xref: /llvm-project/clang/lib/Sema/SemaStmt.cpp (revision abc8812df02599fc413d9ed77b992f8236ed2af9)
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CheckExprLifetime.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DynamicRecursiveASTVisitor.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/IgnoreExpr.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Ownership.h"
34 #include "clang/Sema/Scope.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaCUDA.h"
37 #include "clang/Sema/SemaObjC.h"
38 #include "clang/Sema/SemaOpenMP.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/STLForwardCompat.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/StringExtras.h"
45 
46 using namespace clang;
47 using namespace sema;
48 
49 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
50   if (FE.isInvalid())
51     return StmtError();
52 
53   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
54   if (FE.isInvalid())
55     return StmtError();
56 
57   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
58   // void expression for its side effects.  Conversion to void allows any
59   // operand, even incomplete types.
60 
61   // Same thing in for stmt first clause (when expr) and third clause.
62   return StmtResult(FE.getAs<Stmt>());
63 }
64 
65 
66 StmtResult Sema::ActOnExprStmtError() {
67   DiscardCleanupsInEvaluationContext();
68   return StmtError();
69 }
70 
71 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
72                                bool HasLeadingEmptyMacro) {
73   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
74 }
75 
76 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
77                                SourceLocation EndLoc) {
78   DeclGroupRef DG = dg.get();
79 
80   // If we have an invalid decl, just return an error.
81   if (DG.isNull()) return StmtError();
82 
83   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
84 }
85 
86 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
87   DeclGroupRef DG = dg.get();
88 
89   // If we don't have a declaration, or we have an invalid declaration,
90   // just return.
91   if (DG.isNull() || !DG.isSingleDecl())
92     return;
93 
94   Decl *decl = DG.getSingleDecl();
95   if (!decl || decl->isInvalidDecl())
96     return;
97 
98   // Only variable declarations are permitted.
99   VarDecl *var = dyn_cast<VarDecl>(decl);
100   if (!var) {
101     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
102     decl->setInvalidDecl();
103     return;
104   }
105 
106   // foreach variables are never actually initialized in the way that
107   // the parser came up with.
108   var->setInit(nullptr);
109 
110   // In ARC, we don't need to retain the iteration variable of a fast
111   // enumeration loop.  Rather than actually trying to catch that
112   // during declaration processing, we remove the consequences here.
113   if (getLangOpts().ObjCAutoRefCount) {
114     QualType type = var->getType();
115 
116     // Only do this if we inferred the lifetime.  Inferred lifetime
117     // will show up as a local qualifier because explicit lifetime
118     // should have shown up as an AttributedType instead.
119     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
120       // Add 'const' and mark the variable as pseudo-strong.
121       var->setType(type.withConst());
122       var->setARCPseudoStrong(true);
123     }
124   }
125 }
126 
127 /// Diagnose unused comparisons, both builtin and overloaded operators.
128 /// For '==' and '!=', suggest fixits for '=' or '|='.
129 ///
130 /// Adding a cast to void (or other expression wrappers) will prevent the
131 /// warning from firing.
132 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
133   SourceLocation Loc;
134   bool CanAssign;
135   enum { Equality, Inequality, Relational, ThreeWay } Kind;
136 
137   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
138     if (!Op->isComparisonOp())
139       return false;
140 
141     if (Op->getOpcode() == BO_EQ)
142       Kind = Equality;
143     else if (Op->getOpcode() == BO_NE)
144       Kind = Inequality;
145     else if (Op->getOpcode() == BO_Cmp)
146       Kind = ThreeWay;
147     else {
148       assert(Op->isRelationalOp());
149       Kind = Relational;
150     }
151     Loc = Op->getOperatorLoc();
152     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
153   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
154     switch (Op->getOperator()) {
155     case OO_EqualEqual:
156       Kind = Equality;
157       break;
158     case OO_ExclaimEqual:
159       Kind = Inequality;
160       break;
161     case OO_Less:
162     case OO_Greater:
163     case OO_GreaterEqual:
164     case OO_LessEqual:
165       Kind = Relational;
166       break;
167     case OO_Spaceship:
168       Kind = ThreeWay;
169       break;
170     default:
171       return false;
172     }
173 
174     Loc = Op->getOperatorLoc();
175     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
176   } else {
177     // Not a typo-prone comparison.
178     return false;
179   }
180 
181   // Suppress warnings when the operator, suspicious as it may be, comes from
182   // a macro expansion.
183   if (S.SourceMgr.isMacroBodyExpansion(Loc))
184     return false;
185 
186   S.Diag(Loc, diag::warn_unused_comparison)
187     << (unsigned)Kind << E->getSourceRange();
188 
189   // If the LHS is a plausible entity to assign to, provide a fixit hint to
190   // correct common typos.
191   if (CanAssign) {
192     if (Kind == Inequality)
193       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
194         << FixItHint::CreateReplacement(Loc, "|=");
195     else if (Kind == Equality)
196       S.Diag(Loc, diag::note_equality_comparison_to_assign)
197         << FixItHint::CreateReplacement(Loc, "=");
198   }
199 
200   return true;
201 }
202 
203 static bool DiagnoseNoDiscard(Sema &S, const NamedDecl *OffendingDecl,
204                               const WarnUnusedResultAttr *A, SourceLocation Loc,
205                               SourceRange R1, SourceRange R2, bool IsCtor) {
206   if (!A)
207     return false;
208   StringRef Msg = A->getMessage();
209 
210   if (Msg.empty()) {
211     if (OffendingDecl)
212       return S.Diag(Loc, diag::warn_unused_return_type)
213              << IsCtor << A << OffendingDecl << false << R1 << R2;
214     if (IsCtor)
215       return S.Diag(Loc, diag::warn_unused_constructor)
216              << A << false << R1 << R2;
217     return S.Diag(Loc, diag::warn_unused_result) << A << false << R1 << R2;
218   }
219 
220   if (OffendingDecl)
221     return S.Diag(Loc, diag::warn_unused_return_type)
222            << IsCtor << A << OffendingDecl << true << Msg << R1 << R2;
223   if (IsCtor)
224     return S.Diag(Loc, diag::warn_unused_constructor)
225            << A << true << Msg << R1 << R2;
226   return S.Diag(Loc, diag::warn_unused_result) << A << true << Msg << R1 << R2;
227 }
228 
229 namespace {
230 
231 // Diagnoses unused expressions that call functions marked [[nodiscard]],
232 // [[gnu::warn_unused_result]] and similar.
233 // Additionally, a DiagID can be provided to emit a warning in additional
234 // contexts (such as for an unused LHS of a comma expression)
235 void DiagnoseUnused(Sema &S, const Expr *E, std::optional<unsigned> DiagID) {
236   bool NoDiscardOnly = !DiagID.has_value();
237 
238   // If we are in an unevaluated expression context, then there can be no unused
239   // results because the results aren't expected to be used in the first place.
240   if (S.isUnevaluatedContext())
241     return;
242 
243   SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
244   // In most cases, we don't want to warn if the expression is written in a
245   // macro body, or if the macro comes from a system header. If the offending
246   // expression is a call to a function with the warn_unused_result attribute,
247   // we warn no matter the location. Because of the order in which the various
248   // checks need to happen, we factor out the macro-related test here.
249   bool ShouldSuppress = S.SourceMgr.isMacroBodyExpansion(ExprLoc) ||
250                         S.SourceMgr.isInSystemMacro(ExprLoc);
251 
252   const Expr *WarnExpr;
253   SourceLocation Loc;
254   SourceRange R1, R2;
255   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, S.Context))
256     return;
257 
258   if (!NoDiscardOnly) {
259     // If this is a GNU statement expression expanded from a macro, it is
260     // probably unused because it is a function-like macro that can be used as
261     // either an expression or statement. Don't warn, because it is almost
262     // certainly a false positive.
263     if (isa<StmtExpr>(E) && Loc.isMacroID())
264       return;
265 
266     // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
267     // That macro is frequently used to suppress "unused parameter" warnings,
268     // but its implementation makes clang's -Wunused-value fire. Prevent this.
269     if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
270       SourceLocation SpellLoc = Loc;
271       if (S.findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
272         return;
273     }
274   }
275 
276   // Okay, we have an unused result.  Depending on what the base expression is,
277   // we might want to make a more specific diagnostic.  Check for one of these
278   // cases now.
279   if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
280     E = Temps->getSubExpr();
281   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
282     E = TempExpr->getSubExpr();
283 
284   if (DiagnoseUnusedComparison(S, E))
285     return;
286 
287   E = WarnExpr;
288   if (const auto *Cast = dyn_cast<CastExpr>(E))
289     if (Cast->getCastKind() == CK_NoOp ||
290         Cast->getCastKind() == CK_ConstructorConversion ||
291         Cast->getCastKind() == CK_IntegralCast)
292       E = Cast->getSubExpr()->IgnoreImpCasts();
293 
294   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
295     if (E->getType()->isVoidType())
296       return;
297 
298     auto [OffendingDecl, A] = CE->getUnusedResultAttr(S.Context);
299     if (DiagnoseNoDiscard(S, OffendingDecl,
300                           cast_or_null<WarnUnusedResultAttr>(A), Loc, R1, R2,
301                           /*isCtor=*/false))
302       return;
303 
304     // If the callee has attribute pure, const, or warn_unused_result, warn with
305     // a more specific message to make it clear what is happening. If the call
306     // is written in a macro body, only warn if it has the warn_unused_result
307     // attribute.
308     if (const Decl *FD = CE->getCalleeDecl()) {
309       if (ShouldSuppress)
310         return;
311       if (FD->hasAttr<PureAttr>()) {
312         S.Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
313         return;
314       }
315       if (FD->hasAttr<ConstAttr>()) {
316         S.Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
317         return;
318       }
319     }
320   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
321     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
322       const NamedDecl *OffendingDecl = nullptr;
323       const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
324       if (!A) {
325         OffendingDecl = Ctor->getParent();
326         A = OffendingDecl->getAttr<WarnUnusedResultAttr>();
327       }
328       if (DiagnoseNoDiscard(S, OffendingDecl, A, Loc, R1, R2,
329                             /*isCtor=*/true))
330         return;
331     }
332   } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
333     if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
334 
335       if (DiagnoseNoDiscard(S, TD, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
336                             R2, /*isCtor=*/false))
337         return;
338     }
339   } else if (ShouldSuppress)
340     return;
341 
342   E = WarnExpr;
343   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
344     if (S.getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
345       S.Diag(Loc, diag::err_arc_unused_init_message) << R1;
346       return;
347     }
348     const ObjCMethodDecl *MD = ME->getMethodDecl();
349     if (MD) {
350       if (DiagnoseNoDiscard(S, nullptr, MD->getAttr<WarnUnusedResultAttr>(),
351                             Loc, R1, R2,
352                             /*isCtor=*/false))
353         return;
354     }
355   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
356     const Expr *Source = POE->getSyntacticForm();
357     // Handle the actually selected call of an OpenMP specialized call.
358     if (S.LangOpts.OpenMP && isa<CallExpr>(Source) &&
359         POE->getNumSemanticExprs() == 1 &&
360         isa<CallExpr>(POE->getSemanticExpr(0)))
361       return DiagnoseUnused(S, POE->getSemanticExpr(0), DiagID);
362     if (isa<ObjCSubscriptRefExpr>(Source))
363       DiagID = diag::warn_unused_container_subscript_expr;
364     else if (isa<ObjCPropertyRefExpr>(Source))
365       DiagID = diag::warn_unused_property_expr;
366   } else if (const CXXFunctionalCastExpr *FC
367                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
368     const Expr *E = FC->getSubExpr();
369     if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
370       E = TE->getSubExpr();
371     if (isa<CXXTemporaryObjectExpr>(E))
372       return;
373     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
374       if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
375         if (!RD->getAttr<WarnUnusedAttr>())
376           return;
377   }
378 
379   if (NoDiscardOnly)
380     return;
381 
382   // Diagnose "(void*) blah" as a typo for "(void) blah".
383   if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
384     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
385     QualType T = TI->getType();
386 
387     // We really do want to use the non-canonical type here.
388     if (T == S.Context.VoidPtrTy) {
389       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
390 
391       S.Diag(Loc, diag::warn_unused_voidptr)
392           << FixItHint::CreateRemoval(TL.getStarLoc());
393       return;
394     }
395   }
396 
397   // Tell the user to assign it into a variable to force a volatile load if this
398   // isn't an array.
399   if (E->isGLValue() && E->getType().isVolatileQualified() &&
400       !E->getType()->isArrayType()) {
401     S.Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
402     return;
403   }
404 
405   // Do not diagnose use of a comma operator in a SFINAE context because the
406   // type of the left operand could be used for SFINAE, so technically it is
407   // *used*.
408   if (DiagID == diag::warn_unused_comma_left_operand && S.isSFINAEContext())
409     return;
410 
411   S.DiagIfReachable(Loc, llvm::ArrayRef<const Stmt *>(E),
412                     S.PDiag(*DiagID) << R1 << R2);
413 }
414 } // namespace
415 
416 void Sema::DiagnoseDiscardedExprMarkedNodiscard(const Expr *E) {
417   DiagnoseUnused(*this, E, std::nullopt);
418 }
419 
420 void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) {
421   if (const LabelStmt *Label = dyn_cast_if_present<LabelStmt>(S))
422     S = Label->getSubStmt();
423 
424   const Expr *E = dyn_cast_if_present<Expr>(S);
425   if (!E)
426     return;
427 
428   DiagnoseUnused(*this, E, DiagID);
429 }
430 
431 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
432   PushCompoundScope(IsStmtExpr);
433 }
434 
435 void Sema::ActOnAfterCompoundStatementLeadingPragmas() {
436   if (getCurFPFeatures().isFPConstrained()) {
437     FunctionScopeInfo *FSI = getCurFunction();
438     assert(FSI);
439     FSI->setUsesFPIntrin();
440   }
441 }
442 
443 void Sema::ActOnFinishOfCompoundStmt() {
444   PopCompoundScope();
445 }
446 
447 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
448   return getCurFunction()->CompoundScopes.back();
449 }
450 
451 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
452                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
453   const unsigned NumElts = Elts.size();
454 
455   // If we're in C mode, check that we don't have any decls after stmts.  If
456   // so, emit an extension diagnostic in C89 and potentially a warning in later
457   // versions.
458   const unsigned MixedDeclsCodeID = getLangOpts().C99
459                                         ? diag::warn_mixed_decls_code
460                                         : diag::ext_mixed_decls_code;
461   if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) {
462     // Note that __extension__ can be around a decl.
463     unsigned i = 0;
464     // Skip over all declarations.
465     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
466       /*empty*/;
467 
468     // We found the end of the list or a statement.  Scan for another declstmt.
469     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
470       /*empty*/;
471 
472     if (i != NumElts) {
473       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
474       Diag(D->getLocation(), MixedDeclsCodeID);
475     }
476   }
477 
478   // Check for suspicious empty body (null statement) in `for' and `while'
479   // statements.  Don't do anything for template instantiations, this just adds
480   // noise.
481   if (NumElts != 0 && !CurrentInstantiationScope &&
482       getCurCompoundScope().HasEmptyLoopBodies) {
483     for (unsigned i = 0; i != NumElts - 1; ++i)
484       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
485   }
486 
487   // Calculate difference between FP options in this compound statement and in
488   // the enclosing one. If this is a function body, take the difference against
489   // default options. In this case the difference will indicate options that are
490   // changed upon entry to the statement.
491   FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1)
492                       ? FPOptions(getLangOpts())
493                       : getCurCompoundScope().InitialFPFeatures;
494   FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(FPO);
495 
496   return CompoundStmt::Create(Context, Elts, FPDiff, L, R);
497 }
498 
499 ExprResult
500 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
501   if (!Val.get())
502     return Val;
503 
504   if (DiagnoseUnexpandedParameterPack(Val.get()))
505     return ExprError();
506 
507   // If we're not inside a switch, let the 'case' statement handling diagnose
508   // this. Just clean up after the expression as best we can.
509   if (getCurFunction()->SwitchStack.empty())
510     return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
511                                getLangOpts().CPlusPlus11);
512 
513   Expr *CondExpr =
514       getCurFunction()->SwitchStack.back().getPointer()->getCond();
515   if (!CondExpr)
516     return ExprError();
517   QualType CondType = CondExpr->getType();
518 
519   auto CheckAndFinish = [&](Expr *E) {
520     if (CondType->isDependentType() || E->isTypeDependent())
521       return ExprResult(E);
522 
523     if (getLangOpts().CPlusPlus11) {
524       // C++11 [stmt.switch]p2: the constant-expression shall be a converted
525       // constant expression of the promoted type of the switch condition.
526       llvm::APSInt TempVal;
527       return CheckConvertedConstantExpression(E, CondType, TempVal,
528                                               CCEK_CaseValue);
529     }
530 
531     ExprResult ER = E;
532     if (!E->isValueDependent())
533       ER = VerifyIntegerConstantExpression(E, AllowFold);
534     if (!ER.isInvalid())
535       ER = DefaultLvalueConversion(ER.get());
536     if (!ER.isInvalid())
537       ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
538     if (!ER.isInvalid())
539       ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
540     return ER;
541   };
542 
543   ExprResult Converted = CorrectDelayedTyposInExpr(
544       Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
545       CheckAndFinish);
546   if (Converted.get() == Val.get())
547     Converted = CheckAndFinish(Val.get());
548   return Converted;
549 }
550 
551 StmtResult
552 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
553                     SourceLocation DotDotDotLoc, ExprResult RHSVal,
554                     SourceLocation ColonLoc) {
555   assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
556   assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
557                                    : RHSVal.isInvalid() || RHSVal.get()) &&
558          "missing RHS value");
559 
560   if (getCurFunction()->SwitchStack.empty()) {
561     Diag(CaseLoc, diag::err_case_not_in_switch);
562     return StmtError();
563   }
564 
565   if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
566     getCurFunction()->SwitchStack.back().setInt(true);
567     return StmtError();
568   }
569 
570   if (LangOpts.OpenACC &&
571       getCurScope()->isInOpenACCComputeConstructScope(Scope::SwitchScope)) {
572     Diag(CaseLoc, diag::err_acc_branch_in_out_compute_construct)
573         << /*branch*/ 0 << /*into*/ 1;
574     return StmtError();
575   }
576 
577   auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
578                               CaseLoc, DotDotDotLoc, ColonLoc);
579   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
580   return CS;
581 }
582 
583 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
584   cast<CaseStmt>(S)->setSubStmt(SubStmt);
585 }
586 
587 StmtResult
588 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
589                        Stmt *SubStmt, Scope *CurScope) {
590   if (getCurFunction()->SwitchStack.empty()) {
591     Diag(DefaultLoc, diag::err_default_not_in_switch);
592     return SubStmt;
593   }
594 
595   if (LangOpts.OpenACC &&
596       getCurScope()->isInOpenACCComputeConstructScope(Scope::SwitchScope)) {
597     Diag(DefaultLoc, diag::err_acc_branch_in_out_compute_construct)
598         << /*branch*/ 0 << /*into*/ 1;
599     return StmtError();
600   }
601 
602   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
603   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
604   return DS;
605 }
606 
607 StmtResult
608 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
609                      SourceLocation ColonLoc, Stmt *SubStmt) {
610   // If the label was multiply defined, reject it now.
611   if (TheDecl->getStmt()) {
612     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
613     Diag(TheDecl->getLocation(), diag::note_previous_definition);
614     return SubStmt;
615   }
616 
617   ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts());
618   if (isReservedInAllContexts(Status) &&
619       !Context.getSourceManager().isInSystemHeader(IdentLoc))
620     Diag(IdentLoc, diag::warn_reserved_extern_symbol)
621         << TheDecl << static_cast<int>(Status);
622 
623   // If this label is in a compute construct scope, we need to make sure we
624   // check gotos in/out.
625   if (getCurScope()->isInOpenACCComputeConstructScope())
626     setFunctionHasBranchProtectedScope();
627 
628   // OpenACC3.3 2.14.4:
629   // The update directive is executable.  It must not appear in place of the
630   // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or
631   // C++.
632   if (isa<OpenACCUpdateConstruct>(SubStmt)) {
633     Diag(SubStmt->getBeginLoc(), diag::err_acc_update_as_body) << /*Label*/ 4;
634     SubStmt = new (Context) NullStmt(SubStmt->getBeginLoc());
635   }
636 
637   // Otherwise, things are good.  Fill in the declaration and return it.
638   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
639   TheDecl->setStmt(LS);
640   if (!TheDecl->isGnuLocal()) {
641     TheDecl->setLocStart(IdentLoc);
642     if (!TheDecl->isMSAsmLabel()) {
643       // Don't update the location of MS ASM labels.  These will result in
644       // a diagnostic, and changing the location here will mess that up.
645       TheDecl->setLocation(IdentLoc);
646     }
647   }
648   return LS;
649 }
650 
651 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc,
652                                      ArrayRef<const Attr *> Attrs,
653                                      Stmt *SubStmt) {
654   // FIXME: this code should move when a planned refactoring around statement
655   // attributes lands.
656   for (const auto *A : Attrs) {
657     if (A->getKind() == attr::MustTail) {
658       if (!checkAndRewriteMustTailAttr(SubStmt, *A)) {
659         return SubStmt;
660       }
661       setFunctionHasMustTail();
662     }
663   }
664 
665   return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt);
666 }
667 
668 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs,
669                                      Stmt *SubStmt) {
670   SmallVector<const Attr *, 1> SemanticAttrs;
671   ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs);
672   if (!SemanticAttrs.empty())
673     return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt);
674   // If none of the attributes applied, that's fine, we can recover by
675   // returning the substatement directly instead of making an AttributedStmt
676   // with no attributes on it.
677   return SubStmt;
678 }
679 
680 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) {
681   ReturnStmt *R = cast<ReturnStmt>(St);
682   Expr *E = R->getRetValue();
683 
684   if (CurContext->isDependentContext() || (E && E->isInstantiationDependent()))
685     // We have to suspend our check until template instantiation time.
686     return true;
687 
688   if (!checkMustTailAttr(St, MTA))
689     return false;
690 
691   // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function.
692   // Currently it does not skip implicit constructors in an initialization
693   // context.
694   auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * {
695     return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep,
696                            IgnoreElidableImplicitConstructorSingleStep);
697   };
698 
699   // Now that we have verified that 'musttail' is valid here, rewrite the
700   // return value to remove all implicit nodes, but retain parentheses.
701   R->setRetValue(IgnoreImplicitAsWritten(E));
702   return true;
703 }
704 
705 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) {
706   assert(!CurContext->isDependentContext() &&
707          "musttail cannot be checked from a dependent context");
708 
709   // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition.
710   auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * {
711     return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep,
712                            IgnoreImplicitAsWrittenSingleStep,
713                            IgnoreElidableImplicitConstructorSingleStep);
714   };
715 
716   const Expr *E = cast<ReturnStmt>(St)->getRetValue();
717   const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E));
718 
719   if (!CE) {
720     Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA;
721     return false;
722   }
723 
724   if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) {
725     if (EWC->cleanupsHaveSideEffects()) {
726       Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA;
727       return false;
728     }
729   }
730 
731   // We need to determine the full function type (including "this" type, if any)
732   // for both caller and callee.
733   struct FuncType {
734     enum {
735       ft_non_member,
736       ft_static_member,
737       ft_non_static_member,
738       ft_pointer_to_member,
739     } MemberType = ft_non_member;
740 
741     QualType This;
742     const FunctionProtoType *Func;
743     const CXXMethodDecl *Method = nullptr;
744   } CallerType, CalleeType;
745 
746   auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type,
747                                        bool IsCallee) -> bool {
748     if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) {
749       Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
750           << IsCallee << isa<CXXDestructorDecl>(CMD);
751       if (IsCallee)
752         Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden)
753             << isa<CXXDestructorDecl>(CMD);
754       Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
755       return false;
756     }
757     if (CMD->isStatic())
758       Type.MemberType = FuncType::ft_static_member;
759     else {
760       Type.This = CMD->getFunctionObjectParameterType();
761       Type.MemberType = FuncType::ft_non_static_member;
762     }
763     Type.Func = CMD->getType()->castAs<FunctionProtoType>();
764     return true;
765   };
766 
767   const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext);
768 
769   // Find caller function signature.
770   if (!CallerDecl) {
771     int ContextType;
772     if (isa<BlockDecl>(CurContext))
773       ContextType = 0;
774     else if (isa<ObjCMethodDecl>(CurContext))
775       ContextType = 1;
776     else
777       ContextType = 2;
778     Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context)
779         << &MTA << ContextType;
780     return false;
781   } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) {
782     // Caller is a class/struct method.
783     if (!GetMethodType(CMD, CallerType, false))
784       return false;
785   } else {
786     // Caller is a non-method function.
787     CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>();
788   }
789 
790   const Expr *CalleeExpr = CE->getCallee()->IgnoreParens();
791   const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr);
792   SourceLocation CalleeLoc = CE->getCalleeDecl()
793                                  ? CE->getCalleeDecl()->getBeginLoc()
794                                  : St->getBeginLoc();
795 
796   // Find callee function signature.
797   if (const CXXMethodDecl *CMD =
798           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) {
799     // Call is: obj.method(), obj->method(), functor(), etc.
800     if (!GetMethodType(CMD, CalleeType, true))
801       return false;
802   } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) {
803     // Call is: obj->*method_ptr or obj.*method_ptr
804     const auto *MPT =
805         CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>();
806     CalleeType.This = QualType(MPT->getClass(), 0);
807     CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>();
808     CalleeType.MemberType = FuncType::ft_pointer_to_member;
809   } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
810     Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
811         << /* IsCallee = */ 1 << /* IsDestructor = */ 1;
812     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
813     return false;
814   } else {
815     // Non-method function.
816     CalleeType.Func =
817         CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>();
818   }
819 
820   // Both caller and callee must have a prototype (no K&R declarations).
821   if (!CalleeType.Func || !CallerType.Func) {
822     Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA;
823     if (!CalleeType.Func && CE->getDirectCallee()) {
824       Diag(CE->getDirectCallee()->getBeginLoc(),
825            diag::note_musttail_fix_non_prototype);
826     }
827     if (!CallerType.Func)
828       Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype);
829     return false;
830   }
831 
832   // Caller and callee must have matching calling conventions.
833   //
834   // Some calling conventions are physically capable of supporting tail calls
835   // even if the function types don't perfectly match. LLVM is currently too
836   // strict to allow this, but if LLVM added support for this in the future, we
837   // could exit early here and skip the remaining checks if the functions are
838   // using such a calling convention.
839   if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) {
840     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
841       Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch)
842           << true << ND->getDeclName();
843     else
844       Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false;
845     Diag(CalleeLoc, diag::note_musttail_callconv_mismatch)
846         << FunctionType::getNameForCallConv(CallerType.Func->getCallConv())
847         << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv());
848     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
849     return false;
850   }
851 
852   if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) {
853     Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA;
854     return false;
855   }
856 
857   const auto *CalleeDecl = CE->getCalleeDecl();
858   if (CalleeDecl && CalleeDecl->hasAttr<CXX11NoReturnAttr>()) {
859     Diag(St->getBeginLoc(), diag::err_musttail_no_return) << &MTA;
860     return false;
861   }
862 
863   // Caller and callee must match in whether they have a "this" parameter.
864   if (CallerType.This.isNull() != CalleeType.This.isNull()) {
865     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
866       Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
867           << CallerType.MemberType << CalleeType.MemberType << true
868           << ND->getDeclName();
869       Diag(CalleeLoc, diag::note_musttail_callee_defined_here)
870           << ND->getDeclName();
871     } else
872       Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
873           << CallerType.MemberType << CalleeType.MemberType << false;
874     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
875     return false;
876   }
877 
878   auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType,
879                                 PartialDiagnostic &PD) -> bool {
880     enum {
881       ft_different_class,
882       ft_parameter_arity,
883       ft_parameter_mismatch,
884       ft_return_type,
885     };
886 
887     auto DoTypesMatch = [this, &PD](QualType A, QualType B,
888                                     unsigned Select) -> bool {
889       if (!Context.hasSimilarType(A, B)) {
890         PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType();
891         return false;
892       }
893       return true;
894     };
895 
896     if (!CallerType.This.isNull() &&
897         !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class))
898       return false;
899 
900     if (!DoTypesMatch(CallerType.Func->getReturnType(),
901                       CalleeType.Func->getReturnType(), ft_return_type))
902       return false;
903 
904     if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) {
905       PD << ft_parameter_arity << CallerType.Func->getNumParams()
906          << CalleeType.Func->getNumParams();
907       return false;
908     }
909 
910     ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes();
911     ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes();
912     size_t N = CallerType.Func->getNumParams();
913     for (size_t I = 0; I < N; I++) {
914       if (!DoTypesMatch(CalleeParams[I], CallerParams[I],
915                         ft_parameter_mismatch)) {
916         PD << static_cast<int>(I) + 1;
917         return false;
918       }
919     }
920 
921     return true;
922   };
923 
924   PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch);
925   if (!CheckTypesMatch(CallerType, CalleeType, PD)) {
926     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
927       Diag(St->getBeginLoc(), diag::err_musttail_mismatch)
928           << true << ND->getDeclName();
929     else
930       Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false;
931     Diag(CalleeLoc, PD);
932     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
933     return false;
934   }
935 
936   // The lifetimes of locals and incoming function parameters must end before
937   // the call, because we can't have a stack frame to store them, so diagnose
938   // any pointers or references to them passed into the musttail call.
939   for (auto ArgExpr : CE->arguments()) {
940     InitializedEntity Entity = InitializedEntity::InitializeParameter(
941         Context, ArgExpr->getType(), false);
942     checkExprLifetimeMustTailArg(*this, Entity, const_cast<Expr *>(ArgExpr));
943   }
944 
945   return true;
946 }
947 
948 namespace {
949 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
950   typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
951   Sema &SemaRef;
952 public:
953   CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
954   void VisitBinaryOperator(BinaryOperator *E) {
955     if (E->getOpcode() == BO_Comma)
956       SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
957     EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
958   }
959 };
960 }
961 
962 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc,
963                              IfStatementKind StatementKind,
964                              SourceLocation LParenLoc, Stmt *InitStmt,
965                              ConditionResult Cond, SourceLocation RParenLoc,
966                              Stmt *thenStmt, SourceLocation ElseLoc,
967                              Stmt *elseStmt) {
968   if (Cond.isInvalid())
969     return StmtError();
970 
971   bool ConstevalOrNegatedConsteval =
972       StatementKind == IfStatementKind::ConstevalNonNegated ||
973       StatementKind == IfStatementKind::ConstevalNegated;
974 
975   Expr *CondExpr = Cond.get().second;
976   assert((CondExpr || ConstevalOrNegatedConsteval) &&
977          "If statement: missing condition");
978   // Only call the CommaVisitor when not C89 due to differences in scope flags.
979   if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) &&
980       !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
981     CommaVisitor(*this).Visit(CondExpr);
982 
983   if (!ConstevalOrNegatedConsteval && !elseStmt)
984     DiagnoseEmptyStmtBody(RParenLoc, thenStmt, diag::warn_empty_if_body);
985 
986   if (ConstevalOrNegatedConsteval ||
987       StatementKind == IfStatementKind::Constexpr) {
988     auto DiagnoseLikelihood = [&](const Stmt *S) {
989       if (const Attr *A = Stmt::getLikelihoodAttr(S)) {
990         Diags.Report(A->getLocation(),
991                      diag::warn_attribute_has_no_effect_on_compile_time_if)
992             << A << ConstevalOrNegatedConsteval << A->getRange();
993         Diags.Report(IfLoc,
994                      diag::note_attribute_has_no_effect_on_compile_time_if_here)
995             << ConstevalOrNegatedConsteval
996             << SourceRange(IfLoc, (ConstevalOrNegatedConsteval
997                                        ? thenStmt->getBeginLoc()
998                                        : LParenLoc)
999                                       .getLocWithOffset(-1));
1000       }
1001     };
1002     DiagnoseLikelihood(thenStmt);
1003     DiagnoseLikelihood(elseStmt);
1004   } else {
1005     std::tuple<bool, const Attr *, const Attr *> LHC =
1006         Stmt::determineLikelihoodConflict(thenStmt, elseStmt);
1007     if (std::get<0>(LHC)) {
1008       const Attr *ThenAttr = std::get<1>(LHC);
1009       const Attr *ElseAttr = std::get<2>(LHC);
1010       Diags.Report(ThenAttr->getLocation(),
1011                    diag::warn_attributes_likelihood_ifstmt_conflict)
1012           << ThenAttr << ThenAttr->getRange();
1013       Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute)
1014           << ElseAttr << ElseAttr->getRange();
1015     }
1016   }
1017 
1018   if (ConstevalOrNegatedConsteval) {
1019     bool Immediate = ExprEvalContexts.back().Context ==
1020                      ExpressionEvaluationContext::ImmediateFunctionContext;
1021     if (CurContext->isFunctionOrMethod()) {
1022       const auto *FD =
1023           dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext));
1024       if (FD && FD->isImmediateFunction())
1025         Immediate = true;
1026     }
1027     if (isUnevaluatedContext() || Immediate)
1028       Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate;
1029   }
1030 
1031   // OpenACC3.3 2.14.4:
1032   // The update directive is executable.  It must not appear in place of the
1033   // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or
1034   // C++.
1035   if (isa<OpenACCUpdateConstruct>(thenStmt)) {
1036     Diag(thenStmt->getBeginLoc(), diag::err_acc_update_as_body) << /*if*/ 0;
1037     thenStmt = new (Context) NullStmt(thenStmt->getBeginLoc());
1038   }
1039 
1040   return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc,
1041                      thenStmt, ElseLoc, elseStmt);
1042 }
1043 
1044 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc,
1045                              IfStatementKind StatementKind,
1046                              SourceLocation LParenLoc, Stmt *InitStmt,
1047                              ConditionResult Cond, SourceLocation RParenLoc,
1048                              Stmt *thenStmt, SourceLocation ElseLoc,
1049                              Stmt *elseStmt) {
1050   if (Cond.isInvalid())
1051     return StmtError();
1052 
1053   if (StatementKind != IfStatementKind::Ordinary ||
1054       isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
1055     setFunctionHasBranchProtectedScope();
1056 
1057   return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt,
1058                         Cond.get().first, Cond.get().second, LParenLoc,
1059                         RParenLoc, thenStmt, ElseLoc, elseStmt);
1060 }
1061 
1062 namespace {
1063   struct CaseCompareFunctor {
1064     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
1065                     const llvm::APSInt &RHS) {
1066       return LHS.first < RHS;
1067     }
1068     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
1069                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
1070       return LHS.first < RHS.first;
1071     }
1072     bool operator()(const llvm::APSInt &LHS,
1073                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
1074       return LHS < RHS.first;
1075     }
1076   };
1077 }
1078 
1079 /// CmpCaseVals - Comparison predicate for sorting case values.
1080 ///
1081 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
1082                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
1083   if (lhs.first < rhs.first)
1084     return true;
1085 
1086   if (lhs.first == rhs.first &&
1087       lhs.second->getCaseLoc() < rhs.second->getCaseLoc())
1088     return true;
1089   return false;
1090 }
1091 
1092 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
1093 ///
1094 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1095                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1096 {
1097   return lhs.first < rhs.first;
1098 }
1099 
1100 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
1101 ///
1102 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1103                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1104 {
1105   return lhs.first == rhs.first;
1106 }
1107 
1108 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
1109 /// potentially integral-promoted expression @p expr.
1110 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
1111   if (const auto *FE = dyn_cast<FullExpr>(E))
1112     E = FE->getSubExpr();
1113   while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
1114     if (ImpCast->getCastKind() != CK_IntegralCast) break;
1115     E = ImpCast->getSubExpr();
1116   }
1117   return E->getType();
1118 }
1119 
1120 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
1121   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
1122     Expr *Cond;
1123 
1124   public:
1125     SwitchConvertDiagnoser(Expr *Cond)
1126         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
1127           Cond(Cond) {}
1128 
1129     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1130                                          QualType T) override {
1131       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
1132     }
1133 
1134     SemaDiagnosticBuilder diagnoseIncomplete(
1135         Sema &S, SourceLocation Loc, QualType T) override {
1136       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
1137                << T << Cond->getSourceRange();
1138     }
1139 
1140     SemaDiagnosticBuilder diagnoseExplicitConv(
1141         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1142       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
1143     }
1144 
1145     SemaDiagnosticBuilder noteExplicitConv(
1146         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1147       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1148         << ConvTy->isEnumeralType() << ConvTy;
1149     }
1150 
1151     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1152                                             QualType T) override {
1153       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
1154     }
1155 
1156     SemaDiagnosticBuilder noteAmbiguous(
1157         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1158       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1159       << ConvTy->isEnumeralType() << ConvTy;
1160     }
1161 
1162     SemaDiagnosticBuilder diagnoseConversion(
1163         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1164       llvm_unreachable("conversion functions are permitted");
1165     }
1166   } SwitchDiagnoser(Cond);
1167 
1168   ExprResult CondResult =
1169       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
1170   if (CondResult.isInvalid())
1171     return ExprError();
1172 
1173   // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
1174   // failed and produced a diagnostic.
1175   Cond = CondResult.get();
1176   if (!Cond->isTypeDependent() &&
1177       !Cond->getType()->isIntegralOrEnumerationType())
1178     return ExprError();
1179 
1180   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
1181   return UsualUnaryConversions(Cond);
1182 }
1183 
1184 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
1185                                         SourceLocation LParenLoc,
1186                                         Stmt *InitStmt, ConditionResult Cond,
1187                                         SourceLocation RParenLoc) {
1188   Expr *CondExpr = Cond.get().second;
1189   assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
1190 
1191   if (CondExpr && !CondExpr->isTypeDependent()) {
1192     // We have already converted the expression to an integral or enumeration
1193     // type, when we parsed the switch condition. There are cases where we don't
1194     // have an appropriate type, e.g. a typo-expr Cond was corrected to an
1195     // inappropriate-type expr, we just return an error.
1196     if (!CondExpr->getType()->isIntegralOrEnumerationType())
1197       return StmtError();
1198     if (CondExpr->isKnownToHaveBooleanValue()) {
1199       // switch(bool_expr) {...} is often a programmer error, e.g.
1200       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
1201       // One can always use an if statement instead of switch(bool_expr).
1202       Diag(SwitchLoc, diag::warn_bool_switch_condition)
1203           << CondExpr->getSourceRange();
1204     }
1205   }
1206 
1207   setFunctionHasBranchIntoScope();
1208 
1209   auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr,
1210                                 LParenLoc, RParenLoc);
1211   getCurFunction()->SwitchStack.push_back(
1212       FunctionScopeInfo::SwitchInfo(SS, false));
1213   return SS;
1214 }
1215 
1216 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
1217   Val = Val.extOrTrunc(BitWidth);
1218   Val.setIsSigned(IsSigned);
1219 }
1220 
1221 /// Check the specified case value is in range for the given unpromoted switch
1222 /// type.
1223 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
1224                            unsigned UnpromotedWidth, bool UnpromotedSign) {
1225   // In C++11 onwards, this is checked by the language rules.
1226   if (S.getLangOpts().CPlusPlus11)
1227     return;
1228 
1229   // If the case value was signed and negative and the switch expression is
1230   // unsigned, don't bother to warn: this is implementation-defined behavior.
1231   // FIXME: Introduce a second, default-ignored warning for this case?
1232   if (UnpromotedWidth < Val.getBitWidth()) {
1233     llvm::APSInt ConvVal(Val);
1234     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
1235     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
1236     // FIXME: Use different diagnostics for overflow  in conversion to promoted
1237     // type versus "switch expression cannot have this value". Use proper
1238     // IntRange checking rather than just looking at the unpromoted type here.
1239     if (ConvVal != Val)
1240       S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10)
1241                                                   << toString(ConvVal, 10);
1242   }
1243 }
1244 
1245 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
1246 
1247 /// Returns true if we should emit a diagnostic about this case expression not
1248 /// being a part of the enum used in the switch controlling expression.
1249 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
1250                                               const EnumDecl *ED,
1251                                               const Expr *CaseExpr,
1252                                               EnumValsTy::iterator &EI,
1253                                               EnumValsTy::iterator &EIEnd,
1254                                               const llvm::APSInt &Val) {
1255   if (!ED->isClosed())
1256     return false;
1257 
1258   if (const DeclRefExpr *DRE =
1259           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
1260     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
1261       QualType VarType = VD->getType();
1262       QualType EnumType = S.Context.getTypeDeclType(ED);
1263       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
1264           S.Context.hasSameUnqualifiedType(EnumType, VarType))
1265         return false;
1266     }
1267   }
1268 
1269   if (ED->hasAttr<FlagEnumAttr>())
1270     return !S.IsValueInFlagEnum(ED, Val, false);
1271 
1272   while (EI != EIEnd && EI->first < Val)
1273     EI++;
1274 
1275   if (EI != EIEnd && EI->first == Val)
1276     return false;
1277 
1278   return true;
1279 }
1280 
1281 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
1282                                        const Expr *Case) {
1283   QualType CondType = Cond->getType();
1284   QualType CaseType = Case->getType();
1285 
1286   const EnumType *CondEnumType = CondType->getAs<EnumType>();
1287   const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
1288   if (!CondEnumType || !CaseEnumType)
1289     return;
1290 
1291   // Ignore anonymous enums.
1292   if (!CondEnumType->getDecl()->getIdentifier() &&
1293       !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
1294     return;
1295   if (!CaseEnumType->getDecl()->getIdentifier() &&
1296       !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
1297     return;
1298 
1299   if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
1300     return;
1301 
1302   S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
1303       << CondType << CaseType << Cond->getSourceRange()
1304       << Case->getSourceRange();
1305 }
1306 
1307 StmtResult
1308 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
1309                             Stmt *BodyStmt) {
1310   SwitchStmt *SS = cast<SwitchStmt>(Switch);
1311   bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
1312   assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
1313          "switch stack missing push/pop!");
1314 
1315   getCurFunction()->SwitchStack.pop_back();
1316 
1317   if (!BodyStmt) return StmtError();
1318 
1319   // OpenACC3.3 2.14.4:
1320   // The update directive is executable.  It must not appear in place of the
1321   // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or
1322   // C++.
1323   if (isa<OpenACCUpdateConstruct>(BodyStmt)) {
1324     Diag(BodyStmt->getBeginLoc(), diag::err_acc_update_as_body) << /*switch*/ 3;
1325     BodyStmt = new (Context) NullStmt(BodyStmt->getBeginLoc());
1326   }
1327 
1328   SS->setBody(BodyStmt, SwitchLoc);
1329 
1330   Expr *CondExpr = SS->getCond();
1331   if (!CondExpr) return StmtError();
1332 
1333   QualType CondType = CondExpr->getType();
1334 
1335   // C++ 6.4.2.p2:
1336   // Integral promotions are performed (on the switch condition).
1337   //
1338   // A case value unrepresentable by the original switch condition
1339   // type (before the promotion) doesn't make sense, even when it can
1340   // be represented by the promoted type.  Therefore we need to find
1341   // the pre-promotion type of the switch condition.
1342   const Expr *CondExprBeforePromotion = CondExpr;
1343   QualType CondTypeBeforePromotion =
1344       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
1345 
1346   // Get the bitwidth of the switched-on value after promotions. We must
1347   // convert the integer case values to this width before comparison.
1348   bool HasDependentValue
1349     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
1350   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
1351   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
1352 
1353   // Get the width and signedness that the condition might actually have, for
1354   // warning purposes.
1355   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
1356   // type.
1357   unsigned CondWidthBeforePromotion
1358     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
1359   bool CondIsSignedBeforePromotion
1360     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
1361 
1362   // Accumulate all of the case values in a vector so that we can sort them
1363   // and detect duplicates.  This vector contains the APInt for the case after
1364   // it has been converted to the condition type.
1365   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
1366   CaseValsTy CaseVals;
1367 
1368   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
1369   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
1370   CaseRangesTy CaseRanges;
1371 
1372   DefaultStmt *TheDefaultStmt = nullptr;
1373 
1374   bool CaseListIsErroneous = false;
1375 
1376   // FIXME: We'd better diagnose missing or duplicate default labels even
1377   // in the dependent case. Because default labels themselves are never
1378   // dependent.
1379   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
1380        SC = SC->getNextSwitchCase()) {
1381 
1382     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
1383       if (TheDefaultStmt) {
1384         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
1385         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
1386 
1387         // FIXME: Remove the default statement from the switch block so that
1388         // we'll return a valid AST.  This requires recursing down the AST and
1389         // finding it, not something we are set up to do right now.  For now,
1390         // just lop the entire switch stmt out of the AST.
1391         CaseListIsErroneous = true;
1392       }
1393       TheDefaultStmt = DS;
1394 
1395     } else {
1396       CaseStmt *CS = cast<CaseStmt>(SC);
1397 
1398       Expr *Lo = CS->getLHS();
1399 
1400       if (Lo->isValueDependent()) {
1401         HasDependentValue = true;
1402         break;
1403       }
1404 
1405       // We already verified that the expression has a constant value;
1406       // get that value (prior to conversions).
1407       const Expr *LoBeforePromotion = Lo;
1408       GetTypeBeforeIntegralPromotion(LoBeforePromotion);
1409       llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
1410 
1411       // Check the unconverted value is within the range of possible values of
1412       // the switch expression.
1413       checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
1414                      CondIsSignedBeforePromotion);
1415 
1416       // FIXME: This duplicates the check performed for warn_not_in_enum below.
1417       checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
1418                                  LoBeforePromotion);
1419 
1420       // Convert the value to the same width/sign as the condition.
1421       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
1422 
1423       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
1424       if (CS->getRHS()) {
1425         if (CS->getRHS()->isValueDependent()) {
1426           HasDependentValue = true;
1427           break;
1428         }
1429         CaseRanges.push_back(std::make_pair(LoVal, CS));
1430       } else
1431         CaseVals.push_back(std::make_pair(LoVal, CS));
1432     }
1433   }
1434 
1435   if (!HasDependentValue) {
1436     // If we don't have a default statement, check whether the
1437     // condition is constant.
1438     llvm::APSInt ConstantCondValue;
1439     bool HasConstantCond = false;
1440     if (!TheDefaultStmt) {
1441       Expr::EvalResult Result;
1442       HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
1443                                                 Expr::SE_AllowSideEffects);
1444       if (Result.Val.isInt())
1445         ConstantCondValue = Result.Val.getInt();
1446       assert(!HasConstantCond ||
1447              (ConstantCondValue.getBitWidth() == CondWidth &&
1448               ConstantCondValue.isSigned() == CondIsSigned));
1449       Diag(SwitchLoc, diag::warn_switch_default);
1450     }
1451     bool ShouldCheckConstantCond = HasConstantCond;
1452 
1453     // Sort all the scalar case values so we can easily detect duplicates.
1454     llvm::stable_sort(CaseVals, CmpCaseVals);
1455 
1456     if (!CaseVals.empty()) {
1457       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
1458         if (ShouldCheckConstantCond &&
1459             CaseVals[i].first == ConstantCondValue)
1460           ShouldCheckConstantCond = false;
1461 
1462         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
1463           // If we have a duplicate, report it.
1464           // First, determine if either case value has a name
1465           StringRef PrevString, CurrString;
1466           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
1467           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
1468           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
1469             PrevString = DeclRef->getDecl()->getName();
1470           }
1471           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
1472             CurrString = DeclRef->getDecl()->getName();
1473           }
1474           SmallString<16> CaseValStr;
1475           CaseVals[i-1].first.toString(CaseValStr);
1476 
1477           if (PrevString == CurrString)
1478             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1479                  diag::err_duplicate_case)
1480                 << (PrevString.empty() ? CaseValStr.str() : PrevString);
1481           else
1482             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1483                  diag::err_duplicate_case_differing_expr)
1484                 << (PrevString.empty() ? CaseValStr.str() : PrevString)
1485                 << (CurrString.empty() ? CaseValStr.str() : CurrString)
1486                 << CaseValStr;
1487 
1488           Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1489                diag::note_duplicate_case_prev);
1490           // FIXME: We really want to remove the bogus case stmt from the
1491           // substmt, but we have no way to do this right now.
1492           CaseListIsErroneous = true;
1493         }
1494       }
1495     }
1496 
1497     // Detect duplicate case ranges, which usually don't exist at all in
1498     // the first place.
1499     if (!CaseRanges.empty()) {
1500       // Sort all the case ranges by their low value so we can easily detect
1501       // overlaps between ranges.
1502       llvm::stable_sort(CaseRanges);
1503 
1504       // Scan the ranges, computing the high values and removing empty ranges.
1505       std::vector<llvm::APSInt> HiVals;
1506       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1507         llvm::APSInt &LoVal = CaseRanges[i].first;
1508         CaseStmt *CR = CaseRanges[i].second;
1509         Expr *Hi = CR->getRHS();
1510 
1511         const Expr *HiBeforePromotion = Hi;
1512         GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1513         llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1514 
1515         // Check the unconverted value is within the range of possible values of
1516         // the switch expression.
1517         checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1518                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1519 
1520         // Convert the value to the same width/sign as the condition.
1521         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1522 
1523         // If the low value is bigger than the high value, the case is empty.
1524         if (LoVal > HiVal) {
1525           Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1526               << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1527           CaseRanges.erase(CaseRanges.begin()+i);
1528           --i;
1529           --e;
1530           continue;
1531         }
1532 
1533         if (ShouldCheckConstantCond &&
1534             LoVal <= ConstantCondValue &&
1535             ConstantCondValue <= HiVal)
1536           ShouldCheckConstantCond = false;
1537 
1538         HiVals.push_back(HiVal);
1539       }
1540 
1541       // Rescan the ranges, looking for overlap with singleton values and other
1542       // ranges.  Since the range list is sorted, we only need to compare case
1543       // ranges with their neighbors.
1544       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1545         llvm::APSInt &CRLo = CaseRanges[i].first;
1546         llvm::APSInt &CRHi = HiVals[i];
1547         CaseStmt *CR = CaseRanges[i].second;
1548 
1549         // Check to see whether the case range overlaps with any
1550         // singleton cases.
1551         CaseStmt *OverlapStmt = nullptr;
1552         llvm::APSInt OverlapVal(32);
1553 
1554         // Find the smallest value >= the lower bound.  If I is in the
1555         // case range, then we have overlap.
1556         CaseValsTy::iterator I =
1557             llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1558         if (I != CaseVals.end() && I->first < CRHi) {
1559           OverlapVal  = I->first;   // Found overlap with scalar.
1560           OverlapStmt = I->second;
1561         }
1562 
1563         // Find the smallest value bigger than the upper bound.
1564         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1565         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1566           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1567           OverlapStmt = (I-1)->second;
1568         }
1569 
1570         // Check to see if this case stmt overlaps with the subsequent
1571         // case range.
1572         if (i && CRLo <= HiVals[i-1]) {
1573           OverlapVal  = HiVals[i-1];       // Found overlap with range.
1574           OverlapStmt = CaseRanges[i-1].second;
1575         }
1576 
1577         if (OverlapStmt) {
1578           // If we have a duplicate, report it.
1579           Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1580               << toString(OverlapVal, 10);
1581           Diag(OverlapStmt->getLHS()->getBeginLoc(),
1582                diag::note_duplicate_case_prev);
1583           // FIXME: We really want to remove the bogus case stmt from the
1584           // substmt, but we have no way to do this right now.
1585           CaseListIsErroneous = true;
1586         }
1587       }
1588     }
1589 
1590     // Complain if we have a constant condition and we didn't find a match.
1591     if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1592         ShouldCheckConstantCond) {
1593       // TODO: it would be nice if we printed enums as enums, chars as
1594       // chars, etc.
1595       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1596         << toString(ConstantCondValue, 10)
1597         << CondExpr->getSourceRange();
1598     }
1599 
1600     // Check to see if switch is over an Enum and handles all of its
1601     // values.  We only issue a warning if there is not 'default:', but
1602     // we still do the analysis to preserve this information in the AST
1603     // (which can be used by flow-based analyes).
1604     //
1605     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1606 
1607     // If switch has default case, then ignore it.
1608     if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1609         ET && ET->getDecl()->isCompleteDefinition() &&
1610         !ET->getDecl()->enumerators().empty()) {
1611       const EnumDecl *ED = ET->getDecl();
1612       EnumValsTy EnumVals;
1613 
1614       // Gather all enum values, set their type and sort them,
1615       // allowing easier comparison with CaseVals.
1616       for (auto *EDI : ED->enumerators()) {
1617         llvm::APSInt Val = EDI->getInitVal();
1618         AdjustAPSInt(Val, CondWidth, CondIsSigned);
1619         EnumVals.push_back(std::make_pair(Val, EDI));
1620       }
1621       llvm::stable_sort(EnumVals, CmpEnumVals);
1622       auto EI = EnumVals.begin(), EIEnd =
1623         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1624 
1625       // See which case values aren't in enum.
1626       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1627           CI != CaseVals.end(); CI++) {
1628         Expr *CaseExpr = CI->second->getLHS();
1629         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1630                                               CI->first))
1631           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1632             << CondTypeBeforePromotion;
1633       }
1634 
1635       // See which of case ranges aren't in enum
1636       EI = EnumVals.begin();
1637       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1638           RI != CaseRanges.end(); RI++) {
1639         Expr *CaseExpr = RI->second->getLHS();
1640         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1641                                               RI->first))
1642           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1643             << CondTypeBeforePromotion;
1644 
1645         llvm::APSInt Hi =
1646           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1647         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1648 
1649         CaseExpr = RI->second->getRHS();
1650         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1651                                               Hi))
1652           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1653             << CondTypeBeforePromotion;
1654       }
1655 
1656       // Check which enum vals aren't in switch
1657       auto CI = CaseVals.begin();
1658       auto RI = CaseRanges.begin();
1659       bool hasCasesNotInSwitch = false;
1660 
1661       SmallVector<DeclarationName,8> UnhandledNames;
1662 
1663       for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1664         // Don't warn about omitted unavailable EnumConstantDecls.
1665         switch (EI->second->getAvailability()) {
1666         case AR_Deprecated:
1667           // Omitting a deprecated constant is ok; it should never materialize.
1668         case AR_Unavailable:
1669           continue;
1670 
1671         case AR_NotYetIntroduced:
1672           // Partially available enum constants should be present. Note that we
1673           // suppress -Wunguarded-availability diagnostics for such uses.
1674         case AR_Available:
1675           break;
1676         }
1677 
1678         if (EI->second->hasAttr<UnusedAttr>())
1679           continue;
1680 
1681         // Drop unneeded case values
1682         while (CI != CaseVals.end() && CI->first < EI->first)
1683           CI++;
1684 
1685         if (CI != CaseVals.end() && CI->first == EI->first)
1686           continue;
1687 
1688         // Drop unneeded case ranges
1689         for (; RI != CaseRanges.end(); RI++) {
1690           llvm::APSInt Hi =
1691             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1692           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1693           if (EI->first <= Hi)
1694             break;
1695         }
1696 
1697         if (RI == CaseRanges.end() || EI->first < RI->first) {
1698           hasCasesNotInSwitch = true;
1699           UnhandledNames.push_back(EI->second->getDeclName());
1700         }
1701       }
1702 
1703       if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1704         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1705 
1706       // Produce a nice diagnostic if multiple values aren't handled.
1707       if (!UnhandledNames.empty()) {
1708         auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt
1709                                                    ? diag::warn_def_missing_case
1710                                                    : diag::warn_missing_case)
1711                   << CondExpr->getSourceRange() << (int)UnhandledNames.size();
1712 
1713         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1714              I != E; ++I)
1715           DB << UnhandledNames[I];
1716       }
1717 
1718       if (!hasCasesNotInSwitch)
1719         SS->setAllEnumCasesCovered();
1720     }
1721   }
1722 
1723   if (BodyStmt)
1724     DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1725                           diag::warn_empty_switch_body);
1726 
1727   // FIXME: If the case list was broken is some way, we don't have a good system
1728   // to patch it up.  Instead, just return the whole substmt as broken.
1729   if (CaseListIsErroneous)
1730     return StmtError();
1731 
1732   return SS;
1733 }
1734 
1735 void
1736 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1737                              Expr *SrcExpr) {
1738   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1739     return;
1740 
1741   if (const EnumType *ET = DstType->getAs<EnumType>())
1742     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1743         SrcType->isIntegerType()) {
1744       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1745           SrcExpr->isIntegerConstantExpr(Context)) {
1746         // Get the bitwidth of the enum value before promotions.
1747         unsigned DstWidth = Context.getIntWidth(DstType);
1748         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1749 
1750         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1751         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1752         const EnumDecl *ED = ET->getDecl();
1753 
1754         if (!ED->isClosed())
1755           return;
1756 
1757         if (ED->hasAttr<FlagEnumAttr>()) {
1758           if (!IsValueInFlagEnum(ED, RhsVal, true))
1759             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1760               << DstType.getUnqualifiedType();
1761         } else {
1762           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1763               EnumValsTy;
1764           EnumValsTy EnumVals;
1765 
1766           // Gather all enum values, set their type and sort them,
1767           // allowing easier comparison with rhs constant.
1768           for (auto *EDI : ED->enumerators()) {
1769             llvm::APSInt Val = EDI->getInitVal();
1770             AdjustAPSInt(Val, DstWidth, DstIsSigned);
1771             EnumVals.push_back(std::make_pair(Val, EDI));
1772           }
1773           if (EnumVals.empty())
1774             return;
1775           llvm::stable_sort(EnumVals, CmpEnumVals);
1776           EnumValsTy::iterator EIend =
1777               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1778 
1779           // See which values aren't in the enum.
1780           EnumValsTy::const_iterator EI = EnumVals.begin();
1781           while (EI != EIend && EI->first < RhsVal)
1782             EI++;
1783           if (EI == EIend || EI->first != RhsVal) {
1784             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1785                 << DstType.getUnqualifiedType();
1786           }
1787         }
1788       }
1789     }
1790 }
1791 
1792 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc,
1793                                 SourceLocation LParenLoc, ConditionResult Cond,
1794                                 SourceLocation RParenLoc, Stmt *Body) {
1795   if (Cond.isInvalid())
1796     return StmtError();
1797 
1798   auto CondVal = Cond.get();
1799   CheckBreakContinueBinding(CondVal.second);
1800 
1801   if (CondVal.second &&
1802       !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1803     CommaVisitor(*this).Visit(CondVal.second);
1804 
1805   // OpenACC3.3 2.14.4:
1806   // The update directive is executable.  It must not appear in place of the
1807   // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or
1808   // C++.
1809   if (isa<OpenACCUpdateConstruct>(Body)) {
1810     Diag(Body->getBeginLoc(), diag::err_acc_update_as_body) << /*while*/ 1;
1811     Body = new (Context) NullStmt(Body->getBeginLoc());
1812   }
1813 
1814   if (isa<NullStmt>(Body))
1815     getCurCompoundScope().setHasEmptyLoopBodies();
1816 
1817   return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1818                            WhileLoc, LParenLoc, RParenLoc);
1819 }
1820 
1821 StmtResult
1822 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1823                   SourceLocation WhileLoc, SourceLocation CondLParen,
1824                   Expr *Cond, SourceLocation CondRParen) {
1825   assert(Cond && "ActOnDoStmt(): missing expression");
1826 
1827   CheckBreakContinueBinding(Cond);
1828   ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1829   if (CondResult.isInvalid())
1830     return StmtError();
1831   Cond = CondResult.get();
1832 
1833   CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1834   if (CondResult.isInvalid())
1835     return StmtError();
1836   Cond = CondResult.get();
1837 
1838   // Only call the CommaVisitor for C89 due to differences in scope flags.
1839   if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1840       !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1841     CommaVisitor(*this).Visit(Cond);
1842 
1843   // OpenACC3.3 2.14.4:
1844   // The update directive is executable.  It must not appear in place of the
1845   // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or
1846   // C++.
1847   if (isa<OpenACCUpdateConstruct>(Body)) {
1848     Diag(Body->getBeginLoc(), diag::err_acc_update_as_body) << /*do*/ 2;
1849     Body = new (Context) NullStmt(Body->getBeginLoc());
1850   }
1851 
1852   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1853 }
1854 
1855 namespace {
1856   // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1857   using DeclSetVector = llvm::SmallSetVector<VarDecl *, 8>;
1858 
1859   // This visitor will traverse a conditional statement and store all
1860   // the evaluated decls into a vector.  Simple is set to true if none
1861   // of the excluded constructs are used.
1862   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1863     DeclSetVector &Decls;
1864     SmallVectorImpl<SourceRange> &Ranges;
1865     bool Simple;
1866   public:
1867     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1868 
1869     DeclExtractor(Sema &S, DeclSetVector &Decls,
1870                   SmallVectorImpl<SourceRange> &Ranges) :
1871         Inherited(S.Context),
1872         Decls(Decls),
1873         Ranges(Ranges),
1874         Simple(true) {}
1875 
1876     bool isSimple() { return Simple; }
1877 
1878     // Replaces the method in EvaluatedExprVisitor.
1879     void VisitMemberExpr(MemberExpr* E) {
1880       Simple = false;
1881     }
1882 
1883     // Any Stmt not explicitly listed will cause the condition to be marked
1884     // complex.
1885     void VisitStmt(Stmt *S) { Simple = false; }
1886 
1887     void VisitBinaryOperator(BinaryOperator *E) {
1888       Visit(E->getLHS());
1889       Visit(E->getRHS());
1890     }
1891 
1892     void VisitCastExpr(CastExpr *E) {
1893       Visit(E->getSubExpr());
1894     }
1895 
1896     void VisitUnaryOperator(UnaryOperator *E) {
1897       // Skip checking conditionals with derefernces.
1898       if (E->getOpcode() == UO_Deref)
1899         Simple = false;
1900       else
1901         Visit(E->getSubExpr());
1902     }
1903 
1904     void VisitConditionalOperator(ConditionalOperator *E) {
1905       Visit(E->getCond());
1906       Visit(E->getTrueExpr());
1907       Visit(E->getFalseExpr());
1908     }
1909 
1910     void VisitParenExpr(ParenExpr *E) {
1911       Visit(E->getSubExpr());
1912     }
1913 
1914     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1915       Visit(E->getOpaqueValue()->getSourceExpr());
1916       Visit(E->getFalseExpr());
1917     }
1918 
1919     void VisitIntegerLiteral(IntegerLiteral *E) { }
1920     void VisitFloatingLiteral(FloatingLiteral *E) { }
1921     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1922     void VisitCharacterLiteral(CharacterLiteral *E) { }
1923     void VisitGNUNullExpr(GNUNullExpr *E) { }
1924     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1925 
1926     void VisitDeclRefExpr(DeclRefExpr *E) {
1927       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1928       if (!VD) {
1929         // Don't allow unhandled Decl types.
1930         Simple = false;
1931         return;
1932       }
1933 
1934       Ranges.push_back(E->getSourceRange());
1935 
1936       Decls.insert(VD);
1937     }
1938 
1939   }; // end class DeclExtractor
1940 
1941   // DeclMatcher checks to see if the decls are used in a non-evaluated
1942   // context.
1943   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1944     DeclSetVector &Decls;
1945     bool FoundDecl;
1946 
1947   public:
1948     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1949 
1950     DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1951         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1952       if (!Statement) return;
1953 
1954       Visit(Statement);
1955     }
1956 
1957     void VisitReturnStmt(ReturnStmt *S) {
1958       FoundDecl = true;
1959     }
1960 
1961     void VisitBreakStmt(BreakStmt *S) {
1962       FoundDecl = true;
1963     }
1964 
1965     void VisitGotoStmt(GotoStmt *S) {
1966       FoundDecl = true;
1967     }
1968 
1969     void VisitCastExpr(CastExpr *E) {
1970       if (E->getCastKind() == CK_LValueToRValue)
1971         CheckLValueToRValueCast(E->getSubExpr());
1972       else
1973         Visit(E->getSubExpr());
1974     }
1975 
1976     void CheckLValueToRValueCast(Expr *E) {
1977       E = E->IgnoreParenImpCasts();
1978 
1979       if (isa<DeclRefExpr>(E)) {
1980         return;
1981       }
1982 
1983       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1984         Visit(CO->getCond());
1985         CheckLValueToRValueCast(CO->getTrueExpr());
1986         CheckLValueToRValueCast(CO->getFalseExpr());
1987         return;
1988       }
1989 
1990       if (BinaryConditionalOperator *BCO =
1991               dyn_cast<BinaryConditionalOperator>(E)) {
1992         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1993         CheckLValueToRValueCast(BCO->getFalseExpr());
1994         return;
1995       }
1996 
1997       Visit(E);
1998     }
1999 
2000     void VisitDeclRefExpr(DeclRefExpr *E) {
2001       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
2002         if (Decls.count(VD))
2003           FoundDecl = true;
2004     }
2005 
2006     void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
2007       // Only need to visit the semantics for POE.
2008       // SyntaticForm doesn't really use the Decal.
2009       for (auto *S : POE->semantics()) {
2010         if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
2011           // Look past the OVE into the expression it binds.
2012           Visit(OVE->getSourceExpr());
2013         else
2014           Visit(S);
2015       }
2016     }
2017 
2018     bool FoundDeclInUse() { return FoundDecl; }
2019 
2020   };  // end class DeclMatcher
2021 
2022   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
2023                                         Expr *Third, Stmt *Body) {
2024     // Condition is empty
2025     if (!Second) return;
2026 
2027     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
2028                           Second->getBeginLoc()))
2029       return;
2030 
2031     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
2032     DeclSetVector Decls;
2033     SmallVector<SourceRange, 10> Ranges;
2034     DeclExtractor DE(S, Decls, Ranges);
2035     DE.Visit(Second);
2036 
2037     // Don't analyze complex conditionals.
2038     if (!DE.isSimple()) return;
2039 
2040     // No decls found.
2041     if (Decls.size() == 0) return;
2042 
2043     // Don't warn on volatile, static, or global variables.
2044     for (auto *VD : Decls)
2045       if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
2046         return;
2047 
2048     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
2049         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
2050         DeclMatcher(S, Decls, Body).FoundDeclInUse())
2051       return;
2052 
2053     // Load decl names into diagnostic.
2054     if (Decls.size() > 4) {
2055       PDiag << 0;
2056     } else {
2057       PDiag << (unsigned)Decls.size();
2058       for (auto *VD : Decls)
2059         PDiag << VD->getDeclName();
2060     }
2061 
2062     for (auto Range : Ranges)
2063       PDiag << Range;
2064 
2065     S.Diag(Ranges.begin()->getBegin(), PDiag);
2066   }
2067 
2068   // If Statement is an incemement or decrement, return true and sets the
2069   // variables Increment and DRE.
2070   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
2071                             DeclRefExpr *&DRE) {
2072     if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
2073       if (!Cleanups->cleanupsHaveSideEffects())
2074         Statement = Cleanups->getSubExpr();
2075 
2076     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
2077       switch (UO->getOpcode()) {
2078         default: return false;
2079         case UO_PostInc:
2080         case UO_PreInc:
2081           Increment = true;
2082           break;
2083         case UO_PostDec:
2084         case UO_PreDec:
2085           Increment = false;
2086           break;
2087       }
2088       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
2089       return DRE;
2090     }
2091 
2092     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
2093       FunctionDecl *FD = Call->getDirectCallee();
2094       if (!FD || !FD->isOverloadedOperator()) return false;
2095       switch (FD->getOverloadedOperator()) {
2096         default: return false;
2097         case OO_PlusPlus:
2098           Increment = true;
2099           break;
2100         case OO_MinusMinus:
2101           Increment = false;
2102           break;
2103       }
2104       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
2105       return DRE;
2106     }
2107 
2108     return false;
2109   }
2110 
2111   // A visitor to determine if a continue or break statement is a
2112   // subexpression.
2113   class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
2114     SourceLocation BreakLoc;
2115     SourceLocation ContinueLoc;
2116     bool InSwitch = false;
2117 
2118   public:
2119     BreakContinueFinder(Sema &S, const Stmt* Body) :
2120         Inherited(S.Context) {
2121       Visit(Body);
2122     }
2123 
2124     typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
2125 
2126     void VisitContinueStmt(const ContinueStmt* E) {
2127       ContinueLoc = E->getContinueLoc();
2128     }
2129 
2130     void VisitBreakStmt(const BreakStmt* E) {
2131       if (!InSwitch)
2132         BreakLoc = E->getBreakLoc();
2133     }
2134 
2135     void VisitSwitchStmt(const SwitchStmt* S) {
2136       if (const Stmt *Init = S->getInit())
2137         Visit(Init);
2138       if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
2139         Visit(CondVar);
2140       if (const Stmt *Cond = S->getCond())
2141         Visit(Cond);
2142 
2143       // Don't return break statements from the body of a switch.
2144       InSwitch = true;
2145       if (const Stmt *Body = S->getBody())
2146         Visit(Body);
2147       InSwitch = false;
2148     }
2149 
2150     void VisitForStmt(const ForStmt *S) {
2151       // Only visit the init statement of a for loop; the body
2152       // has a different break/continue scope.
2153       if (const Stmt *Init = S->getInit())
2154         Visit(Init);
2155     }
2156 
2157     void VisitWhileStmt(const WhileStmt *) {
2158       // Do nothing; the children of a while loop have a different
2159       // break/continue scope.
2160     }
2161 
2162     void VisitDoStmt(const DoStmt *) {
2163       // Do nothing; the children of a while loop have a different
2164       // break/continue scope.
2165     }
2166 
2167     void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
2168       // Only visit the initialization of a for loop; the body
2169       // has a different break/continue scope.
2170       if (const Stmt *Init = S->getInit())
2171         Visit(Init);
2172       if (const Stmt *Range = S->getRangeStmt())
2173         Visit(Range);
2174       if (const Stmt *Begin = S->getBeginStmt())
2175         Visit(Begin);
2176       if (const Stmt *End = S->getEndStmt())
2177         Visit(End);
2178     }
2179 
2180     void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
2181       // Only visit the initialization of a for loop; the body
2182       // has a different break/continue scope.
2183       if (const Stmt *Element = S->getElement())
2184         Visit(Element);
2185       if (const Stmt *Collection = S->getCollection())
2186         Visit(Collection);
2187     }
2188 
2189     bool ContinueFound() { return ContinueLoc.isValid(); }
2190     bool BreakFound() { return BreakLoc.isValid(); }
2191     SourceLocation GetContinueLoc() { return ContinueLoc; }
2192     SourceLocation GetBreakLoc() { return BreakLoc; }
2193 
2194   };  // end class BreakContinueFinder
2195 
2196   // Emit a warning when a loop increment/decrement appears twice per loop
2197   // iteration.  The conditions which trigger this warning are:
2198   // 1) The last statement in the loop body and the third expression in the
2199   //    for loop are both increment or both decrement of the same variable
2200   // 2) No continue statements in the loop body.
2201   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
2202     // Return when there is nothing to check.
2203     if (!Body || !Third) return;
2204 
2205     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
2206                           Third->getBeginLoc()))
2207       return;
2208 
2209     // Get the last statement from the loop body.
2210     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
2211     if (!CS || CS->body_empty()) return;
2212     Stmt *LastStmt = CS->body_back();
2213     if (!LastStmt) return;
2214 
2215     bool LoopIncrement, LastIncrement;
2216     DeclRefExpr *LoopDRE, *LastDRE;
2217 
2218     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
2219     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
2220 
2221     // Check that the two statements are both increments or both decrements
2222     // on the same variable.
2223     if (LoopIncrement != LastIncrement ||
2224         LoopDRE->getDecl() != LastDRE->getDecl()) return;
2225 
2226     if (BreakContinueFinder(S, Body).ContinueFound()) return;
2227 
2228     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
2229          << LastDRE->getDecl() << LastIncrement;
2230     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
2231          << LoopIncrement;
2232   }
2233 
2234 } // end namespace
2235 
2236 
2237 void Sema::CheckBreakContinueBinding(Expr *E) {
2238   if (!E || getLangOpts().CPlusPlus)
2239     return;
2240   BreakContinueFinder BCFinder(*this, E);
2241   Scope *BreakParent = CurScope->getBreakParent();
2242   if (BCFinder.BreakFound() && BreakParent) {
2243     if (BreakParent->getFlags() & Scope::SwitchScope) {
2244       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
2245     } else {
2246       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
2247           << "break";
2248     }
2249   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
2250     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
2251         << "continue";
2252   }
2253 }
2254 
2255 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
2256                               Stmt *First, ConditionResult Second,
2257                               FullExprArg third, SourceLocation RParenLoc,
2258                               Stmt *Body) {
2259   if (Second.isInvalid())
2260     return StmtError();
2261 
2262   if (!getLangOpts().CPlusPlus) {
2263     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
2264       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2265       // declare identifiers for objects having storage class 'auto' or
2266       // 'register'.
2267       const Decl *NonVarSeen = nullptr;
2268       bool VarDeclSeen = false;
2269       for (auto *DI : DS->decls()) {
2270         if (VarDecl *VD = dyn_cast<VarDecl>(DI)) {
2271           VarDeclSeen = true;
2272           if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) {
2273             Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
2274             DI->setInvalidDecl();
2275           }
2276         } else if (!NonVarSeen) {
2277           // Keep track of the first non-variable declaration we saw so that
2278           // we can diagnose if we don't see any variable declarations. This
2279           // covers a case like declaring a typedef, function, or structure
2280           // type rather than a variable.
2281           NonVarSeen = DI;
2282         }
2283       }
2284       // Diagnose if we saw a non-variable declaration but no variable
2285       // declarations.
2286       if (NonVarSeen && !VarDeclSeen)
2287         Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for);
2288     }
2289   }
2290 
2291   CheckBreakContinueBinding(Second.get().second);
2292   CheckBreakContinueBinding(third.get());
2293 
2294   if (!Second.get().first)
2295     CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
2296                                      Body);
2297   CheckForRedundantIteration(*this, third.get(), Body);
2298 
2299   if (Second.get().second &&
2300       !Diags.isIgnored(diag::warn_comma_operator,
2301                        Second.get().second->getExprLoc()))
2302     CommaVisitor(*this).Visit(Second.get().second);
2303 
2304   Expr *Third  = third.release().getAs<Expr>();
2305   if (isa<NullStmt>(Body))
2306     getCurCompoundScope().setHasEmptyLoopBodies();
2307 
2308   return new (Context)
2309       ForStmt(Context, First, Second.get().second, Second.get().first, Third,
2310               Body, ForLoc, LParenLoc, RParenLoc);
2311 }
2312 
2313 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
2314   // Reduce placeholder expressions here.  Note that this rejects the
2315   // use of pseudo-object l-values in this position.
2316   ExprResult result = CheckPlaceholderExpr(E);
2317   if (result.isInvalid()) return StmtError();
2318   E = result.get();
2319 
2320   ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2321   if (FullExpr.isInvalid())
2322     return StmtError();
2323   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
2324 }
2325 
2326 /// Finish building a variable declaration for a for-range statement.
2327 /// \return true if an error occurs.
2328 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
2329                                   SourceLocation Loc, int DiagID) {
2330   if (Decl->getType()->isUndeducedType()) {
2331     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
2332     if (!Res.isUsable()) {
2333       Decl->setInvalidDecl();
2334       return true;
2335     }
2336     Init = Res.get();
2337   }
2338 
2339   // Deduce the type for the iterator variable now rather than leaving it to
2340   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
2341   QualType InitType;
2342   if (!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) {
2343     SemaRef.Diag(Loc, DiagID) << Init->getType();
2344   } else {
2345     TemplateDeductionInfo Info(Init->getExprLoc());
2346     TemplateDeductionResult Result = SemaRef.DeduceAutoType(
2347         Decl->getTypeSourceInfo()->getTypeLoc(), Init, InitType, Info);
2348     if (Result != TemplateDeductionResult::Success &&
2349         Result != TemplateDeductionResult::AlreadyDiagnosed)
2350       SemaRef.Diag(Loc, DiagID) << Init->getType();
2351   }
2352 
2353   if (InitType.isNull()) {
2354     Decl->setInvalidDecl();
2355     return true;
2356   }
2357   Decl->setType(InitType);
2358 
2359   // In ARC, infer lifetime.
2360   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2361   // we're doing the equivalent of fast iteration.
2362   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2363       SemaRef.ObjC().inferObjCARCLifetime(Decl))
2364     Decl->setInvalidDecl();
2365 
2366   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2367   SemaRef.FinalizeDeclaration(Decl);
2368   SemaRef.CurContext->addHiddenDecl(Decl);
2369   return false;
2370 }
2371 
2372 namespace {
2373 // An enum to represent whether something is dealing with a call to begin()
2374 // or a call to end() in a range-based for loop.
2375 enum BeginEndFunction {
2376   BEF_begin,
2377   BEF_end
2378 };
2379 
2380 /// Produce a note indicating which begin/end function was implicitly called
2381 /// by a C++11 for-range statement. This is often not obvious from the code,
2382 /// nor from the diagnostics produced when analysing the implicit expressions
2383 /// required in a for-range statement.
2384 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2385                                   BeginEndFunction BEF) {
2386   CallExpr *CE = dyn_cast<CallExpr>(E);
2387   if (!CE)
2388     return;
2389   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2390   if (!D)
2391     return;
2392   SourceLocation Loc = D->getLocation();
2393 
2394   std::string Description;
2395   bool IsTemplate = false;
2396   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2397     Description = SemaRef.getTemplateArgumentBindingsText(
2398       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2399     IsTemplate = true;
2400   }
2401 
2402   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2403     << BEF << IsTemplate << Description << E->getType();
2404 }
2405 
2406 /// Build a variable declaration for a for-range statement.
2407 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2408                               QualType Type, StringRef Name) {
2409   DeclContext *DC = SemaRef.CurContext;
2410   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2411   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2412   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2413                                   TInfo, SC_None);
2414   Decl->setImplicit();
2415   return Decl;
2416 }
2417 
2418 }
2419 
2420 static bool ObjCEnumerationCollection(Expr *Collection) {
2421   return !Collection->isTypeDependent()
2422           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2423 }
2424 
2425 StmtResult Sema::ActOnCXXForRangeStmt(
2426     Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt,
2427     Stmt *First, SourceLocation ColonLoc, Expr *Range, SourceLocation RParenLoc,
2428     BuildForRangeKind Kind,
2429     ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps) {
2430   // FIXME: recover in order to allow the body to be parsed.
2431   if (!First)
2432     return StmtError();
2433 
2434   if (Range && ObjCEnumerationCollection(Range)) {
2435     // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2436     if (InitStmt)
2437       return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2438                  << InitStmt->getSourceRange();
2439     return ObjC().ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2440   }
2441 
2442   DeclStmt *DS = dyn_cast<DeclStmt>(First);
2443   assert(DS && "first part of for range not a decl stmt");
2444 
2445   if (!DS->isSingleDecl()) {
2446     Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2447     return StmtError();
2448   }
2449 
2450   // This function is responsible for attaching an initializer to LoopVar. We
2451   // must call ActOnInitializerError if we fail to do so.
2452   Decl *LoopVar = DS->getSingleDecl();
2453   if (LoopVar->isInvalidDecl() || !Range ||
2454       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2455     ActOnInitializerError(LoopVar);
2456     return StmtError();
2457   }
2458 
2459   // Build the coroutine state immediately and not later during template
2460   // instantiation
2461   if (!CoawaitLoc.isInvalid()) {
2462     if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
2463       ActOnInitializerError(LoopVar);
2464       return StmtError();
2465     }
2466   }
2467 
2468   // Build  auto && __range = range-init
2469   // Divide by 2, since the variables are in the inner scope (loop body).
2470   const auto DepthStr = std::to_string(S->getDepth() / 2);
2471   SourceLocation RangeLoc = Range->getBeginLoc();
2472   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2473                                            Context.getAutoRRefDeductType(),
2474                                            std::string("__range") + DepthStr);
2475   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2476                             diag::err_for_range_deduction_failure)) {
2477     ActOnInitializerError(LoopVar);
2478     return StmtError();
2479   }
2480 
2481   // Claim the type doesn't contain auto: we've already done the checking.
2482   DeclGroupPtrTy RangeGroup =
2483       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2484   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2485   if (RangeDecl.isInvalid()) {
2486     ActOnInitializerError(LoopVar);
2487     return StmtError();
2488   }
2489 
2490   StmtResult R = BuildCXXForRangeStmt(
2491       ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2492       /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2493       /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind,
2494       LifetimeExtendTemps);
2495   if (R.isInvalid()) {
2496     ActOnInitializerError(LoopVar);
2497     return StmtError();
2498   }
2499 
2500   return R;
2501 }
2502 
2503 /// Create the initialization, compare, and increment steps for
2504 /// the range-based for loop expression.
2505 /// This function does not handle array-based for loops,
2506 /// which are created in Sema::BuildCXXForRangeStmt.
2507 ///
2508 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2509 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2510 /// CandidateSet and BEF are set and some non-success value is returned on
2511 /// failure.
2512 static Sema::ForRangeStatus
2513 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2514                       QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2515                       SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2516                       OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2517                       ExprResult *EndExpr, BeginEndFunction *BEF) {
2518   DeclarationNameInfo BeginNameInfo(
2519       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2520   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2521                                   ColonLoc);
2522 
2523   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2524                                  Sema::LookupMemberName);
2525   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2526 
2527   auto BuildBegin = [&] {
2528     *BEF = BEF_begin;
2529     Sema::ForRangeStatus RangeStatus =
2530         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2531                                           BeginMemberLookup, CandidateSet,
2532                                           BeginRange, BeginExpr);
2533 
2534     if (RangeStatus != Sema::FRS_Success) {
2535       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2536         SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2537             << ColonLoc << BEF_begin << BeginRange->getType();
2538       return RangeStatus;
2539     }
2540     if (!CoawaitLoc.isInvalid()) {
2541       // FIXME: getCurScope() should not be used during template instantiation.
2542       // We should pick up the set of unqualified lookup results for operator
2543       // co_await during the initial parse.
2544       *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2545                                             BeginExpr->get());
2546       if (BeginExpr->isInvalid())
2547         return Sema::FRS_DiagnosticIssued;
2548     }
2549     if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2550                               diag::err_for_range_iter_deduction_failure)) {
2551       NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2552       return Sema::FRS_DiagnosticIssued;
2553     }
2554     return Sema::FRS_Success;
2555   };
2556 
2557   auto BuildEnd = [&] {
2558     *BEF = BEF_end;
2559     Sema::ForRangeStatus RangeStatus =
2560         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2561                                           EndMemberLookup, CandidateSet,
2562                                           EndRange, EndExpr);
2563     if (RangeStatus != Sema::FRS_Success) {
2564       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2565         SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2566             << ColonLoc << BEF_end << EndRange->getType();
2567       return RangeStatus;
2568     }
2569     if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2570                               diag::err_for_range_iter_deduction_failure)) {
2571       NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2572       return Sema::FRS_DiagnosticIssued;
2573     }
2574     return Sema::FRS_Success;
2575   };
2576 
2577   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2578     // - if _RangeT is a class type, the unqualified-ids begin and end are
2579     //   looked up in the scope of class _RangeT as if by class member access
2580     //   lookup (3.4.5), and if either (or both) finds at least one
2581     //   declaration, begin-expr and end-expr are __range.begin() and
2582     //   __range.end(), respectively;
2583     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2584     if (BeginMemberLookup.isAmbiguous())
2585       return Sema::FRS_DiagnosticIssued;
2586 
2587     SemaRef.LookupQualifiedName(EndMemberLookup, D);
2588     if (EndMemberLookup.isAmbiguous())
2589       return Sema::FRS_DiagnosticIssued;
2590 
2591     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2592       // Look up the non-member form of the member we didn't find, first.
2593       // This way we prefer a "no viable 'end'" diagnostic over a "i found
2594       // a 'begin' but ignored it because there was no member 'end'"
2595       // diagnostic.
2596       auto BuildNonmember = [&](
2597           BeginEndFunction BEFFound, LookupResult &Found,
2598           llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2599           llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2600         LookupResult OldFound = std::move(Found);
2601         Found.clear();
2602 
2603         if (Sema::ForRangeStatus Result = BuildNotFound())
2604           return Result;
2605 
2606         switch (BuildFound()) {
2607         case Sema::FRS_Success:
2608           return Sema::FRS_Success;
2609 
2610         case Sema::FRS_NoViableFunction:
2611           CandidateSet->NoteCandidates(
2612               PartialDiagnosticAt(BeginRange->getBeginLoc(),
2613                                   SemaRef.PDiag(diag::err_for_range_invalid)
2614                                       << BeginRange->getType() << BEFFound),
2615               SemaRef, OCD_AllCandidates, BeginRange);
2616           [[fallthrough]];
2617 
2618         case Sema::FRS_DiagnosticIssued:
2619           for (NamedDecl *D : OldFound) {
2620             SemaRef.Diag(D->getLocation(),
2621                          diag::note_for_range_member_begin_end_ignored)
2622                 << BeginRange->getType() << BEFFound;
2623           }
2624           return Sema::FRS_DiagnosticIssued;
2625         }
2626         llvm_unreachable("unexpected ForRangeStatus");
2627       };
2628       if (BeginMemberLookup.empty())
2629         return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2630       return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2631     }
2632   } else {
2633     // - otherwise, begin-expr and end-expr are begin(__range) and
2634     //   end(__range), respectively, where begin and end are looked up with
2635     //   argument-dependent lookup (3.4.2). For the purposes of this name
2636     //   lookup, namespace std is an associated namespace.
2637   }
2638 
2639   if (Sema::ForRangeStatus Result = BuildBegin())
2640     return Result;
2641   return BuildEnd();
2642 }
2643 
2644 /// Speculatively attempt to dereference an invalid range expression.
2645 /// If the attempt fails, this function will return a valid, null StmtResult
2646 /// and emit no diagnostics.
2647 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2648                                                  SourceLocation ForLoc,
2649                                                  SourceLocation CoawaitLoc,
2650                                                  Stmt *InitStmt,
2651                                                  Stmt *LoopVarDecl,
2652                                                  SourceLocation ColonLoc,
2653                                                  Expr *Range,
2654                                                  SourceLocation RangeLoc,
2655                                                  SourceLocation RParenLoc) {
2656   // Determine whether we can rebuild the for-range statement with a
2657   // dereferenced range expression.
2658   ExprResult AdjustedRange;
2659   {
2660     Sema::SFINAETrap Trap(SemaRef);
2661 
2662     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2663     if (AdjustedRange.isInvalid())
2664       return StmtResult();
2665 
2666     StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2667         S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2668         AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2669     if (SR.isInvalid())
2670       return StmtResult();
2671   }
2672 
2673   // The attempt to dereference worked well enough that it could produce a valid
2674   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2675   // case there are any other (non-fatal) problems with it.
2676   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2677     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2678   return SemaRef.ActOnCXXForRangeStmt(
2679       S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2680       AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2681 }
2682 
2683 StmtResult Sema::BuildCXXForRangeStmt(
2684     SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt,
2685     SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End,
2686     Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc,
2687     BuildForRangeKind Kind,
2688     ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps) {
2689   // FIXME: This should not be used during template instantiation. We should
2690   // pick up the set of unqualified lookup results for the != and + operators
2691   // in the initial parse.
2692   //
2693   // Testcase (accepts-invalid):
2694   //   template<typename T> void f() { for (auto x : T()) {} }
2695   //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2696   //   bool operator!=(N::X, N::X); void operator++(N::X);
2697   //   void g() { f<N::X>(); }
2698   Scope *S = getCurScope();
2699 
2700   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2701   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2702   QualType RangeVarType = RangeVar->getType();
2703 
2704   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2705   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2706 
2707   StmtResult BeginDeclStmt = Begin;
2708   StmtResult EndDeclStmt = End;
2709   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2710 
2711   if (RangeVarType->isDependentType()) {
2712     // The range is implicitly used as a placeholder when it is dependent.
2713     RangeVar->markUsed(Context);
2714 
2715     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2716     // them in properly when we instantiate the loop.
2717     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2718       if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2719         for (auto *Binding : DD->bindings()) {
2720           if (!Binding->isParameterPack())
2721             Binding->setType(Context.DependentTy);
2722         }
2723       LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType()));
2724     }
2725   } else if (!BeginDeclStmt.get()) {
2726     SourceLocation RangeLoc = RangeVar->getLocation();
2727 
2728     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2729 
2730     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2731                                                 VK_LValue, ColonLoc);
2732     if (BeginRangeRef.isInvalid())
2733       return StmtError();
2734 
2735     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2736                                               VK_LValue, ColonLoc);
2737     if (EndRangeRef.isInvalid())
2738       return StmtError();
2739 
2740     QualType AutoType = Context.getAutoDeductType();
2741     Expr *Range = RangeVar->getInit();
2742     if (!Range)
2743       return StmtError();
2744     QualType RangeType = Range->getType();
2745 
2746     if (RequireCompleteType(RangeLoc, RangeType,
2747                             diag::err_for_range_incomplete_type))
2748       return StmtError();
2749 
2750     // P2718R0 - Lifetime extension in range-based for loops.
2751     if (getLangOpts().CPlusPlus23 && !LifetimeExtendTemps.empty()) {
2752       InitializedEntity Entity =
2753           InitializedEntity::InitializeVariable(RangeVar);
2754       for (auto *MTE : LifetimeExtendTemps)
2755         MTE->setExtendingDecl(RangeVar, Entity.allocateManglingNumber());
2756     }
2757 
2758     // Build auto __begin = begin-expr, __end = end-expr.
2759     // Divide by 2, since the variables are in the inner scope (loop body).
2760     const auto DepthStr = std::to_string(S->getDepth() / 2);
2761     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2762                                              std::string("__begin") + DepthStr);
2763     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2764                                            std::string("__end") + DepthStr);
2765 
2766     // Build begin-expr and end-expr and attach to __begin and __end variables.
2767     ExprResult BeginExpr, EndExpr;
2768     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2769       // - if _RangeT is an array type, begin-expr and end-expr are __range and
2770       //   __range + __bound, respectively, where __bound is the array bound. If
2771       //   _RangeT is an array of unknown size or an array of incomplete type,
2772       //   the program is ill-formed;
2773 
2774       // begin-expr is __range.
2775       BeginExpr = BeginRangeRef;
2776       if (!CoawaitLoc.isInvalid()) {
2777         BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2778         if (BeginExpr.isInvalid())
2779           return StmtError();
2780       }
2781       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2782                                 diag::err_for_range_iter_deduction_failure)) {
2783         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2784         return StmtError();
2785       }
2786 
2787       // Find the array bound.
2788       ExprResult BoundExpr;
2789       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2790         BoundExpr = IntegerLiteral::Create(
2791             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2792       else if (const VariableArrayType *VAT =
2793                dyn_cast<VariableArrayType>(UnqAT)) {
2794         // For a variably modified type we can't just use the expression within
2795         // the array bounds, since we don't want that to be re-evaluated here.
2796         // Rather, we need to determine what it was when the array was first
2797         // created - so we resort to using sizeof(vla)/sizeof(element).
2798         // For e.g.
2799         //  void f(int b) {
2800         //    int vla[b];
2801         //    b = -1;   <-- This should not affect the num of iterations below
2802         //    for (int &c : vla) { .. }
2803         //  }
2804 
2805         // FIXME: This results in codegen generating IR that recalculates the
2806         // run-time number of elements (as opposed to just using the IR Value
2807         // that corresponds to the run-time value of each bound that was
2808         // generated when the array was created.) If this proves too embarrassing
2809         // even for unoptimized IR, consider passing a magic-value/cookie to
2810         // codegen that then knows to simply use that initial llvm::Value (that
2811         // corresponds to the bound at time of array creation) within
2812         // getelementptr.  But be prepared to pay the price of increasing a
2813         // customized form of coupling between the two components - which  could
2814         // be hard to maintain as the codebase evolves.
2815 
2816         ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2817             EndVar->getLocation(), UETT_SizeOf,
2818             /*IsType=*/true,
2819             CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2820                                                  VAT->desugar(), RangeLoc))
2821                 .getAsOpaquePtr(),
2822             EndVar->getSourceRange());
2823         if (SizeOfVLAExprR.isInvalid())
2824           return StmtError();
2825 
2826         ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2827             EndVar->getLocation(), UETT_SizeOf,
2828             /*IsType=*/true,
2829             CreateParsedType(VAT->desugar(),
2830                              Context.getTrivialTypeSourceInfo(
2831                                  VAT->getElementType(), RangeLoc))
2832                 .getAsOpaquePtr(),
2833             EndVar->getSourceRange());
2834         if (SizeOfEachElementExprR.isInvalid())
2835           return StmtError();
2836 
2837         BoundExpr =
2838             ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2839                        SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2840         if (BoundExpr.isInvalid())
2841           return StmtError();
2842 
2843       } else {
2844         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2845         // UnqAT is not incomplete and Range is not type-dependent.
2846         llvm_unreachable("Unexpected array type in for-range");
2847       }
2848 
2849       // end-expr is __range + __bound.
2850       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2851                            BoundExpr.get());
2852       if (EndExpr.isInvalid())
2853         return StmtError();
2854       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2855                                 diag::err_for_range_iter_deduction_failure)) {
2856         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2857         return StmtError();
2858       }
2859     } else {
2860       OverloadCandidateSet CandidateSet(RangeLoc,
2861                                         OverloadCandidateSet::CSK_Normal);
2862       BeginEndFunction BEFFailure;
2863       ForRangeStatus RangeStatus = BuildNonArrayForRange(
2864           *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2865           EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2866           &BEFFailure);
2867 
2868       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2869           BEFFailure == BEF_begin) {
2870         // If the range is being built from an array parameter, emit a
2871         // a diagnostic that it is being treated as a pointer.
2872         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2873           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2874             QualType ArrayTy = PVD->getOriginalType();
2875             QualType PointerTy = PVD->getType();
2876             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2877               Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2878                   << RangeLoc << PVD << ArrayTy << PointerTy;
2879               Diag(PVD->getLocation(), diag::note_declared_at);
2880               return StmtError();
2881             }
2882           }
2883         }
2884 
2885         // If building the range failed, try dereferencing the range expression
2886         // unless a diagnostic was issued or the end function is problematic.
2887         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2888                                                        CoawaitLoc, InitStmt,
2889                                                        LoopVarDecl, ColonLoc,
2890                                                        Range, RangeLoc,
2891                                                        RParenLoc);
2892         if (SR.isInvalid() || SR.isUsable())
2893           return SR;
2894       }
2895 
2896       // Otherwise, emit diagnostics if we haven't already.
2897       if (RangeStatus == FRS_NoViableFunction) {
2898         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2899         CandidateSet.NoteCandidates(
2900             PartialDiagnosticAt(Range->getBeginLoc(),
2901                                 PDiag(diag::err_for_range_invalid)
2902                                     << RangeLoc << Range->getType()
2903                                     << BEFFailure),
2904             *this, OCD_AllCandidates, Range);
2905       }
2906       // Return an error if no fix was discovered.
2907       if (RangeStatus != FRS_Success)
2908         return StmtError();
2909     }
2910 
2911     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2912            "invalid range expression in for loop");
2913 
2914     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2915     // C++1z removes this restriction.
2916     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2917     if (!Context.hasSameType(BeginType, EndType)) {
2918       Diag(RangeLoc, getLangOpts().CPlusPlus17
2919                          ? diag::warn_for_range_begin_end_types_differ
2920                          : diag::ext_for_range_begin_end_types_differ)
2921           << BeginType << EndType;
2922       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2923       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2924     }
2925 
2926     BeginDeclStmt =
2927         ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2928     EndDeclStmt =
2929         ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2930 
2931     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2932     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2933                                            VK_LValue, ColonLoc);
2934     if (BeginRef.isInvalid())
2935       return StmtError();
2936 
2937     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2938                                          VK_LValue, ColonLoc);
2939     if (EndRef.isInvalid())
2940       return StmtError();
2941 
2942     // Build and check __begin != __end expression.
2943     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2944                            BeginRef.get(), EndRef.get());
2945     if (!NotEqExpr.isInvalid())
2946       NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2947     if (!NotEqExpr.isInvalid())
2948       NotEqExpr =
2949           ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
2950     if (NotEqExpr.isInvalid()) {
2951       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2952         << RangeLoc << 0 << BeginRangeRef.get()->getType();
2953       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2954       if (!Context.hasSameType(BeginType, EndType))
2955         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2956       return StmtError();
2957     }
2958 
2959     // Build and check ++__begin expression.
2960     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2961                                 VK_LValue, ColonLoc);
2962     if (BeginRef.isInvalid())
2963       return StmtError();
2964 
2965     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2966     if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2967       // FIXME: getCurScope() should not be used during template instantiation.
2968       // We should pick up the set of unqualified lookup results for operator
2969       // co_await during the initial parse.
2970       IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2971     if (!IncrExpr.isInvalid())
2972       IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
2973     if (IncrExpr.isInvalid()) {
2974       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2975         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2976       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2977       return StmtError();
2978     }
2979 
2980     // Build and check *__begin  expression.
2981     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2982                                 VK_LValue, ColonLoc);
2983     if (BeginRef.isInvalid())
2984       return StmtError();
2985 
2986     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2987     if (DerefExpr.isInvalid()) {
2988       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2989         << RangeLoc << 1 << BeginRangeRef.get()->getType();
2990       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2991       return StmtError();
2992     }
2993 
2994     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2995     // trying to determine whether this would be a valid range.
2996     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2997       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2998       if (LoopVar->isInvalidDecl() ||
2999           (LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
3000         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3001     }
3002   }
3003 
3004   // Don't bother to actually allocate the result if we're just trying to
3005   // determine whether it would be valid.
3006   if (Kind == BFRK_Check)
3007     return StmtResult();
3008 
3009   // In OpenMP loop region loop control variable must be private. Perform
3010   // analysis of first part (if any).
3011   if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
3012     OpenMP().ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
3013 
3014   return new (Context) CXXForRangeStmt(
3015       InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
3016       cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
3017       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
3018       ColonLoc, RParenLoc);
3019 }
3020 
3021 // Warn when the loop variable is a const reference that creates a copy.
3022 // Suggest using the non-reference type for copies.  If a copy can be prevented
3023 // suggest the const reference type that would do so.
3024 // For instance, given "for (const &Foo : Range)", suggest
3025 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
3026 // possible, also suggest "for (const &Bar : Range)" if this type prevents
3027 // the copy altogether.
3028 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
3029                                                     const VarDecl *VD,
3030                                                     QualType RangeInitType) {
3031   const Expr *InitExpr = VD->getInit();
3032   if (!InitExpr)
3033     return;
3034 
3035   QualType VariableType = VD->getType();
3036 
3037   if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
3038     if (!Cleanups->cleanupsHaveSideEffects())
3039       InitExpr = Cleanups->getSubExpr();
3040 
3041   const MaterializeTemporaryExpr *MTE =
3042       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
3043 
3044   // No copy made.
3045   if (!MTE)
3046     return;
3047 
3048   const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
3049 
3050   // Searching for either UnaryOperator for dereference of a pointer or
3051   // CXXOperatorCallExpr for handling iterators.
3052   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
3053     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
3054       E = CCE->getArg(0);
3055     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
3056       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
3057       E = ME->getBase();
3058     } else {
3059       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
3060       E = MTE->getSubExpr();
3061     }
3062     E = E->IgnoreImpCasts();
3063   }
3064 
3065   QualType ReferenceReturnType;
3066   if (isa<UnaryOperator>(E)) {
3067     ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
3068   } else {
3069     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
3070     const FunctionDecl *FD = Call->getDirectCallee();
3071     QualType ReturnType = FD->getReturnType();
3072     if (ReturnType->isReferenceType())
3073       ReferenceReturnType = ReturnType;
3074   }
3075 
3076   if (!ReferenceReturnType.isNull()) {
3077     // Loop variable creates a temporary.  Suggest either to go with
3078     // non-reference loop variable to indicate a copy is made, or
3079     // the correct type to bind a const reference.
3080     SemaRef.Diag(VD->getLocation(),
3081                  diag::warn_for_range_const_ref_binds_temp_built_from_ref)
3082         << VD << VariableType << ReferenceReturnType;
3083     QualType NonReferenceType = VariableType.getNonReferenceType();
3084     NonReferenceType.removeLocalConst();
3085     QualType NewReferenceType =
3086         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
3087     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
3088         << NonReferenceType << NewReferenceType << VD->getSourceRange()
3089         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3090   } else if (!VariableType->isRValueReferenceType()) {
3091     // The range always returns a copy, so a temporary is always created.
3092     // Suggest removing the reference from the loop variable.
3093     // If the type is a rvalue reference do not warn since that changes the
3094     // semantic of the code.
3095     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
3096         << VD << RangeInitType;
3097     QualType NonReferenceType = VariableType.getNonReferenceType();
3098     NonReferenceType.removeLocalConst();
3099     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
3100         << NonReferenceType << VD->getSourceRange()
3101         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3102   }
3103 }
3104 
3105 /// Determines whether the @p VariableType's declaration is a record with the
3106 /// clang::trivial_abi attribute.
3107 static bool hasTrivialABIAttr(QualType VariableType) {
3108   if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
3109     return RD->hasAttr<TrivialABIAttr>();
3110 
3111   return false;
3112 }
3113 
3114 // Warns when the loop variable can be changed to a reference type to
3115 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
3116 // "for (const Foo &x : Range)" if this form does not make a copy.
3117 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
3118                                                 const VarDecl *VD) {
3119   const Expr *InitExpr = VD->getInit();
3120   if (!InitExpr)
3121     return;
3122 
3123   QualType VariableType = VD->getType();
3124 
3125   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
3126     if (!CE->getConstructor()->isCopyConstructor())
3127       return;
3128   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
3129     if (CE->getCastKind() != CK_LValueToRValue)
3130       return;
3131   } else {
3132     return;
3133   }
3134 
3135   // Small trivially copyable types are cheap to copy. Do not emit the
3136   // diagnostic for these instances. 64 bytes is a common size of a cache line.
3137   // (The function `getTypeSize` returns the size in bits.)
3138   ASTContext &Ctx = SemaRef.Context;
3139   if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
3140       (VariableType.isTriviallyCopyConstructibleType(Ctx) ||
3141        hasTrivialABIAttr(VariableType)))
3142     return;
3143 
3144   // Suggest changing from a const variable to a const reference variable
3145   // if doing so will prevent a copy.
3146   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
3147       << VD << VariableType;
3148   SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
3149       << SemaRef.Context.getLValueReferenceType(VariableType)
3150       << VD->getSourceRange()
3151       << FixItHint::CreateInsertion(VD->getLocation(), "&");
3152 }
3153 
3154 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
3155 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
3156 ///    using "const foo x" to show that a copy is made
3157 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
3158 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
3159 ///    prevent the copy.
3160 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
3161 ///    Suggest "const foo &x" to prevent the copy.
3162 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
3163                                            const CXXForRangeStmt *ForStmt) {
3164   if (SemaRef.inTemplateInstantiation())
3165     return;
3166 
3167   if (SemaRef.Diags.isIgnored(
3168           diag::warn_for_range_const_ref_binds_temp_built_from_ref,
3169           ForStmt->getBeginLoc()) &&
3170       SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
3171                               ForStmt->getBeginLoc()) &&
3172       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
3173                               ForStmt->getBeginLoc())) {
3174     return;
3175   }
3176 
3177   const VarDecl *VD = ForStmt->getLoopVariable();
3178   if (!VD)
3179     return;
3180 
3181   QualType VariableType = VD->getType();
3182 
3183   if (VariableType->isIncompleteType())
3184     return;
3185 
3186   const Expr *InitExpr = VD->getInit();
3187   if (!InitExpr)
3188     return;
3189 
3190   if (InitExpr->getExprLoc().isMacroID())
3191     return;
3192 
3193   if (VariableType->isReferenceType()) {
3194     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
3195                                             ForStmt->getRangeInit()->getType());
3196   } else if (VariableType.isConstQualified()) {
3197     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
3198   }
3199 }
3200 
3201 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
3202   if (!S || !B)
3203     return StmtError();
3204 
3205   if (isa<ObjCForCollectionStmt>(S))
3206     return ObjC().FinishObjCForCollectionStmt(S, B);
3207 
3208   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
3209   ForStmt->setBody(B);
3210 
3211   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
3212                         diag::warn_empty_range_based_for_body);
3213 
3214   DiagnoseForRangeVariableCopies(*this, ForStmt);
3215 
3216   return S;
3217 }
3218 
3219 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
3220                                SourceLocation LabelLoc,
3221                                LabelDecl *TheDecl) {
3222   setFunctionHasBranchIntoScope();
3223 
3224   // If this goto is in a compute construct scope, we need to make sure we check
3225   // gotos in/out.
3226   if (getCurScope()->isInOpenACCComputeConstructScope())
3227     setFunctionHasBranchProtectedScope();
3228 
3229   TheDecl->markUsed(Context);
3230   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
3231 }
3232 
3233 StmtResult
3234 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
3235                             Expr *E) {
3236   // Convert operand to void*
3237   if (!E->isTypeDependent()) {
3238     QualType ETy = E->getType();
3239     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
3240     ExprResult ExprRes = E;
3241     AssignConvertType ConvTy =
3242       CheckSingleAssignmentConstraints(DestTy, ExprRes);
3243     if (ExprRes.isInvalid())
3244       return StmtError();
3245     E = ExprRes.get();
3246     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E,
3247                                  AssignmentAction::Passing))
3248       return StmtError();
3249   }
3250 
3251   ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
3252   if (ExprRes.isInvalid())
3253     return StmtError();
3254   E = ExprRes.get();
3255 
3256   setFunctionHasIndirectGoto();
3257 
3258   // If this goto is in a compute construct scope, we need to make sure we
3259   // check gotos in/out.
3260   if (getCurScope()->isInOpenACCComputeConstructScope())
3261     setFunctionHasBranchProtectedScope();
3262 
3263   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
3264 }
3265 
3266 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
3267                                      const Scope &DestScope) {
3268   if (!S.CurrentSEHFinally.empty() &&
3269       DestScope.Contains(*S.CurrentSEHFinally.back())) {
3270     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
3271   }
3272 }
3273 
3274 StmtResult
3275 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
3276   Scope *S = CurScope->getContinueParent();
3277   if (!S) {
3278     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
3279     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
3280   }
3281   if (S->isConditionVarScope()) {
3282     // We cannot 'continue;' from within a statement expression in the
3283     // initializer of a condition variable because we would jump past the
3284     // initialization of that variable.
3285     return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init));
3286   }
3287 
3288   // A 'continue' that would normally have execution continue on a block outside
3289   // of a compute construct counts as 'branching out of' the compute construct,
3290   // so diagnose here.
3291   if (S->isOpenACCComputeConstructScope())
3292     return StmtError(
3293         Diag(ContinueLoc, diag::err_acc_branch_in_out_compute_construct)
3294         << /*branch*/ 0 << /*out of */ 0);
3295 
3296   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
3297 
3298   return new (Context) ContinueStmt(ContinueLoc);
3299 }
3300 
3301 StmtResult
3302 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
3303   Scope *S = CurScope->getBreakParent();
3304   if (!S) {
3305     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
3306     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
3307   }
3308   if (S->isOpenMPLoopScope())
3309     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
3310                      << "break");
3311 
3312   // OpenACC doesn't allow 'break'ing from a compute construct, so diagnose if
3313   // we are trying to do so.  This can come in 2 flavors: 1-the break'able thing
3314   // (besides the compute construct) 'contains' the compute construct, at which
3315   // point the 'break' scope will be the compute construct.  Else it could be a
3316   // loop of some sort that has a direct parent of the compute construct.
3317   // However, a 'break' in a 'switch' marked as a compute construct doesn't
3318   // count as 'branch out of' the compute construct.
3319   if (S->isOpenACCComputeConstructScope() ||
3320       (S->isLoopScope() && S->getParent() &&
3321        S->getParent()->isOpenACCComputeConstructScope()))
3322     return StmtError(
3323         Diag(BreakLoc, diag::err_acc_branch_in_out_compute_construct)
3324         << /*branch*/ 0 << /*out of */ 0);
3325 
3326   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
3327 
3328   return new (Context) BreakStmt(BreakLoc);
3329 }
3330 
3331 Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E,
3332                                                SimplerImplicitMoveMode Mode) {
3333   if (!E)
3334     return NamedReturnInfo();
3335   // - in a return statement in a function [where] ...
3336   // ... the expression is the name of a non-volatile automatic object ...
3337   const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
3338   if (!DR || DR->refersToEnclosingVariableOrCapture())
3339     return NamedReturnInfo();
3340   const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
3341   if (!VD)
3342     return NamedReturnInfo();
3343   if (VD->getInit() && VD->getInit()->containsErrors())
3344     return NamedReturnInfo();
3345   NamedReturnInfo Res = getNamedReturnInfo(VD);
3346   if (Res.Candidate && !E->isXValue() &&
3347       (Mode == SimplerImplicitMoveMode::ForceOn ||
3348        (Mode != SimplerImplicitMoveMode::ForceOff &&
3349         getLangOpts().CPlusPlus23))) {
3350     E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(),
3351                                  CK_NoOp, E, nullptr, VK_XValue,
3352                                  FPOptionsOverride());
3353   }
3354   return Res;
3355 }
3356 
3357 Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) {
3358   NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable};
3359 
3360   // C++20 [class.copy.elision]p3:
3361   // - in a return statement in a function with ...
3362   // (other than a function ... parameter)
3363   if (VD->getKind() == Decl::ParmVar)
3364     Info.S = NamedReturnInfo::MoveEligible;
3365   else if (VD->getKind() != Decl::Var)
3366     return NamedReturnInfo();
3367 
3368   // (other than ... a catch-clause parameter)
3369   if (VD->isExceptionVariable())
3370     Info.S = NamedReturnInfo::MoveEligible;
3371 
3372   // ...automatic...
3373   if (!VD->hasLocalStorage())
3374     return NamedReturnInfo();
3375 
3376   // We don't want to implicitly move out of a __block variable during a return
3377   // because we cannot assume the variable will no longer be used.
3378   if (VD->hasAttr<BlocksAttr>())
3379     return NamedReturnInfo();
3380 
3381   QualType VDType = VD->getType();
3382   if (VDType->isObjectType()) {
3383     // C++17 [class.copy.elision]p3:
3384     // ...non-volatile automatic object...
3385     if (VDType.isVolatileQualified())
3386       return NamedReturnInfo();
3387   } else if (VDType->isRValueReferenceType()) {
3388     // C++20 [class.copy.elision]p3:
3389     // ...either a non-volatile object or an rvalue reference to a non-volatile
3390     // object type...
3391     QualType VDReferencedType = VDType.getNonReferenceType();
3392     if (VDReferencedType.isVolatileQualified() ||
3393         !VDReferencedType->isObjectType())
3394       return NamedReturnInfo();
3395     Info.S = NamedReturnInfo::MoveEligible;
3396   } else {
3397     return NamedReturnInfo();
3398   }
3399 
3400   // Variables with higher required alignment than their type's ABI
3401   // alignment cannot use NRVO.
3402   if (!VD->hasDependentAlignment() && !VDType->isIncompleteType() &&
3403       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType))
3404     Info.S = NamedReturnInfo::MoveEligible;
3405 
3406   return Info;
3407 }
3408 
3409 const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info,
3410                                              QualType ReturnType) {
3411   if (!Info.Candidate)
3412     return nullptr;
3413 
3414   auto invalidNRVO = [&] {
3415     Info = NamedReturnInfo();
3416     return nullptr;
3417   };
3418 
3419   // If we got a non-deduced auto ReturnType, we are in a dependent context and
3420   // there is no point in allowing copy elision since we won't have it deduced
3421   // by the point the VardDecl is instantiated, which is the last chance we have
3422   // of deciding if the candidate is really copy elidable.
3423   if ((ReturnType->getTypeClass() == Type::TypeClass::Auto &&
3424        ReturnType->isCanonicalUnqualified()) ||
3425       ReturnType->isSpecificBuiltinType(BuiltinType::Dependent))
3426     return invalidNRVO();
3427 
3428   if (!ReturnType->isDependentType()) {
3429     // - in a return statement in a function with ...
3430     // ... a class return type ...
3431     if (!ReturnType->isRecordType())
3432       return invalidNRVO();
3433 
3434     QualType VDType = Info.Candidate->getType();
3435     // ... the same cv-unqualified type as the function return type ...
3436     // When considering moving this expression out, allow dissimilar types.
3437     if (!VDType->isDependentType() &&
3438         !Context.hasSameUnqualifiedType(ReturnType, VDType))
3439       Info.S = NamedReturnInfo::MoveEligible;
3440   }
3441   return Info.isCopyElidable() ? Info.Candidate : nullptr;
3442 }
3443 
3444 /// Verify that the initialization sequence that was picked for the
3445 /// first overload resolution is permissible under C++98.
3446 ///
3447 /// Reject (possibly converting) constructors not taking an rvalue reference,
3448 /// or user conversion operators which are not ref-qualified.
3449 static bool
3450 VerifyInitializationSequenceCXX98(const Sema &S,
3451                                   const InitializationSequence &Seq) {
3452   const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) {
3453     return Step.Kind == InitializationSequence::SK_ConstructorInitialization ||
3454            Step.Kind == InitializationSequence::SK_UserConversion;
3455   });
3456   if (Step != Seq.step_end()) {
3457     const auto *FD = Step->Function.Function;
3458     if (isa<CXXConstructorDecl>(FD)
3459             ? !FD->getParamDecl(0)->getType()->isRValueReferenceType()
3460             : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None)
3461       return false;
3462   }
3463   return true;
3464 }
3465 
3466 ExprResult Sema::PerformMoveOrCopyInitialization(
3467     const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value,
3468     bool SupressSimplerImplicitMoves) {
3469   if (getLangOpts().CPlusPlus &&
3470       (!getLangOpts().CPlusPlus23 || SupressSimplerImplicitMoves) &&
3471       NRInfo.isMoveEligible()) {
3472     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3473                               CK_NoOp, Value, VK_XValue, FPOptionsOverride());
3474     Expr *InitExpr = &AsRvalue;
3475     auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(),
3476                                                Value->getBeginLoc());
3477     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3478     auto Res = Seq.getFailedOverloadResult();
3479     if ((Res == OR_Success || Res == OR_Deleted) &&
3480         (getLangOpts().CPlusPlus11 ||
3481          VerifyInitializationSequenceCXX98(*this, Seq))) {
3482       // Promote "AsRvalue" to the heap, since we now need this
3483       // expression node to persist.
3484       Value =
3485           ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value,
3486                                    nullptr, VK_XValue, FPOptionsOverride());
3487       // Complete type-checking the initialization of the return type
3488       // using the constructor we found.
3489       return Seq.Perform(*this, Entity, Kind, Value);
3490     }
3491   }
3492   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3493   // above, or overload resolution failed. Either way, we need to try
3494   // (again) now with the return value expression as written.
3495   return PerformCopyInitialization(Entity, SourceLocation(), Value);
3496 }
3497 
3498 /// Determine whether the declared return type of the specified function
3499 /// contains 'auto'.
3500 static bool hasDeducedReturnType(FunctionDecl *FD) {
3501   const FunctionProtoType *FPT =
3502       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3503   return FPT->getReturnType()->isUndeducedType();
3504 }
3505 
3506 StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,
3507                                          Expr *RetValExp,
3508                                          NamedReturnInfo &NRInfo,
3509                                          bool SupressSimplerImplicitMoves) {
3510   // If this is the first return we've seen, infer the return type.
3511   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3512   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3513   QualType FnRetType = CurCap->ReturnType;
3514   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3515   if (CurLambda && CurLambda->CallOperator->getType().isNull())
3516     return StmtError();
3517   bool HasDeducedReturnType =
3518       CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3519 
3520   if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3521       (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3522     if (RetValExp) {
3523       ExprResult ER =
3524           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3525       if (ER.isInvalid())
3526         return StmtError();
3527       RetValExp = ER.get();
3528     }
3529     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3530                               /* NRVOCandidate=*/nullptr);
3531   }
3532 
3533   if (HasDeducedReturnType) {
3534     FunctionDecl *FD = CurLambda->CallOperator;
3535     // If we've already decided this lambda is invalid, e.g. because
3536     // we saw a `return` whose expression had an error, don't keep
3537     // trying to deduce its return type.
3538     if (FD->isInvalidDecl())
3539       return StmtError();
3540     // In C++1y, the return type may involve 'auto'.
3541     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3542     if (CurCap->ReturnType.isNull())
3543       CurCap->ReturnType = FD->getReturnType();
3544 
3545     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3546     assert(AT && "lost auto type from lambda return type");
3547     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3548       FD->setInvalidDecl();
3549       // FIXME: preserve the ill-formed return expression.
3550       return StmtError();
3551     }
3552     CurCap->ReturnType = FnRetType = FD->getReturnType();
3553   } else if (CurCap->HasImplicitReturnType) {
3554     // For blocks/lambdas with implicit return types, we check each return
3555     // statement individually, and deduce the common return type when the block
3556     // or lambda is completed.
3557     // FIXME: Fold this into the 'auto' codepath above.
3558     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3559       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3560       if (Result.isInvalid())
3561         return StmtError();
3562       RetValExp = Result.get();
3563 
3564       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3565       // when deducing a return type for a lambda-expression (or by extension
3566       // for a block). These rules differ from the stated C++11 rules only in
3567       // that they remove top-level cv-qualifiers.
3568       if (!CurContext->isDependentContext())
3569         FnRetType = RetValExp->getType().getUnqualifiedType();
3570       else
3571         FnRetType = CurCap->ReturnType = Context.DependentTy;
3572     } else {
3573       if (RetValExp) {
3574         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3575         // initializer list, because it is not an expression (even
3576         // though we represent it as one). We still deduce 'void'.
3577         Diag(ReturnLoc, diag::err_lambda_return_init_list)
3578           << RetValExp->getSourceRange();
3579       }
3580 
3581       FnRetType = Context.VoidTy;
3582     }
3583 
3584     // Although we'll properly infer the type of the block once it's completed,
3585     // make sure we provide a return type now for better error recovery.
3586     if (CurCap->ReturnType.isNull())
3587       CurCap->ReturnType = FnRetType;
3588   }
3589   const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
3590 
3591   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3592     if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3593       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3594       return StmtError();
3595     }
3596   } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3597     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3598     return StmtError();
3599   } else {
3600     assert(CurLambda && "unknown kind of captured scope");
3601     if (CurLambda->CallOperator->getType()
3602             ->castAs<FunctionType>()
3603             ->getNoReturnAttr()) {
3604       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3605       return StmtError();
3606     }
3607   }
3608 
3609   // Otherwise, verify that this result type matches the previous one.  We are
3610   // pickier with blocks than for normal functions because we don't have GCC
3611   // compatibility to worry about here.
3612   if (FnRetType->isDependentType()) {
3613     // Delay processing for now.  TODO: there are lots of dependent
3614     // types we can conclusively prove aren't void.
3615   } else if (FnRetType->isVoidType()) {
3616     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3617         !(getLangOpts().CPlusPlus &&
3618           (RetValExp->isTypeDependent() ||
3619            RetValExp->getType()->isVoidType()))) {
3620       if (!getLangOpts().CPlusPlus &&
3621           RetValExp->getType()->isVoidType())
3622         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3623       else {
3624         Diag(ReturnLoc, diag::err_return_block_has_expr);
3625         RetValExp = nullptr;
3626       }
3627     }
3628   } else if (!RetValExp) {
3629     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3630   } else if (!RetValExp->isTypeDependent()) {
3631     // we have a non-void block with an expression, continue checking
3632 
3633     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3634     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3635     // function return.
3636 
3637     // In C++ the return statement is handled via a copy initialization.
3638     // the C version of which boils down to CheckSingleAssignmentConstraints.
3639     InitializedEntity Entity =
3640         InitializedEntity::InitializeResult(ReturnLoc, FnRetType);
3641     ExprResult Res = PerformMoveOrCopyInitialization(
3642         Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
3643     if (Res.isInvalid()) {
3644       // FIXME: Cleanup temporaries here, anyway?
3645       return StmtError();
3646     }
3647     RetValExp = Res.get();
3648     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3649   }
3650 
3651   if (RetValExp) {
3652     ExprResult ER =
3653         ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3654     if (ER.isInvalid())
3655       return StmtError();
3656     RetValExp = ER.get();
3657   }
3658   auto *Result =
3659       ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3660 
3661   // If we need to check for the named return value optimization,
3662   // or if we need to infer the return type,
3663   // save the return statement in our scope for later processing.
3664   if (CurCap->HasImplicitReturnType || NRVOCandidate)
3665     FunctionScopes.back()->Returns.push_back(Result);
3666 
3667   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3668     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3669 
3670   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap);
3671       CurBlock && CurCap->HasImplicitReturnType && RetValExp &&
3672       RetValExp->containsErrors())
3673     CurBlock->TheDecl->setInvalidDecl();
3674 
3675   return Result;
3676 }
3677 
3678 namespace {
3679 /// Marks all typedefs in all local classes in a type referenced.
3680 ///
3681 /// In a function like
3682 /// auto f() {
3683 ///   struct S { typedef int a; };
3684 ///   return S();
3685 /// }
3686 ///
3687 /// the local type escapes and could be referenced in some TUs but not in
3688 /// others. Pretend that all local typedefs are always referenced, to not warn
3689 /// on this. This isn't necessary if f has internal linkage, or the typedef
3690 /// is private.
3691 class LocalTypedefNameReferencer : public DynamicRecursiveASTVisitor {
3692 public:
3693   LocalTypedefNameReferencer(Sema &S) : S(S) {}
3694   bool VisitRecordType(RecordType *RT) override;
3695 
3696 private:
3697   Sema &S;
3698 };
3699 bool LocalTypedefNameReferencer::VisitRecordType(RecordType *RT) {
3700   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3701   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3702       R->isDependentType())
3703     return true;
3704   for (auto *TmpD : R->decls())
3705     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3706       if (T->getAccess() != AS_private || R->hasFriends())
3707         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3708   return true;
3709 }
3710 }
3711 
3712 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3713   return FD->getTypeSourceInfo()
3714       ->getTypeLoc()
3715       .getAsAdjusted<FunctionProtoTypeLoc>()
3716       .getReturnLoc();
3717 }
3718 
3719 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3720                                             SourceLocation ReturnLoc,
3721                                             Expr *RetExpr, const AutoType *AT) {
3722   // If this is the conversion function for a lambda, we choose to deduce its
3723   // type from the corresponding call operator, not from the synthesized return
3724   // statement within it. See Sema::DeduceReturnType.
3725   if (isLambdaConversionOperator(FD))
3726     return false;
3727 
3728   if (isa_and_nonnull<InitListExpr>(RetExpr)) {
3729     //  If the deduction is for a return statement and the initializer is
3730     //  a braced-init-list, the program is ill-formed.
3731     Diag(RetExpr->getExprLoc(),
3732          getCurLambda() ? diag::err_lambda_return_init_list
3733                         : diag::err_auto_fn_return_init_list)
3734         << RetExpr->getSourceRange();
3735     return true;
3736   }
3737 
3738   if (FD->isDependentContext()) {
3739     // C++1y [dcl.spec.auto]p12:
3740     //   Return type deduction [...] occurs when the definition is
3741     //   instantiated even if the function body contains a return
3742     //   statement with a non-type-dependent operand.
3743     assert(AT->isDeduced() && "should have deduced to dependent type");
3744     return false;
3745   }
3746 
3747   TypeLoc OrigResultType = getReturnTypeLoc(FD);
3748   //  In the case of a return with no operand, the initializer is considered
3749   //  to be void().
3750   CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation());
3751   if (!RetExpr) {
3752     // For a function with a deduced result type to return with omitted
3753     // expression, the result type as written must be 'auto' or
3754     // 'decltype(auto)', possibly cv-qualified or constrained, but not
3755     // ref-qualified.
3756     if (!OrigResultType.getType()->getAs<AutoType>()) {
3757       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3758           << OrigResultType.getType();
3759       return true;
3760     }
3761     RetExpr = &VoidVal;
3762   }
3763 
3764   QualType Deduced = AT->getDeducedType();
3765   {
3766     //  Otherwise, [...] deduce a value for U using the rules of template
3767     //  argument deduction.
3768     auto RetExprLoc = RetExpr->getExprLoc();
3769     TemplateDeductionInfo Info(RetExprLoc);
3770     SourceLocation TemplateSpecLoc;
3771     if (RetExpr->getType() == Context.OverloadTy) {
3772       auto FindResult = OverloadExpr::find(RetExpr);
3773       if (FindResult.Expression)
3774         TemplateSpecLoc = FindResult.Expression->getNameLoc();
3775     }
3776     TemplateSpecCandidateSet FailedTSC(TemplateSpecLoc);
3777     TemplateDeductionResult Res = DeduceAutoType(
3778         OrigResultType, RetExpr, Deduced, Info, /*DependentDeduction=*/false,
3779         /*IgnoreConstraints=*/false, &FailedTSC);
3780     if (Res != TemplateDeductionResult::Success && FD->isInvalidDecl())
3781       return true;
3782     switch (Res) {
3783     case TemplateDeductionResult::Success:
3784       break;
3785     case TemplateDeductionResult::AlreadyDiagnosed:
3786       return true;
3787     case TemplateDeductionResult::Inconsistent: {
3788       //  If a function with a declared return type that contains a placeholder
3789       //  type has multiple return statements, the return type is deduced for
3790       //  each return statement. [...] if the type deduced is not the same in
3791       //  each deduction, the program is ill-formed.
3792       const LambdaScopeInfo *LambdaSI = getCurLambda();
3793       if (LambdaSI && LambdaSI->HasImplicitReturnType)
3794         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3795             << Info.SecondArg << Info.FirstArg << true /*IsLambda*/;
3796       else
3797         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3798             << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg
3799             << Info.FirstArg;
3800       return true;
3801     }
3802     default:
3803       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3804           << OrigResultType.getType() << RetExpr->getType();
3805       FailedTSC.NoteCandidates(*this, RetExprLoc);
3806       return true;
3807     }
3808   }
3809 
3810   // If a local type is part of the returned type, mark its fields as
3811   // referenced.
3812   LocalTypedefNameReferencer(*this).TraverseType(RetExpr->getType());
3813 
3814   // CUDA: Kernel function must have 'void' return type.
3815   if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() &&
3816       !Deduced->isVoidType()) {
3817     Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3818         << FD->getType() << FD->getSourceRange();
3819     return true;
3820   }
3821 
3822   if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced)
3823     // Update all declarations of the function to have the deduced return type.
3824     Context.adjustDeducedFunctionResultType(FD, Deduced);
3825 
3826   return false;
3827 }
3828 
3829 StmtResult
3830 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3831                       Scope *CurScope) {
3832   // Correct typos, in case the containing function returns 'auto' and
3833   // RetValExp should determine the deduced type.
3834   ExprResult RetVal = CorrectDelayedTyposInExpr(
3835       RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true);
3836   if (RetVal.isInvalid())
3837     return StmtError();
3838 
3839   if (getCurScope()->isInOpenACCComputeConstructScope())
3840     return StmtError(
3841         Diag(ReturnLoc, diag::err_acc_branch_in_out_compute_construct)
3842         << /*return*/ 1 << /*out of */ 0);
3843 
3844   // using plain return in a coroutine is not allowed.
3845   FunctionScopeInfo *FSI = getCurFunction();
3846   if (FSI->FirstReturnLoc.isInvalid() && FSI->isCoroutine()) {
3847     assert(FSI->FirstCoroutineStmtLoc.isValid() &&
3848            "first coroutine location not set");
3849     Diag(ReturnLoc, diag::err_return_in_coroutine);
3850     Diag(FSI->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
3851         << FSI->getFirstCoroutineStmtKeyword();
3852   }
3853 
3854   CheckInvalidBuiltinCountedByRef(RetVal.get(), ReturnArgKind);
3855 
3856   StmtResult R =
3857       BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true);
3858   if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext())
3859     return R;
3860 
3861   VarDecl *VD =
3862       const_cast<VarDecl *>(cast<ReturnStmt>(R.get())->getNRVOCandidate());
3863 
3864   CurScope->updateNRVOCandidate(VD);
3865 
3866   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3867 
3868   return R;
3869 }
3870 
3871 static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S,
3872                                                     const Expr *E) {
3873   if (!E || !S.getLangOpts().CPlusPlus23 || !S.getLangOpts().MSVCCompat)
3874     return false;
3875   const Decl *D = E->getReferencedDeclOfCallee();
3876   if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation()))
3877     return false;
3878   for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) {
3879     if (DC->isStdNamespace())
3880       return true;
3881   }
3882   return false;
3883 }
3884 
3885 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3886                                  bool AllowRecovery) {
3887   // Check for unexpanded parameter packs.
3888   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3889     return StmtError();
3890 
3891   // HACK: We suppress simpler implicit move here in msvc compatibility mode
3892   // just as a temporary work around, as the MSVC STL has issues with
3893   // this change.
3894   bool SupressSimplerImplicitMoves =
3895       CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp);
3896   NamedReturnInfo NRInfo = getNamedReturnInfo(
3897       RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff
3898                                              : SimplerImplicitMoveMode::Normal);
3899 
3900   if (isa<CapturingScopeInfo>(getCurFunction()))
3901     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo,
3902                                    SupressSimplerImplicitMoves);
3903 
3904   QualType FnRetType;
3905   QualType RelatedRetType;
3906   const AttrVec *Attrs = nullptr;
3907   bool isObjCMethod = false;
3908 
3909   if (const FunctionDecl *FD = getCurFunctionDecl()) {
3910     FnRetType = FD->getReturnType();
3911     if (FD->hasAttrs())
3912       Attrs = &FD->getAttrs();
3913     if (FD->isNoReturn())
3914       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD;
3915     if (FD->isMain() && RetValExp)
3916       if (isa<CXXBoolLiteralExpr>(RetValExp))
3917         Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3918             << RetValExp->getSourceRange();
3919     if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
3920       if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
3921         if (RT->getDecl()->isOrContainsUnion())
3922           Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
3923       }
3924     }
3925   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3926     FnRetType = MD->getReturnType();
3927     isObjCMethod = true;
3928     if (MD->hasAttrs())
3929       Attrs = &MD->getAttrs();
3930     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3931       // In the implementation of a method with a related return type, the
3932       // type used to type-check the validity of return statements within the
3933       // method body is a pointer to the type of the class being implemented.
3934       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3935       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3936     }
3937   } else // If we don't have a function/method context, bail.
3938     return StmtError();
3939 
3940   if (RetValExp) {
3941     const auto *ATy = dyn_cast<ArrayType>(RetValExp->getType());
3942     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
3943       Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
3944       return StmtError();
3945     }
3946   }
3947 
3948   // C++1z: discarded return statements are not considered when deducing a
3949   // return type.
3950   if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3951       FnRetType->getContainedAutoType()) {
3952     if (RetValExp) {
3953       ExprResult ER =
3954           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3955       if (ER.isInvalid())
3956         return StmtError();
3957       RetValExp = ER.get();
3958     }
3959     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3960                               /* NRVOCandidate=*/nullptr);
3961   }
3962 
3963   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3964   // deduction.
3965   if (getLangOpts().CPlusPlus14) {
3966     if (AutoType *AT = FnRetType->getContainedAutoType()) {
3967       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3968       // If we've already decided this function is invalid, e.g. because
3969       // we saw a `return` whose expression had an error, don't keep
3970       // trying to deduce its return type.
3971       // (Some return values may be needlessly wrapped in RecoveryExpr).
3972       if (FD->isInvalidDecl() ||
3973           DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3974         FD->setInvalidDecl();
3975         if (!AllowRecovery)
3976           return StmtError();
3977         // The deduction failure is diagnosed and marked, try to recover.
3978         if (RetValExp) {
3979           // Wrap return value with a recovery expression of the previous type.
3980           // If no deduction yet, use DependentTy.
3981           auto Recovery = CreateRecoveryExpr(
3982               RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp,
3983               AT->isDeduced() ? FnRetType : QualType());
3984           if (Recovery.isInvalid())
3985             return StmtError();
3986           RetValExp = Recovery.get();
3987         } else {
3988           // Nothing to do: a ReturnStmt with no value is fine recovery.
3989         }
3990       } else {
3991         FnRetType = FD->getReturnType();
3992       }
3993     }
3994   }
3995   const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
3996 
3997   bool HasDependentReturnType = FnRetType->isDependentType();
3998 
3999   ReturnStmt *Result = nullptr;
4000   if (FnRetType->isVoidType()) {
4001     if (RetValExp) {
4002       if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) {
4003         // We simply never allow init lists as the return value of void
4004         // functions. This is compatible because this was never allowed before,
4005         // so there's no legacy code to deal with.
4006         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4007         int FunctionKind = 0;
4008         if (isa<ObjCMethodDecl>(CurDecl))
4009           FunctionKind = 1;
4010         else if (isa<CXXConstructorDecl>(CurDecl))
4011           FunctionKind = 2;
4012         else if (isa<CXXDestructorDecl>(CurDecl))
4013           FunctionKind = 3;
4014 
4015         Diag(ReturnLoc, diag::err_return_init_list)
4016             << CurDecl << FunctionKind << RetValExp->getSourceRange();
4017 
4018         // Preserve the initializers in the AST.
4019         RetValExp = AllowRecovery
4020                         ? CreateRecoveryExpr(ILE->getLBraceLoc(),
4021                                              ILE->getRBraceLoc(), ILE->inits())
4022                               .get()
4023                         : nullptr;
4024       } else if (!RetValExp->isTypeDependent()) {
4025         // C99 6.8.6.4p1 (ext_ since GCC warns)
4026         unsigned D = diag::ext_return_has_expr;
4027         if (RetValExp->getType()->isVoidType()) {
4028           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4029           if (isa<CXXConstructorDecl>(CurDecl) ||
4030               isa<CXXDestructorDecl>(CurDecl))
4031             D = diag::err_ctor_dtor_returns_void;
4032           else
4033             D = diag::ext_return_has_void_expr;
4034         }
4035         else {
4036           ExprResult Result = RetValExp;
4037           Result = IgnoredValueConversions(Result.get());
4038           if (Result.isInvalid())
4039             return StmtError();
4040           RetValExp = Result.get();
4041           RetValExp = ImpCastExprToType(RetValExp,
4042                                         Context.VoidTy, CK_ToVoid).get();
4043         }
4044         // return of void in constructor/destructor is illegal in C++.
4045         if (D == diag::err_ctor_dtor_returns_void) {
4046           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4047           Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl)
4048                              << RetValExp->getSourceRange();
4049         }
4050         // return (some void expression); is legal in C++.
4051         else if (D != diag::ext_return_has_void_expr ||
4052                  !getLangOpts().CPlusPlus) {
4053           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4054 
4055           int FunctionKind = 0;
4056           if (isa<ObjCMethodDecl>(CurDecl))
4057             FunctionKind = 1;
4058           else if (isa<CXXConstructorDecl>(CurDecl))
4059             FunctionKind = 2;
4060           else if (isa<CXXDestructorDecl>(CurDecl))
4061             FunctionKind = 3;
4062 
4063           Diag(ReturnLoc, D)
4064               << CurDecl << FunctionKind << RetValExp->getSourceRange();
4065         }
4066       }
4067 
4068       if (RetValExp) {
4069         ExprResult ER =
4070             ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4071         if (ER.isInvalid())
4072           return StmtError();
4073         RetValExp = ER.get();
4074       }
4075     }
4076 
4077     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4078                                 /* NRVOCandidate=*/nullptr);
4079   } else if (!RetValExp && !HasDependentReturnType) {
4080     FunctionDecl *FD = getCurFunctionDecl();
4081 
4082     if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) {
4083       // The intended return type might have been "void", so don't warn.
4084     } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
4085       // C++11 [stmt.return]p2
4086       Diag(ReturnLoc, diag::err_constexpr_return_missing_expr)
4087           << FD << FD->isConsteval();
4088       FD->setInvalidDecl();
4089     } else {
4090       // C99 6.8.6.4p1 (ext_ since GCC warns)
4091       // C90 6.6.6.4p4
4092       unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr
4093                                           : diag::warn_return_missing_expr;
4094       // Note that at this point one of getCurFunctionDecl() or
4095       // getCurMethodDecl() must be non-null (see above).
4096       assert((getCurFunctionDecl() || getCurMethodDecl()) &&
4097              "Not in a FunctionDecl or ObjCMethodDecl?");
4098       bool IsMethod = FD == nullptr;
4099       const NamedDecl *ND =
4100           IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD);
4101       Diag(ReturnLoc, DiagID) << ND << IsMethod;
4102     }
4103 
4104     Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
4105                                 /* NRVOCandidate=*/nullptr);
4106   } else {
4107     assert(RetValExp || HasDependentReturnType);
4108     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
4109 
4110     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
4111     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
4112     // function return.
4113 
4114     // In C++ the return statement is handled via a copy initialization,
4115     // the C version of which boils down to CheckSingleAssignmentConstraints.
4116     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
4117       // we have a non-void function with an expression, continue checking
4118       InitializedEntity Entity =
4119           InitializedEntity::InitializeResult(ReturnLoc, RetType);
4120       ExprResult Res = PerformMoveOrCopyInitialization(
4121           Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
4122       if (Res.isInvalid() && AllowRecovery)
4123         Res = CreateRecoveryExpr(RetValExp->getBeginLoc(),
4124                                  RetValExp->getEndLoc(), RetValExp, RetType);
4125       if (Res.isInvalid()) {
4126         // FIXME: Clean up temporaries here anyway?
4127         return StmtError();
4128       }
4129       RetValExp = Res.getAs<Expr>();
4130 
4131       // If we have a related result type, we need to implicitly
4132       // convert back to the formal result type.  We can't pretend to
4133       // initialize the result again --- we might end double-retaining
4134       // --- so instead we initialize a notional temporary.
4135       if (!RelatedRetType.isNull()) {
4136         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
4137                                                             FnRetType);
4138         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
4139         if (Res.isInvalid()) {
4140           // FIXME: Clean up temporaries here anyway?
4141           return StmtError();
4142         }
4143         RetValExp = Res.getAs<Expr>();
4144       }
4145 
4146       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
4147                          getCurFunctionDecl());
4148     }
4149 
4150     if (RetValExp) {
4151       ExprResult ER =
4152           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4153       if (ER.isInvalid())
4154         return StmtError();
4155       RetValExp = ER.get();
4156     }
4157     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
4158   }
4159 
4160   // If we need to check for the named return value optimization, save the
4161   // return statement in our scope for later processing.
4162   if (Result->getNRVOCandidate())
4163     FunctionScopes.back()->Returns.push_back(Result);
4164 
4165   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
4166     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
4167 
4168   return Result;
4169 }
4170 
4171 StmtResult
4172 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
4173                          Stmt *HandlerBlock) {
4174   // There's nothing to test that ActOnExceptionDecl didn't already test.
4175   return new (Context)
4176       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
4177 }
4178 
4179 namespace {
4180 class CatchHandlerType {
4181   QualType QT;
4182   LLVM_PREFERRED_TYPE(bool)
4183   unsigned IsPointer : 1;
4184 
4185   // This is a special constructor to be used only with DenseMapInfo's
4186   // getEmptyKey() and getTombstoneKey() functions.
4187   friend struct llvm::DenseMapInfo<CatchHandlerType>;
4188   enum Unique { ForDenseMap };
4189   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
4190 
4191 public:
4192   /// Used when creating a CatchHandlerType from a handler type; will determine
4193   /// whether the type is a pointer or reference and will strip off the top
4194   /// level pointer and cv-qualifiers.
4195   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
4196     if (QT->isPointerType())
4197       IsPointer = true;
4198 
4199     QT = QT.getUnqualifiedType();
4200     if (IsPointer || QT->isReferenceType())
4201       QT = QT->getPointeeType();
4202   }
4203 
4204   /// Used when creating a CatchHandlerType from a base class type; pretends the
4205   /// type passed in had the pointer qualifier, does not need to get an
4206   /// unqualified type.
4207   CatchHandlerType(QualType QT, bool IsPointer)
4208       : QT(QT), IsPointer(IsPointer) {}
4209 
4210   QualType underlying() const { return QT; }
4211   bool isPointer() const { return IsPointer; }
4212 
4213   friend bool operator==(const CatchHandlerType &LHS,
4214                          const CatchHandlerType &RHS) {
4215     // If the pointer qualification does not match, we can return early.
4216     if (LHS.IsPointer != RHS.IsPointer)
4217       return false;
4218     // Otherwise, check the underlying type without cv-qualifiers.
4219     return LHS.QT == RHS.QT;
4220   }
4221 };
4222 } // namespace
4223 
4224 namespace llvm {
4225 template <> struct DenseMapInfo<CatchHandlerType> {
4226   static CatchHandlerType getEmptyKey() {
4227     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4228                        CatchHandlerType::ForDenseMap);
4229   }
4230 
4231   static CatchHandlerType getTombstoneKey() {
4232     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4233                        CatchHandlerType::ForDenseMap);
4234   }
4235 
4236   static unsigned getHashValue(const CatchHandlerType &Base) {
4237     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4238   }
4239 
4240   static bool isEqual(const CatchHandlerType &LHS,
4241                       const CatchHandlerType &RHS) {
4242     return LHS == RHS;
4243   }
4244 };
4245 }
4246 
4247 namespace {
4248 class CatchTypePublicBases {
4249   const llvm::DenseMap<QualType, CXXCatchStmt *> &TypesToCheck;
4250 
4251   CXXCatchStmt *FoundHandler;
4252   QualType FoundHandlerType;
4253   QualType TestAgainstType;
4254 
4255 public:
4256   CatchTypePublicBases(const llvm::DenseMap<QualType, CXXCatchStmt *> &T,
4257                        QualType QT)
4258       : TypesToCheck(T), FoundHandler(nullptr), TestAgainstType(QT) {}
4259 
4260   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4261   QualType getFoundHandlerType() const { return FoundHandlerType; }
4262 
4263   bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4264     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4265       QualType Check = S->getType().getCanonicalType();
4266       const auto &M = TypesToCheck;
4267       auto I = M.find(Check);
4268       if (I != M.end()) {
4269         // We're pretty sure we found what we need to find. However, we still
4270         // need to make sure that we properly compare for pointers and
4271         // references, to handle cases like:
4272         //
4273         // } catch (Base *b) {
4274         // } catch (Derived &d) {
4275         // }
4276         //
4277         // where there is a qualification mismatch that disqualifies this
4278         // handler as a potential problem.
4279         if (I->second->getCaughtType()->isPointerType() ==
4280                 TestAgainstType->isPointerType()) {
4281           FoundHandler = I->second;
4282           FoundHandlerType = Check;
4283           return true;
4284         }
4285       }
4286     }
4287     return false;
4288   }
4289 };
4290 }
4291 
4292 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4293                                   ArrayRef<Stmt *> Handlers) {
4294   const llvm::Triple &T = Context.getTargetInfo().getTriple();
4295   const bool IsOpenMPGPUTarget =
4296       getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
4297   // Don't report an error if 'try' is used in system headers or in an OpenMP
4298   // target region compiled for a GPU architecture.
4299   if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
4300       !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4301     // Delay error emission for the OpenMP device code.
4302     targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4303   }
4304 
4305   // In OpenMP target regions, we assume that catch is never reached on GPU
4306   // targets.
4307   if (IsOpenMPGPUTarget)
4308     targetDiag(TryLoc, diag::warn_try_not_valid_on_target) << T.str();
4309 
4310   // Exceptions aren't allowed in CUDA device code.
4311   if (getLangOpts().CUDA)
4312     CUDA().DiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4313         << "try" << llvm::to_underlying(CUDA().CurrentTarget());
4314 
4315   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4316     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4317 
4318   sema::FunctionScopeInfo *FSI = getCurFunction();
4319 
4320   // C++ try is incompatible with SEH __try.
4321   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4322     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0;
4323     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4324   }
4325 
4326   const unsigned NumHandlers = Handlers.size();
4327   assert(!Handlers.empty() &&
4328          "The parser shouldn't call this if there are no handlers.");
4329 
4330   llvm::DenseMap<QualType, CXXCatchStmt *> HandledBaseTypes;
4331   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4332   for (unsigned i = 0; i < NumHandlers; ++i) {
4333     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4334 
4335     // Diagnose when the handler is a catch-all handler, but it isn't the last
4336     // handler for the try block. [except.handle]p5. Also, skip exception
4337     // declarations that are invalid, since we can't usefully report on them.
4338     if (!H->getExceptionDecl()) {
4339       if (i < NumHandlers - 1)
4340         return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4341       continue;
4342     } else if (H->getExceptionDecl()->isInvalidDecl())
4343       continue;
4344 
4345     // Walk the type hierarchy to diagnose when this type has already been
4346     // handled (duplication), or cannot be handled (derivation inversion). We
4347     // ignore top-level cv-qualifiers, per [except.handle]p3
4348     CatchHandlerType HandlerCHT = H->getCaughtType().getCanonicalType();
4349 
4350     // We can ignore whether the type is a reference or a pointer; we need the
4351     // underlying declaration type in order to get at the underlying record
4352     // decl, if there is one.
4353     QualType Underlying = HandlerCHT.underlying();
4354     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4355       if (!RD->hasDefinition())
4356         continue;
4357       // Check that none of the public, unambiguous base classes are in the
4358       // map ([except.handle]p1). Give the base classes the same pointer
4359       // qualification as the original type we are basing off of. This allows
4360       // comparison against the handler type using the same top-level pointer
4361       // as the original type.
4362       CXXBasePaths Paths;
4363       Paths.setOrigin(RD);
4364       CatchTypePublicBases CTPB(HandledBaseTypes,
4365                                 H->getCaughtType().getCanonicalType());
4366       if (RD->lookupInBases(CTPB, Paths)) {
4367         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4368         if (!Paths.isAmbiguous(
4369                 CanQualType::CreateUnsafe(CTPB.getFoundHandlerType()))) {
4370           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4371                diag::warn_exception_caught_by_earlier_handler)
4372               << H->getCaughtType();
4373           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4374                 diag::note_previous_exception_handler)
4375               << Problem->getCaughtType();
4376         }
4377       }
4378       // Strip the qualifiers here because we're going to be comparing this
4379       // type to the base type specifiers of a class, which are ignored in a
4380       // base specifier per [class.derived.general]p2.
4381       HandledBaseTypes[Underlying.getUnqualifiedType()] = H;
4382     }
4383 
4384     // Add the type the list of ones we have handled; diagnose if we've already
4385     // handled it.
4386     auto R = HandledTypes.insert(
4387         std::make_pair(H->getCaughtType().getCanonicalType(), H));
4388     if (!R.second) {
4389       const CXXCatchStmt *Problem = R.first->second;
4390       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4391            diag::warn_exception_caught_by_earlier_handler)
4392           << H->getCaughtType();
4393       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4394            diag::note_previous_exception_handler)
4395           << Problem->getCaughtType();
4396     }
4397   }
4398 
4399   FSI->setHasCXXTry(TryLoc);
4400 
4401   return CXXTryStmt::Create(Context, TryLoc, cast<CompoundStmt>(TryBlock),
4402                             Handlers);
4403 }
4404 
4405 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4406                                   Stmt *TryBlock, Stmt *Handler) {
4407   assert(TryBlock && Handler);
4408 
4409   sema::FunctionScopeInfo *FSI = getCurFunction();
4410 
4411   // SEH __try is incompatible with C++ try. Borland appears to support this,
4412   // however.
4413   if (!getLangOpts().Borland) {
4414     if (FSI->FirstCXXOrObjCTryLoc.isValid()) {
4415       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType;
4416       Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here)
4417           << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX
4418                   ? "'try'"
4419                   : "'@try'");
4420     }
4421   }
4422 
4423   FSI->setHasSEHTry(TryLoc);
4424 
4425   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4426   // track if they use SEH.
4427   DeclContext *DC = CurContext;
4428   while (DC && !DC->isFunctionOrMethod())
4429     DC = DC->getParent();
4430   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4431   if (FD)
4432     FD->setUsesSEHTry(true);
4433   else
4434     Diag(TryLoc, diag::err_seh_try_outside_functions);
4435 
4436   // Reject __try on unsupported targets.
4437   if (!Context.getTargetInfo().isSEHTrySupported())
4438     Diag(TryLoc, diag::err_seh_try_unsupported);
4439 
4440   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4441 }
4442 
4443 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4444                                      Stmt *Block) {
4445   assert(FilterExpr && Block);
4446   QualType FTy = FilterExpr->getType();
4447   if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4448     return StmtError(
4449         Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4450         << FTy);
4451   }
4452   return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4453 }
4454 
4455 void Sema::ActOnStartSEHFinallyBlock() {
4456   CurrentSEHFinally.push_back(CurScope);
4457 }
4458 
4459 void Sema::ActOnAbortSEHFinallyBlock() {
4460   CurrentSEHFinally.pop_back();
4461 }
4462 
4463 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4464   assert(Block);
4465   CurrentSEHFinally.pop_back();
4466   return SEHFinallyStmt::Create(Context, Loc, Block);
4467 }
4468 
4469 StmtResult
4470 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4471   Scope *SEHTryParent = CurScope;
4472   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4473     SEHTryParent = SEHTryParent->getParent();
4474   if (!SEHTryParent)
4475     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4476   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4477 
4478   return new (Context) SEHLeaveStmt(Loc);
4479 }
4480 
4481 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4482                                             bool IsIfExists,
4483                                             NestedNameSpecifierLoc QualifierLoc,
4484                                             DeclarationNameInfo NameInfo,
4485                                             Stmt *Nested)
4486 {
4487   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4488                                              QualifierLoc, NameInfo,
4489                                              cast<CompoundStmt>(Nested));
4490 }
4491 
4492 
4493 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4494                                             bool IsIfExists,
4495                                             CXXScopeSpec &SS,
4496                                             UnqualifiedId &Name,
4497                                             Stmt *Nested) {
4498   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4499                                     SS.getWithLocInContext(Context),
4500                                     GetNameFromUnqualifiedId(Name),
4501                                     Nested);
4502 }
4503 
4504 RecordDecl*
4505 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4506                                    unsigned NumParams) {
4507   DeclContext *DC = CurContext;
4508   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4509     DC = DC->getParent();
4510 
4511   RecordDecl *RD = nullptr;
4512   if (getLangOpts().CPlusPlus)
4513     RD = CXXRecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4514                                /*Id=*/nullptr);
4515   else
4516     RD = RecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4517                             /*Id=*/nullptr);
4518 
4519   RD->setCapturedRecord();
4520   DC->addDecl(RD);
4521   RD->setImplicit();
4522   RD->startDefinition();
4523 
4524   assert(NumParams > 0 && "CapturedStmt requires context parameter");
4525   CD = CapturedDecl::Create(Context, CurContext, NumParams);
4526   DC->addDecl(CD);
4527   return RD;
4528 }
4529 
4530 static bool
4531 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4532                              SmallVectorImpl<CapturedStmt::Capture> &Captures,
4533                              SmallVectorImpl<Expr *> &CaptureInits) {
4534   for (const sema::Capture &Cap : RSI->Captures) {
4535     if (Cap.isInvalid())
4536       continue;
4537 
4538     // Form the initializer for the capture.
4539     ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4540                                          RSI->CapRegionKind == CR_OpenMP);
4541 
4542     // FIXME: Bail out now if the capture is not used and the initializer has
4543     // no side-effects.
4544 
4545     // Create a field for this capture.
4546     FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4547 
4548     // Add the capture to our list of captures.
4549     if (Cap.isThisCapture()) {
4550       Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4551                                                CapturedStmt::VCK_This));
4552     } else if (Cap.isVLATypeCapture()) {
4553       Captures.push_back(
4554           CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4555     } else {
4556       assert(Cap.isVariableCapture() && "unknown kind of capture");
4557 
4558       if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4559         S.OpenMP().setOpenMPCaptureKind(Field, Cap.getVariable(),
4560                                         RSI->OpenMPLevel);
4561 
4562       Captures.push_back(CapturedStmt::Capture(
4563           Cap.getLocation(),
4564           Cap.isReferenceCapture() ? CapturedStmt::VCK_ByRef
4565                                    : CapturedStmt::VCK_ByCopy,
4566           cast<VarDecl>(Cap.getVariable())));
4567     }
4568     CaptureInits.push_back(Init.get());
4569   }
4570   return false;
4571 }
4572 
4573 static std::optional<int>
4574 isOpenMPCapturedRegionInArmSMEFunction(Sema const &S, CapturedRegionKind Kind) {
4575   if (!S.getLangOpts().OpenMP || Kind != CR_OpenMP)
4576     return {};
4577   if (const FunctionDecl *FD = S.getCurFunctionDecl(/*AllowLambda=*/true)) {
4578     if (IsArmStreamingFunction(FD, /*IncludeLocallyStreaming=*/true))
4579       return /* in streaming functions */ 0;
4580     if (hasArmZAState(FD))
4581       return /* in functions with ZA state */ 1;
4582     if (hasArmZT0State(FD))
4583       return /* in fuctions with ZT0 state */ 2;
4584   }
4585   return {};
4586 }
4587 
4588 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4589                                     CapturedRegionKind Kind,
4590                                     unsigned NumParams) {
4591   if (auto ErrorIndex = isOpenMPCapturedRegionInArmSMEFunction(*this, Kind))
4592     Diag(Loc, diag::err_sme_openmp_captured_region) << *ErrorIndex;
4593 
4594   CapturedDecl *CD = nullptr;
4595   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4596 
4597   // Build the context parameter
4598   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4599   IdentifierInfo *ParamName = &Context.Idents.get("__context");
4600   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4601   auto *Param =
4602       ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4603                                 ImplicitParamKind::CapturedContext);
4604   DC->addDecl(Param);
4605 
4606   CD->setContextParam(0, Param);
4607 
4608   // Enter the capturing scope for this captured region.
4609   PushCapturedRegionScope(CurScope, CD, RD, Kind);
4610 
4611   if (CurScope)
4612     PushDeclContext(CurScope, CD);
4613   else
4614     CurContext = CD;
4615 
4616   PushExpressionEvaluationContext(
4617       ExpressionEvaluationContext::PotentiallyEvaluated);
4618   ExprEvalContexts.back().InImmediateEscalatingFunctionContext = false;
4619 }
4620 
4621 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4622                                     CapturedRegionKind Kind,
4623                                     ArrayRef<CapturedParamNameType> Params,
4624                                     unsigned OpenMPCaptureLevel) {
4625   if (auto ErrorIndex = isOpenMPCapturedRegionInArmSMEFunction(*this, Kind))
4626     Diag(Loc, diag::err_sme_openmp_captured_region) << *ErrorIndex;
4627 
4628   CapturedDecl *CD = nullptr;
4629   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4630 
4631   // Build the context parameter
4632   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4633   bool ContextIsFound = false;
4634   unsigned ParamNum = 0;
4635   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4636                                                  E = Params.end();
4637        I != E; ++I, ++ParamNum) {
4638     if (I->second.isNull()) {
4639       assert(!ContextIsFound &&
4640              "null type has been found already for '__context' parameter");
4641       IdentifierInfo *ParamName = &Context.Idents.get("__context");
4642       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4643                                .withConst()
4644                                .withRestrict();
4645       auto *Param =
4646           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4647                                     ImplicitParamKind::CapturedContext);
4648       DC->addDecl(Param);
4649       CD->setContextParam(ParamNum, Param);
4650       ContextIsFound = true;
4651     } else {
4652       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4653       auto *Param =
4654           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4655                                     ImplicitParamKind::CapturedContext);
4656       DC->addDecl(Param);
4657       CD->setParam(ParamNum, Param);
4658     }
4659   }
4660   assert(ContextIsFound && "no null type for '__context' parameter");
4661   if (!ContextIsFound) {
4662     // Add __context implicitly if it is not specified.
4663     IdentifierInfo *ParamName = &Context.Idents.get("__context");
4664     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4665     auto *Param =
4666         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4667                                   ImplicitParamKind::CapturedContext);
4668     DC->addDecl(Param);
4669     CD->setContextParam(ParamNum, Param);
4670   }
4671   // Enter the capturing scope for this captured region.
4672   PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4673 
4674   if (CurScope)
4675     PushDeclContext(CurScope, CD);
4676   else
4677     CurContext = CD;
4678 
4679   PushExpressionEvaluationContext(
4680       ExpressionEvaluationContext::PotentiallyEvaluated);
4681 }
4682 
4683 void Sema::ActOnCapturedRegionError() {
4684   DiscardCleanupsInEvaluationContext();
4685   PopExpressionEvaluationContext();
4686   PopDeclContext();
4687   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4688   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4689 
4690   RecordDecl *Record = RSI->TheRecordDecl;
4691   Record->setInvalidDecl();
4692 
4693   SmallVector<Decl*, 4> Fields(Record->fields());
4694   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4695               SourceLocation(), SourceLocation(), ParsedAttributesView());
4696 }
4697 
4698 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4699   // Leave the captured scope before we start creating captures in the
4700   // enclosing scope.
4701   DiscardCleanupsInEvaluationContext();
4702   PopExpressionEvaluationContext();
4703   PopDeclContext();
4704   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4705   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4706 
4707   SmallVector<CapturedStmt::Capture, 4> Captures;
4708   SmallVector<Expr *, 4> CaptureInits;
4709   if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4710     return StmtError();
4711 
4712   CapturedDecl *CD = RSI->TheCapturedDecl;
4713   RecordDecl *RD = RSI->TheRecordDecl;
4714 
4715   CapturedStmt *Res = CapturedStmt::Create(
4716       getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4717       Captures, CaptureInits, CD, RD);
4718 
4719   CD->setBody(Res->getCapturedStmt());
4720   RD->completeDefinition();
4721 
4722   return Res;
4723 }
4724