1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===// 7 // 8 // This file implements semantic analysis for C++ templates. 9 //===----------------------------------------------------------------------===// 10 11 #include "TreeTransform.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/DeclFriend.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/DynamicRecursiveASTVisitor.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/TemplateName.h" 21 #include "clang/AST/TypeVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/LangOptions.h" 25 #include "clang/Basic/PartialDiagnostic.h" 26 #include "clang/Basic/SourceLocation.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Sema/DeclSpec.h" 29 #include "clang/Sema/EnterExpressionEvaluationContext.h" 30 #include "clang/Sema/Initialization.h" 31 #include "clang/Sema/Lookup.h" 32 #include "clang/Sema/Overload.h" 33 #include "clang/Sema/ParsedTemplate.h" 34 #include "clang/Sema/Scope.h" 35 #include "clang/Sema/SemaCUDA.h" 36 #include "clang/Sema/SemaInternal.h" 37 #include "clang/Sema/Template.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "llvm/ADT/SmallBitVector.h" 40 #include "llvm/ADT/StringExtras.h" 41 #include "llvm/Support/SaveAndRestore.h" 42 43 #include <optional> 44 using namespace clang; 45 using namespace sema; 46 47 // Exported for use by Parser. 48 SourceRange 49 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 50 unsigned N) { 51 if (!N) return SourceRange(); 52 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 53 } 54 55 unsigned Sema::getTemplateDepth(Scope *S) const { 56 unsigned Depth = 0; 57 58 // Each template parameter scope represents one level of template parameter 59 // depth. 60 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; 61 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { 62 ++Depth; 63 } 64 65 // Note that there are template parameters with the given depth. 66 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); }; 67 68 // Look for parameters of an enclosing generic lambda. We don't create a 69 // template parameter scope for these. 70 for (FunctionScopeInfo *FSI : getFunctionScopes()) { 71 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) { 72 if (!LSI->TemplateParams.empty()) { 73 ParamsAtDepth(LSI->AutoTemplateParameterDepth); 74 break; 75 } 76 if (LSI->GLTemplateParameterList) { 77 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); 78 break; 79 } 80 } 81 } 82 83 // Look for parameters of an enclosing terse function template. We don't 84 // create a template parameter scope for these either. 85 for (const InventedTemplateParameterInfo &Info : 86 getInventedParameterInfos()) { 87 if (!Info.TemplateParams.empty()) { 88 ParamsAtDepth(Info.AutoTemplateParameterDepth); 89 break; 90 } 91 } 92 93 return Depth; 94 } 95 96 /// \brief Determine whether the declaration found is acceptable as the name 97 /// of a template and, if so, return that template declaration. Otherwise, 98 /// returns null. 99 /// 100 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent 101 /// is true. In all other cases it will return a TemplateDecl (or null). 102 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, 103 bool AllowFunctionTemplates, 104 bool AllowDependent) { 105 D = D->getUnderlyingDecl(); 106 107 if (isa<TemplateDecl>(D)) { 108 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 109 return nullptr; 110 111 return D; 112 } 113 114 if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) { 115 // C++ [temp.local]p1: 116 // Like normal (non-template) classes, class templates have an 117 // injected-class-name (Clause 9). The injected-class-name 118 // can be used with or without a template-argument-list. When 119 // it is used without a template-argument-list, it is 120 // equivalent to the injected-class-name followed by the 121 // template-parameters of the class template enclosed in 122 // <>. When it is used with a template-argument-list, it 123 // refers to the specified class template specialization, 124 // which could be the current specialization or another 125 // specialization. 126 if (Record->isInjectedClassName()) { 127 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 128 if (Record->getDescribedClassTemplate()) 129 return Record->getDescribedClassTemplate(); 130 131 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 132 return Spec->getSpecializedTemplate(); 133 } 134 135 return nullptr; 136 } 137 138 // 'using Dependent::foo;' can resolve to a template name. 139 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an 140 // injected-class-name). 141 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) 142 return D; 143 144 return nullptr; 145 } 146 147 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 148 bool AllowFunctionTemplates, 149 bool AllowDependent) { 150 LookupResult::Filter filter = R.makeFilter(); 151 while (filter.hasNext()) { 152 NamedDecl *Orig = filter.next(); 153 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) 154 filter.erase(); 155 } 156 filter.done(); 157 } 158 159 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 160 bool AllowFunctionTemplates, 161 bool AllowDependent, 162 bool AllowNonTemplateFunctions) { 163 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 164 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) 165 return true; 166 if (AllowNonTemplateFunctions && 167 isa<FunctionDecl>((*I)->getUnderlyingDecl())) 168 return true; 169 } 170 171 return false; 172 } 173 174 TemplateNameKind Sema::isTemplateName(Scope *S, 175 CXXScopeSpec &SS, 176 bool hasTemplateKeyword, 177 const UnqualifiedId &Name, 178 ParsedType ObjectTypePtr, 179 bool EnteringContext, 180 TemplateTy &TemplateResult, 181 bool &MemberOfUnknownSpecialization, 182 bool Disambiguation) { 183 assert(getLangOpts().CPlusPlus && "No template names in C!"); 184 185 DeclarationName TName; 186 MemberOfUnknownSpecialization = false; 187 188 switch (Name.getKind()) { 189 case UnqualifiedIdKind::IK_Identifier: 190 TName = DeclarationName(Name.Identifier); 191 break; 192 193 case UnqualifiedIdKind::IK_OperatorFunctionId: 194 TName = Context.DeclarationNames.getCXXOperatorName( 195 Name.OperatorFunctionId.Operator); 196 break; 197 198 case UnqualifiedIdKind::IK_LiteralOperatorId: 199 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 200 break; 201 202 default: 203 return TNK_Non_template; 204 } 205 206 QualType ObjectType = ObjectTypePtr.get(); 207 208 AssumedTemplateKind AssumedTemplate; 209 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); 210 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 211 /*RequiredTemplate=*/SourceLocation(), 212 &AssumedTemplate, 213 /*AllowTypoCorrection=*/!Disambiguation)) 214 return TNK_Non_template; 215 MemberOfUnknownSpecialization = R.wasNotFoundInCurrentInstantiation(); 216 217 if (AssumedTemplate != AssumedTemplateKind::None) { 218 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); 219 // Let the parser know whether we found nothing or found functions; if we 220 // found nothing, we want to more carefully check whether this is actually 221 // a function template name versus some other kind of undeclared identifier. 222 return AssumedTemplate == AssumedTemplateKind::FoundNothing 223 ? TNK_Undeclared_template 224 : TNK_Function_template; 225 } 226 227 if (R.empty()) 228 return TNK_Non_template; 229 230 NamedDecl *D = nullptr; 231 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin()); 232 if (R.isAmbiguous()) { 233 // If we got an ambiguity involving a non-function template, treat this 234 // as a template name, and pick an arbitrary template for error recovery. 235 bool AnyFunctionTemplates = false; 236 for (NamedDecl *FoundD : R) { 237 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { 238 if (isa<FunctionTemplateDecl>(FoundTemplate)) 239 AnyFunctionTemplates = true; 240 else { 241 D = FoundTemplate; 242 FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD); 243 break; 244 } 245 } 246 } 247 248 // If we didn't find any templates at all, this isn't a template name. 249 // Leave the ambiguity for a later lookup to diagnose. 250 if (!D && !AnyFunctionTemplates) { 251 R.suppressDiagnostics(); 252 return TNK_Non_template; 253 } 254 255 // If the only templates were function templates, filter out the rest. 256 // We'll diagnose the ambiguity later. 257 if (!D) 258 FilterAcceptableTemplateNames(R); 259 } 260 261 // At this point, we have either picked a single template name declaration D 262 // or we have a non-empty set of results R containing either one template name 263 // declaration or a set of function templates. 264 265 TemplateName Template; 266 TemplateNameKind TemplateKind; 267 268 unsigned ResultCount = R.end() - R.begin(); 269 if (!D && ResultCount > 1) { 270 // We assume that we'll preserve the qualifier from a function 271 // template name in other ways. 272 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 273 TemplateKind = TNK_Function_template; 274 275 // We'll do this lookup again later. 276 R.suppressDiagnostics(); 277 } else { 278 if (!D) { 279 D = getAsTemplateNameDecl(*R.begin()); 280 assert(D && "unambiguous result is not a template name"); 281 } 282 283 if (isa<UnresolvedUsingValueDecl>(D)) { 284 // We don't yet know whether this is a template-name or not. 285 MemberOfUnknownSpecialization = true; 286 return TNK_Non_template; 287 } 288 289 TemplateDecl *TD = cast<TemplateDecl>(D); 290 Template = 291 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); 292 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD); 293 if (!SS.isInvalid()) { 294 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 295 Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword, 296 Template); 297 } 298 299 if (isa<FunctionTemplateDecl>(TD)) { 300 TemplateKind = TNK_Function_template; 301 302 // We'll do this lookup again later. 303 R.suppressDiagnostics(); 304 } else { 305 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 306 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 307 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); 308 TemplateKind = 309 isa<VarTemplateDecl>(TD) ? TNK_Var_template : 310 isa<ConceptDecl>(TD) ? TNK_Concept_template : 311 TNK_Type_template; 312 } 313 } 314 315 TemplateResult = TemplateTy::make(Template); 316 return TemplateKind; 317 } 318 319 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, 320 SourceLocation NameLoc, CXXScopeSpec &SS, 321 ParsedTemplateTy *Template /*=nullptr*/) { 322 // We could use redeclaration lookup here, but we don't need to: the 323 // syntactic form of a deduction guide is enough to identify it even 324 // if we can't look up the template name at all. 325 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); 326 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), 327 /*EnteringContext*/ false)) 328 return false; 329 330 if (R.empty()) return false; 331 if (R.isAmbiguous()) { 332 // FIXME: Diagnose an ambiguity if we find at least one template. 333 R.suppressDiagnostics(); 334 return false; 335 } 336 337 // We only treat template-names that name type templates as valid deduction 338 // guide names. 339 TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); 340 if (!TD || !getAsTypeTemplateDecl(TD)) 341 return false; 342 343 if (Template) { 344 TemplateName Name = Context.getQualifiedTemplateName( 345 SS.getScopeRep(), /*TemplateKeyword=*/false, TemplateName(TD)); 346 *Template = TemplateTy::make(Name); 347 } 348 return true; 349 } 350 351 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 352 SourceLocation IILoc, 353 Scope *S, 354 const CXXScopeSpec *SS, 355 TemplateTy &SuggestedTemplate, 356 TemplateNameKind &SuggestedKind) { 357 // We can't recover unless there's a dependent scope specifier preceding the 358 // template name. 359 // FIXME: Typo correction? 360 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 361 computeDeclContext(*SS)) 362 return false; 363 364 // The code is missing a 'template' keyword prior to the dependent template 365 // name. 366 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 367 Diag(IILoc, diag::err_template_kw_missing) 368 << Qualifier << II.getName() 369 << FixItHint::CreateInsertion(IILoc, "template "); 370 SuggestedTemplate 371 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 372 SuggestedKind = TNK_Dependent_template_name; 373 return true; 374 } 375 376 bool Sema::LookupTemplateName(LookupResult &Found, Scope *S, CXXScopeSpec &SS, 377 QualType ObjectType, bool EnteringContext, 378 RequiredTemplateKind RequiredTemplate, 379 AssumedTemplateKind *ATK, 380 bool AllowTypoCorrection) { 381 if (ATK) 382 *ATK = AssumedTemplateKind::None; 383 384 if (SS.isInvalid()) 385 return true; 386 387 Found.setTemplateNameLookup(true); 388 389 // Determine where to perform name lookup 390 DeclContext *LookupCtx = nullptr; 391 bool IsDependent = false; 392 if (!ObjectType.isNull()) { 393 // This nested-name-specifier occurs in a member access expression, e.g., 394 // x->B::f, and we are looking into the type of the object. 395 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist"); 396 LookupCtx = computeDeclContext(ObjectType); 397 IsDependent = !LookupCtx && ObjectType->isDependentType(); 398 assert((IsDependent || !ObjectType->isIncompleteType() || 399 !ObjectType->getAs<TagType>() || 400 ObjectType->castAs<TagType>()->isBeingDefined()) && 401 "Caller should have completed object type"); 402 403 // Template names cannot appear inside an Objective-C class or object type 404 // or a vector type. 405 // 406 // FIXME: This is wrong. For example: 407 // 408 // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); 409 // Vec<int> vi; 410 // vi.Vec<int>::~Vec<int>(); 411 // 412 // ... should be accepted but we will not treat 'Vec' as a template name 413 // here. The right thing to do would be to check if the name is a valid 414 // vector component name, and look up a template name if not. And similarly 415 // for lookups into Objective-C class and object types, where the same 416 // problem can arise. 417 if (ObjectType->isObjCObjectOrInterfaceType() || 418 ObjectType->isVectorType()) { 419 Found.clear(); 420 return false; 421 } 422 } else if (SS.isNotEmpty()) { 423 // This nested-name-specifier occurs after another nested-name-specifier, 424 // so long into the context associated with the prior nested-name-specifier. 425 LookupCtx = computeDeclContext(SS, EnteringContext); 426 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); 427 428 // The declaration context must be complete. 429 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 430 return true; 431 } 432 433 bool ObjectTypeSearchedInScope = false; 434 bool AllowFunctionTemplatesInLookup = true; 435 if (LookupCtx) { 436 // Perform "qualified" name lookup into the declaration context we 437 // computed, which is either the type of the base of a member access 438 // expression or the declaration context associated with a prior 439 // nested-name-specifier. 440 LookupQualifiedName(Found, LookupCtx); 441 442 // FIXME: The C++ standard does not clearly specify what happens in the 443 // case where the object type is dependent, and implementations vary. In 444 // Clang, we treat a name after a . or -> as a template-name if lookup 445 // finds a non-dependent member or member of the current instantiation that 446 // is a type template, or finds no such members and lookup in the context 447 // of the postfix-expression finds a type template. In the latter case, the 448 // name is nonetheless dependent, and we may resolve it to a member of an 449 // unknown specialization when we come to instantiate the template. 450 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 451 } 452 453 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { 454 // C++ [basic.lookup.classref]p1: 455 // In a class member access expression (5.2.5), if the . or -> token is 456 // immediately followed by an identifier followed by a <, the 457 // identifier must be looked up to determine whether the < is the 458 // beginning of a template argument list (14.2) or a less-than operator. 459 // The identifier is first looked up in the class of the object 460 // expression. If the identifier is not found, it is then looked up in 461 // the context of the entire postfix-expression and shall name a class 462 // template. 463 if (S) 464 LookupName(Found, S); 465 466 if (!ObjectType.isNull()) { 467 // FIXME: We should filter out all non-type templates here, particularly 468 // variable templates and concepts. But the exclusion of alias templates 469 // and template template parameters is a wording defect. 470 AllowFunctionTemplatesInLookup = false; 471 ObjectTypeSearchedInScope = true; 472 } 473 474 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 475 } 476 477 if (Found.isAmbiguous()) 478 return false; 479 480 if (ATK && SS.isEmpty() && ObjectType.isNull() && 481 !RequiredTemplate.hasTemplateKeyword()) { 482 // C++2a [temp.names]p2: 483 // A name is also considered to refer to a template if it is an 484 // unqualified-id followed by a < and name lookup finds either one or more 485 // functions or finds nothing. 486 // 487 // To keep our behavior consistent, we apply the "finds nothing" part in 488 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we 489 // successfully form a call to an undeclared template-id. 490 bool AllFunctions = 491 getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) { 492 return isa<FunctionDecl>(ND->getUnderlyingDecl()); 493 }); 494 if (AllFunctions || (Found.empty() && !IsDependent)) { 495 // If lookup found any functions, or if this is a name that can only be 496 // used for a function, then strongly assume this is a function 497 // template-id. 498 *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) 499 ? AssumedTemplateKind::FoundNothing 500 : AssumedTemplateKind::FoundFunctions; 501 Found.clear(); 502 return false; 503 } 504 } 505 506 if (Found.empty() && !IsDependent && AllowTypoCorrection) { 507 // If we did not find any names, and this is not a disambiguation, attempt 508 // to correct any typos. 509 DeclarationName Name = Found.getLookupName(); 510 Found.clear(); 511 // Simple filter callback that, for keywords, only accepts the C++ *_cast 512 DefaultFilterCCC FilterCCC{}; 513 FilterCCC.WantTypeSpecifiers = false; 514 FilterCCC.WantExpressionKeywords = false; 515 FilterCCC.WantRemainingKeywords = false; 516 FilterCCC.WantCXXNamedCasts = true; 517 if (TypoCorrection Corrected = 518 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, 519 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { 520 if (auto *ND = Corrected.getFoundDecl()) 521 Found.addDecl(ND); 522 FilterAcceptableTemplateNames(Found); 523 if (Found.isAmbiguous()) { 524 Found.clear(); 525 } else if (!Found.empty()) { 526 Found.setLookupName(Corrected.getCorrection()); 527 if (LookupCtx) { 528 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 529 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 530 Name.getAsString() == CorrectedStr; 531 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 532 << Name << LookupCtx << DroppedSpecifier 533 << SS.getRange()); 534 } else { 535 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 536 } 537 } 538 } 539 } 540 541 NamedDecl *ExampleLookupResult = 542 Found.empty() ? nullptr : Found.getRepresentativeDecl(); 543 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 544 if (Found.empty()) { 545 if (IsDependent) { 546 Found.setNotFoundInCurrentInstantiation(); 547 return false; 548 } 549 550 // If a 'template' keyword was used, a lookup that finds only non-template 551 // names is an error. 552 if (ExampleLookupResult && RequiredTemplate) { 553 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) 554 << Found.getLookupName() << SS.getRange() 555 << RequiredTemplate.hasTemplateKeyword() 556 << RequiredTemplate.getTemplateKeywordLoc(); 557 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), 558 diag::note_template_kw_refers_to_non_template) 559 << Found.getLookupName(); 560 return true; 561 } 562 563 return false; 564 } 565 566 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 567 !getLangOpts().CPlusPlus11) { 568 // C++03 [basic.lookup.classref]p1: 569 // [...] If the lookup in the class of the object expression finds a 570 // template, the name is also looked up in the context of the entire 571 // postfix-expression and [...] 572 // 573 // Note: C++11 does not perform this second lookup. 574 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 575 LookupOrdinaryName); 576 FoundOuter.setTemplateNameLookup(true); 577 LookupName(FoundOuter, S); 578 // FIXME: We silently accept an ambiguous lookup here, in violation of 579 // [basic.lookup]/1. 580 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 581 582 NamedDecl *OuterTemplate; 583 if (FoundOuter.empty()) { 584 // - if the name is not found, the name found in the class of the 585 // object expression is used, otherwise 586 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || 587 !(OuterTemplate = 588 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { 589 // - if the name is found in the context of the entire 590 // postfix-expression and does not name a class template, the name 591 // found in the class of the object expression is used, otherwise 592 FoundOuter.clear(); 593 } else if (!Found.isSuppressingAmbiguousDiagnostics()) { 594 // - if the name found is a class template, it must refer to the same 595 // entity as the one found in the class of the object expression, 596 // otherwise the program is ill-formed. 597 if (!Found.isSingleResult() || 598 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != 599 OuterTemplate->getCanonicalDecl()) { 600 Diag(Found.getNameLoc(), 601 diag::ext_nested_name_member_ref_lookup_ambiguous) 602 << Found.getLookupName() 603 << ObjectType; 604 Diag(Found.getRepresentativeDecl()->getLocation(), 605 diag::note_ambig_member_ref_object_type) 606 << ObjectType; 607 Diag(FoundOuter.getFoundDecl()->getLocation(), 608 diag::note_ambig_member_ref_scope); 609 610 // Recover by taking the template that we found in the object 611 // expression's type. 612 } 613 } 614 } 615 616 return false; 617 } 618 619 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, 620 SourceLocation Less, 621 SourceLocation Greater) { 622 if (TemplateName.isInvalid()) 623 return; 624 625 DeclarationNameInfo NameInfo; 626 CXXScopeSpec SS; 627 LookupNameKind LookupKind; 628 629 DeclContext *LookupCtx = nullptr; 630 NamedDecl *Found = nullptr; 631 bool MissingTemplateKeyword = false; 632 633 // Figure out what name we looked up. 634 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { 635 NameInfo = DRE->getNameInfo(); 636 SS.Adopt(DRE->getQualifierLoc()); 637 LookupKind = LookupOrdinaryName; 638 Found = DRE->getFoundDecl(); 639 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { 640 NameInfo = ME->getMemberNameInfo(); 641 SS.Adopt(ME->getQualifierLoc()); 642 LookupKind = LookupMemberName; 643 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); 644 Found = ME->getMemberDecl(); 645 } else if (auto *DSDRE = 646 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { 647 NameInfo = DSDRE->getNameInfo(); 648 SS.Adopt(DSDRE->getQualifierLoc()); 649 MissingTemplateKeyword = true; 650 } else if (auto *DSME = 651 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { 652 NameInfo = DSME->getMemberNameInfo(); 653 SS.Adopt(DSME->getQualifierLoc()); 654 MissingTemplateKeyword = true; 655 } else { 656 llvm_unreachable("unexpected kind of potential template name"); 657 } 658 659 // If this is a dependent-scope lookup, diagnose that the 'template' keyword 660 // was missing. 661 if (MissingTemplateKeyword) { 662 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) 663 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); 664 return; 665 } 666 667 // Try to correct the name by looking for templates and C++ named casts. 668 struct TemplateCandidateFilter : CorrectionCandidateCallback { 669 Sema &S; 670 TemplateCandidateFilter(Sema &S) : S(S) { 671 WantTypeSpecifiers = false; 672 WantExpressionKeywords = false; 673 WantRemainingKeywords = false; 674 WantCXXNamedCasts = true; 675 }; 676 bool ValidateCandidate(const TypoCorrection &Candidate) override { 677 if (auto *ND = Candidate.getCorrectionDecl()) 678 return S.getAsTemplateNameDecl(ND); 679 return Candidate.isKeyword(); 680 } 681 682 std::unique_ptr<CorrectionCandidateCallback> clone() override { 683 return std::make_unique<TemplateCandidateFilter>(*this); 684 } 685 }; 686 687 DeclarationName Name = NameInfo.getName(); 688 TemplateCandidateFilter CCC(*this); 689 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, 690 CTK_ErrorRecovery, LookupCtx)) { 691 auto *ND = Corrected.getFoundDecl(); 692 if (ND) 693 ND = getAsTemplateNameDecl(ND); 694 if (ND || Corrected.isKeyword()) { 695 if (LookupCtx) { 696 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 697 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 698 Name.getAsString() == CorrectedStr; 699 diagnoseTypo(Corrected, 700 PDiag(diag::err_non_template_in_member_template_id_suggest) 701 << Name << LookupCtx << DroppedSpecifier 702 << SS.getRange(), false); 703 } else { 704 diagnoseTypo(Corrected, 705 PDiag(diag::err_non_template_in_template_id_suggest) 706 << Name, false); 707 } 708 if (Found) 709 Diag(Found->getLocation(), 710 diag::note_non_template_in_template_id_found); 711 return; 712 } 713 } 714 715 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) 716 << Name << SourceRange(Less, Greater); 717 if (Found) 718 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); 719 } 720 721 ExprResult 722 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 723 SourceLocation TemplateKWLoc, 724 const DeclarationNameInfo &NameInfo, 725 bool isAddressOfOperand, 726 const TemplateArgumentListInfo *TemplateArgs) { 727 if (SS.isEmpty()) { 728 // FIXME: This codepath is only used by dependent unqualified names 729 // (e.g. a dependent conversion-function-id, or operator= once we support 730 // it). It doesn't quite do the right thing, and it will silently fail if 731 // getCurrentThisType() returns null. 732 QualType ThisType = getCurrentThisType(); 733 if (ThisType.isNull()) 734 return ExprError(); 735 736 return CXXDependentScopeMemberExpr::Create( 737 Context, /*Base=*/nullptr, ThisType, 738 /*IsArrow=*/!Context.getLangOpts().HLSL, 739 /*OperatorLoc=*/SourceLocation(), 740 /*QualifierLoc=*/NestedNameSpecifierLoc(), TemplateKWLoc, 741 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs); 742 } 743 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 744 } 745 746 ExprResult 747 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 748 SourceLocation TemplateKWLoc, 749 const DeclarationNameInfo &NameInfo, 750 const TemplateArgumentListInfo *TemplateArgs) { 751 // DependentScopeDeclRefExpr::Create requires a valid NestedNameSpecifierLoc 752 if (!SS.isValid()) 753 return CreateRecoveryExpr( 754 SS.getBeginLoc(), 755 TemplateArgs ? TemplateArgs->getRAngleLoc() : NameInfo.getEndLoc(), {}); 756 757 return DependentScopeDeclRefExpr::Create( 758 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 759 TemplateArgs); 760 } 761 762 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, 763 NamedDecl *Instantiation, 764 bool InstantiatedFromMember, 765 const NamedDecl *Pattern, 766 const NamedDecl *PatternDef, 767 TemplateSpecializationKind TSK, 768 bool Complain /*= true*/) { 769 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || 770 isa<VarDecl>(Instantiation)); 771 772 bool IsEntityBeingDefined = false; 773 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) 774 IsEntityBeingDefined = TD->isBeingDefined(); 775 776 if (PatternDef && !IsEntityBeingDefined) { 777 NamedDecl *SuggestedDef = nullptr; 778 if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef), 779 &SuggestedDef, 780 /*OnlyNeedComplete*/ false)) { 781 // If we're allowed to diagnose this and recover, do so. 782 bool Recover = Complain && !isSFINAEContext(); 783 if (Complain) 784 diagnoseMissingImport(PointOfInstantiation, SuggestedDef, 785 Sema::MissingImportKind::Definition, Recover); 786 return !Recover; 787 } 788 return false; 789 } 790 791 if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) 792 return true; 793 794 QualType InstantiationTy; 795 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) 796 InstantiationTy = Context.getTypeDeclType(TD); 797 if (PatternDef) { 798 Diag(PointOfInstantiation, 799 diag::err_template_instantiate_within_definition) 800 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) 801 << InstantiationTy; 802 // Not much point in noting the template declaration here, since 803 // we're lexically inside it. 804 Instantiation->setInvalidDecl(); 805 } else if (InstantiatedFromMember) { 806 if (isa<FunctionDecl>(Instantiation)) { 807 Diag(PointOfInstantiation, 808 diag::err_explicit_instantiation_undefined_member) 809 << /*member function*/ 1 << Instantiation->getDeclName() 810 << Instantiation->getDeclContext(); 811 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); 812 } else { 813 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); 814 Diag(PointOfInstantiation, 815 diag::err_implicit_instantiate_member_undefined) 816 << InstantiationTy; 817 Diag(Pattern->getLocation(), diag::note_member_declared_at); 818 } 819 } else { 820 if (isa<FunctionDecl>(Instantiation)) { 821 Diag(PointOfInstantiation, 822 diag::err_explicit_instantiation_undefined_func_template) 823 << Pattern; 824 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); 825 } else if (isa<TagDecl>(Instantiation)) { 826 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) 827 << (TSK != TSK_ImplicitInstantiation) 828 << InstantiationTy; 829 NoteTemplateLocation(*Pattern); 830 } else { 831 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); 832 if (isa<VarTemplateSpecializationDecl>(Instantiation)) { 833 Diag(PointOfInstantiation, 834 diag::err_explicit_instantiation_undefined_var_template) 835 << Instantiation; 836 Instantiation->setInvalidDecl(); 837 } else 838 Diag(PointOfInstantiation, 839 diag::err_explicit_instantiation_undefined_member) 840 << /*static data member*/ 2 << Instantiation->getDeclName() 841 << Instantiation->getDeclContext(); 842 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); 843 } 844 } 845 846 // In general, Instantiation isn't marked invalid to get more than one 847 // error for multiple undefined instantiations. But the code that does 848 // explicit declaration -> explicit definition conversion can't handle 849 // invalid declarations, so mark as invalid in that case. 850 if (TSK == TSK_ExplicitInstantiationDeclaration) 851 Instantiation->setInvalidDecl(); 852 return true; 853 } 854 855 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl, 856 bool SupportedForCompatibility) { 857 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 858 859 // C++23 [temp.local]p6: 860 // The name of a template-parameter shall not be bound to any following. 861 // declaration whose locus is contained by the scope to which the 862 // template-parameter belongs. 863 // 864 // When MSVC compatibility is enabled, the diagnostic is always a warning 865 // by default. Otherwise, it an error unless SupportedForCompatibility is 866 // true, in which case it is a default-to-error warning. 867 unsigned DiagId = 868 getLangOpts().MSVCCompat 869 ? diag::ext_template_param_shadow 870 : (SupportedForCompatibility ? diag::ext_compat_template_param_shadow 871 : diag::err_template_param_shadow); 872 const auto *ND = cast<NamedDecl>(PrevDecl); 873 Diag(Loc, DiagId) << ND->getDeclName(); 874 NoteTemplateParameterLocation(*ND); 875 } 876 877 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 878 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 879 D = Temp->getTemplatedDecl(); 880 return Temp; 881 } 882 return nullptr; 883 } 884 885 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 886 SourceLocation EllipsisLoc) const { 887 assert(Kind == Template && 888 "Only template template arguments can be pack expansions here"); 889 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 890 "Template template argument pack expansion without packs"); 891 ParsedTemplateArgument Result(*this); 892 Result.EllipsisLoc = EllipsisLoc; 893 return Result; 894 } 895 896 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 897 const ParsedTemplateArgument &Arg) { 898 899 switch (Arg.getKind()) { 900 case ParsedTemplateArgument::Type: { 901 TypeSourceInfo *DI; 902 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 903 if (!DI) 904 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 905 return TemplateArgumentLoc(TemplateArgument(T), DI); 906 } 907 908 case ParsedTemplateArgument::NonType: { 909 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 910 return TemplateArgumentLoc(TemplateArgument(E), E); 911 } 912 913 case ParsedTemplateArgument::Template: { 914 TemplateName Template = Arg.getAsTemplate().get(); 915 TemplateArgument TArg; 916 if (Arg.getEllipsisLoc().isValid()) 917 TArg = TemplateArgument(Template, std::optional<unsigned int>()); 918 else 919 TArg = Template; 920 return TemplateArgumentLoc( 921 SemaRef.Context, TArg, 922 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context), 923 Arg.getLocation(), Arg.getEllipsisLoc()); 924 } 925 } 926 927 llvm_unreachable("Unhandled parsed template argument"); 928 } 929 930 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 931 TemplateArgumentListInfo &TemplateArgs) { 932 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 933 TemplateArgs.addArgument(translateTemplateArgument(*this, 934 TemplateArgsIn[I])); 935 } 936 937 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 938 SourceLocation Loc, 939 const IdentifierInfo *Name) { 940 NamedDecl *PrevDecl = 941 SemaRef.LookupSingleName(S, Name, Loc, Sema::LookupOrdinaryName, 942 RedeclarationKind::ForVisibleRedeclaration); 943 if (PrevDecl && PrevDecl->isTemplateParameter()) 944 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 945 } 946 947 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { 948 TypeSourceInfo *TInfo; 949 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); 950 if (T.isNull()) 951 return ParsedTemplateArgument(); 952 assert(TInfo && "template argument with no location"); 953 954 // If we might have formed a deduced template specialization type, convert 955 // it to a template template argument. 956 if (getLangOpts().CPlusPlus17) { 957 TypeLoc TL = TInfo->getTypeLoc(); 958 SourceLocation EllipsisLoc; 959 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { 960 EllipsisLoc = PET.getEllipsisLoc(); 961 TL = PET.getPatternLoc(); 962 } 963 964 CXXScopeSpec SS; 965 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { 966 SS.Adopt(ET.getQualifierLoc()); 967 TL = ET.getNamedTypeLoc(); 968 } 969 970 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { 971 TemplateName Name = DTST.getTypePtr()->getTemplateName(); 972 ParsedTemplateArgument Result(SS, TemplateTy::make(Name), 973 DTST.getTemplateNameLoc()); 974 if (EllipsisLoc.isValid()) 975 Result = Result.getTemplatePackExpansion(EllipsisLoc); 976 return Result; 977 } 978 } 979 980 // This is a normal type template argument. Note, if the type template 981 // argument is an injected-class-name for a template, it has a dual nature 982 // and can be used as either a type or a template. We handle that in 983 // convertTypeTemplateArgumentToTemplate. 984 return ParsedTemplateArgument(ParsedTemplateArgument::Type, 985 ParsedType.get().getAsOpaquePtr(), 986 TInfo->getTypeLoc().getBeginLoc()); 987 } 988 989 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 990 SourceLocation EllipsisLoc, 991 SourceLocation KeyLoc, 992 IdentifierInfo *ParamName, 993 SourceLocation ParamNameLoc, 994 unsigned Depth, unsigned Position, 995 SourceLocation EqualLoc, 996 ParsedType DefaultArg, 997 bool HasTypeConstraint) { 998 assert(S->isTemplateParamScope() && 999 "Template type parameter not in template parameter scope!"); 1000 1001 bool IsParameterPack = EllipsisLoc.isValid(); 1002 TemplateTypeParmDecl *Param 1003 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1004 KeyLoc, ParamNameLoc, Depth, Position, 1005 ParamName, Typename, IsParameterPack, 1006 HasTypeConstraint); 1007 Param->setAccess(AS_public); 1008 1009 if (Param->isParameterPack()) 1010 if (auto *CSI = getEnclosingLambdaOrBlock()) 1011 CSI->LocalPacks.push_back(Param); 1012 1013 if (ParamName) { 1014 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 1015 1016 // Add the template parameter into the current scope. 1017 S->AddDecl(Param); 1018 IdResolver.AddDecl(Param); 1019 } 1020 1021 // C++0x [temp.param]p9: 1022 // A default template-argument may be specified for any kind of 1023 // template-parameter that is not a template parameter pack. 1024 if (DefaultArg && IsParameterPack) { 1025 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1026 DefaultArg = nullptr; 1027 } 1028 1029 // Handle the default argument, if provided. 1030 if (DefaultArg) { 1031 TypeSourceInfo *DefaultTInfo; 1032 GetTypeFromParser(DefaultArg, &DefaultTInfo); 1033 1034 assert(DefaultTInfo && "expected source information for type"); 1035 1036 // Check for unexpanded parameter packs. 1037 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, 1038 UPPC_DefaultArgument)) 1039 return Param; 1040 1041 // Check the template argument itself. 1042 if (CheckTemplateArgument(DefaultTInfo)) { 1043 Param->setInvalidDecl(); 1044 return Param; 1045 } 1046 1047 Param->setDefaultArgument( 1048 Context, TemplateArgumentLoc(DefaultTInfo->getType(), DefaultTInfo)); 1049 } 1050 1051 return Param; 1052 } 1053 1054 /// Convert the parser's template argument list representation into our form. 1055 static TemplateArgumentListInfo 1056 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 1057 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 1058 TemplateId.RAngleLoc); 1059 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 1060 TemplateId.NumArgs); 1061 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 1062 return TemplateArgs; 1063 } 1064 1065 bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) { 1066 1067 TemplateName TN = TypeConstr->Template.get(); 1068 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl()); 1069 1070 // C++2a [temp.param]p4: 1071 // [...] The concept designated by a type-constraint shall be a type 1072 // concept ([temp.concept]). 1073 if (!CD->isTypeConcept()) { 1074 Diag(TypeConstr->TemplateNameLoc, 1075 diag::err_type_constraint_non_type_concept); 1076 return true; 1077 } 1078 1079 if (CheckConceptUseInDefinition(CD, TypeConstr->TemplateNameLoc)) 1080 return true; 1081 1082 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); 1083 1084 if (!WereArgsSpecified && 1085 CD->getTemplateParameters()->getMinRequiredArguments() > 1) { 1086 Diag(TypeConstr->TemplateNameLoc, 1087 diag::err_type_constraint_missing_arguments) 1088 << CD; 1089 return true; 1090 } 1091 return false; 1092 } 1093 1094 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, 1095 TemplateIdAnnotation *TypeConstr, 1096 TemplateTypeParmDecl *ConstrainedParameter, 1097 SourceLocation EllipsisLoc) { 1098 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc, 1099 false); 1100 } 1101 1102 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS, 1103 TemplateIdAnnotation *TypeConstr, 1104 TemplateTypeParmDecl *ConstrainedParameter, 1105 SourceLocation EllipsisLoc, 1106 bool AllowUnexpandedPack) { 1107 1108 if (CheckTypeConstraint(TypeConstr)) 1109 return true; 1110 1111 TemplateName TN = TypeConstr->Template.get(); 1112 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl()); 1113 UsingShadowDecl *USD = TN.getAsUsingShadowDecl(); 1114 1115 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name), 1116 TypeConstr->TemplateNameLoc); 1117 1118 TemplateArgumentListInfo TemplateArgs; 1119 if (TypeConstr->LAngleLoc.isValid()) { 1120 TemplateArgs = 1121 makeTemplateArgumentListInfo(*this, *TypeConstr); 1122 1123 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) { 1124 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) { 1125 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint)) 1126 return true; 1127 } 1128 } 1129 } 1130 return AttachTypeConstraint( 1131 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), 1132 ConceptName, CD, /*FoundDecl=*/USD ? cast<NamedDecl>(USD) : CD, 1133 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, 1134 ConstrainedParameter, Context.getTypeDeclType(ConstrainedParameter), 1135 EllipsisLoc); 1136 } 1137 1138 template <typename ArgumentLocAppender> 1139 static ExprResult formImmediatelyDeclaredConstraint( 1140 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, 1141 ConceptDecl *NamedConcept, NamedDecl *FoundDecl, SourceLocation LAngleLoc, 1142 SourceLocation RAngleLoc, QualType ConstrainedType, 1143 SourceLocation ParamNameLoc, ArgumentLocAppender Appender, 1144 SourceLocation EllipsisLoc) { 1145 1146 TemplateArgumentListInfo ConstraintArgs; 1147 ConstraintArgs.addArgument( 1148 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), 1149 /*NTTPType=*/QualType(), ParamNameLoc)); 1150 1151 ConstraintArgs.setRAngleLoc(RAngleLoc); 1152 ConstraintArgs.setLAngleLoc(LAngleLoc); 1153 Appender(ConstraintArgs); 1154 1155 // C++2a [temp.param]p4: 1156 // [...] This constraint-expression E is called the immediately-declared 1157 // constraint of T. [...] 1158 CXXScopeSpec SS; 1159 SS.Adopt(NS); 1160 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( 1161 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, 1162 /*FoundDecl=*/FoundDecl ? FoundDecl : NamedConcept, NamedConcept, 1163 &ConstraintArgs); 1164 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) 1165 return ImmediatelyDeclaredConstraint; 1166 1167 // C++2a [temp.param]p4: 1168 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). 1169 // 1170 // We have the following case: 1171 // 1172 // template<typename T> concept C1 = true; 1173 // template<C1... T> struct s1; 1174 // 1175 // The constraint: (C1<T> && ...) 1176 // 1177 // Note that the type of C1<T> is known to be 'bool', so we don't need to do 1178 // any unqualified lookups for 'operator&&' here. 1179 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr, 1180 /*LParenLoc=*/SourceLocation(), 1181 ImmediatelyDeclaredConstraint.get(), BO_LAnd, 1182 EllipsisLoc, /*RHS=*/nullptr, 1183 /*RParenLoc=*/SourceLocation(), 1184 /*NumExpansions=*/std::nullopt); 1185 } 1186 1187 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, 1188 DeclarationNameInfo NameInfo, 1189 ConceptDecl *NamedConcept, NamedDecl *FoundDecl, 1190 const TemplateArgumentListInfo *TemplateArgs, 1191 TemplateTypeParmDecl *ConstrainedParameter, 1192 QualType ConstrainedType, 1193 SourceLocation EllipsisLoc) { 1194 // C++2a [temp.param]p4: 1195 // [...] If Q is of the form C<A1, ..., An>, then let E' be 1196 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] 1197 const ASTTemplateArgumentListInfo *ArgsAsWritten = 1198 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, 1199 *TemplateArgs) : nullptr; 1200 1201 QualType ParamAsArgument = ConstrainedType; 1202 1203 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( 1204 *this, NS, NameInfo, NamedConcept, FoundDecl, 1205 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), 1206 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), 1207 ParamAsArgument, ConstrainedParameter->getLocation(), 1208 [&](TemplateArgumentListInfo &ConstraintArgs) { 1209 if (TemplateArgs) 1210 for (const auto &ArgLoc : TemplateArgs->arguments()) 1211 ConstraintArgs.addArgument(ArgLoc); 1212 }, 1213 EllipsisLoc); 1214 if (ImmediatelyDeclaredConstraint.isInvalid()) 1215 return true; 1216 1217 auto *CL = ConceptReference::Create(Context, /*NNS=*/NS, 1218 /*TemplateKWLoc=*/SourceLocation{}, 1219 /*ConceptNameInfo=*/NameInfo, 1220 /*FoundDecl=*/FoundDecl, 1221 /*NamedConcept=*/NamedConcept, 1222 /*ArgsWritten=*/ArgsAsWritten); 1223 ConstrainedParameter->setTypeConstraint(CL, 1224 ImmediatelyDeclaredConstraint.get()); 1225 return false; 1226 } 1227 1228 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, 1229 NonTypeTemplateParmDecl *NewConstrainedParm, 1230 NonTypeTemplateParmDecl *OrigConstrainedParm, 1231 SourceLocation EllipsisLoc) { 1232 if (NewConstrainedParm->getType().getNonPackExpansionType() != TL.getType() || 1233 TL.getAutoKeyword() != AutoTypeKeyword::Auto) { 1234 Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1235 diag::err_unsupported_placeholder_constraint) 1236 << NewConstrainedParm->getTypeSourceInfo() 1237 ->getTypeLoc() 1238 .getSourceRange(); 1239 return true; 1240 } 1241 // FIXME: Concepts: This should be the type of the placeholder, but this is 1242 // unclear in the wording right now. 1243 DeclRefExpr *Ref = 1244 BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(), 1245 VK_PRValue, OrigConstrainedParm->getLocation()); 1246 if (!Ref) 1247 return true; 1248 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( 1249 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), 1250 TL.getNamedConcept(), /*FoundDecl=*/TL.getFoundDecl(), TL.getLAngleLoc(), 1251 TL.getRAngleLoc(), BuildDecltypeType(Ref), 1252 OrigConstrainedParm->getLocation(), 1253 [&](TemplateArgumentListInfo &ConstraintArgs) { 1254 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) 1255 ConstraintArgs.addArgument(TL.getArgLoc(I)); 1256 }, 1257 EllipsisLoc); 1258 if (ImmediatelyDeclaredConstraint.isInvalid() || 1259 !ImmediatelyDeclaredConstraint.isUsable()) 1260 return true; 1261 1262 NewConstrainedParm->setPlaceholderTypeConstraint( 1263 ImmediatelyDeclaredConstraint.get()); 1264 return false; 1265 } 1266 1267 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, 1268 SourceLocation Loc) { 1269 if (TSI->getType()->isUndeducedType()) { 1270 // C++17 [temp.dep.expr]p3: 1271 // An id-expression is type-dependent if it contains 1272 // - an identifier associated by name lookup with a non-type 1273 // template-parameter declared with a type that contains a 1274 // placeholder type (7.1.7.4), 1275 TSI = SubstAutoTypeSourceInfoDependent(TSI); 1276 } 1277 1278 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); 1279 } 1280 1281 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { 1282 if (T->isDependentType()) 1283 return false; 1284 1285 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete)) 1286 return true; 1287 1288 if (T->isStructuralType()) 1289 return false; 1290 1291 // Structural types are required to be object types or lvalue references. 1292 if (T->isRValueReferenceType()) { 1293 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T; 1294 return true; 1295 } 1296 1297 // Don't mention structural types in our diagnostic prior to C++20. Also, 1298 // there's not much more we can say about non-scalar non-class types -- 1299 // because we can't see functions or arrays here, those can only be language 1300 // extensions. 1301 if (!getLangOpts().CPlusPlus20 || 1302 (!T->isScalarType() && !T->isRecordType())) { 1303 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; 1304 return true; 1305 } 1306 1307 // Structural types are required to be literal types. 1308 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal)) 1309 return true; 1310 1311 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T; 1312 1313 // Drill down into the reason why the class is non-structural. 1314 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 1315 // All members are required to be public and non-mutable, and can't be of 1316 // rvalue reference type. Check these conditions first to prefer a "local" 1317 // reason over a more distant one. 1318 for (const FieldDecl *FD : RD->fields()) { 1319 if (FD->getAccess() != AS_public) { 1320 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0; 1321 return true; 1322 } 1323 if (FD->isMutable()) { 1324 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T; 1325 return true; 1326 } 1327 if (FD->getType()->isRValueReferenceType()) { 1328 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field) 1329 << T; 1330 return true; 1331 } 1332 } 1333 1334 // All bases are required to be public. 1335 for (const auto &BaseSpec : RD->bases()) { 1336 if (BaseSpec.getAccessSpecifier() != AS_public) { 1337 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public) 1338 << T << 1; 1339 return true; 1340 } 1341 } 1342 1343 // All subobjects are required to be of structural types. 1344 SourceLocation SubLoc; 1345 QualType SubType; 1346 int Kind = -1; 1347 1348 for (const FieldDecl *FD : RD->fields()) { 1349 QualType T = Context.getBaseElementType(FD->getType()); 1350 if (!T->isStructuralType()) { 1351 SubLoc = FD->getLocation(); 1352 SubType = T; 1353 Kind = 0; 1354 break; 1355 } 1356 } 1357 1358 if (Kind == -1) { 1359 for (const auto &BaseSpec : RD->bases()) { 1360 QualType T = BaseSpec.getType(); 1361 if (!T->isStructuralType()) { 1362 SubLoc = BaseSpec.getBaseTypeLoc(); 1363 SubType = T; 1364 Kind = 1; 1365 break; 1366 } 1367 } 1368 } 1369 1370 assert(Kind != -1 && "couldn't find reason why type is not structural"); 1371 Diag(SubLoc, diag::note_not_structural_subobject) 1372 << T << Kind << SubType; 1373 T = SubType; 1374 RD = T->getAsCXXRecordDecl(); 1375 } 1376 1377 return true; 1378 } 1379 1380 QualType Sema::CheckNonTypeTemplateParameterType(QualType T, 1381 SourceLocation Loc) { 1382 // We don't allow variably-modified types as the type of non-type template 1383 // parameters. 1384 if (T->isVariablyModifiedType()) { 1385 Diag(Loc, diag::err_variably_modified_nontype_template_param) 1386 << T; 1387 return QualType(); 1388 } 1389 1390 // C++ [temp.param]p4: 1391 // 1392 // A non-type template-parameter shall have one of the following 1393 // (optionally cv-qualified) types: 1394 // 1395 // -- integral or enumeration type, 1396 if (T->isIntegralOrEnumerationType() || 1397 // -- pointer to object or pointer to function, 1398 T->isPointerType() || 1399 // -- lvalue reference to object or lvalue reference to function, 1400 T->isLValueReferenceType() || 1401 // -- pointer to member, 1402 T->isMemberPointerType() || 1403 // -- std::nullptr_t, or 1404 T->isNullPtrType() || 1405 // -- a type that contains a placeholder type. 1406 T->isUndeducedType()) { 1407 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 1408 // are ignored when determining its type. 1409 return T.getUnqualifiedType(); 1410 } 1411 1412 // C++ [temp.param]p8: 1413 // 1414 // A non-type template-parameter of type "array of T" or 1415 // "function returning T" is adjusted to be of type "pointer to 1416 // T" or "pointer to function returning T", respectively. 1417 if (T->isArrayType() || T->isFunctionType()) 1418 return Context.getDecayedType(T); 1419 1420 // If T is a dependent type, we can't do the check now, so we 1421 // assume that it is well-formed. Note that stripping off the 1422 // qualifiers here is not really correct if T turns out to be 1423 // an array type, but we'll recompute the type everywhere it's 1424 // used during instantiation, so that should be OK. (Using the 1425 // qualified type is equally wrong.) 1426 if (T->isDependentType()) 1427 return T.getUnqualifiedType(); 1428 1429 // C++20 [temp.param]p6: 1430 // -- a structural type 1431 if (RequireStructuralType(T, Loc)) 1432 return QualType(); 1433 1434 if (!getLangOpts().CPlusPlus20) { 1435 // FIXME: Consider allowing structural types as an extension in C++17. (In 1436 // earlier language modes, the template argument evaluation rules are too 1437 // inflexible.) 1438 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T; 1439 return QualType(); 1440 } 1441 1442 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T; 1443 return T.getUnqualifiedType(); 1444 } 1445 1446 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 1447 unsigned Depth, 1448 unsigned Position, 1449 SourceLocation EqualLoc, 1450 Expr *Default) { 1451 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 1452 1453 // Check that we have valid decl-specifiers specified. 1454 auto CheckValidDeclSpecifiers = [this, &D] { 1455 // C++ [temp.param] 1456 // p1 1457 // template-parameter: 1458 // ... 1459 // parameter-declaration 1460 // p2 1461 // ... A storage class shall not be specified in a template-parameter 1462 // declaration. 1463 // [dcl.typedef]p1: 1464 // The typedef specifier [...] shall not be used in the decl-specifier-seq 1465 // of a parameter-declaration 1466 const DeclSpec &DS = D.getDeclSpec(); 1467 auto EmitDiag = [this](SourceLocation Loc) { 1468 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) 1469 << FixItHint::CreateRemoval(Loc); 1470 }; 1471 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) 1472 EmitDiag(DS.getStorageClassSpecLoc()); 1473 1474 if (DS.getThreadStorageClassSpec() != TSCS_unspecified) 1475 EmitDiag(DS.getThreadStorageClassSpecLoc()); 1476 1477 // [dcl.inline]p1: 1478 // The inline specifier can be applied only to the declaration or 1479 // definition of a variable or function. 1480 1481 if (DS.isInlineSpecified()) 1482 EmitDiag(DS.getInlineSpecLoc()); 1483 1484 // [dcl.constexpr]p1: 1485 // The constexpr specifier shall be applied only to the definition of a 1486 // variable or variable template or the declaration of a function or 1487 // function template. 1488 1489 if (DS.hasConstexprSpecifier()) 1490 EmitDiag(DS.getConstexprSpecLoc()); 1491 1492 // [dcl.fct.spec]p1: 1493 // Function-specifiers can be used only in function declarations. 1494 1495 if (DS.isVirtualSpecified()) 1496 EmitDiag(DS.getVirtualSpecLoc()); 1497 1498 if (DS.hasExplicitSpecifier()) 1499 EmitDiag(DS.getExplicitSpecLoc()); 1500 1501 if (DS.isNoreturnSpecified()) 1502 EmitDiag(DS.getNoreturnSpecLoc()); 1503 }; 1504 1505 CheckValidDeclSpecifiers(); 1506 1507 if (const auto *T = TInfo->getType()->getContainedDeducedType()) 1508 if (isa<AutoType>(T)) 1509 Diag(D.getIdentifierLoc(), 1510 diag::warn_cxx14_compat_template_nontype_parm_auto_type) 1511 << QualType(TInfo->getType()->getContainedAutoType(), 0); 1512 1513 assert(S->isTemplateParamScope() && 1514 "Non-type template parameter not in template parameter scope!"); 1515 bool Invalid = false; 1516 1517 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); 1518 if (T.isNull()) { 1519 T = Context.IntTy; // Recover with an 'int' type. 1520 Invalid = true; 1521 } 1522 1523 CheckFunctionOrTemplateParamDeclarator(S, D); 1524 1525 const IdentifierInfo *ParamName = D.getIdentifier(); 1526 bool IsParameterPack = D.hasEllipsis(); 1527 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( 1528 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), 1529 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, 1530 TInfo); 1531 Param->setAccess(AS_public); 1532 1533 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) 1534 if (TL.isConstrained()) { 1535 if (D.getEllipsisLoc().isInvalid() && 1536 T->containsUnexpandedParameterPack()) { 1537 assert(TL.getConceptReference()->getTemplateArgsAsWritten()); 1538 for (auto &Loc : 1539 TL.getConceptReference()->getTemplateArgsAsWritten()->arguments()) 1540 Invalid |= DiagnoseUnexpandedParameterPack( 1541 Loc, UnexpandedParameterPackContext::UPPC_TypeConstraint); 1542 } 1543 if (!Invalid && 1544 AttachTypeConstraint(TL, Param, Param, D.getEllipsisLoc())) 1545 Invalid = true; 1546 } 1547 1548 if (Invalid) 1549 Param->setInvalidDecl(); 1550 1551 if (Param->isParameterPack()) 1552 if (auto *CSI = getEnclosingLambdaOrBlock()) 1553 CSI->LocalPacks.push_back(Param); 1554 1555 if (ParamName) { 1556 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 1557 ParamName); 1558 1559 // Add the template parameter into the current scope. 1560 S->AddDecl(Param); 1561 IdResolver.AddDecl(Param); 1562 } 1563 1564 // C++0x [temp.param]p9: 1565 // A default template-argument may be specified for any kind of 1566 // template-parameter that is not a template parameter pack. 1567 if (Default && IsParameterPack) { 1568 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1569 Default = nullptr; 1570 } 1571 1572 // Check the well-formedness of the default template argument, if provided. 1573 if (Default) { 1574 // Check for unexpanded parameter packs. 1575 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 1576 return Param; 1577 1578 Param->setDefaultArgument( 1579 Context, getTrivialTemplateArgumentLoc(TemplateArgument(Default), 1580 QualType(), SourceLocation())); 1581 } 1582 1583 return Param; 1584 } 1585 1586 NamedDecl *Sema::ActOnTemplateTemplateParameter( 1587 Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params, 1588 bool Typename, SourceLocation EllipsisLoc, IdentifierInfo *Name, 1589 SourceLocation NameLoc, unsigned Depth, unsigned Position, 1590 SourceLocation EqualLoc, ParsedTemplateArgument Default) { 1591 assert(S->isTemplateParamScope() && 1592 "Template template parameter not in template parameter scope!"); 1593 1594 // Construct the parameter object. 1595 bool IsParameterPack = EllipsisLoc.isValid(); 1596 TemplateTemplateParmDecl *Param = TemplateTemplateParmDecl::Create( 1597 Context, Context.getTranslationUnitDecl(), 1598 NameLoc.isInvalid() ? TmpLoc : NameLoc, Depth, Position, IsParameterPack, 1599 Name, Typename, Params); 1600 Param->setAccess(AS_public); 1601 1602 if (Param->isParameterPack()) 1603 if (auto *LSI = getEnclosingLambdaOrBlock()) 1604 LSI->LocalPacks.push_back(Param); 1605 1606 // If the template template parameter has a name, then link the identifier 1607 // into the scope and lookup mechanisms. 1608 if (Name) { 1609 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 1610 1611 S->AddDecl(Param); 1612 IdResolver.AddDecl(Param); 1613 } 1614 1615 if (Params->size() == 0) { 1616 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 1617 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 1618 Param->setInvalidDecl(); 1619 } 1620 1621 // C++0x [temp.param]p9: 1622 // A default template-argument may be specified for any kind of 1623 // template-parameter that is not a template parameter pack. 1624 if (IsParameterPack && !Default.isInvalid()) { 1625 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1626 Default = ParsedTemplateArgument(); 1627 } 1628 1629 if (!Default.isInvalid()) { 1630 // Check only that we have a template template argument. We don't want to 1631 // try to check well-formedness now, because our template template parameter 1632 // might have dependent types in its template parameters, which we wouldn't 1633 // be able to match now. 1634 // 1635 // If none of the template template parameter's template arguments mention 1636 // other template parameters, we could actually perform more checking here. 1637 // However, it isn't worth doing. 1638 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 1639 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 1640 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) 1641 << DefaultArg.getSourceRange(); 1642 return Param; 1643 } 1644 1645 // Check for unexpanded parameter packs. 1646 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 1647 DefaultArg.getArgument().getAsTemplate(), 1648 UPPC_DefaultArgument)) 1649 return Param; 1650 1651 Param->setDefaultArgument(Context, DefaultArg); 1652 } 1653 1654 return Param; 1655 } 1656 1657 namespace { 1658 class ConstraintRefersToContainingTemplateChecker 1659 : public TreeTransform<ConstraintRefersToContainingTemplateChecker> { 1660 bool Result = false; 1661 const FunctionDecl *Friend = nullptr; 1662 unsigned TemplateDepth = 0; 1663 1664 // Check a record-decl that we've seen to see if it is a lexical parent of the 1665 // Friend, likely because it was referred to without its template arguments. 1666 void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) { 1667 CheckingRD = CheckingRD->getMostRecentDecl(); 1668 if (!CheckingRD->isTemplated()) 1669 return; 1670 1671 for (const DeclContext *DC = Friend->getLexicalDeclContext(); 1672 DC && !DC->isFileContext(); DC = DC->getParent()) 1673 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) 1674 if (CheckingRD == RD->getMostRecentDecl()) 1675 Result = true; 1676 } 1677 1678 void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { 1679 if (D->getDepth() < TemplateDepth) 1680 Result = true; 1681 1682 // Necessary because the type of the NTTP might be what refers to the parent 1683 // constriant. 1684 TransformType(D->getType()); 1685 } 1686 1687 public: 1688 using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>; 1689 1690 ConstraintRefersToContainingTemplateChecker(Sema &SemaRef, 1691 const FunctionDecl *Friend, 1692 unsigned TemplateDepth) 1693 : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {} 1694 bool getResult() const { return Result; } 1695 1696 // This should be the only template parm type that we have to deal with. 1697 // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and 1698 // FunctionParmPackExpr are all partially substituted, which cannot happen 1699 // with concepts at this point in translation. 1700 using inherited::TransformTemplateTypeParmType; 1701 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, 1702 TemplateTypeParmTypeLoc TL, bool) { 1703 if (TL.getDecl()->getDepth() < TemplateDepth) 1704 Result = true; 1705 return inherited::TransformTemplateTypeParmType( 1706 TLB, TL, 1707 /*SuppressObjCLifetime=*/false); 1708 } 1709 1710 Decl *TransformDecl(SourceLocation Loc, Decl *D) { 1711 if (!D) 1712 return D; 1713 // FIXME : This is possibly an incomplete list, but it is unclear what other 1714 // Decl kinds could be used to refer to the template parameters. This is a 1715 // best guess so far based on examples currently available, but the 1716 // unreachable should catch future instances/cases. 1717 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) 1718 TransformType(TD->getUnderlyingType()); 1719 else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D)) 1720 CheckNonTypeTemplateParmDecl(NTTPD); 1721 else if (auto *VD = dyn_cast<ValueDecl>(D)) 1722 TransformType(VD->getType()); 1723 else if (auto *TD = dyn_cast<TemplateDecl>(D)) 1724 TransformTemplateParameterList(TD->getTemplateParameters()); 1725 else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1726 CheckIfContainingRecord(RD); 1727 else if (isa<NamedDecl>(D)) { 1728 // No direct types to visit here I believe. 1729 } else 1730 llvm_unreachable("Don't know how to handle this declaration type yet"); 1731 return D; 1732 } 1733 }; 1734 } // namespace 1735 1736 bool Sema::ConstraintExpressionDependsOnEnclosingTemplate( 1737 const FunctionDecl *Friend, unsigned TemplateDepth, 1738 const Expr *Constraint) { 1739 assert(Friend->getFriendObjectKind() && "Only works on a friend"); 1740 ConstraintRefersToContainingTemplateChecker Checker(*this, Friend, 1741 TemplateDepth); 1742 Checker.TransformExpr(const_cast<Expr *>(Constraint)); 1743 return Checker.getResult(); 1744 } 1745 1746 TemplateParameterList * 1747 Sema::ActOnTemplateParameterList(unsigned Depth, 1748 SourceLocation ExportLoc, 1749 SourceLocation TemplateLoc, 1750 SourceLocation LAngleLoc, 1751 ArrayRef<NamedDecl *> Params, 1752 SourceLocation RAngleLoc, 1753 Expr *RequiresClause) { 1754 if (ExportLoc.isValid()) 1755 Diag(ExportLoc, diag::warn_template_export_unsupported); 1756 1757 for (NamedDecl *P : Params) 1758 warnOnReservedIdentifier(P); 1759 1760 return TemplateParameterList::Create( 1761 Context, TemplateLoc, LAngleLoc, 1762 llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause); 1763 } 1764 1765 static void SetNestedNameSpecifier(Sema &S, TagDecl *T, 1766 const CXXScopeSpec &SS) { 1767 if (SS.isSet()) 1768 T->setQualifierInfo(SS.getWithLocInContext(S.Context)); 1769 } 1770 1771 // Returns the template parameter list with all default template argument 1772 // information. 1773 TemplateParameterList *Sema::GetTemplateParameterList(TemplateDecl *TD) { 1774 // Make sure we get the template parameter list from the most 1775 // recent declaration, since that is the only one that is guaranteed to 1776 // have all the default template argument information. 1777 Decl *D = TD->getMostRecentDecl(); 1778 // C++11 N3337 [temp.param]p12: 1779 // A default template argument shall not be specified in a friend class 1780 // template declaration. 1781 // 1782 // Skip past friend *declarations* because they are not supposed to contain 1783 // default template arguments. Moreover, these declarations may introduce 1784 // template parameters living in different template depths than the 1785 // corresponding template parameters in TD, causing unmatched constraint 1786 // substitution. 1787 // 1788 // FIXME: Diagnose such cases within a class template: 1789 // template <class T> 1790 // struct S { 1791 // template <class = void> friend struct C; 1792 // }; 1793 // template struct S<int>; 1794 while (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None && 1795 D->getPreviousDecl()) 1796 D = D->getPreviousDecl(); 1797 return cast<TemplateDecl>(D)->getTemplateParameters(); 1798 } 1799 1800 DeclResult Sema::CheckClassTemplate( 1801 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 1802 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 1803 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, 1804 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 1805 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, 1806 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { 1807 assert(TemplateParams && TemplateParams->size() > 0 && 1808 "No template parameters"); 1809 assert(TUK != TagUseKind::Reference && 1810 "Can only declare or define class templates"); 1811 bool Invalid = false; 1812 1813 // Check that we can declare a template here. 1814 if (CheckTemplateDeclScope(S, TemplateParams)) 1815 return true; 1816 1817 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1818 assert(Kind != TagTypeKind::Enum && 1819 "can't build template of enumerated type"); 1820 1821 // There is no such thing as an unnamed class template. 1822 if (!Name) { 1823 Diag(KWLoc, diag::err_template_unnamed_class); 1824 return true; 1825 } 1826 1827 // Find any previous declaration with this name. For a friend with no 1828 // scope explicitly specified, we only look for tag declarations (per 1829 // C++11 [basic.lookup.elab]p2). 1830 DeclContext *SemanticContext; 1831 LookupResult Previous(*this, Name, NameLoc, 1832 (SS.isEmpty() && TUK == TagUseKind::Friend) 1833 ? LookupTagName 1834 : LookupOrdinaryName, 1835 forRedeclarationInCurContext()); 1836 if (SS.isNotEmpty() && !SS.isInvalid()) { 1837 SemanticContext = computeDeclContext(SS, true); 1838 if (!SemanticContext) { 1839 // FIXME: Horrible, horrible hack! We can't currently represent this 1840 // in the AST, and historically we have just ignored such friend 1841 // class templates, so don't complain here. 1842 Diag(NameLoc, TUK == TagUseKind::Friend 1843 ? diag::warn_template_qualified_friend_ignored 1844 : diag::err_template_qualified_declarator_no_match) 1845 << SS.getScopeRep() << SS.getRange(); 1846 return TUK != TagUseKind::Friend; 1847 } 1848 1849 if (RequireCompleteDeclContext(SS, SemanticContext)) 1850 return true; 1851 1852 // If we're adding a template to a dependent context, we may need to 1853 // rebuilding some of the types used within the template parameter list, 1854 // now that we know what the current instantiation is. 1855 if (SemanticContext->isDependentContext()) { 1856 ContextRAII SavedContext(*this, SemanticContext); 1857 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 1858 Invalid = true; 1859 } 1860 1861 if (TUK != TagUseKind::Friend && TUK != TagUseKind::Reference) 1862 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, 1863 /*TemplateId-*/ nullptr, 1864 /*IsMemberSpecialization*/ false); 1865 1866 LookupQualifiedName(Previous, SemanticContext); 1867 } else { 1868 SemanticContext = CurContext; 1869 1870 // C++14 [class.mem]p14: 1871 // If T is the name of a class, then each of the following shall have a 1872 // name different from T: 1873 // -- every member template of class T 1874 if (TUK != TagUseKind::Friend && 1875 DiagnoseClassNameShadow(SemanticContext, 1876 DeclarationNameInfo(Name, NameLoc))) 1877 return true; 1878 1879 LookupName(Previous, S); 1880 } 1881 1882 if (Previous.isAmbiguous()) 1883 return true; 1884 1885 // Let the template parameter scope enter the lookup chain of the current 1886 // class template. For example, given 1887 // 1888 // namespace ns { 1889 // template <class> bool Param = false; 1890 // template <class T> struct N; 1891 // } 1892 // 1893 // template <class Param> struct ns::N { void foo(Param); }; 1894 // 1895 // When we reference Param inside the function parameter list, our name lookup 1896 // chain for it should be like: 1897 // FunctionScope foo 1898 // -> RecordScope N 1899 // -> TemplateParamScope (where we will find Param) 1900 // -> NamespaceScope ns 1901 // 1902 // See also CppLookupName(). 1903 if (S->isTemplateParamScope()) 1904 EnterTemplatedContext(S, SemanticContext); 1905 1906 NamedDecl *PrevDecl = nullptr; 1907 if (Previous.begin() != Previous.end()) 1908 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1909 1910 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1911 // Maybe we will complain about the shadowed template parameter. 1912 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1913 // Just pretend that we didn't see the previous declaration. 1914 PrevDecl = nullptr; 1915 } 1916 1917 // If there is a previous declaration with the same name, check 1918 // whether this is a valid redeclaration. 1919 ClassTemplateDecl *PrevClassTemplate = 1920 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 1921 1922 // We may have found the injected-class-name of a class template, 1923 // class template partial specialization, or class template specialization. 1924 // In these cases, grab the template that is being defined or specialized. 1925 if (!PrevClassTemplate && isa_and_nonnull<CXXRecordDecl>(PrevDecl) && 1926 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 1927 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 1928 PrevClassTemplate 1929 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 1930 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 1931 PrevClassTemplate 1932 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 1933 ->getSpecializedTemplate(); 1934 } 1935 } 1936 1937 if (TUK == TagUseKind::Friend) { 1938 // C++ [namespace.memdef]p3: 1939 // [...] When looking for a prior declaration of a class or a function 1940 // declared as a friend, and when the name of the friend class or 1941 // function is neither a qualified name nor a template-id, scopes outside 1942 // the innermost enclosing namespace scope are not considered. 1943 if (!SS.isSet()) { 1944 DeclContext *OutermostContext = CurContext; 1945 while (!OutermostContext->isFileContext()) 1946 OutermostContext = OutermostContext->getLookupParent(); 1947 1948 if (PrevDecl && 1949 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 1950 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 1951 SemanticContext = PrevDecl->getDeclContext(); 1952 } else { 1953 // Declarations in outer scopes don't matter. However, the outermost 1954 // context we computed is the semantic context for our new 1955 // declaration. 1956 PrevDecl = PrevClassTemplate = nullptr; 1957 SemanticContext = OutermostContext; 1958 1959 // Check that the chosen semantic context doesn't already contain a 1960 // declaration of this name as a non-tag type. 1961 Previous.clear(LookupOrdinaryName); 1962 DeclContext *LookupContext = SemanticContext; 1963 while (LookupContext->isTransparentContext()) 1964 LookupContext = LookupContext->getLookupParent(); 1965 LookupQualifiedName(Previous, LookupContext); 1966 1967 if (Previous.isAmbiguous()) 1968 return true; 1969 1970 if (Previous.begin() != Previous.end()) 1971 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1972 } 1973 } 1974 } else if (PrevDecl && !isDeclInScope(Previous.getRepresentativeDecl(), 1975 SemanticContext, S, SS.isValid())) 1976 PrevDecl = PrevClassTemplate = nullptr; 1977 1978 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 1979 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 1980 if (SS.isEmpty() && 1981 !(PrevClassTemplate && 1982 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 1983 SemanticContext->getRedeclContext()))) { 1984 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 1985 Diag(Shadow->getTargetDecl()->getLocation(), 1986 diag::note_using_decl_target); 1987 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0; 1988 // Recover by ignoring the old declaration. 1989 PrevDecl = PrevClassTemplate = nullptr; 1990 } 1991 } 1992 1993 if (PrevClassTemplate) { 1994 // Ensure that the template parameter lists are compatible. Skip this check 1995 // for a friend in a dependent context: the template parameter list itself 1996 // could be dependent. 1997 if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) && 1998 !TemplateParameterListsAreEqual( 1999 TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext 2000 : CurContext, 2001 CurContext, KWLoc), 2002 TemplateParams, PrevClassTemplate, 2003 PrevClassTemplate->getTemplateParameters(), /*Complain=*/true, 2004 TPL_TemplateMatch)) 2005 return true; 2006 2007 // C++ [temp.class]p4: 2008 // In a redeclaration, partial specialization, explicit 2009 // specialization or explicit instantiation of a class template, 2010 // the class-key shall agree in kind with the original class 2011 // template declaration (7.1.5.3). 2012 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 2013 if (!isAcceptableTagRedeclaration( 2014 PrevRecordDecl, Kind, TUK == TagUseKind::Definition, KWLoc, Name)) { 2015 Diag(KWLoc, diag::err_use_with_wrong_tag) 2016 << Name 2017 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 2018 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 2019 Kind = PrevRecordDecl->getTagKind(); 2020 } 2021 2022 // Check for redefinition of this class template. 2023 if (TUK == TagUseKind::Definition) { 2024 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 2025 // If we have a prior definition that is not visible, treat this as 2026 // simply making that previous definition visible. 2027 NamedDecl *Hidden = nullptr; 2028 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 2029 SkipBody->ShouldSkip = true; 2030 SkipBody->Previous = Def; 2031 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 2032 assert(Tmpl && "original definition of a class template is not a " 2033 "class template?"); 2034 makeMergedDefinitionVisible(Hidden); 2035 makeMergedDefinitionVisible(Tmpl); 2036 } else { 2037 Diag(NameLoc, diag::err_redefinition) << Name; 2038 Diag(Def->getLocation(), diag::note_previous_definition); 2039 // FIXME: Would it make sense to try to "forget" the previous 2040 // definition, as part of error recovery? 2041 return true; 2042 } 2043 } 2044 } 2045 } else if (PrevDecl) { 2046 // C++ [temp]p5: 2047 // A class template shall not have the same name as any other 2048 // template, class, function, object, enumeration, enumerator, 2049 // namespace, or type in the same scope (3.3), except as specified 2050 // in (14.5.4). 2051 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 2052 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2053 return true; 2054 } 2055 2056 // Check the template parameter list of this declaration, possibly 2057 // merging in the template parameter list from the previous class 2058 // template declaration. Skip this check for a friend in a dependent 2059 // context, because the template parameter list might be dependent. 2060 if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) && 2061 CheckTemplateParameterList( 2062 TemplateParams, 2063 PrevClassTemplate ? GetTemplateParameterList(PrevClassTemplate) 2064 : nullptr, 2065 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 2066 SemanticContext->isDependentContext()) 2067 ? TPC_ClassTemplateMember 2068 : TUK == TagUseKind::Friend ? TPC_FriendClassTemplate 2069 : TPC_ClassTemplate, 2070 SkipBody)) 2071 Invalid = true; 2072 2073 if (SS.isSet()) { 2074 // If the name of the template was qualified, we must be defining the 2075 // template out-of-line. 2076 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 2077 Diag(NameLoc, TUK == TagUseKind::Friend 2078 ? diag::err_friend_decl_does_not_match 2079 : diag::err_member_decl_does_not_match) 2080 << Name << SemanticContext << /*IsDefinition*/ true << SS.getRange(); 2081 Invalid = true; 2082 } 2083 } 2084 2085 // If this is a templated friend in a dependent context we should not put it 2086 // on the redecl chain. In some cases, the templated friend can be the most 2087 // recent declaration tricking the template instantiator to make substitutions 2088 // there. 2089 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious 2090 bool ShouldAddRedecl = 2091 !(TUK == TagUseKind::Friend && CurContext->isDependentContext()); 2092 2093 CXXRecordDecl *NewClass = 2094 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 2095 PrevClassTemplate && ShouldAddRedecl ? 2096 PrevClassTemplate->getTemplatedDecl() : nullptr, 2097 /*DelayTypeCreation=*/true); 2098 SetNestedNameSpecifier(*this, NewClass, SS); 2099 if (NumOuterTemplateParamLists > 0) 2100 NewClass->setTemplateParameterListsInfo( 2101 Context, 2102 llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists)); 2103 2104 // Add alignment attributes if necessary; these attributes are checked when 2105 // the ASTContext lays out the structure. 2106 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 2107 AddAlignmentAttributesForRecord(NewClass); 2108 AddMsStructLayoutForRecord(NewClass); 2109 } 2110 2111 ClassTemplateDecl *NewTemplate 2112 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 2113 DeclarationName(Name), TemplateParams, 2114 NewClass); 2115 2116 if (ShouldAddRedecl) 2117 NewTemplate->setPreviousDecl(PrevClassTemplate); 2118 2119 NewClass->setDescribedClassTemplate(NewTemplate); 2120 2121 if (ModulePrivateLoc.isValid()) 2122 NewTemplate->setModulePrivate(); 2123 2124 // Build the type for the class template declaration now. 2125 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 2126 T = Context.getInjectedClassNameType(NewClass, T); 2127 assert(T->isDependentType() && "Class template type is not dependent?"); 2128 (void)T; 2129 2130 // If we are providing an explicit specialization of a member that is a 2131 // class template, make a note of that. 2132 if (PrevClassTemplate && 2133 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 2134 PrevClassTemplate->setMemberSpecialization(); 2135 2136 // Set the access specifier. 2137 if (!Invalid && TUK != TagUseKind::Friend && 2138 NewTemplate->getDeclContext()->isRecord()) 2139 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 2140 2141 // Set the lexical context of these templates 2142 NewClass->setLexicalDeclContext(CurContext); 2143 NewTemplate->setLexicalDeclContext(CurContext); 2144 2145 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) 2146 NewClass->startDefinition(); 2147 2148 ProcessDeclAttributeList(S, NewClass, Attr); 2149 2150 if (PrevClassTemplate) 2151 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 2152 2153 AddPushedVisibilityAttribute(NewClass); 2154 inferGslOwnerPointerAttribute(NewClass); 2155 inferNullableClassAttribute(NewClass); 2156 2157 if (TUK != TagUseKind::Friend) { 2158 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 2159 Scope *Outer = S; 2160 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 2161 Outer = Outer->getParent(); 2162 PushOnScopeChains(NewTemplate, Outer); 2163 } else { 2164 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 2165 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 2166 NewClass->setAccess(PrevClassTemplate->getAccess()); 2167 } 2168 2169 NewTemplate->setObjectOfFriendDecl(); 2170 2171 // Friend templates are visible in fairly strange ways. 2172 if (!CurContext->isDependentContext()) { 2173 DeclContext *DC = SemanticContext->getRedeclContext(); 2174 DC->makeDeclVisibleInContext(NewTemplate); 2175 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 2176 PushOnScopeChains(NewTemplate, EnclosingScope, 2177 /* AddToContext = */ false); 2178 } 2179 2180 FriendDecl *Friend = FriendDecl::Create( 2181 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 2182 Friend->setAccess(AS_public); 2183 CurContext->addDecl(Friend); 2184 } 2185 2186 if (PrevClassTemplate) 2187 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate); 2188 2189 if (Invalid) { 2190 NewTemplate->setInvalidDecl(); 2191 NewClass->setInvalidDecl(); 2192 } 2193 2194 ActOnDocumentableDecl(NewTemplate); 2195 2196 if (SkipBody && SkipBody->ShouldSkip) 2197 return SkipBody->Previous; 2198 2199 return NewTemplate; 2200 } 2201 2202 /// Diagnose the presence of a default template argument on a 2203 /// template parameter, which is ill-formed in certain contexts. 2204 /// 2205 /// \returns true if the default template argument should be dropped. 2206 static bool DiagnoseDefaultTemplateArgument(Sema &S, 2207 Sema::TemplateParamListContext TPC, 2208 SourceLocation ParamLoc, 2209 SourceRange DefArgRange) { 2210 switch (TPC) { 2211 case Sema::TPC_ClassTemplate: 2212 case Sema::TPC_VarTemplate: 2213 case Sema::TPC_TypeAliasTemplate: 2214 return false; 2215 2216 case Sema::TPC_FunctionTemplate: 2217 case Sema::TPC_FriendFunctionTemplateDefinition: 2218 // C++ [temp.param]p9: 2219 // A default template-argument shall not be specified in a 2220 // function template declaration or a function template 2221 // definition [...] 2222 // If a friend function template declaration specifies a default 2223 // template-argument, that declaration shall be a definition and shall be 2224 // the only declaration of the function template in the translation unit. 2225 // (C++98/03 doesn't have this wording; see DR226). 2226 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 2227 diag::warn_cxx98_compat_template_parameter_default_in_function_template 2228 : diag::ext_template_parameter_default_in_function_template) 2229 << DefArgRange; 2230 return false; 2231 2232 case Sema::TPC_ClassTemplateMember: 2233 // C++0x [temp.param]p9: 2234 // A default template-argument shall not be specified in the 2235 // template-parameter-lists of the definition of a member of a 2236 // class template that appears outside of the member's class. 2237 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 2238 << DefArgRange; 2239 return true; 2240 2241 case Sema::TPC_FriendClassTemplate: 2242 case Sema::TPC_FriendFunctionTemplate: 2243 // C++ [temp.param]p9: 2244 // A default template-argument shall not be specified in a 2245 // friend template declaration. 2246 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 2247 << DefArgRange; 2248 return true; 2249 2250 // FIXME: C++0x [temp.param]p9 allows default template-arguments 2251 // for friend function templates if there is only a single 2252 // declaration (and it is a definition). Strange! 2253 } 2254 2255 llvm_unreachable("Invalid TemplateParamListContext!"); 2256 } 2257 2258 /// Check for unexpanded parameter packs within the template parameters 2259 /// of a template template parameter, recursively. 2260 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 2261 TemplateTemplateParmDecl *TTP) { 2262 // A template template parameter which is a parameter pack is also a pack 2263 // expansion. 2264 if (TTP->isParameterPack()) 2265 return false; 2266 2267 TemplateParameterList *Params = TTP->getTemplateParameters(); 2268 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 2269 NamedDecl *P = Params->getParam(I); 2270 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) { 2271 if (!TTP->isParameterPack()) 2272 if (const TypeConstraint *TC = TTP->getTypeConstraint()) 2273 if (TC->hasExplicitTemplateArgs()) 2274 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2275 if (S.DiagnoseUnexpandedParameterPack(ArgLoc, 2276 Sema::UPPC_TypeConstraint)) 2277 return true; 2278 continue; 2279 } 2280 2281 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 2282 if (!NTTP->isParameterPack() && 2283 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 2284 NTTP->getTypeSourceInfo(), 2285 Sema::UPPC_NonTypeTemplateParameterType)) 2286 return true; 2287 2288 continue; 2289 } 2290 2291 if (TemplateTemplateParmDecl *InnerTTP 2292 = dyn_cast<TemplateTemplateParmDecl>(P)) 2293 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 2294 return true; 2295 } 2296 2297 return false; 2298 } 2299 2300 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 2301 TemplateParameterList *OldParams, 2302 TemplateParamListContext TPC, 2303 SkipBodyInfo *SkipBody) { 2304 bool Invalid = false; 2305 2306 // C++ [temp.param]p10: 2307 // The set of default template-arguments available for use with a 2308 // template declaration or definition is obtained by merging the 2309 // default arguments from the definition (if in scope) and all 2310 // declarations in scope in the same way default function 2311 // arguments are (8.3.6). 2312 bool SawDefaultArgument = false; 2313 SourceLocation PreviousDefaultArgLoc; 2314 2315 // Dummy initialization to avoid warnings. 2316 TemplateParameterList::iterator OldParam = NewParams->end(); 2317 if (OldParams) 2318 OldParam = OldParams->begin(); 2319 2320 bool RemoveDefaultArguments = false; 2321 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2322 NewParamEnd = NewParams->end(); 2323 NewParam != NewParamEnd; ++NewParam) { 2324 // Whether we've seen a duplicate default argument in the same translation 2325 // unit. 2326 bool RedundantDefaultArg = false; 2327 // Whether we've found inconsis inconsitent default arguments in different 2328 // translation unit. 2329 bool InconsistentDefaultArg = false; 2330 // The name of the module which contains the inconsistent default argument. 2331 std::string PrevModuleName; 2332 2333 SourceLocation OldDefaultLoc; 2334 SourceLocation NewDefaultLoc; 2335 2336 // Variable used to diagnose missing default arguments 2337 bool MissingDefaultArg = false; 2338 2339 // Variable used to diagnose non-final parameter packs 2340 bool SawParameterPack = false; 2341 2342 if (TemplateTypeParmDecl *NewTypeParm 2343 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 2344 // Check the presence of a default argument here. 2345 if (NewTypeParm->hasDefaultArgument() && 2346 DiagnoseDefaultTemplateArgument( 2347 *this, TPC, NewTypeParm->getLocation(), 2348 NewTypeParm->getDefaultArgument().getSourceRange())) 2349 NewTypeParm->removeDefaultArgument(); 2350 2351 // Merge default arguments for template type parameters. 2352 TemplateTypeParmDecl *OldTypeParm 2353 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 2354 if (NewTypeParm->isParameterPack()) { 2355 assert(!NewTypeParm->hasDefaultArgument() && 2356 "Parameter packs can't have a default argument!"); 2357 SawParameterPack = true; 2358 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 2359 NewTypeParm->hasDefaultArgument() && 2360 (!SkipBody || !SkipBody->ShouldSkip)) { 2361 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 2362 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 2363 SawDefaultArgument = true; 2364 2365 if (!OldTypeParm->getOwningModule()) 2366 RedundantDefaultArg = true; 2367 else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm, 2368 NewTypeParm)) { 2369 InconsistentDefaultArg = true; 2370 PrevModuleName = 2371 OldTypeParm->getImportedOwningModule()->getFullModuleName(); 2372 } 2373 PreviousDefaultArgLoc = NewDefaultLoc; 2374 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 2375 // Merge the default argument from the old declaration to the 2376 // new declaration. 2377 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 2378 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 2379 } else if (NewTypeParm->hasDefaultArgument()) { 2380 SawDefaultArgument = true; 2381 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 2382 } else if (SawDefaultArgument) 2383 MissingDefaultArg = true; 2384 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 2385 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 2386 // Check for unexpanded parameter packs. 2387 if (!NewNonTypeParm->isParameterPack() && 2388 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 2389 NewNonTypeParm->getTypeSourceInfo(), 2390 UPPC_NonTypeTemplateParameterType)) { 2391 Invalid = true; 2392 continue; 2393 } 2394 2395 // Check the presence of a default argument here. 2396 if (NewNonTypeParm->hasDefaultArgument() && 2397 DiagnoseDefaultTemplateArgument( 2398 *this, TPC, NewNonTypeParm->getLocation(), 2399 NewNonTypeParm->getDefaultArgument().getSourceRange())) { 2400 NewNonTypeParm->removeDefaultArgument(); 2401 } 2402 2403 // Merge default arguments for non-type template parameters 2404 NonTypeTemplateParmDecl *OldNonTypeParm 2405 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 2406 if (NewNonTypeParm->isParameterPack()) { 2407 assert(!NewNonTypeParm->hasDefaultArgument() && 2408 "Parameter packs can't have a default argument!"); 2409 if (!NewNonTypeParm->isPackExpansion()) 2410 SawParameterPack = true; 2411 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 2412 NewNonTypeParm->hasDefaultArgument() && 2413 (!SkipBody || !SkipBody->ShouldSkip)) { 2414 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2415 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2416 SawDefaultArgument = true; 2417 if (!OldNonTypeParm->getOwningModule()) 2418 RedundantDefaultArg = true; 2419 else if (!getASTContext().isSameDefaultTemplateArgument( 2420 OldNonTypeParm, NewNonTypeParm)) { 2421 InconsistentDefaultArg = true; 2422 PrevModuleName = 2423 OldNonTypeParm->getImportedOwningModule()->getFullModuleName(); 2424 } 2425 PreviousDefaultArgLoc = NewDefaultLoc; 2426 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 2427 // Merge the default argument from the old declaration to the 2428 // new declaration. 2429 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 2430 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2431 } else if (NewNonTypeParm->hasDefaultArgument()) { 2432 SawDefaultArgument = true; 2433 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2434 } else if (SawDefaultArgument) 2435 MissingDefaultArg = true; 2436 } else { 2437 TemplateTemplateParmDecl *NewTemplateParm 2438 = cast<TemplateTemplateParmDecl>(*NewParam); 2439 2440 // Check for unexpanded parameter packs, recursively. 2441 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 2442 Invalid = true; 2443 continue; 2444 } 2445 2446 // Check the presence of a default argument here. 2447 if (NewTemplateParm->hasDefaultArgument() && 2448 DiagnoseDefaultTemplateArgument(*this, TPC, 2449 NewTemplateParm->getLocation(), 2450 NewTemplateParm->getDefaultArgument().getSourceRange())) 2451 NewTemplateParm->removeDefaultArgument(); 2452 2453 // Merge default arguments for template template parameters 2454 TemplateTemplateParmDecl *OldTemplateParm 2455 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 2456 if (NewTemplateParm->isParameterPack()) { 2457 assert(!NewTemplateParm->hasDefaultArgument() && 2458 "Parameter packs can't have a default argument!"); 2459 if (!NewTemplateParm->isPackExpansion()) 2460 SawParameterPack = true; 2461 } else if (OldTemplateParm && 2462 hasVisibleDefaultArgument(OldTemplateParm) && 2463 NewTemplateParm->hasDefaultArgument() && 2464 (!SkipBody || !SkipBody->ShouldSkip)) { 2465 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 2466 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 2467 SawDefaultArgument = true; 2468 if (!OldTemplateParm->getOwningModule()) 2469 RedundantDefaultArg = true; 2470 else if (!getASTContext().isSameDefaultTemplateArgument( 2471 OldTemplateParm, NewTemplateParm)) { 2472 InconsistentDefaultArg = true; 2473 PrevModuleName = 2474 OldTemplateParm->getImportedOwningModule()->getFullModuleName(); 2475 } 2476 PreviousDefaultArgLoc = NewDefaultLoc; 2477 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 2478 // Merge the default argument from the old declaration to the 2479 // new declaration. 2480 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 2481 PreviousDefaultArgLoc 2482 = OldTemplateParm->getDefaultArgument().getLocation(); 2483 } else if (NewTemplateParm->hasDefaultArgument()) { 2484 SawDefaultArgument = true; 2485 PreviousDefaultArgLoc 2486 = NewTemplateParm->getDefaultArgument().getLocation(); 2487 } else if (SawDefaultArgument) 2488 MissingDefaultArg = true; 2489 } 2490 2491 // C++11 [temp.param]p11: 2492 // If a template parameter of a primary class template or alias template 2493 // is a template parameter pack, it shall be the last template parameter. 2494 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 2495 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 2496 TPC == TPC_TypeAliasTemplate)) { 2497 Diag((*NewParam)->getLocation(), 2498 diag::err_template_param_pack_must_be_last_template_parameter); 2499 Invalid = true; 2500 } 2501 2502 // [basic.def.odr]/13: 2503 // There can be more than one definition of a 2504 // ... 2505 // default template argument 2506 // ... 2507 // in a program provided that each definition appears in a different 2508 // translation unit and the definitions satisfy the [same-meaning 2509 // criteria of the ODR]. 2510 // 2511 // Simply, the design of modules allows the definition of template default 2512 // argument to be repeated across translation unit. Note that the ODR is 2513 // checked elsewhere. But it is still not allowed to repeat template default 2514 // argument in the same translation unit. 2515 if (RedundantDefaultArg) { 2516 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 2517 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 2518 Invalid = true; 2519 } else if (InconsistentDefaultArg) { 2520 // We could only diagnose about the case that the OldParam is imported. 2521 // The case NewParam is imported should be handled in ASTReader. 2522 Diag(NewDefaultLoc, 2523 diag::err_template_param_default_arg_inconsistent_redefinition); 2524 Diag(OldDefaultLoc, 2525 diag::note_template_param_prev_default_arg_in_other_module) 2526 << PrevModuleName; 2527 Invalid = true; 2528 } else if (MissingDefaultArg && 2529 (TPC == TPC_ClassTemplate || TPC == TPC_FriendClassTemplate || 2530 TPC == TPC_VarTemplate || TPC == TPC_TypeAliasTemplate)) { 2531 // C++ 23[temp.param]p14: 2532 // If a template-parameter of a class template, variable template, or 2533 // alias template has a default template argument, each subsequent 2534 // template-parameter shall either have a default template argument 2535 // supplied or be a template parameter pack. 2536 Diag((*NewParam)->getLocation(), 2537 diag::err_template_param_default_arg_missing); 2538 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 2539 Invalid = true; 2540 RemoveDefaultArguments = true; 2541 } 2542 2543 // If we have an old template parameter list that we're merging 2544 // in, move on to the next parameter. 2545 if (OldParams) 2546 ++OldParam; 2547 } 2548 2549 // We were missing some default arguments at the end of the list, so remove 2550 // all of the default arguments. 2551 if (RemoveDefaultArguments) { 2552 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2553 NewParamEnd = NewParams->end(); 2554 NewParam != NewParamEnd; ++NewParam) { 2555 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 2556 TTP->removeDefaultArgument(); 2557 else if (NonTypeTemplateParmDecl *NTTP 2558 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 2559 NTTP->removeDefaultArgument(); 2560 else 2561 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 2562 } 2563 } 2564 2565 return Invalid; 2566 } 2567 2568 namespace { 2569 2570 /// A class which looks for a use of a certain level of template 2571 /// parameter. 2572 struct DependencyChecker : DynamicRecursiveASTVisitor { 2573 unsigned Depth; 2574 2575 // Whether we're looking for a use of a template parameter that makes the 2576 // overall construct type-dependent / a dependent type. This is strictly 2577 // best-effort for now; we may fail to match at all for a dependent type 2578 // in some cases if this is set. 2579 bool IgnoreNonTypeDependent; 2580 2581 bool Match; 2582 SourceLocation MatchLoc; 2583 2584 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) 2585 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), 2586 Match(false) {} 2587 2588 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) 2589 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { 2590 NamedDecl *ND = Params->getParam(0); 2591 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 2592 Depth = PD->getDepth(); 2593 } else if (NonTypeTemplateParmDecl *PD = 2594 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 2595 Depth = PD->getDepth(); 2596 } else { 2597 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 2598 } 2599 } 2600 2601 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 2602 if (ParmDepth >= Depth) { 2603 Match = true; 2604 MatchLoc = Loc; 2605 return true; 2606 } 2607 return false; 2608 } 2609 2610 bool TraverseStmt(Stmt *S) override { 2611 // Prune out non-type-dependent expressions if requested. This can 2612 // sometimes result in us failing to find a template parameter reference 2613 // (if a value-dependent expression creates a dependent type), but this 2614 // mode is best-effort only. 2615 if (auto *E = dyn_cast_or_null<Expr>(S)) 2616 if (IgnoreNonTypeDependent && !E->isTypeDependent()) 2617 return true; 2618 return DynamicRecursiveASTVisitor::TraverseStmt(S); 2619 } 2620 2621 bool TraverseTypeLoc(TypeLoc TL) override { 2622 if (IgnoreNonTypeDependent && !TL.isNull() && 2623 !TL.getType()->isDependentType()) 2624 return true; 2625 return DynamicRecursiveASTVisitor::TraverseTypeLoc(TL); 2626 } 2627 2628 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) override { 2629 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 2630 } 2631 2632 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) override { 2633 // For a best-effort search, keep looking until we find a location. 2634 return IgnoreNonTypeDependent || !Matches(T->getDepth()); 2635 } 2636 2637 bool TraverseTemplateName(TemplateName N) override { 2638 if (TemplateTemplateParmDecl *PD = 2639 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 2640 if (Matches(PD->getDepth())) 2641 return false; 2642 return DynamicRecursiveASTVisitor::TraverseTemplateName(N); 2643 } 2644 2645 bool VisitDeclRefExpr(DeclRefExpr *E) override { 2646 if (NonTypeTemplateParmDecl *PD = 2647 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 2648 if (Matches(PD->getDepth(), E->getExprLoc())) 2649 return false; 2650 return DynamicRecursiveASTVisitor::VisitDeclRefExpr(E); 2651 } 2652 2653 bool VisitSubstTemplateTypeParmType(SubstTemplateTypeParmType *T) override { 2654 return TraverseType(T->getReplacementType()); 2655 } 2656 2657 bool VisitSubstTemplateTypeParmPackType( 2658 SubstTemplateTypeParmPackType *T) override { 2659 return TraverseTemplateArgument(T->getArgumentPack()); 2660 } 2661 2662 bool TraverseInjectedClassNameType(InjectedClassNameType *T) override { 2663 return TraverseType(T->getInjectedSpecializationType()); 2664 } 2665 }; 2666 } // end anonymous namespace 2667 2668 /// Determines whether a given type depends on the given parameter 2669 /// list. 2670 static bool 2671 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 2672 if (!Params->size()) 2673 return false; 2674 2675 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); 2676 Checker.TraverseType(T); 2677 return Checker.Match; 2678 } 2679 2680 // Find the source range corresponding to the named type in the given 2681 // nested-name-specifier, if any. 2682 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 2683 QualType T, 2684 const CXXScopeSpec &SS) { 2685 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 2686 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 2687 if (const Type *CurType = NNS->getAsType()) { 2688 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 2689 return NNSLoc.getTypeLoc().getSourceRange(); 2690 } else 2691 break; 2692 2693 NNSLoc = NNSLoc.getPrefix(); 2694 } 2695 2696 return SourceRange(); 2697 } 2698 2699 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 2700 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 2701 TemplateIdAnnotation *TemplateId, 2702 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 2703 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { 2704 IsMemberSpecialization = false; 2705 Invalid = false; 2706 2707 // The sequence of nested types to which we will match up the template 2708 // parameter lists. We first build this list by starting with the type named 2709 // by the nested-name-specifier and walking out until we run out of types. 2710 SmallVector<QualType, 4> NestedTypes; 2711 QualType T; 2712 if (SS.getScopeRep()) { 2713 if (CXXRecordDecl *Record 2714 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 2715 T = Context.getTypeDeclType(Record); 2716 else 2717 T = QualType(SS.getScopeRep()->getAsType(), 0); 2718 } 2719 2720 // If we found an explicit specialization that prevents us from needing 2721 // 'template<>' headers, this will be set to the location of that 2722 // explicit specialization. 2723 SourceLocation ExplicitSpecLoc; 2724 2725 while (!T.isNull()) { 2726 NestedTypes.push_back(T); 2727 2728 // Retrieve the parent of a record type. 2729 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 2730 // If this type is an explicit specialization, we're done. 2731 if (ClassTemplateSpecializationDecl *Spec 2732 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 2733 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 2734 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 2735 ExplicitSpecLoc = Spec->getLocation(); 2736 break; 2737 } 2738 } else if (Record->getTemplateSpecializationKind() 2739 == TSK_ExplicitSpecialization) { 2740 ExplicitSpecLoc = Record->getLocation(); 2741 break; 2742 } 2743 2744 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 2745 T = Context.getTypeDeclType(Parent); 2746 else 2747 T = QualType(); 2748 continue; 2749 } 2750 2751 if (const TemplateSpecializationType *TST 2752 = T->getAs<TemplateSpecializationType>()) { 2753 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 2754 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 2755 T = Context.getTypeDeclType(Parent); 2756 else 2757 T = QualType(); 2758 continue; 2759 } 2760 } 2761 2762 // Look one step prior in a dependent template specialization type. 2763 if (const DependentTemplateSpecializationType *DependentTST 2764 = T->getAs<DependentTemplateSpecializationType>()) { 2765 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 2766 T = QualType(NNS->getAsType(), 0); 2767 else 2768 T = QualType(); 2769 continue; 2770 } 2771 2772 // Look one step prior in a dependent name type. 2773 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 2774 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 2775 T = QualType(NNS->getAsType(), 0); 2776 else 2777 T = QualType(); 2778 continue; 2779 } 2780 2781 // Retrieve the parent of an enumeration type. 2782 if (const EnumType *EnumT = T->getAs<EnumType>()) { 2783 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 2784 // check here. 2785 EnumDecl *Enum = EnumT->getDecl(); 2786 2787 // Get to the parent type. 2788 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 2789 T = Context.getTypeDeclType(Parent); 2790 else 2791 T = QualType(); 2792 continue; 2793 } 2794 2795 T = QualType(); 2796 } 2797 // Reverse the nested types list, since we want to traverse from the outermost 2798 // to the innermost while checking template-parameter-lists. 2799 std::reverse(NestedTypes.begin(), NestedTypes.end()); 2800 2801 // C++0x [temp.expl.spec]p17: 2802 // A member or a member template may be nested within many 2803 // enclosing class templates. In an explicit specialization for 2804 // such a member, the member declaration shall be preceded by a 2805 // template<> for each enclosing class template that is 2806 // explicitly specialized. 2807 bool SawNonEmptyTemplateParameterList = false; 2808 2809 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 2810 if (SawNonEmptyTemplateParameterList) { 2811 if (!SuppressDiagnostic) 2812 Diag(DeclLoc, diag::err_specialize_member_of_template) 2813 << !Recovery << Range; 2814 Invalid = true; 2815 IsMemberSpecialization = false; 2816 return true; 2817 } 2818 2819 return false; 2820 }; 2821 2822 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 2823 // Check that we can have an explicit specialization here. 2824 if (CheckExplicitSpecialization(Range, true)) 2825 return true; 2826 2827 // We don't have a template header, but we should. 2828 SourceLocation ExpectedTemplateLoc; 2829 if (!ParamLists.empty()) 2830 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 2831 else 2832 ExpectedTemplateLoc = DeclStartLoc; 2833 2834 if (!SuppressDiagnostic) 2835 Diag(DeclLoc, diag::err_template_spec_needs_header) 2836 << Range 2837 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 2838 return false; 2839 }; 2840 2841 unsigned ParamIdx = 0; 2842 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 2843 ++TypeIdx) { 2844 T = NestedTypes[TypeIdx]; 2845 2846 // Whether we expect a 'template<>' header. 2847 bool NeedEmptyTemplateHeader = false; 2848 2849 // Whether we expect a template header with parameters. 2850 bool NeedNonemptyTemplateHeader = false; 2851 2852 // For a dependent type, the set of template parameters that we 2853 // expect to see. 2854 TemplateParameterList *ExpectedTemplateParams = nullptr; 2855 2856 // C++0x [temp.expl.spec]p15: 2857 // A member or a member template may be nested within many enclosing 2858 // class templates. In an explicit specialization for such a member, the 2859 // member declaration shall be preceded by a template<> for each 2860 // enclosing class template that is explicitly specialized. 2861 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 2862 if (ClassTemplatePartialSpecializationDecl *Partial 2863 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 2864 ExpectedTemplateParams = Partial->getTemplateParameters(); 2865 NeedNonemptyTemplateHeader = true; 2866 } else if (Record->isDependentType()) { 2867 if (Record->getDescribedClassTemplate()) { 2868 ExpectedTemplateParams = Record->getDescribedClassTemplate() 2869 ->getTemplateParameters(); 2870 NeedNonemptyTemplateHeader = true; 2871 } 2872 } else if (ClassTemplateSpecializationDecl *Spec 2873 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 2874 // C++0x [temp.expl.spec]p4: 2875 // Members of an explicitly specialized class template are defined 2876 // in the same manner as members of normal classes, and not using 2877 // the template<> syntax. 2878 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 2879 NeedEmptyTemplateHeader = true; 2880 else 2881 continue; 2882 } else if (Record->getTemplateSpecializationKind()) { 2883 if (Record->getTemplateSpecializationKind() 2884 != TSK_ExplicitSpecialization && 2885 TypeIdx == NumTypes - 1) 2886 IsMemberSpecialization = true; 2887 2888 continue; 2889 } 2890 } else if (const TemplateSpecializationType *TST 2891 = T->getAs<TemplateSpecializationType>()) { 2892 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 2893 ExpectedTemplateParams = Template->getTemplateParameters(); 2894 NeedNonemptyTemplateHeader = true; 2895 } 2896 } else if (T->getAs<DependentTemplateSpecializationType>()) { 2897 // FIXME: We actually could/should check the template arguments here 2898 // against the corresponding template parameter list. 2899 NeedNonemptyTemplateHeader = false; 2900 } 2901 2902 // C++ [temp.expl.spec]p16: 2903 // In an explicit specialization declaration for a member of a class 2904 // template or a member template that appears in namespace scope, the 2905 // member template and some of its enclosing class templates may remain 2906 // unspecialized, except that the declaration shall not explicitly 2907 // specialize a class member template if its enclosing class templates 2908 // are not explicitly specialized as well. 2909 if (ParamIdx < ParamLists.size()) { 2910 if (ParamLists[ParamIdx]->size() == 0) { 2911 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 2912 false)) 2913 return nullptr; 2914 } else 2915 SawNonEmptyTemplateParameterList = true; 2916 } 2917 2918 if (NeedEmptyTemplateHeader) { 2919 // If we're on the last of the types, and we need a 'template<>' header 2920 // here, then it's a member specialization. 2921 if (TypeIdx == NumTypes - 1) 2922 IsMemberSpecialization = true; 2923 2924 if (ParamIdx < ParamLists.size()) { 2925 if (ParamLists[ParamIdx]->size() > 0) { 2926 // The header has template parameters when it shouldn't. Complain. 2927 if (!SuppressDiagnostic) 2928 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 2929 diag::err_template_param_list_matches_nontemplate) 2930 << T 2931 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 2932 ParamLists[ParamIdx]->getRAngleLoc()) 2933 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 2934 Invalid = true; 2935 return nullptr; 2936 } 2937 2938 // Consume this template header. 2939 ++ParamIdx; 2940 continue; 2941 } 2942 2943 if (!IsFriend) 2944 if (DiagnoseMissingExplicitSpecialization( 2945 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 2946 return nullptr; 2947 2948 continue; 2949 } 2950 2951 if (NeedNonemptyTemplateHeader) { 2952 // In friend declarations we can have template-ids which don't 2953 // depend on the corresponding template parameter lists. But 2954 // assume that empty parameter lists are supposed to match this 2955 // template-id. 2956 if (IsFriend && T->isDependentType()) { 2957 if (ParamIdx < ParamLists.size() && 2958 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 2959 ExpectedTemplateParams = nullptr; 2960 else 2961 continue; 2962 } 2963 2964 if (ParamIdx < ParamLists.size()) { 2965 // Check the template parameter list, if we can. 2966 if (ExpectedTemplateParams && 2967 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 2968 ExpectedTemplateParams, 2969 !SuppressDiagnostic, TPL_TemplateMatch)) 2970 Invalid = true; 2971 2972 if (!Invalid && 2973 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 2974 TPC_ClassTemplateMember)) 2975 Invalid = true; 2976 2977 ++ParamIdx; 2978 continue; 2979 } 2980 2981 if (!SuppressDiagnostic) 2982 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 2983 << T 2984 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 2985 Invalid = true; 2986 continue; 2987 } 2988 } 2989 2990 // If there were at least as many template-ids as there were template 2991 // parameter lists, then there are no template parameter lists remaining for 2992 // the declaration itself. 2993 if (ParamIdx >= ParamLists.size()) { 2994 if (TemplateId && !IsFriend) { 2995 // We don't have a template header for the declaration itself, but we 2996 // should. 2997 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 2998 TemplateId->RAngleLoc)); 2999 3000 // Fabricate an empty template parameter list for the invented header. 3001 return TemplateParameterList::Create(Context, SourceLocation(), 3002 SourceLocation(), {}, 3003 SourceLocation(), nullptr); 3004 } 3005 3006 return nullptr; 3007 } 3008 3009 // If there were too many template parameter lists, complain about that now. 3010 if (ParamIdx < ParamLists.size() - 1) { 3011 bool HasAnyExplicitSpecHeader = false; 3012 bool AllExplicitSpecHeaders = true; 3013 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 3014 if (ParamLists[I]->size() == 0) 3015 HasAnyExplicitSpecHeader = true; 3016 else 3017 AllExplicitSpecHeaders = false; 3018 } 3019 3020 if (!SuppressDiagnostic) 3021 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3022 AllExplicitSpecHeaders ? diag::ext_template_spec_extra_headers 3023 : diag::err_template_spec_extra_headers) 3024 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 3025 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 3026 3027 // If there was a specialization somewhere, such that 'template<>' is 3028 // not required, and there were any 'template<>' headers, note where the 3029 // specialization occurred. 3030 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && 3031 !SuppressDiagnostic) 3032 Diag(ExplicitSpecLoc, 3033 diag::note_explicit_template_spec_does_not_need_header) 3034 << NestedTypes.back(); 3035 3036 // We have a template parameter list with no corresponding scope, which 3037 // means that the resulting template declaration can't be instantiated 3038 // properly (we'll end up with dependent nodes when we shouldn't). 3039 if (!AllExplicitSpecHeaders) 3040 Invalid = true; 3041 } 3042 3043 // C++ [temp.expl.spec]p16: 3044 // In an explicit specialization declaration for a member of a class 3045 // template or a member template that ap- pears in namespace scope, the 3046 // member template and some of its enclosing class templates may remain 3047 // unspecialized, except that the declaration shall not explicitly 3048 // specialize a class member template if its en- closing class templates 3049 // are not explicitly specialized as well. 3050 if (ParamLists.back()->size() == 0 && 3051 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3052 false)) 3053 return nullptr; 3054 3055 // Return the last template parameter list, which corresponds to the 3056 // entity being declared. 3057 return ParamLists.back(); 3058 } 3059 3060 void Sema::NoteAllFoundTemplates(TemplateName Name) { 3061 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 3062 Diag(Template->getLocation(), diag::note_template_declared_here) 3063 << (isa<FunctionTemplateDecl>(Template) 3064 ? 0 3065 : isa<ClassTemplateDecl>(Template) 3066 ? 1 3067 : isa<VarTemplateDecl>(Template) 3068 ? 2 3069 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 3070 << Template->getDeclName(); 3071 return; 3072 } 3073 3074 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 3075 for (OverloadedTemplateStorage::iterator I = OST->begin(), 3076 IEnd = OST->end(); 3077 I != IEnd; ++I) 3078 Diag((*I)->getLocation(), diag::note_template_declared_here) 3079 << 0 << (*I)->getDeclName(); 3080 3081 return; 3082 } 3083 } 3084 3085 static QualType builtinCommonTypeImpl(Sema &S, TemplateName BaseTemplate, 3086 SourceLocation TemplateLoc, 3087 ArrayRef<TemplateArgument> Ts) { 3088 auto lookUpCommonType = [&](TemplateArgument T1, 3089 TemplateArgument T2) -> QualType { 3090 // Don't bother looking for other specializations if both types are 3091 // builtins - users aren't allowed to specialize for them 3092 if (T1.getAsType()->isBuiltinType() && T2.getAsType()->isBuiltinType()) 3093 return builtinCommonTypeImpl(S, BaseTemplate, TemplateLoc, {T1, T2}); 3094 3095 TemplateArgumentListInfo Args; 3096 Args.addArgument(TemplateArgumentLoc( 3097 T1, S.Context.getTrivialTypeSourceInfo(T1.getAsType()))); 3098 Args.addArgument(TemplateArgumentLoc( 3099 T2, S.Context.getTrivialTypeSourceInfo(T2.getAsType()))); 3100 3101 EnterExpressionEvaluationContext UnevaluatedContext( 3102 S, Sema::ExpressionEvaluationContext::Unevaluated); 3103 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 3104 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 3105 3106 QualType BaseTemplateInst = 3107 S.CheckTemplateIdType(BaseTemplate, TemplateLoc, Args); 3108 3109 if (SFINAE.hasErrorOccurred()) 3110 return QualType(); 3111 3112 return BaseTemplateInst; 3113 }; 3114 3115 // Note A: For the common_type trait applied to a template parameter pack T of 3116 // types, the member type shall be either defined or not present as follows: 3117 switch (Ts.size()) { 3118 3119 // If sizeof...(T) is zero, there shall be no member type. 3120 case 0: 3121 return QualType(); 3122 3123 // If sizeof...(T) is one, let T0 denote the sole type constituting the 3124 // pack T. The member typedef-name type shall denote the same type, if any, as 3125 // common_type_t<T0, T0>; otherwise there shall be no member type. 3126 case 1: 3127 return lookUpCommonType(Ts[0], Ts[0]); 3128 3129 // If sizeof...(T) is two, let the first and second types constituting T be 3130 // denoted by T1 and T2, respectively, and let D1 and D2 denote the same types 3131 // as decay_t<T1> and decay_t<T2>, respectively. 3132 case 2: { 3133 QualType T1 = Ts[0].getAsType(); 3134 QualType T2 = Ts[1].getAsType(); 3135 QualType D1 = S.BuiltinDecay(T1, {}); 3136 QualType D2 = S.BuiltinDecay(T2, {}); 3137 3138 // If is_same_v<T1, D1> is false or is_same_v<T2, D2> is false, let C denote 3139 // the same type, if any, as common_type_t<D1, D2>. 3140 if (!S.Context.hasSameType(T1, D1) || !S.Context.hasSameType(T2, D2)) 3141 return lookUpCommonType(D1, D2); 3142 3143 // Otherwise, if decay_t<decltype(false ? declval<D1>() : declval<D2>())> 3144 // denotes a valid type, let C denote that type. 3145 { 3146 auto CheckConditionalOperands = [&](bool ConstRefQual) -> QualType { 3147 EnterExpressionEvaluationContext UnevaluatedContext( 3148 S, Sema::ExpressionEvaluationContext::Unevaluated); 3149 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 3150 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 3151 3152 // false 3153 OpaqueValueExpr CondExpr(SourceLocation(), S.Context.BoolTy, 3154 VK_PRValue); 3155 ExprResult Cond = &CondExpr; 3156 3157 auto EVK = ConstRefQual ? VK_LValue : VK_PRValue; 3158 if (ConstRefQual) { 3159 D1.addConst(); 3160 D2.addConst(); 3161 } 3162 3163 // declval<D1>() 3164 OpaqueValueExpr LHSExpr(TemplateLoc, D1, EVK); 3165 ExprResult LHS = &LHSExpr; 3166 3167 // declval<D2>() 3168 OpaqueValueExpr RHSExpr(TemplateLoc, D2, EVK); 3169 ExprResult RHS = &RHSExpr; 3170 3171 ExprValueKind VK = VK_PRValue; 3172 ExprObjectKind OK = OK_Ordinary; 3173 3174 // decltype(false ? declval<D1>() : declval<D2>()) 3175 QualType Result = 3176 S.CheckConditionalOperands(Cond, LHS, RHS, VK, OK, TemplateLoc); 3177 3178 if (Result.isNull() || SFINAE.hasErrorOccurred()) 3179 return QualType(); 3180 3181 // decay_t<decltype(false ? declval<D1>() : declval<D2>())> 3182 return S.BuiltinDecay(Result, TemplateLoc); 3183 }; 3184 3185 if (auto Res = CheckConditionalOperands(false); !Res.isNull()) 3186 return Res; 3187 3188 // Let: 3189 // CREF(A) be add_lvalue_reference_t<const remove_reference_t<A>>, 3190 // COND-RES(X, Y) be 3191 // decltype(false ? declval<X(&)()>()() : declval<Y(&)()>()()). 3192 3193 // C++20 only 3194 // Otherwise, if COND-RES(CREF(D1), CREF(D2)) denotes a type, let C denote 3195 // the type decay_t<COND-RES(CREF(D1), CREF(D2))>. 3196 if (!S.Context.getLangOpts().CPlusPlus20) 3197 return QualType(); 3198 return CheckConditionalOperands(true); 3199 } 3200 } 3201 3202 // If sizeof...(T) is greater than two, let T1, T2, and R, respectively, 3203 // denote the first, second, and (pack of) remaining types constituting T. Let 3204 // C denote the same type, if any, as common_type_t<T1, T2>. If there is such 3205 // a type C, the member typedef-name type shall denote the same type, if any, 3206 // as common_type_t<C, R...>. Otherwise, there shall be no member type. 3207 default: { 3208 QualType Result = Ts.front().getAsType(); 3209 for (auto T : llvm::drop_begin(Ts)) { 3210 Result = lookUpCommonType(Result, T.getAsType()); 3211 if (Result.isNull()) 3212 return QualType(); 3213 } 3214 return Result; 3215 } 3216 } 3217 } 3218 3219 static QualType 3220 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 3221 ArrayRef<TemplateArgument> Converted, 3222 SourceLocation TemplateLoc, 3223 TemplateArgumentListInfo &TemplateArgs) { 3224 ASTContext &Context = SemaRef.getASTContext(); 3225 3226 switch (BTD->getBuiltinTemplateKind()) { 3227 case BTK__make_integer_seq: { 3228 // Specializations of __make_integer_seq<S, T, N> are treated like 3229 // S<T, 0, ..., N-1>. 3230 3231 QualType OrigType = Converted[1].getAsType(); 3232 // C++14 [inteseq.intseq]p1: 3233 // T shall be an integer type. 3234 if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) { 3235 SemaRef.Diag(TemplateArgs[1].getLocation(), 3236 diag::err_integer_sequence_integral_element_type); 3237 return QualType(); 3238 } 3239 3240 TemplateArgument NumArgsArg = Converted[2]; 3241 if (NumArgsArg.isDependent()) 3242 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD), 3243 Converted); 3244 3245 TemplateArgumentListInfo SyntheticTemplateArgs; 3246 // The type argument, wrapped in substitution sugar, gets reused as the 3247 // first template argument in the synthetic template argument list. 3248 SyntheticTemplateArgs.addArgument( 3249 TemplateArgumentLoc(TemplateArgument(OrigType), 3250 SemaRef.Context.getTrivialTypeSourceInfo( 3251 OrigType, TemplateArgs[1].getLocation()))); 3252 3253 if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) { 3254 // Expand N into 0 ... N-1. 3255 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 3256 I < NumArgs; ++I) { 3257 TemplateArgument TA(Context, I, OrigType); 3258 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( 3259 TA, OrigType, TemplateArgs[2].getLocation())); 3260 } 3261 } else { 3262 // C++14 [inteseq.make]p1: 3263 // If N is negative the program is ill-formed. 3264 SemaRef.Diag(TemplateArgs[2].getLocation(), 3265 diag::err_integer_sequence_negative_length); 3266 return QualType(); 3267 } 3268 3269 // The first template argument will be reused as the template decl that 3270 // our synthetic template arguments will be applied to. 3271 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 3272 TemplateLoc, SyntheticTemplateArgs); 3273 } 3274 3275 case BTK__type_pack_element: { 3276 // Specializations of 3277 // __type_pack_element<Index, T_1, ..., T_N> 3278 // are treated like T_Index. 3279 assert(Converted.size() == 2 && 3280 "__type_pack_element should be given an index and a parameter pack"); 3281 3282 TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; 3283 if (IndexArg.isDependent() || Ts.isDependent()) 3284 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD), 3285 Converted); 3286 3287 llvm::APSInt Index = IndexArg.getAsIntegral(); 3288 assert(Index >= 0 && "the index used with __type_pack_element should be of " 3289 "type std::size_t, and hence be non-negative"); 3290 // If the Index is out of bounds, the program is ill-formed. 3291 if (Index >= Ts.pack_size()) { 3292 SemaRef.Diag(TemplateArgs[0].getLocation(), 3293 diag::err_type_pack_element_out_of_bounds); 3294 return QualType(); 3295 } 3296 3297 // We simply return the type at index `Index`. 3298 int64_t N = Index.getExtValue(); 3299 return Ts.getPackAsArray()[N].getAsType(); 3300 } 3301 3302 case BTK__builtin_common_type: { 3303 assert(Converted.size() == 4); 3304 if (llvm::any_of(Converted, [](auto &C) { return C.isDependent(); })) 3305 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD), 3306 Converted); 3307 3308 TemplateName BaseTemplate = Converted[0].getAsTemplate(); 3309 TemplateName HasTypeMember = Converted[1].getAsTemplate(); 3310 QualType HasNoTypeMember = Converted[2].getAsType(); 3311 ArrayRef<TemplateArgument> Ts = Converted[3].getPackAsArray(); 3312 if (auto CT = builtinCommonTypeImpl(SemaRef, BaseTemplate, TemplateLoc, Ts); 3313 !CT.isNull()) { 3314 TemplateArgumentListInfo TAs; 3315 TAs.addArgument(TemplateArgumentLoc( 3316 TemplateArgument(CT), SemaRef.Context.getTrivialTypeSourceInfo( 3317 CT, TemplateArgs[1].getLocation()))); 3318 3319 return SemaRef.CheckTemplateIdType(HasTypeMember, TemplateLoc, TAs); 3320 } 3321 return HasNoTypeMember; 3322 } 3323 } 3324 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 3325 } 3326 3327 /// Determine whether this alias template is "enable_if_t". 3328 /// libc++ >=14 uses "__enable_if_t" in C++11 mode. 3329 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { 3330 return AliasTemplate->getName() == "enable_if_t" || 3331 AliasTemplate->getName() == "__enable_if_t"; 3332 } 3333 3334 /// Collect all of the separable terms in the given condition, which 3335 /// might be a conjunction. 3336 /// 3337 /// FIXME: The right answer is to convert the logical expression into 3338 /// disjunctive normal form, so we can find the first failed term 3339 /// within each possible clause. 3340 static void collectConjunctionTerms(Expr *Clause, 3341 SmallVectorImpl<Expr *> &Terms) { 3342 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { 3343 if (BinOp->getOpcode() == BO_LAnd) { 3344 collectConjunctionTerms(BinOp->getLHS(), Terms); 3345 collectConjunctionTerms(BinOp->getRHS(), Terms); 3346 return; 3347 } 3348 } 3349 3350 Terms.push_back(Clause); 3351 } 3352 3353 // The ranges-v3 library uses an odd pattern of a top-level "||" with 3354 // a left-hand side that is value-dependent but never true. Identify 3355 // the idiom and ignore that term. 3356 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { 3357 // Top-level '||'. 3358 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); 3359 if (!BinOp) return Cond; 3360 3361 if (BinOp->getOpcode() != BO_LOr) return Cond; 3362 3363 // With an inner '==' that has a literal on the right-hand side. 3364 Expr *LHS = BinOp->getLHS(); 3365 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); 3366 if (!InnerBinOp) return Cond; 3367 3368 if (InnerBinOp->getOpcode() != BO_EQ || 3369 !isa<IntegerLiteral>(InnerBinOp->getRHS())) 3370 return Cond; 3371 3372 // If the inner binary operation came from a macro expansion named 3373 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side 3374 // of the '||', which is the real, user-provided condition. 3375 SourceLocation Loc = InnerBinOp->getExprLoc(); 3376 if (!Loc.isMacroID()) return Cond; 3377 3378 StringRef MacroName = PP.getImmediateMacroName(Loc); 3379 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") 3380 return BinOp->getRHS(); 3381 3382 return Cond; 3383 } 3384 3385 namespace { 3386 3387 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions 3388 // within failing boolean expression, such as substituting template parameters 3389 // for actual types. 3390 class FailedBooleanConditionPrinterHelper : public PrinterHelper { 3391 public: 3392 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) 3393 : Policy(P) {} 3394 3395 bool handledStmt(Stmt *E, raw_ostream &OS) override { 3396 const auto *DR = dyn_cast<DeclRefExpr>(E); 3397 if (DR && DR->getQualifier()) { 3398 // If this is a qualified name, expand the template arguments in nested 3399 // qualifiers. 3400 DR->getQualifier()->print(OS, Policy, true); 3401 // Then print the decl itself. 3402 const ValueDecl *VD = DR->getDecl(); 3403 OS << VD->getName(); 3404 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 3405 // This is a template variable, print the expanded template arguments. 3406 printTemplateArgumentList( 3407 OS, IV->getTemplateArgs().asArray(), Policy, 3408 IV->getSpecializedTemplate()->getTemplateParameters()); 3409 } 3410 return true; 3411 } 3412 return false; 3413 } 3414 3415 private: 3416 const PrintingPolicy Policy; 3417 }; 3418 3419 } // end anonymous namespace 3420 3421 std::pair<Expr *, std::string> 3422 Sema::findFailedBooleanCondition(Expr *Cond) { 3423 Cond = lookThroughRangesV3Condition(PP, Cond); 3424 3425 // Separate out all of the terms in a conjunction. 3426 SmallVector<Expr *, 4> Terms; 3427 collectConjunctionTerms(Cond, Terms); 3428 3429 // Determine which term failed. 3430 Expr *FailedCond = nullptr; 3431 for (Expr *Term : Terms) { 3432 Expr *TermAsWritten = Term->IgnoreParenImpCasts(); 3433 3434 // Literals are uninteresting. 3435 if (isa<CXXBoolLiteralExpr>(TermAsWritten) || 3436 isa<IntegerLiteral>(TermAsWritten)) 3437 continue; 3438 3439 // The initialization of the parameter from the argument is 3440 // a constant-evaluated context. 3441 EnterExpressionEvaluationContext ConstantEvaluated( 3442 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3443 3444 bool Succeeded; 3445 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && 3446 !Succeeded) { 3447 FailedCond = TermAsWritten; 3448 break; 3449 } 3450 } 3451 if (!FailedCond) 3452 FailedCond = Cond->IgnoreParenImpCasts(); 3453 3454 std::string Description; 3455 { 3456 llvm::raw_string_ostream Out(Description); 3457 PrintingPolicy Policy = getPrintingPolicy(); 3458 Policy.PrintCanonicalTypes = true; 3459 FailedBooleanConditionPrinterHelper Helper(Policy); 3460 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); 3461 } 3462 return { FailedCond, Description }; 3463 } 3464 3465 QualType Sema::CheckTemplateIdType(TemplateName Name, 3466 SourceLocation TemplateLoc, 3467 TemplateArgumentListInfo &TemplateArgs) { 3468 DependentTemplateName *DTN = 3469 Name.getUnderlying().getAsDependentTemplateName(); 3470 if (DTN && DTN->isIdentifier()) 3471 // When building a template-id where the template-name is dependent, 3472 // assume the template is a type template. Either our assumption is 3473 // correct, or the code is ill-formed and will be diagnosed when the 3474 // dependent name is substituted. 3475 return Context.getDependentTemplateSpecializationType( 3476 ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(), 3477 TemplateArgs.arguments()); 3478 3479 if (Name.getAsAssumedTemplateName() && 3480 resolveAssumedTemplateNameAsType(/*Scope=*/nullptr, Name, TemplateLoc)) 3481 return QualType(); 3482 3483 auto [Template, DefaultArgs] = Name.getTemplateDeclAndDefaultArgs(); 3484 3485 if (!Template || isa<FunctionTemplateDecl>(Template) || 3486 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) { 3487 // We might have a substituted template template parameter pack. If so, 3488 // build a template specialization type for it. 3489 if (Name.getAsSubstTemplateTemplateParmPack()) 3490 return Context.getTemplateSpecializationType(Name, 3491 TemplateArgs.arguments()); 3492 3493 Diag(TemplateLoc, diag::err_template_id_not_a_type) 3494 << Name; 3495 NoteAllFoundTemplates(Name); 3496 return QualType(); 3497 } 3498 3499 // Check that the template argument list is well-formed for this 3500 // template. 3501 CheckTemplateArgumentInfo CTAI; 3502 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 3503 DefaultArgs, /*PartialTemplateArgs=*/false, 3504 CTAI, 3505 /*UpdateArgsWithConversions=*/true)) 3506 return QualType(); 3507 3508 QualType CanonType; 3509 3510 if (TypeAliasTemplateDecl *AliasTemplate = 3511 dyn_cast<TypeAliasTemplateDecl>(Template)) { 3512 3513 // Find the canonical type for this type alias template specialization. 3514 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 3515 if (Pattern->isInvalidDecl()) 3516 return QualType(); 3517 3518 // Only substitute for the innermost template argument list. NOTE: Some 3519 // external resugarers rely on leaving a Subst* node here. Make the 3520 // substitution non-final in that case. Note that these external resugarers 3521 // will still miss some information in this representation, because we don't 3522 // provide enough context in the Subst* nodes in order to tell different 3523 // template type alias specializations apart. 3524 MultiLevelTemplateArgumentList TemplateArgLists; 3525 TemplateArgLists.addOuterTemplateArguments( 3526 Template, CTAI.SugaredConverted, 3527 /*Final=*/!getLangOpts().RetainSubstTemplateTypeParmTypeAstNodes); 3528 TemplateArgLists.addOuterRetainedLevels( 3529 AliasTemplate->getTemplateParameters()->getDepth()); 3530 3531 LocalInstantiationScope Scope(*this); 3532 InstantiatingTemplate Inst( 3533 *this, /*PointOfInstantiation=*/TemplateLoc, 3534 /*Entity=*/AliasTemplate, 3535 /*TemplateArgs=*/TemplateArgLists.getInnermost()); 3536 3537 // Diagnose uses of this alias. 3538 (void)DiagnoseUseOfDecl(AliasTemplate, TemplateLoc); 3539 3540 if (Inst.isInvalid()) 3541 return QualType(); 3542 3543 std::optional<ContextRAII> SavedContext; 3544 if (!AliasTemplate->getDeclContext()->isFileContext()) 3545 SavedContext.emplace(*this, AliasTemplate->getDeclContext()); 3546 3547 CanonType = 3548 SubstType(Pattern->getUnderlyingType(), TemplateArgLists, 3549 AliasTemplate->getLocation(), AliasTemplate->getDeclName()); 3550 if (CanonType.isNull()) { 3551 // If this was enable_if and we failed to find the nested type 3552 // within enable_if in a SFINAE context, dig out the specific 3553 // enable_if condition that failed and present that instead. 3554 if (isEnableIfAliasTemplate(AliasTemplate)) { 3555 if (auto DeductionInfo = isSFINAEContext()) { 3556 if (*DeductionInfo && 3557 (*DeductionInfo)->hasSFINAEDiagnostic() && 3558 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == 3559 diag::err_typename_nested_not_found_enable_if && 3560 TemplateArgs[0].getArgument().getKind() 3561 == TemplateArgument::Expression) { 3562 Expr *FailedCond; 3563 std::string FailedDescription; 3564 std::tie(FailedCond, FailedDescription) = 3565 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); 3566 3567 // Remove the old SFINAE diagnostic. 3568 PartialDiagnosticAt OldDiag = 3569 {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; 3570 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); 3571 3572 // Add a new SFINAE diagnostic specifying which condition 3573 // failed. 3574 (*DeductionInfo)->addSFINAEDiagnostic( 3575 OldDiag.first, 3576 PDiag(diag::err_typename_nested_not_found_requirement) 3577 << FailedDescription 3578 << FailedCond->getSourceRange()); 3579 } 3580 } 3581 } 3582 3583 return QualType(); 3584 } 3585 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 3586 CanonType = checkBuiltinTemplateIdType(*this, BTD, CTAI.SugaredConverted, 3587 TemplateLoc, TemplateArgs); 3588 } else if (Name.isDependent() || 3589 TemplateSpecializationType::anyDependentTemplateArguments( 3590 TemplateArgs, CTAI.CanonicalConverted)) { 3591 // This class template specialization is a dependent 3592 // type. Therefore, its canonical type is another class template 3593 // specialization type that contains all of the converted 3594 // arguments in canonical form. This ensures that, e.g., A<T> and 3595 // A<T, T> have identical types when A is declared as: 3596 // 3597 // template<typename T, typename U = T> struct A; 3598 CanonType = Context.getCanonicalTemplateSpecializationType( 3599 Name, CTAI.CanonicalConverted); 3600 3601 // This might work out to be a current instantiation, in which 3602 // case the canonical type needs to be the InjectedClassNameType. 3603 // 3604 // TODO: in theory this could be a simple hashtable lookup; most 3605 // changes to CurContext don't change the set of current 3606 // instantiations. 3607 if (isa<ClassTemplateDecl>(Template)) { 3608 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 3609 // If we get out to a namespace, we're done. 3610 if (Ctx->isFileContext()) break; 3611 3612 // If this isn't a record, keep looking. 3613 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 3614 if (!Record) continue; 3615 3616 // Look for one of the two cases with InjectedClassNameTypes 3617 // and check whether it's the same template. 3618 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 3619 !Record->getDescribedClassTemplate()) 3620 continue; 3621 3622 // Fetch the injected class name type and check whether its 3623 // injected type is equal to the type we just built. 3624 QualType ICNT = Context.getTypeDeclType(Record); 3625 QualType Injected = cast<InjectedClassNameType>(ICNT) 3626 ->getInjectedSpecializationType(); 3627 3628 if (CanonType != Injected->getCanonicalTypeInternal()) 3629 continue; 3630 3631 // If so, the canonical type of this TST is the injected 3632 // class name type of the record we just found. 3633 assert(ICNT.isCanonical()); 3634 CanonType = ICNT; 3635 break; 3636 } 3637 } 3638 } else if (ClassTemplateDecl *ClassTemplate = 3639 dyn_cast<ClassTemplateDecl>(Template)) { 3640 // Find the class template specialization declaration that 3641 // corresponds to these arguments. 3642 void *InsertPos = nullptr; 3643 ClassTemplateSpecializationDecl *Decl = 3644 ClassTemplate->findSpecialization(CTAI.CanonicalConverted, InsertPos); 3645 if (!Decl) { 3646 // This is the first time we have referenced this class template 3647 // specialization. Create the canonical declaration and add it to 3648 // the set of specializations. 3649 Decl = ClassTemplateSpecializationDecl::Create( 3650 Context, ClassTemplate->getTemplatedDecl()->getTagKind(), 3651 ClassTemplate->getDeclContext(), 3652 ClassTemplate->getTemplatedDecl()->getBeginLoc(), 3653 ClassTemplate->getLocation(), ClassTemplate, CTAI.CanonicalConverted, 3654 nullptr); 3655 ClassTemplate->AddSpecialization(Decl, InsertPos); 3656 if (ClassTemplate->isOutOfLine()) 3657 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 3658 } 3659 3660 if (Decl->getSpecializationKind() == TSK_Undeclared && 3661 ClassTemplate->getTemplatedDecl()->hasAttrs()) { 3662 InstantiatingTemplate Inst(*this, TemplateLoc, Decl); 3663 if (!Inst.isInvalid()) { 3664 MultiLevelTemplateArgumentList TemplateArgLists(Template, 3665 CTAI.CanonicalConverted, 3666 /*Final=*/false); 3667 InstantiateAttrsForDecl(TemplateArgLists, 3668 ClassTemplate->getTemplatedDecl(), Decl); 3669 } 3670 } 3671 3672 // Diagnose uses of this specialization. 3673 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 3674 3675 CanonType = Context.getTypeDeclType(Decl); 3676 assert(isa<RecordType>(CanonType) && 3677 "type of non-dependent specialization is not a RecordType"); 3678 } else { 3679 llvm_unreachable("Unhandled template kind"); 3680 } 3681 3682 // Build the fully-sugared type for this class template 3683 // specialization, which refers back to the class template 3684 // specialization we created or found. 3685 return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(), 3686 CanonType); 3687 } 3688 3689 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, 3690 TemplateNameKind &TNK, 3691 SourceLocation NameLoc, 3692 IdentifierInfo *&II) { 3693 assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); 3694 3695 TemplateName Name = ParsedName.get(); 3696 auto *ATN = Name.getAsAssumedTemplateName(); 3697 assert(ATN && "not an assumed template name"); 3698 II = ATN->getDeclName().getAsIdentifierInfo(); 3699 3700 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { 3701 // Resolved to a type template name. 3702 ParsedName = TemplateTy::make(Name); 3703 TNK = TNK_Type_template; 3704 } 3705 } 3706 3707 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, 3708 SourceLocation NameLoc, 3709 bool Diagnose) { 3710 // We assumed this undeclared identifier to be an (ADL-only) function 3711 // template name, but it was used in a context where a type was required. 3712 // Try to typo-correct it now. 3713 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); 3714 assert(ATN && "not an assumed template name"); 3715 3716 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); 3717 struct CandidateCallback : CorrectionCandidateCallback { 3718 bool ValidateCandidate(const TypoCorrection &TC) override { 3719 return TC.getCorrectionDecl() && 3720 getAsTypeTemplateDecl(TC.getCorrectionDecl()); 3721 } 3722 std::unique_ptr<CorrectionCandidateCallback> clone() override { 3723 return std::make_unique<CandidateCallback>(*this); 3724 } 3725 } FilterCCC; 3726 3727 TypoCorrection Corrected = 3728 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, 3729 FilterCCC, CTK_ErrorRecovery); 3730 if (Corrected && Corrected.getFoundDecl()) { 3731 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) 3732 << ATN->getDeclName()); 3733 Name = Context.getQualifiedTemplateName( 3734 /*NNS=*/nullptr, /*TemplateKeyword=*/false, 3735 TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>())); 3736 return false; 3737 } 3738 3739 if (Diagnose) 3740 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); 3741 return true; 3742 } 3743 3744 TypeResult Sema::ActOnTemplateIdType( 3745 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 3746 TemplateTy TemplateD, const IdentifierInfo *TemplateII, 3747 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 3748 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, 3749 bool IsCtorOrDtorName, bool IsClassName, 3750 ImplicitTypenameContext AllowImplicitTypename) { 3751 if (SS.isInvalid()) 3752 return true; 3753 3754 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { 3755 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); 3756 3757 // C++ [temp.res]p3: 3758 // A qualified-id that refers to a type and in which the 3759 // nested-name-specifier depends on a template-parameter (14.6.2) 3760 // shall be prefixed by the keyword typename to indicate that the 3761 // qualified-id denotes a type, forming an 3762 // elaborated-type-specifier (7.1.5.3). 3763 if (!LookupCtx && isDependentScopeSpecifier(SS)) { 3764 // C++2a relaxes some of those restrictions in [temp.res]p5. 3765 if (AllowImplicitTypename == ImplicitTypenameContext::Yes) { 3766 if (getLangOpts().CPlusPlus20) 3767 Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename); 3768 else 3769 Diag(SS.getBeginLoc(), diag::ext_implicit_typename) 3770 << SS.getScopeRep() << TemplateII->getName() 3771 << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename "); 3772 } else 3773 Diag(SS.getBeginLoc(), diag::err_typename_missing_template) 3774 << SS.getScopeRep() << TemplateII->getName(); 3775 3776 // FIXME: This is not quite correct recovery as we don't transform SS 3777 // into the corresponding dependent form (and we don't diagnose missing 3778 // 'template' keywords within SS as a result). 3779 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, 3780 TemplateD, TemplateII, TemplateIILoc, LAngleLoc, 3781 TemplateArgsIn, RAngleLoc); 3782 } 3783 3784 // Per C++ [class.qual]p2, if the template-id was an injected-class-name, 3785 // it's not actually allowed to be used as a type in most cases. Because 3786 // we annotate it before we know whether it's valid, we have to check for 3787 // this case here. 3788 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 3789 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 3790 Diag(TemplateIILoc, 3791 TemplateKWLoc.isInvalid() 3792 ? diag::err_out_of_line_qualified_id_type_names_constructor 3793 : diag::ext_out_of_line_qualified_id_type_names_constructor) 3794 << TemplateII << 0 /*injected-class-name used as template name*/ 3795 << 1 /*if any keyword was present, it was 'template'*/; 3796 } 3797 } 3798 3799 TemplateName Template = TemplateD.get(); 3800 if (Template.getAsAssumedTemplateName() && 3801 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) 3802 return true; 3803 3804 // Translate the parser's template argument list in our AST format. 3805 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3806 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3807 3808 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3809 assert(SS.getScopeRep() == DTN->getQualifier()); 3810 QualType T = Context.getDependentTemplateSpecializationType( 3811 ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(), 3812 TemplateArgs.arguments()); 3813 // Build type-source information. 3814 TypeLocBuilder TLB; 3815 DependentTemplateSpecializationTypeLoc SpecTL 3816 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3817 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 3818 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3819 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3820 SpecTL.setTemplateNameLoc(TemplateIILoc); 3821 SpecTL.setLAngleLoc(LAngleLoc); 3822 SpecTL.setRAngleLoc(RAngleLoc); 3823 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3824 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3825 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3826 } 3827 3828 QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 3829 if (SpecTy.isNull()) 3830 return true; 3831 3832 // Build type-source information. 3833 TypeLocBuilder TLB; 3834 TemplateSpecializationTypeLoc SpecTL = 3835 TLB.push<TemplateSpecializationTypeLoc>(SpecTy); 3836 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3837 SpecTL.setTemplateNameLoc(TemplateIILoc); 3838 SpecTL.setLAngleLoc(LAngleLoc); 3839 SpecTL.setRAngleLoc(RAngleLoc); 3840 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3841 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3842 3843 // Create an elaborated-type-specifier containing the nested-name-specifier. 3844 QualType ElTy = 3845 getElaboratedType(ElaboratedTypeKeyword::None, 3846 !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy); 3847 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy); 3848 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 3849 if (!ElabTL.isEmpty()) 3850 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3851 return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy)); 3852 } 3853 3854 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 3855 TypeSpecifierType TagSpec, 3856 SourceLocation TagLoc, 3857 CXXScopeSpec &SS, 3858 SourceLocation TemplateKWLoc, 3859 TemplateTy TemplateD, 3860 SourceLocation TemplateLoc, 3861 SourceLocation LAngleLoc, 3862 ASTTemplateArgsPtr TemplateArgsIn, 3863 SourceLocation RAngleLoc) { 3864 if (SS.isInvalid()) 3865 return TypeResult(true); 3866 3867 TemplateName Template = TemplateD.get(); 3868 3869 // Translate the parser's template argument list in our AST format. 3870 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3871 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3872 3873 // Determine the tag kind 3874 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3875 ElaboratedTypeKeyword Keyword 3876 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 3877 3878 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3879 assert(SS.getScopeRep() == DTN->getQualifier()); 3880 QualType T = Context.getDependentTemplateSpecializationType( 3881 Keyword, DTN->getQualifier(), DTN->getIdentifier(), 3882 TemplateArgs.arguments()); 3883 3884 // Build type-source information. 3885 TypeLocBuilder TLB; 3886 DependentTemplateSpecializationTypeLoc SpecTL 3887 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3888 SpecTL.setElaboratedKeywordLoc(TagLoc); 3889 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3890 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3891 SpecTL.setTemplateNameLoc(TemplateLoc); 3892 SpecTL.setLAngleLoc(LAngleLoc); 3893 SpecTL.setRAngleLoc(RAngleLoc); 3894 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3895 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3896 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3897 } 3898 3899 if (TypeAliasTemplateDecl *TAT = 3900 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 3901 // C++0x [dcl.type.elab]p2: 3902 // If the identifier resolves to a typedef-name or the simple-template-id 3903 // resolves to an alias template specialization, the 3904 // elaborated-type-specifier is ill-formed. 3905 Diag(TemplateLoc, diag::err_tag_reference_non_tag) 3906 << TAT << NTK_TypeAliasTemplate << llvm::to_underlying(TagKind); 3907 Diag(TAT->getLocation(), diag::note_declared_at); 3908 } 3909 3910 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 3911 if (Result.isNull()) 3912 return TypeResult(true); 3913 3914 // Check the tag kind 3915 if (const RecordType *RT = Result->getAs<RecordType>()) { 3916 RecordDecl *D = RT->getDecl(); 3917 3918 IdentifierInfo *Id = D->getIdentifier(); 3919 assert(Id && "templated class must have an identifier"); 3920 3921 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TagUseKind::Definition, 3922 TagLoc, Id)) { 3923 Diag(TagLoc, diag::err_use_with_wrong_tag) 3924 << Result 3925 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 3926 Diag(D->getLocation(), diag::note_previous_use); 3927 } 3928 } 3929 3930 // Provide source-location information for the template specialization. 3931 TypeLocBuilder TLB; 3932 TemplateSpecializationTypeLoc SpecTL 3933 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3934 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3935 SpecTL.setTemplateNameLoc(TemplateLoc); 3936 SpecTL.setLAngleLoc(LAngleLoc); 3937 SpecTL.setRAngleLoc(RAngleLoc); 3938 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3939 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3940 3941 // Construct an elaborated type containing the nested-name-specifier (if any) 3942 // and tag keyword. 3943 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 3944 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 3945 ElabTL.setElaboratedKeywordLoc(TagLoc); 3946 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3947 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 3948 } 3949 3950 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 3951 NamedDecl *PrevDecl, 3952 SourceLocation Loc, 3953 bool IsPartialSpecialization); 3954 3955 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 3956 3957 static bool isTemplateArgumentTemplateParameter( 3958 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 3959 switch (Arg.getKind()) { 3960 case TemplateArgument::Null: 3961 case TemplateArgument::NullPtr: 3962 case TemplateArgument::Integral: 3963 case TemplateArgument::Declaration: 3964 case TemplateArgument::StructuralValue: 3965 case TemplateArgument::Pack: 3966 case TemplateArgument::TemplateExpansion: 3967 return false; 3968 3969 case TemplateArgument::Type: { 3970 QualType Type = Arg.getAsType(); 3971 const TemplateTypeParmType *TPT = 3972 Arg.getAsType()->getAs<TemplateTypeParmType>(); 3973 return TPT && !Type.hasQualifiers() && 3974 TPT->getDepth() == Depth && TPT->getIndex() == Index; 3975 } 3976 3977 case TemplateArgument::Expression: { 3978 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 3979 if (!DRE || !DRE->getDecl()) 3980 return false; 3981 const NonTypeTemplateParmDecl *NTTP = 3982 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 3983 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 3984 } 3985 3986 case TemplateArgument::Template: 3987 const TemplateTemplateParmDecl *TTP = 3988 dyn_cast_or_null<TemplateTemplateParmDecl>( 3989 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 3990 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 3991 } 3992 llvm_unreachable("unexpected kind of template argument"); 3993 } 3994 3995 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 3996 ArrayRef<TemplateArgument> Args) { 3997 if (Params->size() != Args.size()) 3998 return false; 3999 4000 unsigned Depth = Params->getDepth(); 4001 4002 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4003 TemplateArgument Arg = Args[I]; 4004 4005 // If the parameter is a pack expansion, the argument must be a pack 4006 // whose only element is a pack expansion. 4007 if (Params->getParam(I)->isParameterPack()) { 4008 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 4009 !Arg.pack_begin()->isPackExpansion()) 4010 return false; 4011 Arg = Arg.pack_begin()->getPackExpansionPattern(); 4012 } 4013 4014 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 4015 return false; 4016 } 4017 4018 return true; 4019 } 4020 4021 template<typename PartialSpecDecl> 4022 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { 4023 if (Partial->getDeclContext()->isDependentContext()) 4024 return; 4025 4026 // FIXME: Get the TDK from deduction in order to provide better diagnostics 4027 // for non-substitution-failure issues? 4028 TemplateDeductionInfo Info(Partial->getLocation()); 4029 if (S.isMoreSpecializedThanPrimary(Partial, Info)) 4030 return; 4031 4032 auto *Template = Partial->getSpecializedTemplate(); 4033 S.Diag(Partial->getLocation(), 4034 diag::ext_partial_spec_not_more_specialized_than_primary) 4035 << isa<VarTemplateDecl>(Template); 4036 4037 if (Info.hasSFINAEDiagnostic()) { 4038 PartialDiagnosticAt Diag = {SourceLocation(), 4039 PartialDiagnostic::NullDiagnostic()}; 4040 Info.takeSFINAEDiagnostic(Diag); 4041 SmallString<128> SFINAEArgString; 4042 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); 4043 S.Diag(Diag.first, 4044 diag::note_partial_spec_not_more_specialized_than_primary) 4045 << SFINAEArgString; 4046 } 4047 4048 S.NoteTemplateLocation(*Template); 4049 SmallVector<const Expr *, 3> PartialAC, TemplateAC; 4050 Template->getAssociatedConstraints(TemplateAC); 4051 Partial->getAssociatedConstraints(PartialAC); 4052 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template, 4053 TemplateAC); 4054 } 4055 4056 static void 4057 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, 4058 const llvm::SmallBitVector &DeducibleParams) { 4059 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4060 if (!DeducibleParams[I]) { 4061 NamedDecl *Param = TemplateParams->getParam(I); 4062 if (Param->getDeclName()) 4063 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4064 << Param->getDeclName(); 4065 else 4066 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4067 << "(anonymous)"; 4068 } 4069 } 4070 } 4071 4072 4073 template<typename PartialSpecDecl> 4074 static void checkTemplatePartialSpecialization(Sema &S, 4075 PartialSpecDecl *Partial) { 4076 // C++1z [temp.class.spec]p8: (DR1495) 4077 // - The specialization shall be more specialized than the primary 4078 // template (14.5.5.2). 4079 checkMoreSpecializedThanPrimary(S, Partial); 4080 4081 // C++ [temp.class.spec]p8: (DR1315) 4082 // - Each template-parameter shall appear at least once in the 4083 // template-id outside a non-deduced context. 4084 // C++1z [temp.class.spec.match]p3 (P0127R2) 4085 // If the template arguments of a partial specialization cannot be 4086 // deduced because of the structure of its template-parameter-list 4087 // and the template-id, the program is ill-formed. 4088 auto *TemplateParams = Partial->getTemplateParameters(); 4089 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4090 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4091 TemplateParams->getDepth(), DeducibleParams); 4092 4093 if (!DeducibleParams.all()) { 4094 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4095 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) 4096 << isa<VarTemplatePartialSpecializationDecl>(Partial) 4097 << (NumNonDeducible > 1) 4098 << SourceRange(Partial->getLocation(), 4099 Partial->getTemplateArgsAsWritten()->RAngleLoc); 4100 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); 4101 } 4102 } 4103 4104 void Sema::CheckTemplatePartialSpecialization( 4105 ClassTemplatePartialSpecializationDecl *Partial) { 4106 checkTemplatePartialSpecialization(*this, Partial); 4107 } 4108 4109 void Sema::CheckTemplatePartialSpecialization( 4110 VarTemplatePartialSpecializationDecl *Partial) { 4111 checkTemplatePartialSpecialization(*this, Partial); 4112 } 4113 4114 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { 4115 // C++1z [temp.param]p11: 4116 // A template parameter of a deduction guide template that does not have a 4117 // default-argument shall be deducible from the parameter-type-list of the 4118 // deduction guide template. 4119 auto *TemplateParams = TD->getTemplateParameters(); 4120 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4121 MarkDeducedTemplateParameters(TD, DeducibleParams); 4122 for (unsigned I = 0; I != TemplateParams->size(); ++I) { 4123 // A parameter pack is deducible (to an empty pack). 4124 auto *Param = TemplateParams->getParam(I); 4125 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) 4126 DeducibleParams[I] = true; 4127 } 4128 4129 if (!DeducibleParams.all()) { 4130 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4131 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) 4132 << (NumNonDeducible > 1); 4133 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); 4134 } 4135 } 4136 4137 DeclResult Sema::ActOnVarTemplateSpecialization( 4138 Scope *S, Declarator &D, TypeSourceInfo *DI, LookupResult &Previous, 4139 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, 4140 StorageClass SC, bool IsPartialSpecialization) { 4141 // D must be variable template id. 4142 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && 4143 "Variable template specialization is declared with a template id."); 4144 4145 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4146 TemplateArgumentListInfo TemplateArgs = 4147 makeTemplateArgumentListInfo(*this, *TemplateId); 4148 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 4149 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 4150 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 4151 4152 TemplateName Name = TemplateId->Template.get(); 4153 4154 // The template-id must name a variable template. 4155 VarTemplateDecl *VarTemplate = 4156 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 4157 if (!VarTemplate) { 4158 NamedDecl *FnTemplate; 4159 if (auto *OTS = Name.getAsOverloadedTemplate()) 4160 FnTemplate = *OTS->begin(); 4161 else 4162 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4163 if (FnTemplate) 4164 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 4165 << FnTemplate->getDeclName(); 4166 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 4167 << IsPartialSpecialization; 4168 } 4169 4170 if (const auto *DSA = VarTemplate->getAttr<NoSpecializationsAttr>()) { 4171 auto Message = DSA->getMessage(); 4172 Diag(TemplateNameLoc, diag::warn_invalid_specialization) 4173 << VarTemplate << !Message.empty() << Message; 4174 Diag(DSA->getLoc(), diag::note_marked_here) << DSA; 4175 } 4176 4177 // Check for unexpanded parameter packs in any of the template arguments. 4178 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4179 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4180 IsPartialSpecialization 4181 ? UPPC_PartialSpecialization 4182 : UPPC_ExplicitSpecialization)) 4183 return true; 4184 4185 // Check that the template argument list is well-formed for this 4186 // template. 4187 CheckTemplateArgumentInfo CTAI; 4188 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 4189 /*DefaultArgs=*/{}, 4190 /*PartialTemplateArgs=*/false, CTAI, 4191 /*UpdateArgsWithConversions=*/true)) 4192 return true; 4193 4194 // Find the variable template (partial) specialization declaration that 4195 // corresponds to these arguments. 4196 if (IsPartialSpecialization) { 4197 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, 4198 TemplateArgs.size(), 4199 CTAI.CanonicalConverted)) 4200 return true; 4201 4202 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so 4203 // we also do them during instantiation. 4204 if (!Name.isDependent() && 4205 !TemplateSpecializationType::anyDependentTemplateArguments( 4206 TemplateArgs, CTAI.CanonicalConverted)) { 4207 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4208 << VarTemplate->getDeclName(); 4209 IsPartialSpecialization = false; 4210 } 4211 4212 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 4213 CTAI.CanonicalConverted) && 4214 (!Context.getLangOpts().CPlusPlus20 || 4215 !TemplateParams->hasAssociatedConstraints())) { 4216 // C++ [temp.class.spec]p9b3: 4217 // 4218 // -- The argument list of the specialization shall not be identical 4219 // to the implicit argument list of the primary template. 4220 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4221 << /*variable template*/ 1 4222 << /*is definition*/ (SC != SC_Extern && !CurContext->isRecord()) 4223 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4224 // FIXME: Recover from this by treating the declaration as a 4225 // redeclaration of the primary template. 4226 return true; 4227 } 4228 } 4229 4230 void *InsertPos = nullptr; 4231 VarTemplateSpecializationDecl *PrevDecl = nullptr; 4232 4233 if (IsPartialSpecialization) 4234 PrevDecl = VarTemplate->findPartialSpecialization( 4235 CTAI.CanonicalConverted, TemplateParams, InsertPos); 4236 else 4237 PrevDecl = 4238 VarTemplate->findSpecialization(CTAI.CanonicalConverted, InsertPos); 4239 4240 VarTemplateSpecializationDecl *Specialization = nullptr; 4241 4242 // Check whether we can declare a variable template specialization in 4243 // the current scope. 4244 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 4245 TemplateNameLoc, 4246 IsPartialSpecialization)) 4247 return true; 4248 4249 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4250 // Since the only prior variable template specialization with these 4251 // arguments was referenced but not declared, reuse that 4252 // declaration node as our own, updating its source location and 4253 // the list of outer template parameters to reflect our new declaration. 4254 Specialization = PrevDecl; 4255 Specialization->setLocation(TemplateNameLoc); 4256 PrevDecl = nullptr; 4257 } else if (IsPartialSpecialization) { 4258 // Create a new class template partial specialization declaration node. 4259 VarTemplatePartialSpecializationDecl *PrevPartial = 4260 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 4261 VarTemplatePartialSpecializationDecl *Partial = 4262 VarTemplatePartialSpecializationDecl::Create( 4263 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 4264 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 4265 CTAI.CanonicalConverted); 4266 Partial->setTemplateArgsAsWritten(TemplateArgs); 4267 4268 if (!PrevPartial) 4269 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 4270 Specialization = Partial; 4271 4272 // If we are providing an explicit specialization of a member variable 4273 // template specialization, make a note of that. 4274 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4275 PrevPartial->setMemberSpecialization(); 4276 4277 CheckTemplatePartialSpecialization(Partial); 4278 } else { 4279 // Create a new class template specialization declaration node for 4280 // this explicit specialization or friend declaration. 4281 Specialization = VarTemplateSpecializationDecl::Create( 4282 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 4283 VarTemplate, DI->getType(), DI, SC, CTAI.CanonicalConverted); 4284 Specialization->setTemplateArgsAsWritten(TemplateArgs); 4285 4286 if (!PrevDecl) 4287 VarTemplate->AddSpecialization(Specialization, InsertPos); 4288 } 4289 4290 // C++ [temp.expl.spec]p6: 4291 // If a template, a member template or the member of a class template is 4292 // explicitly specialized then that specialization shall be declared 4293 // before the first use of that specialization that would cause an implicit 4294 // instantiation to take place, in every translation unit in which such a 4295 // use occurs; no diagnostic is required. 4296 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4297 bool Okay = false; 4298 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 4299 // Is there any previous explicit specialization declaration? 4300 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4301 Okay = true; 4302 break; 4303 } 4304 } 4305 4306 if (!Okay) { 4307 SourceRange Range(TemplateNameLoc, RAngleLoc); 4308 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4309 << Name << Range; 4310 4311 Diag(PrevDecl->getPointOfInstantiation(), 4312 diag::note_instantiation_required_here) 4313 << (PrevDecl->getTemplateSpecializationKind() != 4314 TSK_ImplicitInstantiation); 4315 return true; 4316 } 4317 } 4318 4319 Specialization->setLexicalDeclContext(CurContext); 4320 4321 // Add the specialization into its lexical context, so that it can 4322 // be seen when iterating through the list of declarations in that 4323 // context. However, specializations are not found by name lookup. 4324 CurContext->addDecl(Specialization); 4325 4326 // Note that this is an explicit specialization. 4327 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4328 4329 Previous.clear(); 4330 if (PrevDecl) 4331 Previous.addDecl(PrevDecl); 4332 else if (Specialization->isStaticDataMember() && 4333 Specialization->isOutOfLine()) 4334 Specialization->setAccess(VarTemplate->getAccess()); 4335 4336 return Specialization; 4337 } 4338 4339 namespace { 4340 /// A partial specialization whose template arguments have matched 4341 /// a given template-id. 4342 struct PartialSpecMatchResult { 4343 VarTemplatePartialSpecializationDecl *Partial; 4344 TemplateArgumentList *Args; 4345 }; 4346 } // end anonymous namespace 4347 4348 DeclResult 4349 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 4350 SourceLocation TemplateNameLoc, 4351 const TemplateArgumentListInfo &TemplateArgs) { 4352 assert(Template && "A variable template id without template?"); 4353 4354 // Check that the template argument list is well-formed for this template. 4355 CheckTemplateArgumentInfo CTAI; 4356 if (CheckTemplateArgumentList( 4357 Template, TemplateNameLoc, 4358 const_cast<TemplateArgumentListInfo &>(TemplateArgs), 4359 /*DefaultArgs=*/{}, /*PartialTemplateArgs=*/false, CTAI, 4360 /*UpdateArgsWithConversions=*/true)) 4361 return true; 4362 4363 // Produce a placeholder value if the specialization is dependent. 4364 if (Template->getDeclContext()->isDependentContext() || 4365 TemplateSpecializationType::anyDependentTemplateArguments( 4366 TemplateArgs, CTAI.CanonicalConverted)) 4367 return DeclResult(); 4368 4369 // Find the variable template specialization declaration that 4370 // corresponds to these arguments. 4371 void *InsertPos = nullptr; 4372 if (VarTemplateSpecializationDecl *Spec = 4373 Template->findSpecialization(CTAI.CanonicalConverted, InsertPos)) { 4374 checkSpecializationReachability(TemplateNameLoc, Spec); 4375 // If we already have a variable template specialization, return it. 4376 return Spec; 4377 } 4378 4379 // This is the first time we have referenced this variable template 4380 // specialization. Create the canonical declaration and add it to 4381 // the set of specializations, based on the closest partial specialization 4382 // that it represents. That is, 4383 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 4384 const TemplateArgumentList *PartialSpecArgs = nullptr; 4385 bool AmbiguousPartialSpec = false; 4386 typedef PartialSpecMatchResult MatchResult; 4387 SmallVector<MatchResult, 4> Matched; 4388 SourceLocation PointOfInstantiation = TemplateNameLoc; 4389 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 4390 /*ForTakingAddress=*/false); 4391 4392 // 1. Attempt to find the closest partial specialization that this 4393 // specializes, if any. 4394 // TODO: Unify with InstantiateClassTemplateSpecialization()? 4395 // Perhaps better after unification of DeduceTemplateArguments() and 4396 // getMoreSpecializedPartialSpecialization(). 4397 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 4398 Template->getPartialSpecializations(PartialSpecs); 4399 4400 for (VarTemplatePartialSpecializationDecl *Partial : PartialSpecs) { 4401 // C++ [temp.spec.partial.member]p2: 4402 // If the primary member template is explicitly specialized for a given 4403 // (implicit) specialization of the enclosing class template, the partial 4404 // specializations of the member template are ignored for this 4405 // specialization of the enclosing class template. If a partial 4406 // specialization of the member template is explicitly specialized for a 4407 // given (implicit) specialization of the enclosing class template, the 4408 // primary member template and its other partial specializations are still 4409 // considered for this specialization of the enclosing class template. 4410 if (Template->getMostRecentDecl()->isMemberSpecialization() && 4411 !Partial->getMostRecentDecl()->isMemberSpecialization()) 4412 continue; 4413 4414 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 4415 4416 if (TemplateDeductionResult Result = 4417 DeduceTemplateArguments(Partial, CTAI.SugaredConverted, Info); 4418 Result != TemplateDeductionResult::Success) { 4419 // Store the failed-deduction information for use in diagnostics, later. 4420 // TODO: Actually use the failed-deduction info? 4421 FailedCandidates.addCandidate().set( 4422 DeclAccessPair::make(Template, AS_public), Partial, 4423 MakeDeductionFailureInfo(Context, Result, Info)); 4424 (void)Result; 4425 } else { 4426 Matched.push_back(PartialSpecMatchResult()); 4427 Matched.back().Partial = Partial; 4428 Matched.back().Args = Info.takeSugared(); 4429 } 4430 } 4431 4432 if (Matched.size() >= 1) { 4433 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 4434 if (Matched.size() == 1) { 4435 // -- If exactly one matching specialization is found, the 4436 // instantiation is generated from that specialization. 4437 // We don't need to do anything for this. 4438 } else { 4439 // -- If more than one matching specialization is found, the 4440 // partial order rules (14.5.4.2) are used to determine 4441 // whether one of the specializations is more specialized 4442 // than the others. If none of the specializations is more 4443 // specialized than all of the other matching 4444 // specializations, then the use of the variable template is 4445 // ambiguous and the program is ill-formed. 4446 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 4447 PEnd = Matched.end(); 4448 P != PEnd; ++P) { 4449 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 4450 PointOfInstantiation) == 4451 P->Partial) 4452 Best = P; 4453 } 4454 4455 // Determine if the best partial specialization is more specialized than 4456 // the others. 4457 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 4458 PEnd = Matched.end(); 4459 P != PEnd; ++P) { 4460 if (P != Best && getMoreSpecializedPartialSpecialization( 4461 P->Partial, Best->Partial, 4462 PointOfInstantiation) != Best->Partial) { 4463 AmbiguousPartialSpec = true; 4464 break; 4465 } 4466 } 4467 } 4468 4469 // Instantiate using the best variable template partial specialization. 4470 InstantiationPattern = Best->Partial; 4471 PartialSpecArgs = Best->Args; 4472 } else { 4473 // -- If no match is found, the instantiation is generated 4474 // from the primary template. 4475 // InstantiationPattern = Template->getTemplatedDecl(); 4476 } 4477 4478 // 2. Create the canonical declaration. 4479 // Note that we do not instantiate a definition until we see an odr-use 4480 // in DoMarkVarDeclReferenced(). 4481 // FIXME: LateAttrs et al.? 4482 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 4483 Template, InstantiationPattern, PartialSpecArgs, TemplateArgs, 4484 CTAI.CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/); 4485 if (!Decl) 4486 return true; 4487 4488 if (AmbiguousPartialSpec) { 4489 // Partial ordering did not produce a clear winner. Complain. 4490 Decl->setInvalidDecl(); 4491 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 4492 << Decl; 4493 4494 // Print the matching partial specializations. 4495 for (MatchResult P : Matched) 4496 Diag(P.Partial->getLocation(), diag::note_partial_spec_match) 4497 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), 4498 *P.Args); 4499 return true; 4500 } 4501 4502 if (VarTemplatePartialSpecializationDecl *D = 4503 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 4504 Decl->setInstantiationOf(D, PartialSpecArgs); 4505 4506 checkSpecializationReachability(TemplateNameLoc, Decl); 4507 4508 assert(Decl && "No variable template specialization?"); 4509 return Decl; 4510 } 4511 4512 ExprResult Sema::CheckVarTemplateId( 4513 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, 4514 VarTemplateDecl *Template, NamedDecl *FoundD, SourceLocation TemplateLoc, 4515 const TemplateArgumentListInfo *TemplateArgs) { 4516 4517 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 4518 *TemplateArgs); 4519 if (Decl.isInvalid()) 4520 return ExprError(); 4521 4522 if (!Decl.get()) 4523 return ExprResult(); 4524 4525 VarDecl *Var = cast<VarDecl>(Decl.get()); 4526 if (!Var->getTemplateSpecializationKind()) 4527 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 4528 NameInfo.getLoc()); 4529 4530 // Build an ordinary singleton decl ref. 4531 return BuildDeclarationNameExpr(SS, NameInfo, Var, FoundD, TemplateArgs); 4532 } 4533 4534 void Sema::diagnoseMissingTemplateArguments(TemplateName Name, 4535 SourceLocation Loc) { 4536 Diag(Loc, diag::err_template_missing_args) 4537 << (int)getTemplateNameKindForDiagnostics(Name) << Name; 4538 if (TemplateDecl *TD = Name.getAsTemplateDecl()) { 4539 NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange()); 4540 } 4541 } 4542 4543 void Sema::diagnoseMissingTemplateArguments(const CXXScopeSpec &SS, 4544 bool TemplateKeyword, 4545 TemplateDecl *TD, 4546 SourceLocation Loc) { 4547 TemplateName Name = Context.getQualifiedTemplateName( 4548 SS.getScopeRep(), TemplateKeyword, TemplateName(TD)); 4549 diagnoseMissingTemplateArguments(Name, Loc); 4550 } 4551 4552 ExprResult 4553 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, 4554 SourceLocation TemplateKWLoc, 4555 const DeclarationNameInfo &ConceptNameInfo, 4556 NamedDecl *FoundDecl, 4557 ConceptDecl *NamedConcept, 4558 const TemplateArgumentListInfo *TemplateArgs) { 4559 assert(NamedConcept && "A concept template id without a template?"); 4560 4561 if (NamedConcept->isInvalidDecl()) 4562 return ExprError(); 4563 4564 CheckTemplateArgumentInfo CTAI; 4565 if (CheckTemplateArgumentList( 4566 NamedConcept, ConceptNameInfo.getLoc(), 4567 const_cast<TemplateArgumentListInfo &>(*TemplateArgs), 4568 /*DefaultArgs=*/{}, 4569 /*PartialTemplateArgs=*/false, CTAI, 4570 /*UpdateArgsWithConversions=*/false)) 4571 return ExprError(); 4572 4573 DiagnoseUseOfDecl(NamedConcept, ConceptNameInfo.getLoc()); 4574 4575 auto *CSD = ImplicitConceptSpecializationDecl::Create( 4576 Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(), 4577 CTAI.CanonicalConverted); 4578 ConstraintSatisfaction Satisfaction; 4579 bool AreArgsDependent = 4580 TemplateSpecializationType::anyDependentTemplateArguments( 4581 *TemplateArgs, CTAI.CanonicalConverted); 4582 MultiLevelTemplateArgumentList MLTAL(NamedConcept, CTAI.CanonicalConverted, 4583 /*Final=*/false); 4584 LocalInstantiationScope Scope(*this); 4585 4586 EnterExpressionEvaluationContext EECtx{ 4587 *this, ExpressionEvaluationContext::Unevaluated, CSD}; 4588 4589 if (!AreArgsDependent && 4590 CheckConstraintSatisfaction( 4591 NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL, 4592 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), 4593 TemplateArgs->getRAngleLoc()), 4594 Satisfaction)) 4595 return ExprError(); 4596 auto *CL = ConceptReference::Create( 4597 Context, 4598 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, 4599 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, 4600 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs)); 4601 return ConceptSpecializationExpr::Create( 4602 Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction); 4603 } 4604 4605 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 4606 SourceLocation TemplateKWLoc, 4607 LookupResult &R, 4608 bool RequiresADL, 4609 const TemplateArgumentListInfo *TemplateArgs) { 4610 // FIXME: Can we do any checking at this point? I guess we could check the 4611 // template arguments that we have against the template name, if the template 4612 // name refers to a single template. That's not a terribly common case, 4613 // though. 4614 // foo<int> could identify a single function unambiguously 4615 // This approach does NOT work, since f<int>(1); 4616 // gets resolved prior to resorting to overload resolution 4617 // i.e., template<class T> void f(double); 4618 // vs template<class T, class U> void f(U); 4619 4620 // These should be filtered out by our callers. 4621 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 4622 4623 // Non-function templates require a template argument list. 4624 if (auto *TD = R.getAsSingle<TemplateDecl>()) { 4625 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { 4626 diagnoseMissingTemplateArguments( 4627 SS, /*TemplateKeyword=*/TemplateKWLoc.isValid(), TD, R.getNameLoc()); 4628 return ExprError(); 4629 } 4630 } 4631 bool KnownDependent = false; 4632 // In C++1y, check variable template ids. 4633 if (R.getAsSingle<VarTemplateDecl>()) { 4634 ExprResult Res = CheckVarTemplateId( 4635 SS, R.getLookupNameInfo(), R.getAsSingle<VarTemplateDecl>(), 4636 R.getRepresentativeDecl(), TemplateKWLoc, TemplateArgs); 4637 if (Res.isInvalid() || Res.isUsable()) 4638 return Res; 4639 // Result is dependent. Carry on to build an UnresolvedLookupExpr. 4640 KnownDependent = true; 4641 } 4642 4643 if (R.getAsSingle<ConceptDecl>()) { 4644 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(), 4645 R.getRepresentativeDecl(), 4646 R.getAsSingle<ConceptDecl>(), TemplateArgs); 4647 } 4648 4649 // We don't want lookup warnings at this point. 4650 R.suppressDiagnostics(); 4651 4652 UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create( 4653 Context, R.getNamingClass(), SS.getWithLocInContext(Context), 4654 TemplateKWLoc, R.getLookupNameInfo(), RequiresADL, TemplateArgs, 4655 R.begin(), R.end(), KnownDependent, 4656 /*KnownInstantiationDependent=*/false); 4657 4658 // Model the templates with UnresolvedTemplateTy. The expression should then 4659 // either be transformed in an instantiation or be diagnosed in 4660 // CheckPlaceholderExpr. 4661 if (ULE->getType() == Context.OverloadTy && R.isSingleResult() && 4662 !R.getFoundDecl()->getAsFunction()) 4663 ULE->setType(Context.UnresolvedTemplateTy); 4664 4665 return ULE; 4666 } 4667 4668 ExprResult Sema::BuildQualifiedTemplateIdExpr( 4669 CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 4670 const DeclarationNameInfo &NameInfo, 4671 const TemplateArgumentListInfo *TemplateArgs, bool IsAddressOfOperand) { 4672 assert(TemplateArgs || TemplateKWLoc.isValid()); 4673 4674 LookupResult R(*this, NameInfo, LookupOrdinaryName); 4675 if (LookupTemplateName(R, /*S=*/nullptr, SS, /*ObjectType=*/QualType(), 4676 /*EnteringContext=*/false, TemplateKWLoc)) 4677 return ExprError(); 4678 4679 if (R.isAmbiguous()) 4680 return ExprError(); 4681 4682 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid()) 4683 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 4684 4685 if (R.empty()) { 4686 DeclContext *DC = computeDeclContext(SS); 4687 Diag(NameInfo.getLoc(), diag::err_no_member) 4688 << NameInfo.getName() << DC << SS.getRange(); 4689 return ExprError(); 4690 } 4691 4692 // If necessary, build an implicit class member access. 4693 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand)) 4694 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, 4695 /*S=*/nullptr); 4696 4697 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL=*/false, TemplateArgs); 4698 } 4699 4700 TemplateNameKind Sema::ActOnTemplateName(Scope *S, 4701 CXXScopeSpec &SS, 4702 SourceLocation TemplateKWLoc, 4703 const UnqualifiedId &Name, 4704 ParsedType ObjectType, 4705 bool EnteringContext, 4706 TemplateTy &Result, 4707 bool AllowInjectedClassName) { 4708 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 4709 Diag(TemplateKWLoc, 4710 getLangOpts().CPlusPlus11 ? 4711 diag::warn_cxx98_compat_template_outside_of_template : 4712 diag::ext_template_outside_of_template) 4713 << FixItHint::CreateRemoval(TemplateKWLoc); 4714 4715 if (SS.isInvalid()) 4716 return TNK_Non_template; 4717 4718 // Figure out where isTemplateName is going to look. 4719 DeclContext *LookupCtx = nullptr; 4720 if (SS.isNotEmpty()) 4721 LookupCtx = computeDeclContext(SS, EnteringContext); 4722 else if (ObjectType) 4723 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType)); 4724 4725 // C++0x [temp.names]p5: 4726 // If a name prefixed by the keyword template is not the name of 4727 // a template, the program is ill-formed. [Note: the keyword 4728 // template may not be applied to non-template members of class 4729 // templates. -end note ] [ Note: as is the case with the 4730 // typename prefix, the template prefix is allowed in cases 4731 // where it is not strictly necessary; i.e., when the 4732 // nested-name-specifier or the expression on the left of the -> 4733 // or . is not dependent on a template-parameter, or the use 4734 // does not appear in the scope of a template. -end note] 4735 // 4736 // Note: C++03 was more strict here, because it banned the use of 4737 // the "template" keyword prior to a template-name that was not a 4738 // dependent name. C++ DR468 relaxed this requirement (the 4739 // "template" keyword is now permitted). We follow the C++0x 4740 // rules, even in C++03 mode with a warning, retroactively applying the DR. 4741 bool MemberOfUnknownSpecialization; 4742 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 4743 ObjectType, EnteringContext, Result, 4744 MemberOfUnknownSpecialization); 4745 if (TNK != TNK_Non_template) { 4746 // We resolved this to a (non-dependent) template name. Return it. 4747 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 4748 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && 4749 Name.getKind() == UnqualifiedIdKind::IK_Identifier && 4750 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { 4751 // C++14 [class.qual]p2: 4752 // In a lookup in which function names are not ignored and the 4753 // nested-name-specifier nominates a class C, if the name specified 4754 // [...] is the injected-class-name of C, [...] the name is instead 4755 // considered to name the constructor 4756 // 4757 // We don't get here if naming the constructor would be valid, so we 4758 // just reject immediately and recover by treating the 4759 // injected-class-name as naming the template. 4760 Diag(Name.getBeginLoc(), 4761 diag::ext_out_of_line_qualified_id_type_names_constructor) 4762 << Name.Identifier 4763 << 0 /*injected-class-name used as template name*/ 4764 << TemplateKWLoc.isValid(); 4765 } 4766 return TNK; 4767 } 4768 4769 if (!MemberOfUnknownSpecialization) { 4770 // Didn't find a template name, and the lookup wasn't dependent. 4771 // Do the lookup again to determine if this is a "nothing found" case or 4772 // a "not a template" case. FIXME: Refactor isTemplateName so we don't 4773 // need to do this. 4774 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); 4775 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), 4776 LookupOrdinaryName); 4777 // Tell LookupTemplateName that we require a template so that it diagnoses 4778 // cases where it finds a non-template. 4779 RequiredTemplateKind RTK = TemplateKWLoc.isValid() 4780 ? RequiredTemplateKind(TemplateKWLoc) 4781 : TemplateNameIsRequired; 4782 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, RTK, 4783 /*ATK=*/nullptr, /*AllowTypoCorrection=*/false) && 4784 !R.isAmbiguous()) { 4785 if (LookupCtx) 4786 Diag(Name.getBeginLoc(), diag::err_no_member) 4787 << DNI.getName() << LookupCtx << SS.getRange(); 4788 else 4789 Diag(Name.getBeginLoc(), diag::err_undeclared_use) 4790 << DNI.getName() << SS.getRange(); 4791 } 4792 return TNK_Non_template; 4793 } 4794 4795 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 4796 4797 switch (Name.getKind()) { 4798 case UnqualifiedIdKind::IK_Identifier: 4799 Result = TemplateTy::make( 4800 Context.getDependentTemplateName(Qualifier, Name.Identifier)); 4801 return TNK_Dependent_template_name; 4802 4803 case UnqualifiedIdKind::IK_OperatorFunctionId: 4804 Result = TemplateTy::make(Context.getDependentTemplateName( 4805 Qualifier, Name.OperatorFunctionId.Operator)); 4806 return TNK_Function_template; 4807 4808 case UnqualifiedIdKind::IK_LiteralOperatorId: 4809 // This is a kind of template name, but can never occur in a dependent 4810 // scope (literal operators can only be declared at namespace scope). 4811 break; 4812 4813 default: 4814 break; 4815 } 4816 4817 // This name cannot possibly name a dependent template. Diagnose this now 4818 // rather than building a dependent template name that can never be valid. 4819 Diag(Name.getBeginLoc(), 4820 diag::err_template_kw_refers_to_dependent_non_template) 4821 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() 4822 << TemplateKWLoc.isValid() << TemplateKWLoc; 4823 return TNK_Non_template; 4824 } 4825 4826 bool Sema::CheckTemplateTypeArgument( 4827 TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL, 4828 SmallVectorImpl<TemplateArgument> &SugaredConverted, 4829 SmallVectorImpl<TemplateArgument> &CanonicalConverted) { 4830 const TemplateArgument &Arg = AL.getArgument(); 4831 QualType ArgType; 4832 TypeSourceInfo *TSI = nullptr; 4833 4834 // Check template type parameter. 4835 switch(Arg.getKind()) { 4836 case TemplateArgument::Type: 4837 // C++ [temp.arg.type]p1: 4838 // A template-argument for a template-parameter which is a 4839 // type shall be a type-id. 4840 ArgType = Arg.getAsType(); 4841 TSI = AL.getTypeSourceInfo(); 4842 break; 4843 case TemplateArgument::Template: 4844 case TemplateArgument::TemplateExpansion: { 4845 // We have a template type parameter but the template argument 4846 // is a template without any arguments. 4847 SourceRange SR = AL.getSourceRange(); 4848 TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); 4849 diagnoseMissingTemplateArguments(Name, SR.getEnd()); 4850 return true; 4851 } 4852 case TemplateArgument::Expression: { 4853 // We have a template type parameter but the template argument is an 4854 // expression; see if maybe it is missing the "typename" keyword. 4855 CXXScopeSpec SS; 4856 DeclarationNameInfo NameInfo; 4857 4858 if (DependentScopeDeclRefExpr *ArgExpr = 4859 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 4860 SS.Adopt(ArgExpr->getQualifierLoc()); 4861 NameInfo = ArgExpr->getNameInfo(); 4862 } else if (CXXDependentScopeMemberExpr *ArgExpr = 4863 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 4864 if (ArgExpr->isImplicitAccess()) { 4865 SS.Adopt(ArgExpr->getQualifierLoc()); 4866 NameInfo = ArgExpr->getMemberNameInfo(); 4867 } 4868 } 4869 4870 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 4871 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 4872 LookupParsedName(Result, CurScope, &SS, /*ObjectType=*/QualType()); 4873 4874 if (Result.getAsSingle<TypeDecl>() || 4875 Result.wasNotFoundInCurrentInstantiation()) { 4876 assert(SS.getScopeRep() && "dependent scope expr must has a scope!"); 4877 // Suggest that the user add 'typename' before the NNS. 4878 SourceLocation Loc = AL.getSourceRange().getBegin(); 4879 Diag(Loc, getLangOpts().MSVCCompat 4880 ? diag::ext_ms_template_type_arg_missing_typename 4881 : diag::err_template_arg_must_be_type_suggest) 4882 << FixItHint::CreateInsertion(Loc, "typename "); 4883 NoteTemplateParameterLocation(*Param); 4884 4885 // Recover by synthesizing a type using the location information that we 4886 // already have. 4887 ArgType = Context.getDependentNameType(ElaboratedTypeKeyword::Typename, 4888 SS.getScopeRep(), II); 4889 TypeLocBuilder TLB; 4890 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 4891 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 4892 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4893 TL.setNameLoc(NameInfo.getLoc()); 4894 TSI = TLB.getTypeSourceInfo(Context, ArgType); 4895 4896 // Overwrite our input TemplateArgumentLoc so that we can recover 4897 // properly. 4898 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 4899 TemplateArgumentLocInfo(TSI)); 4900 4901 break; 4902 } 4903 } 4904 // fallthrough 4905 [[fallthrough]]; 4906 } 4907 default: { 4908 // We allow instantiateing a template with template argument packs when 4909 // building deduction guides. 4910 if (Arg.getKind() == TemplateArgument::Pack && 4911 CodeSynthesisContexts.back().Kind == 4912 Sema::CodeSynthesisContext::BuildingDeductionGuides) { 4913 SugaredConverted.push_back(Arg); 4914 CanonicalConverted.push_back(Arg); 4915 return false; 4916 } 4917 // We have a template type parameter but the template argument 4918 // is not a type. 4919 SourceRange SR = AL.getSourceRange(); 4920 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 4921 NoteTemplateParameterLocation(*Param); 4922 4923 return true; 4924 } 4925 } 4926 4927 if (CheckTemplateArgument(TSI)) 4928 return true; 4929 4930 // Objective-C ARC: 4931 // If an explicitly-specified template argument type is a lifetime type 4932 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 4933 if (getLangOpts().ObjCAutoRefCount && 4934 ArgType->isObjCLifetimeType() && 4935 !ArgType.getObjCLifetime()) { 4936 Qualifiers Qs; 4937 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 4938 ArgType = Context.getQualifiedType(ArgType, Qs); 4939 } 4940 4941 SugaredConverted.push_back(TemplateArgument(ArgType)); 4942 CanonicalConverted.push_back( 4943 TemplateArgument(Context.getCanonicalType(ArgType))); 4944 return false; 4945 } 4946 4947 /// Substitute template arguments into the default template argument for 4948 /// the given template type parameter. 4949 /// 4950 /// \param SemaRef the semantic analysis object for which we are performing 4951 /// the substitution. 4952 /// 4953 /// \param Template the template that we are synthesizing template arguments 4954 /// for. 4955 /// 4956 /// \param TemplateLoc the location of the template name that started the 4957 /// template-id we are checking. 4958 /// 4959 /// \param RAngleLoc the location of the right angle bracket ('>') that 4960 /// terminates the template-id. 4961 /// 4962 /// \param Param the template template parameter whose default we are 4963 /// substituting into. 4964 /// 4965 /// \param Converted the list of template arguments provided for template 4966 /// parameters that precede \p Param in the template parameter list. 4967 /// 4968 /// \param Output the resulting substituted template argument. 4969 /// 4970 /// \returns true if an error occurred. 4971 static bool SubstDefaultTemplateArgument( 4972 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 4973 SourceLocation RAngleLoc, TemplateTypeParmDecl *Param, 4974 ArrayRef<TemplateArgument> SugaredConverted, 4975 ArrayRef<TemplateArgument> CanonicalConverted, 4976 TemplateArgumentLoc &Output) { 4977 Output = Param->getDefaultArgument(); 4978 4979 // If the argument type is dependent, instantiate it now based 4980 // on the previously-computed template arguments. 4981 if (Output.getArgument().isInstantiationDependent()) { 4982 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, 4983 SugaredConverted, 4984 SourceRange(TemplateLoc, RAngleLoc)); 4985 if (Inst.isInvalid()) 4986 return true; 4987 4988 // Only substitute for the innermost template argument list. 4989 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 4990 /*Final=*/true); 4991 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 4992 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 4993 4994 bool ForLambdaCallOperator = false; 4995 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext())) 4996 ForLambdaCallOperator = Rec->isLambda(); 4997 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(), 4998 !ForLambdaCallOperator); 4999 5000 if (SemaRef.SubstTemplateArgument(Output, TemplateArgLists, Output, 5001 Param->getDefaultArgumentLoc(), 5002 Param->getDeclName())) 5003 return true; 5004 } 5005 5006 return false; 5007 } 5008 5009 /// Substitute template arguments into the default template argument for 5010 /// the given non-type template parameter. 5011 /// 5012 /// \param SemaRef the semantic analysis object for which we are performing 5013 /// the substitution. 5014 /// 5015 /// \param Template the template that we are synthesizing template arguments 5016 /// for. 5017 /// 5018 /// \param TemplateLoc the location of the template name that started the 5019 /// template-id we are checking. 5020 /// 5021 /// \param RAngleLoc the location of the right angle bracket ('>') that 5022 /// terminates the template-id. 5023 /// 5024 /// \param Param the non-type template parameter whose default we are 5025 /// substituting into. 5026 /// 5027 /// \param Converted the list of template arguments provided for template 5028 /// parameters that precede \p Param in the template parameter list. 5029 /// 5030 /// \returns the substituted template argument, or NULL if an error occurred. 5031 static bool SubstDefaultTemplateArgument( 5032 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 5033 SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param, 5034 ArrayRef<TemplateArgument> SugaredConverted, 5035 ArrayRef<TemplateArgument> CanonicalConverted, 5036 TemplateArgumentLoc &Output) { 5037 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, 5038 SugaredConverted, 5039 SourceRange(TemplateLoc, RAngleLoc)); 5040 if (Inst.isInvalid()) 5041 return true; 5042 5043 // Only substitute for the innermost template argument list. 5044 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 5045 /*Final=*/true); 5046 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5047 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 5048 5049 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5050 EnterExpressionEvaluationContext ConstantEvaluated( 5051 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 5052 return SemaRef.SubstTemplateArgument(Param->getDefaultArgument(), 5053 TemplateArgLists, Output); 5054 } 5055 5056 /// Substitute template arguments into the default template argument for 5057 /// the given template template parameter. 5058 /// 5059 /// \param SemaRef the semantic analysis object for which we are performing 5060 /// the substitution. 5061 /// 5062 /// \param Template the template that we are synthesizing template arguments 5063 /// for. 5064 /// 5065 /// \param TemplateLoc the location of the template name that started the 5066 /// template-id we are checking. 5067 /// 5068 /// \param RAngleLoc the location of the right angle bracket ('>') that 5069 /// terminates the template-id. 5070 /// 5071 /// \param Param the template template parameter whose default we are 5072 /// substituting into. 5073 /// 5074 /// \param Converted the list of template arguments provided for template 5075 /// parameters that precede \p Param in the template parameter list. 5076 /// 5077 /// \param QualifierLoc Will be set to the nested-name-specifier (with 5078 /// source-location information) that precedes the template name. 5079 /// 5080 /// \returns the substituted template argument, or NULL if an error occurred. 5081 static TemplateName SubstDefaultTemplateArgument( 5082 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 5083 SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param, 5084 ArrayRef<TemplateArgument> SugaredConverted, 5085 ArrayRef<TemplateArgument> CanonicalConverted, 5086 NestedNameSpecifierLoc &QualifierLoc) { 5087 Sema::InstantiatingTemplate Inst( 5088 SemaRef, TemplateLoc, TemplateParameter(Param), Template, 5089 SugaredConverted, SourceRange(TemplateLoc, RAngleLoc)); 5090 if (Inst.isInvalid()) 5091 return TemplateName(); 5092 5093 // Only substitute for the innermost template argument list. 5094 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 5095 /*Final=*/true); 5096 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5097 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 5098 5099 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5100 // Substitute into the nested-name-specifier first, 5101 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 5102 if (QualifierLoc) { 5103 QualifierLoc = 5104 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 5105 if (!QualifierLoc) 5106 return TemplateName(); 5107 } 5108 5109 return SemaRef.SubstTemplateName( 5110 QualifierLoc, 5111 Param->getDefaultArgument().getArgument().getAsTemplate(), 5112 Param->getDefaultArgument().getTemplateNameLoc(), 5113 TemplateArgLists); 5114 } 5115 5116 TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable( 5117 TemplateDecl *Template, SourceLocation TemplateLoc, 5118 SourceLocation RAngleLoc, Decl *Param, 5119 ArrayRef<TemplateArgument> SugaredConverted, 5120 ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) { 5121 HasDefaultArg = false; 5122 5123 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 5124 if (!hasReachableDefaultArgument(TypeParm)) 5125 return TemplateArgumentLoc(); 5126 5127 HasDefaultArg = true; 5128 TemplateArgumentLoc Output; 5129 if (SubstDefaultTemplateArgument(*this, Template, TemplateLoc, RAngleLoc, 5130 TypeParm, SugaredConverted, 5131 CanonicalConverted, Output)) 5132 return TemplateArgumentLoc(); 5133 return Output; 5134 } 5135 5136 if (NonTypeTemplateParmDecl *NonTypeParm 5137 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5138 if (!hasReachableDefaultArgument(NonTypeParm)) 5139 return TemplateArgumentLoc(); 5140 5141 HasDefaultArg = true; 5142 TemplateArgumentLoc Output; 5143 if (SubstDefaultTemplateArgument(*this, Template, TemplateLoc, RAngleLoc, 5144 NonTypeParm, SugaredConverted, 5145 CanonicalConverted, Output)) 5146 return TemplateArgumentLoc(); 5147 return Output; 5148 } 5149 5150 TemplateTemplateParmDecl *TempTempParm 5151 = cast<TemplateTemplateParmDecl>(Param); 5152 if (!hasReachableDefaultArgument(TempTempParm)) 5153 return TemplateArgumentLoc(); 5154 5155 HasDefaultArg = true; 5156 NestedNameSpecifierLoc QualifierLoc; 5157 TemplateName TName = SubstDefaultTemplateArgument( 5158 *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted, 5159 CanonicalConverted, QualifierLoc); 5160 if (TName.isNull()) 5161 return TemplateArgumentLoc(); 5162 5163 return TemplateArgumentLoc( 5164 Context, TemplateArgument(TName), 5165 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 5166 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 5167 } 5168 5169 /// Convert a template-argument that we parsed as a type into a template, if 5170 /// possible. C++ permits injected-class-names to perform dual service as 5171 /// template template arguments and as template type arguments. 5172 static TemplateArgumentLoc 5173 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { 5174 // Extract and step over any surrounding nested-name-specifier. 5175 NestedNameSpecifierLoc QualLoc; 5176 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { 5177 if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None) 5178 return TemplateArgumentLoc(); 5179 5180 QualLoc = ETLoc.getQualifierLoc(); 5181 TLoc = ETLoc.getNamedTypeLoc(); 5182 } 5183 // If this type was written as an injected-class-name, it can be used as a 5184 // template template argument. 5185 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) 5186 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), 5187 QualLoc, InjLoc.getNameLoc()); 5188 5189 // If this type was written as an injected-class-name, it may have been 5190 // converted to a RecordType during instantiation. If the RecordType is 5191 // *not* wrapped in a TemplateSpecializationType and denotes a class 5192 // template specialization, it must have come from an injected-class-name. 5193 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) 5194 if (auto *CTSD = 5195 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) 5196 return TemplateArgumentLoc(Context, 5197 TemplateName(CTSD->getSpecializedTemplate()), 5198 QualLoc, RecLoc.getNameLoc()); 5199 5200 return TemplateArgumentLoc(); 5201 } 5202 5203 bool Sema::CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &ArgLoc, 5204 NamedDecl *Template, 5205 SourceLocation TemplateLoc, 5206 SourceLocation RAngleLoc, 5207 unsigned ArgumentPackIndex, 5208 CheckTemplateArgumentInfo &CTAI, 5209 CheckTemplateArgumentKind CTAK) { 5210 // Check template type parameters. 5211 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 5212 return CheckTemplateTypeArgument(TTP, ArgLoc, CTAI.SugaredConverted, 5213 CTAI.CanonicalConverted); 5214 5215 const TemplateArgument &Arg = ArgLoc.getArgument(); 5216 // Check non-type template parameters. 5217 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5218 // Do substitution on the type of the non-type template parameter 5219 // with the template arguments we've seen thus far. But if the 5220 // template has a dependent context then we cannot substitute yet. 5221 QualType NTTPType = NTTP->getType(); 5222 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 5223 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 5224 5225 if (NTTPType->isInstantiationDependentType() && 5226 !isa<TemplateTemplateParmDecl>(Template) && 5227 !Template->getDeclContext()->isDependentContext()) { 5228 // Do substitution on the type of the non-type template parameter. 5229 InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP, 5230 CTAI.SugaredConverted, 5231 SourceRange(TemplateLoc, RAngleLoc)); 5232 if (Inst.isInvalid()) 5233 return true; 5234 5235 MultiLevelTemplateArgumentList MLTAL(Template, CTAI.SugaredConverted, 5236 /*Final=*/true); 5237 // If the parameter is a pack expansion, expand this slice of the pack. 5238 if (auto *PET = NTTPType->getAs<PackExpansionType>()) { 5239 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 5240 ArgumentPackIndex); 5241 NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(), 5242 NTTP->getDeclName()); 5243 } else { 5244 NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(), 5245 NTTP->getDeclName()); 5246 } 5247 5248 // If that worked, check the non-type template parameter type 5249 // for validity. 5250 if (!NTTPType.isNull()) 5251 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 5252 NTTP->getLocation()); 5253 if (NTTPType.isNull()) 5254 return true; 5255 } 5256 5257 auto checkExpr = [&](Expr *E) -> Expr * { 5258 TemplateArgument SugaredResult, CanonicalResult; 5259 unsigned CurSFINAEErrors = NumSFINAEErrors; 5260 ExprResult Res = 5261 CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult, 5262 CanonicalResult, CTAI.MatchingTTP, CTAK); 5263 // If the current template argument causes an error, give up now. 5264 if (Res.isInvalid() || CurSFINAEErrors < NumSFINAEErrors) 5265 return nullptr; 5266 CTAI.SugaredConverted.push_back(SugaredResult); 5267 CTAI.CanonicalConverted.push_back(CanonicalResult); 5268 return Res.get(); 5269 }; 5270 5271 switch (Arg.getKind()) { 5272 case TemplateArgument::Null: 5273 llvm_unreachable("Should never see a NULL template argument here"); 5274 5275 case TemplateArgument::Expression: { 5276 Expr *E = Arg.getAsExpr(); 5277 Expr *R = checkExpr(E); 5278 if (!R) 5279 return true; 5280 // If the resulting expression is new, then use it in place of the 5281 // old expression in the template argument. 5282 if (R != E) { 5283 TemplateArgument TA(R); 5284 ArgLoc = TemplateArgumentLoc(TA, R); 5285 } 5286 break; 5287 } 5288 5289 // As for the converted NTTP kinds, they still might need another 5290 // conversion, as the new corresponding parameter might be different. 5291 // Ideally, we would always perform substitution starting with sugared types 5292 // and never need these, as we would still have expressions. Since these are 5293 // needed so rarely, it's probably a better tradeoff to just convert them 5294 // back to expressions. 5295 case TemplateArgument::Integral: 5296 case TemplateArgument::Declaration: 5297 case TemplateArgument::NullPtr: 5298 case TemplateArgument::StructuralValue: { 5299 // FIXME: StructuralValue is untested here. 5300 ExprResult R = 5301 BuildExpressionFromNonTypeTemplateArgument(Arg, SourceLocation()); 5302 assert(R.isUsable()); 5303 if (!checkExpr(R.get())) 5304 return true; 5305 break; 5306 } 5307 5308 case TemplateArgument::Template: 5309 case TemplateArgument::TemplateExpansion: 5310 // We were given a template template argument. It may not be ill-formed; 5311 // see below. 5312 if (DependentTemplateName *DTN = Arg.getAsTemplateOrTemplatePattern() 5313 .getAsDependentTemplateName()) { 5314 // We have a template argument such as \c T::template X, which we 5315 // parsed as a template template argument. However, since we now 5316 // know that we need a non-type template argument, convert this 5317 // template name into an expression. 5318 5319 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 5320 ArgLoc.getTemplateNameLoc()); 5321 5322 CXXScopeSpec SS; 5323 SS.Adopt(ArgLoc.getTemplateQualifierLoc()); 5324 // FIXME: the template-template arg was a DependentTemplateName, 5325 // so it was provided with a template keyword. However, its source 5326 // location is not stored in the template argument structure. 5327 SourceLocation TemplateKWLoc; 5328 ExprResult E = DependentScopeDeclRefExpr::Create( 5329 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 5330 nullptr); 5331 5332 // If we parsed the template argument as a pack expansion, create a 5333 // pack expansion expression. 5334 if (Arg.getKind() == TemplateArgument::TemplateExpansion) { 5335 E = ActOnPackExpansion(E.get(), ArgLoc.getTemplateEllipsisLoc()); 5336 if (E.isInvalid()) 5337 return true; 5338 } 5339 5340 TemplateArgument SugaredResult, CanonicalResult; 5341 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult, 5342 CanonicalResult, /*PartialOrderingTTP=*/false, 5343 CTAK_Specified); 5344 if (E.isInvalid()) 5345 return true; 5346 5347 CTAI.SugaredConverted.push_back(SugaredResult); 5348 CTAI.CanonicalConverted.push_back(CanonicalResult); 5349 break; 5350 } 5351 5352 // We have a template argument that actually does refer to a class 5353 // template, alias template, or template template parameter, and 5354 // therefore cannot be a non-type template argument. 5355 Diag(ArgLoc.getLocation(), diag::err_template_arg_must_be_expr) 5356 << ArgLoc.getSourceRange(); 5357 NoteTemplateParameterLocation(*Param); 5358 5359 return true; 5360 5361 case TemplateArgument::Type: { 5362 // We have a non-type template parameter but the template 5363 // argument is a type. 5364 5365 // C++ [temp.arg]p2: 5366 // In a template-argument, an ambiguity between a type-id and 5367 // an expression is resolved to a type-id, regardless of the 5368 // form of the corresponding template-parameter. 5369 // 5370 // We warn specifically about this case, since it can be rather 5371 // confusing for users. 5372 QualType T = Arg.getAsType(); 5373 SourceRange SR = ArgLoc.getSourceRange(); 5374 if (T->isFunctionType()) 5375 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 5376 else 5377 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 5378 NoteTemplateParameterLocation(*Param); 5379 return true; 5380 } 5381 5382 case TemplateArgument::Pack: 5383 llvm_unreachable("Caller must expand template argument packs"); 5384 } 5385 5386 return false; 5387 } 5388 5389 5390 // Check template template parameters. 5391 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 5392 5393 TemplateParameterList *Params = TempParm->getTemplateParameters(); 5394 if (TempParm->isExpandedParameterPack()) 5395 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); 5396 5397 // Substitute into the template parameter list of the template 5398 // template parameter, since previously-supplied template arguments 5399 // may appear within the template template parameter. 5400 // 5401 // FIXME: Skip this if the parameters aren't instantiation-dependent. 5402 { 5403 // Set up a template instantiation context. 5404 LocalInstantiationScope Scope(*this); 5405 InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm, 5406 CTAI.SugaredConverted, 5407 SourceRange(TemplateLoc, RAngleLoc)); 5408 if (Inst.isInvalid()) 5409 return true; 5410 5411 Params = SubstTemplateParams( 5412 Params, CurContext, 5413 MultiLevelTemplateArgumentList(Template, CTAI.SugaredConverted, 5414 /*Final=*/true), 5415 /*EvaluateConstraints=*/false); 5416 if (!Params) 5417 return true; 5418 } 5419 5420 // C++1z [temp.local]p1: (DR1004) 5421 // When [the injected-class-name] is used [...] as a template-argument for 5422 // a template template-parameter [...] it refers to the class template 5423 // itself. 5424 if (Arg.getKind() == TemplateArgument::Type) { 5425 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( 5426 Context, ArgLoc.getTypeSourceInfo()->getTypeLoc()); 5427 if (!ConvertedArg.getArgument().isNull()) 5428 ArgLoc = ConvertedArg; 5429 } 5430 5431 switch (Arg.getKind()) { 5432 case TemplateArgument::Null: 5433 llvm_unreachable("Should never see a NULL template argument here"); 5434 5435 case TemplateArgument::Template: 5436 case TemplateArgument::TemplateExpansion: 5437 if (CheckTemplateTemplateArgument(TempParm, Params, ArgLoc, 5438 CTAI.PartialOrdering, 5439 &CTAI.MatchedPackOnParmToNonPackOnArg)) 5440 return true; 5441 5442 CTAI.SugaredConverted.push_back(Arg); 5443 CTAI.CanonicalConverted.push_back( 5444 Context.getCanonicalTemplateArgument(Arg)); 5445 break; 5446 5447 case TemplateArgument::Expression: 5448 case TemplateArgument::Type: 5449 // We have a template template parameter but the template 5450 // argument does not refer to a template. 5451 Diag(ArgLoc.getLocation(), diag::err_template_arg_must_be_template) 5452 << getLangOpts().CPlusPlus11; 5453 return true; 5454 5455 case TemplateArgument::Declaration: 5456 case TemplateArgument::Integral: 5457 case TemplateArgument::StructuralValue: 5458 case TemplateArgument::NullPtr: 5459 llvm_unreachable("non-type argument with template template parameter"); 5460 5461 case TemplateArgument::Pack: 5462 llvm_unreachable("Caller must expand template argument packs"); 5463 } 5464 5465 return false; 5466 } 5467 5468 /// Diagnose a missing template argument. 5469 template<typename TemplateParmDecl> 5470 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 5471 TemplateDecl *TD, 5472 const TemplateParmDecl *D, 5473 TemplateArgumentListInfo &Args) { 5474 // Dig out the most recent declaration of the template parameter; there may be 5475 // declarations of the template that are more recent than TD. 5476 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 5477 ->getTemplateParameters() 5478 ->getParam(D->getIndex())); 5479 5480 // If there's a default argument that's not reachable, diagnose that we're 5481 // missing a module import. 5482 llvm::SmallVector<Module*, 8> Modules; 5483 if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) { 5484 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 5485 D->getDefaultArgumentLoc(), Modules, 5486 Sema::MissingImportKind::DefaultArgument, 5487 /*Recover*/true); 5488 return true; 5489 } 5490 5491 // FIXME: If there's a more recent default argument that *is* visible, 5492 // diagnose that it was declared too late. 5493 5494 TemplateParameterList *Params = TD->getTemplateParameters(); 5495 5496 S.Diag(Loc, diag::err_template_arg_list_different_arity) 5497 << /*not enough args*/0 5498 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) 5499 << TD; 5500 S.NoteTemplateLocation(*TD, Params->getSourceRange()); 5501 return true; 5502 } 5503 5504 /// Check that the given template argument list is well-formed 5505 /// for specializing the given template. 5506 bool Sema::CheckTemplateArgumentList( 5507 TemplateDecl *Template, SourceLocation TemplateLoc, 5508 TemplateArgumentListInfo &TemplateArgs, const DefaultArguments &DefaultArgs, 5509 bool PartialTemplateArgs, CheckTemplateArgumentInfo &CTAI, 5510 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { 5511 5512 if (ConstraintsNotSatisfied) 5513 *ConstraintsNotSatisfied = false; 5514 5515 // Make a copy of the template arguments for processing. Only make the 5516 // changes at the end when successful in matching the arguments to the 5517 // template. 5518 TemplateArgumentListInfo NewArgs = TemplateArgs; 5519 5520 TemplateParameterList *Params = GetTemplateParameterList(Template); 5521 5522 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 5523 5524 // C++23 [temp.arg.general]p1: 5525 // [...] The type and form of each template-argument specified in 5526 // a template-id shall match the type and form specified for the 5527 // corresponding parameter declared by the template in its 5528 // template-parameter-list. 5529 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 5530 SmallVector<TemplateArgument, 2> SugaredArgumentPack; 5531 SmallVector<TemplateArgument, 2> CanonicalArgumentPack; 5532 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 5533 LocalInstantiationScope InstScope(*this, true); 5534 for (TemplateParameterList::iterator ParamBegin = Params->begin(), 5535 ParamEnd = Params->end(), 5536 Param = ParamBegin; 5537 Param != ParamEnd; 5538 /* increment in loop */) { 5539 if (size_t ParamIdx = Param - ParamBegin; 5540 DefaultArgs && ParamIdx >= DefaultArgs.StartPos) { 5541 // All written arguments should have been consumed by this point. 5542 assert(ArgIdx == NumArgs && "bad default argument deduction"); 5543 if (ParamIdx == DefaultArgs.StartPos) { 5544 assert(Param + DefaultArgs.Args.size() <= ParamEnd); 5545 // Default arguments from a DeducedTemplateName are already converted. 5546 for (const TemplateArgument &DefArg : DefaultArgs.Args) { 5547 CTAI.SugaredConverted.push_back(DefArg); 5548 CTAI.CanonicalConverted.push_back( 5549 Context.getCanonicalTemplateArgument(DefArg)); 5550 ++Param; 5551 } 5552 continue; 5553 } 5554 } 5555 5556 // If we have an expanded parameter pack, make sure we don't have too 5557 // many arguments. 5558 if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 5559 if (*Expansions == SugaredArgumentPack.size()) { 5560 // We're done with this parameter pack. Pack up its arguments and add 5561 // them to the list. 5562 CTAI.SugaredConverted.push_back( 5563 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 5564 SugaredArgumentPack.clear(); 5565 5566 CTAI.CanonicalConverted.push_back( 5567 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 5568 CanonicalArgumentPack.clear(); 5569 5570 // This argument is assigned to the next parameter. 5571 ++Param; 5572 continue; 5573 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 5574 // Not enough arguments for this parameter pack. 5575 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5576 << /*not enough args*/0 5577 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5578 << Template; 5579 NoteTemplateLocation(*Template, Params->getSourceRange()); 5580 return true; 5581 } 5582 } 5583 5584 if (ArgIdx < NumArgs) { 5585 TemplateArgumentLoc &ArgLoc = NewArgs[ArgIdx]; 5586 bool NonPackParameter = 5587 !(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param); 5588 bool ArgIsExpansion = ArgLoc.getArgument().isPackExpansion(); 5589 5590 if (ArgIsExpansion && CTAI.MatchingTTP) { 5591 SmallVector<TemplateArgument, 4> Args(ParamEnd - Param); 5592 for (TemplateParameterList::iterator First = Param; Param != ParamEnd; 5593 ++Param) { 5594 TemplateArgument &Arg = Args[Param - First]; 5595 Arg = ArgLoc.getArgument(); 5596 if (!(*Param)->isTemplateParameterPack() || 5597 getExpandedPackSize(*Param)) 5598 Arg = Arg.getPackExpansionPattern(); 5599 TemplateArgumentLoc NewArgLoc(Arg, ArgLoc.getLocInfo()); 5600 SaveAndRestore _1(CTAI.PartialOrdering, false); 5601 SaveAndRestore _2(CTAI.MatchingTTP, true); 5602 if (CheckTemplateArgument(*Param, NewArgLoc, Template, TemplateLoc, 5603 RAngleLoc, SugaredArgumentPack.size(), CTAI, 5604 CTAK_Specified)) 5605 return true; 5606 Arg = NewArgLoc.getArgument(); 5607 CTAI.CanonicalConverted.back().setIsDefaulted( 5608 clang::isSubstitutedDefaultArgument(Context, Arg, *Param, 5609 CTAI.CanonicalConverted, 5610 Params->getDepth())); 5611 } 5612 ArgLoc = 5613 TemplateArgumentLoc(TemplateArgument::CreatePackCopy(Context, Args), 5614 ArgLoc.getLocInfo()); 5615 } else { 5616 SaveAndRestore _1(CTAI.PartialOrdering, false); 5617 if (CheckTemplateArgument(*Param, ArgLoc, Template, TemplateLoc, 5618 RAngleLoc, SugaredArgumentPack.size(), CTAI, 5619 CTAK_Specified)) 5620 return true; 5621 CTAI.CanonicalConverted.back().setIsDefaulted( 5622 clang::isSubstitutedDefaultArgument(Context, ArgLoc.getArgument(), 5623 *Param, CTAI.CanonicalConverted, 5624 Params->getDepth())); 5625 if (ArgIsExpansion && NonPackParameter) { 5626 // CWG1430/CWG2686: we have a pack expansion as an argument to an 5627 // alias template or concept, and it's not part of a parameter pack. 5628 // This can't be canonicalized, so reject it now. 5629 if (isa<TypeAliasTemplateDecl, ConceptDecl>(Template)) { 5630 Diag(ArgLoc.getLocation(), 5631 diag::err_template_expansion_into_fixed_list) 5632 << (isa<ConceptDecl>(Template) ? 1 : 0) 5633 << ArgLoc.getSourceRange(); 5634 NoteTemplateParameterLocation(**Param); 5635 return true; 5636 } 5637 } 5638 } 5639 5640 // We're now done with this argument. 5641 ++ArgIdx; 5642 5643 if (ArgIsExpansion && (CTAI.MatchingTTP || NonPackParameter)) { 5644 // Directly convert the remaining arguments, because we don't know what 5645 // parameters they'll match up with. 5646 5647 if (!SugaredArgumentPack.empty()) { 5648 // If we were part way through filling in an expanded parameter pack, 5649 // fall back to just producing individual arguments. 5650 CTAI.SugaredConverted.insert(CTAI.SugaredConverted.end(), 5651 SugaredArgumentPack.begin(), 5652 SugaredArgumentPack.end()); 5653 SugaredArgumentPack.clear(); 5654 5655 CTAI.CanonicalConverted.insert(CTAI.CanonicalConverted.end(), 5656 CanonicalArgumentPack.begin(), 5657 CanonicalArgumentPack.end()); 5658 CanonicalArgumentPack.clear(); 5659 } 5660 5661 while (ArgIdx < NumArgs) { 5662 const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument(); 5663 CTAI.SugaredConverted.push_back(Arg); 5664 CTAI.CanonicalConverted.push_back( 5665 Context.getCanonicalTemplateArgument(Arg)); 5666 ++ArgIdx; 5667 } 5668 5669 return false; 5670 } 5671 5672 if ((*Param)->isTemplateParameterPack()) { 5673 // The template parameter was a template parameter pack, so take the 5674 // deduced argument and place it on the argument pack. Note that we 5675 // stay on the same template parameter so that we can deduce more 5676 // arguments. 5677 SugaredArgumentPack.push_back(CTAI.SugaredConverted.pop_back_val()); 5678 CanonicalArgumentPack.push_back(CTAI.CanonicalConverted.pop_back_val()); 5679 } else { 5680 // Move to the next template parameter. 5681 ++Param; 5682 } 5683 continue; 5684 } 5685 5686 // If we're checking a partial template argument list, we're done. 5687 if (PartialTemplateArgs) { 5688 if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) { 5689 CTAI.SugaredConverted.push_back( 5690 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 5691 CTAI.CanonicalConverted.push_back( 5692 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 5693 } 5694 return false; 5695 } 5696 5697 // If we have a template parameter pack with no more corresponding 5698 // arguments, just break out now and we'll fill in the argument pack below. 5699 if ((*Param)->isTemplateParameterPack()) { 5700 assert(!getExpandedPackSize(*Param) && 5701 "Should have dealt with this already"); 5702 5703 // A non-expanded parameter pack before the end of the parameter list 5704 // only occurs for an ill-formed template parameter list, unless we've 5705 // got a partial argument list for a function template, so just bail out. 5706 if (Param + 1 != ParamEnd) { 5707 assert( 5708 (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) && 5709 "Concept templates must have parameter packs at the end."); 5710 return true; 5711 } 5712 5713 CTAI.SugaredConverted.push_back( 5714 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 5715 SugaredArgumentPack.clear(); 5716 5717 CTAI.CanonicalConverted.push_back( 5718 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 5719 CanonicalArgumentPack.clear(); 5720 5721 ++Param; 5722 continue; 5723 } 5724 5725 // Check whether we have a default argument. 5726 bool HasDefaultArg; 5727 5728 // Retrieve the default template argument from the template 5729 // parameter. For each kind of template parameter, we substitute the 5730 // template arguments provided thus far and any "outer" template arguments 5731 // (when the template parameter was part of a nested template) into 5732 // the default argument. 5733 TemplateArgumentLoc Arg = SubstDefaultTemplateArgumentIfAvailable( 5734 Template, TemplateLoc, RAngleLoc, *Param, CTAI.SugaredConverted, 5735 CTAI.CanonicalConverted, HasDefaultArg); 5736 5737 if (Arg.getArgument().isNull()) { 5738 if (!HasDefaultArg) { 5739 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) 5740 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 5741 NewArgs); 5742 if (NonTypeTemplateParmDecl *NTTP = 5743 dyn_cast<NonTypeTemplateParmDecl>(*Param)) 5744 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 5745 NewArgs); 5746 return diagnoseMissingArgument(*this, TemplateLoc, Template, 5747 cast<TemplateTemplateParmDecl>(*Param), 5748 NewArgs); 5749 } 5750 return true; 5751 } 5752 5753 // Introduce an instantiation record that describes where we are using 5754 // the default template argument. We're not actually instantiating a 5755 // template here, we just create this object to put a note into the 5756 // context stack. 5757 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, 5758 CTAI.SugaredConverted, 5759 SourceRange(TemplateLoc, RAngleLoc)); 5760 if (Inst.isInvalid()) 5761 return true; 5762 5763 SaveAndRestore _1(CTAI.PartialOrdering, false); 5764 SaveAndRestore _2(CTAI.MatchingTTP, false); 5765 SaveAndRestore _3(CTAI.MatchedPackOnParmToNonPackOnArg, {}); 5766 // Check the default template argument. 5767 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0, 5768 CTAI, CTAK_Specified)) 5769 return true; 5770 5771 CTAI.SugaredConverted.back().setIsDefaulted(true); 5772 CTAI.CanonicalConverted.back().setIsDefaulted(true); 5773 5774 // Core issue 150 (assumed resolution): if this is a template template 5775 // parameter, keep track of the default template arguments from the 5776 // template definition. 5777 if (isTemplateTemplateParameter) 5778 NewArgs.addArgument(Arg); 5779 5780 // Move to the next template parameter and argument. 5781 ++Param; 5782 ++ArgIdx; 5783 } 5784 5785 // If we're performing a partial argument substitution, allow any trailing 5786 // pack expansions; they might be empty. This can happen even if 5787 // PartialTemplateArgs is false (the list of arguments is complete but 5788 // still dependent). 5789 if (CTAI.MatchingTTP || 5790 (CurrentInstantiationScope && 5791 CurrentInstantiationScope->getPartiallySubstitutedPack())) { 5792 while (ArgIdx < NumArgs && 5793 NewArgs[ArgIdx].getArgument().isPackExpansion()) { 5794 const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument(); 5795 CTAI.SugaredConverted.push_back(Arg); 5796 CTAI.CanonicalConverted.push_back( 5797 Context.getCanonicalTemplateArgument(Arg)); 5798 } 5799 } 5800 5801 // If we have any leftover arguments, then there were too many arguments. 5802 // Complain and fail. 5803 if (ArgIdx < NumArgs) { 5804 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5805 << /*too many args*/1 5806 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5807 << Template 5808 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); 5809 NoteTemplateLocation(*Template, Params->getSourceRange()); 5810 return true; 5811 } 5812 5813 // No problems found with the new argument list, propagate changes back 5814 // to caller. 5815 if (UpdateArgsWithConversions) 5816 TemplateArgs = std::move(NewArgs); 5817 5818 if (!PartialTemplateArgs) { 5819 // Setup the context/ThisScope for the case where we are needing to 5820 // re-instantiate constraints outside of normal instantiation. 5821 DeclContext *NewContext = Template->getDeclContext(); 5822 5823 // If this template is in a template, make sure we extract the templated 5824 // decl. 5825 if (auto *TD = dyn_cast<TemplateDecl>(NewContext)) 5826 NewContext = Decl::castToDeclContext(TD->getTemplatedDecl()); 5827 auto *RD = dyn_cast<CXXRecordDecl>(NewContext); 5828 5829 Qualifiers ThisQuals; 5830 if (const auto *Method = 5831 dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl())) 5832 ThisQuals = Method->getMethodQualifiers(); 5833 5834 ContextRAII Context(*this, NewContext); 5835 CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr); 5836 5837 MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs( 5838 Template, NewContext, /*Final=*/false, CTAI.CanonicalConverted, 5839 /*RelativeToPrimary=*/true, 5840 /*Pattern=*/nullptr, 5841 /*ForConceptInstantiation=*/true); 5842 if (EnsureTemplateArgumentListConstraints( 5843 Template, MLTAL, 5844 SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) { 5845 if (ConstraintsNotSatisfied) 5846 *ConstraintsNotSatisfied = true; 5847 return true; 5848 } 5849 } 5850 5851 return false; 5852 } 5853 5854 namespace { 5855 class UnnamedLocalNoLinkageFinder 5856 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 5857 { 5858 Sema &S; 5859 SourceRange SR; 5860 5861 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 5862 5863 public: 5864 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 5865 5866 bool Visit(QualType T) { 5867 return T.isNull() ? false : inherited::Visit(T.getTypePtr()); 5868 } 5869 5870 #define TYPE(Class, Parent) \ 5871 bool Visit##Class##Type(const Class##Type *); 5872 #define ABSTRACT_TYPE(Class, Parent) \ 5873 bool Visit##Class##Type(const Class##Type *) { return false; } 5874 #define NON_CANONICAL_TYPE(Class, Parent) \ 5875 bool Visit##Class##Type(const Class##Type *) { return false; } 5876 #include "clang/AST/TypeNodes.inc" 5877 5878 bool VisitTagDecl(const TagDecl *Tag); 5879 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 5880 }; 5881 } // end anonymous namespace 5882 5883 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 5884 return false; 5885 } 5886 5887 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 5888 return Visit(T->getElementType()); 5889 } 5890 5891 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 5892 return Visit(T->getPointeeType()); 5893 } 5894 5895 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 5896 const BlockPointerType* T) { 5897 return Visit(T->getPointeeType()); 5898 } 5899 5900 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 5901 const LValueReferenceType* T) { 5902 return Visit(T->getPointeeType()); 5903 } 5904 5905 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 5906 const RValueReferenceType* T) { 5907 return Visit(T->getPointeeType()); 5908 } 5909 5910 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 5911 const MemberPointerType* T) { 5912 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 5913 } 5914 5915 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 5916 const ConstantArrayType* T) { 5917 return Visit(T->getElementType()); 5918 } 5919 5920 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 5921 const IncompleteArrayType* T) { 5922 return Visit(T->getElementType()); 5923 } 5924 5925 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 5926 const VariableArrayType* T) { 5927 return Visit(T->getElementType()); 5928 } 5929 5930 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 5931 const DependentSizedArrayType* T) { 5932 return Visit(T->getElementType()); 5933 } 5934 5935 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 5936 const DependentSizedExtVectorType* T) { 5937 return Visit(T->getElementType()); 5938 } 5939 5940 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( 5941 const DependentSizedMatrixType *T) { 5942 return Visit(T->getElementType()); 5943 } 5944 5945 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( 5946 const DependentAddressSpaceType *T) { 5947 return Visit(T->getPointeeType()); 5948 } 5949 5950 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 5951 return Visit(T->getElementType()); 5952 } 5953 5954 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( 5955 const DependentVectorType *T) { 5956 return Visit(T->getElementType()); 5957 } 5958 5959 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 5960 return Visit(T->getElementType()); 5961 } 5962 5963 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( 5964 const ConstantMatrixType *T) { 5965 return Visit(T->getElementType()); 5966 } 5967 5968 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 5969 const FunctionProtoType* T) { 5970 for (const auto &A : T->param_types()) { 5971 if (Visit(A)) 5972 return true; 5973 } 5974 5975 return Visit(T->getReturnType()); 5976 } 5977 5978 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 5979 const FunctionNoProtoType* T) { 5980 return Visit(T->getReturnType()); 5981 } 5982 5983 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 5984 const UnresolvedUsingType*) { 5985 return false; 5986 } 5987 5988 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 5989 return false; 5990 } 5991 5992 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 5993 return Visit(T->getUnmodifiedType()); 5994 } 5995 5996 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 5997 return false; 5998 } 5999 6000 bool UnnamedLocalNoLinkageFinder::VisitPackIndexingType( 6001 const PackIndexingType *) { 6002 return false; 6003 } 6004 6005 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 6006 const UnaryTransformType*) { 6007 return false; 6008 } 6009 6010 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 6011 return Visit(T->getDeducedType()); 6012 } 6013 6014 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( 6015 const DeducedTemplateSpecializationType *T) { 6016 return Visit(T->getDeducedType()); 6017 } 6018 6019 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 6020 return VisitTagDecl(T->getDecl()); 6021 } 6022 6023 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 6024 return VisitTagDecl(T->getDecl()); 6025 } 6026 6027 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 6028 const TemplateTypeParmType*) { 6029 return false; 6030 } 6031 6032 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 6033 const SubstTemplateTypeParmPackType *) { 6034 return false; 6035 } 6036 6037 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 6038 const TemplateSpecializationType*) { 6039 return false; 6040 } 6041 6042 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 6043 const InjectedClassNameType* T) { 6044 return VisitTagDecl(T->getDecl()); 6045 } 6046 6047 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 6048 const DependentNameType* T) { 6049 return VisitNestedNameSpecifier(T->getQualifier()); 6050 } 6051 6052 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 6053 const DependentTemplateSpecializationType* T) { 6054 if (auto *Q = T->getQualifier()) 6055 return VisitNestedNameSpecifier(Q); 6056 return false; 6057 } 6058 6059 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 6060 const PackExpansionType* T) { 6061 return Visit(T->getPattern()); 6062 } 6063 6064 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 6065 return false; 6066 } 6067 6068 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 6069 const ObjCInterfaceType *) { 6070 return false; 6071 } 6072 6073 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 6074 const ObjCObjectPointerType *) { 6075 return false; 6076 } 6077 6078 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 6079 return Visit(T->getValueType()); 6080 } 6081 6082 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { 6083 return false; 6084 } 6085 6086 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) { 6087 return false; 6088 } 6089 6090 bool UnnamedLocalNoLinkageFinder::VisitArrayParameterType( 6091 const ArrayParameterType *T) { 6092 return VisitConstantArrayType(T); 6093 } 6094 6095 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType( 6096 const DependentBitIntType *T) { 6097 return false; 6098 } 6099 6100 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 6101 if (Tag->getDeclContext()->isFunctionOrMethod()) { 6102 S.Diag(SR.getBegin(), 6103 S.getLangOpts().CPlusPlus11 ? 6104 diag::warn_cxx98_compat_template_arg_local_type : 6105 diag::ext_template_arg_local_type) 6106 << S.Context.getTypeDeclType(Tag) << SR; 6107 return true; 6108 } 6109 6110 if (!Tag->hasNameForLinkage()) { 6111 S.Diag(SR.getBegin(), 6112 S.getLangOpts().CPlusPlus11 ? 6113 diag::warn_cxx98_compat_template_arg_unnamed_type : 6114 diag::ext_template_arg_unnamed_type) << SR; 6115 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 6116 return true; 6117 } 6118 6119 return false; 6120 } 6121 6122 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 6123 NestedNameSpecifier *NNS) { 6124 assert(NNS); 6125 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 6126 return true; 6127 6128 switch (NNS->getKind()) { 6129 case NestedNameSpecifier::Identifier: 6130 case NestedNameSpecifier::Namespace: 6131 case NestedNameSpecifier::NamespaceAlias: 6132 case NestedNameSpecifier::Global: 6133 case NestedNameSpecifier::Super: 6134 return false; 6135 6136 case NestedNameSpecifier::TypeSpec: 6137 case NestedNameSpecifier::TypeSpecWithTemplate: 6138 return Visit(QualType(NNS->getAsType(), 0)); 6139 } 6140 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 6141 } 6142 6143 bool UnnamedLocalNoLinkageFinder::VisitHLSLAttributedResourceType( 6144 const HLSLAttributedResourceType *T) { 6145 if (T->hasContainedType() && Visit(T->getContainedType())) 6146 return true; 6147 return Visit(T->getWrappedType()); 6148 } 6149 6150 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) { 6151 assert(ArgInfo && "invalid TypeSourceInfo"); 6152 QualType Arg = ArgInfo->getType(); 6153 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 6154 QualType CanonArg = Context.getCanonicalType(Arg); 6155 6156 if (CanonArg->isVariablyModifiedType()) { 6157 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 6158 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 6159 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 6160 } 6161 6162 // C++03 [temp.arg.type]p2: 6163 // A local type, a type with no linkage, an unnamed type or a type 6164 // compounded from any of these types shall not be used as a 6165 // template-argument for a template type-parameter. 6166 // 6167 // C++11 allows these, and even in C++03 we allow them as an extension with 6168 // a warning. 6169 if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) { 6170 UnnamedLocalNoLinkageFinder Finder(*this, SR); 6171 (void)Finder.Visit(CanonArg); 6172 } 6173 6174 return false; 6175 } 6176 6177 enum NullPointerValueKind { 6178 NPV_NotNullPointer, 6179 NPV_NullPointer, 6180 NPV_Error 6181 }; 6182 6183 /// Determine whether the given template argument is a null pointer 6184 /// value of the appropriate type. 6185 static NullPointerValueKind 6186 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 6187 QualType ParamType, Expr *Arg, 6188 Decl *Entity = nullptr) { 6189 if (Arg->isValueDependent() || Arg->isTypeDependent()) 6190 return NPV_NotNullPointer; 6191 6192 // dllimport'd entities aren't constant but are available inside of template 6193 // arguments. 6194 if (Entity && Entity->hasAttr<DLLImportAttr>()) 6195 return NPV_NotNullPointer; 6196 6197 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 6198 llvm_unreachable( 6199 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 6200 6201 if (!S.getLangOpts().CPlusPlus11) 6202 return NPV_NotNullPointer; 6203 6204 // Determine whether we have a constant expression. 6205 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 6206 if (ArgRV.isInvalid()) 6207 return NPV_Error; 6208 Arg = ArgRV.get(); 6209 6210 Expr::EvalResult EvalResult; 6211 SmallVector<PartialDiagnosticAt, 8> Notes; 6212 EvalResult.Diag = &Notes; 6213 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 6214 EvalResult.HasSideEffects) { 6215 SourceLocation DiagLoc = Arg->getExprLoc(); 6216 6217 // If our only note is the usual "invalid subexpression" note, just point 6218 // the caret at its location rather than producing an essentially 6219 // redundant note. 6220 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 6221 diag::note_invalid_subexpr_in_const_expr) { 6222 DiagLoc = Notes[0].first; 6223 Notes.clear(); 6224 } 6225 6226 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 6227 << Arg->getType() << Arg->getSourceRange(); 6228 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 6229 S.Diag(Notes[I].first, Notes[I].second); 6230 6231 S.NoteTemplateParameterLocation(*Param); 6232 return NPV_Error; 6233 } 6234 6235 // C++11 [temp.arg.nontype]p1: 6236 // - an address constant expression of type std::nullptr_t 6237 if (Arg->getType()->isNullPtrType()) 6238 return NPV_NullPointer; 6239 6240 // - a constant expression that evaluates to a null pointer value (4.10); or 6241 // - a constant expression that evaluates to a null member pointer value 6242 // (4.11); or 6243 if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) || 6244 (EvalResult.Val.isMemberPointer() && 6245 !EvalResult.Val.getMemberPointerDecl())) { 6246 // If our expression has an appropriate type, we've succeeded. 6247 bool ObjCLifetimeConversion; 6248 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 6249 S.IsQualificationConversion(Arg->getType(), ParamType, false, 6250 ObjCLifetimeConversion)) 6251 return NPV_NullPointer; 6252 6253 // The types didn't match, but we know we got a null pointer; complain, 6254 // then recover as if the types were correct. 6255 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 6256 << Arg->getType() << ParamType << Arg->getSourceRange(); 6257 S.NoteTemplateParameterLocation(*Param); 6258 return NPV_NullPointer; 6259 } 6260 6261 if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) { 6262 // We found a pointer that isn't null, but doesn't refer to an object. 6263 // We could just return NPV_NotNullPointer, but we can print a better 6264 // message with the information we have here. 6265 S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid) 6266 << EvalResult.Val.getAsString(S.Context, ParamType); 6267 S.NoteTemplateParameterLocation(*Param); 6268 return NPV_Error; 6269 } 6270 6271 // If we don't have a null pointer value, but we do have a NULL pointer 6272 // constant, suggest a cast to the appropriate type. 6273 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 6274 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 6275 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 6276 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) 6277 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), 6278 ")"); 6279 S.NoteTemplateParameterLocation(*Param); 6280 return NPV_NullPointer; 6281 } 6282 6283 // FIXME: If we ever want to support general, address-constant expressions 6284 // as non-type template arguments, we should return the ExprResult here to 6285 // be interpreted by the caller. 6286 return NPV_NotNullPointer; 6287 } 6288 6289 /// Checks whether the given template argument is compatible with its 6290 /// template parameter. 6291 static bool CheckTemplateArgumentIsCompatibleWithParameter( 6292 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6293 Expr *Arg, QualType ArgType) { 6294 bool ObjCLifetimeConversion; 6295 if (ParamType->isPointerType() && 6296 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && 6297 S.IsQualificationConversion(ArgType, ParamType, false, 6298 ObjCLifetimeConversion)) { 6299 // For pointer-to-object types, qualification conversions are 6300 // permitted. 6301 } else { 6302 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 6303 if (!ParamRef->getPointeeType()->isFunctionType()) { 6304 // C++ [temp.arg.nontype]p5b3: 6305 // For a non-type template-parameter of type reference to 6306 // object, no conversions apply. The type referred to by the 6307 // reference may be more cv-qualified than the (otherwise 6308 // identical) type of the template- argument. The 6309 // template-parameter is bound directly to the 6310 // template-argument, which shall be an lvalue. 6311 6312 // FIXME: Other qualifiers? 6313 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 6314 unsigned ArgQuals = ArgType.getCVRQualifiers(); 6315 6316 if ((ParamQuals | ArgQuals) != ParamQuals) { 6317 S.Diag(Arg->getBeginLoc(), 6318 diag::err_template_arg_ref_bind_ignores_quals) 6319 << ParamType << Arg->getType() << Arg->getSourceRange(); 6320 S.NoteTemplateParameterLocation(*Param); 6321 return true; 6322 } 6323 } 6324 } 6325 6326 // At this point, the template argument refers to an object or 6327 // function with external linkage. We now need to check whether the 6328 // argument and parameter types are compatible. 6329 if (!S.Context.hasSameUnqualifiedType(ArgType, 6330 ParamType.getNonReferenceType())) { 6331 // We can't perform this conversion or binding. 6332 if (ParamType->isReferenceType()) 6333 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) 6334 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 6335 else 6336 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6337 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 6338 S.NoteTemplateParameterLocation(*Param); 6339 return true; 6340 } 6341 } 6342 6343 return false; 6344 } 6345 6346 /// Checks whether the given template argument is the address 6347 /// of an object or function according to C++ [temp.arg.nontype]p1. 6348 static bool CheckTemplateArgumentAddressOfObjectOrFunction( 6349 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6350 TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) { 6351 bool Invalid = false; 6352 Expr *Arg = ArgIn; 6353 QualType ArgType = Arg->getType(); 6354 6355 bool AddressTaken = false; 6356 SourceLocation AddrOpLoc; 6357 if (S.getLangOpts().MicrosoftExt) { 6358 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 6359 // dereference and address-of operators. 6360 Arg = Arg->IgnoreParenCasts(); 6361 6362 bool ExtWarnMSTemplateArg = false; 6363 UnaryOperatorKind FirstOpKind; 6364 SourceLocation FirstOpLoc; 6365 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6366 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 6367 if (UnOpKind == UO_Deref) 6368 ExtWarnMSTemplateArg = true; 6369 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 6370 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 6371 if (!AddrOpLoc.isValid()) { 6372 FirstOpKind = UnOpKind; 6373 FirstOpLoc = UnOp->getOperatorLoc(); 6374 } 6375 } else 6376 break; 6377 } 6378 if (FirstOpLoc.isValid()) { 6379 if (ExtWarnMSTemplateArg) 6380 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) 6381 << ArgIn->getSourceRange(); 6382 6383 if (FirstOpKind == UO_AddrOf) 6384 AddressTaken = true; 6385 else if (Arg->getType()->isPointerType()) { 6386 // We cannot let pointers get dereferenced here, that is obviously not a 6387 // constant expression. 6388 assert(FirstOpKind == UO_Deref); 6389 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6390 << Arg->getSourceRange(); 6391 } 6392 } 6393 } else { 6394 // See through any implicit casts we added to fix the type. 6395 Arg = Arg->IgnoreImpCasts(); 6396 6397 // C++ [temp.arg.nontype]p1: 6398 // 6399 // A template-argument for a non-type, non-template 6400 // template-parameter shall be one of: [...] 6401 // 6402 // -- the address of an object or function with external 6403 // linkage, including function templates and function 6404 // template-ids but excluding non-static class members, 6405 // expressed as & id-expression where the & is optional if 6406 // the name refers to a function or array, or if the 6407 // corresponding template-parameter is a reference; or 6408 6409 // In C++98/03 mode, give an extension warning on any extra parentheses. 6410 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6411 bool ExtraParens = false; 6412 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6413 if (!Invalid && !ExtraParens) { 6414 S.Diag(Arg->getBeginLoc(), 6415 S.getLangOpts().CPlusPlus11 6416 ? diag::warn_cxx98_compat_template_arg_extra_parens 6417 : diag::ext_template_arg_extra_parens) 6418 << Arg->getSourceRange(); 6419 ExtraParens = true; 6420 } 6421 6422 Arg = Parens->getSubExpr(); 6423 } 6424 6425 while (SubstNonTypeTemplateParmExpr *subst = 6426 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6427 Arg = subst->getReplacement()->IgnoreImpCasts(); 6428 6429 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6430 if (UnOp->getOpcode() == UO_AddrOf) { 6431 Arg = UnOp->getSubExpr(); 6432 AddressTaken = true; 6433 AddrOpLoc = UnOp->getOperatorLoc(); 6434 } 6435 } 6436 6437 while (SubstNonTypeTemplateParmExpr *subst = 6438 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6439 Arg = subst->getReplacement()->IgnoreImpCasts(); 6440 } 6441 6442 ValueDecl *Entity = nullptr; 6443 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg)) 6444 Entity = DRE->getDecl(); 6445 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg)) 6446 Entity = CUE->getGuidDecl(); 6447 6448 // If our parameter has pointer type, check for a null template value. 6449 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 6450 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, 6451 Entity)) { 6452 case NPV_NullPointer: 6453 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6454 SugaredConverted = TemplateArgument(ParamType, 6455 /*isNullPtr=*/true); 6456 CanonicalConverted = 6457 TemplateArgument(S.Context.getCanonicalType(ParamType), 6458 /*isNullPtr=*/true); 6459 return false; 6460 6461 case NPV_Error: 6462 return true; 6463 6464 case NPV_NotNullPointer: 6465 break; 6466 } 6467 } 6468 6469 // Stop checking the precise nature of the argument if it is value dependent, 6470 // it should be checked when instantiated. 6471 if (Arg->isValueDependent()) { 6472 SugaredConverted = TemplateArgument(ArgIn); 6473 CanonicalConverted = 6474 S.Context.getCanonicalTemplateArgument(SugaredConverted); 6475 return false; 6476 } 6477 6478 if (!Entity) { 6479 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6480 << Arg->getSourceRange(); 6481 S.NoteTemplateParameterLocation(*Param); 6482 return true; 6483 } 6484 6485 // Cannot refer to non-static data members 6486 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 6487 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) 6488 << Entity << Arg->getSourceRange(); 6489 S.NoteTemplateParameterLocation(*Param); 6490 return true; 6491 } 6492 6493 // Cannot refer to non-static member functions 6494 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 6495 if (!Method->isStatic()) { 6496 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) 6497 << Method << Arg->getSourceRange(); 6498 S.NoteTemplateParameterLocation(*Param); 6499 return true; 6500 } 6501 } 6502 6503 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 6504 VarDecl *Var = dyn_cast<VarDecl>(Entity); 6505 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity); 6506 6507 // A non-type template argument must refer to an object or function. 6508 if (!Func && !Var && !Guid) { 6509 // We found something, but we don't know specifically what it is. 6510 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) 6511 << Arg->getSourceRange(); 6512 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); 6513 return true; 6514 } 6515 6516 // Address / reference template args must have external linkage in C++98. 6517 if (Entity->getFormalLinkage() == Linkage::Internal) { 6518 S.Diag(Arg->getBeginLoc(), 6519 S.getLangOpts().CPlusPlus11 6520 ? diag::warn_cxx98_compat_template_arg_object_internal 6521 : diag::ext_template_arg_object_internal) 6522 << !Func << Entity << Arg->getSourceRange(); 6523 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6524 << !Func; 6525 } else if (!Entity->hasLinkage()) { 6526 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) 6527 << !Func << Entity << Arg->getSourceRange(); 6528 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6529 << !Func; 6530 return true; 6531 } 6532 6533 if (Var) { 6534 // A value of reference type is not an object. 6535 if (Var->getType()->isReferenceType()) { 6536 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) 6537 << Var->getType() << Arg->getSourceRange(); 6538 S.NoteTemplateParameterLocation(*Param); 6539 return true; 6540 } 6541 6542 // A template argument must have static storage duration. 6543 if (Var->getTLSKind()) { 6544 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) 6545 << Arg->getSourceRange(); 6546 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 6547 return true; 6548 } 6549 } 6550 6551 if (AddressTaken && ParamType->isReferenceType()) { 6552 // If we originally had an address-of operator, but the 6553 // parameter has reference type, complain and (if things look 6554 // like they will work) drop the address-of operator. 6555 if (!S.Context.hasSameUnqualifiedType(Entity->getType(), 6556 ParamType.getNonReferenceType())) { 6557 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6558 << ParamType; 6559 S.NoteTemplateParameterLocation(*Param); 6560 return true; 6561 } 6562 6563 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6564 << ParamType 6565 << FixItHint::CreateRemoval(AddrOpLoc); 6566 S.NoteTemplateParameterLocation(*Param); 6567 6568 ArgType = Entity->getType(); 6569 } 6570 6571 // If the template parameter has pointer type, either we must have taken the 6572 // address or the argument must decay to a pointer. 6573 if (!AddressTaken && ParamType->isPointerType()) { 6574 if (Func) { 6575 // Function-to-pointer decay. 6576 ArgType = S.Context.getPointerType(Func->getType()); 6577 } else if (Entity->getType()->isArrayType()) { 6578 // Array-to-pointer decay. 6579 ArgType = S.Context.getArrayDecayedType(Entity->getType()); 6580 } else { 6581 // If the template parameter has pointer type but the address of 6582 // this object was not taken, complain and (possibly) recover by 6583 // taking the address of the entity. 6584 ArgType = S.Context.getPointerType(Entity->getType()); 6585 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 6586 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6587 << ParamType; 6588 S.NoteTemplateParameterLocation(*Param); 6589 return true; 6590 } 6591 6592 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6593 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); 6594 6595 S.NoteTemplateParameterLocation(*Param); 6596 } 6597 } 6598 6599 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 6600 Arg, ArgType)) 6601 return true; 6602 6603 // Create the template argument. 6604 SugaredConverted = TemplateArgument(Entity, ParamType); 6605 CanonicalConverted = 6606 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 6607 S.Context.getCanonicalType(ParamType)); 6608 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); 6609 return false; 6610 } 6611 6612 /// Checks whether the given template argument is a pointer to 6613 /// member constant according to C++ [temp.arg.nontype]p1. 6614 static bool 6615 CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param, 6616 QualType ParamType, Expr *&ResultArg, 6617 TemplateArgument &SugaredConverted, 6618 TemplateArgument &CanonicalConverted) { 6619 bool Invalid = false; 6620 6621 Expr *Arg = ResultArg; 6622 bool ObjCLifetimeConversion; 6623 6624 // C++ [temp.arg.nontype]p1: 6625 // 6626 // A template-argument for a non-type, non-template 6627 // template-parameter shall be one of: [...] 6628 // 6629 // -- a pointer to member expressed as described in 5.3.1. 6630 DeclRefExpr *DRE = nullptr; 6631 6632 // In C++98/03 mode, give an extension warning on any extra parentheses. 6633 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6634 bool ExtraParens = false; 6635 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6636 if (!Invalid && !ExtraParens) { 6637 S.Diag(Arg->getBeginLoc(), 6638 S.getLangOpts().CPlusPlus11 6639 ? diag::warn_cxx98_compat_template_arg_extra_parens 6640 : diag::ext_template_arg_extra_parens) 6641 << Arg->getSourceRange(); 6642 ExtraParens = true; 6643 } 6644 6645 Arg = Parens->getSubExpr(); 6646 } 6647 6648 while (SubstNonTypeTemplateParmExpr *subst = 6649 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6650 Arg = subst->getReplacement()->IgnoreImpCasts(); 6651 6652 // A pointer-to-member constant written &Class::member. 6653 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6654 if (UnOp->getOpcode() == UO_AddrOf) { 6655 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 6656 if (DRE && !DRE->getQualifier()) 6657 DRE = nullptr; 6658 } 6659 } 6660 // A constant of pointer-to-member type. 6661 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 6662 ValueDecl *VD = DRE->getDecl(); 6663 if (VD->getType()->isMemberPointerType()) { 6664 if (isa<NonTypeTemplateParmDecl>(VD)) { 6665 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6666 SugaredConverted = TemplateArgument(Arg); 6667 CanonicalConverted = 6668 S.Context.getCanonicalTemplateArgument(SugaredConverted); 6669 } else { 6670 SugaredConverted = TemplateArgument(VD, ParamType); 6671 CanonicalConverted = 6672 TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()), 6673 S.Context.getCanonicalType(ParamType)); 6674 } 6675 return Invalid; 6676 } 6677 } 6678 6679 DRE = nullptr; 6680 } 6681 6682 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6683 6684 // Check for a null pointer value. 6685 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, 6686 Entity)) { 6687 case NPV_Error: 6688 return true; 6689 case NPV_NullPointer: 6690 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6691 SugaredConverted = TemplateArgument(ParamType, 6692 /*isNullPtr*/ true); 6693 CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6694 /*isNullPtr*/ true); 6695 return false; 6696 case NPV_NotNullPointer: 6697 break; 6698 } 6699 6700 if (S.IsQualificationConversion(ResultArg->getType(), 6701 ParamType.getNonReferenceType(), false, 6702 ObjCLifetimeConversion)) { 6703 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, 6704 ResultArg->getValueKind()) 6705 .get(); 6706 } else if (!S.Context.hasSameUnqualifiedType( 6707 ResultArg->getType(), ParamType.getNonReferenceType())) { 6708 // We can't perform this conversion. 6709 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) 6710 << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); 6711 S.NoteTemplateParameterLocation(*Param); 6712 return true; 6713 } 6714 6715 if (!DRE) 6716 return S.Diag(Arg->getBeginLoc(), 6717 diag::err_template_arg_not_pointer_to_member_form) 6718 << Arg->getSourceRange(); 6719 6720 if (isa<FieldDecl>(DRE->getDecl()) || 6721 isa<IndirectFieldDecl>(DRE->getDecl()) || 6722 isa<CXXMethodDecl>(DRE->getDecl())) { 6723 assert((isa<FieldDecl>(DRE->getDecl()) || 6724 isa<IndirectFieldDecl>(DRE->getDecl()) || 6725 cast<CXXMethodDecl>(DRE->getDecl()) 6726 ->isImplicitObjectMemberFunction()) && 6727 "Only non-static member pointers can make it here"); 6728 6729 // Okay: this is the address of a non-static member, and therefore 6730 // a member pointer constant. 6731 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6732 SugaredConverted = TemplateArgument(Arg); 6733 CanonicalConverted = 6734 S.Context.getCanonicalTemplateArgument(SugaredConverted); 6735 } else { 6736 ValueDecl *D = DRE->getDecl(); 6737 SugaredConverted = TemplateArgument(D, ParamType); 6738 CanonicalConverted = 6739 TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()), 6740 S.Context.getCanonicalType(ParamType)); 6741 } 6742 return Invalid; 6743 } 6744 6745 // We found something else, but we don't know specifically what it is. 6746 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) 6747 << Arg->getSourceRange(); 6748 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 6749 return true; 6750 } 6751 6752 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 6753 QualType ParamType, Expr *Arg, 6754 TemplateArgument &SugaredConverted, 6755 TemplateArgument &CanonicalConverted, 6756 bool PartialOrderingTTP, 6757 CheckTemplateArgumentKind CTAK) { 6758 SourceLocation StartLoc = Arg->getBeginLoc(); 6759 6760 // If the parameter type somehow involves auto, deduce the type now. 6761 DeducedType *DeducedT = ParamType->getContainedDeducedType(); 6762 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { 6763 // During template argument deduction, we allow 'decltype(auto)' to 6764 // match an arbitrary dependent argument. 6765 // FIXME: The language rules don't say what happens in this case. 6766 // FIXME: We get an opaque dependent type out of decltype(auto) if the 6767 // expression is merely instantiation-dependent; is this enough? 6768 if (Arg->isTypeDependent()) { 6769 auto *AT = dyn_cast<AutoType>(DeducedT); 6770 if (AT && AT->isDecltypeAuto()) { 6771 SugaredConverted = TemplateArgument(Arg); 6772 CanonicalConverted = TemplateArgument( 6773 Context.getCanonicalTemplateArgument(SugaredConverted)); 6774 return Arg; 6775 } 6776 } 6777 6778 // When checking a deduced template argument, deduce from its type even if 6779 // the type is dependent, in order to check the types of non-type template 6780 // arguments line up properly in partial ordering. 6781 Expr *DeductionArg = Arg; 6782 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) 6783 DeductionArg = PE->getPattern(); 6784 TypeSourceInfo *TSI = 6785 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()); 6786 if (isa<DeducedTemplateSpecializationType>(DeducedT)) { 6787 InitializedEntity Entity = 6788 InitializedEntity::InitializeTemplateParameter(ParamType, Param); 6789 InitializationKind Kind = InitializationKind::CreateForInit( 6790 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg); 6791 Expr *Inits[1] = {DeductionArg}; 6792 ParamType = 6793 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits); 6794 if (ParamType.isNull()) 6795 return ExprError(); 6796 } else { 6797 TemplateDeductionInfo Info(DeductionArg->getExprLoc(), 6798 Param->getDepth() + 1); 6799 ParamType = QualType(); 6800 TemplateDeductionResult Result = 6801 DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info, 6802 /*DependentDeduction=*/true, 6803 // We do not check constraints right now because the 6804 // immediately-declared constraint of the auto type is 6805 // also an associated constraint, and will be checked 6806 // along with the other associated constraints after 6807 // checking the template argument list. 6808 /*IgnoreConstraints=*/true); 6809 if (Result == TemplateDeductionResult::AlreadyDiagnosed) { 6810 if (ParamType.isNull()) 6811 return ExprError(); 6812 } else if (Result != TemplateDeductionResult::Success) { 6813 Diag(Arg->getExprLoc(), 6814 diag::err_non_type_template_parm_type_deduction_failure) 6815 << Param->getDeclName() << Param->getType() << Arg->getType() 6816 << Arg->getSourceRange(); 6817 NoteTemplateParameterLocation(*Param); 6818 return ExprError(); 6819 } 6820 } 6821 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's 6822 // an error. The error message normally references the parameter 6823 // declaration, but here we'll pass the argument location because that's 6824 // where the parameter type is deduced. 6825 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); 6826 if (ParamType.isNull()) { 6827 NoteTemplateParameterLocation(*Param); 6828 return ExprError(); 6829 } 6830 } 6831 6832 // We should have already dropped all cv-qualifiers by now. 6833 assert(!ParamType.hasQualifiers() && 6834 "non-type template parameter type cannot be qualified"); 6835 6836 // FIXME: When Param is a reference, should we check that Arg is an lvalue? 6837 if (CTAK == CTAK_Deduced && 6838 (ParamType->isReferenceType() 6839 ? !Context.hasSameType(ParamType.getNonReferenceType(), 6840 Arg->getType()) 6841 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) { 6842 // FIXME: If either type is dependent, we skip the check. This isn't 6843 // correct, since during deduction we're supposed to have replaced each 6844 // template parameter with some unique (non-dependent) placeholder. 6845 // FIXME: If the argument type contains 'auto', we carry on and fail the 6846 // type check in order to force specific types to be more specialized than 6847 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to 6848 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'. 6849 if ((ParamType->isDependentType() || Arg->isTypeDependent()) && 6850 !Arg->getType()->getContainedDeducedType()) { 6851 SugaredConverted = TemplateArgument(Arg); 6852 CanonicalConverted = TemplateArgument( 6853 Context.getCanonicalTemplateArgument(SugaredConverted)); 6854 return Arg; 6855 } 6856 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, 6857 // we should actually be checking the type of the template argument in P, 6858 // not the type of the template argument deduced from A, against the 6859 // template parameter type. 6860 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 6861 << Arg->getType() 6862 << ParamType.getUnqualifiedType(); 6863 NoteTemplateParameterLocation(*Param); 6864 return ExprError(); 6865 } 6866 6867 // If either the parameter has a dependent type or the argument is 6868 // type-dependent, there's nothing we can check now. 6869 if (ParamType->isDependentType() || Arg->isTypeDependent()) { 6870 // Force the argument to the type of the parameter to maintain invariants. 6871 auto *PE = dyn_cast<PackExpansionExpr>(Arg); 6872 if (PE) 6873 Arg = PE->getPattern(); 6874 ExprResult E = ImpCastExprToType( 6875 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, 6876 ParamType->isLValueReferenceType() ? VK_LValue 6877 : ParamType->isRValueReferenceType() ? VK_XValue 6878 : VK_PRValue); 6879 if (E.isInvalid()) 6880 return ExprError(); 6881 if (PE) { 6882 // Recreate a pack expansion if we unwrapped one. 6883 E = new (Context) 6884 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), 6885 PE->getNumExpansions()); 6886 } 6887 SugaredConverted = TemplateArgument(E.get()); 6888 CanonicalConverted = TemplateArgument( 6889 Context.getCanonicalTemplateArgument(SugaredConverted)); 6890 return E; 6891 } 6892 6893 QualType CanonParamType = Context.getCanonicalType(ParamType); 6894 // Avoid making a copy when initializing a template parameter of class type 6895 // from a template parameter object of the same type. This is going beyond 6896 // the standard, but is required for soundness: in 6897 // template<A a> struct X { X *p; X<a> *q; }; 6898 // ... we need p and q to have the same type. 6899 // 6900 // Similarly, don't inject a call to a copy constructor when initializing 6901 // from a template parameter of the same type. 6902 Expr *InnerArg = Arg->IgnoreParenImpCasts(); 6903 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) && 6904 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) { 6905 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl(); 6906 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 6907 6908 SugaredConverted = TemplateArgument(TPO, ParamType); 6909 CanonicalConverted = 6910 TemplateArgument(TPO->getCanonicalDecl(), CanonParamType); 6911 return Arg; 6912 } 6913 if (isa<NonTypeTemplateParmDecl>(ND)) { 6914 SugaredConverted = TemplateArgument(Arg); 6915 CanonicalConverted = 6916 Context.getCanonicalTemplateArgument(SugaredConverted); 6917 return Arg; 6918 } 6919 } 6920 6921 // The initialization of the parameter from the argument is 6922 // a constant-evaluated context. 6923 EnterExpressionEvaluationContext ConstantEvaluated( 6924 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 6925 6926 bool IsConvertedConstantExpression = true; 6927 if (isa<InitListExpr>(Arg) || ParamType->isRecordType()) { 6928 InitializationKind Kind = InitializationKind::CreateForInit( 6929 Arg->getBeginLoc(), /*DirectInit=*/false, Arg); 6930 Expr *Inits[1] = {Arg}; 6931 InitializedEntity Entity = 6932 InitializedEntity::InitializeTemplateParameter(ParamType, Param); 6933 InitializationSequence InitSeq(*this, Entity, Kind, Inits); 6934 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Inits); 6935 if (Result.isInvalid() || !Result.get()) 6936 return ExprError(); 6937 Result = ActOnConstantExpression(Result.get()); 6938 if (Result.isInvalid() || !Result.get()) 6939 return ExprError(); 6940 Arg = ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(), 6941 /*DiscardedValue=*/false, 6942 /*IsConstexpr=*/true, /*IsTemplateArgument=*/true) 6943 .get(); 6944 IsConvertedConstantExpression = false; 6945 } 6946 6947 if (getLangOpts().CPlusPlus17 || PartialOrderingTTP) { 6948 // C++17 [temp.arg.nontype]p1: 6949 // A template-argument for a non-type template parameter shall be 6950 // a converted constant expression of the type of the template-parameter. 6951 APValue Value; 6952 ExprResult ArgResult; 6953 if (IsConvertedConstantExpression) { 6954 ArgResult = BuildConvertedConstantExpression( 6955 Arg, ParamType, 6956 PartialOrderingTTP ? CCEK_InjectedTTP : CCEK_TemplateArg, Param); 6957 assert(!ArgResult.isUnset()); 6958 if (ArgResult.isInvalid()) { 6959 NoteTemplateParameterLocation(*Param); 6960 return ExprError(); 6961 } 6962 } else { 6963 ArgResult = Arg; 6964 } 6965 6966 // For a value-dependent argument, CheckConvertedConstantExpression is 6967 // permitted (and expected) to be unable to determine a value. 6968 if (ArgResult.get()->isValueDependent()) { 6969 SugaredConverted = TemplateArgument(ArgResult.get()); 6970 CanonicalConverted = 6971 Context.getCanonicalTemplateArgument(SugaredConverted); 6972 return ArgResult; 6973 } 6974 6975 APValue PreNarrowingValue; 6976 ArgResult = EvaluateConvertedConstantExpression( 6977 ArgResult.get(), ParamType, Value, CCEK_TemplateArg, /*RequireInt=*/ 6978 false, PreNarrowingValue); 6979 if (ArgResult.isInvalid()) 6980 return ExprError(); 6981 6982 if (Value.isLValue()) { 6983 APValue::LValueBase Base = Value.getLValueBase(); 6984 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); 6985 // For a non-type template-parameter of pointer or reference type, 6986 // the value of the constant expression shall not refer to 6987 assert(ParamType->isPointerOrReferenceType() || 6988 ParamType->isNullPtrType()); 6989 // -- a temporary object 6990 // -- a string literal 6991 // -- the result of a typeid expression, or 6992 // -- a predefined __func__ variable 6993 if (Base && 6994 (!VD || 6995 isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) { 6996 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6997 << Arg->getSourceRange(); 6998 return ExprError(); 6999 } 7000 7001 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && VD && 7002 VD->getType()->isArrayType() && 7003 Value.getLValuePath()[0].getAsArrayIndex() == 0 && 7004 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 7005 SugaredConverted = TemplateArgument(VD, ParamType); 7006 CanonicalConverted = TemplateArgument( 7007 cast<ValueDecl>(VD->getCanonicalDecl()), CanonParamType); 7008 return ArgResult.get(); 7009 } 7010 7011 // -- a subobject [until C++20] 7012 if (!getLangOpts().CPlusPlus20) { 7013 if (!Value.hasLValuePath() || Value.getLValuePath().size() || 7014 Value.isLValueOnePastTheEnd()) { 7015 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 7016 << Value.getAsString(Context, ParamType); 7017 return ExprError(); 7018 } 7019 assert((VD || !ParamType->isReferenceType()) && 7020 "null reference should not be a constant expression"); 7021 assert((!VD || !ParamType->isNullPtrType()) && 7022 "non-null value of type nullptr_t?"); 7023 } 7024 } 7025 7026 if (Value.isAddrLabelDiff()) 7027 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 7028 7029 SugaredConverted = TemplateArgument(Context, ParamType, Value); 7030 CanonicalConverted = TemplateArgument(Context, CanonParamType, Value); 7031 return ArgResult.get(); 7032 } 7033 7034 // C++ [temp.arg.nontype]p5: 7035 // The following conversions are performed on each expression used 7036 // as a non-type template-argument. If a non-type 7037 // template-argument cannot be converted to the type of the 7038 // corresponding template-parameter then the program is 7039 // ill-formed. 7040 if (ParamType->isIntegralOrEnumerationType()) { 7041 // C++11: 7042 // -- for a non-type template-parameter of integral or 7043 // enumeration type, conversions permitted in a converted 7044 // constant expression are applied. 7045 // 7046 // C++98: 7047 // -- for a non-type template-parameter of integral or 7048 // enumeration type, integral promotions (4.5) and integral 7049 // conversions (4.7) are applied. 7050 7051 if (getLangOpts().CPlusPlus11) { 7052 // C++ [temp.arg.nontype]p1: 7053 // A template-argument for a non-type, non-template template-parameter 7054 // shall be one of: 7055 // 7056 // -- for a non-type template-parameter of integral or enumeration 7057 // type, a converted constant expression of the type of the 7058 // template-parameter; or 7059 llvm::APSInt Value; 7060 ExprResult ArgResult = 7061 CheckConvertedConstantExpression(Arg, ParamType, Value, 7062 CCEK_TemplateArg); 7063 if (ArgResult.isInvalid()) 7064 return ExprError(); 7065 7066 // We can't check arbitrary value-dependent arguments. 7067 if (ArgResult.get()->isValueDependent()) { 7068 SugaredConverted = TemplateArgument(ArgResult.get()); 7069 CanonicalConverted = 7070 Context.getCanonicalTemplateArgument(SugaredConverted); 7071 return ArgResult; 7072 } 7073 7074 // Widen the argument value to sizeof(parameter type). This is almost 7075 // always a no-op, except when the parameter type is bool. In 7076 // that case, this may extend the argument from 1 bit to 8 bits. 7077 QualType IntegerType = ParamType; 7078 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7079 IntegerType = Enum->getDecl()->getIntegerType(); 7080 Value = Value.extOrTrunc(IntegerType->isBitIntType() 7081 ? Context.getIntWidth(IntegerType) 7082 : Context.getTypeSize(IntegerType)); 7083 7084 SugaredConverted = TemplateArgument(Context, Value, ParamType); 7085 CanonicalConverted = 7086 TemplateArgument(Context, Value, Context.getCanonicalType(ParamType)); 7087 return ArgResult; 7088 } 7089 7090 ExprResult ArgResult = DefaultLvalueConversion(Arg); 7091 if (ArgResult.isInvalid()) 7092 return ExprError(); 7093 Arg = ArgResult.get(); 7094 7095 QualType ArgType = Arg->getType(); 7096 7097 // C++ [temp.arg.nontype]p1: 7098 // A template-argument for a non-type, non-template 7099 // template-parameter shall be one of: 7100 // 7101 // -- an integral constant-expression of integral or enumeration 7102 // type; or 7103 // -- the name of a non-type template-parameter; or 7104 llvm::APSInt Value; 7105 if (!ArgType->isIntegralOrEnumerationType()) { 7106 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) 7107 << ArgType << Arg->getSourceRange(); 7108 NoteTemplateParameterLocation(*Param); 7109 return ExprError(); 7110 } else if (!Arg->isValueDependent()) { 7111 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 7112 QualType T; 7113 7114 public: 7115 TmplArgICEDiagnoser(QualType T) : T(T) { } 7116 7117 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 7118 SourceLocation Loc) override { 7119 return S.Diag(Loc, diag::err_template_arg_not_ice) << T; 7120 } 7121 } Diagnoser(ArgType); 7122 7123 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get(); 7124 if (!Arg) 7125 return ExprError(); 7126 } 7127 7128 // From here on out, all we care about is the unqualified form 7129 // of the argument type. 7130 ArgType = ArgType.getUnqualifiedType(); 7131 7132 // Try to convert the argument to the parameter's type. 7133 if (Context.hasSameType(ParamType, ArgType)) { 7134 // Okay: no conversion necessary 7135 } else if (ParamType->isBooleanType()) { 7136 // This is an integral-to-boolean conversion. 7137 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 7138 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 7139 !ParamType->isEnumeralType()) { 7140 // This is an integral promotion or conversion. 7141 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 7142 } else { 7143 // We can't perform this conversion. 7144 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 7145 << Arg->getType() << ParamType << Arg->getSourceRange(); 7146 NoteTemplateParameterLocation(*Param); 7147 return ExprError(); 7148 } 7149 7150 // Add the value of this argument to the list of converted 7151 // arguments. We use the bitwidth and signedness of the template 7152 // parameter. 7153 if (Arg->isValueDependent()) { 7154 // The argument is value-dependent. Create a new 7155 // TemplateArgument with the converted expression. 7156 SugaredConverted = TemplateArgument(Arg); 7157 CanonicalConverted = 7158 Context.getCanonicalTemplateArgument(SugaredConverted); 7159 return Arg; 7160 } 7161 7162 QualType IntegerType = ParamType; 7163 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) { 7164 IntegerType = Enum->getDecl()->getIntegerType(); 7165 } 7166 7167 if (ParamType->isBooleanType()) { 7168 // Value must be zero or one. 7169 Value = Value != 0; 7170 unsigned AllowedBits = Context.getTypeSize(IntegerType); 7171 if (Value.getBitWidth() != AllowedBits) 7172 Value = Value.extOrTrunc(AllowedBits); 7173 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7174 } else { 7175 llvm::APSInt OldValue = Value; 7176 7177 // Coerce the template argument's value to the value it will have 7178 // based on the template parameter's type. 7179 unsigned AllowedBits = IntegerType->isBitIntType() 7180 ? Context.getIntWidth(IntegerType) 7181 : Context.getTypeSize(IntegerType); 7182 if (Value.getBitWidth() != AllowedBits) 7183 Value = Value.extOrTrunc(AllowedBits); 7184 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7185 7186 // Complain if an unsigned parameter received a negative value. 7187 if (IntegerType->isUnsignedIntegerOrEnumerationType() && 7188 (OldValue.isSigned() && OldValue.isNegative())) { 7189 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) 7190 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7191 << Arg->getSourceRange(); 7192 NoteTemplateParameterLocation(*Param); 7193 } 7194 7195 // Complain if we overflowed the template parameter's type. 7196 unsigned RequiredBits; 7197 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 7198 RequiredBits = OldValue.getActiveBits(); 7199 else if (OldValue.isUnsigned()) 7200 RequiredBits = OldValue.getActiveBits() + 1; 7201 else 7202 RequiredBits = OldValue.getSignificantBits(); 7203 if (RequiredBits > AllowedBits) { 7204 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) 7205 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7206 << Arg->getSourceRange(); 7207 NoteTemplateParameterLocation(*Param); 7208 } 7209 } 7210 7211 QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType; 7212 SugaredConverted = TemplateArgument(Context, Value, T); 7213 CanonicalConverted = 7214 TemplateArgument(Context, Value, Context.getCanonicalType(T)); 7215 return Arg; 7216 } 7217 7218 QualType ArgType = Arg->getType(); 7219 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 7220 7221 // Handle pointer-to-function, reference-to-function, and 7222 // pointer-to-member-function all in (roughly) the same way. 7223 if (// -- For a non-type template-parameter of type pointer to 7224 // function, only the function-to-pointer conversion (4.3) is 7225 // applied. If the template-argument represents a set of 7226 // overloaded functions (or a pointer to such), the matching 7227 // function is selected from the set (13.4). 7228 (ParamType->isPointerType() && 7229 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || 7230 // -- For a non-type template-parameter of type reference to 7231 // function, no conversions apply. If the template-argument 7232 // represents a set of overloaded functions, the matching 7233 // function is selected from the set (13.4). 7234 (ParamType->isReferenceType() && 7235 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 7236 // -- For a non-type template-parameter of type pointer to 7237 // member function, no conversions apply. If the 7238 // template-argument represents a set of overloaded member 7239 // functions, the matching member function is selected from 7240 // the set (13.4). 7241 (ParamType->isMemberPointerType() && 7242 ParamType->castAs<MemberPointerType>()->getPointeeType() 7243 ->isFunctionType())) { 7244 7245 if (Arg->getType() == Context.OverloadTy) { 7246 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 7247 true, 7248 FoundResult)) { 7249 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7250 return ExprError(); 7251 7252 ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7253 if (Res.isInvalid()) 7254 return ExprError(); 7255 Arg = Res.get(); 7256 ArgType = Arg->getType(); 7257 } else 7258 return ExprError(); 7259 } 7260 7261 if (!ParamType->isMemberPointerType()) { 7262 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7263 *this, Param, ParamType, Arg, SugaredConverted, 7264 CanonicalConverted)) 7265 return ExprError(); 7266 return Arg; 7267 } 7268 7269 if (CheckTemplateArgumentPointerToMember( 7270 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7271 return ExprError(); 7272 return Arg; 7273 } 7274 7275 if (ParamType->isPointerType()) { 7276 // -- for a non-type template-parameter of type pointer to 7277 // object, qualification conversions (4.4) and the 7278 // array-to-pointer conversion (4.2) are applied. 7279 // C++0x also allows a value of std::nullptr_t. 7280 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 7281 "Only object pointers allowed here"); 7282 7283 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7284 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7285 return ExprError(); 7286 return Arg; 7287 } 7288 7289 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 7290 // -- For a non-type template-parameter of type reference to 7291 // object, no conversions apply. The type referred to by the 7292 // reference may be more cv-qualified than the (otherwise 7293 // identical) type of the template-argument. The 7294 // template-parameter is bound directly to the 7295 // template-argument, which must be an lvalue. 7296 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 7297 "Only object references allowed here"); 7298 7299 if (Arg->getType() == Context.OverloadTy) { 7300 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 7301 ParamRefType->getPointeeType(), 7302 true, 7303 FoundResult)) { 7304 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7305 return ExprError(); 7306 ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7307 if (Res.isInvalid()) 7308 return ExprError(); 7309 Arg = Res.get(); 7310 ArgType = Arg->getType(); 7311 } else 7312 return ExprError(); 7313 } 7314 7315 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7316 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7317 return ExprError(); 7318 return Arg; 7319 } 7320 7321 // Deal with parameters of type std::nullptr_t. 7322 if (ParamType->isNullPtrType()) { 7323 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7324 SugaredConverted = TemplateArgument(Arg); 7325 CanonicalConverted = 7326 Context.getCanonicalTemplateArgument(SugaredConverted); 7327 return Arg; 7328 } 7329 7330 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 7331 case NPV_NotNullPointer: 7332 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 7333 << Arg->getType() << ParamType; 7334 NoteTemplateParameterLocation(*Param); 7335 return ExprError(); 7336 7337 case NPV_Error: 7338 return ExprError(); 7339 7340 case NPV_NullPointer: 7341 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 7342 SugaredConverted = TemplateArgument(ParamType, 7343 /*isNullPtr=*/true); 7344 CanonicalConverted = TemplateArgument(Context.getCanonicalType(ParamType), 7345 /*isNullPtr=*/true); 7346 return Arg; 7347 } 7348 } 7349 7350 // -- For a non-type template-parameter of type pointer to data 7351 // member, qualification conversions (4.4) are applied. 7352 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 7353 7354 if (CheckTemplateArgumentPointerToMember( 7355 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7356 return ExprError(); 7357 return Arg; 7358 } 7359 7360 static void DiagnoseTemplateParameterListArityMismatch( 7361 Sema &S, TemplateParameterList *New, TemplateParameterList *Old, 7362 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); 7363 7364 bool Sema::CheckTemplateTemplateArgument( 7365 TemplateTemplateParmDecl *Param, TemplateParameterList *Params, 7366 TemplateArgumentLoc &Arg, bool PartialOrdering, 7367 bool *MatchedPackOnParmToNonPackOnArg) { 7368 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 7369 auto [Template, DefaultArgs] = Name.getTemplateDeclAndDefaultArgs(); 7370 if (!Template) { 7371 // Any dependent template name is fine. 7372 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 7373 return false; 7374 } 7375 7376 if (Template->isInvalidDecl()) 7377 return true; 7378 7379 // C++0x [temp.arg.template]p1: 7380 // A template-argument for a template template-parameter shall be 7381 // the name of a class template or an alias template, expressed as an 7382 // id-expression. When the template-argument names a class template, only 7383 // primary class templates are considered when matching the 7384 // template template argument with the corresponding parameter; 7385 // partial specializations are not considered even if their 7386 // parameter lists match that of the template template parameter. 7387 // 7388 // Note that we also allow template template parameters here, which 7389 // will happen when we are dealing with, e.g., class template 7390 // partial specializations. 7391 if (!isa<ClassTemplateDecl>(Template) && 7392 !isa<TemplateTemplateParmDecl>(Template) && 7393 !isa<TypeAliasTemplateDecl>(Template) && 7394 !isa<BuiltinTemplateDecl>(Template)) { 7395 assert(isa<FunctionTemplateDecl>(Template) && 7396 "Only function templates are possible here"); 7397 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); 7398 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 7399 << Template; 7400 } 7401 7402 // C++1z [temp.arg.template]p3: (DR 150) 7403 // A template-argument matches a template template-parameter P when P 7404 // is at least as specialized as the template-argument A. 7405 if (!isTemplateTemplateParameterAtLeastAsSpecializedAs( 7406 Params, Param, Template, DefaultArgs, Arg.getLocation(), 7407 PartialOrdering, MatchedPackOnParmToNonPackOnArg)) 7408 return true; 7409 // P2113 7410 // C++20[temp.func.order]p2 7411 // [...] If both deductions succeed, the partial ordering selects the 7412 // more constrained template (if one exists) as determined below. 7413 SmallVector<const Expr *, 3> ParamsAC, TemplateAC; 7414 Params->getAssociatedConstraints(ParamsAC); 7415 // C++20[temp.arg.template]p3 7416 // [...] In this comparison, if P is unconstrained, the constraints on A 7417 // are not considered. 7418 if (ParamsAC.empty()) 7419 return false; 7420 7421 Template->getAssociatedConstraints(TemplateAC); 7422 7423 bool IsParamAtLeastAsConstrained; 7424 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, 7425 IsParamAtLeastAsConstrained)) 7426 return true; 7427 if (!IsParamAtLeastAsConstrained) { 7428 Diag(Arg.getLocation(), 7429 diag::err_template_template_parameter_not_at_least_as_constrained) 7430 << Template << Param << Arg.getSourceRange(); 7431 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; 7432 Diag(Template->getLocation(), diag::note_entity_declared_at) << Template; 7433 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, 7434 TemplateAC); 7435 return true; 7436 } 7437 return false; 7438 } 7439 7440 static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl, 7441 unsigned HereDiagID, 7442 unsigned ExternalDiagID) { 7443 if (Decl.getLocation().isValid()) 7444 return S.Diag(Decl.getLocation(), HereDiagID); 7445 7446 SmallString<128> Str; 7447 llvm::raw_svector_ostream Out(Str); 7448 PrintingPolicy PP = S.getPrintingPolicy(); 7449 PP.TerseOutput = 1; 7450 Decl.print(Out, PP); 7451 return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str(); 7452 } 7453 7454 void Sema::NoteTemplateLocation(const NamedDecl &Decl, 7455 std::optional<SourceRange> ParamRange) { 7456 SemaDiagnosticBuilder DB = 7457 noteLocation(*this, Decl, diag::note_template_decl_here, 7458 diag::note_template_decl_external); 7459 if (ParamRange && ParamRange->isValid()) { 7460 assert(Decl.getLocation().isValid() && 7461 "Parameter range has location when Decl does not"); 7462 DB << *ParamRange; 7463 } 7464 } 7465 7466 void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) { 7467 noteLocation(*this, Decl, diag::note_template_param_here, 7468 diag::note_template_param_external); 7469 } 7470 7471 ExprResult Sema::BuildExpressionFromDeclTemplateArgument( 7472 const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc, 7473 NamedDecl *TemplateParam) { 7474 // C++ [temp.param]p8: 7475 // 7476 // A non-type template-parameter of type "array of T" or 7477 // "function returning T" is adjusted to be of type "pointer to 7478 // T" or "pointer to function returning T", respectively. 7479 if (ParamType->isArrayType()) 7480 ParamType = Context.getArrayDecayedType(ParamType); 7481 else if (ParamType->isFunctionType()) 7482 ParamType = Context.getPointerType(ParamType); 7483 7484 // For a NULL non-type template argument, return nullptr casted to the 7485 // parameter's type. 7486 if (Arg.getKind() == TemplateArgument::NullPtr) { 7487 return ImpCastExprToType( 7488 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 7489 ParamType, 7490 ParamType->getAs<MemberPointerType>() 7491 ? CK_NullToMemberPointer 7492 : CK_NullToPointer); 7493 } 7494 assert(Arg.getKind() == TemplateArgument::Declaration && 7495 "Only declaration template arguments permitted here"); 7496 7497 ValueDecl *VD = Arg.getAsDecl(); 7498 7499 CXXScopeSpec SS; 7500 if (ParamType->isMemberPointerType()) { 7501 // If this is a pointer to member, we need to use a qualified name to 7502 // form a suitable pointer-to-member constant. 7503 assert(VD->getDeclContext()->isRecord() && 7504 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 7505 isa<IndirectFieldDecl>(VD))); 7506 QualType ClassType 7507 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 7508 NestedNameSpecifier *Qualifier 7509 = NestedNameSpecifier::Create(Context, nullptr, false, 7510 ClassType.getTypePtr()); 7511 SS.MakeTrivial(Context, Qualifier, Loc); 7512 } 7513 7514 ExprResult RefExpr = BuildDeclarationNameExpr( 7515 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); 7516 if (RefExpr.isInvalid()) 7517 return ExprError(); 7518 7519 // For a pointer, the argument declaration is the pointee. Take its address. 7520 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); 7521 if (ParamType->isPointerType() && !ElemT.isNull() && 7522 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) { 7523 // Decay an array argument if we want a pointer to its first element. 7524 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 7525 if (RefExpr.isInvalid()) 7526 return ExprError(); 7527 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 7528 // For any other pointer, take the address (or form a pointer-to-member). 7529 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 7530 if (RefExpr.isInvalid()) 7531 return ExprError(); 7532 } else if (ParamType->isRecordType()) { 7533 assert(isa<TemplateParamObjectDecl>(VD) && 7534 "arg for class template param not a template parameter object"); 7535 // No conversions apply in this case. 7536 return RefExpr; 7537 } else { 7538 assert(ParamType->isReferenceType() && 7539 "unexpected type for decl template argument"); 7540 if (NonTypeTemplateParmDecl *NTTP = 7541 dyn_cast_if_present<NonTypeTemplateParmDecl>(TemplateParam)) { 7542 QualType TemplateParamType = NTTP->getType(); 7543 const AutoType *AT = TemplateParamType->getAs<AutoType>(); 7544 if (AT && AT->isDecltypeAuto()) { 7545 RefExpr = new (getASTContext()) SubstNonTypeTemplateParmExpr( 7546 ParamType->getPointeeType(), RefExpr.get()->getValueKind(), 7547 RefExpr.get()->getExprLoc(), RefExpr.get(), VD, NTTP->getIndex(), 7548 /*PackIndex=*/std::nullopt, 7549 /*RefParam=*/true); 7550 } 7551 } 7552 } 7553 7554 // At this point we should have the right value category. 7555 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && 7556 "value kind mismatch for non-type template argument"); 7557 7558 // The type of the template parameter can differ from the type of the 7559 // argument in various ways; convert it now if necessary. 7560 QualType DestExprType = ParamType.getNonLValueExprType(Context); 7561 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) { 7562 CastKind CK; 7563 QualType Ignored; 7564 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) || 7565 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) { 7566 CK = CK_NoOp; 7567 } else if (ParamType->isVoidPointerType() && 7568 RefExpr.get()->getType()->isPointerType()) { 7569 CK = CK_BitCast; 7570 } else { 7571 // FIXME: Pointers to members can need conversion derived-to-base or 7572 // base-to-derived conversions. We currently don't retain enough 7573 // information to convert properly (we need to track a cast path or 7574 // subobject number in the template argument). 7575 llvm_unreachable( 7576 "unexpected conversion required for non-type template argument"); 7577 } 7578 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK, 7579 RefExpr.get()->getValueKind()); 7580 } 7581 7582 return RefExpr; 7583 } 7584 7585 /// Construct a new expression that refers to the given 7586 /// integral template argument with the given source-location 7587 /// information. 7588 /// 7589 /// This routine takes care of the mapping from an integral template 7590 /// argument (which may have any integral type) to the appropriate 7591 /// literal value. 7592 static Expr *BuildExpressionFromIntegralTemplateArgumentValue( 7593 Sema &S, QualType OrigT, const llvm::APSInt &Int, SourceLocation Loc) { 7594 assert(OrigT->isIntegralOrEnumerationType()); 7595 7596 // If this is an enum type that we're instantiating, we need to use an integer 7597 // type the same size as the enumerator. We don't want to build an 7598 // IntegerLiteral with enum type. The integer type of an enum type can be of 7599 // any integral type with C++11 enum classes, make sure we create the right 7600 // type of literal for it. 7601 QualType T = OrigT; 7602 if (const EnumType *ET = OrigT->getAs<EnumType>()) 7603 T = ET->getDecl()->getIntegerType(); 7604 7605 Expr *E; 7606 if (T->isAnyCharacterType()) { 7607 CharacterLiteralKind Kind; 7608 if (T->isWideCharType()) 7609 Kind = CharacterLiteralKind::Wide; 7610 else if (T->isChar8Type() && S.getLangOpts().Char8) 7611 Kind = CharacterLiteralKind::UTF8; 7612 else if (T->isChar16Type()) 7613 Kind = CharacterLiteralKind::UTF16; 7614 else if (T->isChar32Type()) 7615 Kind = CharacterLiteralKind::UTF32; 7616 else 7617 Kind = CharacterLiteralKind::Ascii; 7618 7619 E = new (S.Context) CharacterLiteral(Int.getZExtValue(), Kind, T, Loc); 7620 } else if (T->isBooleanType()) { 7621 E = CXXBoolLiteralExpr::Create(S.Context, Int.getBoolValue(), T, Loc); 7622 } else { 7623 E = IntegerLiteral::Create(S.Context, Int, T, Loc); 7624 } 7625 7626 if (OrigT->isEnumeralType()) { 7627 // FIXME: This is a hack. We need a better way to handle substituted 7628 // non-type template parameters. 7629 E = CStyleCastExpr::Create(S.Context, OrigT, VK_PRValue, CK_IntegralCast, E, 7630 nullptr, S.CurFPFeatureOverrides(), 7631 S.Context.getTrivialTypeSourceInfo(OrigT, Loc), 7632 Loc, Loc); 7633 } 7634 7635 return E; 7636 } 7637 7638 static Expr *BuildExpressionFromNonTypeTemplateArgumentValue( 7639 Sema &S, QualType T, const APValue &Val, SourceLocation Loc) { 7640 auto MakeInitList = [&](ArrayRef<Expr *> Elts) -> Expr * { 7641 auto *ILE = new (S.Context) InitListExpr(S.Context, Loc, Elts, Loc); 7642 ILE->setType(T); 7643 return ILE; 7644 }; 7645 7646 switch (Val.getKind()) { 7647 case APValue::AddrLabelDiff: 7648 // This cannot occur in a template argument at all. 7649 case APValue::Array: 7650 case APValue::Struct: 7651 case APValue::Union: 7652 // These can only occur within a template parameter object, which is 7653 // represented as a TemplateArgument::Declaration. 7654 llvm_unreachable("unexpected template argument value"); 7655 7656 case APValue::Int: 7657 return BuildExpressionFromIntegralTemplateArgumentValue(S, T, Val.getInt(), 7658 Loc); 7659 7660 case APValue::Float: 7661 return FloatingLiteral::Create(S.Context, Val.getFloat(), /*IsExact=*/true, 7662 T, Loc); 7663 7664 case APValue::FixedPoint: 7665 return FixedPointLiteral::CreateFromRawInt( 7666 S.Context, Val.getFixedPoint().getValue(), T, Loc, 7667 Val.getFixedPoint().getScale()); 7668 7669 case APValue::ComplexInt: { 7670 QualType ElemT = T->castAs<ComplexType>()->getElementType(); 7671 return MakeInitList({BuildExpressionFromIntegralTemplateArgumentValue( 7672 S, ElemT, Val.getComplexIntReal(), Loc), 7673 BuildExpressionFromIntegralTemplateArgumentValue( 7674 S, ElemT, Val.getComplexIntImag(), Loc)}); 7675 } 7676 7677 case APValue::ComplexFloat: { 7678 QualType ElemT = T->castAs<ComplexType>()->getElementType(); 7679 return MakeInitList( 7680 {FloatingLiteral::Create(S.Context, Val.getComplexFloatReal(), true, 7681 ElemT, Loc), 7682 FloatingLiteral::Create(S.Context, Val.getComplexFloatImag(), true, 7683 ElemT, Loc)}); 7684 } 7685 7686 case APValue::Vector: { 7687 QualType ElemT = T->castAs<VectorType>()->getElementType(); 7688 llvm::SmallVector<Expr *, 8> Elts; 7689 for (unsigned I = 0, N = Val.getVectorLength(); I != N; ++I) 7690 Elts.push_back(BuildExpressionFromNonTypeTemplateArgumentValue( 7691 S, ElemT, Val.getVectorElt(I), Loc)); 7692 return MakeInitList(Elts); 7693 } 7694 7695 case APValue::None: 7696 case APValue::Indeterminate: 7697 llvm_unreachable("Unexpected APValue kind."); 7698 case APValue::LValue: 7699 case APValue::MemberPointer: 7700 // There isn't necessarily a valid equivalent source-level syntax for 7701 // these; in particular, a naive lowering might violate access control. 7702 // So for now we lower to a ConstantExpr holding the value, wrapped around 7703 // an OpaqueValueExpr. 7704 // FIXME: We should have a better representation for this. 7705 ExprValueKind VK = VK_PRValue; 7706 if (T->isReferenceType()) { 7707 T = T->getPointeeType(); 7708 VK = VK_LValue; 7709 } 7710 auto *OVE = new (S.Context) OpaqueValueExpr(Loc, T, VK); 7711 return ConstantExpr::Create(S.Context, OVE, Val); 7712 } 7713 llvm_unreachable("Unhandled APValue::ValueKind enum"); 7714 } 7715 7716 ExprResult 7717 Sema::BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg, 7718 SourceLocation Loc) { 7719 switch (Arg.getKind()) { 7720 case TemplateArgument::Null: 7721 case TemplateArgument::Type: 7722 case TemplateArgument::Template: 7723 case TemplateArgument::TemplateExpansion: 7724 case TemplateArgument::Pack: 7725 llvm_unreachable("not a non-type template argument"); 7726 7727 case TemplateArgument::Expression: 7728 return Arg.getAsExpr(); 7729 7730 case TemplateArgument::NullPtr: 7731 case TemplateArgument::Declaration: 7732 return BuildExpressionFromDeclTemplateArgument( 7733 Arg, Arg.getNonTypeTemplateArgumentType(), Loc); 7734 7735 case TemplateArgument::Integral: 7736 return BuildExpressionFromIntegralTemplateArgumentValue( 7737 *this, Arg.getIntegralType(), Arg.getAsIntegral(), Loc); 7738 7739 case TemplateArgument::StructuralValue: 7740 return BuildExpressionFromNonTypeTemplateArgumentValue( 7741 *this, Arg.getStructuralValueType(), Arg.getAsStructuralValue(), Loc); 7742 } 7743 llvm_unreachable("Unhandled TemplateArgument::ArgKind enum"); 7744 } 7745 7746 /// Match two template parameters within template parameter lists. 7747 static bool MatchTemplateParameterKind( 7748 Sema &S, NamedDecl *New, 7749 const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old, 7750 const NamedDecl *OldInstFrom, bool Complain, 7751 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { 7752 // Check the actual kind (type, non-type, template). 7753 if (Old->getKind() != New->getKind()) { 7754 if (Complain) { 7755 unsigned NextDiag = diag::err_template_param_different_kind; 7756 if (TemplateArgLoc.isValid()) { 7757 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7758 NextDiag = diag::note_template_param_different_kind; 7759 } 7760 S.Diag(New->getLocation(), NextDiag) 7761 << (Kind != Sema::TPL_TemplateMatch); 7762 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 7763 << (Kind != Sema::TPL_TemplateMatch); 7764 } 7765 7766 return false; 7767 } 7768 7769 // Check that both are parameter packs or neither are parameter packs. 7770 // However, if we are matching a template template argument to a 7771 // template template parameter, the template template parameter can have 7772 // a parameter pack where the template template argument does not. 7773 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack()) { 7774 if (Complain) { 7775 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 7776 if (TemplateArgLoc.isValid()) { 7777 S.Diag(TemplateArgLoc, 7778 diag::err_template_arg_template_params_mismatch); 7779 NextDiag = diag::note_template_parameter_pack_non_pack; 7780 } 7781 7782 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 7783 : isa<NonTypeTemplateParmDecl>(New)? 1 7784 : 2; 7785 S.Diag(New->getLocation(), NextDiag) 7786 << ParamKind << New->isParameterPack(); 7787 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 7788 << ParamKind << Old->isParameterPack(); 7789 } 7790 7791 return false; 7792 } 7793 7794 // For non-type template parameters, check the type of the parameter. 7795 if (NonTypeTemplateParmDecl *OldNTTP 7796 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 7797 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 7798 7799 // C++20 [temp.over.link]p6: 7800 // Two [non-type] template-parameters are equivalent [if] they have 7801 // equivalent types ignoring the use of type-constraints for 7802 // placeholder types 7803 QualType OldType = S.Context.getUnconstrainedType(OldNTTP->getType()); 7804 QualType NewType = S.Context.getUnconstrainedType(NewNTTP->getType()); 7805 if (!S.Context.hasSameType(OldType, NewType)) { 7806 if (Complain) { 7807 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 7808 if (TemplateArgLoc.isValid()) { 7809 S.Diag(TemplateArgLoc, 7810 diag::err_template_arg_template_params_mismatch); 7811 NextDiag = diag::note_template_nontype_parm_different_type; 7812 } 7813 S.Diag(NewNTTP->getLocation(), NextDiag) 7814 << NewNTTP->getType() << (Kind != Sema::TPL_TemplateMatch); 7815 S.Diag(OldNTTP->getLocation(), 7816 diag::note_template_nontype_parm_prev_declaration) 7817 << OldNTTP->getType(); 7818 } 7819 7820 return false; 7821 } 7822 } 7823 // For template template parameters, check the template parameter types. 7824 // The template parameter lists of template template 7825 // parameters must agree. 7826 else if (TemplateTemplateParmDecl *OldTTP = 7827 dyn_cast<TemplateTemplateParmDecl>(Old)) { 7828 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 7829 if (!S.TemplateParameterListsAreEqual( 7830 NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom, 7831 OldTTP->getTemplateParameters(), Complain, 7832 (Kind == Sema::TPL_TemplateMatch 7833 ? Sema::TPL_TemplateTemplateParmMatch 7834 : Kind), 7835 TemplateArgLoc)) 7836 return false; 7837 } 7838 7839 if (Kind != Sema::TPL_TemplateParamsEquivalent && 7840 !isa<TemplateTemplateParmDecl>(Old)) { 7841 const Expr *NewC = nullptr, *OldC = nullptr; 7842 7843 if (isa<TemplateTypeParmDecl>(New)) { 7844 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint()) 7845 NewC = TC->getImmediatelyDeclaredConstraint(); 7846 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint()) 7847 OldC = TC->getImmediatelyDeclaredConstraint(); 7848 } else if (isa<NonTypeTemplateParmDecl>(New)) { 7849 if (const Expr *E = cast<NonTypeTemplateParmDecl>(New) 7850 ->getPlaceholderTypeConstraint()) 7851 NewC = E; 7852 if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old) 7853 ->getPlaceholderTypeConstraint()) 7854 OldC = E; 7855 } else 7856 llvm_unreachable("unexpected template parameter type"); 7857 7858 auto Diagnose = [&] { 7859 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), 7860 diag::err_template_different_type_constraint); 7861 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), 7862 diag::note_template_prev_declaration) << /*declaration*/0; 7863 }; 7864 7865 if (!NewC != !OldC) { 7866 if (Complain) 7867 Diagnose(); 7868 return false; 7869 } 7870 7871 if (NewC) { 7872 if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom, 7873 NewC)) { 7874 if (Complain) 7875 Diagnose(); 7876 return false; 7877 } 7878 } 7879 } 7880 7881 return true; 7882 } 7883 7884 /// Diagnose a known arity mismatch when comparing template argument 7885 /// lists. 7886 static 7887 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 7888 TemplateParameterList *New, 7889 TemplateParameterList *Old, 7890 Sema::TemplateParameterListEqualKind Kind, 7891 SourceLocation TemplateArgLoc) { 7892 unsigned NextDiag = diag::err_template_param_list_different_arity; 7893 if (TemplateArgLoc.isValid()) { 7894 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7895 NextDiag = diag::note_template_param_list_different_arity; 7896 } 7897 S.Diag(New->getTemplateLoc(), NextDiag) 7898 << (New->size() > Old->size()) 7899 << (Kind != Sema::TPL_TemplateMatch) 7900 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 7901 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 7902 << (Kind != Sema::TPL_TemplateMatch) 7903 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 7904 } 7905 7906 bool Sema::TemplateParameterListsAreEqual( 7907 const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New, 7908 const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain, 7909 TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { 7910 if (Old->size() != New->size()) { 7911 if (Complain) 7912 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7913 TemplateArgLoc); 7914 7915 return false; 7916 } 7917 7918 // C++0x [temp.arg.template]p3: 7919 // A template-argument matches a template template-parameter (call it P) 7920 // when each of the template parameters in the template-parameter-list of 7921 // the template-argument's corresponding class template or alias template 7922 // (call it A) matches the corresponding template parameter in the 7923 // template-parameter-list of P. [...] 7924 TemplateParameterList::iterator NewParm = New->begin(); 7925 TemplateParameterList::iterator NewParmEnd = New->end(); 7926 for (TemplateParameterList::iterator OldParm = Old->begin(), 7927 OldParmEnd = Old->end(); 7928 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 7929 if (NewParm == NewParmEnd) { 7930 if (Complain) 7931 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7932 TemplateArgLoc); 7933 return false; 7934 } 7935 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm, 7936 OldInstFrom, Complain, Kind, 7937 TemplateArgLoc)) 7938 return false; 7939 } 7940 7941 // Make sure we exhausted all of the arguments. 7942 if (NewParm != NewParmEnd) { 7943 if (Complain) 7944 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7945 TemplateArgLoc); 7946 7947 return false; 7948 } 7949 7950 if (Kind != TPL_TemplateParamsEquivalent) { 7951 const Expr *NewRC = New->getRequiresClause(); 7952 const Expr *OldRC = Old->getRequiresClause(); 7953 7954 auto Diagnose = [&] { 7955 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), 7956 diag::err_template_different_requires_clause); 7957 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), 7958 diag::note_template_prev_declaration) << /*declaration*/0; 7959 }; 7960 7961 if (!NewRC != !OldRC) { 7962 if (Complain) 7963 Diagnose(); 7964 return false; 7965 } 7966 7967 if (NewRC) { 7968 if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom, 7969 NewRC)) { 7970 if (Complain) 7971 Diagnose(); 7972 return false; 7973 } 7974 } 7975 } 7976 7977 return true; 7978 } 7979 7980 bool 7981 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 7982 if (!S) 7983 return false; 7984 7985 // Find the nearest enclosing declaration scope. 7986 S = S->getDeclParent(); 7987 7988 // C++ [temp.pre]p6: [P2096] 7989 // A template, explicit specialization, or partial specialization shall not 7990 // have C linkage. 7991 DeclContext *Ctx = S->getEntity(); 7992 if (Ctx && Ctx->isExternCContext()) { 7993 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 7994 << TemplateParams->getSourceRange(); 7995 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) 7996 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 7997 return true; 7998 } 7999 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; 8000 8001 // C++ [temp]p2: 8002 // A template-declaration can appear only as a namespace scope or 8003 // class scope declaration. 8004 // C++ [temp.expl.spec]p3: 8005 // An explicit specialization may be declared in any scope in which the 8006 // corresponding primary template may be defined. 8007 // C++ [temp.class.spec]p6: [P2096] 8008 // A partial specialization may be declared in any scope in which the 8009 // corresponding primary template may be defined. 8010 if (Ctx) { 8011 if (Ctx->isFileContext()) 8012 return false; 8013 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 8014 // C++ [temp.mem]p2: 8015 // A local class shall not have member templates. 8016 if (RD->isLocalClass()) 8017 return Diag(TemplateParams->getTemplateLoc(), 8018 diag::err_template_inside_local_class) 8019 << TemplateParams->getSourceRange(); 8020 else 8021 return false; 8022 } 8023 } 8024 8025 return Diag(TemplateParams->getTemplateLoc(), 8026 diag::err_template_outside_namespace_or_class_scope) 8027 << TemplateParams->getSourceRange(); 8028 } 8029 8030 /// Determine what kind of template specialization the given declaration 8031 /// is. 8032 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 8033 if (!D) 8034 return TSK_Undeclared; 8035 8036 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 8037 return Record->getTemplateSpecializationKind(); 8038 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 8039 return Function->getTemplateSpecializationKind(); 8040 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 8041 return Var->getTemplateSpecializationKind(); 8042 8043 return TSK_Undeclared; 8044 } 8045 8046 /// Check whether a specialization is well-formed in the current 8047 /// context. 8048 /// 8049 /// This routine determines whether a template specialization can be declared 8050 /// in the current context (C++ [temp.expl.spec]p2). 8051 /// 8052 /// \param S the semantic analysis object for which this check is being 8053 /// performed. 8054 /// 8055 /// \param Specialized the entity being specialized or instantiated, which 8056 /// may be a kind of template (class template, function template, etc.) or 8057 /// a member of a class template (member function, static data member, 8058 /// member class). 8059 /// 8060 /// \param PrevDecl the previous declaration of this entity, if any. 8061 /// 8062 /// \param Loc the location of the explicit specialization or instantiation of 8063 /// this entity. 8064 /// 8065 /// \param IsPartialSpecialization whether this is a partial specialization of 8066 /// a class template. 8067 /// 8068 /// \returns true if there was an error that we cannot recover from, false 8069 /// otherwise. 8070 static bool CheckTemplateSpecializationScope(Sema &S, 8071 NamedDecl *Specialized, 8072 NamedDecl *PrevDecl, 8073 SourceLocation Loc, 8074 bool IsPartialSpecialization) { 8075 // Keep these "kind" numbers in sync with the %select statements in the 8076 // various diagnostics emitted by this routine. 8077 int EntityKind = 0; 8078 if (isa<ClassTemplateDecl>(Specialized)) 8079 EntityKind = IsPartialSpecialization? 1 : 0; 8080 else if (isa<VarTemplateDecl>(Specialized)) 8081 EntityKind = IsPartialSpecialization ? 3 : 2; 8082 else if (isa<FunctionTemplateDecl>(Specialized)) 8083 EntityKind = 4; 8084 else if (isa<CXXMethodDecl>(Specialized)) 8085 EntityKind = 5; 8086 else if (isa<VarDecl>(Specialized)) 8087 EntityKind = 6; 8088 else if (isa<RecordDecl>(Specialized)) 8089 EntityKind = 7; 8090 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 8091 EntityKind = 8; 8092 else { 8093 S.Diag(Loc, diag::err_template_spec_unknown_kind) 8094 << S.getLangOpts().CPlusPlus11; 8095 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8096 return true; 8097 } 8098 8099 // C++ [temp.expl.spec]p2: 8100 // An explicit specialization may be declared in any scope in which 8101 // the corresponding primary template may be defined. 8102 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8103 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 8104 << Specialized; 8105 return true; 8106 } 8107 8108 // C++ [temp.class.spec]p6: 8109 // A class template partial specialization may be declared in any 8110 // scope in which the primary template may be defined. 8111 DeclContext *SpecializedContext = 8112 Specialized->getDeclContext()->getRedeclContext(); 8113 DeclContext *DC = S.CurContext->getRedeclContext(); 8114 8115 // Make sure that this redeclaration (or definition) occurs in the same 8116 // scope or an enclosing namespace. 8117 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) 8118 : DC->Equals(SpecializedContext))) { 8119 if (isa<TranslationUnitDecl>(SpecializedContext)) 8120 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 8121 << EntityKind << Specialized; 8122 else { 8123 auto *ND = cast<NamedDecl>(SpecializedContext); 8124 int Diag = diag::err_template_spec_redecl_out_of_scope; 8125 if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) 8126 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 8127 S.Diag(Loc, Diag) << EntityKind << Specialized 8128 << ND << isa<CXXRecordDecl>(ND); 8129 } 8130 8131 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8132 8133 // Don't allow specializing in the wrong class during error recovery. 8134 // Otherwise, things can go horribly wrong. 8135 if (DC->isRecord()) 8136 return true; 8137 } 8138 8139 return false; 8140 } 8141 8142 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { 8143 if (!E->isTypeDependent()) 8144 return SourceLocation(); 8145 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8146 Checker.TraverseStmt(E); 8147 if (Checker.MatchLoc.isInvalid()) 8148 return E->getSourceRange(); 8149 return Checker.MatchLoc; 8150 } 8151 8152 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 8153 if (!TL.getType()->isDependentType()) 8154 return SourceLocation(); 8155 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8156 Checker.TraverseTypeLoc(TL); 8157 if (Checker.MatchLoc.isInvalid()) 8158 return TL.getSourceRange(); 8159 return Checker.MatchLoc; 8160 } 8161 8162 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs 8163 /// that checks non-type template partial specialization arguments. 8164 static bool CheckNonTypeTemplatePartialSpecializationArgs( 8165 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 8166 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 8167 for (unsigned I = 0; I != NumArgs; ++I) { 8168 if (Args[I].getKind() == TemplateArgument::Pack) { 8169 if (CheckNonTypeTemplatePartialSpecializationArgs( 8170 S, TemplateNameLoc, Param, Args[I].pack_begin(), 8171 Args[I].pack_size(), IsDefaultArgument)) 8172 return true; 8173 8174 continue; 8175 } 8176 8177 if (Args[I].getKind() != TemplateArgument::Expression) 8178 continue; 8179 8180 Expr *ArgExpr = Args[I].getAsExpr(); 8181 8182 // We can have a pack expansion of any of the bullets below. 8183 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 8184 ArgExpr = Expansion->getPattern(); 8185 8186 // Strip off any implicit casts we added as part of type checking. 8187 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 8188 ArgExpr = ICE->getSubExpr(); 8189 8190 // C++ [temp.class.spec]p8: 8191 // A non-type argument is non-specialized if it is the name of a 8192 // non-type parameter. All other non-type arguments are 8193 // specialized. 8194 // 8195 // Below, we check the two conditions that only apply to 8196 // specialized non-type arguments, so skip any non-specialized 8197 // arguments. 8198 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 8199 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 8200 continue; 8201 8202 // C++ [temp.class.spec]p9: 8203 // Within the argument list of a class template partial 8204 // specialization, the following restrictions apply: 8205 // -- A partially specialized non-type argument expression 8206 // shall not involve a template parameter of the partial 8207 // specialization except when the argument expression is a 8208 // simple identifier. 8209 // -- The type of a template parameter corresponding to a 8210 // specialized non-type argument shall not be dependent on a 8211 // parameter of the specialization. 8212 // DR1315 removes the first bullet, leaving an incoherent set of rules. 8213 // We implement a compromise between the original rules and DR1315: 8214 // -- A specialized non-type template argument shall not be 8215 // type-dependent and the corresponding template parameter 8216 // shall have a non-dependent type. 8217 SourceRange ParamUseRange = 8218 findTemplateParameterInType(Param->getDepth(), ArgExpr); 8219 if (ParamUseRange.isValid()) { 8220 if (IsDefaultArgument) { 8221 S.Diag(TemplateNameLoc, 8222 diag::err_dependent_non_type_arg_in_partial_spec); 8223 S.Diag(ParamUseRange.getBegin(), 8224 diag::note_dependent_non_type_default_arg_in_partial_spec) 8225 << ParamUseRange; 8226 } else { 8227 S.Diag(ParamUseRange.getBegin(), 8228 diag::err_dependent_non_type_arg_in_partial_spec) 8229 << ParamUseRange; 8230 } 8231 return true; 8232 } 8233 8234 ParamUseRange = findTemplateParameter( 8235 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 8236 if (ParamUseRange.isValid()) { 8237 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), 8238 diag::err_dependent_typed_non_type_arg_in_partial_spec) 8239 << Param->getType(); 8240 S.NoteTemplateParameterLocation(*Param); 8241 return true; 8242 } 8243 } 8244 8245 return false; 8246 } 8247 8248 bool Sema::CheckTemplatePartialSpecializationArgs( 8249 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, 8250 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { 8251 // We have to be conservative when checking a template in a dependent 8252 // context. 8253 if (PrimaryTemplate->getDeclContext()->isDependentContext()) 8254 return false; 8255 8256 TemplateParameterList *TemplateParams = 8257 PrimaryTemplate->getTemplateParameters(); 8258 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8259 NonTypeTemplateParmDecl *Param 8260 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 8261 if (!Param) 8262 continue; 8263 8264 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, 8265 Param, &TemplateArgs[I], 8266 1, I >= NumExplicit)) 8267 return true; 8268 } 8269 8270 return false; 8271 } 8272 8273 DeclResult Sema::ActOnClassTemplateSpecialization( 8274 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 8275 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, 8276 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, 8277 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { 8278 assert(TUK != TagUseKind::Reference && "References are not specializations"); 8279 8280 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 8281 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 8282 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 8283 8284 // Find the class template we're specializing 8285 TemplateName Name = TemplateId.Template.get(); 8286 ClassTemplateDecl *ClassTemplate 8287 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 8288 8289 if (!ClassTemplate) { 8290 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 8291 << (Name.getAsTemplateDecl() && 8292 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 8293 return true; 8294 } 8295 8296 if (const auto *DSA = ClassTemplate->getAttr<NoSpecializationsAttr>()) { 8297 auto Message = DSA->getMessage(); 8298 Diag(TemplateNameLoc, diag::warn_invalid_specialization) 8299 << ClassTemplate << !Message.empty() << Message; 8300 Diag(DSA->getLoc(), diag::note_marked_here) << DSA; 8301 } 8302 8303 if (S->isTemplateParamScope()) 8304 EnterTemplatedContext(S, ClassTemplate->getTemplatedDecl()); 8305 8306 DeclContext *DC = ClassTemplate->getDeclContext(); 8307 8308 bool isMemberSpecialization = false; 8309 bool isPartialSpecialization = false; 8310 8311 if (SS.isSet()) { 8312 if (TUK != TagUseKind::Reference && TUK != TagUseKind::Friend && 8313 diagnoseQualifiedDeclaration(SS, DC, ClassTemplate->getDeclName(), 8314 TemplateNameLoc, &TemplateId, 8315 /*IsMemberSpecialization=*/false)) 8316 return true; 8317 } 8318 8319 // Check the validity of the template headers that introduce this 8320 // template. 8321 // FIXME: We probably shouldn't complain about these headers for 8322 // friend declarations. 8323 bool Invalid = false; 8324 TemplateParameterList *TemplateParams = 8325 MatchTemplateParametersToScopeSpecifier( 8326 KWLoc, TemplateNameLoc, SS, &TemplateId, TemplateParameterLists, 8327 TUK == TagUseKind::Friend, isMemberSpecialization, Invalid); 8328 if (Invalid) 8329 return true; 8330 8331 // Check that we can declare a template specialization here. 8332 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) 8333 return true; 8334 8335 if (TemplateParams && DC->isDependentContext()) { 8336 ContextRAII SavedContext(*this, DC); 8337 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 8338 return true; 8339 } 8340 8341 if (TemplateParams && TemplateParams->size() > 0) { 8342 isPartialSpecialization = true; 8343 8344 if (TUK == TagUseKind::Friend) { 8345 Diag(KWLoc, diag::err_partial_specialization_friend) 8346 << SourceRange(LAngleLoc, RAngleLoc); 8347 return true; 8348 } 8349 8350 // C++ [temp.class.spec]p10: 8351 // The template parameter list of a specialization shall not 8352 // contain default template argument values. 8353 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8354 Decl *Param = TemplateParams->getParam(I); 8355 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 8356 if (TTP->hasDefaultArgument()) { 8357 Diag(TTP->getDefaultArgumentLoc(), 8358 diag::err_default_arg_in_partial_spec); 8359 TTP->removeDefaultArgument(); 8360 } 8361 } else if (NonTypeTemplateParmDecl *NTTP 8362 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 8363 if (NTTP->hasDefaultArgument()) { 8364 Diag(NTTP->getDefaultArgumentLoc(), 8365 diag::err_default_arg_in_partial_spec) 8366 << NTTP->getDefaultArgument().getSourceRange(); 8367 NTTP->removeDefaultArgument(); 8368 } 8369 } else { 8370 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 8371 if (TTP->hasDefaultArgument()) { 8372 Diag(TTP->getDefaultArgument().getLocation(), 8373 diag::err_default_arg_in_partial_spec) 8374 << TTP->getDefaultArgument().getSourceRange(); 8375 TTP->removeDefaultArgument(); 8376 } 8377 } 8378 } 8379 } else if (TemplateParams) { 8380 if (TUK == TagUseKind::Friend) 8381 Diag(KWLoc, diag::err_template_spec_friend) 8382 << FixItHint::CreateRemoval( 8383 SourceRange(TemplateParams->getTemplateLoc(), 8384 TemplateParams->getRAngleLoc())) 8385 << SourceRange(LAngleLoc, RAngleLoc); 8386 } else { 8387 assert(TUK == TagUseKind::Friend && 8388 "should have a 'template<>' for this decl"); 8389 } 8390 8391 // Check that the specialization uses the same tag kind as the 8392 // original template. 8393 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8394 assert(Kind != TagTypeKind::Enum && 8395 "Invalid enum tag in class template spec!"); 8396 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), Kind, 8397 TUK == TagUseKind::Definition, KWLoc, 8398 ClassTemplate->getIdentifier())) { 8399 Diag(KWLoc, diag::err_use_with_wrong_tag) 8400 << ClassTemplate 8401 << FixItHint::CreateReplacement(KWLoc, 8402 ClassTemplate->getTemplatedDecl()->getKindName()); 8403 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 8404 diag::note_previous_use); 8405 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 8406 } 8407 8408 // Translate the parser's template argument list in our AST format. 8409 TemplateArgumentListInfo TemplateArgs = 8410 makeTemplateArgumentListInfo(*this, TemplateId); 8411 8412 // Check for unexpanded parameter packs in any of the template arguments. 8413 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8414 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 8415 isPartialSpecialization 8416 ? UPPC_PartialSpecialization 8417 : UPPC_ExplicitSpecialization)) 8418 return true; 8419 8420 // Check that the template argument list is well-formed for this 8421 // template. 8422 CheckTemplateArgumentInfo CTAI; 8423 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, 8424 /*DefaultArgs=*/{}, 8425 /*PartialTemplateArgs=*/false, CTAI, 8426 /*UpdateArgsWithConversions=*/true)) 8427 return true; 8428 8429 // Find the class template (partial) specialization declaration that 8430 // corresponds to these arguments. 8431 if (isPartialSpecialization) { 8432 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, 8433 TemplateArgs.size(), 8434 CTAI.CanonicalConverted)) 8435 return true; 8436 8437 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we 8438 // also do it during instantiation. 8439 if (!Name.isDependent() && 8440 !TemplateSpecializationType::anyDependentTemplateArguments( 8441 TemplateArgs, CTAI.CanonicalConverted)) { 8442 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 8443 << ClassTemplate->getDeclName(); 8444 isPartialSpecialization = false; 8445 Invalid = true; 8446 } 8447 } 8448 8449 void *InsertPos = nullptr; 8450 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 8451 8452 if (isPartialSpecialization) 8453 PrevDecl = ClassTemplate->findPartialSpecialization( 8454 CTAI.CanonicalConverted, TemplateParams, InsertPos); 8455 else 8456 PrevDecl = 8457 ClassTemplate->findSpecialization(CTAI.CanonicalConverted, InsertPos); 8458 8459 ClassTemplateSpecializationDecl *Specialization = nullptr; 8460 8461 // Check whether we can declare a class template specialization in 8462 // the current scope. 8463 if (TUK != TagUseKind::Friend && 8464 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 8465 TemplateNameLoc, 8466 isPartialSpecialization)) 8467 return true; 8468 8469 // The canonical type 8470 QualType CanonType; 8471 if (isPartialSpecialization) { 8472 // Build the canonical type that describes the converted template 8473 // arguments of the class template partial specialization. 8474 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8475 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 8476 CTAI.CanonicalConverted); 8477 8478 if (Context.hasSameType(CanonType, 8479 ClassTemplate->getInjectedClassNameSpecialization()) && 8480 (!Context.getLangOpts().CPlusPlus20 || 8481 !TemplateParams->hasAssociatedConstraints())) { 8482 // C++ [temp.class.spec]p9b3: 8483 // 8484 // -- The argument list of the specialization shall not be identical 8485 // to the implicit argument list of the primary template. 8486 // 8487 // This rule has since been removed, because it's redundant given DR1495, 8488 // but we keep it because it produces better diagnostics and recovery. 8489 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 8490 << /*class template*/ 0 << (TUK == TagUseKind::Definition) 8491 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 8492 return CheckClassTemplate( 8493 S, TagSpec, TUK, KWLoc, SS, ClassTemplate->getIdentifier(), 8494 TemplateNameLoc, Attr, TemplateParams, AS_none, 8495 /*ModulePrivateLoc=*/SourceLocation(), 8496 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, 8497 TemplateParameterLists.data()); 8498 } 8499 8500 // Create a new class template partial specialization declaration node. 8501 ClassTemplatePartialSpecializationDecl *PrevPartial 8502 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 8503 ClassTemplatePartialSpecializationDecl *Partial = 8504 ClassTemplatePartialSpecializationDecl::Create( 8505 Context, Kind, DC, KWLoc, TemplateNameLoc, TemplateParams, 8506 ClassTemplate, CTAI.CanonicalConverted, CanonType, PrevPartial); 8507 Partial->setTemplateArgsAsWritten(TemplateArgs); 8508 SetNestedNameSpecifier(*this, Partial, SS); 8509 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 8510 Partial->setTemplateParameterListsInfo( 8511 Context, TemplateParameterLists.drop_back(1)); 8512 } 8513 8514 if (!PrevPartial) 8515 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 8516 Specialization = Partial; 8517 8518 // If we are providing an explicit specialization of a member class 8519 // template specialization, make a note of that. 8520 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 8521 PrevPartial->setMemberSpecialization(); 8522 8523 CheckTemplatePartialSpecialization(Partial); 8524 } else { 8525 // Create a new class template specialization declaration node for 8526 // this explicit specialization or friend declaration. 8527 Specialization = ClassTemplateSpecializationDecl::Create( 8528 Context, Kind, DC, KWLoc, TemplateNameLoc, ClassTemplate, 8529 CTAI.CanonicalConverted, PrevDecl); 8530 Specialization->setTemplateArgsAsWritten(TemplateArgs); 8531 SetNestedNameSpecifier(*this, Specialization, SS); 8532 if (TemplateParameterLists.size() > 0) { 8533 Specialization->setTemplateParameterListsInfo(Context, 8534 TemplateParameterLists); 8535 } 8536 8537 if (!PrevDecl) 8538 ClassTemplate->AddSpecialization(Specialization, InsertPos); 8539 8540 if (CurContext->isDependentContext()) { 8541 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8542 CanonType = Context.getTemplateSpecializationType( 8543 CanonTemplate, CTAI.CanonicalConverted); 8544 } else { 8545 CanonType = Context.getTypeDeclType(Specialization); 8546 } 8547 } 8548 8549 // C++ [temp.expl.spec]p6: 8550 // If a template, a member template or the member of a class template is 8551 // explicitly specialized then that specialization shall be declared 8552 // before the first use of that specialization that would cause an implicit 8553 // instantiation to take place, in every translation unit in which such a 8554 // use occurs; no diagnostic is required. 8555 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 8556 bool Okay = false; 8557 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8558 // Is there any previous explicit specialization declaration? 8559 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8560 Okay = true; 8561 break; 8562 } 8563 } 8564 8565 if (!Okay) { 8566 SourceRange Range(TemplateNameLoc, RAngleLoc); 8567 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 8568 << Context.getTypeDeclType(Specialization) << Range; 8569 8570 Diag(PrevDecl->getPointOfInstantiation(), 8571 diag::note_instantiation_required_here) 8572 << (PrevDecl->getTemplateSpecializationKind() 8573 != TSK_ImplicitInstantiation); 8574 return true; 8575 } 8576 } 8577 8578 // If this is not a friend, note that this is an explicit specialization. 8579 if (TUK != TagUseKind::Friend) 8580 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 8581 8582 // Check that this isn't a redefinition of this specialization. 8583 if (TUK == TagUseKind::Definition) { 8584 RecordDecl *Def = Specialization->getDefinition(); 8585 NamedDecl *Hidden = nullptr; 8586 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 8587 SkipBody->ShouldSkip = true; 8588 SkipBody->Previous = Def; 8589 makeMergedDefinitionVisible(Hidden); 8590 } else if (Def) { 8591 SourceRange Range(TemplateNameLoc, RAngleLoc); 8592 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; 8593 Diag(Def->getLocation(), diag::note_previous_definition); 8594 Specialization->setInvalidDecl(); 8595 return true; 8596 } 8597 } 8598 8599 ProcessDeclAttributeList(S, Specialization, Attr); 8600 ProcessAPINotes(Specialization); 8601 8602 // Add alignment attributes if necessary; these attributes are checked when 8603 // the ASTContext lays out the structure. 8604 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 8605 AddAlignmentAttributesForRecord(Specialization); 8606 AddMsStructLayoutForRecord(Specialization); 8607 } 8608 8609 if (ModulePrivateLoc.isValid()) 8610 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 8611 << (isPartialSpecialization? 1 : 0) 8612 << FixItHint::CreateRemoval(ModulePrivateLoc); 8613 8614 // C++ [temp.expl.spec]p9: 8615 // A template explicit specialization is in the scope of the 8616 // namespace in which the template was defined. 8617 // 8618 // We actually implement this paragraph where we set the semantic 8619 // context (in the creation of the ClassTemplateSpecializationDecl), 8620 // but we also maintain the lexical context where the actual 8621 // definition occurs. 8622 Specialization->setLexicalDeclContext(CurContext); 8623 8624 // We may be starting the definition of this specialization. 8625 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) 8626 Specialization->startDefinition(); 8627 8628 if (TUK == TagUseKind::Friend) { 8629 // Build the fully-sugared type for this class template 8630 // specialization as the user wrote in the specialization 8631 // itself. This means that we'll pretty-print the type retrieved 8632 // from the specialization's declaration the way that the user 8633 // actually wrote the specialization, rather than formatting the 8634 // name based on the "canonical" representation used to store the 8635 // template arguments in the specialization. 8636 TypeSourceInfo *WrittenTy = Context.getTemplateSpecializationTypeInfo( 8637 Name, TemplateNameLoc, TemplateArgs, CanonType); 8638 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 8639 TemplateNameLoc, 8640 WrittenTy, 8641 /*FIXME:*/KWLoc); 8642 Friend->setAccess(AS_public); 8643 CurContext->addDecl(Friend); 8644 } else { 8645 // Add the specialization into its lexical context, so that it can 8646 // be seen when iterating through the list of declarations in that 8647 // context. However, specializations are not found by name lookup. 8648 CurContext->addDecl(Specialization); 8649 } 8650 8651 if (SkipBody && SkipBody->ShouldSkip) 8652 return SkipBody->Previous; 8653 8654 Specialization->setInvalidDecl(Invalid); 8655 inferGslOwnerPointerAttribute(Specialization); 8656 return Specialization; 8657 } 8658 8659 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 8660 MultiTemplateParamsArg TemplateParameterLists, 8661 Declarator &D) { 8662 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 8663 ActOnDocumentableDecl(NewDecl); 8664 return NewDecl; 8665 } 8666 8667 ConceptDecl *Sema::ActOnStartConceptDefinition( 8668 Scope *S, MultiTemplateParamsArg TemplateParameterLists, 8669 const IdentifierInfo *Name, SourceLocation NameLoc) { 8670 DeclContext *DC = CurContext; 8671 8672 if (!DC->getRedeclContext()->isFileContext()) { 8673 Diag(NameLoc, 8674 diag::err_concept_decls_may_only_appear_in_global_namespace_scope); 8675 return nullptr; 8676 } 8677 8678 if (TemplateParameterLists.size() > 1) { 8679 Diag(NameLoc, diag::err_concept_extra_headers); 8680 return nullptr; 8681 } 8682 8683 TemplateParameterList *Params = TemplateParameterLists.front(); 8684 8685 if (Params->size() == 0) { 8686 Diag(NameLoc, diag::err_concept_no_parameters); 8687 return nullptr; 8688 } 8689 8690 // Ensure that the parameter pack, if present, is the last parameter in the 8691 // template. 8692 for (TemplateParameterList::const_iterator ParamIt = Params->begin(), 8693 ParamEnd = Params->end(); 8694 ParamIt != ParamEnd; ++ParamIt) { 8695 Decl const *Param = *ParamIt; 8696 if (Param->isParameterPack()) { 8697 if (++ParamIt == ParamEnd) 8698 break; 8699 Diag(Param->getLocation(), 8700 diag::err_template_param_pack_must_be_last_template_parameter); 8701 return nullptr; 8702 } 8703 } 8704 8705 ConceptDecl *NewDecl = 8706 ConceptDecl::Create(Context, DC, NameLoc, Name, Params); 8707 8708 if (NewDecl->hasAssociatedConstraints()) { 8709 // C++2a [temp.concept]p4: 8710 // A concept shall not have associated constraints. 8711 Diag(NameLoc, diag::err_concept_no_associated_constraints); 8712 NewDecl->setInvalidDecl(); 8713 } 8714 8715 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NewDecl->getBeginLoc()); 8716 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8717 forRedeclarationInCurContext()); 8718 LookupName(Previous, S); 8719 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, 8720 /*AllowInlineNamespace*/ false); 8721 8722 // We cannot properly handle redeclarations until we parse the constraint 8723 // expression, so only inject the name if we are sure we are not redeclaring a 8724 // symbol 8725 if (Previous.empty()) 8726 PushOnScopeChains(NewDecl, S, true); 8727 8728 return NewDecl; 8729 } 8730 8731 static bool RemoveLookupResult(LookupResult &R, NamedDecl *C) { 8732 bool Found = false; 8733 LookupResult::Filter F = R.makeFilter(); 8734 while (F.hasNext()) { 8735 NamedDecl *D = F.next(); 8736 if (D == C) { 8737 F.erase(); 8738 Found = true; 8739 break; 8740 } 8741 } 8742 F.done(); 8743 return Found; 8744 } 8745 8746 ConceptDecl * 8747 Sema::ActOnFinishConceptDefinition(Scope *S, ConceptDecl *C, 8748 Expr *ConstraintExpr, 8749 const ParsedAttributesView &Attrs) { 8750 assert(!C->hasDefinition() && "Concept already defined"); 8751 if (DiagnoseUnexpandedParameterPack(ConstraintExpr)) 8752 return nullptr; 8753 C->setDefinition(ConstraintExpr); 8754 ProcessDeclAttributeList(S, C, Attrs); 8755 8756 // Check for conflicting previous declaration. 8757 DeclarationNameInfo NameInfo(C->getDeclName(), C->getBeginLoc()); 8758 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8759 forRedeclarationInCurContext()); 8760 LookupName(Previous, S); 8761 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, 8762 /*AllowInlineNamespace*/ false); 8763 bool WasAlreadyAdded = RemoveLookupResult(Previous, C); 8764 bool AddToScope = true; 8765 CheckConceptRedefinition(C, Previous, AddToScope); 8766 8767 ActOnDocumentableDecl(C); 8768 if (!WasAlreadyAdded && AddToScope) 8769 PushOnScopeChains(C, S); 8770 8771 return C; 8772 } 8773 8774 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl, 8775 LookupResult &Previous, bool &AddToScope) { 8776 AddToScope = true; 8777 8778 if (Previous.empty()) 8779 return; 8780 8781 auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl()); 8782 if (!OldConcept) { 8783 auto *Old = Previous.getRepresentativeDecl(); 8784 Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind) 8785 << NewDecl->getDeclName(); 8786 notePreviousDefinition(Old, NewDecl->getLocation()); 8787 AddToScope = false; 8788 return; 8789 } 8790 // Check if we can merge with a concept declaration. 8791 bool IsSame = Context.isSameEntity(NewDecl, OldConcept); 8792 if (!IsSame) { 8793 Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept) 8794 << NewDecl->getDeclName(); 8795 notePreviousDefinition(OldConcept, NewDecl->getLocation()); 8796 AddToScope = false; 8797 return; 8798 } 8799 if (hasReachableDefinition(OldConcept) && 8800 IsRedefinitionInModule(NewDecl, OldConcept)) { 8801 Diag(NewDecl->getLocation(), diag::err_redefinition) 8802 << NewDecl->getDeclName(); 8803 notePreviousDefinition(OldConcept, NewDecl->getLocation()); 8804 AddToScope = false; 8805 return; 8806 } 8807 if (!Previous.isSingleResult()) { 8808 // FIXME: we should produce an error in case of ambig and failed lookups. 8809 // Other decls (e.g. namespaces) also have this shortcoming. 8810 return; 8811 } 8812 // We unwrap canonical decl late to check for module visibility. 8813 Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl()); 8814 } 8815 8816 bool Sema::CheckConceptUseInDefinition(ConceptDecl *Concept, 8817 SourceLocation Loc) { 8818 if (!Concept->isInvalidDecl() && !Concept->hasDefinition()) { 8819 Diag(Loc, diag::err_recursive_concept) << Concept; 8820 Diag(Concept->getLocation(), diag::note_declared_at); 8821 return true; 8822 } 8823 return false; 8824 } 8825 8826 /// \brief Strips various properties off an implicit instantiation 8827 /// that has just been explicitly specialized. 8828 static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) { 8829 if (MinGW || (isa<FunctionDecl>(D) && 8830 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())) 8831 D->dropAttrs<DLLImportAttr, DLLExportAttr>(); 8832 8833 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 8834 FD->setInlineSpecified(false); 8835 } 8836 8837 /// Compute the diagnostic location for an explicit instantiation 8838 // declaration or definition. 8839 static SourceLocation DiagLocForExplicitInstantiation( 8840 NamedDecl* D, SourceLocation PointOfInstantiation) { 8841 // Explicit instantiations following a specialization have no effect and 8842 // hence no PointOfInstantiation. In that case, walk decl backwards 8843 // until a valid name loc is found. 8844 SourceLocation PrevDiagLoc = PointOfInstantiation; 8845 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 8846 Prev = Prev->getPreviousDecl()) { 8847 PrevDiagLoc = Prev->getLocation(); 8848 } 8849 assert(PrevDiagLoc.isValid() && 8850 "Explicit instantiation without point of instantiation?"); 8851 return PrevDiagLoc; 8852 } 8853 8854 bool 8855 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 8856 TemplateSpecializationKind NewTSK, 8857 NamedDecl *PrevDecl, 8858 TemplateSpecializationKind PrevTSK, 8859 SourceLocation PrevPointOfInstantiation, 8860 bool &HasNoEffect) { 8861 HasNoEffect = false; 8862 8863 switch (NewTSK) { 8864 case TSK_Undeclared: 8865 case TSK_ImplicitInstantiation: 8866 assert( 8867 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 8868 "previous declaration must be implicit!"); 8869 return false; 8870 8871 case TSK_ExplicitSpecialization: 8872 switch (PrevTSK) { 8873 case TSK_Undeclared: 8874 case TSK_ExplicitSpecialization: 8875 // Okay, we're just specializing something that is either already 8876 // explicitly specialized or has merely been mentioned without any 8877 // instantiation. 8878 return false; 8879 8880 case TSK_ImplicitInstantiation: 8881 if (PrevPointOfInstantiation.isInvalid()) { 8882 // The declaration itself has not actually been instantiated, so it is 8883 // still okay to specialize it. 8884 StripImplicitInstantiation( 8885 PrevDecl, 8886 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()); 8887 return false; 8888 } 8889 // Fall through 8890 [[fallthrough]]; 8891 8892 case TSK_ExplicitInstantiationDeclaration: 8893 case TSK_ExplicitInstantiationDefinition: 8894 assert((PrevTSK == TSK_ImplicitInstantiation || 8895 PrevPointOfInstantiation.isValid()) && 8896 "Explicit instantiation without point of instantiation?"); 8897 8898 // C++ [temp.expl.spec]p6: 8899 // If a template, a member template or the member of a class template 8900 // is explicitly specialized then that specialization shall be declared 8901 // before the first use of that specialization that would cause an 8902 // implicit instantiation to take place, in every translation unit in 8903 // which such a use occurs; no diagnostic is required. 8904 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8905 // Is there any previous explicit specialization declaration? 8906 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 8907 return false; 8908 } 8909 8910 Diag(NewLoc, diag::err_specialization_after_instantiation) 8911 << PrevDecl; 8912 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 8913 << (PrevTSK != TSK_ImplicitInstantiation); 8914 8915 return true; 8916 } 8917 llvm_unreachable("The switch over PrevTSK must be exhaustive."); 8918 8919 case TSK_ExplicitInstantiationDeclaration: 8920 switch (PrevTSK) { 8921 case TSK_ExplicitInstantiationDeclaration: 8922 // This explicit instantiation declaration is redundant (that's okay). 8923 HasNoEffect = true; 8924 return false; 8925 8926 case TSK_Undeclared: 8927 case TSK_ImplicitInstantiation: 8928 // We're explicitly instantiating something that may have already been 8929 // implicitly instantiated; that's fine. 8930 return false; 8931 8932 case TSK_ExplicitSpecialization: 8933 // C++0x [temp.explicit]p4: 8934 // For a given set of template parameters, if an explicit instantiation 8935 // of a template appears after a declaration of an explicit 8936 // specialization for that template, the explicit instantiation has no 8937 // effect. 8938 HasNoEffect = true; 8939 return false; 8940 8941 case TSK_ExplicitInstantiationDefinition: 8942 // C++0x [temp.explicit]p10: 8943 // If an entity is the subject of both an explicit instantiation 8944 // declaration and an explicit instantiation definition in the same 8945 // translation unit, the definition shall follow the declaration. 8946 Diag(NewLoc, 8947 diag::err_explicit_instantiation_declaration_after_definition); 8948 8949 // Explicit instantiations following a specialization have no effect and 8950 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 8951 // until a valid name loc is found. 8952 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8953 diag::note_explicit_instantiation_definition_here); 8954 HasNoEffect = true; 8955 return false; 8956 } 8957 llvm_unreachable("Unexpected TemplateSpecializationKind!"); 8958 8959 case TSK_ExplicitInstantiationDefinition: 8960 switch (PrevTSK) { 8961 case TSK_Undeclared: 8962 case TSK_ImplicitInstantiation: 8963 // We're explicitly instantiating something that may have already been 8964 // implicitly instantiated; that's fine. 8965 return false; 8966 8967 case TSK_ExplicitSpecialization: 8968 // C++ DR 259, C++0x [temp.explicit]p4: 8969 // For a given set of template parameters, if an explicit 8970 // instantiation of a template appears after a declaration of 8971 // an explicit specialization for that template, the explicit 8972 // instantiation has no effect. 8973 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) 8974 << PrevDecl; 8975 Diag(PrevDecl->getLocation(), 8976 diag::note_previous_template_specialization); 8977 HasNoEffect = true; 8978 return false; 8979 8980 case TSK_ExplicitInstantiationDeclaration: 8981 // We're explicitly instantiating a definition for something for which we 8982 // were previously asked to suppress instantiations. That's fine. 8983 8984 // C++0x [temp.explicit]p4: 8985 // For a given set of template parameters, if an explicit instantiation 8986 // of a template appears after a declaration of an explicit 8987 // specialization for that template, the explicit instantiation has no 8988 // effect. 8989 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8990 // Is there any previous explicit specialization declaration? 8991 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8992 HasNoEffect = true; 8993 break; 8994 } 8995 } 8996 8997 return false; 8998 8999 case TSK_ExplicitInstantiationDefinition: 9000 // C++0x [temp.spec]p5: 9001 // For a given template and a given set of template-arguments, 9002 // - an explicit instantiation definition shall appear at most once 9003 // in a program, 9004 9005 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 9006 Diag(NewLoc, (getLangOpts().MSVCCompat) 9007 ? diag::ext_explicit_instantiation_duplicate 9008 : diag::err_explicit_instantiation_duplicate) 9009 << PrevDecl; 9010 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 9011 diag::note_previous_explicit_instantiation); 9012 HasNoEffect = true; 9013 return false; 9014 } 9015 } 9016 9017 llvm_unreachable("Missing specialization/instantiation case?"); 9018 } 9019 9020 bool Sema::CheckDependentFunctionTemplateSpecialization( 9021 FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs, 9022 LookupResult &Previous) { 9023 // Remove anything from Previous that isn't a function template in 9024 // the correct context. 9025 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 9026 LookupResult::Filter F = Previous.makeFilter(); 9027 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; 9028 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; 9029 while (F.hasNext()) { 9030 NamedDecl *D = F.next()->getUnderlyingDecl(); 9031 if (!isa<FunctionTemplateDecl>(D)) { 9032 F.erase(); 9033 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); 9034 continue; 9035 } 9036 9037 if (!FDLookupContext->InEnclosingNamespaceSetOf( 9038 D->getDeclContext()->getRedeclContext())) { 9039 F.erase(); 9040 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); 9041 continue; 9042 } 9043 } 9044 F.done(); 9045 9046 bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None; 9047 if (Previous.empty()) { 9048 Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match) 9049 << IsFriend; 9050 for (auto &P : DiscardedCandidates) 9051 Diag(P.second->getLocation(), 9052 diag::note_dependent_function_template_spec_discard_reason) 9053 << P.first << IsFriend; 9054 return true; 9055 } 9056 9057 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 9058 ExplicitTemplateArgs); 9059 return false; 9060 } 9061 9062 bool Sema::CheckFunctionTemplateSpecialization( 9063 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 9064 LookupResult &Previous, bool QualifiedFriend) { 9065 // The set of function template specializations that could match this 9066 // explicit function template specialization. 9067 UnresolvedSet<8> Candidates; 9068 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 9069 /*ForTakingAddress=*/false); 9070 9071 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 9072 ConvertedTemplateArgs; 9073 9074 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 9075 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9076 I != E; ++I) { 9077 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 9078 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 9079 // Only consider templates found within the same semantic lookup scope as 9080 // FD. 9081 if (!FDLookupContext->InEnclosingNamespaceSetOf( 9082 Ovl->getDeclContext()->getRedeclContext())) 9083 continue; 9084 9085 QualType FT = FD->getType(); 9086 // C++11 [dcl.constexpr]p8: 9087 // A constexpr specifier for a non-static member function that is not 9088 // a constructor declares that member function to be const. 9089 // 9090 // When matching a constexpr member function template specialization 9091 // against the primary template, we don't yet know whether the 9092 // specialization has an implicit 'const' (because we don't know whether 9093 // it will be a static member function until we know which template it 9094 // specializes). This rule was removed in C++14. 9095 if (auto *NewMD = dyn_cast<CXXMethodDecl>(FD); 9096 !getLangOpts().CPlusPlus14 && NewMD && NewMD->isConstexpr() && 9097 !isa<CXXConstructorDecl, CXXDestructorDecl>(NewMD)) { 9098 auto *OldMD = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 9099 if (OldMD && OldMD->isConst()) { 9100 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 9101 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 9102 EPI.TypeQuals.addConst(); 9103 FT = Context.getFunctionType(FPT->getReturnType(), 9104 FPT->getParamTypes(), EPI); 9105 } 9106 } 9107 9108 TemplateArgumentListInfo Args; 9109 if (ExplicitTemplateArgs) 9110 Args = *ExplicitTemplateArgs; 9111 9112 // C++ [temp.expl.spec]p11: 9113 // A trailing template-argument can be left unspecified in the 9114 // template-id naming an explicit function template specialization 9115 // provided it can be deduced from the function argument type. 9116 // Perform template argument deduction to determine whether we may be 9117 // specializing this template. 9118 // FIXME: It is somewhat wasteful to build 9119 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 9120 FunctionDecl *Specialization = nullptr; 9121 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 9122 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 9123 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, Info); 9124 TDK != TemplateDeductionResult::Success) { 9125 // Template argument deduction failed; record why it failed, so 9126 // that we can provide nifty diagnostics. 9127 FailedCandidates.addCandidate().set( 9128 I.getPair(), FunTmpl->getTemplatedDecl(), 9129 MakeDeductionFailureInfo(Context, TDK, Info)); 9130 (void)TDK; 9131 continue; 9132 } 9133 9134 // Target attributes are part of the cuda function signature, so 9135 // the deduced template's cuda target must match that of the 9136 // specialization. Given that C++ template deduction does not 9137 // take target attributes into account, we reject candidates 9138 // here that have a different target. 9139 if (LangOpts.CUDA && 9140 CUDA().IdentifyTarget(Specialization, 9141 /* IgnoreImplicitHDAttr = */ true) != 9142 CUDA().IdentifyTarget(FD, /* IgnoreImplicitHDAttr = */ true)) { 9143 FailedCandidates.addCandidate().set( 9144 I.getPair(), FunTmpl->getTemplatedDecl(), 9145 MakeDeductionFailureInfo( 9146 Context, TemplateDeductionResult::CUDATargetMismatch, Info)); 9147 continue; 9148 } 9149 9150 // Record this candidate. 9151 if (ExplicitTemplateArgs) 9152 ConvertedTemplateArgs[Specialization] = std::move(Args); 9153 Candidates.addDecl(Specialization, I.getAccess()); 9154 } 9155 } 9156 9157 // For a qualified friend declaration (with no explicit marker to indicate 9158 // that a template specialization was intended), note all (template and 9159 // non-template) candidates. 9160 if (QualifiedFriend && Candidates.empty()) { 9161 Diag(FD->getLocation(), diag::err_qualified_friend_no_match) 9162 << FD->getDeclName() << FDLookupContext; 9163 // FIXME: We should form a single candidate list and diagnose all 9164 // candidates at once, to get proper sorting and limiting. 9165 for (auto *OldND : Previous) { 9166 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) 9167 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); 9168 } 9169 FailedCandidates.NoteCandidates(*this, FD->getLocation()); 9170 return true; 9171 } 9172 9173 // Find the most specialized function template. 9174 UnresolvedSetIterator Result = getMostSpecialized( 9175 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), 9176 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 9177 PDiag(diag::err_function_template_spec_ambiguous) 9178 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 9179 PDiag(diag::note_function_template_spec_matched)); 9180 9181 if (Result == Candidates.end()) 9182 return true; 9183 9184 // Ignore access information; it doesn't figure into redeclaration checking. 9185 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 9186 9187 if (const auto *PT = Specialization->getPrimaryTemplate(); 9188 const auto *DSA = PT->getAttr<NoSpecializationsAttr>()) { 9189 auto Message = DSA->getMessage(); 9190 Diag(FD->getLocation(), diag::warn_invalid_specialization) 9191 << PT << !Message.empty() << Message; 9192 Diag(DSA->getLoc(), diag::note_marked_here) << DSA; 9193 } 9194 9195 // C++23 [except.spec]p13: 9196 // An exception specification is considered to be needed when: 9197 // - [...] 9198 // - the exception specification is compared to that of another declaration 9199 // (e.g., an explicit specialization or an overriding virtual function); 9200 // - [...] 9201 // 9202 // The exception specification of a defaulted function is evaluated as 9203 // described above only when needed; similarly, the noexcept-specifier of a 9204 // specialization of a function template or member function of a class 9205 // template is instantiated only when needed. 9206 // 9207 // The standard doesn't specify what the "comparison with another declaration" 9208 // entails, nor the exact circumstances in which it occurs. Moreover, it does 9209 // not state which properties of an explicit specialization must match the 9210 // primary template. 9211 // 9212 // We assume that an explicit specialization must correspond with (per 9213 // [basic.scope.scope]p4) and declare the same entity as (per [basic.link]p8) 9214 // the declaration produced by substitution into the function template. 9215 // 9216 // Since the determination whether two function declarations correspond does 9217 // not consider exception specification, we only need to instantiate it once 9218 // we determine the primary template when comparing types per 9219 // [basic.link]p11.1. 9220 auto *SpecializationFPT = 9221 Specialization->getType()->castAs<FunctionProtoType>(); 9222 // If the function has a dependent exception specification, resolve it after 9223 // we have selected the primary template so we can check whether it matches. 9224 if (getLangOpts().CPlusPlus17 && 9225 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && 9226 !ResolveExceptionSpec(FD->getLocation(), SpecializationFPT)) 9227 return true; 9228 9229 FunctionTemplateSpecializationInfo *SpecInfo 9230 = Specialization->getTemplateSpecializationInfo(); 9231 assert(SpecInfo && "Function template specialization info missing?"); 9232 9233 // Note: do not overwrite location info if previous template 9234 // specialization kind was explicit. 9235 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 9236 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 9237 Specialization->setLocation(FD->getLocation()); 9238 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); 9239 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 9240 // function can differ from the template declaration with respect to 9241 // the constexpr specifier. 9242 // FIXME: We need an update record for this AST mutation. 9243 // FIXME: What if there are multiple such prior declarations (for instance, 9244 // from different modules)? 9245 Specialization->setConstexprKind(FD->getConstexprKind()); 9246 } 9247 9248 // FIXME: Check if the prior specialization has a point of instantiation. 9249 // If so, we have run afoul of . 9250 9251 // If this is a friend declaration, then we're not really declaring 9252 // an explicit specialization. 9253 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 9254 9255 // Check the scope of this explicit specialization. 9256 if (!isFriend && 9257 CheckTemplateSpecializationScope(*this, 9258 Specialization->getPrimaryTemplate(), 9259 Specialization, FD->getLocation(), 9260 false)) 9261 return true; 9262 9263 // C++ [temp.expl.spec]p6: 9264 // If a template, a member template or the member of a class template is 9265 // explicitly specialized then that specialization shall be declared 9266 // before the first use of that specialization that would cause an implicit 9267 // instantiation to take place, in every translation unit in which such a 9268 // use occurs; no diagnostic is required. 9269 bool HasNoEffect = false; 9270 if (!isFriend && 9271 CheckSpecializationInstantiationRedecl(FD->getLocation(), 9272 TSK_ExplicitSpecialization, 9273 Specialization, 9274 SpecInfo->getTemplateSpecializationKind(), 9275 SpecInfo->getPointOfInstantiation(), 9276 HasNoEffect)) 9277 return true; 9278 9279 // Mark the prior declaration as an explicit specialization, so that later 9280 // clients know that this is an explicit specialization. 9281 if (!isFriend) { 9282 // Since explicit specializations do not inherit '=delete' from their 9283 // primary function template - check if the 'specialization' that was 9284 // implicitly generated (during template argument deduction for partial 9285 // ordering) from the most specialized of all the function templates that 9286 // 'FD' could have been specializing, has a 'deleted' definition. If so, 9287 // first check that it was implicitly generated during template argument 9288 // deduction by making sure it wasn't referenced, and then reset the deleted 9289 // flag to not-deleted, so that we can inherit that information from 'FD'. 9290 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && 9291 !Specialization->getCanonicalDecl()->isReferenced()) { 9292 // FIXME: This assert will not hold in the presence of modules. 9293 assert( 9294 Specialization->getCanonicalDecl() == Specialization && 9295 "This must be the only existing declaration of this specialization"); 9296 // FIXME: We need an update record for this AST mutation. 9297 Specialization->setDeletedAsWritten(false); 9298 } 9299 // FIXME: We need an update record for this AST mutation. 9300 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9301 MarkUnusedFileScopedDecl(Specialization); 9302 } 9303 9304 // Turn the given function declaration into a function template 9305 // specialization, with the template arguments from the previous 9306 // specialization. 9307 // Take copies of (semantic and syntactic) template argument lists. 9308 TemplateArgumentList *TemplArgs = TemplateArgumentList::CreateCopy( 9309 Context, Specialization->getTemplateSpecializationArgs()->asArray()); 9310 FD->setFunctionTemplateSpecialization( 9311 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 9312 SpecInfo->getTemplateSpecializationKind(), 9313 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 9314 9315 // A function template specialization inherits the target attributes 9316 // of its template. (We require the attributes explicitly in the 9317 // code to match, but a template may have implicit attributes by 9318 // virtue e.g. of being constexpr, and it passes these implicit 9319 // attributes on to its specializations.) 9320 if (LangOpts.CUDA) 9321 CUDA().inheritTargetAttrs(FD, *Specialization->getPrimaryTemplate()); 9322 9323 // The "previous declaration" for this function template specialization is 9324 // the prior function template specialization. 9325 Previous.clear(); 9326 Previous.addDecl(Specialization); 9327 return false; 9328 } 9329 9330 bool 9331 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 9332 assert(!Member->isTemplateDecl() && !Member->getDescribedTemplate() && 9333 "Only for non-template members"); 9334 9335 // Try to find the member we are instantiating. 9336 NamedDecl *FoundInstantiation = nullptr; 9337 NamedDecl *Instantiation = nullptr; 9338 NamedDecl *InstantiatedFrom = nullptr; 9339 MemberSpecializationInfo *MSInfo = nullptr; 9340 9341 if (Previous.empty()) { 9342 // Nowhere to look anyway. 9343 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 9344 UnresolvedSet<8> Candidates; 9345 for (NamedDecl *Candidate : Previous) { 9346 auto *Method = dyn_cast<CXXMethodDecl>(Candidate->getUnderlyingDecl()); 9347 // Ignore any candidates that aren't member functions. 9348 if (!Method) 9349 continue; 9350 9351 QualType Adjusted = Function->getType(); 9352 if (!hasExplicitCallingConv(Adjusted)) 9353 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 9354 // Ignore any candidates with the wrong type. 9355 // This doesn't handle deduced return types, but both function 9356 // declarations should be undeduced at this point. 9357 // FIXME: The exception specification should probably be ignored when 9358 // comparing the types. 9359 if (!Context.hasSameType(Adjusted, Method->getType())) 9360 continue; 9361 9362 // Ignore any candidates with unsatisfied constraints. 9363 if (ConstraintSatisfaction Satisfaction; 9364 Method->getTrailingRequiresClause() && 9365 (CheckFunctionConstraints(Method, Satisfaction, 9366 /*UsageLoc=*/Member->getLocation(), 9367 /*ForOverloadResolution=*/true) || 9368 !Satisfaction.IsSatisfied)) 9369 continue; 9370 9371 Candidates.addDecl(Candidate); 9372 } 9373 9374 // If we have no viable candidates left after filtering, we are done. 9375 if (Candidates.empty()) 9376 return false; 9377 9378 // Find the function that is more constrained than every other function it 9379 // has been compared to. 9380 UnresolvedSetIterator Best = Candidates.begin(); 9381 CXXMethodDecl *BestMethod = nullptr; 9382 for (UnresolvedSetIterator I = Candidates.begin(), E = Candidates.end(); 9383 I != E; ++I) { 9384 auto *Method = cast<CXXMethodDecl>(I->getUnderlyingDecl()); 9385 if (I == Best || 9386 getMoreConstrainedFunction(Method, BestMethod) == Method) { 9387 Best = I; 9388 BestMethod = Method; 9389 } 9390 } 9391 9392 FoundInstantiation = *Best; 9393 Instantiation = BestMethod; 9394 InstantiatedFrom = BestMethod->getInstantiatedFromMemberFunction(); 9395 MSInfo = BestMethod->getMemberSpecializationInfo(); 9396 9397 // Make sure the best candidate is more constrained than all of the others. 9398 bool Ambiguous = false; 9399 for (UnresolvedSetIterator I = Candidates.begin(), E = Candidates.end(); 9400 I != E; ++I) { 9401 auto *Method = cast<CXXMethodDecl>(I->getUnderlyingDecl()); 9402 if (I != Best && 9403 getMoreConstrainedFunction(Method, BestMethod) != BestMethod) { 9404 Ambiguous = true; 9405 break; 9406 } 9407 } 9408 9409 if (Ambiguous) { 9410 Diag(Member->getLocation(), diag::err_function_member_spec_ambiguous) 9411 << Member << (InstantiatedFrom ? InstantiatedFrom : Instantiation); 9412 for (NamedDecl *Candidate : Candidates) { 9413 Candidate = Candidate->getUnderlyingDecl(); 9414 Diag(Candidate->getLocation(), diag::note_function_member_spec_matched) 9415 << Candidate; 9416 } 9417 return true; 9418 } 9419 } else if (isa<VarDecl>(Member)) { 9420 VarDecl *PrevVar; 9421 if (Previous.isSingleResult() && 9422 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 9423 if (PrevVar->isStaticDataMember()) { 9424 FoundInstantiation = Previous.getRepresentativeDecl(); 9425 Instantiation = PrevVar; 9426 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 9427 MSInfo = PrevVar->getMemberSpecializationInfo(); 9428 } 9429 } else if (isa<RecordDecl>(Member)) { 9430 CXXRecordDecl *PrevRecord; 9431 if (Previous.isSingleResult() && 9432 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 9433 FoundInstantiation = Previous.getRepresentativeDecl(); 9434 Instantiation = PrevRecord; 9435 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 9436 MSInfo = PrevRecord->getMemberSpecializationInfo(); 9437 } 9438 } else if (isa<EnumDecl>(Member)) { 9439 EnumDecl *PrevEnum; 9440 if (Previous.isSingleResult() && 9441 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 9442 FoundInstantiation = Previous.getRepresentativeDecl(); 9443 Instantiation = PrevEnum; 9444 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 9445 MSInfo = PrevEnum->getMemberSpecializationInfo(); 9446 } 9447 } 9448 9449 if (!Instantiation) { 9450 // There is no previous declaration that matches. Since member 9451 // specializations are always out-of-line, the caller will complain about 9452 // this mismatch later. 9453 return false; 9454 } 9455 9456 // A member specialization in a friend declaration isn't really declaring 9457 // an explicit specialization, just identifying a specific (possibly implicit) 9458 // specialization. Don't change the template specialization kind. 9459 // 9460 // FIXME: Is this really valid? Other compilers reject. 9461 if (Member->getFriendObjectKind() != Decl::FOK_None) { 9462 // Preserve instantiation information. 9463 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 9464 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 9465 cast<CXXMethodDecl>(InstantiatedFrom), 9466 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 9467 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 9468 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 9469 cast<CXXRecordDecl>(InstantiatedFrom), 9470 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 9471 } 9472 9473 Previous.clear(); 9474 Previous.addDecl(FoundInstantiation); 9475 return false; 9476 } 9477 9478 // Make sure that this is a specialization of a member. 9479 if (!InstantiatedFrom) { 9480 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 9481 << Member; 9482 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 9483 return true; 9484 } 9485 9486 // C++ [temp.expl.spec]p6: 9487 // If a template, a member template or the member of a class template is 9488 // explicitly specialized then that specialization shall be declared 9489 // before the first use of that specialization that would cause an implicit 9490 // instantiation to take place, in every translation unit in which such a 9491 // use occurs; no diagnostic is required. 9492 assert(MSInfo && "Member specialization info missing?"); 9493 9494 bool HasNoEffect = false; 9495 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 9496 TSK_ExplicitSpecialization, 9497 Instantiation, 9498 MSInfo->getTemplateSpecializationKind(), 9499 MSInfo->getPointOfInstantiation(), 9500 HasNoEffect)) 9501 return true; 9502 9503 // Check the scope of this explicit specialization. 9504 if (CheckTemplateSpecializationScope(*this, 9505 InstantiatedFrom, 9506 Instantiation, Member->getLocation(), 9507 false)) 9508 return true; 9509 9510 // Note that this member specialization is an "instantiation of" the 9511 // corresponding member of the original template. 9512 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { 9513 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 9514 if (InstantiationFunction->getTemplateSpecializationKind() == 9515 TSK_ImplicitInstantiation) { 9516 // Explicit specializations of member functions of class templates do not 9517 // inherit '=delete' from the member function they are specializing. 9518 if (InstantiationFunction->isDeleted()) { 9519 // FIXME: This assert will not hold in the presence of modules. 9520 assert(InstantiationFunction->getCanonicalDecl() == 9521 InstantiationFunction); 9522 // FIXME: We need an update record for this AST mutation. 9523 InstantiationFunction->setDeletedAsWritten(false); 9524 } 9525 } 9526 9527 MemberFunction->setInstantiationOfMemberFunction( 9528 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9529 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { 9530 MemberVar->setInstantiationOfStaticDataMember( 9531 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9532 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { 9533 MemberClass->setInstantiationOfMemberClass( 9534 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9535 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { 9536 MemberEnum->setInstantiationOfMemberEnum( 9537 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9538 } else { 9539 llvm_unreachable("unknown member specialization kind"); 9540 } 9541 9542 // Save the caller the trouble of having to figure out which declaration 9543 // this specialization matches. 9544 Previous.clear(); 9545 Previous.addDecl(FoundInstantiation); 9546 return false; 9547 } 9548 9549 /// Complete the explicit specialization of a member of a class template by 9550 /// updating the instantiated member to be marked as an explicit specialization. 9551 /// 9552 /// \param OrigD The member declaration instantiated from the template. 9553 /// \param Loc The location of the explicit specialization of the member. 9554 template<typename DeclT> 9555 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, 9556 SourceLocation Loc) { 9557 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 9558 return; 9559 9560 // FIXME: Inform AST mutation listeners of this AST mutation. 9561 // FIXME: If there are multiple in-class declarations of the member (from 9562 // multiple modules, or a declaration and later definition of a member type), 9563 // should we update all of them? 9564 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9565 OrigD->setLocation(Loc); 9566 } 9567 9568 void Sema::CompleteMemberSpecialization(NamedDecl *Member, 9569 LookupResult &Previous) { 9570 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); 9571 if (Instantiation == Member) 9572 return; 9573 9574 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) 9575 completeMemberSpecializationImpl(*this, Function, Member->getLocation()); 9576 else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) 9577 completeMemberSpecializationImpl(*this, Var, Member->getLocation()); 9578 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) 9579 completeMemberSpecializationImpl(*this, Record, Member->getLocation()); 9580 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) 9581 completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); 9582 else 9583 llvm_unreachable("unknown member specialization kind"); 9584 } 9585 9586 /// Check the scope of an explicit instantiation. 9587 /// 9588 /// \returns true if a serious error occurs, false otherwise. 9589 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 9590 SourceLocation InstLoc, 9591 bool WasQualifiedName) { 9592 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 9593 DeclContext *CurContext = S.CurContext->getRedeclContext(); 9594 9595 if (CurContext->isRecord()) { 9596 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 9597 << D; 9598 return true; 9599 } 9600 9601 // C++11 [temp.explicit]p3: 9602 // An explicit instantiation shall appear in an enclosing namespace of its 9603 // template. If the name declared in the explicit instantiation is an 9604 // unqualified name, the explicit instantiation shall appear in the 9605 // namespace where its template is declared or, if that namespace is inline 9606 // (7.3.1), any namespace from its enclosing namespace set. 9607 // 9608 // This is DR275, which we do not retroactively apply to C++98/03. 9609 if (WasQualifiedName) { 9610 if (CurContext->Encloses(OrigContext)) 9611 return false; 9612 } else { 9613 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 9614 return false; 9615 } 9616 9617 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 9618 if (WasQualifiedName) 9619 S.Diag(InstLoc, 9620 S.getLangOpts().CPlusPlus11? 9621 diag::err_explicit_instantiation_out_of_scope : 9622 diag::warn_explicit_instantiation_out_of_scope_0x) 9623 << D << NS; 9624 else 9625 S.Diag(InstLoc, 9626 S.getLangOpts().CPlusPlus11? 9627 diag::err_explicit_instantiation_unqualified_wrong_namespace : 9628 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 9629 << D << NS; 9630 } else 9631 S.Diag(InstLoc, 9632 S.getLangOpts().CPlusPlus11? 9633 diag::err_explicit_instantiation_must_be_global : 9634 diag::warn_explicit_instantiation_must_be_global_0x) 9635 << D; 9636 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 9637 return false; 9638 } 9639 9640 /// Common checks for whether an explicit instantiation of \p D is valid. 9641 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, 9642 SourceLocation InstLoc, 9643 bool WasQualifiedName, 9644 TemplateSpecializationKind TSK) { 9645 // C++ [temp.explicit]p13: 9646 // An explicit instantiation declaration shall not name a specialization of 9647 // a template with internal linkage. 9648 if (TSK == TSK_ExplicitInstantiationDeclaration && 9649 D->getFormalLinkage() == Linkage::Internal) { 9650 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; 9651 return true; 9652 } 9653 9654 // C++11 [temp.explicit]p3: [DR 275] 9655 // An explicit instantiation shall appear in an enclosing namespace of its 9656 // template. 9657 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) 9658 return true; 9659 9660 return false; 9661 } 9662 9663 /// Determine whether the given scope specifier has a template-id in it. 9664 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 9665 if (!SS.isSet()) 9666 return false; 9667 9668 // C++11 [temp.explicit]p3: 9669 // If the explicit instantiation is for a member function, a member class 9670 // or a static data member of a class template specialization, the name of 9671 // the class template specialization in the qualified-id for the member 9672 // name shall be a simple-template-id. 9673 // 9674 // C++98 has the same restriction, just worded differently. 9675 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 9676 NNS = NNS->getPrefix()) 9677 if (const Type *T = NNS->getAsType()) 9678 if (isa<TemplateSpecializationType>(T)) 9679 return true; 9680 9681 return false; 9682 } 9683 9684 /// Make a dllexport or dllimport attr on a class template specialization take 9685 /// effect. 9686 static void dllExportImportClassTemplateSpecialization( 9687 Sema &S, ClassTemplateSpecializationDecl *Def) { 9688 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); 9689 assert(A && "dllExportImportClassTemplateSpecialization called " 9690 "on Def without dllexport or dllimport"); 9691 9692 // We reject explicit instantiations in class scope, so there should 9693 // never be any delayed exported classes to worry about. 9694 assert(S.DelayedDllExportClasses.empty() && 9695 "delayed exports present at explicit instantiation"); 9696 S.checkClassLevelDLLAttribute(Def); 9697 9698 // Propagate attribute to base class templates. 9699 for (auto &B : Def->bases()) { 9700 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 9701 B.getType()->getAsCXXRecordDecl())) 9702 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); 9703 } 9704 9705 S.referenceDLLExportedClassMethods(); 9706 } 9707 9708 DeclResult Sema::ActOnExplicitInstantiation( 9709 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, 9710 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, 9711 TemplateTy TemplateD, SourceLocation TemplateNameLoc, 9712 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, 9713 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { 9714 // Find the class template we're specializing 9715 TemplateName Name = TemplateD.get(); 9716 TemplateDecl *TD = Name.getAsTemplateDecl(); 9717 // Check that the specialization uses the same tag kind as the 9718 // original template. 9719 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 9720 assert(Kind != TagTypeKind::Enum && 9721 "Invalid enum tag in class template explicit instantiation!"); 9722 9723 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); 9724 9725 if (!ClassTemplate) { 9726 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); 9727 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) 9728 << TD << NTK << llvm::to_underlying(Kind); 9729 Diag(TD->getLocation(), diag::note_previous_use); 9730 return true; 9731 } 9732 9733 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 9734 Kind, /*isDefinition*/false, KWLoc, 9735 ClassTemplate->getIdentifier())) { 9736 Diag(KWLoc, diag::err_use_with_wrong_tag) 9737 << ClassTemplate 9738 << FixItHint::CreateReplacement(KWLoc, 9739 ClassTemplate->getTemplatedDecl()->getKindName()); 9740 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 9741 diag::note_previous_use); 9742 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 9743 } 9744 9745 // C++0x [temp.explicit]p2: 9746 // There are two forms of explicit instantiation: an explicit instantiation 9747 // definition and an explicit instantiation declaration. An explicit 9748 // instantiation declaration begins with the extern keyword. [...] 9749 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 9750 ? TSK_ExplicitInstantiationDefinition 9751 : TSK_ExplicitInstantiationDeclaration; 9752 9753 if (TSK == TSK_ExplicitInstantiationDeclaration && 9754 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9755 // Check for dllexport class template instantiation declarations, 9756 // except for MinGW mode. 9757 for (const ParsedAttr &AL : Attr) { 9758 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9759 Diag(ExternLoc, 9760 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9761 Diag(AL.getLoc(), diag::note_attribute); 9762 break; 9763 } 9764 } 9765 9766 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 9767 Diag(ExternLoc, 9768 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9769 Diag(A->getLocation(), diag::note_attribute); 9770 } 9771 } 9772 9773 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9774 // instantiation declarations for most purposes. 9775 bool DLLImportExplicitInstantiationDef = false; 9776 if (TSK == TSK_ExplicitInstantiationDefinition && 9777 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9778 // Check for dllimport class template instantiation definitions. 9779 bool DLLImport = 9780 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); 9781 for (const ParsedAttr &AL : Attr) { 9782 if (AL.getKind() == ParsedAttr::AT_DLLImport) 9783 DLLImport = true; 9784 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9785 // dllexport trumps dllimport here. 9786 DLLImport = false; 9787 break; 9788 } 9789 } 9790 if (DLLImport) { 9791 TSK = TSK_ExplicitInstantiationDeclaration; 9792 DLLImportExplicitInstantiationDef = true; 9793 } 9794 } 9795 9796 // Translate the parser's template argument list in our AST format. 9797 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 9798 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 9799 9800 // Check that the template argument list is well-formed for this 9801 // template. 9802 CheckTemplateArgumentInfo CTAI; 9803 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, 9804 /*DefaultArgs=*/{}, false, CTAI, 9805 /*UpdateArgsWithConversions=*/true, 9806 /*ConstraintsNotSatisfied=*/nullptr)) 9807 return true; 9808 9809 // Find the class template specialization declaration that 9810 // corresponds to these arguments. 9811 void *InsertPos = nullptr; 9812 ClassTemplateSpecializationDecl *PrevDecl = 9813 ClassTemplate->findSpecialization(CTAI.CanonicalConverted, InsertPos); 9814 9815 TemplateSpecializationKind PrevDecl_TSK 9816 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 9817 9818 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && 9819 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9820 // Check for dllexport class template instantiation definitions in MinGW 9821 // mode, if a previous declaration of the instantiation was seen. 9822 for (const ParsedAttr &AL : Attr) { 9823 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9824 Diag(AL.getLoc(), 9825 diag::warn_attribute_dllexport_explicit_instantiation_def); 9826 break; 9827 } 9828 } 9829 } 9830 9831 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, 9832 SS.isSet(), TSK)) 9833 return true; 9834 9835 ClassTemplateSpecializationDecl *Specialization = nullptr; 9836 9837 bool HasNoEffect = false; 9838 if (PrevDecl) { 9839 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 9840 PrevDecl, PrevDecl_TSK, 9841 PrevDecl->getPointOfInstantiation(), 9842 HasNoEffect)) 9843 return PrevDecl; 9844 9845 // Even though HasNoEffect == true means that this explicit instantiation 9846 // has no effect on semantics, we go on to put its syntax in the AST. 9847 9848 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 9849 PrevDecl_TSK == TSK_Undeclared) { 9850 // Since the only prior class template specialization with these 9851 // arguments was referenced but not declared, reuse that 9852 // declaration node as our own, updating the source location 9853 // for the template name to reflect our new declaration. 9854 // (Other source locations will be updated later.) 9855 Specialization = PrevDecl; 9856 Specialization->setLocation(TemplateNameLoc); 9857 PrevDecl = nullptr; 9858 } 9859 9860 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9861 DLLImportExplicitInstantiationDef) { 9862 // The new specialization might add a dllimport attribute. 9863 HasNoEffect = false; 9864 } 9865 } 9866 9867 if (!Specialization) { 9868 // Create a new class template specialization declaration node for 9869 // this explicit specialization. 9870 Specialization = ClassTemplateSpecializationDecl::Create( 9871 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc, 9872 ClassTemplate, CTAI.CanonicalConverted, PrevDecl); 9873 SetNestedNameSpecifier(*this, Specialization, SS); 9874 9875 // A MSInheritanceAttr attached to the previous declaration must be 9876 // propagated to the new node prior to instantiation. 9877 if (PrevDecl) { 9878 if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) { 9879 auto *Clone = A->clone(getASTContext()); 9880 Clone->setInherited(true); 9881 Specialization->addAttr(Clone); 9882 Consumer.AssignInheritanceModel(Specialization); 9883 } 9884 } 9885 9886 if (!HasNoEffect && !PrevDecl) { 9887 // Insert the new specialization. 9888 ClassTemplate->AddSpecialization(Specialization, InsertPos); 9889 } 9890 } 9891 9892 Specialization->setTemplateArgsAsWritten(TemplateArgs); 9893 9894 // Set source locations for keywords. 9895 Specialization->setExternKeywordLoc(ExternLoc); 9896 Specialization->setTemplateKeywordLoc(TemplateLoc); 9897 Specialization->setBraceRange(SourceRange()); 9898 9899 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); 9900 ProcessDeclAttributeList(S, Specialization, Attr); 9901 ProcessAPINotes(Specialization); 9902 9903 // Add the explicit instantiation into its lexical context. However, 9904 // since explicit instantiations are never found by name lookup, we 9905 // just put it into the declaration context directly. 9906 Specialization->setLexicalDeclContext(CurContext); 9907 CurContext->addDecl(Specialization); 9908 9909 // Syntax is now OK, so return if it has no other effect on semantics. 9910 if (HasNoEffect) { 9911 // Set the template specialization kind. 9912 Specialization->setTemplateSpecializationKind(TSK); 9913 return Specialization; 9914 } 9915 9916 // C++ [temp.explicit]p3: 9917 // A definition of a class template or class member template 9918 // shall be in scope at the point of the explicit instantiation of 9919 // the class template or class member template. 9920 // 9921 // This check comes when we actually try to perform the 9922 // instantiation. 9923 ClassTemplateSpecializationDecl *Def 9924 = cast_or_null<ClassTemplateSpecializationDecl>( 9925 Specialization->getDefinition()); 9926 if (!Def) 9927 InstantiateClassTemplateSpecialization( 9928 TemplateNameLoc, Specialization, TSK, 9929 /*Complain=*/true, CTAI.MatchedPackOnParmToNonPackOnArg); 9930 else if (TSK == TSK_ExplicitInstantiationDefinition) { 9931 MarkVTableUsed(TemplateNameLoc, Specialization, true); 9932 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 9933 } 9934 9935 // Instantiate the members of this class template specialization. 9936 Def = cast_or_null<ClassTemplateSpecializationDecl>( 9937 Specialization->getDefinition()); 9938 if (Def) { 9939 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 9940 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 9941 // TSK_ExplicitInstantiationDefinition 9942 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 9943 (TSK == TSK_ExplicitInstantiationDefinition || 9944 DLLImportExplicitInstantiationDef)) { 9945 // FIXME: Need to notify the ASTMutationListener that we did this. 9946 Def->setTemplateSpecializationKind(TSK); 9947 9948 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 9949 Context.getTargetInfo().shouldDLLImportComdatSymbols()) { 9950 // An explicit instantiation definition can add a dll attribute to a 9951 // template with a previous instantiation declaration. MinGW doesn't 9952 // allow this. 9953 auto *A = cast<InheritableAttr>( 9954 getDLLAttr(Specialization)->clone(getASTContext())); 9955 A->setInherited(true); 9956 Def->addAttr(A); 9957 dllExportImportClassTemplateSpecialization(*this, Def); 9958 } 9959 } 9960 9961 // Fix a TSK_ImplicitInstantiation followed by a 9962 // TSK_ExplicitInstantiationDefinition 9963 bool NewlyDLLExported = 9964 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); 9965 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && 9966 Context.getTargetInfo().shouldDLLImportComdatSymbols()) { 9967 // An explicit instantiation definition can add a dll attribute to a 9968 // template with a previous implicit instantiation. MinGW doesn't allow 9969 // this. We limit clang to only adding dllexport, to avoid potentially 9970 // strange codegen behavior. For example, if we extend this conditional 9971 // to dllimport, and we have a source file calling a method on an 9972 // implicitly instantiated template class instance and then declaring a 9973 // dllimport explicit instantiation definition for the same template 9974 // class, the codegen for the method call will not respect the dllimport, 9975 // while it will with cl. The Def will already have the DLL attribute, 9976 // since the Def and Specialization will be the same in the case of 9977 // Old_TSK == TSK_ImplicitInstantiation, and we already added the 9978 // attribute to the Specialization; we just need to make it take effect. 9979 assert(Def == Specialization && 9980 "Def and Specialization should match for implicit instantiation"); 9981 dllExportImportClassTemplateSpecialization(*this, Def); 9982 } 9983 9984 // In MinGW mode, export the template instantiation if the declaration 9985 // was marked dllexport. 9986 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9987 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && 9988 PrevDecl->hasAttr<DLLExportAttr>()) { 9989 dllExportImportClassTemplateSpecialization(*this, Def); 9990 } 9991 9992 // Set the template specialization kind. Make sure it is set before 9993 // instantiating the members which will trigger ASTConsumer callbacks. 9994 Specialization->setTemplateSpecializationKind(TSK); 9995 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 9996 } else { 9997 9998 // Set the template specialization kind. 9999 Specialization->setTemplateSpecializationKind(TSK); 10000 } 10001 10002 return Specialization; 10003 } 10004 10005 DeclResult 10006 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, 10007 SourceLocation TemplateLoc, unsigned TagSpec, 10008 SourceLocation KWLoc, CXXScopeSpec &SS, 10009 IdentifierInfo *Name, SourceLocation NameLoc, 10010 const ParsedAttributesView &Attr) { 10011 10012 bool Owned = false; 10013 bool IsDependent = false; 10014 Decl *TagD = 10015 ActOnTag(S, TagSpec, TagUseKind::Reference, KWLoc, SS, Name, NameLoc, 10016 Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(), 10017 MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(), 10018 false, TypeResult(), /*IsTypeSpecifier*/ false, 10019 /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside) 10020 .get(); 10021 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 10022 10023 if (!TagD) 10024 return true; 10025 10026 TagDecl *Tag = cast<TagDecl>(TagD); 10027 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 10028 10029 if (Tag->isInvalidDecl()) 10030 return true; 10031 10032 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 10033 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 10034 if (!Pattern) { 10035 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 10036 << Context.getTypeDeclType(Record); 10037 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 10038 return true; 10039 } 10040 10041 // C++0x [temp.explicit]p2: 10042 // If the explicit instantiation is for a class or member class, the 10043 // elaborated-type-specifier in the declaration shall include a 10044 // simple-template-id. 10045 // 10046 // C++98 has the same restriction, just worded differently. 10047 if (!ScopeSpecifierHasTemplateId(SS)) 10048 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 10049 << Record << SS.getRange(); 10050 10051 // C++0x [temp.explicit]p2: 10052 // There are two forms of explicit instantiation: an explicit instantiation 10053 // definition and an explicit instantiation declaration. An explicit 10054 // instantiation declaration begins with the extern keyword. [...] 10055 TemplateSpecializationKind TSK 10056 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 10057 : TSK_ExplicitInstantiationDeclaration; 10058 10059 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); 10060 10061 // Verify that it is okay to explicitly instantiate here. 10062 CXXRecordDecl *PrevDecl 10063 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 10064 if (!PrevDecl && Record->getDefinition()) 10065 PrevDecl = Record; 10066 if (PrevDecl) { 10067 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 10068 bool HasNoEffect = false; 10069 assert(MSInfo && "No member specialization information?"); 10070 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 10071 PrevDecl, 10072 MSInfo->getTemplateSpecializationKind(), 10073 MSInfo->getPointOfInstantiation(), 10074 HasNoEffect)) 10075 return true; 10076 if (HasNoEffect) 10077 return TagD; 10078 } 10079 10080 CXXRecordDecl *RecordDef 10081 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 10082 if (!RecordDef) { 10083 // C++ [temp.explicit]p3: 10084 // A definition of a member class of a class template shall be in scope 10085 // at the point of an explicit instantiation of the member class. 10086 CXXRecordDecl *Def 10087 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 10088 if (!Def) { 10089 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 10090 << 0 << Record->getDeclName() << Record->getDeclContext(); 10091 Diag(Pattern->getLocation(), diag::note_forward_declaration) 10092 << Pattern; 10093 return true; 10094 } else { 10095 if (InstantiateClass(NameLoc, Record, Def, 10096 getTemplateInstantiationArgs(Record), 10097 TSK)) 10098 return true; 10099 10100 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 10101 if (!RecordDef) 10102 return true; 10103 } 10104 } 10105 10106 // Instantiate all of the members of the class. 10107 InstantiateClassMembers(NameLoc, RecordDef, 10108 getTemplateInstantiationArgs(Record), TSK); 10109 10110 if (TSK == TSK_ExplicitInstantiationDefinition) 10111 MarkVTableUsed(NameLoc, RecordDef, true); 10112 10113 // FIXME: We don't have any representation for explicit instantiations of 10114 // member classes. Such a representation is not needed for compilation, but it 10115 // should be available for clients that want to see all of the declarations in 10116 // the source code. 10117 return TagD; 10118 } 10119 10120 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 10121 SourceLocation ExternLoc, 10122 SourceLocation TemplateLoc, 10123 Declarator &D) { 10124 // Explicit instantiations always require a name. 10125 // TODO: check if/when DNInfo should replace Name. 10126 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 10127 DeclarationName Name = NameInfo.getName(); 10128 if (!Name) { 10129 if (!D.isInvalidType()) 10130 Diag(D.getDeclSpec().getBeginLoc(), 10131 diag::err_explicit_instantiation_requires_name) 10132 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 10133 10134 return true; 10135 } 10136 10137 // Get the innermost enclosing declaration scope. 10138 S = S->getDeclParent(); 10139 10140 // Determine the type of the declaration. 10141 TypeSourceInfo *T = GetTypeForDeclarator(D); 10142 QualType R = T->getType(); 10143 if (R.isNull()) 10144 return true; 10145 10146 // C++ [dcl.stc]p1: 10147 // A storage-class-specifier shall not be specified in [...] an explicit 10148 // instantiation (14.7.2) directive. 10149 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 10150 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 10151 << Name; 10152 return true; 10153 } else if (D.getDeclSpec().getStorageClassSpec() 10154 != DeclSpec::SCS_unspecified) { 10155 // Complain about then remove the storage class specifier. 10156 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 10157 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10158 10159 D.getMutableDeclSpec().ClearStorageClassSpecs(); 10160 } 10161 10162 // C++0x [temp.explicit]p1: 10163 // [...] An explicit instantiation of a function template shall not use the 10164 // inline or constexpr specifiers. 10165 // Presumably, this also applies to member functions of class templates as 10166 // well. 10167 if (D.getDeclSpec().isInlineSpecified()) 10168 Diag(D.getDeclSpec().getInlineSpecLoc(), 10169 getLangOpts().CPlusPlus11 ? 10170 diag::err_explicit_instantiation_inline : 10171 diag::warn_explicit_instantiation_inline_0x) 10172 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 10173 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) 10174 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 10175 // not already specified. 10176 Diag(D.getDeclSpec().getConstexprSpecLoc(), 10177 diag::err_explicit_instantiation_constexpr); 10178 10179 // A deduction guide is not on the list of entities that can be explicitly 10180 // instantiated. 10181 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 10182 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) 10183 << /*explicit instantiation*/ 0; 10184 return true; 10185 } 10186 10187 // C++0x [temp.explicit]p2: 10188 // There are two forms of explicit instantiation: an explicit instantiation 10189 // definition and an explicit instantiation declaration. An explicit 10190 // instantiation declaration begins with the extern keyword. [...] 10191 TemplateSpecializationKind TSK 10192 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 10193 : TSK_ExplicitInstantiationDeclaration; 10194 10195 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 10196 LookupParsedName(Previous, S, &D.getCXXScopeSpec(), 10197 /*ObjectType=*/QualType()); 10198 10199 if (!R->isFunctionType()) { 10200 // C++ [temp.explicit]p1: 10201 // A [...] static data member of a class template can be explicitly 10202 // instantiated from the member definition associated with its class 10203 // template. 10204 // C++1y [temp.explicit]p1: 10205 // A [...] variable [...] template specialization can be explicitly 10206 // instantiated from its template. 10207 if (Previous.isAmbiguous()) 10208 return true; 10209 10210 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 10211 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 10212 10213 if (!PrevTemplate) { 10214 if (!Prev || !Prev->isStaticDataMember()) { 10215 // We expect to see a static data member here. 10216 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 10217 << Name; 10218 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10219 P != PEnd; ++P) 10220 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 10221 return true; 10222 } 10223 10224 if (!Prev->getInstantiatedFromStaticDataMember()) { 10225 // FIXME: Check for explicit specialization? 10226 Diag(D.getIdentifierLoc(), 10227 diag::err_explicit_instantiation_data_member_not_instantiated) 10228 << Prev; 10229 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 10230 // FIXME: Can we provide a note showing where this was declared? 10231 return true; 10232 } 10233 } else { 10234 // Explicitly instantiate a variable template. 10235 10236 // C++1y [dcl.spec.auto]p6: 10237 // ... A program that uses auto or decltype(auto) in a context not 10238 // explicitly allowed in this section is ill-formed. 10239 // 10240 // This includes auto-typed variable template instantiations. 10241 if (R->isUndeducedType()) { 10242 Diag(T->getTypeLoc().getBeginLoc(), 10243 diag::err_auto_not_allowed_var_inst); 10244 return true; 10245 } 10246 10247 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 10248 // C++1y [temp.explicit]p3: 10249 // If the explicit instantiation is for a variable, the unqualified-id 10250 // in the declaration shall be a template-id. 10251 Diag(D.getIdentifierLoc(), 10252 diag::err_explicit_instantiation_without_template_id) 10253 << PrevTemplate; 10254 Diag(PrevTemplate->getLocation(), 10255 diag::note_explicit_instantiation_here); 10256 return true; 10257 } 10258 10259 // Translate the parser's template argument list into our AST format. 10260 TemplateArgumentListInfo TemplateArgs = 10261 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10262 10263 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 10264 D.getIdentifierLoc(), TemplateArgs); 10265 if (Res.isInvalid()) 10266 return true; 10267 10268 if (!Res.isUsable()) { 10269 // We somehow specified dependent template arguments in an explicit 10270 // instantiation. This should probably only happen during error 10271 // recovery. 10272 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent); 10273 return true; 10274 } 10275 10276 // Ignore access control bits, we don't need them for redeclaration 10277 // checking. 10278 Prev = cast<VarDecl>(Res.get()); 10279 } 10280 10281 // C++0x [temp.explicit]p2: 10282 // If the explicit instantiation is for a member function, a member class 10283 // or a static data member of a class template specialization, the name of 10284 // the class template specialization in the qualified-id for the member 10285 // name shall be a simple-template-id. 10286 // 10287 // C++98 has the same restriction, just worded differently. 10288 // 10289 // This does not apply to variable template specializations, where the 10290 // template-id is in the unqualified-id instead. 10291 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 10292 Diag(D.getIdentifierLoc(), 10293 diag::ext_explicit_instantiation_without_qualified_id) 10294 << Prev << D.getCXXScopeSpec().getRange(); 10295 10296 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); 10297 10298 // Verify that it is okay to explicitly instantiate here. 10299 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 10300 SourceLocation POI = Prev->getPointOfInstantiation(); 10301 bool HasNoEffect = false; 10302 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 10303 PrevTSK, POI, HasNoEffect)) 10304 return true; 10305 10306 if (!HasNoEffect) { 10307 // Instantiate static data member or variable template. 10308 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10309 if (auto *VTSD = dyn_cast<VarTemplatePartialSpecializationDecl>(Prev)) { 10310 VTSD->setExternKeywordLoc(ExternLoc); 10311 VTSD->setTemplateKeywordLoc(TemplateLoc); 10312 } 10313 10314 // Merge attributes. 10315 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); 10316 if (PrevTemplate) 10317 ProcessAPINotes(Prev); 10318 10319 if (TSK == TSK_ExplicitInstantiationDefinition) 10320 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 10321 } 10322 10323 // Check the new variable specialization against the parsed input. 10324 if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) { 10325 Diag(T->getTypeLoc().getBeginLoc(), 10326 diag::err_invalid_var_template_spec_type) 10327 << 0 << PrevTemplate << R << Prev->getType(); 10328 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 10329 << 2 << PrevTemplate->getDeclName(); 10330 return true; 10331 } 10332 10333 // FIXME: Create an ExplicitInstantiation node? 10334 return (Decl*) nullptr; 10335 } 10336 10337 // If the declarator is a template-id, translate the parser's template 10338 // argument list into our AST format. 10339 bool HasExplicitTemplateArgs = false; 10340 TemplateArgumentListInfo TemplateArgs; 10341 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 10342 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10343 HasExplicitTemplateArgs = true; 10344 } 10345 10346 // C++ [temp.explicit]p1: 10347 // A [...] function [...] can be explicitly instantiated from its template. 10348 // A member function [...] of a class template can be explicitly 10349 // instantiated from the member definition associated with its class 10350 // template. 10351 UnresolvedSet<8> TemplateMatches; 10352 OverloadCandidateSet NonTemplateMatches(D.getBeginLoc(), 10353 OverloadCandidateSet::CSK_Normal); 10354 TemplateSpecCandidateSet FailedTemplateCandidates(D.getIdentifierLoc()); 10355 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10356 P != PEnd; ++P) { 10357 NamedDecl *Prev = *P; 10358 if (!HasExplicitTemplateArgs) { 10359 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 10360 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), 10361 /*AdjustExceptionSpec*/true); 10362 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 10363 if (Method->getPrimaryTemplate()) { 10364 TemplateMatches.addDecl(Method, P.getAccess()); 10365 } else { 10366 OverloadCandidate &C = NonTemplateMatches.addCandidate(); 10367 C.FoundDecl = P.getPair(); 10368 C.Function = Method; 10369 C.Viable = true; 10370 ConstraintSatisfaction S; 10371 if (Method->getTrailingRequiresClause() && 10372 (CheckFunctionConstraints(Method, S, D.getIdentifierLoc(), 10373 /*ForOverloadResolution=*/true) || 10374 !S.IsSatisfied)) { 10375 C.Viable = false; 10376 C.FailureKind = ovl_fail_constraints_not_satisfied; 10377 } 10378 } 10379 } 10380 } 10381 } 10382 10383 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 10384 if (!FunTmpl) 10385 continue; 10386 10387 TemplateDeductionInfo Info(FailedTemplateCandidates.getLocation()); 10388 FunctionDecl *Specialization = nullptr; 10389 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 10390 FunTmpl, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), R, 10391 Specialization, Info); 10392 TDK != TemplateDeductionResult::Success) { 10393 // Keep track of almost-matches. 10394 FailedTemplateCandidates.addCandidate().set( 10395 P.getPair(), FunTmpl->getTemplatedDecl(), 10396 MakeDeductionFailureInfo(Context, TDK, Info)); 10397 (void)TDK; 10398 continue; 10399 } 10400 10401 // Target attributes are part of the cuda function signature, so 10402 // the cuda target of the instantiated function must match that of its 10403 // template. Given that C++ template deduction does not take 10404 // target attributes into account, we reject candidates here that 10405 // have a different target. 10406 if (LangOpts.CUDA && 10407 CUDA().IdentifyTarget(Specialization, 10408 /* IgnoreImplicitHDAttr = */ true) != 10409 CUDA().IdentifyTarget(D.getDeclSpec().getAttributes())) { 10410 FailedTemplateCandidates.addCandidate().set( 10411 P.getPair(), FunTmpl->getTemplatedDecl(), 10412 MakeDeductionFailureInfo( 10413 Context, TemplateDeductionResult::CUDATargetMismatch, Info)); 10414 continue; 10415 } 10416 10417 TemplateMatches.addDecl(Specialization, P.getAccess()); 10418 } 10419 10420 FunctionDecl *Specialization = nullptr; 10421 if (!NonTemplateMatches.empty()) { 10422 unsigned Msg = 0; 10423 OverloadCandidateDisplayKind DisplayKind; 10424 OverloadCandidateSet::iterator Best; 10425 switch (NonTemplateMatches.BestViableFunction(*this, D.getIdentifierLoc(), 10426 Best)) { 10427 case OR_Success: 10428 case OR_Deleted: 10429 Specialization = cast<FunctionDecl>(Best->Function); 10430 break; 10431 case OR_Ambiguous: 10432 Msg = diag::err_explicit_instantiation_ambiguous; 10433 DisplayKind = OCD_AmbiguousCandidates; 10434 break; 10435 case OR_No_Viable_Function: 10436 Msg = diag::err_explicit_instantiation_no_candidate; 10437 DisplayKind = OCD_AllCandidates; 10438 break; 10439 } 10440 if (Msg) { 10441 PartialDiagnostic Diag = PDiag(Msg) << Name; 10442 NonTemplateMatches.NoteCandidates( 10443 PartialDiagnosticAt(D.getIdentifierLoc(), Diag), *this, DisplayKind, 10444 {}); 10445 return true; 10446 } 10447 } 10448 10449 if (!Specialization) { 10450 // Find the most specialized function template specialization. 10451 UnresolvedSetIterator Result = getMostSpecialized( 10452 TemplateMatches.begin(), TemplateMatches.end(), 10453 FailedTemplateCandidates, D.getIdentifierLoc(), 10454 PDiag(diag::err_explicit_instantiation_not_known) << Name, 10455 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 10456 PDiag(diag::note_explicit_instantiation_candidate)); 10457 10458 if (Result == TemplateMatches.end()) 10459 return true; 10460 10461 // Ignore access control bits, we don't need them for redeclaration checking. 10462 Specialization = cast<FunctionDecl>(*Result); 10463 } 10464 10465 // C++11 [except.spec]p4 10466 // In an explicit instantiation an exception-specification may be specified, 10467 // but is not required. 10468 // If an exception-specification is specified in an explicit instantiation 10469 // directive, it shall be compatible with the exception-specifications of 10470 // other declarations of that function. 10471 if (auto *FPT = R->getAs<FunctionProtoType>()) 10472 if (FPT->hasExceptionSpec()) { 10473 unsigned DiagID = 10474 diag::err_mismatched_exception_spec_explicit_instantiation; 10475 if (getLangOpts().MicrosoftExt) 10476 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 10477 bool Result = CheckEquivalentExceptionSpec( 10478 PDiag(DiagID) << Specialization->getType(), 10479 PDiag(diag::note_explicit_instantiation_here), 10480 Specialization->getType()->getAs<FunctionProtoType>(), 10481 Specialization->getLocation(), FPT, D.getBeginLoc()); 10482 // In Microsoft mode, mismatching exception specifications just cause a 10483 // warning. 10484 if (!getLangOpts().MicrosoftExt && Result) 10485 return true; 10486 } 10487 10488 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 10489 Diag(D.getIdentifierLoc(), 10490 diag::err_explicit_instantiation_member_function_not_instantiated) 10491 << Specialization 10492 << (Specialization->getTemplateSpecializationKind() == 10493 TSK_ExplicitSpecialization); 10494 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 10495 return true; 10496 } 10497 10498 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 10499 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 10500 PrevDecl = Specialization; 10501 10502 if (PrevDecl) { 10503 bool HasNoEffect = false; 10504 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 10505 PrevDecl, 10506 PrevDecl->getTemplateSpecializationKind(), 10507 PrevDecl->getPointOfInstantiation(), 10508 HasNoEffect)) 10509 return true; 10510 10511 // FIXME: We may still want to build some representation of this 10512 // explicit specialization. 10513 if (HasNoEffect) 10514 return (Decl*) nullptr; 10515 } 10516 10517 // HACK: libc++ has a bug where it attempts to explicitly instantiate the 10518 // functions 10519 // valarray<size_t>::valarray(size_t) and 10520 // valarray<size_t>::~valarray() 10521 // that it declared to have internal linkage with the internal_linkage 10522 // attribute. Ignore the explicit instantiation declaration in this case. 10523 if (Specialization->hasAttr<InternalLinkageAttr>() && 10524 TSK == TSK_ExplicitInstantiationDeclaration) { 10525 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) 10526 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && 10527 RD->isInStdNamespace()) 10528 return (Decl*) nullptr; 10529 } 10530 10531 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); 10532 ProcessAPINotes(Specialization); 10533 10534 // In MSVC mode, dllimported explicit instantiation definitions are treated as 10535 // instantiation declarations. 10536 if (TSK == TSK_ExplicitInstantiationDefinition && 10537 Specialization->hasAttr<DLLImportAttr>() && 10538 Context.getTargetInfo().getCXXABI().isMicrosoft()) 10539 TSK = TSK_ExplicitInstantiationDeclaration; 10540 10541 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10542 10543 if (Specialization->isDefined()) { 10544 // Let the ASTConsumer know that this function has been explicitly 10545 // instantiated now, and its linkage might have changed. 10546 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 10547 } else if (TSK == TSK_ExplicitInstantiationDefinition) 10548 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 10549 10550 // C++0x [temp.explicit]p2: 10551 // If the explicit instantiation is for a member function, a member class 10552 // or a static data member of a class template specialization, the name of 10553 // the class template specialization in the qualified-id for the member 10554 // name shall be a simple-template-id. 10555 // 10556 // C++98 has the same restriction, just worded differently. 10557 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 10558 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && 10559 D.getCXXScopeSpec().isSet() && 10560 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 10561 Diag(D.getIdentifierLoc(), 10562 diag::ext_explicit_instantiation_without_qualified_id) 10563 << Specialization << D.getCXXScopeSpec().getRange(); 10564 10565 CheckExplicitInstantiation( 10566 *this, 10567 FunTmpl ? (NamedDecl *)FunTmpl 10568 : Specialization->getInstantiatedFromMemberFunction(), 10569 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); 10570 10571 // FIXME: Create some kind of ExplicitInstantiationDecl here. 10572 return (Decl*) nullptr; 10573 } 10574 10575 TypeResult Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 10576 const CXXScopeSpec &SS, 10577 const IdentifierInfo *Name, 10578 SourceLocation TagLoc, 10579 SourceLocation NameLoc) { 10580 // This has to hold, because SS is expected to be defined. 10581 assert(Name && "Expected a name in a dependent tag"); 10582 10583 NestedNameSpecifier *NNS = SS.getScopeRep(); 10584 if (!NNS) 10585 return true; 10586 10587 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 10588 10589 if (TUK == TagUseKind::Declaration || TUK == TagUseKind::Definition) { 10590 Diag(NameLoc, diag::err_dependent_tag_decl) 10591 << (TUK == TagUseKind::Definition) << llvm::to_underlying(Kind) 10592 << SS.getRange(); 10593 return true; 10594 } 10595 10596 // Create the resulting type. 10597 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 10598 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 10599 10600 // Create type-source location information for this type. 10601 TypeLocBuilder TLB; 10602 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 10603 TL.setElaboratedKeywordLoc(TagLoc); 10604 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10605 TL.setNameLoc(NameLoc); 10606 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 10607 } 10608 10609 TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 10610 const CXXScopeSpec &SS, 10611 const IdentifierInfo &II, 10612 SourceLocation IdLoc, 10613 ImplicitTypenameContext IsImplicitTypename) { 10614 if (SS.isInvalid()) 10615 return true; 10616 10617 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10618 Diag(TypenameLoc, 10619 getLangOpts().CPlusPlus11 ? 10620 diag::warn_cxx98_compat_typename_outside_of_template : 10621 diag::ext_typename_outside_of_template) 10622 << FixItHint::CreateRemoval(TypenameLoc); 10623 10624 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10625 TypeSourceInfo *TSI = nullptr; 10626 QualType T = 10627 CheckTypenameType((TypenameLoc.isValid() || 10628 IsImplicitTypename == ImplicitTypenameContext::Yes) 10629 ? ElaboratedTypeKeyword::Typename 10630 : ElaboratedTypeKeyword::None, 10631 TypenameLoc, QualifierLoc, II, IdLoc, &TSI, 10632 /*DeducedTSTContext=*/true); 10633 if (T.isNull()) 10634 return true; 10635 return CreateParsedType(T, TSI); 10636 } 10637 10638 TypeResult 10639 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 10640 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 10641 TemplateTy TemplateIn, const IdentifierInfo *TemplateII, 10642 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 10643 ASTTemplateArgsPtr TemplateArgsIn, 10644 SourceLocation RAngleLoc) { 10645 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10646 Diag(TypenameLoc, 10647 getLangOpts().CPlusPlus11 ? 10648 diag::warn_cxx98_compat_typename_outside_of_template : 10649 diag::ext_typename_outside_of_template) 10650 << FixItHint::CreateRemoval(TypenameLoc); 10651 10652 // Strangely, non-type results are not ignored by this lookup, so the 10653 // program is ill-formed if it finds an injected-class-name. 10654 if (TypenameLoc.isValid()) { 10655 auto *LookupRD = 10656 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); 10657 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 10658 Diag(TemplateIILoc, 10659 diag::ext_out_of_line_qualified_id_type_names_constructor) 10660 << TemplateII << 0 /*injected-class-name used as template name*/ 10661 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); 10662 } 10663 } 10664 10665 // Translate the parser's template argument list in our AST format. 10666 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 10667 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 10668 10669 TemplateName Template = TemplateIn.get(); 10670 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 10671 // Construct a dependent template specialization type. 10672 assert(DTN && "dependent template has non-dependent name?"); 10673 assert(DTN->getQualifier() == SS.getScopeRep()); 10674 10675 if (!DTN->isIdentifier()) { 10676 Diag(TemplateIILoc, diag::err_template_id_not_a_type) << Template; 10677 NoteAllFoundTemplates(Template); 10678 return true; 10679 } 10680 10681 QualType T = Context.getDependentTemplateSpecializationType( 10682 ElaboratedTypeKeyword::Typename, DTN->getQualifier(), 10683 DTN->getIdentifier(), TemplateArgs.arguments()); 10684 10685 // Create source-location information for this type. 10686 TypeLocBuilder Builder; 10687 DependentTemplateSpecializationTypeLoc SpecTL 10688 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 10689 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 10690 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 10691 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10692 SpecTL.setTemplateNameLoc(TemplateIILoc); 10693 SpecTL.setLAngleLoc(LAngleLoc); 10694 SpecTL.setRAngleLoc(RAngleLoc); 10695 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10696 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10697 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 10698 } 10699 10700 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 10701 if (T.isNull()) 10702 return true; 10703 10704 // Provide source-location information for the template specialization type. 10705 TypeLocBuilder Builder; 10706 TemplateSpecializationTypeLoc SpecTL 10707 = Builder.push<TemplateSpecializationTypeLoc>(T); 10708 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10709 SpecTL.setTemplateNameLoc(TemplateIILoc); 10710 SpecTL.setLAngleLoc(LAngleLoc); 10711 SpecTL.setRAngleLoc(RAngleLoc); 10712 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10713 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10714 10715 T = Context.getElaboratedType(ElaboratedTypeKeyword::Typename, 10716 SS.getScopeRep(), T); 10717 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 10718 TL.setElaboratedKeywordLoc(TypenameLoc); 10719 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10720 10721 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 10722 return CreateParsedType(T, TSI); 10723 } 10724 10725 /// Determine whether this failed name lookup should be treated as being 10726 /// disabled by a usage of std::enable_if. 10727 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 10728 SourceRange &CondRange, Expr *&Cond) { 10729 // We must be looking for a ::type... 10730 if (!II.isStr("type")) 10731 return false; 10732 10733 // ... within an explicitly-written template specialization... 10734 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 10735 return false; 10736 TypeLoc EnableIfTy = NNS.getTypeLoc(); 10737 TemplateSpecializationTypeLoc EnableIfTSTLoc = 10738 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 10739 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 10740 return false; 10741 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); 10742 10743 // ... which names a complete class template declaration... 10744 const TemplateDecl *EnableIfDecl = 10745 EnableIfTST->getTemplateName().getAsTemplateDecl(); 10746 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 10747 return false; 10748 10749 // ... called "enable_if". 10750 const IdentifierInfo *EnableIfII = 10751 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 10752 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 10753 return false; 10754 10755 // Assume the first template argument is the condition. 10756 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 10757 10758 // Dig out the condition. 10759 Cond = nullptr; 10760 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() 10761 != TemplateArgument::Expression) 10762 return true; 10763 10764 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); 10765 10766 // Ignore Boolean literals; they add no value. 10767 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) 10768 Cond = nullptr; 10769 10770 return true; 10771 } 10772 10773 QualType 10774 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10775 SourceLocation KeywordLoc, 10776 NestedNameSpecifierLoc QualifierLoc, 10777 const IdentifierInfo &II, 10778 SourceLocation IILoc, 10779 TypeSourceInfo **TSI, 10780 bool DeducedTSTContext) { 10781 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, 10782 DeducedTSTContext); 10783 if (T.isNull()) 10784 return QualType(); 10785 10786 *TSI = Context.CreateTypeSourceInfo(T); 10787 if (isa<DependentNameType>(T)) { 10788 DependentNameTypeLoc TL = 10789 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); 10790 TL.setElaboratedKeywordLoc(KeywordLoc); 10791 TL.setQualifierLoc(QualifierLoc); 10792 TL.setNameLoc(IILoc); 10793 } else { 10794 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); 10795 TL.setElaboratedKeywordLoc(KeywordLoc); 10796 TL.setQualifierLoc(QualifierLoc); 10797 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); 10798 } 10799 return T; 10800 } 10801 10802 /// Build the type that describes a C++ typename specifier, 10803 /// e.g., "typename T::type". 10804 QualType 10805 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10806 SourceLocation KeywordLoc, 10807 NestedNameSpecifierLoc QualifierLoc, 10808 const IdentifierInfo &II, 10809 SourceLocation IILoc, bool DeducedTSTContext) { 10810 CXXScopeSpec SS; 10811 SS.Adopt(QualifierLoc); 10812 10813 DeclContext *Ctx = nullptr; 10814 if (QualifierLoc) { 10815 Ctx = computeDeclContext(SS); 10816 if (!Ctx) { 10817 // If the nested-name-specifier is dependent and couldn't be 10818 // resolved to a type, build a typename type. 10819 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 10820 return Context.getDependentNameType(Keyword, 10821 QualifierLoc.getNestedNameSpecifier(), 10822 &II); 10823 } 10824 10825 // If the nested-name-specifier refers to the current instantiation, 10826 // the "typename" keyword itself is superfluous. In C++03, the 10827 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 10828 // allows such extraneous "typename" keywords, and we retroactively 10829 // apply this DR to C++03 code with only a warning. In any case we continue. 10830 10831 if (RequireCompleteDeclContext(SS, Ctx)) 10832 return QualType(); 10833 } 10834 10835 DeclarationName Name(&II); 10836 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 10837 if (Ctx) 10838 LookupQualifiedName(Result, Ctx, SS); 10839 else 10840 LookupName(Result, CurScope); 10841 unsigned DiagID = 0; 10842 Decl *Referenced = nullptr; 10843 switch (Result.getResultKind()) { 10844 case LookupResult::NotFound: { 10845 // If we're looking up 'type' within a template named 'enable_if', produce 10846 // a more specific diagnostic. 10847 SourceRange CondRange; 10848 Expr *Cond = nullptr; 10849 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) { 10850 // If we have a condition, narrow it down to the specific failed 10851 // condition. 10852 if (Cond) { 10853 Expr *FailedCond; 10854 std::string FailedDescription; 10855 std::tie(FailedCond, FailedDescription) = 10856 findFailedBooleanCondition(Cond); 10857 10858 Diag(FailedCond->getExprLoc(), 10859 diag::err_typename_nested_not_found_requirement) 10860 << FailedDescription 10861 << FailedCond->getSourceRange(); 10862 return QualType(); 10863 } 10864 10865 Diag(CondRange.getBegin(), 10866 diag::err_typename_nested_not_found_enable_if) 10867 << Ctx << CondRange; 10868 return QualType(); 10869 } 10870 10871 DiagID = Ctx ? diag::err_typename_nested_not_found 10872 : diag::err_unknown_typename; 10873 break; 10874 } 10875 10876 case LookupResult::FoundUnresolvedValue: { 10877 // We found a using declaration that is a value. Most likely, the using 10878 // declaration itself is meant to have the 'typename' keyword. 10879 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10880 IILoc); 10881 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 10882 << Name << Ctx << FullRange; 10883 if (UnresolvedUsingValueDecl *Using 10884 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 10885 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 10886 Diag(Loc, diag::note_using_value_decl_missing_typename) 10887 << FixItHint::CreateInsertion(Loc, "typename "); 10888 } 10889 } 10890 // Fall through to create a dependent typename type, from which we can recover 10891 // better. 10892 [[fallthrough]]; 10893 10894 case LookupResult::NotFoundInCurrentInstantiation: 10895 // Okay, it's a member of an unknown instantiation. 10896 return Context.getDependentNameType(Keyword, 10897 QualifierLoc.getNestedNameSpecifier(), 10898 &II); 10899 10900 case LookupResult::Found: 10901 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 10902 // C++ [class.qual]p2: 10903 // In a lookup in which function names are not ignored and the 10904 // nested-name-specifier nominates a class C, if the name specified 10905 // after the nested-name-specifier, when looked up in C, is the 10906 // injected-class-name of C [...] then the name is instead considered 10907 // to name the constructor of class C. 10908 // 10909 // Unlike in an elaborated-type-specifier, function names are not ignored 10910 // in typename-specifier lookup. However, they are ignored in all the 10911 // contexts where we form a typename type with no keyword (that is, in 10912 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). 10913 // 10914 // FIXME: That's not strictly true: mem-initializer-id lookup does not 10915 // ignore functions, but that appears to be an oversight. 10916 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); 10917 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); 10918 if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD && 10919 FoundRD->isInjectedClassName() && 10920 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 10921 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) 10922 << &II << 1 << 0 /*'typename' keyword used*/; 10923 10924 // We found a type. Build an ElaboratedType, since the 10925 // typename-specifier was just sugar. 10926 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 10927 return Context.getElaboratedType(Keyword, 10928 QualifierLoc.getNestedNameSpecifier(), 10929 Context.getTypeDeclType(Type)); 10930 } 10931 10932 // C++ [dcl.type.simple]p2: 10933 // A type-specifier of the form 10934 // typename[opt] nested-name-specifier[opt] template-name 10935 // is a placeholder for a deduced class type [...]. 10936 if (getLangOpts().CPlusPlus17) { 10937 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { 10938 if (!DeducedTSTContext) { 10939 QualType T(QualifierLoc 10940 ? QualifierLoc.getNestedNameSpecifier()->getAsType() 10941 : nullptr, 0); 10942 if (!T.isNull()) 10943 Diag(IILoc, diag::err_dependent_deduced_tst) 10944 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; 10945 else 10946 Diag(IILoc, diag::err_deduced_tst) 10947 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); 10948 NoteTemplateLocation(*TD); 10949 return QualType(); 10950 } 10951 return Context.getElaboratedType( 10952 Keyword, QualifierLoc.getNestedNameSpecifier(), 10953 Context.getDeducedTemplateSpecializationType(TemplateName(TD), 10954 QualType(), false)); 10955 } 10956 } 10957 10958 DiagID = Ctx ? diag::err_typename_nested_not_type 10959 : diag::err_typename_not_type; 10960 Referenced = Result.getFoundDecl(); 10961 break; 10962 10963 case LookupResult::FoundOverloaded: 10964 DiagID = Ctx ? diag::err_typename_nested_not_type 10965 : diag::err_typename_not_type; 10966 Referenced = *Result.begin(); 10967 break; 10968 10969 case LookupResult::Ambiguous: 10970 return QualType(); 10971 } 10972 10973 // If we get here, it's because name lookup did not find a 10974 // type. Emit an appropriate diagnostic and return an error. 10975 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10976 IILoc); 10977 if (Ctx) 10978 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 10979 else 10980 Diag(IILoc, DiagID) << FullRange << Name; 10981 if (Referenced) 10982 Diag(Referenced->getLocation(), 10983 Ctx ? diag::note_typename_member_refers_here 10984 : diag::note_typename_refers_here) 10985 << Name; 10986 return QualType(); 10987 } 10988 10989 namespace { 10990 // See Sema::RebuildTypeInCurrentInstantiation 10991 class CurrentInstantiationRebuilder 10992 : public TreeTransform<CurrentInstantiationRebuilder> { 10993 SourceLocation Loc; 10994 DeclarationName Entity; 10995 10996 public: 10997 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 10998 10999 CurrentInstantiationRebuilder(Sema &SemaRef, 11000 SourceLocation Loc, 11001 DeclarationName Entity) 11002 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 11003 Loc(Loc), Entity(Entity) { } 11004 11005 /// Determine whether the given type \p T has already been 11006 /// transformed. 11007 /// 11008 /// For the purposes of type reconstruction, a type has already been 11009 /// transformed if it is NULL or if it is not dependent. 11010 bool AlreadyTransformed(QualType T) { 11011 return T.isNull() || !T->isInstantiationDependentType(); 11012 } 11013 11014 /// Returns the location of the entity whose type is being 11015 /// rebuilt. 11016 SourceLocation getBaseLocation() { return Loc; } 11017 11018 /// Returns the name of the entity whose type is being rebuilt. 11019 DeclarationName getBaseEntity() { return Entity; } 11020 11021 /// Sets the "base" location and entity when that 11022 /// information is known based on another transformation. 11023 void setBase(SourceLocation Loc, DeclarationName Entity) { 11024 this->Loc = Loc; 11025 this->Entity = Entity; 11026 } 11027 11028 ExprResult TransformLambdaExpr(LambdaExpr *E) { 11029 // Lambdas never need to be transformed. 11030 return E; 11031 } 11032 }; 11033 } // end anonymous namespace 11034 11035 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 11036 SourceLocation Loc, 11037 DeclarationName Name) { 11038 if (!T || !T->getType()->isInstantiationDependentType()) 11039 return T; 11040 11041 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 11042 return Rebuilder.TransformType(T); 11043 } 11044 11045 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 11046 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 11047 DeclarationName()); 11048 return Rebuilder.TransformExpr(E); 11049 } 11050 11051 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 11052 if (SS.isInvalid()) 11053 return true; 11054 11055 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 11056 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 11057 DeclarationName()); 11058 NestedNameSpecifierLoc Rebuilt 11059 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 11060 if (!Rebuilt) 11061 return true; 11062 11063 SS.Adopt(Rebuilt); 11064 return false; 11065 } 11066 11067 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 11068 TemplateParameterList *Params) { 11069 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 11070 Decl *Param = Params->getParam(I); 11071 11072 // There is nothing to rebuild in a type parameter. 11073 if (isa<TemplateTypeParmDecl>(Param)) 11074 continue; 11075 11076 // Rebuild the template parameter list of a template template parameter. 11077 if (TemplateTemplateParmDecl *TTP 11078 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 11079 if (RebuildTemplateParamsInCurrentInstantiation( 11080 TTP->getTemplateParameters())) 11081 return true; 11082 11083 continue; 11084 } 11085 11086 // Rebuild the type of a non-type template parameter. 11087 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 11088 TypeSourceInfo *NewTSI 11089 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 11090 NTTP->getLocation(), 11091 NTTP->getDeclName()); 11092 if (!NewTSI) 11093 return true; 11094 11095 if (NewTSI->getType()->isUndeducedType()) { 11096 // C++17 [temp.dep.expr]p3: 11097 // An id-expression is type-dependent if it contains 11098 // - an identifier associated by name lookup with a non-type 11099 // template-parameter declared with a type that contains a 11100 // placeholder type (7.1.7.4), 11101 NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI); 11102 } 11103 11104 if (NewTSI != NTTP->getTypeSourceInfo()) { 11105 NTTP->setTypeSourceInfo(NewTSI); 11106 NTTP->setType(NewTSI->getType()); 11107 } 11108 } 11109 11110 return false; 11111 } 11112 11113 std::string 11114 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 11115 const TemplateArgumentList &Args) { 11116 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 11117 } 11118 11119 std::string 11120 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 11121 const TemplateArgument *Args, 11122 unsigned NumArgs) { 11123 SmallString<128> Str; 11124 llvm::raw_svector_ostream Out(Str); 11125 11126 if (!Params || Params->size() == 0 || NumArgs == 0) 11127 return std::string(); 11128 11129 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 11130 if (I >= NumArgs) 11131 break; 11132 11133 if (I == 0) 11134 Out << "[with "; 11135 else 11136 Out << ", "; 11137 11138 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 11139 Out << Id->getName(); 11140 } else { 11141 Out << '$' << I; 11142 } 11143 11144 Out << " = "; 11145 Args[I].print(getPrintingPolicy(), Out, 11146 TemplateParameterList::shouldIncludeTypeForArgument( 11147 getPrintingPolicy(), Params, I)); 11148 } 11149 11150 Out << ']'; 11151 return std::string(Out.str()); 11152 } 11153 11154 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 11155 CachedTokens &Toks) { 11156 if (!FD) 11157 return; 11158 11159 auto LPT = std::make_unique<LateParsedTemplate>(); 11160 11161 // Take tokens to avoid allocations 11162 LPT->Toks.swap(Toks); 11163 LPT->D = FnD; 11164 LPT->FPO = getCurFPFeatures(); 11165 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); 11166 11167 FD->setLateTemplateParsed(true); 11168 } 11169 11170 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 11171 if (!FD) 11172 return; 11173 FD->setLateTemplateParsed(false); 11174 } 11175 11176 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 11177 DeclContext *DC = CurContext; 11178 11179 while (DC) { 11180 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 11181 const FunctionDecl *FD = RD->isLocalClass(); 11182 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 11183 } else if (DC->isTranslationUnit() || DC->isNamespace()) 11184 return false; 11185 11186 DC = DC->getParent(); 11187 } 11188 return false; 11189 } 11190 11191 namespace { 11192 /// Walk the path from which a declaration was instantiated, and check 11193 /// that every explicit specialization along that path is visible. This enforces 11194 /// C++ [temp.expl.spec]/6: 11195 /// 11196 /// If a template, a member template or a member of a class template is 11197 /// explicitly specialized then that specialization shall be declared before 11198 /// the first use of that specialization that would cause an implicit 11199 /// instantiation to take place, in every translation unit in which such a 11200 /// use occurs; no diagnostic is required. 11201 /// 11202 /// and also C++ [temp.class.spec]/1: 11203 /// 11204 /// A partial specialization shall be declared before the first use of a 11205 /// class template specialization that would make use of the partial 11206 /// specialization as the result of an implicit or explicit instantiation 11207 /// in every translation unit in which such a use occurs; no diagnostic is 11208 /// required. 11209 class ExplicitSpecializationVisibilityChecker { 11210 Sema &S; 11211 SourceLocation Loc; 11212 llvm::SmallVector<Module *, 8> Modules; 11213 Sema::AcceptableKind Kind; 11214 11215 public: 11216 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc, 11217 Sema::AcceptableKind Kind) 11218 : S(S), Loc(Loc), Kind(Kind) {} 11219 11220 void check(NamedDecl *ND) { 11221 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 11222 return checkImpl(FD); 11223 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) 11224 return checkImpl(RD); 11225 if (auto *VD = dyn_cast<VarDecl>(ND)) 11226 return checkImpl(VD); 11227 if (auto *ED = dyn_cast<EnumDecl>(ND)) 11228 return checkImpl(ED); 11229 } 11230 11231 private: 11232 void diagnose(NamedDecl *D, bool IsPartialSpec) { 11233 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization 11234 : Sema::MissingImportKind::ExplicitSpecialization; 11235 const bool Recover = true; 11236 11237 // If we got a custom set of modules (because only a subset of the 11238 // declarations are interesting), use them, otherwise let 11239 // diagnoseMissingImport intelligently pick some. 11240 if (Modules.empty()) 11241 S.diagnoseMissingImport(Loc, D, Kind, Recover); 11242 else 11243 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); 11244 } 11245 11246 bool CheckMemberSpecialization(const NamedDecl *D) { 11247 return Kind == Sema::AcceptableKind::Visible 11248 ? S.hasVisibleMemberSpecialization(D) 11249 : S.hasReachableMemberSpecialization(D); 11250 } 11251 11252 bool CheckExplicitSpecialization(const NamedDecl *D) { 11253 return Kind == Sema::AcceptableKind::Visible 11254 ? S.hasVisibleExplicitSpecialization(D) 11255 : S.hasReachableExplicitSpecialization(D); 11256 } 11257 11258 bool CheckDeclaration(const NamedDecl *D) { 11259 return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D) 11260 : S.hasReachableDeclaration(D); 11261 } 11262 11263 // Check a specific declaration. There are three problematic cases: 11264 // 11265 // 1) The declaration is an explicit specialization of a template 11266 // specialization. 11267 // 2) The declaration is an explicit specialization of a member of an 11268 // templated class. 11269 // 3) The declaration is an instantiation of a template, and that template 11270 // is an explicit specialization of a member of a templated class. 11271 // 11272 // We don't need to go any deeper than that, as the instantiation of the 11273 // surrounding class / etc is not triggered by whatever triggered this 11274 // instantiation, and thus should be checked elsewhere. 11275 template<typename SpecDecl> 11276 void checkImpl(SpecDecl *Spec) { 11277 bool IsHiddenExplicitSpecialization = false; 11278 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 11279 IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo() 11280 ? !CheckMemberSpecialization(Spec) 11281 : !CheckExplicitSpecialization(Spec); 11282 } else { 11283 checkInstantiated(Spec); 11284 } 11285 11286 if (IsHiddenExplicitSpecialization) 11287 diagnose(Spec->getMostRecentDecl(), false); 11288 } 11289 11290 void checkInstantiated(FunctionDecl *FD) { 11291 if (auto *TD = FD->getPrimaryTemplate()) 11292 checkTemplate(TD); 11293 } 11294 11295 void checkInstantiated(CXXRecordDecl *RD) { 11296 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); 11297 if (!SD) 11298 return; 11299 11300 auto From = SD->getSpecializedTemplateOrPartial(); 11301 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) 11302 checkTemplate(TD); 11303 else if (auto *TD = 11304 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 11305 if (!CheckDeclaration(TD)) 11306 diagnose(TD, true); 11307 checkTemplate(TD); 11308 } 11309 } 11310 11311 void checkInstantiated(VarDecl *RD) { 11312 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); 11313 if (!SD) 11314 return; 11315 11316 auto From = SD->getSpecializedTemplateOrPartial(); 11317 if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) 11318 checkTemplate(TD); 11319 else if (auto *TD = 11320 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 11321 if (!CheckDeclaration(TD)) 11322 diagnose(TD, true); 11323 checkTemplate(TD); 11324 } 11325 } 11326 11327 void checkInstantiated(EnumDecl *FD) {} 11328 11329 template<typename TemplDecl> 11330 void checkTemplate(TemplDecl *TD) { 11331 if (TD->isMemberSpecialization()) { 11332 if (!CheckMemberSpecialization(TD)) 11333 diagnose(TD->getMostRecentDecl(), false); 11334 } 11335 } 11336 }; 11337 } // end anonymous namespace 11338 11339 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { 11340 if (!getLangOpts().Modules) 11341 return; 11342 11343 ExplicitSpecializationVisibilityChecker(*this, Loc, 11344 Sema::AcceptableKind::Visible) 11345 .check(Spec); 11346 } 11347 11348 void Sema::checkSpecializationReachability(SourceLocation Loc, 11349 NamedDecl *Spec) { 11350 if (!getLangOpts().CPlusPlusModules) 11351 return checkSpecializationVisibility(Loc, Spec); 11352 11353 ExplicitSpecializationVisibilityChecker(*this, Loc, 11354 Sema::AcceptableKind::Reachable) 11355 .check(Spec); 11356 } 11357 11358 SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const { 11359 if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty()) 11360 return N->getLocation(); 11361 if (const auto *FD = dyn_cast<FunctionDecl>(N)) { 11362 if (!FD->isFunctionTemplateSpecialization()) 11363 return FD->getLocation(); 11364 } else if (!isa<ClassTemplateSpecializationDecl, 11365 VarTemplateSpecializationDecl>(N)) { 11366 return N->getLocation(); 11367 } 11368 for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) { 11369 if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid()) 11370 continue; 11371 return CSC.PointOfInstantiation; 11372 } 11373 return N->getLocation(); 11374 } 11375