390    order that induction variables are combined.  This macro is
2391    particularly useful if the target has limited addressing modes.
2392    For instance, the SH target has only positive offsets in
2393    addresses.  Thus sorting to put the smallest address first allows
2394    the most combinations to be found.  */
2395 
2396 #define TRAMPOLINE_TEMPLATE(FILE) abort ()
2397 
2398 /* Length in units of the trampoline for entering a nested function.  */
2399 
2400 #define TRAMPOLINE_SIZE 4
2401 
2402 /* Emit RTL insns to initialize the variable parts of a trampoline.
2403    FNADDR is an RTX for the address of the function's pure code.
2404    CXT is an RTX for the static chain value for the function.  */
2405 
2406 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
2407 {									\
2408   emit_move_insn (gen_rtx_MEM (HImode, plus_constant ((TRAMP), 2)),	\
2409 		   	   CXT);    					\
2410   emit_move_insn (gen_rtx_MEM (HImode, plus_constant ((TRAMP), 6)),	\
2411 			   FNADDR);					\
2412 }
2413 /* Store in cc_status the expressions
2414    that the condition codes will describe
2415    after execution of an instruction whose pattern is EXP.
2416    Do not alter them if the instruction would not alter the cc's.  */
2417 
2418 #define NOTICE_UPDATE_CC(EXP, INSN) (void)(0)
2419 
2420 /* Output assembler code to FILE to increment profiler label # LABELNO
2421    for profiling a function entry.  */
2422 
2423 #define FUNCTION_PROFILER(FILE, LABELNO)  \
2424   fprintf ((FILE), "/* profiler %d */", (LABELNO))
2425 
2426 #define TARGET_MEM_FUNCTIONS
2427 /* Define this macro if GNU CC should generate calls to the System V
2428    (and ANSI C) library functions `memcpy' and `memset' rather than
2429    the BSD functions `bcopy' and `bzero'.  */
2430 
2431 
2432 #undef ENDFILE_SPEC
2433 #undef LINK_SPEC
2434 #undef STARTFILE_SPEC
2435 
2436 /* Another C string constant used much like `LINK_SPEC'.  The
2437    difference between the two is that `ENDFILE_SPEC' is used at the
2438    very end of the command given to the linker.
2439 
2440    Do not define this macro if it does not need to do anything.  */
2441 
2442 #if defined(__STDC__) || defined(ALMOST_STDC)
2443 #define AS2(a,b,c) #a "\t" #b "," #c
2444 #define AS1(a,b) #a "\t" #b
2445 #else
2446 #define AS1(a,b) "a	b"
2447 #define AS2(a,b,c) "a	b,c"
2448 #endif
2449 #define OUT_AS1(a,b) output_asm_insn (AS1 (a,b), operands)
2450 #define OUT_AS2(a,b,c) output_asm_insn (AS2 (a,b,c), operands)
2451 #define CR_TAB "\n\t"
2452 
2453 /* Define this macro as a C statement that declares additional library
2454    routines renames existing ones. `init_optabs' calls this macro
2455    after initializing all the normal library routines.  */
2456 
2457 #define INIT_TARGET_OPTABS				\
2458 {							\
2459   smul_optab->handlers[(int) SImode].libfunc		\
2460     = gen_rtx_SYMBOL_REF (Pmode, "_mulsi3");		\
2461 							\
2462   smul_optab->handlers[(int) DImode].libfunc		\
2463     = gen_rtx_SYMBOL_REF (Pmode, "_muldi3");		\
2464 							\
2465   cmp_optab->handlers[(int) HImode].libfunc		\
2466     = gen_rtx_SYMBOL_REF (Pmode, "_cmphi2");		\
2467 							\
2468   cmp_optab->handlers[(int) SImode].libfunc		\
2469     = gen_rtx_SYMBOL_REF (Pmode, "_cmpsi2");		\
2470 }
2471 
2472 #define PREDICATE_CODES					\
2473   {"ip2k_ip_operand", {MEM}},				\
2474   {"ip2k_short_operand", {MEM}},			\
2475   {"ip2k_gen_operand", {MEM, REG, SUBREG}},		\
2476   {"ip2k_nonptr_operand", {REG, SUBREG}},		\
2477   {"ip2k_ptr_operand", {REG, SUBREG}},			\
2478   {"ip2k_split_dest_operand", {REG, SUBREG, MEM}}, 	\
2479   {"ip2k_sp_operand", {REG}},				\
2480   {"ip2k_nonsp_reg_operand", {REG, SUBREG}}, 		\
2481   {"ip2k_symbol_ref_operand", {SYMBOL_REF}}, 		\
2482   {"ip2k_binary_operator", {PLUS, MINUS, MULT, DIV,	\
2483 			    UDIV, MOD, UMOD, AND, IOR,	\
2484 			    XOR, COMPARE, ASHIFT,	\
2485 			    ASHIFTRT, LSHIFTRT}},	\
2486   {"ip2k_unary_operator", {NEG, NOT, SIGN_EXTEND,	\
2487 			   ZERO_EXTEND}},		\
2488   {"ip2k_unsigned_comparison_operator", {LTU, GTU, NE,	\
2489 					 EQ, LEU, GEU}},\
2490   {"ip2k_signed_comparison_operator", {LT, GT, LE, GE}},
2491 
2492 #define DWARF2_DEBUGGING_INFO 1
2493 
2494 #define DWARF2_ASM_LINE_DEBUG_INFO	1
2495 
2496 #define DBX_REGISTER_NUMBER(REGNO)	(REGNO)
2497 
2498 /* Miscellaneous macros to describe machine specifics. */
2499 
2500 #define STORE_FLAG_VALUE	1
2501 
2502 #define IS_PSEUDO_P(R)	(REGNO (R) >= FIRST_PSEUDO_REGISTER)
2503 
2504 /* Default calculations would cause DWARF address sizes to be 2 bytes,
2505    but the Harvard architecture of the IP2k and the word-addressed 64k
2506    of instruction memory causes us to want a 32-bit "address" field.  */
2507 #undef DWARF2_ADDR_SIZE
2508 #define DWARF2_ADDR_SIZE	4
2509 
2510