xref: /llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp (revision 4a486e773e0ef1add4515ee47b038c274ced2e76)
1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetRegisterInfo interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetRegisterInfo.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/TargetFrameLowering.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/VirtRegMap.h"
28 #include "llvm/CodeGenTypes/MachineValueType.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/Printable.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <utility>
41 
42 #define DEBUG_TYPE "target-reg-info"
43 
44 using namespace llvm;
45 
46 static cl::opt<unsigned>
47     HugeSizeForSplit("huge-size-for-split", cl::Hidden,
48                      cl::desc("A threshold of live range size which may cause "
49                               "high compile time cost in global splitting."),
50                      cl::init(5000));
51 
52 TargetRegisterInfo::TargetRegisterInfo(
53     const TargetRegisterInfoDesc *ID, regclass_iterator RCB,
54     regclass_iterator RCE, const char *const *SRINames,
55     const SubRegCoveredBits *SubIdxRanges, const LaneBitmask *SRILaneMasks,
56     LaneBitmask SRICoveringLanes, const RegClassInfo *const RCIs,
57     const MVT::SimpleValueType *const RCVTLists, unsigned Mode)
58     : InfoDesc(ID), SubRegIndexNames(SRINames), SubRegIdxRanges(SubIdxRanges),
59       SubRegIndexLaneMasks(SRILaneMasks), RegClassBegin(RCB), RegClassEnd(RCE),
60       CoveringLanes(SRICoveringLanes), RCInfos(RCIs), RCVTLists(RCVTLists),
61       HwMode(Mode) {}
62 
63 TargetRegisterInfo::~TargetRegisterInfo() = default;
64 
65 bool TargetRegisterInfo::shouldRegionSplitForVirtReg(
66     const MachineFunction &MF, const LiveInterval &VirtReg) const {
67   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
68   const MachineRegisterInfo &MRI = MF.getRegInfo();
69   MachineInstr *MI = MRI.getUniqueVRegDef(VirtReg.reg());
70   if (MI && TII->isTriviallyReMaterializable(*MI) &&
71       VirtReg.size() > HugeSizeForSplit)
72     return false;
73   return true;
74 }
75 
76 void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet,
77                                        MCRegister Reg) const {
78   for (MCPhysReg SR : superregs_inclusive(Reg))
79     RegisterSet.set(SR);
80 }
81 
82 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
83     ArrayRef<MCPhysReg> Exceptions) const {
84   // Check that all super registers of reserved regs are reserved as well.
85   BitVector Checked(getNumRegs());
86   for (unsigned Reg : RegisterSet.set_bits()) {
87     if (Checked[Reg])
88       continue;
89     for (MCPhysReg SR : superregs(Reg)) {
90       if (!RegisterSet[SR] && !is_contained(Exceptions, Reg)) {
91         dbgs() << "Error: Super register " << printReg(SR, this)
92                << " of reserved register " << printReg(Reg, this)
93                << " is not reserved.\n";
94         return false;
95       }
96 
97       // We transitively check superregs. So we can remember this for later
98       // to avoid compiletime explosion in deep register hierarchies.
99       Checked.set(SR);
100     }
101   }
102   return true;
103 }
104 
105 namespace llvm {
106 
107 Printable printReg(Register Reg, const TargetRegisterInfo *TRI,
108                    unsigned SubIdx, const MachineRegisterInfo *MRI) {
109   return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
110     if (!Reg)
111       OS << "$noreg";
112     else if (Register::isStackSlot(Reg))
113       OS << "SS#" << Register::stackSlot2Index(Reg);
114     else if (Reg.isVirtual()) {
115       StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
116       if (Name != "") {
117         OS << '%' << Name;
118       } else {
119         OS << '%' << Register::virtReg2Index(Reg);
120       }
121     } else if (!TRI)
122       OS << '$' << "physreg" << Reg.id();
123     else if (Reg < TRI->getNumRegs()) {
124       OS << '$';
125       printLowerCase(TRI->getName(Reg), OS);
126     } else
127       llvm_unreachable("Register kind is unsupported.");
128 
129     if (SubIdx) {
130       if (TRI)
131         OS << ':' << TRI->getSubRegIndexName(SubIdx);
132       else
133         OS << ":sub(" << SubIdx << ')';
134     }
135   });
136 }
137 
138 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
139   return Printable([Unit, TRI](raw_ostream &OS) {
140     // Generic printout when TRI is missing.
141     if (!TRI) {
142       OS << "Unit~" << Unit;
143       return;
144     }
145 
146     // Check for invalid register units.
147     if (Unit >= TRI->getNumRegUnits()) {
148       OS << "BadUnit~" << Unit;
149       return;
150     }
151 
152     // Normal units have at least one root.
153     MCRegUnitRootIterator Roots(Unit, TRI);
154     assert(Roots.isValid() && "Unit has no roots.");
155     OS << TRI->getName(*Roots);
156     for (++Roots; Roots.isValid(); ++Roots)
157       OS << '~' << TRI->getName(*Roots);
158   });
159 }
160 
161 Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
162   return Printable([Unit, TRI](raw_ostream &OS) {
163     if (Register::isVirtualRegister(Unit)) {
164       OS << '%' << Register::virtReg2Index(Unit);
165     } else {
166       OS << printRegUnit(Unit, TRI);
167     }
168   });
169 }
170 
171 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
172                               const TargetRegisterInfo *TRI) {
173   return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
174     if (RegInfo.getRegClassOrNull(Reg))
175       OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
176     else if (RegInfo.getRegBankOrNull(Reg))
177       OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
178     else {
179       OS << "_";
180       assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
181              "Generic registers must have a valid type");
182     }
183   });
184 }
185 
186 } // end namespace llvm
187 
188 /// getAllocatableClass - Return the maximal subclass of the given register
189 /// class that is alloctable, or NULL.
190 const TargetRegisterClass *
191 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
192   if (!RC || RC->isAllocatable())
193     return RC;
194 
195   for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
196        ++It) {
197     const TargetRegisterClass *SubRC = getRegClass(It.getID());
198     if (SubRC->isAllocatable())
199       return SubRC;
200   }
201   return nullptr;
202 }
203 
204 template <typename TypeT>
205 static const TargetRegisterClass *
206 getMinimalPhysRegClass(const TargetRegisterInfo *TRI, MCRegister Reg,
207                        TypeT Ty) {
208   static_assert(std::is_same_v<TypeT, MVT> || std::is_same_v<TypeT, LLT>);
209   assert(Reg.isPhysical() && "reg must be a physical register");
210 
211   bool IsDefault = [&]() {
212     if constexpr (std::is_same_v<TypeT, MVT>)
213       return Ty == MVT::Other;
214     else
215       return !Ty.isValid();
216   }();
217 
218   // Pick the most sub register class of the right type that contains
219   // this physreg.
220   const TargetRegisterClass *BestRC = nullptr;
221   for (const TargetRegisterClass *RC : TRI->regclasses()) {
222     if ((IsDefault || TRI->isTypeLegalForClass(*RC, Ty)) && RC->contains(Reg) &&
223         (!BestRC || BestRC->hasSubClass(RC)))
224       BestRC = RC;
225   }
226 
227   if constexpr (std::is_same_v<TypeT, MVT>)
228     assert(BestRC && "Couldn't find the register class");
229   return BestRC;
230 }
231 
232 template <typename TypeT>
233 static const TargetRegisterClass *
234 getCommonMinimalPhysRegClass(const TargetRegisterInfo *TRI, MCRegister Reg1,
235                              MCRegister Reg2, TypeT Ty) {
236   static_assert(std::is_same_v<TypeT, MVT> || std::is_same_v<TypeT, LLT>);
237   assert(Reg1.isPhysical() && Reg2.isPhysical() &&
238          "Reg1/Reg2 must be a physical register");
239 
240   bool IsDefault = [&]() {
241     if constexpr (std::is_same_v<TypeT, MVT>)
242       return Ty == MVT::Other;
243     else
244       return !Ty.isValid();
245   }();
246 
247   // Pick the most sub register class of the right type that contains
248   // this physreg.
249   const TargetRegisterClass *BestRC = nullptr;
250   for (const TargetRegisterClass *RC : TRI->regclasses()) {
251     if ((IsDefault || TRI->isTypeLegalForClass(*RC, Ty)) &&
252         RC->contains(Reg1, Reg2) && (!BestRC || BestRC->hasSubClass(RC)))
253       BestRC = RC;
254   }
255 
256   if constexpr (std::is_same_v<TypeT, MVT>)
257     assert(BestRC && "Couldn't find the register class");
258   return BestRC;
259 }
260 
261 const TargetRegisterClass *
262 TargetRegisterInfo::getMinimalPhysRegClass(MCRegister Reg, MVT VT) const {
263   return ::getMinimalPhysRegClass(this, Reg, VT);
264 }
265 
266 const TargetRegisterClass *TargetRegisterInfo::getCommonMinimalPhysRegClass(
267     MCRegister Reg1, MCRegister Reg2, MVT VT) const {
268   return ::getCommonMinimalPhysRegClass(this, Reg1, Reg2, VT);
269 }
270 
271 const TargetRegisterClass *
272 TargetRegisterInfo::getMinimalPhysRegClassLLT(MCRegister Reg, LLT Ty) const {
273   return ::getMinimalPhysRegClass(this, Reg, Ty);
274 }
275 
276 const TargetRegisterClass *TargetRegisterInfo::getCommonMinimalPhysRegClassLLT(
277     MCRegister Reg1, MCRegister Reg2, LLT Ty) const {
278   return ::getCommonMinimalPhysRegClass(this, Reg1, Reg2, Ty);
279 }
280 
281 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
282 /// registers for the specific register class.
283 static void getAllocatableSetForRC(const MachineFunction &MF,
284                                    const TargetRegisterClass *RC, BitVector &R){
285   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
286   ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
287   for (MCPhysReg PR : Order)
288     R.set(PR);
289 }
290 
291 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
292                                           const TargetRegisterClass *RC) const {
293   BitVector Allocatable(getNumRegs());
294   if (RC) {
295     // A register class with no allocatable subclass returns an empty set.
296     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
297     if (SubClass)
298       getAllocatableSetForRC(MF, SubClass, Allocatable);
299   } else {
300     for (const TargetRegisterClass *C : regclasses())
301       if (C->isAllocatable())
302         getAllocatableSetForRC(MF, C, Allocatable);
303   }
304 
305   // Mask out the reserved registers
306   const MachineRegisterInfo &MRI = MF.getRegInfo();
307   const BitVector &Reserved = MRI.getReservedRegs();
308   Allocatable.reset(Reserved);
309 
310   return Allocatable;
311 }
312 
313 static inline
314 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
315                                             const uint32_t *B,
316                                             const TargetRegisterInfo *TRI) {
317   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
318     if (unsigned Common = *A++ & *B++)
319       return TRI->getRegClass(I + llvm::countr_zero(Common));
320   return nullptr;
321 }
322 
323 const TargetRegisterClass *
324 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
325                                       const TargetRegisterClass *B) const {
326   // First take care of the trivial cases.
327   if (A == B)
328     return A;
329   if (!A || !B)
330     return nullptr;
331 
332   // Register classes are ordered topologically, so the largest common
333   // sub-class it the common sub-class with the smallest ID.
334   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
335 }
336 
337 const TargetRegisterClass *
338 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
339                                              const TargetRegisterClass *B,
340                                              unsigned Idx) const {
341   assert(A && B && "Missing register class");
342   assert(Idx && "Bad sub-register index");
343 
344   // Find Idx in the list of super-register indices.
345   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
346     if (RCI.getSubReg() == Idx)
347       // The bit mask contains all register classes that are projected into B
348       // by Idx. Find a class that is also a sub-class of A.
349       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
350   return nullptr;
351 }
352 
353 const TargetRegisterClass *TargetRegisterInfo::
354 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
355                        const TargetRegisterClass *RCB, unsigned SubB,
356                        unsigned &PreA, unsigned &PreB) const {
357   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
358 
359   // Search all pairs of sub-register indices that project into RCA and RCB
360   // respectively. This is quadratic, but usually the sets are very small. On
361   // most targets like X86, there will only be a single sub-register index
362   // (e.g., sub_16bit projecting into GR16).
363   //
364   // The worst case is a register class like DPR on ARM.
365   // We have indices dsub_0..dsub_7 projecting into that class.
366   //
367   // It is very common that one register class is a sub-register of the other.
368   // Arrange for RCA to be the larger register so the answer will be found in
369   // the first iteration. This makes the search linear for the most common
370   // case.
371   const TargetRegisterClass *BestRC = nullptr;
372   unsigned *BestPreA = &PreA;
373   unsigned *BestPreB = &PreB;
374   if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
375     std::swap(RCA, RCB);
376     std::swap(SubA, SubB);
377     std::swap(BestPreA, BestPreB);
378   }
379 
380   // Also terminate the search one we have found a register class as small as
381   // RCA.
382   unsigned MinSize = getRegSizeInBits(*RCA);
383 
384   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
385     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
386     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
387       // Check if a common super-register class exists for this index pair.
388       const TargetRegisterClass *RC =
389         firstCommonClass(IA.getMask(), IB.getMask(), this);
390       if (!RC || getRegSizeInBits(*RC) < MinSize)
391         continue;
392 
393       // The indexes must compose identically: PreA+SubA == PreB+SubB.
394       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
395       if (FinalA != FinalB)
396         continue;
397 
398       // Is RC a better candidate than BestRC?
399       if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
400         continue;
401 
402       // Yes, RC is the smallest super-register seen so far.
403       BestRC = RC;
404       *BestPreA = IA.getSubReg();
405       *BestPreB = IB.getSubReg();
406 
407       // Bail early if we reached MinSize. We won't find a better candidate.
408       if (getRegSizeInBits(*BestRC) == MinSize)
409         return BestRC;
410     }
411   }
412   return BestRC;
413 }
414 
415 /// Check if the registers defined by the pair (RegisterClass, SubReg)
416 /// share the same register file.
417 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
418                                   const TargetRegisterClass *DefRC,
419                                   unsigned DefSubReg,
420                                   const TargetRegisterClass *SrcRC,
421                                   unsigned SrcSubReg) {
422   // Same register class.
423   if (DefRC == SrcRC)
424     return true;
425 
426   // Both operands are sub registers. Check if they share a register class.
427   unsigned SrcIdx, DefIdx;
428   if (SrcSubReg && DefSubReg) {
429     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
430                                       SrcIdx, DefIdx) != nullptr;
431   }
432 
433   // At most one of the register is a sub register, make it Src to avoid
434   // duplicating the test.
435   if (!SrcSubReg) {
436     std::swap(DefSubReg, SrcSubReg);
437     std::swap(DefRC, SrcRC);
438   }
439 
440   // One of the register is a sub register, check if we can get a superclass.
441   if (SrcSubReg)
442     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
443 
444   // Plain copy.
445   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
446 }
447 
448 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
449                                               unsigned DefSubReg,
450                                               const TargetRegisterClass *SrcRC,
451                                               unsigned SrcSubReg) const {
452   // If this source does not incur a cross register bank copy, use it.
453   return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
454 }
455 
456 // Compute target-independent register allocator hints to help eliminate copies.
457 bool TargetRegisterInfo::getRegAllocationHints(
458     Register VirtReg, ArrayRef<MCPhysReg> Order,
459     SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
460     const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
461   const MachineRegisterInfo &MRI = MF.getRegInfo();
462   const std::pair<unsigned, SmallVector<Register, 4>> *Hints_MRI =
463       MRI.getRegAllocationHints(VirtReg);
464 
465   if (!Hints_MRI)
466     return false;
467 
468   SmallSet<Register, 32> HintedRegs;
469   // First hint may be a target hint.
470   bool Skip = (Hints_MRI->first != 0);
471   for (auto Reg : Hints_MRI->second) {
472     if (Skip) {
473       Skip = false;
474       continue;
475     }
476 
477     // Target-independent hints are either a physical or a virtual register.
478     Register Phys = Reg;
479     if (VRM && Phys.isVirtual())
480       Phys = VRM->getPhys(Phys);
481 
482     // Don't add the same reg twice (Hints_MRI may contain multiple virtual
483     // registers allocated to the same physreg).
484     if (!HintedRegs.insert(Phys).second)
485       continue;
486     // Check that Phys is a valid hint in VirtReg's register class.
487     if (!Phys.isPhysical())
488       continue;
489     if (MRI.isReserved(Phys))
490       continue;
491     // Check that Phys is in the allocation order. We shouldn't heed hints
492     // from VirtReg's register class if they aren't in the allocation order. The
493     // target probably has a reason for removing the register.
494     if (!is_contained(Order, Phys))
495       continue;
496 
497     // All clear, tell the register allocator to prefer this register.
498     Hints.push_back(Phys);
499   }
500   return false;
501 }
502 
503 bool TargetRegisterInfo::isCalleeSavedPhysReg(
504     MCRegister PhysReg, const MachineFunction &MF) const {
505   if (!PhysReg)
506     return false;
507   const uint32_t *callerPreservedRegs =
508       getCallPreservedMask(MF, MF.getFunction().getCallingConv());
509   if (callerPreservedRegs) {
510     assert(PhysReg.isPhysical() && "Expected physical register");
511     return (callerPreservedRegs[PhysReg.id() / 32] >> PhysReg.id() % 32) & 1;
512   }
513   return false;
514 }
515 
516 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
517   return MF.getFrameInfo().isStackRealignable();
518 }
519 
520 bool TargetRegisterInfo::shouldRealignStack(const MachineFunction &MF) const {
521   return MF.getFrameInfo().shouldRealignStack();
522 }
523 
524 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
525                                             const uint32_t *mask1) const {
526   unsigned N = (getNumRegs()+31) / 32;
527   for (unsigned I = 0; I < N; ++I)
528     if ((mask0[I] & mask1[I]) != mask0[I])
529       return false;
530   return true;
531 }
532 
533 TypeSize
534 TargetRegisterInfo::getRegSizeInBits(Register Reg,
535                                      const MachineRegisterInfo &MRI) const {
536   const TargetRegisterClass *RC{};
537   if (Reg.isPhysical()) {
538     // The size is not directly available for physical registers.
539     // Instead, we need to access a register class that contains Reg and
540     // get the size of that register class.
541     RC = getMinimalPhysRegClass(Reg);
542     assert(RC && "Unable to deduce the register class");
543     return getRegSizeInBits(*RC);
544   }
545   LLT Ty = MRI.getType(Reg);
546   if (Ty.isValid())
547     return Ty.getSizeInBits();
548 
549   // Since Reg is not a generic register, it may have a register class.
550   RC = MRI.getRegClass(Reg);
551   assert(RC && "Unable to deduce the register class");
552   return getRegSizeInBits(*RC);
553 }
554 
555 bool TargetRegisterInfo::getCoveringSubRegIndexes(
556     const TargetRegisterClass *RC, LaneBitmask LaneMask,
557     SmallVectorImpl<unsigned> &NeededIndexes) const {
558   SmallVector<unsigned, 8> PossibleIndexes;
559   unsigned BestIdx = 0;
560   unsigned BestCover = 0;
561 
562   for (unsigned Idx = 1, E = getNumSubRegIndices(); Idx < E; ++Idx) {
563     // Is this index even compatible with the given class?
564     if (getSubClassWithSubReg(RC, Idx) != RC)
565       continue;
566     LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx);
567     // Early exit if we found a perfect match.
568     if (SubRegMask == LaneMask) {
569       BestIdx = Idx;
570       break;
571     }
572 
573     // The index must not cover any lanes outside \p LaneMask.
574     if ((SubRegMask & ~LaneMask).any())
575       continue;
576 
577     unsigned PopCount = SubRegMask.getNumLanes();
578     PossibleIndexes.push_back(Idx);
579     if (PopCount > BestCover) {
580       BestCover = PopCount;
581       BestIdx = Idx;
582     }
583   }
584 
585   // Abort if we cannot possibly implement the COPY with the given indexes.
586   if (BestIdx == 0)
587     return false;
588 
589   NeededIndexes.push_back(BestIdx);
590 
591   // Greedy heuristic: Keep iterating keeping the best covering subreg index
592   // each time.
593   LaneBitmask LanesLeft = LaneMask & ~getSubRegIndexLaneMask(BestIdx);
594   while (LanesLeft.any()) {
595     unsigned BestIdx = 0;
596     int BestCover = std::numeric_limits<int>::min();
597     for (unsigned Idx : PossibleIndexes) {
598       LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx);
599       // Early exit if we found a perfect match.
600       if (SubRegMask == LanesLeft) {
601         BestIdx = Idx;
602         break;
603       }
604 
605       // Do not cover already-covered lanes to avoid creating cycles
606       // in copy bundles (= bundle contains copies that write to the
607       // registers).
608       if ((SubRegMask & ~LanesLeft).any())
609         continue;
610 
611       // Try to cover as many of the remaining lanes as possible.
612       const int Cover = (SubRegMask & LanesLeft).getNumLanes();
613       if (Cover > BestCover) {
614         BestCover = Cover;
615         BestIdx = Idx;
616       }
617     }
618 
619     if (BestIdx == 0)
620       return false; // Impossible to handle
621 
622     NeededIndexes.push_back(BestIdx);
623 
624     LanesLeft &= ~getSubRegIndexLaneMask(BestIdx);
625   }
626 
627   return BestIdx;
628 }
629 
630 unsigned TargetRegisterInfo::getSubRegIdxSize(unsigned Idx) const {
631   assert(Idx && Idx < getNumSubRegIndices() &&
632          "This is not a subregister index");
633   return SubRegIdxRanges[HwMode * getNumSubRegIndices() + Idx].Size;
634 }
635 
636 unsigned TargetRegisterInfo::getSubRegIdxOffset(unsigned Idx) const {
637   assert(Idx && Idx < getNumSubRegIndices() &&
638          "This is not a subregister index");
639   return SubRegIdxRanges[HwMode * getNumSubRegIndices() + Idx].Offset;
640 }
641 
642 Register
643 TargetRegisterInfo::lookThruCopyLike(Register SrcReg,
644                                      const MachineRegisterInfo *MRI) const {
645   while (true) {
646     const MachineInstr *MI = MRI->getVRegDef(SrcReg);
647     if (!MI->isCopyLike())
648       return SrcReg;
649 
650     Register CopySrcReg;
651     if (MI->isCopy())
652       CopySrcReg = MI->getOperand(1).getReg();
653     else {
654       assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
655       CopySrcReg = MI->getOperand(2).getReg();
656     }
657 
658     if (!CopySrcReg.isVirtual())
659       return CopySrcReg;
660 
661     SrcReg = CopySrcReg;
662   }
663 }
664 
665 Register TargetRegisterInfo::lookThruSingleUseCopyChain(
666     Register SrcReg, const MachineRegisterInfo *MRI) const {
667   while (true) {
668     const MachineInstr *MI = MRI->getVRegDef(SrcReg);
669     // Found the real definition, return it if it has a single use.
670     if (!MI->isCopyLike())
671       return MRI->hasOneNonDBGUse(SrcReg) ? SrcReg : Register();
672 
673     Register CopySrcReg;
674     if (MI->isCopy())
675       CopySrcReg = MI->getOperand(1).getReg();
676     else {
677       assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
678       CopySrcReg = MI->getOperand(2).getReg();
679     }
680 
681     // Continue only if the next definition in the chain is for a virtual
682     // register that has a single use.
683     if (!CopySrcReg.isVirtual() || !MRI->hasOneNonDBGUse(CopySrcReg))
684       return Register();
685 
686     SrcReg = CopySrcReg;
687   }
688 }
689 
690 void TargetRegisterInfo::getOffsetOpcodes(
691     const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const {
692   assert(!Offset.getScalable() && "Scalable offsets are not handled");
693   DIExpression::appendOffset(Ops, Offset.getFixed());
694 }
695 
696 DIExpression *
697 TargetRegisterInfo::prependOffsetExpression(const DIExpression *Expr,
698                                             unsigned PrependFlags,
699                                             const StackOffset &Offset) const {
700   assert((PrependFlags &
701           ~(DIExpression::DerefBefore | DIExpression::DerefAfter |
702             DIExpression::StackValue | DIExpression::EntryValue)) == 0 &&
703          "Unsupported prepend flag");
704   SmallVector<uint64_t, 16> OffsetExpr;
705   if (PrependFlags & DIExpression::DerefBefore)
706     OffsetExpr.push_back(dwarf::DW_OP_deref);
707   getOffsetOpcodes(Offset, OffsetExpr);
708   if (PrependFlags & DIExpression::DerefAfter)
709     OffsetExpr.push_back(dwarf::DW_OP_deref);
710   return DIExpression::prependOpcodes(Expr, OffsetExpr,
711                                       PrependFlags & DIExpression::StackValue,
712                                       PrependFlags & DIExpression::EntryValue);
713 }
714 
715 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
716 LLVM_DUMP_METHOD
717 void TargetRegisterInfo::dumpReg(Register Reg, unsigned SubRegIndex,
718                                  const TargetRegisterInfo *TRI) {
719   dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
720 }
721 #endif
722